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Abstract 

 

Direct fabrication of engineering ceramic components by additive manufacturing (AM) is a 

relatively new method for producing complex mechanical structures. This study investigates how 

a second-phase doping may affect Al2O3 ceramic parts deposited by AM with a laser engineered 

net shaping (LENS) system. In this study, ZrO2 and Y2O3 powders are respectively doped into 

Al2O3 powders at the eutectic ratio as second-phases to improve the quality of a deposited part. 

The deposited Al2O3, Al2O3/ZrO2 and Al2O3/YAG (yttrium aluminum garnet) parts are examined 

for their micro-structures and micro-hardness, as well as defects. The results show that doping of 

ZrO2 or Y2O3 as a second-phase performs a significant role in suppressing cracks and in refining 

grains of the laser deposited parts. The micro-hardness investigation reveals that the 

second-phase doping does not result in much hardness reduction in Al2O3 and the two eutectic 

ceramics are both harder than 1500 Hv. The study concludes that the second-phase doping is 

good for improving laser deposited ceramic parts. 

 

1. Introduction 

 

Engineering ceramics is an irreplaceable material used in the extreme working conditions 

due to their excellent mechanical properties, as well as thermal and chemical resistances [1]. 

However, traditional manufacturing methods for engineering ceramic parts have difficulties in 

meeting the requirements from the fast-developing modern technology because of their 

limitations, such as low sintering efficiency, limited complexity of fabricated structures and 

relatively low strength [2, 3]. The limitations mostly arise from batching, forming, sintering and 

machining, which are the main processing steps in the traditional manufacturing methods. 

Therefore, it is significant to develop new processing methods for making full use of engineering 

ceramics. 

 

Ceramic additive manufacturing is a newly developed method in recent decades and has 

been successfully demonstrated for its advantages with the use of “indirect” and “direct” methods. 

By the indirect method, a green body is first created from ceramic powders or slurry with a high 

content of an organic or inorganic binder, and then sintered and densified to eliminate binders. 

Because a high energy source is not needed, many indirect processing methods have been 
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developed, such as stereo lithography (SL), laminated object manufacturing (LOM), fused 

deposition of ceramics (FDC) and freeze-form extrusion fabrication (FEF), etc. [4-8]. Through 

these methods, complex geometries can be obtained, but limitations, such as impurities, 

porosities and shrinkage, still exist because the processing steps are the same as in the traditional 

methods. On the other hand, with the direct method, pure ceramic powders can be melted directly 

by a high energy source and then the melt pool solidifies to form a part. Due to the 

melting/solidification processes, fully densified ceramic parts with good performances are 

produced more easily and rapidly. Comparatively, few direct processing methods, e.g., laser 

engineered net shaping (LENS) and selective laser melting (SLM), have been developed because 

of the need for a high energy source [9-14]. Wilkes et al. manufactured ceramic parts from 

ZrO2/Al2O3 powders with an SLM system and obtained crack-free specimens with flexural 

strength higher than 500 MPa [9, 10]. Balla et al. used an LENS system to fabricate dense and 

net-shaped structures of Al2O3 and obtained cylindrical, cubic and gear-shaped parts which 

showed microstructural anisotropy with hardness of 1550 Hv [11, 12]. Bertrand et al. applied 

SLS/M to manufacturing net shaped parts from the pure yttria-zirconia powders and 

demonstrated possibility of processing pure ceramic powders by SLM without doping [13,14]. 

 

Although the direct methods have demonstrated many advantages in fabricating ceramic 

parts, there are also technical challenges, such as crack control and property improvements in the 

laser-aided processes due to the hard and brittle properties of a ceramic material as well as large 

thermal gradients generated during laser radiation. Preheating was proposed by Wilkes and has 

been proven to be an effective method for suppressing cracks generated by the SLM fabrication 

[10]. However, this method provided a limited preheating area and poor surface quality. Because 

the direct additive manufacturing methods of ceramic parts have been developed in a relatively 

short time, they need to be further developed for industrial applications.   

 

In this study, an LENS system is used to fabricate ceramic single-bead walls directly from 

ceramic powders. A new method of second-phase doping is proposed to improve quality of a 

deposited part. ZrO2 and Y2O3 powders are respectively doped into Al2O3 powders at their 

respective eutectic ratios as a second-phase to verify the proposed method. Micro-structure and 

micro-hardness of the fabricated parts are then investigated. 

 

2. Experimental procedures 

 

The LENS experimental system used in this study is shown in Figure 1. The system 

consisted of a 1000 W Nd:YAG laser, an automatic powder feeder with three containers, and a 

numerically controlled worktable. A Ti-6Al-4V plate of 6 mm thick was used as a substrate for 

ceramic deposition due to its high laser absorptivity and good compatibility with the ceramics. 

For an efficient use of the ceramic powders, the focus of the powder stream was set on the 

surface of the substrate. Pure argon was used as a protective gas for separating the fabricated part 

from the atmosphere.  
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Figure 1 Experimental system of LENS 

 

Al2O3, ZrO2 and Y2O3 ceramic powders (purity wt%>99.5%) of particle sizes in the range of 

42-90 m were used for all the experiments after drying at 100 ℃ for 4 hours to eliminate 

moisture. The three ceramic powders were loaded into the respective containers of a powder 

feeder. Flow rate of the powders was independently controlled. In this study, fabrication of 

Al2O3/ZrO2 parts was conducted by mixing ceramic powders at the eutectic ratio of 58.5 wt% 

Al2O3 and 41.5 wt% ZrO2 [15]. Similarly, the mixed powders with a ratio of 66.5 wt% Al2O3 to 

33.5 wt% Y2O3 were used for fabricating Al2O3/YAG parts [16]. The micrographs of the three 

powders are shown in Figure 2. 

 

During the deposition experiment, the coupled nozzle and laser assembly moved back and 

forth in the x-y plane to perform ceramic deposition. After each layer deposition, the substrate 

together with the already deposited part was moved away from the nozzle by one layer thickness 

along the z direction so as to maintain a constant focus position for depositing the next layer. The 

process was then repeated to finish the single-bead wall. For different materials, the process 

parameters were different. Based on the systematic experiment, the optimum process parameters 

were obtained for the three powder materials, as shown in Table 1.  

 

 

Figure 2 Ceramic powders used in the experiment (a) Al2O3; (b) Y2O3; (c) ZrO2 
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Table 1 Process Parameters for the Ceramic Powders 

Materials Laser Power 

(W) 

Nozzle Travel Speed 

(mm/min) 

Powder Flow Rate 

(g/min) 

Z-increment 

(mm) 

Al2O3 350 300 1.36 0.22 

Al2O3/Y2O3 320 350 1.08/0.55 0.18 

Al2O3/ZrO2 410 400 1.22/0.87 0.25 

 

The fabricated ceramic parts were cut from the longitudinal cross-section A-A, as shown in 

Figure 3, and then prepared by coating a thin Au to observe the microstructure in a Scanning 

Electron Microscope (SEM). For the Al2O3/ZrO2 and Al2O3/YAG ceramic parts, their 

cross-sections were polished with a diamond disk and an abrasive paper before being coated with 

Au. Vickers micro hardness measurements were made on the polished samples using a 1000 g 

load for 15 seconds, and an average value of 10 measurements on each sample was reported.  

 

Figure 3 The longitudinal cross-section of a fabricated part 

 

3. Results and discussion 

 

3.1 Properties of deposited Al2O3 part 

 

Figure 4(a) is a photographic view of a 50-layer Al2O3 single-bead wall fabricated from the 

Al2O3 powders under the process parameters shown in Table 1. Many stripes could be observed 

on the surface of the part, and cracks were found along the deposition direction, most of which in 

the middle portion of the part. On the other hand, a few cracks were found near the two side 

edges of the single-bead wall, but much longer than those in the middle portion. It should be 

noted that very few cracks were generated along the scanning direction.  

 

Crack generation in Figure 4(a) may mainly be related to two factors: thermal stress during 

the laser depositing process and crystallographic orientation of the fabricated part [17]. Because 

laser scanning is a layer-by-layer process, highly non-uniform temperature distribution is formed 

across the deposited part. During the solidification process, volume contraction in the laser 
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scanning direction is constrained by the previously deposited layer with the first layer being 

constrained by the substrate. Consequently, thermal tensile stress occurs in the part along the laser 

scanning direction. Substrate temperature is usually lower than that of the ceramic part due to the 

good thermal conductivity of the substrate, resulting in the tensile stress in the first layer, which 

in turn generates a bending moment, as shown in Fig. 5. The thermal stress distribution of the 

fabricated ceramic part is similar to that of the metal parts, which has been reported in the 

literature [18-19]. On the other hand, it can be seen from Figure 4(b) that the microstructure of 

the fabricated part was comprised of directional columnar crystals along the deposition direction 

with an intergranular space of about 10-15 m due to the directional heat dissipation [20]. It is 

easy for cracks to propagate along the crystal boundaries in the deposition direction, whereas it 

may be much harder to propagate along the scanning direction because more energy is needed for 

crack propagation through a crystal. Consequently, it is more preferable for a crack to form and 

propagate in the vertical direction than in the other directions. For the above reasons, vertical 

cracks are preferably generated (Figure 4(a)). 

 

 

Figure 4 (a) Vertical cracks and (b) Microstructure of the deposited Al2O3 part 

 

Figure 5 Bending moment and tensile stress induced by solidification contraction  

The average micro-hardness of the deposited Al2O3 part was measured 1800 Hv, compared 

to 1600 Hv for the traditional Al2O3 ceramic materials. The hardness essentially rests with the 
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corundum structure of α-Al2O3 and its ionic (63%) and covalent (37%) bonding energies [21], 

whereas the LENS method results in the dense structure of a deposited part, which is because of 

its unique melting-solidification process. 

 

3.2 Properties of deposited Al2O3 /YAG part 

 

Figure 6(a) presents a photograph of a 50-layer Al2O3/YAG single-bead wall fabricated from 

the mixed ceramic powders at the eutectic ratio. During the fabrication process, the following 

chemical reactions could be used to describe the formation of Y3Al5O12 (YAG) [22]. Then the rest 

of Al2O3 and the generated YAG should solidify simultaneously at 1826 ℃ to form the eutectic 

ceramics of Al2O3/YAG [22]. 

 

 Al2O3 + 2Y2O3 → Y4Al2O9(YAM) (900 − 1100 ℃)                                              (1) 

Y4Al2O9 + Al2O3 → 4YAlO3(YAP) (1100 − 1250 ℃)                                             (2) 

3YAlO3 + Al2O3 → Y3Al5O12(YAG) (1400 − 1600 ℃)                                            (3) 

 

Compared with the Al2O3 part discussed above, a two phase ceramic part was deposited with 

fewer cracks. There were three vertical cracks in the depositing direction and two horizontal 

cracks in the scanning direction, which might be induced by a tensile stress in the corresponding 

directions. Shown in Figure 6(b), light-grey YAG phase evenly embeded in the Al2O3/YAG 

eutectic matrix. The volume fraction of the two phases did not seem to match the material ratio at 

the eutectic point, which might be due to the local evaporation of Al2O3 or the rapid solodification 

during the deposition process. The microstructure of the Al2O3/YAG single-bead wall was finer 

without obvious directional growth characteristics, which could help surpress both vertical and 

horizontal cracks. From the magnified image of Figure 6(b), a fine-grained microstructure with a 

eutectic spacing smaller than 1 m is observed, resulting in the extremely complex interphase 

boundaries. Therefore, it would be difficult for a crack to initiate and propagate in such a 

fine-grained microstructure.  

 

Figure 6 (a) Vertical and horizontal cracks and (b) Microstructure of Al2O3/YAG part 
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Based on the experimental measurement, the average micro-hardness of Al2O3/YAG was 

1575 Hv, slightly lower than that of the Al2O3 ceramic part. The value was comparable to that of 

the traditional Al2O3/YAG eutectic ceramics made by the directional solidification or the 

laser-heated floating zone method [23,24]. 

 

3.3 Properties of deposited Al2O3 /ZrO2 part 

 

 

Figure 7 (a) Fabricated Al2O3/ZrO2 part without cracks; (b) Microstructure of the Al2O3/ZrO2 part 

 

Figure 7(a) provides a photograph of a 60-layer Al2O3/ZrO2 single-bead wall. The eutectic 

Al2O3/ZrO2 part was successfully deposited with no cracks along both the depositing and the 

scanning directions. Compared with the deposited Al2O3/YAG ceramic part, the microstructure of 

Al2O3/ZrO2 was also consisted of two phases, the black Al2O3 phase and the white ZrO2 phase, 

but the eutectic spacing of Al2O3/ZrO2 was nano-sized which was obviously finer than that of the 

eutectic Al2O3/YAG part in Figure 7(b). As a result, the eutectic Al2O3/ZrO2 part can be made 

without cracks. 

 

The micro-hardness of the traditional ZrO2 is approximately 1200 Hv. However, the average 

hardness of the deposited eutectic Al2O3/ZrO2 part reached 1715 Hv, although lower than that of 

the pure Al2O3, but higher than that of the Al2O3/ZrO2 parts (an average value of 1460 Hv) made 

by the traditional methods.    

 

3.4 Parts deposited for demonstration purpose 

 

As mentioned above, the second-phase doping has been proven to be an effective method for 

suppressing cracks and refining microstructures during the direct fabrication process of ceramics 

by LENS. For the demonstration purpose, more eutectic Al2O3/ZrO2 parts were deposited by this 

method. As shown in Figure 8, a cylindrical structure longer than 50 mm, an arc wall and a short 

cylinder were successfully fabricated with no cracks but good surface quality. 
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Figure 8 Al2O3/ZrO2 parts of (a) Arc wall; (b) Long cylinder; (c) Short cylinder   

 

4. Summary 

 

Direct fabrication of Al2O3 ceramic single-bead walls is conducted by the LENS system in 

this study. Y2O3 and ZrO2 are doped into Al2O3 powders respectively as a second-phase to restrict 

crack formation and improve microstructure of the deposited ceramic parts. The results show that 

both the second-phase doping of Y2O3 and ZrO2 perform well in refining the microstructures of 

the direct laser deposited Al2O3/YAG and Al2O3/ZrO2 ceramic parts, which suppresses crack 

formation. The micro-hardness investigation reveals that the second-phase doping does not result 

in much hardness reduction in Al2O3 and the two eutectic ceramics are both harder than 1500 Hv. 

The study indicates that second-phase doping is an effective way to improving laser deposition 

quality of ceramic parts.  
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