
ParaMonte: An Efficient Serial/Parallel MCMC Library
Parvat Sapkota1, Joshua Osborne1, Shashank Kumbhare1, Fatemeh Bagheri1 ,and Amir Shahmoradi1,2

1Department of Physics, College of Science, The University of Texas, Arlington, TX 76019, USA
2Data Science Program, College of Science, The University of Texas, Arlington, TX 76019, USA

Abstract

The scientific inference is a multistep process requiring observational data from

which a model/hypothesis is derived. The parameters of this physical model then

have to be tuned to more accurately represent data in a process known as model

calibration. This calibrated model is then validated and is finally used to predict

different quantities of interest. The most fundamental tool for model calibration and

uncertainty quantification is the Markov Chain Monte Carlo (MCMC). While existing

packages achieve many of the goals of the MCMC simulations, none currently

addresses all critical aspects of an MCMC simulation. For instance, packages are

frequently limited to only one programming language environment, perform serial or

parallel simulations, or lack restart functionality. We present ParaMonte, a generic

user-friendly, high performance Monte Carlo simulation toolbox for serial and

parallel Monte Carlo simulations accessible from multiple programming languages.

ParaMonte features automatically-enabled restart functionality of all simulations in

serial or parallel and comprehensive post-processing and visualization of the

simulation results. This package is available to the public under the MIT license

from its permanent repository: https://github.com/cdslaborg/paramonte.

Introduction

ParaMonte

Problem with Traditional MCMC Samplers Adaptation of proposal distribution

Continuous adaptation of the proposal distribution of the adaptive MCMC samplers is an issue. But, the 

research indicates that as long as the adaptation of the Markov chain decreases throughout the 

simulation, the convergence is guaranteed.

Accordingly, although there are other methods, Shahmoradi & Bagheri[2] have also introduced a new 

technique which helps to monitor these adaptations.

References
[1]Shahmoradi, A., Bagheri, F., & Osborne, J. A. (2020). Fast fully-reproducible serial/parallel Monte Carlo 

and MCMC simulations and visualizations via ParaMonte:: Python library. arXiv preprint arXiv:2010.00724.

[2]Shahmoradi, A.,& Bagheri, F. (2020). Paradram: A cross-language toolbox for parallel high-performance 

delayed-rejection adaptive metropolis markov chain monte carlo simulations.arXiv preprint 

arXiv:2008.09589

[3] Kumbhare, S., & Shahmoradi, A. (2020). MatDRAM: A pure-MATLAB Delayed-Rejection Adaptive 

Metropolis-Hastings Markov Chain Monte Carlo Sampler. arXiv preprint arXiv:2010.04190.

The ParaDRAM Algorithm

The automation of the tuning was successfully brought through the algorithm

called Delayed-Rejection Adaptive Metropolis MCMC (DRAM).

The ParaDRAM algorithm [2][3] in the ParaMonte package attempts to address

the existing algorithmic and performance deficiencies in DRAM algorithm by

providing a parallel implementation of the algorithm and offering diagnostic

checks that ensure the ergodicity and reversibility of the DRAM algorithm in

practice.

During model calibration, a major task is to find the best-fit model parameters given 

a mathematical objective function which requires a)Parameter tuning b) Uncertainty 

quantification, and c) Model selection.

The Markov Chain Monte Carlo (MCMC), in particular, the Metropolis-Hastings

(MH) algorithm, is among the most popular tools to achieve the aforementioned

inference goals. However, the traditional MH algorithm has fundamental limitations

that make its usage inefficient in practice.

Traditional MCMC algorithms such as the Metropolis-Hastings method have a

significant drawback: They frequently require manual tuning of the free parameters

of the algorithm for every simulation to ensure fast convergence of resulting

Markov chain to the target density function.

Existing Monte Carlo simulation packages do not address all critical aspects of an

MCMC simulation. Some limitations include: 1) Only serial or parallel calculations,

2) Serving users of one particular programming language only, and 3) Significant

dependencies on external libraries.

To solve these outstanding issues, we have developed a simulation toolbox for

serial and parallel Monte Carlo simulations, known as ParaMonte [1] with the

following designs in mind: 1) Full automation, 2) Interoperability, 3) High-

Performance, 4) Parallelizability, 5) Zero external-library dependencies, 6)Fully-

deterministic reproducibility and automatically-enabled restart functionality, and 7)

Comprehensive-reporting and post-processing.

The ParaMonte library aims to implement the following Monte Carlo algorithms.

This poster focuses on the ParaDRAM sampler of the ParaMonte library.

Fig: 3a) 3D contour map of ParaDRAM simulation output for a certain function 3b) 3D dynamic adaptation for it. 3c) 2D dynamic adaptation for it. 3d) 

Diminishing adaptation of the proposal distribution

a)

b)

c)
d)

Parallelization of the Sampler

The sampler in the ParaMonte package supports two modes of parallelism[2]:

a)Fork-join Parallelism & b)Perfect Parallelism.

Figure (2a) shows that as the number of processors is increased, the contributions from each processor 

decreases. Figure (2b) illustrates that as the numbers of processors are increased, the performance also 

increases thus demonstrating the scalability of this package.

Fig: 4a)Processor contributions to a parallel simulation
Fig: 4b) Comparison of predicted vs. actual parallel-performance of ParaDRAM

simulations

Fig1: Current and future algorithms in the ParaMonte library. Orange box refers to the algorithm that is currently present. 

Dark red box refers to the algorithm that are proposed for future development.

Fig 2: An illustration of the importance of an appropriate choice of step size and proposal distribution shape in MCMC

simulations. Plots (a),(b),(c) shows MCMC sample, evolution of the efficiency of the MCMC simulation, and autocorrelation

function(ACF) of the chain of uniquely-sampled states for small-step sizes. (d), (e), (f) represent the same quantities but for

the large-step-size.

Efficiency:

The efficiency(<α>) of the MCMC simulation is given by the formula:

Accordingly, for the small step-size, the number of rejected proposed moves is 

low, thus the sampling efficiency will be high. But, for large step-size, the number 

of rejected proposed moves is high, thus the sampling efficiency will be low.

Auto-Correlation Value:

The autocorrelation value simply demonstrates how good or bad are the mixing 

results. Because of the small-step size, new points will be highly correlated with 

each other thus showing poor mixing results. However, for large-step size, new 

points will not be highly correlated with each other thus demonstrating superior 

mixing results.

Thus, considering both efficiency and auto-correlation value, we see that we 

cannot take sizes either in small-steps or in large-steps as both will be inefficient. 

As such, we need to find the optimal step-size situated between those two.

https://github.com/cdslaborg/paramonte

