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ABSTRACT 
 

To alleviate material limitations of the additive manufacture of tissue scaffolds, researchers have looked to 

indirect fabrication approaches. The feature resolution of these processes is limited however, due to the viscous 

ceramic slurries that are typically employed.  To alleviate these limitations, the authors look to an indirect 

fabrication process wherein a pattern, created using Fused Deposition Modeling, is biomimetically mineralized with 

an aqueous simulated body fluid, which forms a bonelike hydroxyapatite throughout the scaffold pattern.  

Mineralized patters are then heat treated to pyrolyze the pattern and sinter the minerals.  With this process, scaffolds 

were created with wall thicknesses as small as 150 m and internal channel diameters of 280-340 m, an 

appropriate range for bone tissue engineering.  
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1.  TISSUE SCAFFOLDS WITH DESIGNED MESOSTRUCTURE 
 

A tissue scaffold is an artificial cellular structure composed of a biocompatible material that mimics a body’s 

extra-cellular matrix (ECM) and supports three-dimensional tissue formation in order to begin healing an injury [1-

3]. The scaffold’s internal structure (featuring interconnected pores and channels) provides surface area for cell 

attachment and pathways for cell movement [4, 5], surface area for cell attachment, diffusion of nutrients, and 

removal of cell wastes within the scaffold.  In addition, it provides mechanical and chemical cues that affect the 

cellular ingrowth, differentiation, and vascularization [6-8]. 

The mesostructure of the scaffold (i.e., the size, orientation and geometry of the scaffold pores) can affect its 

ability to mimic the ECM and thus affects how well cells proliferate throughout the structure [9-11].  Several 

researchers have found that different cell types prefer different scaffold structures, with porosity and pore size being 

the most commonly benchmarked properties.  Scaffolds with a high porosity offer more “living space” for cells to 

move into and start to grow.  Scaffold porosity should be greater than 75% to ensure cell proliferation [9]; however, 

the maximum porosity is limited by the required mechanical strength of the scaffold – a key tradeoff in the design 

and fabrication of tissue scaffolds. Furthermore, pores that are too small will become clogged and cause a decrease 

in nutrient diffusion, cellular penetration, ECM production, neovascularization [4] and possibly cell death; pores that 

are too large form gaps that the cells cannot cross.  Pore sizes on the range of 200-400 micrometers are accepted for 

bone cell proliferation [1, 12, 13].   

Although porosity and pore size provide the living space and pathways for cell movement, the scaffold’s 

permeability affects how nutrients are delivered to, and wastes are removed from, the cells.  Ku et al. suggest that 

permeability is a combination of several scaffold factors including: porosity, pore size, distribution and orientation, 

and interconnectivity [14].  The tissue scaffolds’ permeability should provide nutrients until a vascular system is in 

place [11].  Once a vascular system exists throughout the scaffold, cell nutrient and waste removal is carried through 

the blood vessels. 

Microscale topology can also affect cell behavior within the scaffold.  Specifically, surface topography will 

influence cellular attachment, movement and cellular signaling [15].  The scaffold’s bulk crystallinity [16], surface 

roughness [4] and microporosity [10] are known to affect cellular attachment, proliferation and migration and 

neovascularization.   

 

                                                           
 Corresponding Author: 114F Randolph Hall, Blacksburg, VA, 24061; cbwilliams@vt.edu; (540) 231-3422 

570

bjf
Text Box

bjf
Typewritten Text
REVIEWED, August 17 2011



2 
 

Finally, the mechanical properties of the scaffold should match those of the tissue it is replacing; this will 

protect the cells from mechanical loads, contractile forces from tissue formation [17], and any in vivo/vitro stresses 

[15, 18].   

Thus, scaffold structure should be designed to support specific cell types in order to maximize the growth 

potential of the desired tissue [8, 15].  However, existing scaffold fabrication techniques do not permit this level of 

design freedom. While stochastic fabrication techniques (e.g. solvent casting and particle leaching [19], gas foaming 

[20, 21], and emulsification, freeze-drying and thermally induced phase separation [22-24]) processes result in 

highly porous scaffolds, the size, shape, location and orientation of the porosity is stochastic, and thus is unable to 

provide repeatable results.  Furthermore, these methods are process dependent and do not allow for the strategic 

placement of material, and therefore do not allow for control over pore placement and internal architecture.  

Additive Manufacturing (AM) technologies’ precise control of pore size, geometry, interconnectivity and 

distribution throughout the scaffold affords the creation of scaffold mesostructures that are designed for specific 

tissues [25].   Many different AM methods have been used to create biocompatible scaffolds (as reviewed in the 

authors’ prior work [26]).  3D Printing has been used to create PLGA scaffolds [27, 28].  Scaffolds made of 

ceramics (e.g., hydroxyapatite [29] and calcium phosphate [30]), biodegradable polymers [31], and hydrogels [32] 

have been created by stereolithography (SL) techniques.  Laser sintering (LS), which uses a laser to selectively fuse 

together powder particles in a powder bed, has been used to create scaffolds made of ceramic/polymer blends such 

as polymer-coated calcium phosphate [33, 34] and hydroxyapatite [35].   

While each of these AM technologies is capable of producing scaffolds with controlled geometry and porosity 

with repeatable results, they do suffer from some processing limitations. The primary limitation is the relatively few 

biocompatible materials that are compatible with each system – materials available to AM techniques are mostly 

constrained to polymers that are specialized for each process.  For example, SL scaffold fabrication is limited to 

materials that can be cured by UV irradiation, thus limiting its ability to directly fabricate scaffolds for hard tissue 

[36].  Extrusion processes are limited to materials that can be melted into a semi-liquid phase before extrusion [37].  

Many researchers have tried to extend the processes’ working materials by integrating bio-compatible ceramic 

particles into polymer systems as in LS [38, 39], SL [40-42], and Robocasting [43, 44].  However, the resultant parts 

suffer from a reduced resolution and pore size [41, 45], and delamination, cracking and warping as the large 

concentrations of polymeric binder are pyrolyzed [40, 46, 47].   

To bypass these material limitations, indirect fabrication techniques (i.e., investment casting approaches) have 

been proposed; however, their reliance on viscous ceramic slurries prevents the realization of scaffold geometries 

with fine features (Section 2).  In this paper the authors detail their exploration of an indirect scaffold fabrication 

process wherein biomimetic ceramic mineralization is used to coat scaffold patterns that are fabricated by additive 

manufacturing.  The process alleviates both the material and geometric limitations imposed by existing scaffold 

fabrication techniques.  An overview of the indirect fabrication process is provided in Section 3.  Experimental 

methods are described in Section 4.  In Section 5, the results of process experimentation are provided. Finally, 

closure and opportunities for future work are described in Section 6. 

 

 

2.  INDIRECT FABRICATION OF SCAFFOLDS 
 

Indirect scaffold fabrication techniques have been explored as a means of circumventing the inherent material 

processing limitations of existing AM techniques.  Existing indirect scaffold fabrication techniques typically follow 

a strategy similar to investment casting.  First, a negative mold of the desired scaffold is fabricated, into which a 

biocompatible slurry is cast.  The slurry contains the scaffold material (e.g., HA, PLGA, collagen), solvents (e.g., 

chloroform and methanol), and porogens [48-50].   The slurry is then solidified via a curing process.  After the slurry 

has set, the mold is removed – leaving behind a biocompatible scaffold with internal channels. 

Hydroxyapatite (HA) macro-porous scaffolds have been created by using SLA [49] and 3DP [51] to create 

negative molds.  After mold fabrication, a HA slurry is cast and dried in the mold.  The cast is heated to remove 

mold material and then sintered                 to increase the density of the HA.  The wall thicknesses created 

from the mold process were not smaller than other AM techniques: SLA molds were            ; 3DP molds 

were       .  In addition, these HA scaffolds did not contain a “local” pore distribution. 

Sachlos et al. fabricated porous biocompatible collagen scaffolds with channels by casting a collagen/water 

solution into a mold printed by a Model Maker II (Figure 1) [52].  No new material formulation for printing the 

mold was necessary; the machine manufacturer’s printing mediums (ProtoBuild
TM

 and ProtoSupport
TM

)   were used.  

After fabricating the mold, the ProtoSupport
TM

 material is removed by submerging the mold in a solvent (BioAct
TM

) 

to create a negative mold.  The collagen suspension was cast into the mold and frozen         to form a tissue 
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scaffold.  The mold and scaffold were then immersed in ethanol, which dissolved the mold material and ice crystals.  

Critical point drying was used to remove any remaining solvents and ice crystals.  Shrinkage during critical point 

drying reduced the accuracy of the printed channels.  An increase in collagen dispersion in the cast suspension 

decreases shrinkage [52] but is limited because an increase in viscosity can prevent the collagen suspension from 

penetrating small channels.  Although some scaffolds were designed to have a channel width of       , the 

smallest channel widths reported for this processes were         .   

 

 

Figure 1.  A)  Designed channel width.  B) Printed mold with varying channel widths.  C)  Porous collagen mold with 

designed channel widths.  [52]. 
 

 

In a similar manner, Yeong et al. fabricated biocompatible collagen scaffolds by casting a collagen/water 

solution into a mold printed by a inkjet printer (Solidscape’s T612 Benchtop) [50].  No new formulation of mold 

material was needed and the machine’s original printing mediums (InduraCast and Indurafill) were used to print the 

mold.  The collagen suspension was frozen in the mold         and then immersed in ethanol to dissolve the mold 

[53].   The scaffold was then freeze-dried to remove water crystals from the collagen suspension leaving behind 

randomly oriented pores             [53].  A branched channel design with channel widths of 200 and 300    

was achieved.   

Lee et al. fabricated collagen scaffolds with “villa” like features [54] using 3DP to create a plaster mold.  The 

plaster mold was infiltrated with PEG to increase its strength before the mixture of PLGA, chloroform, methanol 

and sucrose was cast.  The PLGA cast was dried in a fume hood before being immersed in deionized water.  Water 

dissolved the mold and sucrose (which acted as a porogen) to leave behind porous “villa” like features that tapered  

from             in diameter and      high.   The pores that formed from leaching sucrose       
        were uniformly distributed and well connected [54].    

Taboas et al. [55] fabricated “multi-pore-architecture” poly(L)lactide (PLA) scaffolds that contained controlled 

macro-pores (interconnected macro-pores        in diameter) with local porosity             created by 

particle leaching (Figure 2).   Macro-pores may increase diffusion of nutrients to cells deep in the scaffold while 

local pores provide living space for the cells [55].   

 

 

Figure 2.  A) PLA scaffold with designed macro-pores and local pores.  B) Designed macro-pores are interconnected (in a 

three-dimensional structure) cylindrical channels.  C) SEM of local porosity created by salt leaching [55]. 

 

The use of AM to manufacture molds presents three important contributions to the design of tissue scaffolds:  

 Using molds relaxes the material limitations associated with AM.  The mold material does not have to be 

biocompatible, thus scaffolds can be fabricated “from the largest pool of materials available [55].”  Also, materials 

that are already compatible for the AM machine can be used instead of developing new materials [51]. 

 Allows for the simultaneous creation of macro-pores (channels) and local pores (porogen) [55].  AM molds can 

produce scaffolds with designed internal channels and may increase cell viability in solvent-cast/porogen-leach 

scaffolds [52] by increasing the nutrient flow to cells in the scaffold.     

 Toxic/residual materials can be removed more easily from the scaffold.  Whereas “solvent casting and particle 

leaching” methods were limited by thickness, indirect methods contain macro-pores which enhance the removal 
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of mold material.  Macro-pores allow the removal of toxic solvents, and porogens from the scaffold allowing 

scaffolds to be fabricated with thicker cross sections [55].   

Typical restrictions of traditional casting processes, imposed by an inability to fabricate molds that would result 

in complex geometry and internal architecture, are alleviated by fabricating molds via AM [56].  However, existing 

indirect fabrication approaches do limit the features that are able to be produced.  In general, the processes are 

limited by:   

 Non-cell friendly separation of mold from the cast.  The mold materials must be completely removed from the 

cast material without compromising the scaffold architecture.  Harsh chemicals and extreme temperatures can 

remove the mold while leaving the cast intact but prohibit the incorporation of living cells or growth hormones.   

 Weak mechanical properties due to the creation of local pores within the scaffold architecture.   

 Mold imperfections are transferred to the cast [55].   

 Increased fabrication time.  Scaffolds take longer to make than direct-fabrication AM because a mold must be 

fabricated, cast, and dissolved.  

 Feature resolution is limited by the viscosity of the cast material.  Viscous materials, such as high loaded ceramic 

suspensions, may trap air bubbles within the mold and cause defects in the scaffold architecture [53].  As a result 

of the viscosity limitations the internal channels and scaffold walls                      are larger than other 

AM produced scaffolds.   

Alleviating the existing limitations of indirect scaffold fabrication approaches is of merit, as doing so will allow the 

realization of designed scaffold structures that are not constrained to specific geometries or materials. 

 

 

3.  INDIRECT FABRICATION OF SCAFFOLDS VIA ADDITIVE MANUFACTURING AND 
BIOMIMETIC MINERALIZATION 

 

While indirect AM approaches to scaffold fabrication alleviate limitations imposed by traditional stochastic 

fabrication techniques (e.g., non-repeatability) and direct AM techniques (e.g., material selection), their use of 

viscous ceramic slurries constrains the geometries that are able to be realized.  To mitigate scaffold feature-size 

limitations, we look to biomimetic mineralization as a means of coating polymeric scaffold patterns with a 

bioceramic. 

Applying strategies found in biomineralization – the process by which living organisms secrete inorganic 

minerals to harden or stiffen existing tissues in the forms of skeletons, shells, teeth, etc. – biomimetic mineralization 

is the formation of new crystalline phase via nucleation followed by crystal growth in aqueous solutions at ambient 

conditions [57].  Biomimetic approaches to mineralization typically involve soaking the target in simulated body 

fluid (SBF) –  an aqueous solution of salts that contains ions approximating those of human plasma [58].  SBF is 

supersaturated with respect to apatite, with the concentration of     
  influencing the mineral precipitates [59].  

SBF has been used to deposit formations of bonelike apatite, which is essential for material to bond to living bone 

[60].  In addition, SBF coatings have good resorption [61] and have been shown to affect osteoblast viability, 

proliferation, and gene expression [62].  Coated implants and scaffolds have increased bone ingrowth (compared to 

non-treated implant) [63], biocompatibility [64], osteoconductive properties [58] and bone bonding [65].  In addition 

to creating a bone like apatite, and creating favorable conditions for bone growth, SBF has been used to mineralize 

several different materials: PLLA and PLGA [66], collagen [67], Ti6A14V [68], Bioglass® [69].  

The process chain is as follows (Figure 3): 

1. Fabrication of scaffold pattern:  A scaffold pattern with designed pore geometries is fabricated using additive 

manufacturing. 

2. Surface treatment of scaffold patterns:  Scaffold patterns are chemically treated to activate their surfaces to 

increase nucleation sites and to enhance the rate and quality of the mineral deposition. 

3. Mineralization of scaffold patterns:  The scaffold pattern is submerged in a simulated body fluid solution that 

deposits layers of biocompatible minerals (hydroxyapatite, HA) on its surface.    

4. Burnout and sintering of scaffold patterns:  The mineralized scaffold pattern is pyrolyzed to remove the pattern 

material and to sinter the deposited minerals, thus leaving behind a three-dimensional bioceramic scaffold. 
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(a) (b) (c) 

Figure 3. Indirect Scaffold Fabrication Process; a) scaffold pattern is fabricated by AM, b) scaffold pattern coated with 

bioceramic following mineralization, c) biocompatible scaffold formed after pyrolyzing pattern material 

 

Like existing indirect AM scaffold fabrication techniques, this approach will alleviate geometric limitations 

typical of stochastic methods and the material limitations of direct AM methods.  The biomimetic mineralization 

coating approach, however, uses a low-viscosity aqueous SBF solution, which the authors hypothesize will better 

penetrate complex scaffold geometries and thus eliminate the geometry and feature-size limitations found in existing 

indirect techniques.   

 

 

4.  EXPERIMENTAL METHODS 
 

4.1 Pattern Fabrication via Fused Deposition Modeling 

Extrusion-based processes, such as Fused Deposition Modeling (FDM), are popular choices for AM scaffold 

fabrication as the biopolymers that they selectively extrude are sufficiently stiff to span small gaps between scaffold 

struts, and thus eliminate the need for a secondary support material [25].  Scaffold porosity topology is altered by 

varying the thickness of the deposited lines (road width, RW), the offset distance between lines (gap width, GW), 

and the offset angle between each layer (Figure 3a). 

In this work, the authors investigate two materials for the creation of scaffold materials: ABS (Stratasys P-400) 

and investment casting wax (ICW) material (Stratasys ICW-05). These are not necessarily ideal pattern materials; an 

ideal material would be receptive for the mineralization process and would be suitable for removal via pyrolysis 

(i.e., is able to be removed via a heat treatment without significant warping and toxic ash residue).   However, they 

are sufficient for providing a proof of concept for the process.  In addition, these two materials were shown to span 

small gaps and have been used successfully in other burnout processes [70-72]. 

Scaffold patterns are fabricated using a Stratasys FDM 1500 (ABS) and a Stratasys FDM 1600 (ICW) and a 

T12 nozzle (0.305 mm diameter).   The scaffold fabrication printing parameters (i.e., road width (RW), road 

orientation, temperatures, etc.) used in experimentation are summarized in Table 1.  Printed scaffold patterns were 

12 mm in diameter, 1.5 mm in height and printed with a layer thickness of 0.30 mm (5 total layers). 

 
Table 1.  Pattern fabrication processing parameters 

Material 
Processing Temperature 

(Model/Support/Envelope) 
Road Width (mm) Road Orientation Printing Pattern 

ABS 270 / 265 / 270 °C 0.3 0-90° Single roads 

ICW 70 / 71 / 28 °C 0.4 0-90° Continuous 

 

4.2  Scaffold Surface Treatment 

Mineralization via SBF does not typically result in cohesive coatings without a preliminary surface treatment of 

the polymeric substrate [26].  As such, the pattern must first undergo a surface treatment prior to mineralization.  

The authors investigated two candidate surface treatments:  

 Plasma treatment activates surface groups for mineralization and decreases the contact angle allowing for 

aqueous solutions to easily penetrate the scaffold [73].  Plasma treatment has been successfully used in stochastic 

scaffold processes including PCL [74], and PCL-HA [73].  Samples are plasma treated in an oxygen environment 

for 15 minutes at 50 milliamperes in an SPI Plasma Prep II. 
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 Sodium hydroxide (NaOH) etching creates negatively charged groups on surfaces, and has shown to increase 

mineralization of treated surfaces when compared to identical, non-treated surfaces [58].  In this procedure, 

samples are immersed in 0.1M NaOH solution for 15 minutes. 

 

4.3  Scaffold Mineralization  

As described in Section 3, simulated body fluid (SBF) is used to biomimetically mineralize the scaffold 

patterns.  A 10x concentrated SBF formulation (Table 2) is used in this process since higher concentrations 

accelerate the formation of minerals and are stable for long periods of time [59, 75].  1x and 5x concentrations were 

explored in preliminary experiments, but did not result in sufficient mineral coating on the patterns’ surfaces [26].  

 To prevent premature precipitation, two aqueous solutions are prepared: a “stock” solution containing all of the 

ions except for the bicarbonate, and another aqueous solution containing only the bicarbonate (Table 3).  

Precipitation occurs when the two solutions are mixed (10x SBF is prepared from the stock and bicarbonate solution 

in a 4:1 ratio).  Scaffold patterns are then anchored to the center of a petri-dish containing mixed SBF.  Fresh SBF is 

provided every two hours to ensure that ion concentration remains at a level that produces mineralization.  

  
Table 2. Ion Concentrations (mM) of blood plasma and 10xSBF  Table 3. Salt masses for stock and bicarbonate 

solutions. 
 

Ion Blood Plasma 10xSBF [74] 

    142 1030.0 

   5.0 5.0 

    103 1065 

     2.5 25 

     1.05 5 

     
  1.0 10.0 

   
   0.5 -- 

    
  27.0 10.0 

pH 7.2-7.4 6.1 

 
 

 Salts Grams 

Stock 

Solution 

     
 1.23 

KCl 3.73 

           3.68 

           3.05 

        1.20 

       0.71 

Bicarbonate 

Solution 
       0.84 

 

Two flow conditions (dynamic and static) are investigated to identify which would result in increased mineral 

deposits.  Dynamic flows are tested to help mineralize the porous scaffolds by forcing fluid through them.  For 

dynamic flow tests, the samples are placed on an orbital shaker (~70 Hz) inside an incubation chamber set at 37 °C.  

 
4.4  Pattern Pyrolysis and Sintering  

Once the scaffolds are successfully mineralized, they are placed in a furnace to burn away the polymeric pattern 

material (ABS or ICW).  The heating profile used for ABS patterns is based on thermogravimetric analysis (TGA) 

of ABS by ToolworX and Stratasys Inc. [76].  Through this analysis it was found that ~95% of ABS is removed at 

~450 °C, while the remaining material removed at 575 °C [71].  Similarly, the heating profile for Stratasys ICW-06 

was based on research on bioceramic implants that used ICW-06 as a binder in a FDC processes.  Bose et al. heated 

bioceramic implants up to 550 °C to evaporate the mold and binder and chose a slow heating rate of 2°C/min to 

avoid cracking or distortion of the part [77].  A slow heating rate (0.5 °C /min) was used to prevent cracking and 

distortion of the part. 

The sintering temperature chosen for both ABS and ICW samples in this study is 800 °C (with a 1 hour hold) at 

a rate of 0.5 °C/min. 

 

 

5.  RESULTS AND DISCUSSION 
 

5.1 Determining Surface Treatment and Flow Conditions for Scaffold Mineralization 

Critical to the development of this indirect scaffold fabrication process, is the identification of mineralization 

processing parameters that significantly increase mineral deposition.  With SBF concentration determined, the 

surface treatment and flow type during mineralization were treated as variables to identify the combination which 

provided the best mineralization. A total of 8 scaffold samples, featuring permutations of ABS and ICW patterns, 

Plasma and NaOH surface treatments, and dynamic and static flows, were created and weighed before and after 

mineralization to determine the amount of materials deposited. The final mass of deposited minerals for each 

scaffold is presented in Table 4.  
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A three-way ANOVA was performed on the mineral 

mass data [78].  The analysis indicated that flow condition 

and surface treatment were the two most significant factors 

in this experiment (F-ratios of 170 and 10.2), while the 

scaffold material had only a small effect (F-ratio of 1.89).  

The calculated p-values, which indicate confidence in our 

hypothesis, were 0.0486 and 0.194 (for the flow condition 

and surface treatment parameters, respectively), and indicate 

a strong relation between the experimental factors and 

amount of mineral deposition. 

As can be seen in Table 4, scaffolds that were plasma treated mineralized more than those treated with NaOH.  

Also, dynamic conditions resulted in much better mineralization than static conditions (a 77.2-96.3% increase).  As 

such, all further experiments were conducted using the plasma surface treatment and dynamic flow conditions. 

 

5.2 Process Results 

To validate the presented approach, patterns were fabricated from ABS and ICW with gap widths (GW) of 500 

m.  Following mineralization and sintering, these GW measurements will correspond to the wall thickness (WT) of 

the scaffold (Figure 3).  Similarly, the internal channel diameter (CD) will be formed when the RW material is 

removed during sintering and will have a diameter of ~300 m and ~400 m for ABS and ICW patterns respectively 

(Table 1).  Sample printed patterns are presented in Figure 4.  As can be seen, the diameter of the RW for ICW is not 

constant.  The low viscosity of the extruded wax causes the roads to sag when spanning gaps; roads swell (when 

supported) and thin (when unsupported), creating a wave-like pattern along the length of their deposition. 

 

 
Figure 4.  A)  ABS and B) ICW scaffold patterns with a 500 m gap width 

 

 

ABS and ICW scaffolds were plasma treated (Section 4.2) and then mineralized in a 10xSBF solution for 48 

hours under dynamic flow conditions.  Fracture surfaces of mineralized ABS and ICW samples are presented in 

Figure 5.   

 

  
Figure 5.  Fracture surface of pre-sintered scaffolds with GW = 500 m; (a) ABS, (b) ICW 

 

Following mineralization, scaffolds were dried overnight and then sintered to 800 °C at a rate of 0.5 °C/min.    

The mass of the samples were recorded before and after mineralization, and after sintering, to determine the amount 

of mineral deposition and to verify that the polymer pattern had been removed.  Fracture surfaces of sintered 

samples with a GW = 500 m are presented in Figure 6. As can be seen, the patterns’ original pores (now the 

scaffold walls) are filled with mineral as desired. 

Table 4.  Mineral mass data (in grams) 

 

ABS ICW 
 

Dynamic 
0.0153 0.0141 Plasma 

0.0108 0.0109 NaOH 

Static 
0.0033 0.0026 Plasma 

0.0030 0.0004 NaOH 
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Figure 6.  Fracture surface of sintered scaffolds with GW = 500 m; (a) ABS, (b) ICW 

 

Measurements of wall thickness (WT) and channel diameter (CD) were made following printing and following 

mineralization and sintering. Measurements of the samples with 500 m are presented in Table 5.  The “Pre-

Sintered” values fall within the range of expected values (i.e., the “Pre-Mineralized” values), except for the ICW 

WT.  Plasma treatment may have caused this area of the scaffold to deform, resulting in a smaller reported WT.  A 

slight shrinkage during the burnout and sintering process is noted, which causes the CD to decrease slightly.   

 
Table 5.  Wall thickness and channel diameter measurements for samples with GW = 500 m 

 Designed Printed Mineralized and Sintered 

 
GW / WT (m) RW / CD (m) GW / WT (m) RW / CD (m) WT (m) CD (m) 

ABS 500 300 510 310 530 280 

ICW 500 400 430 360 470 340 

 

To explore the hypothesis that mineralization via an aqueous SBF solution would be able to create finer scaffold 

features than existing indirect processes, additional ICW samples with gap widths of 150 m and 300 m were 

fabricated.  As can be seen in the images from field-emission scanning electron microscopy (FE-SEM) of the 

fracture surface of the scaffold, the SBF mineralization approach is able to deposit minerals in gaps  as small as 150 

m (Figure 7). The resulting wall thickness from these scaffolds was 158 ± 33.4 m. 

 

  
Figure 7. FE-SEM images of mineralized scaffold with wall thickness = 150 m 

 

To benchmark the presented method against existing indirect fabrication methods, Detsch and coauthors’ 

scaffold fabrication process (highlighted row of Table 6) was selected as a benchmark since it has produced the 

smallest WT and CT features thus far in the literature.  All fabrication methods were compared to the benchmark 

CD and WT values and assigned either a “0,” “+,” or “–” based on if they had an equal, better or worse feature 

resolution (Table 6).  The WT and CD values obtained from the fabrication process presented here (first two rows of 

Table 6) met or exceeded the resolution of other indirect methods. 
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Table 6.  Comparison of WT and CD across existing indirect scaffold fabrication processes 

Mold 

Fabrication 

Mold 

Material 

Cast 

Material 

Measured† Compared 
Reference 

WT CD WT CD 

FDM:  FDM1500 ABS 10xSBF 530 280 – + Figure 6 

FDM: FDM1600 ICW 10xSBF 158 340 + – Figure 7 

D-IJP: 

Solidscape MM2 
Wax 

PGA, PLA, 

HA 
~500 

500-

800 
0 – [55] 

SLA: 

3D Systems 

Cibatool 

SL5170 
HA slurry 

560-

755 

366-

968 
– – [49] 

D-IJP: 

Solidscape BT66 
Wax HA slurry ~500 ~300 0 0 [51] 

† All measurements are in micrometers 

 

To chemically characterize the fabricated scaffolds, energy-dispersive X-ray spectroscopy (EDS) was 

completed on 12 different spots on the 150 m samples.  EDS detected elements in all samples of calcium and 

phosphorous, with an average Ca/P ratio = 1.7 + 0.52.  While it is difficult to speculate on the nature of mineral 

based on Ca/P ratio alone, it can be concluded with certainty that the mineral consists of calcium and phosphorous 

only, as other elements like magnesium and sodium were not detected.  A Ca/P ratio of 1.7 indicates that it is 

slightly higher than that for hydroxyapatite (1.67), but is quite comparable. Therefore, we can speculate that the 

mineral formed is a type of hydroxyapatite, is probably crystalline in nature, and is not very soluble in aqueous 

environments. This also suggests that the surfaces may be osteoconductive and may promote growth and 

proliferation of bone-like cells.  However, X-ray diffraction is needed to confirm the results of EDS. 

 

 

6. CLOSURE AND FUTURE WORK 
 

In this work, the authors present an indirect scaffold fabrication process similar to investment casting wherein 

polymer scaffold patterns are coated in a bioceramic via a biomimetic mineralization process.   The patterns are first 

fabricated by Fused Deposition Modeling (from either ABS or investment casting wax materials).  The surfaces of 

the patterns are then chemically treated to activate their surfaces to increase nucleation sites and to enhance the rate 

and quality of the mineral deposition.  The scaffold pattern is then submerged in a simulated body fluid solution that 

deposits layers of biocompatible minerals on its surface.  Finally, the mineralized scaffold pattern is pyrolyzed to 

remove the pattern material and to sinter the deposited minerals, thus leaving behind a three-dimensional bioceramic 

scaffold. 

Critical to the development of this indirect scaffold fabrication process was the identification of mineralization 

processing parameters that would significantly increase mineral deposition.  Using ANOVA, surface treatment and 

flow conditions were identified as significant mineralization factors compared to pattern material type.  Plasma 

surface treatment and dynamic flow conditions were found to be ideal processing conditions and resulted in 

increased mineralization. 

The internal architecture of the fabricated scaffolds was characterized by the wall thickness (WT) and channel 

diameter (CD) and was benchmarked against existing indirect scaffold fabrication processes.  Although the smallest 

CD achieved was limited by the road width of the FDM process (~280 m), it is slightly better than the 300 m 

pores created by a direct inkjet printing process.  The wall thicknesses achieved by the process were as small as 158 

m – ~30% smaller than that achieved by existing indirect approaches.  This fine feature size suggests that the 

biomimetic mineralization coating approach, which uses a low-viscosity aqueous SBF solution, alleviates the 

geometry and feature-size limitations found in existing indirect techniques that rely on viscous ceramic slurries. 

In future work, the authors look to perform cell viability and mechanical testing of the scaffolds.  Qualitatively, 

the mineral structure seems too weak for applications other than maxillofacial implantation.  In addition, the authors 

will investigate creating patterns with a biocompatible polymer, such as PCL, to mitigate concerns of ash residue 

from the polymers studied here.  Furthermore, the authors will investigate the use of a direct inkjet printing AM 

process, such as the Objet PolyJet process, as a means for fabricating scaffolds with designed mesostructure. Such a 

process would alleviate the geometric limitations found in extrusion processes, which are limited to simple 

overlapping of parallel roads (aka “log piles”) [79] with a fixed height between layers [80].   
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Finally, the authors would like to further explore the crystalline surface structure that results from the 

mineralization approach.  It is believed that there exist nano-sized topographical features that might influence cell 

adhesion and orientation.  In addition, the resulting scaffold surface will likely provide micro-pores in addition to the 

designed macro-pores. This gradient porosity, which will be created without particle leaching, has been shown to be 

beneficial as larger pores increase nutrient diffusion while the smaller pores provide living spaces for cells [55].  
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