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Abstract 

Studying material interface evolution in the course of multiple droplet interactions is critical 
for understanding the material additive process in inkjet deposition. In this paper, we have 
developed a novel numerical model based on the Lattice Boltzmann Method (LBM) to simulate 
the interface dynamics during impingement and interaction of multiple droplets. A lattice 
Boltzmann formulation is proposed to solve the governing equations of the continuous phase-
field model that are used in commercial software COMSOL. The LBM inter-particle force is 
derived by comparing the recovered macroscopic equations from LBM equations with the 
governing equations of the phase-field model. In addition, a new set of boundary conditions for 
the LBM formulation is proposed based on conservation of mass and momentum to ensure 
correct evolution of contact line dynamics.  The results of LBM simulations are compared with 
those of COMSOL and experimental data from literature. The comparison shows the proposed 
LBM model not only yields a significant improvement in computational speed, but also results in 
better accuracy than COMSOL as validated against the experiments.  We have also demonstrated 
the capability of the developed LBM numerical solver for simulating interactions between 
multiple droplets impinging on the substrate, which is critical for development and optimization 
of inkjet manufacturing. 

 

1 INTRODUCTION 

Inkjet deposition is an emerging technology that enables more economic and scalable 
manufacturing than other additive techniques. Studying the interface dynamics of multiple 
droplet interaction is crucial to understanding droplet deposition process and control of 
manufacturing results. Droplet impingement has been extensively studied for over a century [1]. 
Numerous research advances have been reported, including experimental observations [2-5], 
analytical modeling [6-9], and numerical simulations [10-14].   

However, most of previous research focused on single droplet impingement, which is only 

marginally relevant to manufacturing. The computational cost for simulating droplet 

impingement in three-dimensional settings prohibits the study of multiple-droplet impingement, 

which can potentially cast more insights into the manufacturing process of inkjet deposition. An 

enabling numerical tool for simulating multiple-droplet impingement is critical for advancing 

inkjet deposition technology. Lattice Boltzmann Method (LBM) is a promising alternative to 

conventional computational fluid dynamics (CFD) simulations for its computational efficiency 

and has experienced rapid development during the past two decades. Originating from Lattice-

Gas Automata for simulating gas dynamics [15],  the LBM is a particle-based method that treats 
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a group of molecules as a fluid particle rather than continuum and solves the dynamics of particle 

populations that comes from a microscopic description of the fluid behavior. The LBM has been 

widely used to model multiphase flow and interface phenomena. A number of approaches for 

modeling inter-particle interaction have been proposed, of which the three models have achieved 

significant success - the "Shan-Chen" (SC) model [16-17] that mimics the intermolecular 

interactions with an empirical forcing "potential" function to correct the velocity field after each 

time step, the "free-energy-based" model [18-19] that incorporates the thermodynamic effects of 

complex fluids into a modified equilibrium distribution function resulting from a modified 

momentum flux tensor using the concepts of free-energy functional, and the "He-Shan-Doolen" 

(HSD) model [20-21] that provides a solid theoretical foundation for a transition from the 

continuous Boltzmann equation to the lattice Boltzmann equation and a different perspective of 

viewing LBM as a special finite difference approximation of the Boltzmann equation. The well-

known numerical instability problem arising from the spurious flow around the interface of 

multiphase flow, especially in the case of high density and/or viscosity mismatch, has been 

tackled by different research groups [22-24].  Briant et al. proposed a free energy-based wetting 

boundary conditions to simulate the contact line dynamics [25-26]. Inamuro et al. and Yan et al. 

studied spontaneous water drop spreading on both homogeneous and heterogeneous partially 

wetting surfaces [22, 24]. Although the equlibrium profiles of the spreading droplets matched 

well with prediction, the transient profiles were not compared with either experiments or other 

theoretical treatments. Lee and Liu [27] reported transient LBM simulation of high-speed droplet 

impingement with Weber number and Reynolds number over 100 and 650 respectively and used 

a slightly different definition of the spreading factor from the experiments in order to match the 

experimental data. In most of previous studies concerning a droplet on a solid wall, a surface 

energy formulation was used for partial-wetting boundary condition, which may cause a 

discrepancy between the prescribed contact angle and the computed contact angle [28]. In 

addition, either the popular "bounced-back" scheme [24-25, 29] or an "equilibrium bounced-

back" scheme [27] were used for the velocity boundary condition at the wall, which did not 

conserve momentum at the boundary [30]. In this paper, we propose a LBM formulation based 

on the HSD model with a new set of boundary conditions, which are rigorously derived based on 

first principles and consistent with the boundary conditions used in classical continuous 

formulation to ensure conservation of both mass and momentum at the wall boundary. The 

proposed LBM formulation can recover the governing equations of the phase-field model used in 

commercial software COMSOL [31] by Chapman-Enskog multiscale analysis [32] and therefore 

provide an alternative to solve the equations, which prove to be significantly faster and more 

accurate than COMSOL. The simulation results for 3D droplet impingement dynamics and 

interface evolution upon interactions with substrate were compared with that those predicted by 

COMSOL and with experimental data from literature [33]. Finally, the cases of multiple 

interacting droplets in 3D, including two-droplet, a-line-of-droplet, and an-array-of-droplet 

impingements have been successfully simulated and used to demonstrate the new capabilities 

enabled by the proposed LBM simulation algorithm. The capability for simulating impingment 

of a line of droplets can be used to optimize printing conductive lines to improve printed 

electronics, for example. Simulating an-array-of-droplet impingement can be important to thin-

film patterning for a number of important industrial applications, such as thin-film transistor 

printing, surface coating, and a layer for additive manufacturing. 
The rest of the paper is organized as follows. In section 2, the proposed LBM formulation is 

presented. Section 3 presents an approach for self-consistent implementation of the boundary 
conditions. In section 4, the LBM simulation results are compared with predictions of COMSOL 
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simulations and validated against the experimental data. Section 5 demonstrates the capability of 
the proposed LBM numerical model to simulate the multiple droplet impingement and 
interactions in 3D. Conclusions are given in section 6. 

 
2 LATTICE BOLTZMANN FORMULATION  

2.1 Review 

The LBM solves macroscopic motion of a fluid by following the evolution of a lattice 
Boltzmann equation that governs the behavior of the single-particle distribution function [21],  
  

 
   
  

         
     

   

 
   

    

   
 

  
   

 (1)     

where fi ≡ fi(x, ei, t) is the single-particle distribution function, x is the spatial coordinates, ei is 
the local particle velocity in the i

th
 direction of a discretized velocity space, λ is the time scale for 

local particle distribution relaxing back to its equilibrium state, F is the external body force 
exerted on a particle, ρ is fluid density, cs is the lattice speed of sound, which is a scaling factor 
that depends on the specific lattice structure [34], u is the macroscopic velocity of fluid, and fi

(0)
 

is the equilibrium distribution function. The equilibrium distribution is approximated by 
expanding the Maxwellian distribution to the second order of macroscopic velocity u: 
 

   
   

       
    

  
 

 
       

   
 

 
   

   
 
   

(2)    

where ti is the weighting factor that depends on the specific lattice model, which is usually 
identified as d-dimensional b-velocity DdQb model. A summary of different lattice models can 
be found in [35].  The lattice symmetry produces the following relationships: 
 

 

                          
                   

              
                                         

(3)   

where δαβ is the Kronecker delta. The hydrodynamic variables on each node are defined as 
moments of distribution function: 
 

                               
(4)  

where ρu is the fluid momentum vector, and tensor Π is identified as momentum flux.  
 

2.2 Discrete Boltzmann Equations 

Now only F in Eq. (1) is left undetermined. He et al. [20] derived a formula for F by 
considering the intermolecular attraction and exclusion-volume effect from a microscopic 
perspective. Alternatively, we will derive F by comparing the macroscopic transport equations 
recovered from Eq. (1) with the governing equations of the phase-field model used in 
conventional continuous formulation [31] in order to ensure self-consistency of the LBM 
approach. Similar to traditional CFD algorithms (e.g., a SIMPLE algorithm [36]) that do not 
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update pressure field using the equation of state (EOS), a new distribution function is first 
introduced by He et al. [20] to directly track pressure evolution:  
 
        

                 
   

   
   

  
             (5)  

where  

       
  

   

 
            

  (6)   

where p is the thermodynamic pressure for non-ideal fluids, which is only function of density ρ 
under isothermal condition. It should be noted that when fluid is in motion (that is, not in 
thermodynamic equilibrium), a hydrodynamic pressure will develop, which is on the order of ρu

2
 

based on Bernoulli's principle. Since thermodynamic pressure is on the order of ρcs
2
, the 

hydrodynamic pressure is neglected under incompressible limit (i.e., u << cs). Combining Eqs. 
(1), (3), (4), and (5), and using algebraic manipulations, yields:  
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Next we apply the Chapman-Enskog multiscale analysis to Eq. (7) by expanding: 
 
      

   
    

   
     

   
       (10)  

where ϵ is identified as the Knudsen number, which is introduced in the Chapman-Enskog theory 
to keep track of the order of the terms in the series. Higher order terms represent the influence 
from a longer time scale and larger spatial scale. Then we can recover the macroscopic 
equations: 
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where I is the identity matrix, and  
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where Qi = eiei - cs
2
I. Since p is a function of ρ for isothermal fluid, the material derivative of p 

is negligible under incompressibility limit, and Eq. (11) is thus equivalent to the mass 
conservation equation for incompressible fluids at constant temperature. Plugging Eqs. (14) and 
(15) back into Eq. (12) leads to:  
 
  

  
                       

                       
(17)  

It is interesting to point out that Πg
(1)

 is recovered from the O(  ) order component of gi  and is 
dependent on velocity gradients, which is consistent with the microscopic view of gi

(1)
. 

Comparing with the momentum equation of the phase-field model used in COMSOL, we can 
then derive: 
 
      

  (18)    

                 (19)    

where ν is the kinematic viscosity, C is the phase composition of the fluid, g is the gravity, and μ 
is the chemical potential defined as derivative of Gibbs free energy with respect to C at constant 
temperature and pressure. The free energy takes the Ginzburg-Landau form for two-phase flow 
[37]:  
 
                

       
  

 

 
      (20)    

where the first term on the right hand side is the bulk free energy E0 that acts to separate the 
phases, the second term is the gradient energy that favors mixing the phases together, β is a 
constant relating to bulk free energy, Cl and Ch are two constants representing two different 
phases (here we choose Cl = 0 for surrounding air and Ch = 1 for liquid), and κ is a parameter 
related to surface tension σ. Minimizing the free energy of the system leads to a constant 
chemical potential from calculus of variation: 
 
                             (21)    

where Cm = (Cl + Ch)/2. For a plane interface under equilibrium, we can obtain a composition 
profile across interface from Eq. (21): 
  
 

     
     

 
 

     

 
      

  

 
  (22)    

where z is the coordinate normal to the interface, and ξ is the interface thickness, which is given 
by: 
 
 

  
 

     
 

 

  
 

(23)    
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With the composition profile given by Eq. (38), we can obtain the surface tension by integrating 
the free energy across the interface:  
 
 

  
       

  

 
     

(24)    

Because there is large variation in C, but a little difference in μ across the interface under 
equilibrium, we replace the surface tension term μ C in F (Eq. (19)) with -C μ using the identity 
μ C = -C μ [38] to reduce numerical errors around the interface.  
 
Next a second distribution function is introduced [27] to track the evolution of C: 
 

    
 

 
      

   
 

 

 
  

   
 (25)   

The partial differential equation governing the evolution of composition C is the Cahn-Hilliard 
diffusion convection equation: 
 

   

  
            

(26)    

where M is mobility. We can derive the evolution equation for hi with Eqs. (1), (25), and (26),  
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(28)   

    
   

       
   

      (29)   

In the same way we can apply the Chapman-Enskog multiscale analysis to Eq. (27), which leads 
to Eq. (26). Two points should be noted: first, the diffusion process driven by the chemical 
potential difference is assumed to occur on a longer time scale than the particle collision; second, 
to recover the Cahn-Hilliard equation only the 0

th
 and 1

st
 order velocity moments of the 

distribution function hi (Eq. (28)) are used to link the microscopic description of the particle 
motion to the macroscopic fluid motion, while to recover the mass and momentum conservation 
equations (Eqs. (11) and (17)) the 0

th
, 1

st
, and 2

nd
 order velocity moments of the distribution 

function gi (Eqs. (8), and (13)) are used, which has important implications for boundary 
conditions. That is, the boundary conditions for the distribution functions need to maintain the 
same relationships between the distribution functions and the macroscopic quantities in the 
velocity moments.     

2.3 Lattice Boltzmann Equations 

To solve the evolution equations for gi (Eq. (7)) and hi (Eq. (27)), we can apply the 
trapezoidal rule to integrate over each time step δt along the characteristic direction given by ei: 
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(31)   

where τ = λ/ δt is the dimensionless relaxation time,   
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To maintain an explicit scheme, the modified distribution functions are introduced: 
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Then the evolution equations (30) and (31) become: 
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With Eqs. (8), (28), (34), and (36), we can obtain: 
 

        
  

 
      (40)   

 
       

  

 
         

(41)   

 
   

 

  
 
       

  

 
     

(42)   

 

612



Note that in Eqs. (40) and (41) we use μ and p from previous time step to avoid implicitness, 
which still gives a second order accuracy in time [39]. The density and relaxation time across the 
interface can be calculated as:  
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(44)   

where the subscripts h and l stand for the two different phases.  
 
3 BOUNDARY CONDITIONS 

To simulate droplets impinging onto a solid wall, we need to implement the two wall 
boundary conditions, including partial wetting boundary conditions for the equilibrium contact 
angle and the velocity boundary conditions at the wall.  

3.1 Partial Wetting Boundary Conditions 

For most previous studies, a surface energy formulation for computation of the contact angle 
is employed by taking into account the wall free energy through linear, quadratic, or cubic 
approximations [25, 27]. A geometric formulation for the wetting condition is mathematically 
equivalent to the surface energy formulation, but computationally more efficient and more 
accurate in numerical discretization because the surface energy formulation usually causes a 
discrepancy between the prescribed contact angle and the computed contact angle [28]. Although 
the geometric formulation has not been adopted in the LBM community yet, a number of 
traditional CFD algorithms based on continuous form of governing transport equations have 
successfully adopted it, including implementation by COMSOL. To be consistent with 
COMSOL implementation of the contact angle treatment, which will be used for validation of 
the LBM algorithm proposed here, we also adopt the geometric formulation of the wetting 
boundary condition. The geometric relationships are illustrated in Figure 1: 
 

 

Figure 1. Illustration of the geometric relationships of a contact angle 

 
   

  

    
 (45)   

where ns is the outer normal to the interface.  
 
 

    
 

 
    

    

            
 

    

            
 (46)   
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where θ is the equilibrium contact angle, and n is the normal to the wall. A second boundary 
condition is required to ensure there is no mass flux across the non-permeable wall:  
 
              (47)   

3.2 Velocity Boundary Conditions 

It is straightforward to apply a Dirichlet velocity boundary condition for incompressible 
Navier-Stokes equations because Navier-Stokes equations explicitly solve for the velocity field. 
On the other hand, LBM solves the evolution of particle populations that have more degrees of 
freedom than what can be imposed by the constraints of the velocity boundary condition. 
Therefore, it can be complicated to translate the velocity boundary conditions in the continuous 
formulation into the equivalent boundary conditions for the particle populations. Many previous 
studies chose the popular bounce-back scheme for the non-slip wall boundary conditions due to 
its simplicity [24-25], but it has a fundamental deficiency of not conserving momentum at the 
boundary [30].  To resolve this deficiency in LBM computations, the boundary conditions are 
implemented by finding the appropriate particle population distribution at each computational 
node near the wall after the streaming step, as illustrated by the dashed vectors in Figure 2, such 
that the constraints imposed by the specified velocity at the boundary are enforced.  

 

Figure 2. Illustration of particle populations on the wall boundary. The dashed vectors stand for incoming unknown 

particle populations after streaming step. 

It should be noted that the proposed LBM formulation solves for evolution of the modified 
distribution functions     and    , which are used for convenience of calculations and do not have 
clear physical meanings. However, all the constraints from boundary conditions only apply to the 
original distribution functions gi and hi. Therefore, to implement the boundary conditions in our 
LBM simulations, we need to first obtain gi and hi from     and    , apply all constraints to find 
out the unknown gi and hi, and then calculate the unknown     and     with Eqs. (34), (35), (36), 
and (37). We will explain how to determine the unknown gi and hi in the following.  

After the streaming step, we know the prescribed velocity u at the boundary, the outgoing 
particle populations g+ and h+, the particle populations parallel to the wall g0 and h0, the 
constraints between the particle populations and macroscopic quantities that are required to 
recover macroscopic equations as in Eqs. (8), (13), and (28). So, the unknown incoming particle 
populations g- and h- are the quantities that need to be solved for to satisfy the boundary 
conditions. 

First, we can find out the macroscopic quantity C with known particle populations and Eq. 
(28): 
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                  (48)   

                 (49)   

where un is the velocity normal to the wall. Therefore we can obtain:  
 
 

  
 

     
          (50)   

Then the density ρ on the boundary can be obtained from Eq. (43) and pressure p can be 
found from Eq. (8). With the macroscopic quantities C, ρ, p, and u known on the boundary, one 
needs to find a set of particle populations gi and hi that satisfy Eqs. (8), (13), and (28). A 
tempting approach is to replace all the particle populations on the boundary with their 
equilibrium distributions gi

(0)
  and hi

(0)
. According to Eqs. (9), and (29), this approach will satisfy 

Eqs. (8), and (28), but it will change Eq. (13) to Eq. (14). The Πg
(1)

 component that attributes to 
the momentum flux due to the viscosity effects will be missing from the recovered equations and 
thus the momentum will not be conserved at the boundary. Therefore, we need to include the 
contribution of the O(  ) component of gi that can be reconstructed at the boundary as:  
 
      

   
          

   
 (51)  

 where gi
(1)

 can be obtained from Eq. (31) which can be approximated by: 
 
   

   
              (52)   

and leads to the same recovered tensor Πg
(1)

.  
 

4 RESULTS AND VALIDATION 

 We have implemented a 3D numerical solver based on our proposed LBM scheme with a 

D3Q19 lattice model to simulate droplet impingement on a solid surface, which has shown a 

significant speed improvement over traditional CFD algorithms based on the continuous phase-

field model, as implemented for example by the commercial software COMSOL.  We have 

tested three different cases with different contact angles for a single droplet impingement to 

compare with COMSOL simulation results and experimental data in [33]. The droplet size is 

48.8μm and the impact speed is 4.36m/s. The fluid properties of the liquid droplet and the 

surrounding gas are taken as the properties of water and air at 1 atm and 25°C. The Weber 

number is 12.8 and the Ohnesorge number is 0.0151. The contact angles for the three cases are 

31°, 90°, and 107° respectively. For all the LBM simulations, the computational domain is set to 

be 100×100×70 and the droplet radius is set to be 25 LB units. Although the LBM has the 

advantage for massive parallelization due to the locality of the computations, all reported 

simulations are run on a single thread on a laptop PC with a memory requirement slightly over 

1GB for each simulation and are completed within 20 hours for each case. For a similar mesh 

density (i.e., spatial resolution of computations), it would roughly take over 1 month for 

COMSOL to run the same 3D simulation on a 16-core cluster with over 100GB memory 

requirement based on our experience. Therefore, all the COMSOL simulations presented here 

were performed with a 2D axi-symmetrical model [14, 40].  
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 The comparison of the dimensionless spreading factor D*, droplet height H*, and the 

shape coefficient, as predicted by our LBM and COMSOL simulations, as well as the LBM 

simulations by Lee et al. reported in literature [27], against the experimental data are presented in 

Figure 3 through Figure 5. The spreading factor is defined as the ratio of the diameter of the 

wetted area to the droplet diameter, the dimensionless droplet height is defined as the ratio of the 

height of the droplet above the substrate to the droplet diameter, and the shape coefficient is a 

novel metric that we developed to quantify the droplet shape [14, 41]. Note that in Lee et al.'s 

results [27], the spreading factor is defined as the ratio of the spreading diameter to the droplet 

diameter where the spreading diameter is the blob diameter when the droplet spreads and the 

diameter of the wetted area when droplet retracts, which is different from the definition of the 

spreading factor in the experiments. We can see that overall the results agree very well in all 

three cases. There is an excellent agreement in time evolution of the spreading factor between 

our LBM simulations and COMSOL simulations, while the COMSOL simulations and the 

literature LBM simulations fail to capture the details of the droplet height change, which is 

particularly evident in Cases 2 and 3 as shown in Figure 4 and Figure 5 respectively, for the later 

times after 10μs to 20μs, which leads to a discrepancy in the shape coefficient as well as shown 

on the right hand side of  Figure 3 through Figure 5. But overall the evolutions of the shape 

coefficient that characterizes the overall droplet shape, match well between our LBM simulations 

and COMSOL, which establishes the consistency of our LBM formulation with the phase-field 

model in COMSOL. We can also see that for Cases 1 and 2, as shown in Figure 3 and Figure 4, 

respectively, both the LBM and COMSOL simulations fail to capture the oscillations of the 

droplet height. One possible reason is that the contact line pinning due to possible surface 

contamination could cause the discrepancy of the final equilibrium spreading factor during 

experiments and affect the overall interface dynamics that is responsible for the droplet height 

oscillation. 

 

 
Figure 3. Left: Validation of spreading factor D* and dimensionless droplet height H* for Case 1; Right: 

Comparison of shape coefficient change between LBM and COMSOL simulations for Case 1 
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Figure 4. Left: Validation of spreading factor D* and dimensionless droplet height H* for Case 2; Right: 

Comparison of shape coefficient change between LBM and COMSOL simulations for Case 2 

 

Figure 5. Left: Validation of spreading factor D* and dimensionless droplet height H* for Case 3; Right: 

Comparison of shape coefficient change between LBM and COMSOL simulations for Case 3 

5 MULTIPLE DROPLET IMPINGEMENT 

The validity and computational efficiency of our numerical solver for simulating 3D droplet 
impingement open up the possibility for studying multiple-droplet impingement. We exemplify 
this capability with three different simulation cases, including an impingement of two interacting 
droplets as shown in Figure 6, a-line-of-multiple-droplet impingement as shown in Figure 7, and 
a-square-array-of-droplet impingement as shown in Figure 8. The droplet diameter is set to be 
50µm, the impact velocity is 10m/s, and the contact angle is 90º for all cases. The distance 
between the centroids of the droplets for cases 1 and 3 is set to 80 µm, and it is equal to 65 µm 
for case 2. The Weber number is 100 and Ohnesorge number is 0.04, so the simulations are 
focusing on inertia dominated hydrodynamics, with more important effect of surface tension on 
the droplet shape evolution as compared to viscous forces. As it can be seen from evolution of 
droplet shapes presented in Figures 17-19, including coalescence events, the interface topology 
and dynamics are highly complex, especially with an increase in the number of interacting 
droplets. Importantly, not only our numerical LBM solver effectively captures the numerical 
complexity of the physical problem, but also preserves some inherent symmetries of each 
simulation case even though the simulations were performed in general 3D format. It is 
interesting to see that the interfacial patterns for the first two cases follow an a priori expected 
behavior, but shows some unusual intermediate states for the third case.   
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Figure 6. Demonstration of two-droplet impingement in the unit of dimensionless time (We = 100; Oh = 0.04; 

droplet distance = 80µm).  

 

 

Figure 7. Demonstration of a-line-of-droplet impingement in the unit of dimensionless time (We = 100; Oh = 0.04; 

droplet distance = 65µm).  

These results demonstrated the LBM capability for handling highly complicated interface 
dynamics to become a powerful simulation tool to deepen our understanding of interfacial 
phenomena and a “digital design tool” for dynamic fluid interfaces of interest to many practical 
applications.  The capability of handling complicated interfacial features can be utilized to 
optimize the manufacturing process for designs of complex geometrical features. The printing 
conditions and droplet distance (i.e., distance between nozzles) can also be optimized for 
targeted printing applications, such as printed electronics and thin-film patterning.  As seen in 
Figure 7, lines can be formed readily under these material and interface conditions. The half-
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cylindrical shape may be sufficient for a conductive line, but if it is meant to be one layer in a tall 
thin wall, the shape may cause difficulties when depositing subsequent layers.  Referring to 
Figure 8, an interesting phenomenon is observed, where the droplet impact locations actually 
become voids in the thin film that forms from multiple droplets.  Different material properties 
and different impingement conditions will yield films of different shapes, so the capability of 
simulating multiple conditions should prove beneficial when designing inkjet printing processes. 

 

Figure 8. Demonstration of an-array-of-droplet impingement in the unit of dimensionless time (We = 100; Oh = 0.04; 

droplet distance = 80µm).  

6 CONCLUSIONS 

A novel approach of solving the Navier-Stokes-based phase-field equations under isothermal 
conditions was proposed based on lattice Boltzmann method. The LBM evolution equations 
were derived for the distribution functions that were equivalent to the phase-field continuous 
governing equations through the Chapman-Enskog multiscale analysis. A new set of boundary 
conditions was also derived based on momentum conservation constraints and consistency with 
macroscopic boundary conditions to ensure correct hydrodynamics at the boundary. The 
simulation results were validated against COMSOL simulations, the LBM simulations reported 
in the literature, and experimental data. It was found that the proposed LBM formulation not 
only had significant improvement on computational efficiency but also produced better accuracy 
of predictions than COMSOL and the previous reported LBM models. The capability of the 
proposed LBM solver in handling highly complicated interface dynamics in 3D provides an 
approach of conducting "virtual experiments" for various interface phenomena involved in the 
inkjet deposition process, such as interface coalescence and interface breakup. Its computational 
efficiency in simulating multiple-droplet impingement provides a foundation for its utility in 
optimizing design of inkjet printers and printing processes for a variety of printing applications.   
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