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Robotics has been a promising and popular research area for the past

few decades. Among various applications of robotic, in many cases, human

are involved in different manners. Therefore, as an important sub research

area of robotics, human robot interaction has drawn decent attention re-

cently. It has been deeply and widely studied. For human robot interaction,

human play an important role. Undoubtedly, the more we know about hu-

man, the easier we can do human robot interaction and the better perfor-

mance we can achieve in human robot interaction. One fascinating research

topic of human robot interaction would be human in exoskeleton, where hu-

man play a key role in the mechanical design of exoskeleton as well as the

control strategy design of exoskeleton.

Among all those applications, the augmentation exoskeleton is espe-

cially interesting due to its ability to amplify human. As mentioned previ-

ously, human properties are important for the design of exoskeleton. Unfortu-

nately, despite many inspiring and deep studies about human properties and

various proposed human models, human remains to be a complicated system
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that is hard to predict and model. Furthermore, human is a dynamic system

whose parameters keep changing with time, bringing more challenges. As

we all know, limited understanding of the control plant will limit the perfor-

mance of the controller and bring difficulties in the design of a controller. In

fact, the performance of many existed controller for augmentation exoskele-

ton is limited by using conservative values of human property parameters.

A straightforward way to solve this problem is to estimate human properties

online. Under this circumstance, the main challenges are to develop a control

strategy, whose performance can be exploited using the estimation of human

properties and a reliable method to online estimate human properties. This

thesis mainly presents an adaptive compliance shaping control strategy with

human impedance estimation and a brief review of a newly proposed complex

stiffness model of human.
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Chapter 1

Introduction

Robotic exoskeletons have been used for a range of applications in-

cluding assistance with muscle impairment due to disease [19, 12, 34], control

mechanisms for tele-operation robots [24, 5], and a means to augment the

strength or increase the endurance of the human operator [48, 22, 37, 13].

Among all those applications, the augmentation exoskeleton has the

ability to amplify human, which infers a promising future application in army,

where the augmentation exoskeleton would help soldiers to lift equipment

easier, saving their energy and making heavy equipment portable, in manu-

facturing, where workers can use augmentation exoskeletons to carry heavy

package and components around, improving working efficiency, in architec-

ture, where the builders can move building materials using augmentation

exoskeletons.

The study on exoskeletons mainly focuses on the mechanical design

and the controller design. The performance of the exoskeletons can be im-

proved from multiple aspects. Some researchers improve the performance of

exoskeletons through feedback control [19] or offline and online optimization

of control parameters [37, 51]. Our study aims to improve the performance of

a strength amplification exoskeleton—one that feedback couples exoskeleton

joint torque to human joint torque in order to amplify human strength.

As we discussed earlier, human properties are the key points for the
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controller design of the exoskeleton. Despite many inspiring and deep studies

about human properties and various proposed human models, human remains

to be a complicated system that is hard to predict and model. That is be-

cause the complexity of human. The biomedical model of human has not been

fully understood and the human properties depend on many aspects, most

of which are hard to measure. In addition, human is a dynamic system and

the property parameters can vary with time with high frequency. Therefore,

we have very limited information about human properties, bringing multiple

challenges in this area. One great challenge, which is also the focus of this

thesis, would be the control system design for human in exoskeleton. In the

design of control systems involving humans interacting with exoskeletons,

human properties such as dynamic stiffness, damping, and inertia determine

the tuning of parameters in our controller, which therefore determine the

performance and stability of the controller. To solve this problem, we need

to choose a good model of human and find a way to estimate human model

parameters to exploit the ability of our controller. This thesis presents an

adaptive compliance shaping control strategy with human impedance esti-

mation and a brief review of a newly proposed complex stiffness model of

human.

In Chapter 2, we review some of the existing model of the humans

and the newly proposed complex stiffness model of the human. There are

different kinds of human models. Despite the varying in complexity and

applications, perhaps the most well known model for the human joint is the

second order mass spring damper model, where the human joint is modeled by

a mass, a damper and a spring corresponding to human inertia, damping and

stiffness. Researchers have discovered a linear relationship between human

2



stiffness and external torque [2, 8, 26]. There are also researches illustrating

a linear relationship between the damping and the external torque [2, 26]. In

addition, it is also found that there seems to be a constant damping ration

among various subjects despite the inertia, damping and stiffness differences

[22]. However, this nearly constant damping ratio is not well explained.

A newly proposed complex stiffness model of the human [21] can explain

this well and also suggests a relationship between the human damping and

stiffness.

In Chapter 3, we talk about ways of estimating human model param-

eters and present our strategy for estimating human stiffness using hybrid

sensors and a random forest model. The estimation of human properties has

been studied for the past few decades and different methods have been pro-

posed. Those methods can be roughly divided into two categories. The first

consists on the estimation based on a physical model of human, where human

properties can be fitted into a model with parameters pre-calculated empir-

ically and with physical meanings. Thanks to the development of machine

learning recently, human model estimation has benefited from the learning

technology. The second category uses machine learning methods to estimate

human properties based on the inputs from sensors. Those kinds of methods

do not require a physical model of the human but are usually lack of physical

meanings. In our study, we use a random forest model to estimate human

stiffness which takes the inputs from surface electromyograph (sEMG) sen-

sors and stretch sensors. This model does not require any foreknowledge

about human model.

In Chapter 4, we present a compliance shaping method which benefits

from our previously presented estimation method and we show simulation
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results and experimental results for a subject interacting with a one degree of

freedom single joint elbow joint exoskeleton, demonstrating the accuracy and

validness of our method. The results include both the steady state response

of the controller with a human interacting with the exoskeleton as well as

the stability performance of this controller. We also compare the result with

a robust controller to demonstrate a performance improvement.

1.1 Summary of Contributions

The main contribution of this study includes two parts. The first part

is a stiffness estimation method based on data inputs from sEMG and stretch

sensors. This method uses a random forest model to estimate human stiffness

and is able to predict human stiffness with high accuracy. Compared with

other studies, to our knowledge, our method has the highest accuracy. The

second part is an adaptive compliance shaping control method which adapts

controller parameter to the estimated stiffness online and the performance

is proven to be better compared with a robust controller without stiffness

estimation.

This thesis contains materials from [21] and [25]. In [21], my main

contribution is the literature study, experiment conduction and data analysis.

In [25], my main contribution is the literature study, problem statement,

experiment design and conduction and data analysis.
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Chapter 2

Human Joint Model

2.1 Summary

In this chapter, I introduce a commonly used human model, the mass

spring damper model and a newly proposed human model, a complex stiff-

ness model [21]. I introduce relationships between human properties includ-

ing human inertia, stiffness and damping, and external torques and muscle

contractions. I also briefly introduce the research background, experiment

process and results, statistical data analysis and characteristics of the com-

plex stiffness human model.

2.2 Contribution Statement

This chapter contains materials from [21]. My main contributions

are on literature study, where I searched for similar studies and summarized

experimental results addressing non zero phase shifts, experiment conduction,

where I helped in designing the experiments, and data analysis, where I

searched for statistical methods that can be used to prove the significance of

the complex stiffness model.
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2.3 Introduction

The stability of force amplification exoskeletons, like impedance con-

trolled robots for physical human robot interaction, depends on the human

impedance, and the exoskeleton must guarantee this coupled stability de-

spite the variability in the human’s behavior. Medically oriented studies

often model the human as a spring, mass, damper system with time-varying

parameters [8, 4]. For this model, many studies have suggested a linear re-

lationship between human stiffness and external toques as well as that for

human damping given external torques. However, in a recent study, this

model is shown to be inaccurate. A more accurate model with a complex

stiffness term is proposed in [21] based on experimental results. In addition,

it is also found that there seems to be a constant damping ratio among vari-

ous subjects despite inertia, damping and stiffness differences [22]. However,

this nearly constant damping ratio is not well explained for the mass spring

damper model. The newly proposed complex stiffness model of the human

[21] can explain this well and also suggest a relationship between human

damping and stiffness.

2.4 Mass Spring Damper Model for Human Joint

A well known and widely used model for human joint is the second

order mass spring damper model as shown in the Figure 2.1. The dynamic

equation of this model can be expressed as

F = mẍ2 + bẋ+ k(x− x0), (2.1)

where for human, F is the external torque exerted on human, m is the inertia

of human joint, b is the linear damping of human and k is the human joint

6



stiffness and x0 is the spring origin position.

Figure 2.1: A mass spring damper system

In this spring, mass, damper model, several studies have revealed

a linearity relationship between the human joint spring and the voluntary

muscle contractions as well as the external torques exerted on the joint [4,

2, 8, 26]. In addition, it is also found that there exists a similar relationship

between the damping and the muscle contractions and the external torque

exerted on the joint [3, 50]. However, this linear relationship is statistically

weaker than that for human stiffness [2, 26].

Since both the human stiffness and damping have linear relationship

with the external torque and muscle contraction, it is instinctive to expect

a relationship between human stiffness and damping. However, there is a

lack of literature about the relationship between the human stiffness and the

damping.

It has also been found that there is a near constant damping ratio

for human joint despite the changing of human stiffness and human inertia

[22]. A consistent damping ratio between 0.22 to 0.49 is shown through the

frequency domain identification of the ankle joint [2, 16]. In addition, it is

shown the damping ratio does not change significantly with the variation

7



of the external torque [50]. A multi-joint impedance study [44] on human

arms also shows that for upper limbs, the damping ratio is distributed with a

mean of 0.26 and a standard deviation of 0.08. Though multiple studies have

pointed out this nearly constant ratio, it remains unclear why human has a

constant damping ratio and the mass spring damper model fails to explain

this phenomenon very well.

2.5 Complex Stiffness Model of Human

2.5.1 Introduction

As mentioned previously, the traditional mass spring damper model

fails to explain the constant damping ratio. In addition, in some studies [8]

(Fig. 6 of that paper), a non zero phase shift around 25 degrees in a wide

range of low frequencies, in the phase plot of the bode plot of human joints are

observed, which contradicts with the traditional mass spring damper model.

This leads to the proposition of a new human joint model with complex

stiffness [21], which consists of a hysteretic damping term and the human

stiffness.

In biomechanical model, hysteretic damping models have seen success.

There are experimental results [2] showing a hysteretic relationship between

the applied torque and the ankle angle at very low frequencies. As mentioned

before, there are non zero phase shifts observed which can be explained (in

the field of structural mechanics) by defining a hysteretic damping whose

damping coefficient is proportional to the inverse of frequency [6]. Hysteretic

damping model have also been adapted to describe the dynamic properties

of the whole body of a seated human [33] as well as cockroach legs [11].

In [21], the human stiffness and damping behavior for human in ex-
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oskeleton are studied. Three models are compared: 1) a linear mass, spring,

and viscous damper model, 2) a nonlinear complex-stiffness-spring and mass

model (that is, a spring, mass, and hysteretic damper model), and 3) a com-

bination model with mass, spring, and both viscous and hysteretic damping.

And the significance of the hysteretic damping term is tested. Using a statisti-

cal method, F test, the statistical significance of the hysteretic damping term

is shown. In addition, a linear relationship between this hysteretic damping

term and stiffness is also studied which could explain the nearly constant

damping ratio of human as well as the non zero phase shift observed both in

previous studies [8] and the experiment results in this paper.

In [21], several experiments are conducted for a human wearing a one

degree of freedom single joint elbow exoskeleton. During the experiments,

the inertia of the exoskeleton are changed by attaching different loads at the

end of the exoskeleton arm and the human stiffness are changed by applying

different amount of external torques and asking the subject to squeeze an

adjustable exercise hand grip. An augmentation controller is also used for

some of the experiments. In [21], based on the newly proposed complex

stiffness human model, a fractional order controller is also proposed which

could make use of the non zero phase shift to achieve a more aggressive

augmentation performance. The conceptual bode plot of this controller is

shown in Figure 2.2 [21].

2.5.2 Experiment Results

In [21], the P0 series elastic elbow-joint exoskeleton from Apptronik

Systems, as shown in Fig. 2.3 [21] is used to conduct the experiments.

In [21], an excitation chirp command (which essentially performs sys-
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Figure 2.2: Conceptual bode plots show the augmentation plant Pα(s) with its
poles (crosses) and zeros (circles). Regions are color-coded: the model is trust-
worthy in the green region, the blue region reflects the multi-crossover behavior
which makes an augmentation controller design unreliable, and the yellow region is
dominated by sensor noise from τc. A fractional-order filter Cα(s) brings Pα(s) to
a lower crossover and increases the phase margin. The stars indicate the crossovers
of Pα(s) and Pα(s) with Cα(s) [21].

(a)

SEA

6-Axis Force Sensor

Encoder

(b)

Load

Hand Grip

Figure 2.3: Experimental apparatus: a series elastic P0 exoskeleton from App-
tronik Systems, featuring an ATI Mini40 force sensitive cuff and a P170 Orion air
cooled series elastic actuator module acting through a simple 3 bar linkage [21].
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Table 2.1: Experiment Parameters [21]

Exp α Load (kg) Grip (kg) Bias (Nm) Amplitude (Nm) Frequency (rad/s)

I.1 1 0.6

10 0 2α 2− 20

I.2 1 2.3

I.3 1 4.5

I.4 2 4.5

I.5 4 4.5

II.1 1 0.6

14 4α 2α 3− 30

II.2 1 2.3

II.3 1 4.5

II.4 2 4.5

II.5 4 4.5

III.1 1 0.6

27 8α 2α 4− 40

III.2 1 2.3

III.3 1 4.5

III.4 2 4.5

III.5 4 4.5

tem identification of the human subject), a gravity compensation controller,

a human augmentation controller, and a bias torque comprise the desired

actuator torque signal. Three models described before can be expressed as

M1, M2 and M3 as shown below [21].

Sh-e/α = Mh-e/αs
2 +Bhs+Kh, (M1)

Sh-e/α = Mh-e/αs
2 + Chj +Kh, (M2)

Sh-e/α = Mh-e/αs
2 +Bhs+ Chj +Kh, (M3)

where Mh-e/α = Mh+Me/α is the perceived inertia at the human joint,Mh is

the inertia of human, Me is the inertia of exoskeleton, α is the amplification

ratio of the augmentation controller, Bh is the human damping, Kh is human

stiffness and Ch is the hysteretic damping term.

In [21], the experiment parameter setting are shown in Table 2.1 [21].

α is the amplification ratio of the amplification controller, bias is the value of

11



the external torque and amplitude and frequency is that of the perturbation

chirp command.

The experiment results fitted using M3 is shown in Figure 2.4 [21].

It easy to observe a non zero phase shift in the phase plot. And it is clear

that the fitting is pretty good. And the parameter fitting results for all the

three models are shown in Table 2.2 [21].

From Table 2.2, it is shown that there is a nearly constant damping

ratio regardless human stiffness, inertia and the amplification ratio. Here the

damping ratio for three models are defined as below [21]

ζh-e/α =
Bh

2
√
KhMh-e/α

for M1, (2.2)

ζh-e/α =
Ch

2Kh

=
ch
2

+
dh

2Kh

for M2, and (2.3)

ζh-e/α =
ch
2

+
dh

2Kh

+
Bh

2
√
KhMh-e/α

for M3. (2.4)

In (2.3), Ch = chKh +dh is the regression model between human stiff-

ness and the hysteretic damping for M2. [21] reveals a linear relationship

between human stiffness and the hysteretic damping for M2 and M3. The

fitting results are shown below in Figure 2.5 [21]. The linearity between the

hysteretic damping and the human stiffness is pretty significant and this re-

lationship will help to reduce the parameter freedom in M2, making it easier

to fit in practice. In addition, the non zero phase shifts at low frequencies

shown in Figure 2.4 can be expressed as [21]

Phase Shift = tan−1(
Ch
Kh

) = tan−1(ch +
dh
Kh

) for M2, and (2.5)

Phase Shift = tan−1(ch +
dh +Bhω

Kh

) for M3. (2.6)
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Figure 2.4: Bode plots of frequency domain data of Sh-e/α with Exp. I.1-5 on (a)
and (b), Exp. II.1-5 on (c) and (d), and Exp. III.1-5 on (e) and (f). The dash
lines on each plot show the fitted curves from M3 [21].
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Table 2.2: Subject Dynamic Stiffness Parameters [21]

Exp Model Kh(Nmrad ) Ch(Nmrad ) Bh(Nmsrad ) Mh-e/α(kgm
2) ωh-e/α( rads ) ζh-e/α

I.1
M1 10.05 - - 1.03 0.28 5.95 0.31
M2 10.05 5.89 - - 0.28 5.95 0.29
M3 10.05 4.97 0.18 0.28 5.95 0.30

I.2
M1 11.80 - - 1.51 0.60 4.44 0.28
M2 11.80 6.68 - - 0.60 4.44 0.28
M3 11.80 5.44 0.31 0.60 4.44 0.29

I.3
M1 15.74 - - 2.09 1.18 3.65 0.24
M2 15.74 8.33 - - 1.18 3.65 0.26
M3 15.74 10.44 −0.60 1.18 3.65 0.26

I.4
M1 13.82 - - 1.46 0.60 4.78 0.25
M2 13.82 6.87 - - 0.60 4.78 0.25
M3 13.82 6.01 0.21 0.60 4.78 0.25

I.5
M1 12.09 - - 1.22 0.28 6.59 0.33
M2 12.09 6.84 - - 0.28 6.59 0.28
M3 12.09 4.26 0.52 0.28 6.59 0.32

II.1
M1 12.73 - - 1.41 0.20 7.94 0.44
M2 12.73 10.18 - - 0.20 7.94 0.40
M3 12.73 5.86 0.66 0.20 7.94 0.44

II.2
M1 18.79 - - 1.91 0.57 5.72 0.29
M2 18.79 11.77 - - 0.57 5.72 0.31
M3 18.79 11.54 0.04 0.57 5.72 0.31

II.3
M1 25.95 - - 3.08 1.03 5.02 0.30
M2 25.95 16.75 - - 1.03 5.02 0.32
M3 25.95 15.48 0.26 1.03 5.02 0.32

II.4
M1 25.77 - - 2.83 0.52 7.02 0.39
M2 25.77 20.49 - - 0.52 7.02 0.40
M3 25.77 16.60 0.60 0.52 7.02 0.40

II.5
M1 19.07 - - 1.88 0.28 8.32 0.41
M2 19.07 16.27 - - 0.28 8.32 0.43
M3 19.07 15.72 0.08 0.28 8.32 0.43

III.1
M1 48.15 - - 1.97 0.23 14.4 0.29
M2 48.15 25.45 - - 0.23 14.4 0.26
M3 48.15 16.66 0.76 0.23 14.4 0.29

III.2
M1 48.60 - - 2.85 0.58 9.13 0.27
M2 48.60 25.61 - - 0.58 9.13 0.26
M3 48.60 15.19 1.23 0.58 9.13 0.27

III.3
M1 42.23 - - 3.19 1.01 6.47 0.24
M2 42.23 23.60 - - 1.01 6.47 0.28
M3 42.23 24.08 −0.07 1.01 6.47 0.28

III.4
M1 32.22 - - 2.82 0.46 8.35 0.37
M2 32.22 25.36 - - 0.46 8.35 0.39
M3 32.22 20.83 0.55 0.46 8.35 0.39

III.5
M1 42.33 - - 2.08 0.27 12.43 0.31
M2 42.33 26.50 - - 0.27 12.43 0.31
M3 42.33 27.66 −0.11 0.27 12.43 0.31
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Figure 2.5: Linear regressions between Ch and Kh for M3 (a) and M2 (b) show
that the parameters of M2 have a stronger linear relationship (that is, a higher R2

value) [21].

2.5.3 Statistical Significance of the Hysteretic Damping Term

The statistical significance of the hysteretic damping term in M2 is

calculated through F test [20]. F tests are conducted between M1 and M3

and M2 and M3 respectively. And the results of F tests for all experiments

are shown in Figure 2.6 [21].

Figure 2.6 shows that for all experiments M1 is not significantly bet-

ter than M3 but for 11 experiments out of 15 experiments, M2 is equally as

good as M3. This shows that the hysteretic damping term has a significance

impact on the accuracy of the model.

2.6 Conclusion

From [21], it is clear that a complex stiffness model is more accurate

than the traditional mass spring damper model and therefore we use this

model in our study of adaptive compliance shaping methods when conducting
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Figure 2.6: F-statistics on log scale for all experiments show the significant im-
provement on modeling accuracy from M1 to M3 and a partial improvement from
M2 to M3. The dashed line appears on a bar if the F-statistic value is over the
critical F-statistic value of 4.49 (false-rejection probability of 0.05) [21].
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the simulation and designing the controller.
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Chapter 3

Human Model Parameters Estimation

3.1 Summary

In this chapter, I introduce diffident methods of human properties

estimation and the method I used in [25] to estimate human stiffness using

a random forest predictor taking inputs from sEMG and stretch sensors. I

introduce the experiment apparatus, protocol as well as the data processing

and analysis methods. I also discuss the estimation results in detail.

3.2 Contribution Statement

This chapter contains materials from [25]. My main contributions are

on the problem statement, where I proposed that sEMG sensors combined

with stretch sensors can estimate human stiffness, the literature study, where

I searched for similar studies and compared our methods and results, the

experiment design, where I designed the experimental setting and process

and built the hardware system, conducting the experiment where I collected

and analyzed data and used different estimation models to chose the one with

the most accuracy.
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3.3 Introduction

There are different kinds of human estimation types which can be

roughly divided into two categories. The first one is the estimation or pre-

diction of human behaviors or human intention such as estimating human

motion trajectories. For example, for assistive exoskeleton, the prediction of

human intention can reduce time latency. For rehabilitation exoskeleton, the

prediction of human intention facilitates physical movements. In addition,

the prediction of human behavior is also an important toll for human robot

interaction out of safety concerns or to better interact with humans.

Another category involving the use of human estimation and predic-

tion is the estimation of human physical properties including human stiffness,

damping and applied torque. This kind of estimation is also very useful in

the design of exoskeletons. In assistive exoskeletons and rehabilitation sys-

tems, there are various studies on estimation of human applied torque which

could reflect the human motion intention. In augmentation exoskeletons, the

human applied torque sometimes is the input to the exoskeleton controller

and therefore plays an important role in the control system design. However,

in most cases, the estimation of human applied torque can be replaced with

a contact force sensor which is more accurate and faster. For human stiffness

and damping estimation, lots of studies have been done in the biomedical

community where the estimation of stiffness can help with the treatment of

certain type of diseases.

In the previous chapter, we talked about different human models in-

cluding the traditional mass spring damper model and the newly proposed

complex stiffness model. However, both of the models includes time vary-

ing parameters stiffness and damping which is hard to online identify. This
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brings difficulties in the design of controller. Usually, in control community,

the controller is designed on the most conservative range of human parame-

ter values, which can provide very strong coupled stability guarantees [48, 1],

however this wider space of possible human models restricts controller per-

formance [30]. An estimate of human stiffness with lower uncertainty has the

potential to improve bandwidth for both human-robot interaction controllers

and amplification exoskeletons [48, 7, 49].

Exoskeletons can accomplish strength amplification through various

control frameworks including adaptive control [9], admittance control[36],

impedance control [28], loop-shaping design with a bounded human impedance

[22], and by independently shaping the human and exoskeleton side compli-

ance [48]. Ref. [22] emphasizes remaining robustly stable and used system

identification with the human in the loop in order to obtain a robust model of

a SISO “amplification plant”. In this framework it is clear how widening the

uncertainty restricts the choice of crossover point and closed loop bandwidth.

The framework in [48] emphasizes what dynamics behaviors are possible with

the exoskeleton by specifying behavior in terms of two dynamic compliance

transfer functions (exo-side and human-side). This framing makes it easy to

design the controller to avoid instability with different human stiffnesses. A

physical spring in [48] guaranteed a minimum compliance for the spring and

human system and was used to design the controller. But an online estimate

of human stiffness could provide the same information, without softening the

human’s connection to the exoskeleton.

As mentioned previously, the estimation of stiffness could benefit

many controller designs for augmentation exoskeleton. A common approach

to measure human stiffness is to impose a perturbation torque and measure

20



deflection [41]. However, this method is only effective offline [32, 40, 46].

Online stiffness estimation methods include biological models [46, 14, 45] as

well as artificial neural networks [32, 40], with only a subset of the estimation

methods generalizing to multiple subjects [46, 45]. Most studies focusing on

stiffness estimation use sEMG sensors [32, 40, 46, 14, 45], but physical de-

flection sensors may offer a less noisy means to gain information from the

human [18]. In our study, we use an approach combining sEMG sensors with

low cost stretch sensors (deflection-varying resistors) and using a random for-

est model to give the estimation results. Comparing our estimation results

with other similar researches, our accuracy is shown to be the highest to our

knowledge.

In this study we apply online estimation of human stiffness to adapt

the force feedback gains of a strength amplification exoskeleton according to

the estimated human stiffness. Our online human stiffness estimator uses a

novel combination of sensors, and arguably improves over the state of the

art for estimating the stiffness of the human elbow, boasting an R factor of

0.993 (c.f. 0.9266 in [32]), and a 17 Nm/rad max error (c.f. 30 Nm/rad in

[40] and 80 Nm/rad in [46]).

3.4 Experiment Appratus

We propose an approach to estimate human stiffness online by using

a trained random forest model taking advantage of signals from sEMG and

stretch sensors as well as exoskeleton velocity and position.

We use a single degree of freedom elbow joint exoskeleton for this

research. The P0 exoskeleton (Apptronik Systems Inc., Austin, TX), as

shown in Figure 3.1, is a 3 bar linkage device powered by a series elastic
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actuator (SEA) with a spring force tracking bandwidth of 10 Hz and reliable

actuator torque conversion using a linkage table. The exoskeleton includes a

6-axis force torque sensor measuring the human exoskeleton contact forces.

The human rests his or her upper arm on a white 3D printed mount beside

the actuator. Exoskeleton position θ is measured by an encoder at the joint

and contact torque τc is measured by the force torque sensor. The moment

of inertia of the exoskeleton is 0.1 kg ·m2 without any additional weight, but

provides the option to include additional external weights. A laser pointer is

attached to the end of the long bar to assist with precise position movement

projecting onto a white board one meter in front of the subject wearing the

exoskeleton. The white board contains three lines referring to initial position

and upper and lower bounds of movement. A deviation around ±3◦ from

those lines is acceptable.

In addition, we utilize 3 Myowear sEMG sensors (SparkFun Elec-

tronics, Niwot, CO) located on the upper arm and forearm (biceps brachii,

triceps brachii, and brachioradialis muscles) of the subject and 2 stretch sen-

sors (Images Scientific Instruments Inc., Staten Island, NY) attached around

the middle of the forearm and upper arm connected to an Arduino Mega

2560 (SparkFun) by a breadboard. The sampling frequency for all sensors is

250 Hz. The full setup of the apparatus including the exoskeleton and the

peripheral sensors are shown in Figure 3.1.

3.5 Experiment Protocol

The experimental protocol was approved by the Institutional Review

Board (IRB) at the University of Texas at Austin. The IRB proposal is

attached in the appendix. One healthy, male subject wore the 3 sEMG
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SEA

EMG Sensors

Stretch Sensors

Gripper

Cuff

Laser Pointer

Figure 3.1: The P0 exoskeleton (Apptronik Systems Inc., Austin, TX) with an ATI
Mini40 (ATI Industrial Automation, Apex, NC) force sensitive cuff located near
the middle of the forearm. The subject holds a grip-strength exercise device to
modulate co-contraction in the muscles at the elbow. The subject is instrumented
with 3 sEMG sensors and 2 stretch sensors that are used to estimate stiffness [25].

sensors and 2 stretch sensors during the experiments.

The experiments are divided into 2 sections. The first consists of 11

experiments in which the participant maintains a constant equilibrium posi-

tion while the exoskeleton imposes a torque comprising a piece-wise constant

bias and a sinusoidal excitation with constant frequency and amplitude. In

order to obtain reference signal values for all sensors, the participant initially

holds a constant posture for 20 seconds, aligning the laser pointer to a tar-

get. The first 20 seconds includes gravity compensation, with no bias torque.

Following this procedure, the exoskeleton induces bias forces ranging from 0

Nm to 9.5 Nm in 0.5 Nm steps occurring in 3 second intervals. Because we

noticed there tends to be larger errors for the low bias torques, we repeated

the first five bias forces twice. The participant is asked to maintain the same

constant position and apply no voluntary compensation torque. Movement

is induced by the sinusoidal signal, which has a constant frequency of 1 Hz
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and amplitude of 1.5 Nm. This experiment is repeated 11 times (denoted

I.1-11), with a 30 second resting period between every five bias force tran-

sitions as well as a minimum of 2 minutes resting period between each of

the 11 experiments. In I.1, the subject holds nothing. To induce muscle

co-contraction, I.2-11 introduce a hand-grip exercise tool with an adjustable

load. The participant squeezes a gripper beginning with 22 lb for the second

trial and up to 82 lb for the final trial.

The second set of experiments maintains the same procedure as the

first experiment set except the participant voluntarily moves his or her arm

at 0.5 Hz, using three optical targets for the midpoint and two extremes of

the oscillation. In this experiment the sinusoidal excitation has a constant

frequency of 1.7 Hz and an amplitude of 2.5 Nm. The bias force increases

from 0 Nm to 8 Nm in step of 2 Nm occurring in 15 second intervals. All other

parameters and procedures remain consistent with the first set of experiments

(including the variation of grip strength). This set of experiments is denoted

as II.1-11.

3.6 Estimation Methods

3.6.1 Data Preprocessing

In both experiment sections signals from 3 sEMG sensors are ampli-

fied, rectified, and integrated and then passed through a second order low

pass filter with cutoff frequency of 60 rad/s and damping ratio of 0.707. We

use the average signal values from 2 stretch sensors and 3 sEMG sensors in

the first 20 seconds of each experiment as initial reference signal values for

that experiment. These values are subtracted from the sEMG and stretch

sensors’ data to get the variation data for the 5 sensors. The absolute values
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Figure 3.2: Diagram of training scheme for random forest predictor. Stiffness kh is
estimated using least squares fitting in the time domain, and is used as the ground
truth for training the stiffness predicting random forest [25].

of processed data from the stretch and sEMG sensors are denoted as S1, S2

and E1, E2, E3 respectively.

In the first experiment section, exoskeleton position and velocity, and

contact torque are filtered with the same second order low pass filter to

calculate the reference stiffness.

In the second experiment section, we use a second order butterworth

bandpass filter [27] with cutoff frequency of 1.2 Hz and 10 Hz for exoskeleton

position and velocity, and contact torque to filter out the influence of human

voluntary movement when calculating the reference stiffness.

For both sections, exoskeleton position and velocity are filtered by the

same second order low pass filter to build the training and validation data

set.

3.6.2 Time Domain Regression

In order to obtain a reference stiffness value for training the online

estimation model and validating the accuracy, we use a linear regression for
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the time domain data regarding the dynamic equation1

mhθ̈ + bhθ̇ + kh(θ − θ0) = τc (3.1)

where τc is the contact torque between the human and exoskeleton, mh,

bh, and kh are the inertia, linear damping, and stiffness of the human, θ,

θ̇ and θ̈ are the joint position, velocity and acceleration of the human, and

θ0 is the equilibrium angle of the human spring (i.e. the human’s desired

position). In the case of a rigid connection between the human and exoskele-

ton, the human’s joint position, velocity and acceleration are equal to the

corresponding measurable properties of the exoskeleton. Through a linear

regression between τc and [θ, θ̇, −1] for the corresponding experimental data

(θ̈ is not included due to the amplified noise from the double differentiation

on joint position), we find the human stiffness kh as the reference stiffness,

linear damping bh, and offset spring torque τ0 = khθ0. Each linear regression

includes a moving window of 400 points in time.

3.6.3 Random Forest Predictor

Random forest is a learning method based on decision tree. It is

wildly used for classification and regression problems. It trains multiple

decision trees during the training process and averages the outputs of in-

dividual tree [23], correcting the over fitting problem of a single decision

tree [15]. A random forest contains a large number of uncorrelated decision

trees and each decision tree will make its own regression output using a stan-

dard supervised machine learning strategy. That means each tree will have

1Here, we use a linear damping model to estimate the human’s stiffness, because of
difficulties implementing hysteretic damping in the time domain regression. Hysteretic
damping models are likely more accurate[21], and we use them for the stability analysis.
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its individual error and their results have low correlation. By averaging all

the regression outputs, the regression error is minimized and the over fit-

ting problem is somewhat avoided. Compared with other machine learning

technologies, random forest method has the advantage of high generality and

less over fitting issue. Unlike convolutional neural network (CNN), whose

performance is sensitive to the network structure, random forest method has

a fixed structure and therefore is much easier to implement. In addition, it

can also achieve relatively stable performance for different applications and

therefore can be applied to more problems compared with CNN, which is

widely used in computer vision,

We use a random forest predictor from scikit-learn package [43] in

Python to estimate muscle stiffness based on a 7-dimensional training data

set, which includes the absolute value of exoskeleton position and velocity,

filtered by the second order low pass filter, and S1, S2, E1, E2 and E3.

The reference stiffness values are used as a supervisory signal. The model

is structured with an estimator number of 50 and a maximum depth of 10

for each estimator to avoid over-fitting. The predictor is trained offline with

data from both the first and second experimental sections. The full diagram

of the model training procedure is outlined in Fig. 3.2.

3.7 Results

We obtain 76350 offline shuffled data points where 50900 are used

for offline training and the remaining 25450 are used as an offline validation

set. The estimation results for all data sets using the trained random forest

predictor give us a maximum error of 16.58 Nm/rad and an error variance

of 2.55 Nm2/rad2. The results are shown in Fig. 3.3(a). Estimation results
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Figure 3.3: Random forest predictor results. k̂h is the estimated stiffness from our
random forest predictor and kh is the reference stiffness calculated from the time
domain regression. Fig. 3.3(a) shows the linear relationship between the estimated
stiffness and the reference stiffness for all experiments I.1-11 and II.1-11. The
blue dots are the data points and the red dash line is the reference line of y = x.
Fig. 3.3(b) shows estimation results from experiment group I. Fig. 3.3(c) shows
estimation results from experiment group II [25].
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for the validation data set only have a maximum error of 14.51 Nm/rad and

an error variance of 3.01 Nm2/rad2. Representations of accurate estimation

results are shown in Fig. 3.3(b) and Fig. 3.3(c) respectively.

The quality of our predictor is high relative to other published pre-

dictors of human stiffness using sEMG data. From Fig. 3.3(a) we notice a

significant linear relationship between stiffness estimation and reference stiff-

ness. Comparing the estimation results with other similar research, our R

factor 0.993 points to a stronger correlation than the best result of elbow

stiffness in [32] of 0.9266 ([32] uses an artificial neural network to estimate

multi-joint stiffness, but we only compare the elbow joint stiffness results).

Our stiffness ranges from 5 to more than 90 Nm/rad which is a more practical

range compared with [32]’s smaller range of 1 to 3 Nm/rad. Our predictor has

a maximum error less than 17 Nm/rad while Fig.5 in [40] shows a maximum

error greater than 30 Nm/rad and the results in [46] show a maximum error

greater than 80 Nm/rad. However, [46] uses a different definition of elbow

stiffness and includes data for nine subjects, which may influence their esti-

mation accuracy. In addition, all the experiments in [32, 40, 46, 45] are done

without the human’s voluntary movement, which weakens the validation of

their models. Stiffness estimation in the presence of voluntary motion intro-

duces new challenges, because these voluntary movements can be confused

with the human’s response to the perturbation. Our bandpass filter helps

to remove the influence of human voluntary motion in the estimation proce-

dure (the human’s voluntary motion is below the lower cutoff frequency), but

does not completely eliminate this influence. This implies that the reference

human stiffness is not entirely trustworthy for the second experiment set.

The error between estimated stiffness and reference stiffness may come
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from three sources: error caused by incorrect sensor data, error caused by the

imperfect predictor, and error due to incorrect reference stiffness. The green

circle of Fig. 3.3(b) demonstrates a sudden peak in the stiffness estimate, a

peak which is not reflected in the smooth reference stiffness. This kind of

instant peak may be caused by inaccurate sensor data corrupting the inputs

to the stiffness predictor. An erroneous momentary sensor value may be due

to buffer error or electrical noise, which will cause the predictor to return an

incorrect estimation result. In Fig. 3.3(c), the error shown in the orange circle

may be a pure inaccuracy from the predictor while the error in the black circle

may be caused by the incorrect reference stiffness. Since kh in Fig 3.3(c) is

acquired using a band pass filter, this unusual sudden increase and decrease

of reference stiffness in the black circle can be explained by human motion

being abrupt enough to enter the bandpass region of the filter.

In general, our predictor gives an accurate stiffness estimation for

both stiffness in isometric conditions and during voluntary movement. This

random forest predictor can be used for online stiffness estimation. If we

eliminate the data from the stretch sensors in the training data set, we notice

a decrease of R factor from 0.993 to 0.987 and an increase of maximum error

from 16.58 to 19.32 Nm/rad. The error variance also increases from 2.55

to 5.13 Nm2/rad2 validating the importance of including the data from the

stretch sensors.

3.8 Conclusion

In this chapter, we present our stiffness estimation methods using a

random forest model taking inputs from sEMG sensors and stretch sensors

and compared the results with other similar research. It turned out that to
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our knowledge, our method has the highest accuracy.
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Chapter 4

Adaptive Compliance Shaping Control

4.1 Summary

In this chapter, I introduce control methods for augmentation ex-

oskeletons and claim that some controllers can benefit from the estimation

of human stiffness. I introduce the design of a compliance shaping controller

which could benefit from the stiffness estimation process and develop a the-

oretical analysis. I introduce an experimental process and results to validate

the performance improvement brought by the stiffness estimation process

compared with a robust controller without stiffness estimation.

4.2 Contribution Statement

This chapter contains materials from [25]. My main contributions are

on the problem statement, the literature study, where I searched for different

augmentation controllers that could benefit from human stiffness estimation,

simulation and analysis, where I did the simulation to tune the controller

parameter and analyze the potential performance improvement brought by

the stiffness estimation process, the experimental design and conduction of

the experiments, where I designed the experimental process for both the

adaptive and robust controllers to compare the performance, and on the

data analysis, where I compared and discussed the results.
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4.3 Introduction

Research has been done to incorporate human property estimates into

controllers [17, 42, 29]. For example, the authors in [17] applied torque

estimation to rehabilitation exoskeletons, the authors in [42] use joint angle

estimation in a rehabilitation finger exoskeleton, and the authors in [17, 42]

focus more on trajectory following and assistance. Most studies focus on

the estimation of applied torque or human intention [28, 38, 10, 31]. In

many cases this torque estimation is used as an alternative to contact force

sensors between the human and exoskeleton. The researchers in [29] perform

a dynamic stiffness estimation using a musculoskeletal model for a power

assist exoskeleton, but focus on the reduction of vibrations due to EMG

noise.

Various control strategies of exoskeletons have augmented the strength

of the human by a significant factor. Methods used include a feedback con-

troller [22], a compliance shaping controller [48], and admittance control [36].

All methods maximized amplification while remaining robustly stable, how-

ever were tuned to ensure stability based on conservative bounds of human

stiffness estimation. The researchers in [48] incorporated a double compli-

ance shaping method using series elastic actuators (SEAs) and a disturbance

observer to mitigate nonlinear transmission effects. The controller increased

the passivity of the device, but had the potential for higher bandwidth and

amplification if an accurate online estimation of stiffness was possible. In

[21], the fractional order controller proposed based on the complex stiffness

model needs to be stable over the entire human stiffness range. Since hu-

man stiffness can vary from 2Nṁ/rad to 200Nṁ/rad, the performance of

the controller is highly limited. If we can integrate the stiffness estimation
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method into this controller, we can expect a better performance.

In the previous chapter, we talked about different methods of hu-

man properties estimation and our method of estimating human stiffness.

We also see that the controller performance is limited by the information

about human stiffness. Although many studies have successfully estimated

human impedance parameters, few have applied them to exoskeletons. In

this study, we contribute a novel controller adaptation scheme (based on the

compliance shaping framework [48]) that uses bounded-error stiffness infor-

mation to improve bandwidth while remaining stable. This controller is then

experimentally validated to A) remain stable as stiffness changes, B) lose

stability when fed incorrect stiffness information, and C) improve strength

amplification bandwidth relative to a robust control design.

4.4 Controller Adaptation Scheme

Since we have demonstrated that stiffness can be estimated online to

a reasonable accuracy, we can now exploit this knowledge to design higher

performance exoskeleton controllers.

The relationship between exoskeleton position and external torque

can be expressed as

mes
2 · θ = τe + τc + τs. (4.1)

where τe is environment torque, τc is torque applied by the human, and τs is

our control input. Exoskeleton inertia me includes the attached weight. We

implement a compliance shaping amplification controller as τs = (α(s)−1)τc

so as to achieve the nominal behavior

mes
2 · θ = τe + α(s)τc, (4.2)
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Figure 4.1: Conceptual bode plot shows the amplification performance for both the
robust controller and the adaptive controller. Ce(s) corresponds to the exoskeleton
compliance. CHe/α(s) and CLe/α(s) correspond to the human side compliance of the
exoskeleton using the adaptive controller when the human has a high stiffness and
low stiffness. CRe/α(s) corresponds to the human side exoskeleton compliance using

the robust controller [25].

where the human is amplified by a factor of α(s). This choice of control

does not alter the environment-side compliance of the exoskeleton, Ce(s) =

1/(mes
2). But it allows the human to feel an attenuated compliance Ce/α(s)

of the exoskeleton as

Ce/α(s) =
α(s)

mes2
, (4.3)

which we refer to as the “human-side” compliance.

Our adaptation strategy determines a transfer function α(s) based on

the measured human stiffness. We parameterize α(s) as

α(s) =
(s2 + 2ζ0ωz1s+ ω2

z1)(s
2 + 2ζ1ωz2s+ ω2

z2)

(s2 + 2ζ0ωp1s+ ω2
p1)(s

2 + 2ζ0ωp2s+ ω2
p2)
. (4.4)

The steady state amplification rate is αss = (ω2
z1ω

2
z2)/(ω

2
p1ω

2
p2). The amplifi-

cation α(s) approaches unity at high frequencies, making the torque feedback
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Figure 4.2: Bode plot showing stability behavior. The red dashed line in the phase
plot is equal to φ(Ch(s)) − 180◦. The phase difference between the blue line and
red dashed line determines the stability of the system. The left graph shows a
stable system and corresponding phase behavior of the human in exoskeleton with
conservative values of λ1 and λ2. The right graph shows an unstable behavior
corresponding to more aggressive values of λ1 and λ2 [25].
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(1 − α(s)) strictly causal, even though α(s) is not. For simplicity, we order

the four natural frequency parameters ωp1, ωz1, ωp2, ωz2 as shown in Fig. 4.1,

and do not attempt to adapt the damping ratio ζ parameters. We place ωz2

at 10 Hz to avoid exceeding the bandwidth of the low level force controller,

and this leaves us three free frequency parameters in the controller design.

We remove one free parameter by fixing the desired steady state amplifica-

tion ratio. As explained later, the gap between ωz1 and ωp2 must enclose

a crossover frequency that depends on human stiffness. We constrain the

remaining two degrees of freedom by choosing two tuning parameters λ1 and

λ2 that ensure a sufficient distance between this crossover frequency and ωz1

and ωp2,

λ1 =
ωh-e
ωz1

, λ2 =
ωp2
ωh-e

, (4.5)

where ωh-e =
√
kh/mh-e is the natural frequency of the human in the ex-

oskeleton and mh-e is the inertia of the human and exoskeleton including the

attached weight. The forearm inertia mh has been measured for an average

human at 0.1 kg m2 in [8], but we do not know the inertia of our own subject.

Ultimately, we define our controller based on λ1, λ2, αss and the

estimated value of k̂h:

ωz1 =
ωh-e
λ1

=
1

λ1

√
k̂h
mh-e

, (4.6)

ωp2 = λ2ωh-e = λ2

√
k̂h
mh-e

, (4.7)

ωp1 =
ωz1ωz2√
αss · ωp2

. (4.8)

This allows us to change the shape of our amplification in real time. We refer

to this real time compliance shaping controller as an adaptive controller in
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this paper. In contrast, without real time stiffness estimation, we have to

use the most conservative bound of human stiffness to calculate ωz1, ωp1 and

ωp2, which reduces our amplification bandwidth, ωp1. We refer to this as the

robust controller.

The conceptual bode plot shown in Fig. 4.1 illustrates the improved

performance using stiffness estimation and shows the amplification perfor-

mance in different frequencies and values of stiffness. It is straightforward to

find a better amplification performance of the compliance shaping controller

with online stiffness estimation because the amount of uncertainty handled

by the controller is reduced. The difference between the lines corresponding

to CH
e/α (the compliance shape when the human stiffness is high) and CL

e/α

(the shape when it is low) indicates the controller’s shape changing with dif-

ferent stiffness values. In either case the steady state amplification behavior

continues until ωp1, a far higher bandwidth than that achieved by CR
e/α, the

compliance shape that is robust to both human stiffness extremes.

The stability analysis for these controllers is based on the complex

stiffness model of human impedance proposed in [21], with

Ch(s) =
1

mhs2 + kh + chj
, (4.9)

where ch is the hysteretic damping of the human. According to [21],

ζh =
ch

2kh
, (4.10)

where ζh is the damping ratio of the human’s elbow joint—which has been

found to be nearly constant for repeated measurements of a subject [21, 39,

35]. We use a conservative, constant damping ratio of 0.13 to represent our

subject. The parallel connection between human compliance and human side
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exoskeleton compliance results in the total compliance of the human in the

exoskeleton Ch-e/α(s) being a harmonic sum

Ch-e/α(s) =

(
1

Ch(s)
+

1

Ce/α(s)

)−1

. (4.11)

The stability of this system is determined by the phase margin of
Ce/α(s)

Ch(s)
.

Ce/α(s)

Ch(s)
=
α(s)

mes2
(mhs

2 + kh + chj) (4.12)

Therefore, the stability of this system can also be determined by the “human

phase margin” of Ce/α(s),

∆φ = φ(Ce/α(s))− (φ(Ch(s))− 180◦). (4.13)

The two bode plots in Fig. 4.2 show how large values of λ1 and λ2 produce a

stable system (left) and how small values degrade the human phase margin

and result in an unstable system (right). Note that the unstable system has a

phase that rises rather than falling at the pole-pair—this indicates the poles

are in the RHP.

As mentioned before, we do not know the inertia of our subject. For-

tunately, in (4.13) reducing the phase of the human compliance increases the

phase margin, and thus approximating human inertia as zero is conservative.

We therefore choose values for λ1 and λ2 which guarantee stability for zero

human inertia. In a more realistic test with human inertia based on [8], these

parameters are confirmed to be stable.

4.5 Experiment Validation

We performed three tests to verify the stability, and bandwidth in-

crease of the compliance shaping controller that incorporates the online stiff-
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Rope

Weight

SpringRope

Weight

Figure 4.3: Experimental setup to verify the improvement of the controller. The
left picture shows the setup of the bandwidth test and the right picture shows the
setup of the stability test. The rope is in place to maintain a constant position in
the bandwidth test and limit the range of position to protect the actuator in the
stability test. In both tests, a 1.25 lb weight is attached to the end of the long bar
(though this has no effect on the bandwidth test where the output is locked) [25].

ness estimation, as well as the significance of accurate online stiffness esti-

mation.

4.5.1 Stability Test

We verify stability of the two controllers using a step response test.

The experimental apparatus shown in the right image of Fig. 4 incorporates

a spring attached to the end of the exoskeleton to induce an external force

on the device. The removal of this spring acts as a step force excitation to

the system.

The first experiment tests the robust controller. The participant wears

the exoskeleton without the sEMG and stretch sensors and maintains a con-

stant position while the spring is attached. After 10 seconds we remove

the spring and observe the step response in the position signal. We repeat

this procedure for a low stiffness (no gripper) and high stiffness case (the
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Figure 4.4: Stability test response shown by the exoskeleton position changing
with time. δθa is the position change response of the adaptive controller and δθr
is the robust controller response [25].

participant squeezes the gripper of 72 lb).

For the second experiment we repeat the same procedure, but using

the adaptive controller. The participant wears the sEMG sensors on three

muscle groups (biceps brachii, triceps brachii, and brachioradialis muscles)

and stretch sensors positioned around the forearm and the midpoint of the

biceps muscle on the upper arm to allow a real-time muscle stiffness estimate,

which is also observed.

4.5.2 Bandwidth Increase Test

This experiment is designed to compare the bandwidth of the adap-

tive controller with the robust controller. The experimental setup shown

in the left image of Fig. 4.3 incorporates a rope attached to the end of the

exoskeleton to maintain a constant position by pulling against the hard-stop.

In order to verify the bandwidth improvement of the adaptive con-
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Figure 4.5: Steady state response for the bandwidth increase test. τs is the actuator
torque. τA is equal to −αssτc where τc is the contact force between the human and
exoskeleton measured by the force sensor around the cuff. τA is the amplification
torque we want to achieve. τHs/a and τLs/a are the simulated actuator torques of the

adaptive controller in high stiffness and low stiffness. τHs/c and τLs/c are the simulated

actuator torques of the robust controller in high stiffness and low stiffness [25].
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troller, the participant wears the exoskeleton and generates a (near) constant

force for 10 seconds. Actuator torque is observed. This process is repeated

for the robust controller. For the purpose of maintaining a constant force

during these trials a rope is attached to the end of the exoskeleton keeping

the device in place.

4.5.3 Instability Test

The significance of accurate online stiffness estimation is measured by

using the adaptive controller without real stiffness estimate data. Instead, a

dummy stiffness estimate (60 Nm/rad) is used. In addition, the participant

does not wear sEMG or stretch sensors. The setup is as the stability test,

except that the step input is unnecessary. The subject maintains a constant

position and relaxes their muscles for 10 seconds while the controller loses

stability. After 10 seconds the participant maximally tenses their muscles

and the controller regains stability.

4.5.4 Results

Results from these experiments are shown in Fig. 4.4, Fig. 4.5 and

Fig. 4.6 respectively.

Fig. 4.4 shows that both controllers give a stable response to an im-

pulse input, however the adaptive controller produces a smaller vibration

amplitude than the robust controller for both cases of high stiffness and low

stiffness. The lower overshoot amplitude of the adaptive controller response

may be due to a better human phase margin and correspondingly better

damping ratio in the human–robot system.

Fig. 4.5 shows both the simulation results of the steady state response
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Figure 4.6: The instability test. The red dotted line at the top of the graph is the
maximum position, as limited by the rope shown in the right picture of Fig. 4.3
[25].

with a step input (Fig. 4.5(a)) as well as experimental results (Fig. 4.5(b-e)).

Fig. 4.5(b)(c) shows the comparison of the robust controller and the adaptive

controller in the high stiffness case and Fig. 4.5(d)(e) shows the low stiffness

case. The lag between τs and τA indicates the bandwidth of the controller.

In both cases, the adaptive controller requires less time to achieve the target

torque τA and therefore has a higher bandwidth. The experimental results

appear consistent with the simulation results—large visual differences in the

plots are largely due to the human input deviating from a perfect step.

Fig. 4.6 shows the instability test result. When the adaptive con-

troller has a discrepancy between the estimated stiffness value and the ac-

tual stiffness value, the system becomes unstable as shown in Fig. 4.6. This

experiment highlights the importance of accurate stiffness estimation to our

adaptive controller.
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4.6 Conclusion

In this chapter, we discussed that the online estimation of human

stiffness could improve the performance of the controller. And we proposed

a compliance shaping controller which could benefit from the stiffness esti-

mation methods previously mentioned using a random forest model. We did

both simulation and experiments to validate the performance improvement

while maintaining stability.
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Chapter 5

Conclusion and Discussion

In this chapter, I summarize the methods used in this study and

discuss and compare the results. I also talk about limitations and future

work.

5.1 Conclusion

Human impedance parameters play a key part in the stability of

strength amplification exoskeletons. While many methods exist to estimate

the stiffness of human muscles offline, online estimation has the potential to

radically improve the performance of strength amplification controllers by

reducing conservatism in the controller tuning. We propose an amplification

controller with online-adapted exoskeleton compliance that takes advantage

of a novel, online human stiffness estimator based on surface electromyo-

graphy (sEMG) sensors and stretch sensors connected to the forearm and

upper arm of the human. These sensor signals and exoskeleton position and

velocity are fed into a random forest regression model that we train to pre-

dict human stiffness, with a training set that involves both movement and

intentional muscle co-contraction. Ground truth stiffness is based on system

identification in essentially perturburator-style experiments. Our estimator’s

accuracy is verified both by the offline validation results and by the stability

of the controller even as stiffness changes (a scenario where the ground truth
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stiffness is not available). Online estimation of stiffness is shown to improve

the bandwidth of strength amplification while remaining robustly stable.

Many studies performed on amplification exoskeletons have relied on

conservative bounds of human impedance properties [22, 7, 21]. Due to the

difficulties of online estimation of human muscle stiffness [32, 40, 46, 45],

few studies have attempted to improve amplification controller performance

using these properties.

In this study, we propose an adaptive compliance shaping controller

and demonstrate the improved performance due to stiffness estimation. The

adaptive controller using the stiffness estimation provides increased stability

and higher bandwidth than a comparable robust controller designed based

on a conservative bound of human stiffness. We prove this improvement both

theoretically and experimentally on a one DOF exoskeleton.

Accurate stiffness estimation is necessary to realize this compliance

shaping controller. Our random forest predictor—using data from both

sEMG and stretch sensors—was sufficiently accurate for this purpose. Our

two experiment sections include training data from both isometric conditions

and dynamic conditions with voluntary movement. Our estimation results

appear to be more accurate than similar studies [32, 40].

5.2 Discussion and Future work

We use sEMG sensors and stretch sensors to estimate human stiffness.

The estimation results may be further improved with better and more reliable

sensors, as well as by taking into consideration the time delay of the filter.

A higher accuracy would allow us to use a lower safety bound λ1 and λ2 to
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achieve even higher bandwidth.

In this study, we only collected data from a single subject and trained

a random forest model specified for this subject, which is non applicable to

other subjects. In the future, we may include more subjects and train a more

general random forest model applicable to multi subjects.

The convergence of the random forest predictor has not been proven,

so it is difficult to make guarantees about the performance and safety of the

predictor. As future work, we propose to integrate a backup safety controller

[47] to take over if the learning system fails. Such a backup controller could

offer firm safety guarantees, but would not interfere with the controller if it

was not misbehaving.

The bandwidth increase test and the stability test point to perfor-

mance improvement that can be realized with information about human

properties. In this study, we use very conservative values of λ1 and λ2,

calculated based on a zero human inertia assumption, for both the adaptive

and robust controller, which limits the performance of both controllers. In

future studies, we can use a more aggressive safety bound to achieve better

performance for both controllers with accurate knowledge of human inertia.

However, we can still expect the adaptive controller to outperform the robust

controller. We believe this method can be applied to other kinds of controllers

currently lacking knowledge of human impedance parameters. For instance

the controllers in [22, 7, 21] may achieve similar bandwidth improvements

with a similar system to update the human model online.
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Appendix 1

IRB proposal

1.1 Title

Online Determination of Muscle Stiffness to Improve the Performance

of a Human Exoskeleton

1.2 Hypothesis

The integration of surface electromyography sensors, stretch sensors,

piezoelectric sensors, or strain gauge sensors will help a robotic exoskeleton

to estimate human muscle stiffness thus improving the overall performance

of the device.

1.3 Study Background

The study will support one major goal consisting of multiple sub-

goals. The main goal of this study is to develop a method such that a human

exoskeleton can better determine human muscle stiffness online and thus

increase strength augmentation and stability of the controller. The main

goal is divided into a series of subgoals each of which has the possibility

for significant contribution in the robotics community. The first subgoal is

to develop an accurate neural network structure to predict human stiffness

based on data from position, velocity, torque sensors, surface electromyogra-
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phy (sEMG) signals, piezoelectric sensors, strain gauge sensors, and stretch

sensors. This will require training of the neural network and if an accurate

and consistent structure is determined will lead to better performance of the

exoskeleton. The training will require participants to maintain their arm or

leg in the cuff while the exoskeleton performs a series of oscillatory motions.

Data from the sensors will be collected, processed and used for training the

network. The next subgoal is to test a dynamic model of stiffness based on

torque, position, and velocity readings. Finally, the last subgoal leading to

the overall structure of this project will be to run both methods in parallel

and determine which method produces more accurate data which will then

be used as input into the controller.

1.4 Design and Methodology

The study will consist of a series of tests of a participant wearing an

arm or leg exoskeleton. The exoskeleton will impose a constant bias force on

the participant and then a sinusoidal, impulse, chirp, or stochastic torque,

which will move the participants leg or arm back and forth. Position, torque,

velocity, surface electromyograph, piezoelectric, stretch, and strain gauge

sensors will read information that will be recorded onto a data file. After

training data has been collected the participant will test the effectiveness of

the new controller by wearing the exoskeleton and moving their arm or leg

back and forth.
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1.5 Data Analysis

The researchers will be tracking encoder data that measures force and

position values in the test bed’s actuator. In addition the researchers will

be collecting sEMG, strain gauge, piezoelectric, or stretch sensor data from

electrodes attached to the participant’s arm or leg. A subsection of the data

will be used to train a neural network. The rest of the data will be used to

verify the accuracy and efficiency of the neural network to determine human

muscle stiffness. Finally, sensor data collected from testing the new controller

will be analyzed to show the improvement of the controller.

1.6 Procedures

The researcher will brief the participant on the experiment and safety

requirements, and will make sure that the participant has had any other

questions answered. The safety requirements are very simple: (a) the user

should keep their hands away from any pinch points in the actuator, (b) keep

all body parts out of the way of the exoskeleton range of motion, and (c) the

user should not touch any electronics (to protect the hardware - the electron-

ics pose no real danger to the human). After this is done and the Informed

Consent form is signed, the researcher will note basic, non-identifying infor-

mation about the The researcher will brief the participant on the experiment

and safety requirements, and will make sure that the participant has had any

other questions answered. The safety requirements are very simple: (a) the

user should keep their hands away from any pinch points in the actuator,

(b) keep all body parts out of the way of the exoskeleton range of motion,

and (c) the user should not touch any electronics (to protect the hardware

- the electronics pose no real danger to the human). After this is done and
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the Informed Consent form is signed, the researcher will note basic, non-

identifying information about the participant under a generic name such as

‘Subject 1’. The data here will be simple, such as the participant’s height

and weight. The researcher will check the participant’s status throughout

the test, ensuring at all times that they are not experiencing any issues.

The test itself will start by putting the participant’s arm or ankle into

an exoskeleton sensor cuff that is instrumented with an encoder, supported by

an actuator, and capable of holding various weight loads from 0 to 25 lbs. The

researcher will then place eight total sEMG electrodes, strain gauge sensors,

piezoelectric sensors, or stretch sensors around the participant’s arm or leg

muscles. The participant will be asked to clench a gripper. The exoskeleton

will impose a constant bias force and the participant will be asked to resist

the exoskeleton to maintain their current position. The participant will be

asked to relax their muscles to the best of their ability. The exoskeleton

will then impose a sinusoidal, impulse, stochastic, or chirp torque which will

move the participant’s arm or leg back and forth well within their range of

motion. After about 5 minutes, the exoskeleton will stop and the participant

will be given 3 minutes to rest. After the resting period the participant will

proceed through the exact same procedure except with a slightly different

initial bias force. This process will be repeated ten times. After completing

these, the participant will stop and take their arm/leg out of the cuff. After

these tests the participant will put his or her arm or leg into the exoskeleton

and move back and forth to test the improvement of the new controller.

This test differs from the previous intervention in that the exoskeleton will

not impose a defined torque to the participant, but instead the exoskeleton

will only amplify the strength of the participant while the participant moves
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at his or her own desire. The test will not input a significant amount of

energy into the participants body. The torques imposed by the exoskeleton

are moderate.

The experiments will take place in the Human Centered Robotics

Laboratory (ASE 4.108) at the University of Texas at Austin. There will be

10 tests per day for 6 days, so the total time commitment will be no more

than 560 minutes over 6 days. Participants can opt to have their photo taken

for use in an academic paper. If they consent the researcher will take a photo

of either their full body while wearing the exoskeleton or just their arm or

leg in the exoskeleton.

1.7 Recruitment

Recruitment will be entirely on a volunteer basis, and it will mostly

come from students on campus. They will be notified of the need for partic-

ipants in the study via emails sent to various student groups that will then

be passed on. We may also post fliers in the hallway requesting volunteers.

A copy of the email is included with this application. The fliers will use

the same or very similar wording as the attached email. We are not the

instructors for any students who will participate.

1.8 Consent and Assent Processes

The researchers will obtain informed consent from the participant be-

fore proceeding to any other explanation of the experiment. The researchers

will present the informed consent form to the participant and give them ample

time to read through the document. Once the participant has read through
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and signed giving consent, the researchers will proceed to give directions and

begin the experiment.

1.9 Risks

This study is minimal risk. One risk to the participant is muscle fa-

tigue after moving their arm or leg back and forth for many iterations during

the experiment. Another risk is a breach of confidentiality of documents

and/or data related to the participant. Lastly, there are pinch points on the

exoskeleton and there is a risk of controller instability. The participant can

stop the experiment at any point and all activities will cease. This will ensure

that participants are not experiencing any muscle fatigue. The researcher will

regularly ask the participant if they are feeling any fatigue. All data will be

kept on a server that only researchers of this study will have access to. All

consent forms will be kept in a locked cabinet in the Human Centered Robotic

Lab that only researchers of this study will have access to. Pinch points will

be outlined to the participants before the experiment commences to ensure

they do not bring any body part near these areas. Finally, the researchers

will impose torque limits on the actuators of the exoskeleton to ensure that if

instability occurs the exoskeleton cannot move the participant’s limb beyond

a safe limit and the experiment will immediately cease.

1.10 Privacy

All experiments will take place in the Human Centered Robotics Lab-

oratory away from the general public and students not working within the

lab. If the participant is concerned with issues relating to privacy a curtain
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can be used to shade the participant performing the experiment from all

other students in the lab except the researchers. Basic readings such as the

participant’s weight or height will be kept on an MS Excel document saved

to a lab server that only those approved research personnel in the Human

Centered Robotics Lab will have access to. The encoder sensor readings col-

lected during the experiments will be saved along with them, and for the sake

of anonymity each participant’s respective data will be labeled with generic

names. Signed Informed Consent forms will be kept inside a locked cabinet

in a lab with restricted access. All of these types of data will be kept for

three years, after which time they will be deleted and shredded, respectively.

As stated above, this time the Excel-sheet data will be anonymous, and will

not be shared with other researchers for purposes not detailed in this study.
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