
Copyright

by

Animesh Goyal

2020

The Report Committee for Animesh Goyal

certifies that this is the approved version of the following report:

Multi-Agent Deep Reinforcement Learning for

RoboCup Rescue Simulator

SUPERVISING COMMITTEE:

Peter Stone, Supervisor

Garrett Warnell, Co-Supervisor

Multi-Agent Deep Reinforcement Learning for

RoboCup Rescue Simulator

by

Animesh Goyal

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2020

Acknowledgments

First and foremost I would like to thank my advisor, Peter Stone, for his guidance and

encouragement throughout this report. He always made himself available to provide help

and I could always count on his lightning-fast email responses. He gave me autonomy in

finding a research topic and provided the right amount of guidance to help me make progress

when I felt stuck. It has been a privilege to work with him. Garrett Warnell and Tsz-Chiu Au

deserves a special thanks as collaborators and mentors throughout my research. They have

provided invaluable help, especially with regards to their extensive reviews of my writing.

Discussions with them have helped me flesh out ideas fully, and my writing and research

ability have improved through their mentorship.

I would like to thank several of my peers and colleagues for the help they’ve provided

during my report. Aastha Goyal has provided invaluable input with her experience in Java

and gRPC. She was always been very helpful and supportive. Ashutosh Shukla reviewed

several of my work and provided extensive feedback. His constant motivation was very

encouraging throughout my research. Thank you, Jaynish Vaghela for brainstorming with

me during OpenAI gym implementation. I would also like to thank Ishan Durugkar and

Siddharth for being always available to solve any doubts that I had regarding the simulator.

This work has taken place in the Learning Agents Research Group (LARG) at the

Artificial Intelligence Laboratory, The University of Texas at Austin. LARG research is

supported in part by grants from the National Science Foundation (CPS-1739964, IIS-

iv

1724157, NRI-1925082), the Office of Naval Research (N00014-18-2243), Future of Life Insti-

tute (RFP2-000), Army Research Laboratory, DARPA, Lockheed Martin, General Motors,

and Bosch. Peter Stone serves as the Executive Director of Sony AI America and receives

financial compensation for this work. The terms of this arrangement have been reviewed and

approved by the University of Texas at Austin in accordance with its policy on objectivity

in research.

Animesh Goyal

The University of Texas at Austin

May 2020

v

Multi-Agent Deep Reinforcement Learning for

RoboCup Rescue Simulator

Animesh Goyal, M.S.E.

The University of Texas at Austin, 2020

Supervisor: Peter Stone

Recent development in the field of Artificial Intelligence have dealt with building a

winning strategy for video games where agents learn how to finish their task successfully

using Deep Reinforcement Learning (DRL). The first major breakthrough came when Mnih

et al. [22] showed how a DRL algorithm, termed Deep Q-Networks (DQN), can be applied

to a collection of Atari 2600 games to surpass the performance of all previous algorithms and

achieve a level that is comparable to a professional player. Their trained model received only

raw pixels and game score as inputs to learn successful policies for single agents and was able

to outperform professionals across a set of 49 Atari games. After a few years, focus shifted on

training multiple agents using DRL, often known as multi-agent deep reinforcement learn-

ing (MADRL), for real time strategy games. Brockman et al. [4] achieved superhuman

vi

performance in the game of DOTA 2 which involves multi-agent collaboration, spatial and

temporal reasoning, adversarial planning, and opponent modeling. Using Proximal Policy

Optimization (PPO) algorithm and a LSTM layer as the primary component of the neural

network, their trained model was able to defeat the human champion team, Team OG by

2:0. Most recently, Vinyals et al. [38] showed how a MADRL model can achieve grandmaster

level in the game of StarCraft II.

In this work, we apply MADRL to RoboCup Rescue Simulator (RCRS), which is

part of the annual RoboCup Competition. RCRS is an open-source virtual environment

that evaluates how effective multiple agents like ambulance team, police officer and fire

brigades are in rescuing civilians and extinguishing fire from a city where an earthquake just

happened. RCRS is challenging, easy to use and customize multi-agent scenario. In order

to create RCRS environment where deep reinforcement learning algorithms can be tested,

RCRS-gym, an open-source OpenAI Gym environment was developed. In this report, we

have focused on training multiple fire brigades to collaboratively accomplish their task of

extinguishing fire in the city. Fire Brigades were trained using two DRL algorithms: DQN

and PPO. The performance of the algorithms was then compared with a greedy approach

on two different map setting, ”Small” map and ”Big” map, each having different number of

fire brigades and buildings.

The agents were able to successfully finish their task of extinguishing fire on both map

setting thus proving that RCRS is a suitable environment for developing deep reinforcement

learning agent in a strategic multiagent game scenario. DQN outperformed PPO in the

”Small” map setting while PPO outperformed a variant to DQN, H-DQN in the ”Big” map

setting. However, both the algorithms were not able to significantly outperform the greedy

approach in either setting which opens up a promising avenue for future research.

vii

Contents

Acknowledgments iv

Abstract vi

List of Figures x

List of Algorithms xii

List of Tables xiii

Chapter 1 Introduction 1

Chapter 2 Background 4

2.1 Reinforcement learning . 4

2.1.1 Q-learning . 5

2.1.2 Policy Gradient Methods . 7

2.2 Multi-Agent Systems (MAS) . 9

Chapter 3 Related Work 11

Chapter 4 Modeling DRL for RCRS 13

4.1 Domain Description . 13

4.1.1 Environment . 13

4.1.2 Agents . 14

4.1.3 Search Strategy of Fire Brigades . 14

4.1.4 Map Variants: ”Small” map and ”Big” map 17

viii

4.2 Defining State Space, Action Space and Reward function 18

4.2.1 State Space . 18

4.2.2 Action Space . 18

4.2.3 Reward Function . 19

4.3 Model Architecture . 20

4.4 Hyperparameter Search . 20

Chapter 5 RCRS Gym Environment: Setup, Experiments and Results 23

5.1 Setup . 24

5.1.1 OpenAI Gym . 24

5.1.2 Communication between Java and Python 26

5.1.3 RCRS-Gym Implementation . 28

5.2 Experiments and Results . 28

5.2.1 Small Map Experiments and Results 29

5.2.2 Big Map Experiments and Results 32

Chapter 6 Conclusion and Future Work 37

Bibliography 39

ix

List of Figures

1.1 RoboCup Rescue Simulation Environment: RoboCup Rescue Simulator

provides a 2D reinforcement learning environment where agents can be trained

to save civilians and extinguish fire in a city where an earthquake has taken

place . 2

2.1 Abstract depiction of reinforcement Learning Model: At some point in time t,

the RL agent experiences a state st and a reward rt for his action in time t−1.

In state st, the agent takes action at , for which the environment advances a

time step, and the agent experiences a new state st+1 and a reward rt+1 for

action at . 5

2.2 Deep Reinforcement learning Architecture 6

2.3 A fully general multiagent scenario. Agents can affect other agents actions,

goals or domain knowledge or communicate directly with each other [31] . . 9

4.1 Representation of the Simulator: RoboCup Rescue Simulator with fire

brigades. Different polygons are the buildings in the map. Grey color shows

building is unburnt, yellow and red color shows building is burning, blue color

depicts fire is extinguished and black shows the building is totally burnt. Note

that as the shades get darker, building temperature and fieryness (degree of

fire) increases. White house within red circle is the refuge 15

4.2 Representation of ”Small” and ”Big” Map. Small map contains 2 fire brigades

and 1 refuge while Big map contains 4 fire brigades and 2 refuge 17

4.3 Schematic Illustration of the Model Architecture for Agent 1 21

5.1 Conceptual model of the RCRS Gym environment and agent 24

x

5.2 The agent takes in state information and the reward collected at every

timestep from the environment. State information contains (X,Y) coordinates,

water level, health of the all the fire brigades, temperature fieryness of the

buildings and if the fire brigade is idle or busy. Agent then processes this

information and outputs an action (Building ID) where the fire brigade needs

to move next . 29

5.3 Rewards per episode for PPO, DQN and Greedy algorithm in ”Small” Map

setting. Dark line represents the mean value for rewards while shaded region

is the standard deviation . 31

5.4 PPO: Fire Brigades learning to extinguish fire over 250 episodes. After 5

episodes, there was hardly any learning with most of the buildings either

critically or totally burnt. After 250 episodes, agents learnt the critical

buildings that need to be extinguished . 32

5.5 DQN: Fire Brigades learning to extinguish fire over 250 episodes. After 5

episodes, there was hardly any learning with most of the buildings either

critically or totally burnt. After 250 episodes, agents learnt the critical

buildings that need to be extinguished . 32

5.6 Rewards per episode for PPO, HDQN and Greedy algorithm in ”Big” Map

setting. Dark line represents the mean value for rewards while shaded region

is the standard deviation . 35

5.7 Comparison between the learning curves when PPO is used with LSTM and

when it is not in the Big Map setting . 36

xi

List of Algorithms

1 Working Principle of Fire Brigade . 16

xii

List of Tables

4.1 RCRS Map Specifications . 17

4.2 Ranges for state information parameters . 19

4.3 Reward Calculation . 19

4.4 Fieryness severity according to fieryness value 20

4.5 PPO: Values used during hyper-parameter search and final values used for

experiments with scoring . 21

4.6 DQN: Values used during hyper-parameter search and final values used for

experiments with scoring . 22

5.1 PPO: Best hyperparameters . 30

5.2 DQN: Best hyperparameters . 30

5.3 PPO: Best hyperparameters . 34

5.4 HDQN: Best hyperparameters . 34

xiii

Chapter 1

Introduction

Artificial Intelligence (AI) in video games is a long standing research area. It deals with

studying the complex interaction between agents and environment and training them using

AI techniques to achieve human-level performance. The reason behind selecting video games

is because they are safe, faster than real-time environment and can provide a large amount of

data for the machine learning algorithm to be trained on. A few applications of AI in video

games involves Open AI’s DOTA 2 and DeepMind’s StarCraft II. In April 2019, OpenAI

built a DRL model for the game of DOTA 2 that was able to beat 99.4 percent of players

in a public match [4]. In the same year, DeepMind built a DRL model for StarCraft II that

was able to perform better than 99.8 percent of all humans in a game of StarCraft II [38].

Both are real-time strategy games that involve multiple agents or players working towards

achieving their respective objectives while interacting in a shared environment. These agents

can communicate with each other and possibly coordinate their actions as well. Such systems

commonly fall under the hood of Multi Agent Systems (MAS). As you may have noticed,

both the models were trained using DRL techniques. The reason it proved so effective in

achieving such performance is because it addressed several key challenges like handling high

dimensional action and observation space, solving the problem of partially observed state

space, and long time horizons [4]. Together MAS and DRL are referred to as Multiagent

Deep Reinforcement learning (MADRL) [30].

Currently, most of the work done in MADRL has been done in the field of video

games. There is still a lot of work to be done for more realistic applications with complex

1

environments, which are not necessarily vision based. One such domain is RoboCup Rescue

Simulator (RCRS) (Figure 1.1). RCRS is structured as a 2D discrete-time simulation system

that depicts the situation after occurrence of earthquake in an urban area. It was built in

response to the earthquake that hit the Japanese port city Kobe with a magnitude of 6.8 on

richter scale [5].

Figure 1.1: RoboCup Rescue Simulation Environment: RoboCup Rescue Simula-
tor provides a 2D reinforcement learning environment where agents can be trained to save
civilians and extinguish fire in a city where an earthquake has taken place

RCRS involves tasks like removing blockades, extinguishing fire and rescuing civilians

that are to be performed by three different agents: fire brigades, police officers and ambulance

teams. These tasks are allocated in a centralized manner. A central agent manages all the

agents and has the global knowledge [23].

2

Contributions: In this report, using centralized task allocation approach we have

applied Multi-Agent Deep Reinforcement Learning (MADRL) algorithms to RCRS in order

to train multiple fire brigades to extinguish fire in the city on different sized maps having

different number of agents and buildings. The major contributions are listed below:

• Built a RCRS-Gym interface, that can be utilized to apply various reinforcement learn-

ing algorithms to RCRS

• Evaluated state-of-the-art reinforcement learning algorithms on RCRS, providing an

extensive set of results for comparison

• Successfully trained the agents to learn an optimal policy thus proving that RCRS is

a suitable environment for applying MADRL

• Showcased promising future research directions in this environment i.e. partial observ-

ability and including police officer and ambulance as the agent

The rest of the report is structured as follows. In Chapter 2, we will introduce the

background of RL, DRL and MAS. In Chapter 3, we focus on recent MADRL methods

and how RL has been applied to RCRS. In Chapter 4, we describe the RCRS domain in

greater detail, define what the state space, action space and reward function is, and the

model architecture that was selected for various algorithms. Then in Chapter 5, we move to

the implementation part, RCRS-gym environment setup. We also discuss the experiments

that were performed and the results we got. Finally, in Chapter 6, we draw conclusion and

discuss future research direction.

3

Chapter 2

Background

This chapter will briefly cover the basic but very important concepts like Reinforcement

learning, Deep Reinforcement learning and Multi-agent system that will build the necessary

background to understand the project properly.

2.1 Reinforcement learning

Reinforcement learning is a type of ML method where the agents learn the optimal policy

by trial and error [33]. The agent interacts with the environment to learn the actions in a

certain state which would produce the highest reward. The reinforcement learning model is

depicted in Figure 2.1

Consider a discounted episodic Markov decision process (s, a, γ, P, r). At each time

step t, the agent perceives a state st in state space S from which it selects an action at in

the action space A by following a policy π(at|st). The agent receives a reward rt when it

transitions to the state st+1 according to the environment dynamics, the reward function

R(st, at, st+1) and the transition probability P(st+1|st, at). This transition probability is

unknown in RL domain. The process continues until a terminal state is achieved. The

objective is to maximize the expected discounted cumulative rewards

Eπ[rt] = Eπ[
∞∑
i=0

γirt+i] (2.1)

4

Figure 2.1: Abstract depiction of reinforcement Learning Model: At some point in time t,
the RL agent experiences a state st and a reward rt for his action in time t− 1. In state st,
the agent takes action at , for which the environment advances a time step, and the agent
experiences a new state st+1 and a reward rt+1 for action at

where discount factor γ ∈ [0, 1] is applied to the future rewards.

There are two types of RL approach: model based and model free.

Model based approach uses a reduced number of interactions with the real environ-

ment during the learning phase. Its aim is to construct a model based on these interactions,

and then use this model to simulate the further episodes, not in the real environment but

by applying them to the constructed model and get the results returned by that model.

Model free approach act in real environment in order to learn. The most common

model-free technique is Q-Learning and Policy Gradient methods. For our project, we will

focus on Model free approach since agents will have to learn by acting in the real RCRS

environment.

2.1.1 Q-learning

Q-learning stores a table for the Q-values Q(s,a) according to equation 2.2. Each state-

action pair has a Q-value associated with it. Bellman equation is used to find out the

optimal Q-value function whose unique solution is Q*(s,a):

5

Qπ(s, a) = E[
∞∑
k=0

γkrt+k|st = s, at = a, π] (2.2)

Q∗(s, a) = (βQ∗)(s, a) (2.3)

where β is the Bellman operator mapping any function K : S × A → R into another

function S × A → R and is defined as follows:

(βK)(s, a) =
∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γmaxa′∈AK(s′, a′)) (2.4)

But there are situations where the state space and action space become so large, that

it’s not feasible to learn all the Q-values for state-action pair. This is when Deep Reinforce-

ment learning (DRL) is used where neural networks are utilized to model the components of

RL. A representation of the architecture is given in Figure 2.2.

Figure 2.2: Deep Reinforcement learning Architecture

Deep Q-Networks

DQN is a combination of Q-Learning and deep neural networks. DQN addresses the in-

stabilities caused by using non-linear approximator to represent the Q-value by using two

6

insights: experience replay and target network. Using Convolutional Neural Network (CNN)

, DQN parameterizes an approximate value function Q(s, a; θi) where θi are the weights of

the network at iteration i. The experience replay stores the agent’s experiences et = (st, at,

rt, st+1) at each time step t in a dataset Dt = e1,et pooled over many episodes into a replay

memory. Then, mini batches of experience drawn uniformly at random from the dataset (s,

a, r, s) ∼ U(D) are applied as Q-updates during the training. The Q-learning function is

updated using the following loss function:

Li(θi) = E(s,a,r,s)∼U(D)[(r + γmaxa′Q(s
′
, a

′
; θ−i)−Q(s, a; θi))

2] (2.5)

where θi are the Q-network parameters at iteration i and θ−i are the target network param-

eters. The target network parameters are updated with the Q network parameters every C

steps and are held fixed between individual updates.

2.1.2 Policy Gradient Methods

Policy gradient methods are one of the most frequently used methods in RL. The logic behind

Policy gradient is simple. The agent observes the state s of the environment and performs

an action a based on a policy π. The agent then enters a new state s’ and continue to take

further action according to the policy. After a trajectory of motions τ , the agent adjusts its

policy based on the total reward R(τ) that it received. Mathematically, let π(a|s) be the

probability of taking an action a when in state s. Our objective is to find a policy θ that

create a trajectory τ [34]

τ = (s1, a1, s2, a2,, sh, ah)

which maximizes the expected rewards J(θ).

max
θ
J(θ) = max

θ

∑
τ

P (τ ; θ)R(τ)

7

where J(θ) is:

J(θ) = E[
H∑
t=0

R(st, ut);πθ] =
∑
τ

P (τ ; θ)R(τ)

One of the drawbacks of policy gradient method is that it sometimes can get stuck in

local maxima and will not be able to reach global maxima.

Proximal Policy Optimization (PPO)

PPO is a type of policy gradient method which performs comparably or better than state-of-

the-art approaches while being much simpler to implement and tune. Careful tuning of the

step size is required for achieving good results with policy gradient algorithms [28]. Moreover,

most policy gradient methods perform one gradient update per sampled trajectory and have

high sample complexity. Schulman et al. [29] introduced PPO algorithm that solves both

these problems. It uses a surrogate objective which is maximized while penalizing large

changes to the policy. They defined a likelihood ratio

lt(θ) =
πθ(at|st)
πθold(at|st)

PPO then optimizes the objective:

LCLIP = Êt[min(lt(θ)Ât, clip(lt(θ), 1− ε, 1 + ε)Ât)]

where Ât is the generalized advantage estimate and clip(lt(θ), 1 − ε, 1 + ε) clips lt(θ) in the

interval [1 - ε, 1 + ε]. The algorithm alternates between sampling multiple trajectories from

the policy and performing several epochs of SGD on the sampled dataset to optimize this

surrogate objective. Since the state value function is also simultaneously approximated,

the error for the value function approximation is also added to the surrogate objective to

compute the complete objective function.

8

2.2 Multi-Agent Systems (MAS)

A multi-agent system is a connected network of multiple agents that communicate with each

other to solve problems which are beyond the reach of single agents. Several agents model

each other’s goals and actions [31]. There may be direct communication between the agents

in a fully general multiagent scenario. In multiagent systems, environment dynamics of

other agents can be known by each agent which is unlike single agent systems, other agents

can affect the environment in unpredictable ways and can create uncertainty in the domain.

Therefore, multiagent systems can be viewed as having dynamic environments. Application

of MAS include aircraft maintenance, electronic book buying coalitions, military demining

and supply chain management. Figure 2.3 shows a fully general multiagent scenario.

Figure 2.3: A fully general multiagent scenario. Agents can affect other agents actions,
goals or domain knowledge or communicate directly with each other [31]

Multiagent Systems can be further divided into various categories mentioned below

[16]:

• Goals : Environment setting can be cooperative, competitive or mixed. In cooperative

setting, all agents usually share a common reward function. Competitive setting is

usually modelled as a zero-sum Markov game, where reward of one agent is exactly the

9

loss of the other. Mixed setting is also known as the general-sum game setting where

no restriction is imposed on the goal and relationship of the agents. Each agent is self

interested and can have conflicting rewards.

• Actions : Actions can be deterministic or stochastic. In case of deterministic actions,

taking an action always results in the same action being taken whereas in case of

stochastic actions, actions can change with a certain probability

• Domain knowledge: The environment can be partially or fully observable. In partial

observability, each agent has access to only certain information about the environment.

For our case, environment is fully observable where all agents have total information

about other agents and the environment as well. Its a cooperative setting where all agent

have a common reward function and all the actions are deterministic in nature.

10

Chapter 3

Related Work

Majority of the practical applications of MADRL have taken place in cooperative setting.

Tampuu et al. [35] trained the agents to play pong with competitive and collaborative reward

scheme using a combination of DQN and independent Q-learning. Recently, MADRL was

deployed by a team of unmanned aerial vehicles (UAVs) to accomplish a cooperative task,

without the use of centralized controller. Each UAV was equipped with communication

devices in order to exchange important information with other UAVs. Q-learning based

method was adopted to allocate resource in UAVs while aerial defence and base defense for

the fleet control was handled by policy optimization methods in a purely centralized fashion

[41], [26], [36]. This is similar to our work where various fire brigades would try to accomplish

a cooperative task without using any central agent. Foerster et al. [13] proposed the use

of DQN for tacking the problem of communication among a team of agents without human

intervention by proposing to use two Q networks that govern taking action and producing

messages separately. Their algorithm was an extension of deep recurrent Q-learning (DRQN)

[14] which combined RNN and DQN. Following Foerster et al., various other works involving

neural network architectures to promote communication between aqents have been proposed

[18], [32], [15], [11], [25].

A lot of work has been done for improving the micromanagement tasks for StarCraft

II using MADRL as well using centralized controller having full access to state information.

Peng et al. [25] uses an actor-crtic method that relies on RNNs to exchange information

between the agents while Usunier et al. [37] implement DQN in a fully observable setting.

11

Omidshafiei et al. [24] assumes a decentralized training regime to address the instability of

experience replay in multi-agent setting. Rashid et al. [27] proposed QMIX, which was a

novel value based method that could train decentralized policies in a centralized end-to-end

fashion. QMIX outperformed the then best existing value-based MADRL methods when

applied to StarCraft II micromanagement tasks. Apart form this, a few more applications of

MADRL include control of mobile sensor networks [9], smart grid operation [10] and robot

navigation [8].

Previous applications of machine learning technique to RCRS uses either supervised

learning methods or traditional RL methods. Martinez et. al [21] were the first one to

implement RL to RCRS. They introduced evolutionary reinforcement learning to improve

the ambulance decision making process such as deciding the number of ambulances required

to rescue a buried civilian. Their trained agent was able to outperform the participants of

2004 RCRS competition and was also computationally efficient. Visser et. al [40] developed

a new framework to incorporate state-of-the-art machine learning algorithms into RoboCup

Rescue competition code using the MATLAB Engine API for Java. They showed how

supervised machine learning methods like classification and regression can be applied to

assess the strategies of the agents and found the most relevant predictors. For example,

estimating the chance of survival for a trapped civilian by predicting the remaining health

point at the end of the scenario. Abdolmaleki et. al [2] used SARSA to train the agent.

They also proposed lesson-by-lesson learning which solved the problem of huge search space.

Their proposed model increased the speed of learning and utilized very low memory. They

discussed how temporal difference (TD) learning can be used to find the optimum policy

for fire extinguishing tasks of a group of firefighter agents. Bitaghsir et. al [6] introduced

a layered neuro-fuzzy paradigm which is inspired from incremental learning. The paradigm

was used for developing intelligent firefighter robots which involved layering increasingly

complex learned behaviors. Aghazadeh et. al [3] used parametric reinforcement learning to

improve police force’s decision making in RCRS. Using linear function approximator, they

were able to perform the tasks using very less space. However with the success of current

MADRL techniques to solve the problem of large state space and action space as well as task

allocation for virtual environment, RCRS would be a good test bed to apply those techniques

in order to achieve results better than the existing ones.

12

Chapter 4

Modeling DRL for RCRS

4.1 Domain Description

The competition is based on a complex simulation platform representing a city after an

earthquake. In order to make the simulator as realistic as possible, its designed to have

heterogeneous agents (different types of agent), limited reach (agents can only perform tasks

occurring close to them), random fire spread, injured victims, agents having limited commu-

nication with messages often getting dropped, agents being only able to see a short distance.

It is therefore considered as a multiagent simulator [19]. However, in this report, our focus

will be on training multiple fire brigades to extinguish the fire as quickly as possible. Figure

4.1 gives a visual representation of how the simulator looks. Next, we will explain the various

attributes of the simulator which will help the reader have an indepth understanding of the

simulator.

RCRS has 2 major parts, Environment and Agents which are described in detail

below:

4.1.1 Environment

The RCRS environment comprises of various kinds of entities. The most important are

buildings, roads, blockages, refuges and humans [39].

Buildings are real constructions and have properties like area, fieryness and tem-

13

perature, if its made of wood or cement. This information is useful for the simulator to

calculate fire spread and building collapses. In case the building area is high and made of

wood, fire will spread quickly. Simulator also changes the color of the building depending on

the temperature and fieryness value. In case both the properties are high, color gets darker

and eventually turning black if the building is burned out. Note that fieryness value means

how strong the fire is.

Roads help the agents to move along the map. Some of the properties of roads are

length, number of lanes. If a road is blocked due to agents standing in front or blockages,

its not possible to move along it.

Refuge are buildings where Fire Brigades can refill their water tanks. These buildings

do not catch fire or collapse.

4.1.2 Agents

The only we will be concentrating on is the fire brigade.

Fire Brigades These agents are responsible for extinguishing fires in the buildings.

They have water tanks with certain water capacity that needs to refilled from the refuge.

Fire Brigades also have health points that decreases in case they catch fire or enter a building

on fire. In case there health points drops to zero, they are considered dead.

4.1.3 Search Strategy of Fire Brigades

Fire is initiated randomly following a Poisson distribution. Fire brigades start searching the

map looking for fire spots in the environment. Once the fire trucks detect a fire, they start

extinguishing it. Note that extinguishing only takes place if the fire trucks are in a close

proximity to the building. Fire brigades extinguish the fire until one of the three conditions

hold true: (i) It is able to extinguish the fire completely, (ii) building has been completely

burned out, or (iii) water in the fire tank is empty. For the first two situations, fire brigades

start searching for a new building. For the third case, fire brigades move to the refuge to

refill their tanks. In case the fire brigade sees more than one building on fire, it selects the

one with highest priority using the following equation:

14

Figure 4.1: Representation of the Simulator: RoboCup Rescue Simulator with fire
brigades. Different polygons are the buildings in the map. Grey color shows building is
unburnt, yellow and red color shows building is burning, blue color depicts fire is extin-
guished and black shows the building is totally burnt. Note that as the shades get darker,
building temperature and fieryness (degree of fire) increases. White house within red circle
is the refuge

Priority = (
Fieryness

TotalArea
) + (

1√
distance

) + UnBurnedNeighbors

By this formula, priority is given to the building which has the highest fieryness,

nearby and has the most number of neighbors.

Pseudo code for the algorithm that fire brigade follows is described in Pseudo-Algorithm

1.

15

Algorithm 1 Working Principle of Fire Brigade

if (agent is inside refuge) and (water capacity of the fire truck is not full) then
Refill the tank

end if
if (agent is stuck in blockage) or (building is not reachable) then

Search for buildings
end if
if Water tank gets empty then

Start moving to the refuge
end if
if (agent has not target) then

if (agent sees a fire) then
Select target

else if (communication is enabled) then
Request target

else
Search for buildings

end if
end if
if (Target is not visible) then

Start moving towards the target
end if
if (Target is visible) then

Extinguish fire
end if

16

4.1.4 Map Variants: ”Small” map and ”Big” map

In order to test the algorithms, two maps were chosen. A ”Small” map having fewer number

of buildings and fire brigades to fasten the training process and a ”Big” map having greater

number of buildings and fire brigades. The Map specification can be seen in Table 4.1. The

representation of ”Small” map can be seen in Figure 4.1 and of ”big” map in Figure 4.2

Map Name Number of buildings Number of Agents (Fire Brigades)

Small 37 2
Big 100 4

Table 4.1: RCRS Map Specifications

Figure 4.2: Representation of ”Small” and ”Big” Map. Small map contains 2 fire brigades
and 1 refuge while Big map contains 4 fire brigades and 2 refuge

17

4.2 Defining State Space, Action Space and Reward

function

In order to apply reinforcement learning techniques to RCRS, one needs to first define a

specific state space, action space, and reward function. In the rest of this section, we detail

the choices that were made under this project.

4.2.1 State Space

We define the state space here as follows: the first part is the building information which

consists of the temperature and fieryness. Note that, fieryness is a parameter to measure

the degree of fire in a building. The second part is the agent information which gives the

location ((X,Y) coordinates), water in the fire tanks and the health points of the fire brigade

at each timestep. The third part is the busy/idle information which is a binary variable. Fire

brigades receive a building id at each timestep as their target location. But it sometimes

takes more than one timestep for them to reach the building. In the meanwhile, actions are

being sent continuously. Hence, fire brigades have to ignore the actions till the time they

visit the building they have been told to visit in the previous timestep. This information is

passed over as a state information which will be highly valuable for our algorithm to perform

better. Whenever the actions that are sent by the algorithm are used in the simulator (busy),

1 is sent back as the state information otherwise 0 is sent (idle). The dimensionality of the

state space can be generalized by the following formula:

State Space Dimensionality = 2*No. of buildings + 3*No. of Agents + Busy/idle

Therefore state space dimensionality for small map is 2*(37) + 3*(2) + 1 = 81 and

for Big map is 2*(100) + 3*(4) + 1 = 213. Table 4.2 elaborates the range of value every

state information can have.

4.2.2 Action Space

The only action available to our agent is to move to the building which is on fire and

therefore the action space consists of the ID’s of the buildings. Note that extinguishing fire

18

State Parameter Range

Building Information Temperature of Building 0-100
Fieryness of Building 0-10

Agent Information (X, Y) Coordinates 0-10000
Water Level 0-15000
Health Points 0-10000

Busy/idle Information Binary variable 0/1

Table 4.2: Ranges for state information parameters

and refilling water are default characteristics of our agent i.e. whenever our agent is near a

building on fire, it will try to extinguish it and whenever it is out of water, it will move to

the refuge to refill the tank. Therefore these actions are not included in the action space.

The dimensionality of the action space can be generalized by the following formula:

Action space dimensionality = Number of buildings in the map

Therefore the action space dimensionality for small map is 37 and 100 for big map.

4.2.3 Reward Function

Since the ultimate goal of the fire brigades is to extinguish fire as quickly as possible, we

created a reward function that awards the agents higher rewards for keeping the fire to a

minimum and penalize them if the fire increases. Fieryness is one parameter that measures

the degree of burn in the building and hence keeping the overall fieryness value to a minimum

results in a higher cumulative reward. Table 4.3 shows the reward function used in our case

study. Table 4.4 shows the severity of the fieryness value.

Fieryness Value Reward Value

0-2 +10
3-5 -5
6-10 -10

Table 4.3: Reward Calculation

19

Fieryness Value Severity

0-2 Slightly burned
3-5 Moderately burned
6-8 Critically burned
9-10 Totally burned

Table 4.4: Fieryness severity according to fieryness value

4.3 Model Architecture

We use DQN and PPO architecture with a few modifications. We do not have the set of

convolutional layers since the input to the neural networks is not an image. The input to the

network is state representation and there is a separate output unit for each possible action.

Different architectures were tried by changing the number of hidden layers, using LSTM,

using CNN or combination of CNN and LSTM. As an example of one of the architecture we

tried, consider Figure 4.3. Input the neural network is not only the state information of the

current agent but also other agents. The state information is fed to the first hidden layer

having 64 units followed by another fully connected hidden layer with 64 units. The output

to the second hidden layer is passed through a softmax layer. Dimension of the softmax layer

is equal to the number of actions possible i.e. number of buildings present in the map. Figure

4.3 is the model architecture for Agent 1. For Agent 2, the architecture would be the same.

Input to the neural network would be (X, Y) coordinates, water level and health points of

agent 2 along with (X, Y) coordinates, water level and health points of the other agents.

This will also include the building information and if agent 2 is in busy/idle condition.

4.4 Hyperparameter Search

For DQN and PPO, different parameter were tweaked like batch size, learning rate, discount

factor. For each parameter setting, 5 repetitions were done and the average value of the

reward was calculated. Values of the parameter that were tried can be found in Table 4.5.

400 episodes were run for ”Small” map and 10000 episodes were run for ”Big” map.

20

Figure 4.3: Schematic Illustration of the Model Architecture for Agent 1

Parameter Values

Discount factor (γ) .99, .993, .997, .999
n-step 32, 64, 128, 256
Entropy Coefficient 0.01
Learning rate log-uniform (1e7 → 1e3)
Value Function Coefficient 0.5
Gradient Clipping value 0.5
Number of training minibatches 4
Clip Range 0.2
Optimizer Adam

Table 4.5: PPO: Values used during hyper-parameter search and final values used for ex-
periments with scoring

21

Parameter Values

Discount factor (γ) .99, .993, .997, .999
Learning rate log-uniform (1e7 → 1e3)
Buffer size 25000, 50000, 100000
Exploration Fraction 0.1
Batch size 32, 64, 128, 256
Learning starts 1000, 2000
Target Network update frequency 500
Optimizer Adam

Table 4.6: DQN: Values used during hyper-parameter search and final values used for ex-
periments with scoring

22

Chapter 5

RCRS Gym Environment: Setup,

Experiments and Results

In order to device the model presented in Chapter 3 and prove its concepts, an OpenAI gym

environment [7] was created that allowed developing agents which are capable of extinguish-

ing fire in the city. OpenAI is a framework which defines a standard structure that a DRL

agent can be built with, thus making the structure of the agent easy to recognize by any

developer and makes the agent compatible with any environment. Since OpenAI is built

in Python, it can be easily connected with state-of-art DRL framework such as Tensorflow

[1] with gym agents and use DRL techniques that use those frameworks provide. There are

certain example algorithms available in OpenAI gym which simplifies the testing on a new

environment.

The conceptual model of RCRS gym environment is presented in Figure 5.1. Section

4.1 elaborates about the setup that was created to adapt RCRS to allow the training of DRL

agents. In Section 5.2, experiments that were carried out will be detailed and results will

be analyzed.

23

Figure 5.1: Conceptual model of the RCRS Gym environment and agent

5.1 Setup

This section will deal with the process of building the environment and the logic behind the

decisions that are made. Section 4.1.4 will describe the goal of the agent, what tasks will it

perform after training, introduction to various maps and the complexity of the environment.

Section 5.1.1 will elaborate about gym framework and why it was selected. RCRS is written

in Java and OpenAI gym in Python. There has to be a communication channel by which

these two languages can communicate in order to send messages. Section 5.1.2 will discuss

about how the communication between Java and Python was established. Finally, the overall

implementation of RCRS-gym environment will be discussed in Section 5.1.3.

5.1.1 OpenAI Gym

Having a standard architecture where a reinforcement learning agent can be developed will

be really helpful and this is what OpenAI gym provides. This standard architecture helps

compare performance of different reinforcement learning algorithms in the same environment

24

[7].

OpenAI Gym maintains a repository known as baselines [12], which has examples of

implementations of state-of-art DRL methods. But baselines have certain drawbacks that

are rectified in a recently released fork – stable baselines that had unified code structure for

all the algorithms, well documented functions and classes and PEP8 compliant. Hence we

decided to go with stable baselines 1 [17]. These implementations can be used to validate

the environment. The defined gym interface is made of two methods that the agent will use

to interact with the environment:

• reset : This function is used to reset the environment to its initial state and returns

the initial observation. It is called whenever a new episode is started.

• step: This function receives the action that the agent wishes to use in order to interact

with the environment as the argument and returns the observation, reward, done and

info.

– observation: Current state information

– reward : Reward collected after the end of every episode

– done: returns true if episode is over

– info: (optional) extra information that needs to be printed

In addition to the above attributes, ”action space” and ”observation space” should

be defined in order to abstract the environment to generic code. Apart from the above

mentioned functions, there are two more important attributes that need to be defined.

• action space: The space of possible actions that will be used to generate the actions.

Possible values are

– Discrete: A list of possible actions where each timestep only one of the action can

be used

– MultiDiscrete: A list of possible actions where each timestep only one action of

each discrete set can be used
1https://stable-baselines.readthedocs.io/en/master/

25

https://stable-baselines.readthedocs.io/en/master/

– Box: A N-dimensional box which contains every point in the action space

– MultiBinary: A list of possible actions, where each timestep any of the actions

can be used in any combination

• observation space: The space that defines the dimension of the environment’s state.

Possible values are the same as listed for action space.

In our case, since the actions are discrete, we selected Discrete action space. States

are values that have integers as well as floating numbers between 0 to 15000, we decided to

select Box state space that would allow all the values between 0 to 15000 to be possible.

5.1.2 Communication between Java and Python

RCRS is written is Java whereas OpenAI gym is in Python. Since at every timestep, state

values have to be sent to the OpenAI gym agent and action values have to be received back,

a connection has to be established. This connection between Java classes and Python classes

was built using Google’s protocol buffers 2 and gRPC 3.

Google’s protocol buffers are extensible methods for serializing structures data like

XML but is faster, smaller and simpler. They are independent of the programming language

they are written in. In our case, protocol buffer’s are used to generate methods in python

and java so as to use the interpretation of both state space and action space.

Another important point to note down is that the original structuring of the RCRS

code base, already had a server and a client connection which was done using socket pro-

gramming. The server had all the information of the building state i.e. temperature and

fieryness whereas client had the information of the agents i.e. (X,Y) coordinates, health

points, water level and if the agent is idle or busy. Client was also the one that would receive

the next action to be performed i.e. the next building id where the fire brigades should

move to. Since RCRS would have to start first and act as a server to the Python agent,

we had to build two servers, one that would send the building information and other that

would send the agent information and take actions as well. The Python agent would act

2https://developers.google.com/protocol-buffers/
3https://grpc.io/

26

https://developers.google.com/protocol-buffers/
https://grpc.io/

as client for these two servers. Listing 5.1 elaborates the protocol representation of the

building information while Listing 5.2 elaborates the protocol representation of the agent

information.

1 message BuildingInfo {

2 int32 fieryness = 1;

3 double temperature = 2;

4 int32 building_id = 3;

5 }

Listing 5.1: Protocol buffer representation of the Building Information

1 message AgentInfo {

2 int32 agent_id = 1;

3 double x = 2;

4 double y = 3;

5 int32 water = 4;

6 int32 hp = 5;

7 int32 idle = 6;

8 }

Listing 5.2: Protocol buffer representation of the Agent Information

gRPC is an open-source remote procedural call (RPC) framework that can run in any

environment. Its ease of implementation and pluggable support for load balancing made it

our first choice for serialization. RPC server in our case is the gym environment whereas the

fire brigade agents acts as RPC clients. Since everything is hidden in the RPC, RCRS (Java

classes) will not need to know that it is interacting with the python agent.

The implementation part is detailed in Listing 5.3 and Listing 5.4.

1 service RCRSGymService {

2 rpc getBuildingInfo (Empty) returns (BuildingInfo) {}

3 }

Listing 5.3: gRPC Implementation for Building Info

1 service RCRSGymService {

2 rpc getAgentInfo (ActionInfo) returns (AgentInfo) {}

27

3 }

Listing 5.4: gRPC Implementation for Agent Info

5.1.3 RCRS-Gym Implementation

Lets elaborate on the two methods that were defined in Section 5.1.1 and show how the

agents act in the RCRS environment using OpenAI gym. An environment is initialized

by calling gym.make function. Then reset function is called that returns the initial state

information about the agents. Next, a random action is sampled from the available action

space and is sent to the RCRS environment using step function. Step function returns the

subsequent state information, rewards achieved, if the episode is over and any additional

information that the user may have defined. Pictorial representation of the working RCRS-

gym working is shown in Figure 5.2.

In our case, an episode is considered done after the environment is run for a certain

number of timesteps. For ”Small” map the number of timesteps is 100 and for ”Big” map it

is 250. An example code that will run a random agent in RCRS environment is provided in

Listing 5.5:

1 import RCRS_gym

2 import gym

3

4 env = gym.make(’RCRS -v2’)

5 env.reset()

6 done = False

7 while not done:

8 action = env.action_space.sample ()

9 obs , rew , done , info = env.step(action)

Listing 5.5: Example code that will run a random agent in RCRS environment

5.2 Experiments and Results

To start the testing and see if deep reinforcement learning works on RCRS, we started with

experimenting on ”Small” map. PPO and DQN algorithm were applied and the results were

28

Figure 5.2: The agent takes in state information and the reward collected at every
timestep from the environment. State information contains (X,Y) coordinates, water
level, health of the all the fire brigades, temperature fieryness of the buildings and if the
fire brigade is idle or busy. Agent then processes this information and outputs an action
(Building ID) where the fire brigade needs to move next

compared with a greedy approach where the agents would always extinguish the building

with highest fieryness value.

5.2.1 Small Map Experiments and Results

Simulations were run for 400 episodes (40,000 timesteps). Out of the several model architec-

tures that were tried, a two hidden layer neural network, each layer having 64 units gave the

best results for DQN. For PPO, a neural network having four fully connected layers, where

first two layers had 128 units and last two layers had 64 units gave the best result along with

the use of LSTM. Best hyperparameters are listed in Table 5.1 and Table 5.2.

29

Parameter Best - Small Map

Discount factor (γ) 0.99
n-step 32
Entropy Coefficient 0.01
Learning rate 5e-4
Value Function Coefficient 0.5
Gradient Clipping value 0.5
Number of training minibatches 4
Clip Range 0.2
Optimizer Adam

Table 5.1: PPO: Best hyperparameters

Parameter Best - Small Map

Discount factor (γ) 0.99
Learning rate 5e-4
Buffer size 50000
Exploration Fraction 0.1
Batch size 64
Learning starts 1000
Target Network update frequency 500
Optimizer Adam

Table 5.2: DQN: Best hyperparameters

Mean and standard deviation of the reward is calculated after every 5 episodes. Since

the greedy algorithm doesn’t learn, it had a constant reward value of 6.33. DQN achieved

a highest cumulative reward of 5.89 and PPO achieved a highest cumulative reward of 5.88.

Figure 5.3 shows that both the algorithms were able to learn in the environment improving

their cumulative rewards over time. However, DQN attained highest cumulative reward in

less number of episodes than PPO showing that it is a more effective algorithm for ”Small”

map setting.

Figure 5.4 and Figure 5.5 show how the agents gets better at extinguishing fire over

the episodes. After 5 episodes, both the algorithms were performing badly with most of the

30

buildings critically or totally burnt. After 150 episodes, agents started learning and higher

number of buildings were extinguished. After 250 episodes, DQN was able to successfully

figure out the buildings that caused the fire to spread throughout the map and was able to

extinguish fire in those buildings. PPO was performing better than how it was performing

after 150 episodes, but still not as good as DQN. After 300 episodes, PPO was also able

to successfully extinguish the critical buildings. For better visualization on how the agents

performed over episodes, refer to the GitHub page.

Figure 5.3: Rewards per episode for PPO, DQN and Greedy algorithm in ”Small” Map
setting. Dark line represents the mean value for rewards while shaded region is the stan-
dard deviation

31

https://github.com/animeshgoyal9/RoboCup_Rescue_Simulator_Gym_Integration

Figure 5.4: PPO: Fire Brigades learning to extinguish fire over 250 episodes. After 5
episodes, there was hardly any learning with most of the buildings either critically or to-
tally burnt. After 250 episodes, agents learnt the critical buildings that need to be extin-
guished

Figure 5.5: DQN: Fire Brigades learning to extinguish fire over 250 episodes. After 5
episodes, there was hardly any learning with most of the buildings either critically or to-
tally burnt. After 250 episodes, agents learnt the critical buildings that need to be extin-
guished

5.2.2 Big Map Experiments and Results

Since the ”Big Map” had greater number of buildings and fire brigade, both state space and

action space increased. This increase in search space meant greater number of combination

and increase in the number of episodes to run the simulation. We increased the number of

32

episodes from 400 in ”Small Map” to 10000 episodes in ”Big Map”. This gave sufficient time

for the agents to look for the optimal policy.

The simulations were started by testing DQN algorithms. Different network archi-

tectures and hyperparameters were tried but none of them showed any kind of learning.

The primary reason could be that learning in a complex environment requires the agent to

represent the knowledge at multiple level of spatio-temporal abstractions and to explore the

environment efficiently. Kulkarni et al. [20] presented H-DQN, a framework to integrate

DRL with hierarchical value functions that work at different temporal scales. A high level

value function learns learns a policy over intrinsic goals and a lower-level function learns a

policy over atomic actions to satisfy the given goals. H-DQN provides efficient exploration

in complex scenarios. Hence we went ahead with H-DQN instead of DQN.

As mentioned above, several model architecture and hyperparameters, a two layer

hidden neural network with first layer having 128 units and second layer having 64 units,

showed the best performance for PPO. For H-DQN, a four layered neural network with first

layer having 128 units and other three layers having 64 units gave the best result. Both the

architecture were trained using LSTM. Best hyperparameters are listed in Table 5.3 and

Table 5.4.

Figure 5.6 shows that H-DQN achieved a highest cumulative reward of 8.37 while

PPO achieved a highest value of 8.84. If compared with the baseline greedy approach, PPO

seems to perform better than H-DQN and shows learning as the episodes go on. After 5000

episodes, PPO performs consistently better than the greedy approach.

For both Small map and Big Map setting, models trained using LSTM performed the

best. In order to confirm this, we compared the learning curves when model architecture

includes LSTM and when it doesn’t in the Big Map setting. Since PPO performed better

in the Big Map setting, LSTM policy was trained using PPO. Figure 5.7 shows how agents

starts to learn and perform better when trained using LSTM.

33

Parameter Best - Big Map

Discount factor (γ) 0.99
n-step 32
Entropy Coefficient 0.01
Learning rate 5e-4
Value Function Coefficient 0.5
Gradient Clipping value 0.5
Number of training minibatches 4
Clip Range 0.2
Optimizer Adam

Table 5.3: PPO: Best hyperparameters

Parameter Best - Big Map

Discount factor (γ) 0.99
Learning rate 25e-4
Buffer size 50000
Exploration Fraction 0.1
Batch size 128
Learning starts 1000
Target Network update frequency 1000
Optimizer Adam

Table 5.4: HDQN: Best hyperparameters

34

Figure 5.6: Rewards per episode for PPO, HDQN and Greedy algorithm in ”Big” Map set-
ting. Dark line represents the mean value for rewards while shaded region is the standard
deviation

35

Figure 5.7: Comparison between the learning curves when PPO is used with LSTM and
when it is not in the Big Map setting

36

Chapter 6

Conclusion and Future Work

In this report, we have presented how deep reinforcement learning can be applied to a

multiagent scenario, specifically to RoboCup Rescue Simulator. We have built a RCRS-gym

interface that will allow different RL algorithms to be applied to the simulator. The interface

created provides an easy setup for developers to research RCRS using Python framework.

The gRPC communication between Java and Python is also a feature that proved important

to send actions and receive state information.

We evaluated two state-of-the-art DRL algorithms, Proximal Policy Optimization

(PPO) and Deep Q-Networks (DQN). Both the algorithms were trained on two map setting:

”Small” map and ”Big” map. PPO and DQN were both able to demonstrate learning on

the ”Small” map with average cumulative reward increasing over episodes. DQN converged

quickly than PPO showing that it performed better as compared to PPO. However, these

algorithms were slightly subpar when compared to Greedy algorithm where the agents would

always extinguish the building with highest fieryness value. In the Big Map setting, model

was trained using PPO and and a variant of DQN i.e. H-DQN. PPO outperformed H-DQN

and was able to show learning. However the learned agent was not able to significantly

outperform the greedy algorithm and showed better performance for only a few episodes.

One of the reason might be because the number of training episodes were not sufficient.

This study demonstrated that successfully trained agents can indeed learn a strategy

to extinguish the buildings on fire proving that RCRS is a suitable environment to apply

Deep Reinforcement learning techniques. However, there are various avenues that can be

37

studied as future research. Is there a map setting where PPO and DQN performs better

than greedy algorithm, are there situations where PPO learns quicker than DQN, can this

be generalized by looking at the number of buildings in the map, are some of the questions

that are still unanswered.

Another avenue to research for is how can we include other agents like police officers

and ambulance teams to train them and accomplish their individual tasks successfully. Our

current work assumes full observability to all the agents, future work can also focus on

training the agents with partial observability.

38

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul

Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pages 265–283, Savannah,

GA, November 2016. USENIX Association.

[2] Abbas Abdolmaleki, Mostafa Movahedi, Sajjad Salehi, Nuno Lau, and Lúıs Reis. A

reinforcement learning based method for optimizing the process of decision making in

fire brigade agents. volume 7026, 10 2011.

[3] Omid Aghazadeh, Maziar Ahmad Sharbafi, and Abolfazl Toroghi Haghighat. Imple-

menting parametric reinforcement learning in robocup rescue simulation. In Ubbo

Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors, RoboCup 2007:

Robot Soccer World Cup XI, pages 409–416, Berlin, Heidelberg, 2008. Springer Berlin

Heidelberg.

[4] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal

Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Hen-

rique Pond’e de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,

Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.

Dota 2 with large scale deep reinforcement learning. ArXiv, abs/1912.06680, 2019.

39

[5] Kakuchi S. Bilski, A. Kobe earthquake. Maclean’s, 1995.

[6] Ali Bitaghsir, Fattaneh Taghiyareh, Amirhossein Simjour, Amin Mazloumian, and

Babak Bostan. Uteternity’s team description : Layered learning in robocup rescue

simulation. 05 2020.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym, 2016. cite arxiv:1606.01540.

[8] Peter Corke, Ron Peterson, and Daniela Rus. Networked Robots: Flying Robot Naviga-

tion Using a Sensor Net, pages 234–243. 01 1970.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing

networks. IEEE Transactions on Robotics and Automation, 20(2):243–255, 2004.

[10] E. Dall’Anese, H. Zhu, and G. B. Giannakis. Distributed optimal power flow for smart

microgrids. IEEE Transactions on Smart Grid, 4(3):1464–1475, 2013.

[11] Abhishek Das, Satwik Kottur, Jos’e M. F. Moura, Stefan Lee, and Dhruv Batra. Learn-

ing cooperative visual dialog agents with deep reinforcement learning. 2017 IEEE In-

ternational Conference on Computer Vision (ICCV), pages 2970–2979, 2017.

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,

Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai

baselines. https://github.com/openai/baselines, 2017.

[13] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning

to communicate with deep multi-agent reinforcement learning. In NIPS, 2016.

[14] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially ob-

servable mdps. In AAAI Fall Symposia, 2015.

[15] Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: Learn-

ing to communicate with sequences of symbols. ArXiv, abs/1705.11192, 2017.

40

https://github.com/openai/baselines

[16] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. Is multiagent deep rein-

forcement learning the answer or the question? A brief survey. CoRR, abs/1810.05587,

2018.

[17] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,

Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias

Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable base-

lines. https://github.com/hill-a/stable-baselines, 2018.

[18] Emilio Jorge, Mikael K̊agebäck, and Emil Gustavsson. Learning to play guess who?

and inventing a grounded language as a consequence. ArXiv, abs/1611.03218, 2016.

[19] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and S. Shi-

mada. Robocup rescue: search and rescue in large-scale disasters as a domain for

autonomous agents research. In IEEE SMC’99 Conference Proceedings. 1999 IEEE

International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028),

volume 6, pages 739–743 vol.6, 1999.

[20] Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum.

Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic

motivation. CoRR, abs/1604.06057, 2016.

[21] Ivette C. Mart́ınez, David Ojeda, and Ezequiel A. Zamora. Ambulance decision sup-

port using evolutionary reinforcement learning in robocup rescue simulation league. In

Gerhard Lakemeyer, Elizabeth Sklar, Domenico G. Sorrenti, and Tomoichi Takahashi,

editors, RoboCup 2006: Robot Soccer World Cup X, pages 556–563, Berlin, Heidelberg,

2007. Springer Berlin Heidelberg.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learn-

ing. CoRR, abs/1312.5602, 2013.

[23] Ranjit Nair, Takayuki Ito, Milind Tambe, and Stacy Marsella. Task allocation in the

robocup rescue simulation domain: A short note. In Andreas Birk, Silvia Coradeschi,

41

https://github.com/hill-a/stable-baselines

and Satoshi Tadokoro, editors, RoboCup 2001: Robot Soccer World Cup V, pages 751–

754, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[24] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John

Vian. Deep decentralized multi-task multi-agent reinforcement learning under partial

observability. In ICML, 2017.

[25] Peng Peng, Ying ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long,

and Jun Wang. Multiagent bidirectionally-coordinated nets: Emergence of human-level

coordination in learning to play starcraft combat games. arXiv: Artificial Intelligence,

2017.

[26] Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and Luan Van Nguyen. Co-

operative and distributed reinforcement learning of drones for field coverage. ArXiv,

abs/1803.07250, 2018.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar,

Jakob N. Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In ICML, 2018.

[28] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.

Trust region policy optimization. CoRR, abs/1502.05477, 2015.

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-

imal policy optimization algorithms. 2017.

[30] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Starcraft micromanagement with rein-

forcement learning and curriculum transfer learning. CoRR, abs/1804.00810, 2018.

[31] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8, 05 2000.

[32] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communi-

cation with backpropagation. ArXiv, abs/1605.07736, 2016.

42

[33] Richard Sutton and Andrew Barto. Reinforcement learning, second edition: An intro-

duction. MIT Press, Second Edition, 2018.

[34] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy

gradient methods for reinforcement learning with function approximation. In Neural

Information Processing Systems, NIPS’99, page 1057–1063, Cambridge, MA, USA, 1999.

MIT Press.

[35] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan

Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep

reinforcement learning. CoRR, abs/1511.08779, 2015.

[36] Jan Tozicka, Benedek Szulyovszky, Guillaume Chambrier, Varun Sarwal, Umar Wani,

and Mantas Gribulis. Application of Deep Reinforcement Learning to UAV Fleet Con-

trol: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, pages

1169–1177. 01 2019.

[37] Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala. Episodic ex-

ploration for deep deterministic policies: An application to starcraft micromanagement

tasks. ArXiv, abs/1609.02993, 2016.

[38] Babuschkin I. Czarnecki W.M. et al. Vinyals, O. Grandmaster level in starcraft ii using

multi-agent reinforcement learning. Nature, 575(350-354), 2019.

[39] Arnoud Visser, Nobuhiro Ito, and Alexander Kleiner. Robocup rescue simulation inno-

vation strategy. volume 8992, 07 2014.

[40] Arnoud Visser, Luis G. Nardin, and Sebastian Castro. Robocup rescue simulation

machine learning workshop. 2018.

[41] Bo Yang and Min Liu. Keeping in touch with collaborative uavs: A deep reinforcement

learning approach. In Proceedings of the Twenty-Seventh International Joint Conference

on Artificial Intelligence, IJCAI-18, pages 562–568. International Joint Conferences on

Artificial Intelligence Organization, 7 2018.

43

	Acknowledgments
	Abstract
	List of Figures
	List of Algorithms
	List of Tables
	Chapter Introduction
	Chapter Background
	Reinforcement learning
	Q-learning
	Policy Gradient Methods

	Multi-Agent Systems (MAS)

	Chapter Related Work
	Chapter Modeling DRL for RCRS
	Domain Description
	Environment
	Agents
	Search Strategy of Fire Brigades
	Map Variants: "Small" map and "Big" map

	Defining State Space, Action Space and Reward function
	State Space
	Action Space
	Reward Function

	Model Architecture
	Hyperparameter Search

	Chapter RCRS Gym Environment: Setup, Experiments and Results
	Setup
	OpenAI Gym
	Communication between Java and Python
	RCRS-Gym Implementation

	Experiments and Results
	Small Map Experiments and Results
	Big Map Experiments and Results

	Chapter Conclusion and Future Work
	Bibliography

