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Abstract

Predictive models that establish a linkage between process parameters and part properties
have been identified as a high priority research need in Additive Manufacturing. We work with
a Multivariate Adaptive Regression Splines (MARS) statistical model to predict the porosity of
parts produced using Selective Laser Melting (SLM) process as a function of process param-
eters. The proposed predictive model is validated through a case study on 17-4 PH stainless
steel test coupons manufactured on a ProX 100 SLM system.

1 Introduction

Additive Manufacturing (AM) has evolved since its inception in the early 1980s to a $3.07
billion industry in 2013 with a compound annual growth rate of 32.3% over 2011-2013 [1]. Origi-
nally limited to producing visualization and functional prototypes from polymers to accelerate the
product development cycle, metal-based AM technologies such as selective laser melting and elec-
tron beam melting are now capable of producing end-use parts from metallic materials and alloys
including steels [2–7], titanium alloys [8–11], and nickel-based super alloys [12–15].

The technical barriers that still hamper the widespread adoption of metal-based AM are un-
derstood and identified in major roadmapping efforts [16–18]. These barriers include low process
repeatability, part quality and properties, and lack of process standards. Some of these seem to
have a common root: uncertainty and limited knowledge of the process, which causes variability
in part properties and influences directly into part quality and performance [1]. This uncertainty
is driven by the fact that most metal AM technologies involve complex physical transformations
influenced by a large amount of process variables. For example, Selective Laser Melting (SLM)
which is a class of laser-based Powder Bed Fusion (PBF) AM involves up to 30 variables [19, 20].
The development of models (both physics-based and statistical) are of paramount importance in
order to better understand process-property relationships.

We develop a predictive model that links porosity (or density) of produced parts from a set
of process parameters of the SLM process based on the Multivariate Adaptive Regression Splines
(MARS)model introduced by Friedman [21]. MARSmodeling is a flexible and easily interpretable
method. It highlights relationships that are nearly additive or involve interactions of at most a few
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variables, and then pinpoints important variables in themodel [22]. Additionally, MARS can handle
both continuous and categorical data and tend to have a good bias-variance trade-off, influenced by
the flexibility or constraints given to its basis functions. Finally, predictions are calculated simply
by evaluating the MARS model formula [23–25].

With the selected model, we aim to explain and predict the resulting porosity of the parts from
a specific set of process parameters and we validate our methodology with a real-data case study
from 17-4 PH stainless steel test samples built with a SLM machine.

The paper is organized as follows. We start by providing a review of relevant approaches for
statistical modeling in Additive Manufacturing from the literature in Section 2, with emphasis to
SLM and stainless steel. Next, in Section 3 we define and formulate the MARS model that we
employ, followed in Section 4 by the Bayesian inference framework used to estimate model pa-
rameters. We then present and formulate how Prediction with the model is carried out in Section 5.
Subsequently, we perform a case study, presented in Section 6, to establish validations of the pro-
posed MARS model with real world data from 17-4PH stainless steel samples manufactured with
SLM process. To finalize, Section 7 highlights milestones that need to be addressed and concludes
the paper.

2 Literature Review

There are several studies on stainless steel with SLM that address microstructure, physical prop-
erties and manufacturability of parts. For instance, Cherry et al. [26] study the effect of process
parameters on microstructural and physical properties, and Tolosa et al. [27] investigate mechanical
properties of samples built with different orientations. Similarly, [28–30] analyze the microstruc-
ture and/or properties behavior of SLM-fabricated stainless steel parts.

SLM depends on a set of process variables that affect the properties of manufactured parts,
however there has not been any agreement or formal discussion yet about standardizing this set of all
influencing process parameters. The common trend in the literature that the parameters that possess
the highest influence on the properties of SLM parts include: laser power, laser scanning speed,
powder layer thickness, and hatch distance (the distance between two successive passes of the laser
beam in the same layer) [31–35]. Researchers have investigated the influence of process parameters
on end-part properties following systematic methodologies, with tools such as experimental design,
ANOVA and Taguchi’s method (see for example [36–40]).

In this study, we do use a systematic methodology and construct a predictive model based on the
popular MARS statistical model, in order to predict the porosity of SLM-manufactured samples.

MARS statistical model was originally developed by Friedman [21] in 1991. It has been widely
used for several applications such as ecology, economy, biology and sociology, however, to the
extent of our knowledge, it has never been employed in any investigation regarding AM.
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3 MARS Statistical Model

Before we start themathematical formulation of themodel, we define its objective and set inputs
and outputs. Our goal is to investigate the behavior of part porosity as a function of SLM process
parameters. From Section 2, 4 process parameters were identified as to have the most significant
impact on part properties. We focus on Laser Power (P) and Scanning Speed (v) for input variables
in this work. However, we can extend the model to include more than 2 variables in the analysis,
which would help to identify significant variables in the process – one of the strengths of MARS
model.

We define part porosity as themodel response Y, andS ∈ D ⊂ R2 as a location inside a bounded
study region D in the two-dimensional P − v space. Location S is defined by the pair (SP ,Sv),
with SP and Sv representing values of the laser power and scanning speed, respectively. Finally,
we define function h : R2 7→ Rp to be the mapping from a location S to the vector of predictors X
containing p elements (note that most of the time X = S).

The regression problem is to model the dependence of a response variable Y (generally noisy)
on a set of p predictor variables X = (x1, . . . , xp), by the relationship

Y = f (X) + ϵ (1)

where f (·) is an unknown function and ϵ is the random error component, assumed as zero-mean
Gaussian distribution with variance σ2.

The model estimates the function f with a function g explained by

g (X) = β0 +
k∑

i=1

βiBi (X) (2)

where k is the total number of basis functions in the model, β = (β0, . . . , βk)
⊤ is the set of coeffi-

cients corresponding to basis functions set B = (1, B1, . . . , Bk). It should be noted that the model
always includes an intercept term β0.

The ith basis function Bi (X) is given by

Bi (X) =
Ji∏
j=1

[
si,j

(
xwi,j

− ti,j
)]qi

+
(3)

with [·]+ = max (0, ·), Ji is the degree of interaction of basis Bi, si,j are sign indicators taking
values {±1}, qi is the order of basis Bi, wi,j give the index of the predictor variable which have
an associated knot, ti,j are known as knot points and give the position of the splits. It should be
noted that {wi,1, . . . , wi,Ji} are constrained to be all distinct for each basis Bi, so each predictor xb

(b = {1, . . . , p}) is present only once or not present at all. Furthermore, knot points ti,j only take
values present in X of the corresponding predictor xwi,j

. The reader should refer to [21, 22, 41] for
a more detailed definition of the model.

From this parameterization, the model depends on a set of model parameters

Ω =
{
β, k,θ, σ2

}
(4)
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where θ = {B1, . . . ,Bk}, and Bi is the parameter vector for a single basis Bi,

Bi = {Ji, qi, si,1, . . . , si,Ji , ti,1, . . . , ti,Ji , wi,1, . . . , wi,Ji}

The original regression method developed and published by Friedman [21] calculates the model
and its parameters via two phases: a forward phase which repeatedly adds basis function in pairs
to the model, same function but different sign values si,j , and finds the basis functions that gives
the maximum reduction in sum-of-squares residual error; and a backward pass which removes
basis that overfit the model until it finds the best submodel [21]. However, we utilize a Bayesian
inference framework to estimate the value for all model parameters.

4 Bayesian Inference Framework

Application of Bayesian analysis to a MARS model has been previously presented by Deni-
son et al. [22], Denison [41]. We have relied in their research findings and calculations, to make
modifications according to our application.

Within this analysis, we treat themodel parametersΩ as random variables that follow some joint
probability distribution, instead of being constant values. Therefore, after observing experimental
data D (also random in nature), following Bayes’ Theorem, we have

p (Ω|D) ∝ p (D|Ω) p (Ω) (5)

where p (D|Ω) is the likelihood, p (Ω) is the prior distribution that explains some degree of belief
that one may have about the parameters before observing the data, and p (Ω|D) is the posterior
distribution of the parameters which explains what the parameters might be, given the observed
data.

In the next subsections, we describe the nature or assumptions that we made for each one of
these probability distributions.

4.1 Likelihood

Wedefine the experimental data set with n observations asD = {Y,X}, withY = (Y1, . . . , Yn)
⊤

and X = (X1, . . . ,Xn).

The new notation turns the model of equations (1) and (2) to

Y = Bβ + ϵ

and because of the normality assumption, the likelihood distribution is

p (D|Ω) ∼ MVN
(
Bβ, σ2In

)
(6)

where In is the identity matrix of size n.
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4.2 Priors

Our task now is to select the prior distributions that will help calculate the posterior from equa-
tion (5). Because prior probabilities specify some previous knowledge about a certain parameter,
we need to choose these prior distributions careful enough so we don’t give false information that
can influence in the estimation and yield wrong results.

First of all, we will assume that all parameters are independent of one another, that is

p (Ω) = p (β) p (k) p (θ) p
(
σ2
)

(7)

Second, because we don’t really have any strong prior information about any parameter, we
choose non-informative distributions for the parameters. Furthermore, we choose to use conju-
gate prior distributions for some parameters to simplify estimation and calculations of the param-
eters [41–43].

For the set of coefficients β, we set a Normal conjugate prior

p
(
β
∣∣σ2, v,θ

)
∼ MVN

(
m, σ2V

)
wherem is a known prior mean vector, and V = diag (∞, v, . . . , v), a k + 1 diagonal matrix. This
matrix adds a new hyperparameter v to the model; it is the inverse of a precision in the distribution
and helps to robustify the estimation. Additionally, the infinity value used in the first value in V
implies to have always an intercept term [41].

Next, for variances parameters σ2 and v, we select the Inverse Gamma conjugate prior

p
(
σ2
)
∼ IG (a, b)

p (v) ∼ IG (δ1, δ2)

For the rest of parameters, we use uniform non-informative priors as we don’t have any previous
idea of their values, nor there is a conjugate prior distribution,

p (k) ∼ D.Unif (1, kmax)
p (qi) ∼ D.Unif (0, qmax)
p (Ji) ∼ D.Unif (1, Jmax)
p (si,j) ∼ D.Unif {−1, 1}

p (wi,j) ∼ D.Unif
{
1, . . . , p \ {wi,r}r=1:j−1

}
p (ti,j) ∼ D.Unif

{
x(r)
wi,j

}
r=1:n

From these prior distributions, all of them are straight forward to follow except for the last two.
Distribution for wi,j tells us what we defined before: these variables are to be different from one
another among each basis i. In the case for ti,j , splits are only permissible at the marginal predictor
observed values.
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4.3 Posterior

From the formulation of likelihood and priors, we should be able to follow equation (5) to
calculate the posterior distribution. However, this is not the case as an explicit formula for this
distribution might not even exist. To face this problem, we can rely on Markov Chain Monte
Carlo (MCMC) methods, specifically Gibbs sampler and Reversible-Jump Metropolis-Hastings
algorithm [41], which will allow us to draw samples from posterior distribution and perform sta-
tistical inference of parameters afterwards.

Because we are using conjugate priors for β, σ2, v, we are able to explicitly calculate each pos-
terior full conditional distribution and employ Gibbs sampler to draw samples from those distribu-
tions. However, we do not have any explicit formula for the rest of the parameters. Furthermore,
we see that parameter k controls the dimensionality of the parameter setΩ; then for each iteration,
we are sampling a new value of k, and consequently, the size of the parameter set Ω is changing.

To tackle these two problems, we resort on the Reversible-Jump algorithm, which works with
three different steps, selected randomly at each MCMC iteration:

• Birth: increase k by 1, therefore propose to add a new basis function.

• Death: decrease k by 1, therefore propose to remove a randomly chosen basis function from
the present model.

• Move: Keep the same value of k, therefore modify the parameters of a randomly chosen basis
function by sampling them again.

The interested reader should refer to [41, 42, 44, 45] about details of MCMC algorithms, conjugate
priors and posteriors, and full conditional distributions.

5 Prediction

Prediction for the MARS model is straightforward. After running the MCMC sampling for
N iterations in the previous step, we have generated each sample point Ω(i) from the distribution
p (Ω|D). Consequently, prediction over the model is done by evaluating the following equation,
where the expected porosity Y0 at a new input X0 will be

E [Y0|X0,D] ≈ 1

N

N∑
i=1

E
[
Y0

∣∣∣X0,D,Ω(i)
]

(8)

where E
[
Y0

∣∣∣X0,D,Ω(i)
]
= g (X0)

∣∣∣Ω(i) .

Similarly, the prediction standard error is calculated among all sample points, that is

SE [Y0|X0,D] ≈
√
Var

[
g (X0)

∣∣∣Ω(i)
]
i=1:N

(9)
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Table 1: Chemical composition of the 17-4 PH stainless steel powder

Element Fe Cr Ni HC Cu
Concentration (%) 70 – 80 10 – 25 1.0 – 10 1.0 – 10

6 Case Study

The model formulated in Section 3, and estimated in Sections 4 and 5, is demonstrated through
an experimental dataset collected at the Laboratory of Additive Manufacturing in the Department
of Industrial and Systems Engineering at Texas A&M University. The experiment consisted on
measuring the porosity of various test parts built by SLM process from 17-4 PH stainless steel by
varying the process parameters.

6.1 Data Collection

For the case study, we selected a simple cube geometry for the test parts, with size of 10 ×
10 × 10mm. They were produced on a 3D Systems ProX100 machine that employs the SLM
process. The system is equipped with a laser beam having a Gaussian profile and wavelength at
λ = 1070 nm, beam spot size of approximately 70µm-diameter, and a maximum power of 50W.

The material used for the experiments was 17-4 PH stainless steel powder from 3D Systems,
produced by gas atomization and with chemical composition shown in Table 1. The particle size
distribution is 10µm < D50 < 13.5µm and D80 < 22µm, where Dxxmeans xx% of the particles
in a batch of powder. The coupons were built on a substrate made of 430F Stainless Steel and Argon
was used as inert protective gas during manufacturing.

As previously explained, we selected Power Laser (P) and Scanning Speed (v) to be the inputs to
the model. Consequently, we have kept constant the other two important parameters, hatch distance
at 50µm and layer thickness at 30µm. These values were chosen following the recommended
settings for material and machine from the manufacturer.

A 10-by-10 uniformly spaced grid on the consideredP−v space was devised with the following
configuration:

• Laser Power: from P = 41 to 50W, in 1W steps.

• Laser Scanning Speed: from v = 287.5 to 400 mm/s, in 12.5 mm/s steps.

These values were also selected following manufacturer optimal settings, machine capabilities and
values from literature.

Figure 1 shows 10 as-built test coupons prior to using electrical discharge machining (EDM) to
cut them from the substrate. The porosity (or density) of the test parts were then measured using
the Archimedes’ principle according to the standard ASTM B962-14 [46].
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Figure 1: Drawing (in mm) and As-built test coupons

6.2 Preliminary data analysis

From the experimental plan explained in the last subsection, 42 test cubes were produced each
one having a different P − v combination and representing a data point on the defined spatial grid.
Themeasured porosity for these parts is shown in Figure 2a. Spatial behavior can be observed in the
figure, with most of high values located in the top left corner and low porosities in the bottom right.
Additionally, to verify the normality assumption made in equation (6), we present a Normal Q-Q
plot in Figure 2b. The plot shows that the data follows very close the normality line, consequently,
corroborating our assumption to be valid.

6.3 Estimation of model parameters

As mentioned in Section 4, we selected non-informative priors for all of the parameters, as well
as conjugate prior to a few of them. Selection of hyperparameters was based on the need for the
model to be able to explain additive and interaction behavior among variables, while keeping it
simple and avoiding high order complexities. The following specific priors were used:

p
(
β
∣∣σ2, v,θ

)
∼ MVN

(
0, σ2V

)
p
(
σ2
)
∼ IG (1, 0.1)

p (v) ∼ IG (1, 0.05)

p (k) ∼ D.Unif (1, 500)
p (qi) ∼ D.Unif (0, 2)
p (Ji) ∼ D.Unif (0, 2)

Priors for si,j, wi,j, ti,j were already defined in Section 4 and didn’t need any further specifica-
tion. We can analyze the different choices of priors made: the maximum number of basis functions
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Figure 2: Initial analysis of the data. a) Spatial behavior of the observations across the grid. A
white value means no observation in that location. b) Normal Q-Q plot for the initial data.

that we allow in the model is kmax = 500, which should be enough to represent the process; we
set the maximum order of basis function to be of second order, qmax = 2, to avoid high-order
complexities; and the maximum number of interaction is Jmax = 2, which means full interaction
between the two covariates (it can’t go above that as each covariate can only appear at most once
for each basis). The choice for β prior is also straightforward, we set the prior mean to be zero to
reflect ignorance about the sign of the coefficients as we don’t know anything beforehand.

The choices for the variance priors (σ2, v) are not as easy interpretable as the other parameters.
First of all, we have to remark some facts about the Inverse Gamma distribution; for the parameter-
ization that we use (i.e. IG (α, β)), the mean is β

α−1
with α > 1, variance is β2

(α−1)2(α−2)
with α > 2,

and mode is β
α+1

. From these quantities, we can now say that the values used for priors have been
set to not have a mean nor a variance (no information of the parameters a priori), however we set
a small value for the mode, making sure to have a proper distribution [41].

Once all the data has been collected and priors have been set, we run the MCMC sampler in
two phases; first we let it stabilize for 50,000 iterations as burn-in period, and record the next
100,000 iterations as sample points. Consequently, we can proceed on to the next step to compute
predictions over unobserved locations.

6.4 Prediction of porosity

In this step, we make predictions about the response of the model following equations (8) and
(9). The results for expected porosity and standard prediction error over the same study region of
the initial observations are shown in Figures 3a and 3b respectively. From these colormaps, we
see a very defined pattern of how porosity behaves across the study domain. Relative high values
of porosity are predicted on the top left corner where combinations of low power and high speed
happen. Conversely, parts less porous are predicted to happen at a combination of high power and
low speed.
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Figure 3: Prediction results in the defined spatial range. a) Fitted (predicted) porosity. b) Prediction
Standard Error for the predicted values. The white dots represent the locations of the initially
observed data points.

These results do make sense because as a laser beam scanning on the material with high power
at a slow pace, means that more energy is being transferred to the material, and in consequence, the
material particles are more probable to melt and bond between each other, creating a less porous and
more uniform part. This also can be explained through the widely known energy density equation
in SLM, E = P/v·d·t, where E is the energy density and a function of the laser power P, scanning
speed v, hatch distance d, and layer thickness t. This equation also explains the idea behind the
results obtained through the model (low porosities expected at high power and low speeds).

The prediction standard error plot of Figure 3b describes a uniformly low error across the space
except for the lower left corner. This low error value means that the model is consistent and pre-
dicting similar values along each iteration, which may imply good convergence of the parameters
in the MCMC run.

6.5 Model Validation

To verify the model, we run comparisons between the predicted values and actual observations
to analyze how good the model performance is, and present them in Figure 4. An ideal model
would be the one where the predictions are exactly equal to the observations, and thus would result
on points following the red line. We understand that no model is ideal but we want to be close to
it. We can see that the model predictions follow closely the ideal line, therefore we can agree that
the model is a very good approximation to the real process.

To analyze it from a statistical standpoint, we calculated the standard deviation (or error) of the
predictions compared the experimental observations:

SDpred =

√∑
i (Yobs,i − Ypred,i)

2

n
= 0.2722
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and this low value confirms that the model explains closely the physical process.

7 Conclusions

We develop a Multivariate Adaptive Regression Splines (MARS) statistical model to make pre-
diction of porosity in parts produced with SLM as a function of process parameters – specifically
laser power and scanning speed. A Bayesian estimation framework was used to estimate the model
parameters. The proposed model is applied in a real industrial-like case study to explain the re-
sulting porosity of parts made of 17-4 PH stainless steel by the SLM process, with the objective to
make predictions and find combinations of inputs that yield parts with low porosity.

Extensions to this study include addingmore variables to themodel, andmaking inference about
the ones that have more significant influence on the part properties. Examples of these additional
variables are process-related variables such as hatch distance, layer thickness, and oxygen content,
or material-related variables such as powder particle size and morphology. It should be noted that
the predictive statistical model developed in this study could also be used in other AM technologies
such as EBM or LENS.

As this model is purely data driven, future plans for this ongoing research include work with
materials and physics-based models which will provide more knowledge into the statistics and help
improve predictions.
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