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Abstract 

Schroeder and Holtappels (2005) published data on the explosion characteristics of hydrogen-air 

mixtures, looking at the effect of pressure and temperature on upper and lower explosive limits 

and the effect of pressure, temperature, and composition on explosion ratio, PEX/PO.  They 

showed that the effect of increasing pressure on UEL and LEL is negligible to slightly 

advantageous, while the effect of increasing temperature was disadvantageous.  They also 

showed that the explosion ratio was largely independent of operating pressure, but very 

dependent on temperature and composition of hydrogen-air mixtures.  However, they did not 

develop their data to the point that it could be used as the basis of design and risk assessment. 

This paper uses the data published by Schroeder and Holtappels to develop equations that can be 

used to predict the extent of a hydrogen-air deflagration in a vessel and correlates those 

predictions to the nature of pressure vessel failures that are likely to be experienced as a result of 

such a deflagration. 
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1 Hydrogen Is Dangerous 

Hydrogen is the most common element in the universe.  As a molecule, H2 is colorless, odorless, 

and tasteless.  It is not toxic, not a carcinogen, and has no threshold limit value. Nonetheless, it is 

dangerous for a number of reasons.  It is an asphyxiant. It is frequently used as a cryogen. It 

causes hydrogen embrittlement. Also, hydrogen is very flammable, burning easily to form water. 
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While non-toxic, it is not air, so it is a simple asphyxiant.  People will feel adverse effects of a 

hydrogen release when it forces the oxygen concentration in the gas they are breathing to less 

than 19 %.  When a release of hydrogen forces the oxygen concentration to less than 10%, 

people will become unable to move, lose consciousness, and suffer convulsions.  At an oxygen 

concentration less than 6%, death occurs in minutes. 

In most industrial applications, hydrogen is used as a gas, which is the state of H2 at standard 

conditions.  However, its boiling point is 20.3 K (-423°F), which means that both liquid 

hydrogen and hydrogen gas vaporized from liquid hydrogen have the potential to be very, very 

cold. Cold hydrogen can result in frostbite and related physiological harm. Likewise, materials 

vulnerable to cold embrittlement are vulnerable to cryogenic hydrogen and should be avoided in 

these applications. 

Because hydrogen atoms are very small, hydrogen is able to diffuse into other materials with 

ease, especially at elevated temperatures. The presence of diffused hydrogen in metals can 

“cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible 

materials.” (NACE, 2017)   NASA (Brown, 1997) encourages the use of aluminum alloys in 

hydrogen applications, both for their suitability in cryogenic applications and for their minimal 

susceptibility to hydrogen embrittlement. 

However, it is flammability that causes the gravest concerns in regard to the hazards of 

hydrogen. Hydrogen forms flammable mixtures with air at concentrations between 4% and 75% 

at standard conditions.  It forms flammable mixtures with pure oxygen at concentrations between 

4% and 94%, and also burns easily when combined with other oxidizers. It forms flammable 

mixtures with chlorine, for instance, at concentrations between 5% and 95%. At 0.02 mJ, it takes 

considerably less energy to ignite hydrogen than either methane (0.29 mJ) or gasoline (0.24 mJ). 

(Brown, 1997) When hydrogen burns in air or oxygen, it emits light in the violet to ultraviolet 

range of the spectrum, meaning the flame is colorless.  Any color present in a hydrogen flame is 

the result of impurities. 

2 Hydrogen in Pressure Vessels 

NASA uses liquid hydrogen as a propellant, but most hydrogen is either used or produced in 

industrial processes in its gaseous form. Hydrogen that is generated as a product of chemical 

reactions is typically contained in pressure vessels prior to its subsequent distribution. Likewise, 

hydrogen that is consumed as a reactant is also typically contained in a pressure vessel prior to 

its use. 

2.1 Why contain hydrogen in a pressure vessel? 

About 95% of the hydrogen that is produced industrially is a product of steam reforming, where 

either carbon or hydrocarbons react with water to produce carbon monoxide, carbon dioxide, and 

hydrogen.  (DOE, 2017)  A typical reaction is the steam reforming of methane: 

CH4 + H2O  CO + 3 H2 (the reforming reaction) 

CO + H2O  CO2 + H2 (the water-gas shift reaction) 



Most of the remaining hydrogen that is produced industrially is a product of electrolysis. Water 

can be electrolyzed directly to yield hydrogen and oxygen, but the more economically viable 

process, used by the chlor-alkali industry, is the electrolysis of brine to yield caustic and 

chlorine, with hydrogen as a by-product: 

2 NaCl + 2 H2O  2NaOH + Cl2 + H2 

Hydrogen is used in a number of reactions, collectively known as hydrogenation reactions. They 

vary widely, but are generally catalyzed reactions at relatively high pressures and temperatures.   

An important hydrogenation, the basis of the modern fertilizer industry, is the Haber-Bosch 

process for making ammonia: 

N2 + 3 H2  2 NH3 

There are also several hydrogenation reactions used in the petrochemical industry. These include 

hydrodealkylation, hydrodesulfurization, and hydrocracking. The hydrodealkylation reaction 

removes alkyl groups from aromatic compounds leaving the basic aromatic compound, e.g. the 

hydrodealkylation of toluene to benzene, yielding methane as a by-product: 

C6H5CH3 + H2  C6H6 + CH4 

The hydrodesulfurization reaction removes the sulfur in sulfur-containing compounds as 

hydrogen sulfide, leaving desulfurized hydrocarbons, e.g. the hydrodesulfurization of ethylthiol 

to ethane: 

C2H5SH + H2  C2H6 +H2S 

The cracking reaction splits high molecular weight hydrocarbons into lower molecular weight 

hydrocarbons, typically of higher economic value: 

CnH2n+1-CmH2m+1 + H2  CnH2n+2 + CmH2m+2 

The hydrogenation reaction familiar to most people, at least by reputation, is the hydrogenation 

of polyunsaturated vegetable oils to form saturated or monounsaturated fats. Polyunsaturated 

vegetable oils are liquid and do not provide the same quality of baked goods that solid or 

semisolid fats provide, and hydrogenated vegetable oil—shortening—is less expensive than 

natural fats, such as lard or tallow. 

So, there are a number of reactions that either generate or use hydrogen, in a number of different 

industries.  In most of these processes, there is a point at which hydrogen is stored in a vessel, 

and because it is gas, the amount of hydrogen that can be stored in a vessel of a given size 

increases in proportion to the pressure at which it is stored. Understanding the implications of 

containing gaseous hydrogen in pressure vessels is paramount to containing that hydrogen safely. 

2.2 Hydrogen deflagration in a pressure vessel 

A common concern associated with hydrogen contained in pressure vessels is the potential for a 

flammable mixture to form and then deflagrate upon ignition, leading to a catastrophic failure of 

the vessel and resulting in an explosion with attendant shock waves and blast fragments. 



Forming a flammable mixture is relatively simple. While any oxidizing gas can form a 

flammable mixture with hydrogen, the gas of most common concern is air. With a flammability 

range at standard conditions of between 4% and 75% hydrogen, the amount of air that has to leak 

into a hydrogen vessel to form a flammable mixture is not much and the amount of hydrogen that 

has to leak into a vessel containing air is even less. 

Fortunately, hydrogen systems are normally at pressures well above atmospheric pressure, 

meaning that a system leak is more likely to release hydrogen into the atmosphere than to 

introduce air into the system. Not that a hydrogen leak into the atmosphere is without 

consequence. Hydrogen ignites very easily and has a flame that is generally invisible to the 

human eye, so a hydrogen fire outside of a hydrogen system may not be detected and so remain 

quite hazardous for an extended period of time. However, it does not have the same issue of 

confined deflagration leading to a catastrophic vessel failure. 

2.3 Strategies to prevent harmful hydrogen deflagrations in a pressure vessel 

A hydrogen deflagration in a pressure vessel first requires the introduction of the oxidizing gas—

air—into the vessel to form a flammable mixture.  While a leak will not typically be sufficient, 

there are other mechanisms that can introduce air into a hydrogen vessel. For instance, an 

actuated vent to atmosphere on a hydrogen vessel may fail open or open spuriously, leading to 

the ingress of air during a point in the process cycle when the system pressure is low. Another 

scenario is that air may be introduced during maintenance or an outage and then be purged 

inadequately before restarting the process. So the first step in a strategy to prevent harmful 

hydrogen deflagrations in a pressure vessel is to have controls, both engineering and 

administrative, to reduce the likelihood of forming a flammable mixture. 

With the formation of a flammable mixture, ignition of the mixture is relatively easy. All of the 

usual measures—bonding and grounding, hazardous area classification, prohibition of open 

flames—are valuable, so the second step in a strategy to prevent harmful hydrogen deflagrations 

in a pressure vessel is have to have controls, again both engineering and administrative, to reduce 

sources of ignition.  With an ignition energy of just 0.02 mJ, hydrogen should be treated as 

though all energy sources are high energy ignition sources. If ever the adage, “Regarding the fire 

triangle, given a fuel and an oxidizer, assume the ignition source is free,” was true, it is with 

hydrogen. 

The third step in a strategy to prevent harmful hydrogen deflagrations in a pressure vessel is to 

design the vessel so that it can contain the deflagration without doing harm. During a hydrogen 

deflagration in a vessel, the pressure suddenly increases. The pressure increase is not infinite, 

though. Because the pressure increase is finite, there is a maximum pressure a vessel will reach 

during a deflagration, and it is possible to design a vessel to contain that pressure while resulting 

in no more harm than is tolerable. Designing a vessel to contain the deflagration pressure, PEX, 

requires knowing two things: 

 What will the PEX of a deflagration be? 

 What vessel design pressure will contain the PEX while resulting in no more harm than is 

tolerable? 



3 Effect of Pressure and Temperature on Hydrogen Explosivity Properties 

Schroeder and Holtappels (2005) looked at the explosion characteristics of hydrogen mixtures, 

both in air and in oxygen. They examined upper and lower explosive limits (LEL and UEL) and 

PEX. In particular, they studied the effect of pressure and temperature on LEL and UEL and the 

effect of pressure, temperature, and gas mixture composition on PEX. This paper is especially 

interested in the work they reported on mixtures of hydrogen and air. 

3.1 Lower and upper explosive limits 

For gases and vapors that can burn, there is a concentration that is too low or “lean” to support 

combustion. Likewise, there is a concentration that is too high or “rich” to support combustion. 

The reported values of “Lower Explosive Limit” and “Upper Explosive Limit” refer specifically 

to these concentrations, in air, when measured at atmospheric pressure and room temperature, 

using a specified test method such as ASTM E681 (2015), DIN 51649-1 (1986), or EN 1839 

(2017). The concentrations are expressed as volume percent, which corresponds to mole fraction. 

Explosive limits are dependent on temperature and pressure, as well as on the specific test 

method. While the effects follow general trends, hydrogen is peculiar and the work by Schroeder 

and Holtappels examined the effect of temperature and pressure on its explosive limits. 

Their study of the influence of temperature used a method adapted from DIN 51649-1. 

 
Figure 1.  Effect of temperature on explosive limits of hydrogen-air 

mixtures (Schroeder and Holtappels, 2005). 

Unsurprisingly, the explosive limits, already very wide for hydrogen, get wider as the 

temperature increases.  The relationship is extraordinarily linear, as shown in Figure 1. With 

temperature, T, expressed as C: 

LELT = 4.1 mol% · [1 – 0.00157C-1 · T] 



UELT = 74.5 mol% · [1 + 0.00044C-1 · T] 

In regard to safety, the flammable limits of hydrogen mixtures widen and so become more 

dangerous as their temperature increases.  However, they are already so wide that little is to be 

gained from trying to avoid being within the flammable limits by keeping operating temperatures 

as low as possible. 

Their study of the influence of pressure on the flammable limits of hydrogen-air mixtures used a 

method adapted from the “B” test in EN 1839. 

Unlike temperature, the safety effect of increased pressure is negligible to slightly advantageous, 

as is shown in Figure 2. Increased pressure slightly narrows the explosive limits. Again, though, 

the limits remain so wide that little is to be gained from trying to avoid being outside of the 

flammable limits by means of operating at higher pressures. 

 
Figure 2.  Effect of initial pressure on explosive limits of hydrogen-air 

mixtures, measured at room temperature (Schroeder and Holtappels, 2005). 

3.2 Explosion pressure ratio 

The explosivity property of hydrogen that is of far greater interest in the design and use of 

pressure vessels is PEX, which corresponds to the final pressure in a vessel following a 

deflagration. The work of Schroeder and Holtappels (2005) demonstrates that the normalized 

explosion pressure, expressed as the ratio of the absolute explosion pressure to the initial 

absolute pressure in the vessel, PEX/PO, is highly dependent on the initial composition of the gas 

mixture but is essentially independent of the initial pressure of the gas mixture. This relationship 

is shown below in Figure 3. 



 

Figure 3.  Effect of initial pressure on explosive pressure ratio of 

hydrogen-air mixtures, measured at room temperature (Schroeder and 

Holtappels, 2005). 

A stoichiometric mixture of hydrogen and air contains 29.6 mol% hydrogen in air. It is no 

coincidence that the peak PEX/PO corresponds to this composition.  At this composition, the 

combustion reaction consumes all available reactants.  Likewise, it is no coincidence that there is 

no increase in pressure—that PEX/PO is unity—at the compositions that correspond to the LEL 

and to the UEL. At these compositions, no combustion reaction can occur at all.  If no explosion 

can occur, then the pressure cannot increase. 

Finally, the work of Schroeder and Holtappels (2005) also demonstrates that like the LEL and 

the UEL, PEX/PO is also highly dependent on the initial temperature of the gas mixture. Perhaps 

counter intuitively however, PEX/PO decreases as the initial temperature of the gas mixture 

increases. This effect is shown below in Figure 4. 



 

Figure 4.  Effect of initial temperature on explosive pressure ratio of 

hydrogen-air mixtures, with initial pressure at 10 bar (Schroeder and 

Holtappels, 2005). 

Between 10 mol% hydrogen and 70 mol% hydrogen, the data is well behaved.  The PEX/PO at a 

given mole fraction of hydrogen in air is almost perfectly correlated to the inverse of the 

temperature, expressed in K-1, and converges on a value of unity, or no pressure increase upon 

explosion, as the temperature approaches infinity.  Figure 5 recasts the data from Figure 4, 

showing PEX/PO as a function of inverse temperature. 



 

Figure 5.  Effect of inverse initial temperature on explosive pressure ratio of 

hydrogen-air mixtures between 10 mol% and 70 mol%. 

The functions shown in Figure 5 are highly correlated.  The coefficient of determination, R2, for 

each data set is greater than 0.985 in all cases. 

Table 1.  Correlation of PEX/PO to Inverse Temperature as a Function of Composition 

Hydrogen-Air 

Mixture 

Correlation 

(T in K) 

R2 

10 mol% H2 PEX/PO = 1 +   877.3 K-1/T 0.9866 

20 mol% H2 PEX/PO = 1 + 1619.9 K-1/T 0.9953 

25 mol% H2 PEX/PO = 1 + 1898.7 K-1/T 0.9915 

30 mol% H2 PEX/PO = 1 + 2046.6 K-1/T 0.9986 

35 mol% H2 PEX/PO = 1 + 2004.7 K-1/T 0.9975 

40 mol% H2 PEX/PO = 1 + 1937.1 K-1/T 0.9954 

45 mol% H2 PEX/PO = 1 + 1853.4 K-1/T 0.9964 

50 mol% H2 PEX/PO = 1 + 1728.0 K-1/T 0.9976 

60 mol% H2 PEX/PO = 1 + 1461.6 K-1/T 0.9976 

70 mol% H2 PEX/PO = 1 + 1137.3 K-1/T 0.9852 

Figure 6 shows a plot of correlation coefficients, K, as a function of the composition of 

hydrogen-air mixtures for the relationship 

PEX/PO = 1 + K/T 

where T is expressed as absolute temperature, K. 



 

Figure 6.  Correlation coefficients as a function of the composition of 

hydrogen-air mixtures for the relationship, PEX/PO = 1 + K/T 

The value of K from the plot in Figure 6 for a specific composition of hydrogen-air mixture can 

be used to determine the PEX/PO for a process operating at a specific temperature.  Given a 

particular PO, the PEX can be calculated to answer the first question from above:  What will the 

PEX of a deflagration be? 

Most conservatively, the peak PEX/PO occurs when the composition of the hydrogen-air mixture 

is a perfectly stoichiometric mixture: 29.6 mol% hydrogen.  For a stoichiometric mixture, K is 

2050. Using this value is conservative, given that the probability of inadvertently forming a 

perfect stoichiometric mixture of hydrogen and air is fairly low; a near perfect stoichiometric 

mixture, requiring a K of 2000 or greater, spans 7% of the range of hydrogen-air mixtures, from 

28 mol% hydrogen to 35 mol% hydrogen. 

4 Consequences of Vessel Overpressure 

Pressure vessels are designed with a Maximum Allowable Working Pressure (MAWP).  As the 

term suggests, vessels can operate at pressures up to the MAWP, but should never be operated at 

a pressure above the MAWP. (ASME, 2017)  Beginning with this, the most conservative 

approach to answering the question, “What vessel design pressure will contain the PEX while 

resulting in no more harm than is tolerable?” would be to assure that a vessel has a MAWP 

greater than the PEX.  This approach, however, is overly conservative. 

The ASME Boiler and Pressure Vessel Code, the BPVC (2017), acknowledges that some 

flexibility is required when operating pressure vessels at or near their MAWP.  For instance, the 

design of relief systems allows for a relieving pressure of 110% of MAWP when the vessel is 

protected with a single relief device.  When there is more than one relief device, the BPVC 



allows a relieving pressure of 116% of MAWP; for the external fire case, the BPVC allows a 

relieving pressure of 121% of MAWP. Clearly, there is a margin above the MAWP where no 

harm is expected to come to the pressure vessel.  A vessel will operate safely at 100% of MAWP 

and it will not then fail catastrophically at 101% of MAWP. In Guidelines for Initiating Events… 

(Chastain, 2015), the authors indicate their expectation that there will be no consequences at 

pressures less than 121% of MAWP.  

Pressure vessels are designed to withstand their hydrostatic test pressures.  Prior to the 

publication of the BPVC Addendum in 1999 (ASME, 1999) the pressure at which vessels were 

hydrostatically tested was 150% of MAWP.  Since 1999, the pressure at which vessels are 

hydrostatically tested is 130% of MAWP.  This suggests that up to 130~150% of MAWP, there 

will be no consequences associated with overpressure. 

Above 150% of MAWP, there is general agreement that the probability of gasket leakage 

increases to a significant level, but that permanent damage to the vessel is unlikely. So, it is 

reasonable to expect, with a probability of around 10%, that there will be loss of containment 

because of gasket leakage.  On the other hand, a vessel can be expected to withstand pressures 

this high without failing.  A vessel should be able to contain a deflagration even if its contents 

leak through a flange. 

Above 200% of MAWP, the probability of gasket leakage increases to near certainty. The 

probability of permanent damage to the vessel also becomes noteworthy. 

4.1 Permanent vessel damage 

There are primarily three types of permanent damage to pressure vessels as a result of 

overpressure: 

 Permanent vessel deformation 

 Ductile failure 

 Catastrophic brittle fracture 

Permanent vessel deformation results when the internal pressure on the vessel imposes a stress 

greater than the yield stress of the material.  In cylinders, the deformation will be in two 

directions.  Radially, the vessel will expand as a result of “hoop stresses”.  Simultaneously, axial 

stress will cause the vessel to contract to compensate. The result will be bulging. An ideal 

cylinder will bulge symmetrically, but since most vessels have all manner of asymmetrical 

elements, a real cylinder will bulge unevenly. At low enough pressures, stress resulting from 

internal pressure will lead to reversible vessel deformation. Above 200% of MAWP, there is a 

significant probability of permanent vessel deformation and above 250% of MAWP, the 

probability of permanent vessel deformation approaches near certainty. The safety implications 

are limited to those of a significant leak, but from the perspective of asset integrity, an event that 

results in permanent vessel deformation will require equipment replacement. 

Ductile failure is a tensile failure that occurs when the stresses that cause vessel deformation are 

increased so that the vessel material is thinned to the point of rupture.  While catastrophic in the 

sense that the vessel will tear apart and suddenly releases its contents, there are not likely to be 

many fragments launched as projectiles as a result of ductile failure.  Likewise, a ductile failure 



will not typically be sufficiently sudden to result in the shockwave typically associated with an 

“explosion.” Above 300% of MAWP, the probability of ductile failure approaches near certainty.  

The safety implications of ductile failure are those associated with a total loss of containment. 

When the initial contents of the vessel are richer than a stoichiometric mixture, any hydrogen 

unconsumed in the initial deflagration will be released and be ignited, the vessel failure itself 

serving as the ignition source.  The safety implications of a ductile failure are more severe than 

for a permanent vessel deformation, although the impact zone is likely to be limited to the 

immediate area of the vessel. Regardless, an event like this will require equipment replacement. 

Catastrophic brittle fracture is the almost instantaneous cracking of a vessel, with little indication 

or warning of ductile degradation before the failure. Unlike ductile failure, the material of 

construction does not thin before failure, and catastrophic brittle facture results in many 

projectile fragments and the release of a shockwave.  Catastrophic brittle fracture is, in every 

sense of the word, an “explosion.” 

The pressure at which catastrophic brittle facture occurs is related to the ultimate yield strength, 

which the BPVC currently stipulates must have a design margin of 3.5 times that required for the 

MAWP. In his review of the 1999 Addenda to the BPVC, where ASME changed the design 

margin for pressure vessels from 4.0 to 3.5, Sperko does an excellent job of summarizing the 

history of design margins in the BPVC. (2000)  

“In the 1999 addenda of the ASME Boiler Code, the design margin (formerly 

known as the “Safety Factor”) was changed from 4.0 to 3.5. 

“In the 1915 edition, the margin was 5. It stayed at 5 until 1943 when it was 

changed to 4 largely to conserve materials during WWII. Immediately after the 

war, the margin was changed back to 5. In 1950, the performance of the vessels 

that had been made using a margin of 4 was reviewed and found satisfactory. As a 

result, the margin was changed to 4 in 1951.” 

This design margin—3.5 for BPVC vessels constructed after 1999, 4.0 for BPVC vessels 

constructed between 1951 and 1999—is also the design margin used to calculated the explosive 

energy released by a vessel rupture, based on the stated MAWP of the vessel. A different rule 

should be applied to pressure vessels designed and fabricated in compliance with the European 

Pressure Equipment Directive or the Unfired Pressure Vessel standard, EN 13445 (2014).  

McKetta noted that the European PED assumes a safety factor of 4, but based on only two-thirds 

of the yield strength of the materials used. (1993)  This means that the burst pressure for 

European PED pressure vessels should be assumed to be at least 4 / 2/3 , or 6, times the MAWP 

of the vessel. 

4.2 Risk of vessel overpressure 

As process risk analysts are fond of pointing out, risk consists of two components: consequence 

severity and likelihood.  In a given overpressure event, it is important to associate the impact of 

the event—its severity—with the likelihood of that impact. There are a number of tables 

available.  Below is the table that the author has found to be reasonable, being neither overly 

conservative nor unduly tolerant. 



Table 2.  Probability of Consequences Associated with Vessel Overpressure 

Overpressure Probability of 

Catastrophic 

Vessel Failure 

Probability 

of Gasket or 

Seal Failure 

Most Likely Consequence 

Up to 1.5 x MAWP 10-5 10-2 No permanent damage to vessel. 

Gasket leakage unlikely. 

Up to 2.0 x MAWP 10-4 10-1 No permanent damage to vessel. 

Gasket leakage likely. 

Up to 2.5 x MAWP 10-3 1 Likely permanent vessel 

deformation. Gasket failure.   

Up to 3.0 x MAWP 10-2 1 Deformation leading to release. 

Gasket failure.   

Up to 3.5 x MAWP 10-1 1 Ductile failure, but not catastrophic 

brittle failure 

Over 3.5 x MAWP 1 1 Catastrophic brittle failure, resulting 

in fragment projectiles, shockwave 

 

5 Designing to Reduce Risk 

It is possible to design a pressure vessel to contain a hydrogen deflagration. It is necessary to 

understand the consequences to be averted, and the conditions under which the deflagration will 

occur. 

5.1 Consequences to avert 

The consequences of a hydrogen deflagration that need to be averted can range from material 

release and equipment damage to a catastrophic brittle failure with resulting fragment projectiles 

and shockwave. The impact of concern will be an important factor when considering the design 

of the pressure vessel.   

When the consequence to avert is material release or equipment damage of any type, the design 

of the pressure vessel must be such that a deflagration will not result in an overpressure greater 

than 1.5 x MAWP. 

When the consequence to avert is permanent damage to the vessel itself, the design of the 

pressure vessel must be such that a deflagration will not result in an overpressure greater than 

2.0 x MAWP. 

In many cases, the consequence to avert is injury to employees in the area.  In these cases, 

permanent vessel deformation is acceptable, provided that the vessel contains the deflagration. 

Following the event, however, the vessel will have to be replaced.  In these cases, the design of 

the pressure vessel must be such that a deflagration will not result in an overpressure greater than 

2.5 x MAWP. 



When the consequence to avert is fatalities in the immediate area of the vessel, then it is 

important to avoid ductile failure.  The design of the pressure vessel must be such that a 

deflagration will not result in an overpressure greater than 3.0 x MAWP. 

When the consequence to avert is the extreme case of a vessel explosion with resulting fragment 

projectiles and shockwave that will have an impact over an extensive zone beyond the immediate 

area of the vessel, then it is important to avoid catastrophic brittle failure. The design of the 

pressure vessel must be such that a deflagration will not result in an overpressure greater than 

3.5 x MAWP. 

Occupancy factors, operating approach, and philosophy about assets as impact vectors will all 

play a role in determining what consequence is to be averted. 

5.2 Conditions under which the deflagration will occur 

Hydrogen deflagration overpressure in a pressure vessel depends on three variables: the 

composition of the hydrogen-air mixture, the temperature of the hydrogen-air mixture, and the 

initial pressure in the pressure vessel at the time of the deflagration. To the extent these are 

known for a given scenario, the PEX can be calculated and the appropriate MAWP for the 

pressure vessel specified.  Conversely, for a given vessel, the PEX can be managed by managing 

the conditions at which a deflagration might occur. 

The PEX of a hydrogen deflagration increases as the hydrogen-air mixture approaches a 

stoichiometric composition, either from a lean mixture or from a rich mixture. To the extent that 

a process can be controlled to avoid mixtures with a stoichiometric composition, the risk is 

reduced.  As a risk-reduction strategy, however, this is the weakest. For the most part, operations 

avoid mixtures of hydrogen and air at any composition, so any hydrogen-air mixture is typically 

inadvertent.  To pretend that the composition of a mixture that is made inadvertently can be 

controlled is probably delusional. So, while it is fair to expect that an inadvertent hydrogen-air 

mixture will not be perfectly stoichiometric, it is equally reasonable to assume that any such 

mixture should be treated as a stoichiometric mixture.  This means that for inadvertent hydrogen-

air mixtures over which there is no control of composition, the relationship to use to calculate 

PEX/PO is 

PEX/PO = 1 + 2050 K-1/T 

where T is in K. 

The PEX of a hydrogen deflagration decreases as the temperature of the hydrogen-air mixture 

increases. To the extent processes can be run at higher temperatures, the risk is reduced.  As a 

risk-reduction strategy, this may or may not be applicable, but where it is applicable, it can be 

effective. 

The PEX of a hydrogen deflagration decreases as the pressure of the hydrogen-air mixture 

decreases. It is directly proportional. To the extent processes can be run at lower pressures, the 

risk is reduced.  Wherever this risk-reduction strategy is applicable, it is very effective. 



5.3 An example 

A dehydrogenation process yields an aqueous solution of product and gaseous hydrogen at a 

pressure slightly above atmospheric and at a temperature of around 40 C. The hydrogen is 

collected and flared. Plant lore says that as long as all of the hydrogen equipment is designed 

with a 50 psig MAWP, any deflagration in the equipment will be contained, although the 

equipment will need to be carefully inspected after a deflagration event and may need to be 

replaced. No one recalls the basis for the 50 psig design criteria. 

Any mixture of hydrogen and air would be inadvertent, so the correct relationship to use for 

calculating PEX/PO is for a stoichiometric mixture.  The operating temperature, T, is 40 C, or 

313.2 K. So 

PEX/PO = 1 + 2050 K-1/T = 1 + 2050 K-1/313.2 K = 7.55 

The operating pressure, PO, is slightly above atmospheric pressure at around 15 psia. So 

PEX = 7.55 · PO = 7.55 · 15 psia = 113.25 psia = 98.55 psig 

Given an MAWP for hydrogen equipment of 50 psig, the PEX converts to 1.97 x MAWP.  This is 

right at the boundary between a consequence of “No permanent damage to vessel. Gasket 

leakage likely.” and “Likely permanent vessel deformation. Gasket failure.”  In this case, the 

analysis supports plant lore, but the plant lore should be replaced with a formal analysis. 

6 Going Forward 

There are a wide variety of processes that depend on containing hydrogen in a pressure vessel. 

Process hazard analyses of these processes frequently conclude that a deflagration of an 

inadvertent mixture of a hydrogen-air mixture is a hazard that must be addressed.  An overly 

simple and overly conservative approach is to assume that any overpressure resulting from a 

deflagration will cause a catastrophic vessel failure resulting in injuries and fatalities, as well as 

asset loss and lost time. 

The work of Schroeder and Holtappels and others allows us to move beyond that overly simple 

and overly conservative approach. Hydrogen-air deflagrations, like other process safety 

concerns, are scenarios that can be analyzed and addressed with engineering. 

Abbreviations and Acronyms 

ASME: American Society of Mechanical Engineers 

ASTM: American Society for Testing and Materials 

BPVC: Boiler and Pressure Vessel Code 

DIN: Deutsches Institut für Normung (German Standards Institute) 

EN: Europäische Norm (European Standard) 

LEL: Lower explosive limit, mol% or vol% 

LELT: Lower explosive limit at temperature, T 

MAWP: Maximum Allowable Working Pressure 

NASA: National Aeronautics and Space Administration 



PED: Pressure Equipment Directive 

PEX: Deflagration pressure, absolute 

PO: Initial pressure, absolute 

UEL: Upper explosive limit, mol% or vol% 

UELT: Upper explosive limit at temperature, T 
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