
Copyright

by

Akshay Devdas Kamath

2020

The Dissertation Committee for Akshay Devdas Kamath
certifies that this is the approved version of the following dissertation:

Lower Bounds for Sparse Recovery Problems

Committee:

Eric Price, Supervisor

Anna Gál

Greg Plaxton

David Woodruff

Lower Bounds for Sparse Recovery Problems

by

Akshay Devdas Kamath

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2020

In memory of my brother, Nikhil D Kamath.

Acknowledgments

This thesis is a collection of the results that I produced over six years

at the University of Texas at Austin. I would like to thank everyone who made

the experience enjoyable.

I express gratitude to my advisor Eric Price for his guidance and sup-

port over the course of my PhD. He encouraged me to remain persistent when

doing research and was patient when I was slow to make progress. It has been

a great pleasure to have worked with him over the years.

I would like to thank my coauthors Sushrut Karmalkar and David

Woodruff with whom I had fruitful collaborations which are featured in this

thesis.

I am grateful to the students in the CS theory group who were good

sounding boards and even better friends.

Finally, I thank my parents for their love and unconditional support.

v

Lower Bounds for Sparse Recovery Problems

Publication No.

Akshay Devdas Kamath, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Eric Price

Sparse recovery or compressed sensing is the problem of estimating a

signal from noisy linear measurements of that signal. Sparse recovery has

traditionally been used in areas like image acquisition, streaming algorithms,

genetic testing, and, more recently, for image recovery tasks.

Over the last decade many techniques have been developed for sparse

recovery under various guarantees. We develop new lower bound techniques

and show the tightness of existing results for the following variants of the

sparse recovery problem:

• Adaptive Sparse Recovery: We present a lower bound and an upper

bound for a constrained version of the adaptive sparse recovery problem

where the algorithm is allowed a constant number of adaptive rounds.

• Sparse Recovery under High SNR: We present algorithms for sparse

recovery when the signal is very close to being sparse. Our results show

that existing lower bounds are tight.

vi

• Deterministic `2 Heavy Hitters: We prove a new and simple lower

bound on the space complexity for the heavy hitters problem in the

insertion-only streaming model. Our bounds match the best known up-

per bound up to a logarithmic factor.

• Compressed Sensing with Generative Models: We prove tight

lower bounds on compressed sensing algorithms that use “generative

models” as a form of structure instead of sparsity.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

Chapter 1. Introduction 1

1.1 Overview of Sparse Recovery 2

1.1.1 Sparse Recovery Guarantees 2

1.1.2 Adaptivity in Sparse Recovery 3

1.1.3 Sparse Recovery under High SNR 3

1.1.4 Streaming Algorithms for Heavy Hitters 4

1.2 Adaptive Sparse Recovery with Limited Adaptivity 4

1.3 Sparse Recovery under High SNR 6

1.4 Deterministic L2 Heavy Hitters in the Insertion-Only Model . 6

1.5 Compressed Sensing with Generative Models 8

1.6 Organization . 9

Chapter 2. Adaptive Sparse Recovery with Limited Adaptivity 11

2.1 Prior Work on Limited Adaptivity 12

2.2 Our Results and an Overview of Techniques 13

2.2.1 Overview of Our Lower Bound 14

2.2.2 Overview of Our Upper Bound 19

2.3 Lower Bound for Adaptive Sparse Recovery with Limited Adap-
tivity . 24

2.4 Upper Bound for Adaptive Sparse Recovery with Limited Adap-
tivity . 37

2.4.1 Preliminaries . 37

2.4.2 Algorithm . 38

viii

Chapter 3. Sparse Recovery under High SNR 48

3.1 A Discussion of Previous Results 50

3.2 An Overview of Our Results 51

3.3 Proof of Our Upper Bounds 54

Chapter 4. Deterministic L2 Heavy Hitters in the Insertion-
Only Model 63

4.1 Introduction to Streaming Algorithms and Heavy Hitters . . . 63

4.2 Communication Complexity Lower Bound 66

4.2.1 Preliminaries . 66

4.2.2 Proof of Our Lower Bound 74

4.3 Reduction to L2 Heavy Hitters 79

Chapter 5. Compressed Sensing with Generative Models 81

5.1 Overview of Our Results . 85

5.1.1 Lower Bound for Compressed Sensing with Generative
Models . 85

5.1.2 A Sparsity-Producing Generative Model 89

5.2 Proof of Our Lower Bound . 89

5.3 Construction of a Sparsity Producing Generative Model 98

Appendices 102

Appendix A. Theorems for Chapter 2 103

Appendix B. Theorems for Chapter 5 107

Bibliography 108

ix

List of Tables

2.1 Results for adaptive (k, 1 + ε)-sparse recovery. The measure-
ments column drops constant factors. The upper bounds above
are not explicit in previous papers, which only state the bounds
for r = O(log log n). However, all previous algorithms reduce
to 1-sparse recovery as a black box, and plugging in r-round
O(r log1/r n)-sample 1-sparse recovery gives the above. 12

3.1 Results for (k, C)-sparse recovery under the `2/`2 guarantee and
the `∞/`2 guarantee. 50

x

Chapter 1

Introduction

Compressed sensing is a class of problems where the goal is to estimate

a “structured” vector from a low-dimensional linear sketch of the vector. Most

literature in compressed sensing focuses on approximate sparsity as a notion

of structure. This problem of recovering an approximately sparse vector from

a low-dimensional sketch is called sparse recovery.

This has a variety of practical applications in fields such as image acqui-

sition [DDT+08], genetic testing [ECG+09], streaming algorithms [CM06] and

image reconstruction [BJPD17]. In the streaming model, compressed sensing

techniques may be used to solve problems like the frequent elements problem

or the heavy hitters problem [CCF02, GGI+02].

For image reconstruction tasks, a new form of structure known as a

generative model is used and has achieved great practical results along with

theoretical guarantees on performance [BJPD17].

In this thesis, we focus on proving lower bounds which establish the

hardness of certain tasks in compressed sensing. We also prove some upper

bounds with the goal of proving the tightness of known lower bounds.

1

1.1 Overview of Sparse Recovery

The problem of compressed sensing involves observing a linear sketch

Ax ∈ Rm of a vector x ∈ Rn where the matrix A is called the measurement

matrix. The goal is to robustly recover x while minimizing the total number

of measurements m.

1.1.1 Sparse Recovery Guarantees

We say that an algorithm performs (k, C)-approximate `2/`2-sparse re-

covery if it recovers a vector x∗ such that

‖x− x∗‖2
2 ≤ C min

k-sparse x′
‖x− x′‖2

2 . (1.1)

While we could also consider recovery in other norms such as `1 [CM04,

CRT06a], `2 is the strongest `p-norm for which efficient sparse recovery is

possible [CCF02, BJKS04].

Remark 1.1. Due to the fact that `2/`2-sparse recovery is more studied than

any other guarantee, we sometimes refer to it plainly as “sparse recovery”.

When we refer to sparse recovery under other norms (say p and q) in this

thesis we will explicitly refer to it as `p/`q-sparse recovery.

A somewhat stronger guarantee than (1.1), is the (k, C)-approximate

`∞/`2-sparse recovery (also known as heavy hitters) guarantee where the goal

is to accurately recover every coordinate of x i.e. we wish to recover x∗ such

2

that:

‖x− x∗‖2
∞ ≤

C2

k
min

k-sparse x′
‖x− x′‖2

2 . (1.2)

1.1.2 Adaptivity in Sparse Recovery

In some applications of sparse recovery, the goal of reducing the number

of measurements far outweighs other considerations. Consider the case of

genetic testing where the goal is to determine the k members of a population

of size n who are susceptible to a particular genetic disease. Instead of testing

n different blood samples, we could mix together blood samples in different

ratios (which is a linear operation) and use compressed sensing techniques to

identify the people who carry the recessive gene. Since the main goal here is

to minimize the number of tests, we could attempt to reduce the total number

of measurements by using adaptivity.

In adaptive sparse recovery, the algorithm is allowed to choose a par-

ticular row Ai of the measurement matrix A after observing the measurements

〈Aj, x〉 corresponding to the previous rows j < i.

1.1.3 Sparse Recovery under High SNR

While sparse recovery has been studied extensively over the last decade,

most work has focused on algorithms and lower bounds when C = (1+ε) where

ε ∈ (0, 1). A natural question that arises is: what happens when C � 1?

For large C bounds to be meaningful (in that x∗ = 0 is not a valid

3

answer), x must be in a “high SNR” regime where the sparse “signal” is C

times larger than the dense “noise”.

1.1.4 Streaming Algorithms for Heavy Hitters

Sparse recovery can be applied to solve problems in streaming algo-

rithms. Specifically, for the heavy hitters or frequent elements problem (where

we wish to find the most frequently occurring elements in a stream), we can

use a sparse recovery matrix to maintain a sketch of the frequency vector of el-

ements in a stream and recover the frequent elements using the sparse recovery

algorithm.

1.2 Adaptive Sparse Recovery with Limited Adaptivity

The most common goal in sparse recovery is to achieve (1.1) for C =

O(1) with 90% probability over the choice of matrix A ∈ Rm×n, with as few

“measurements” m as possible. If A is chosen independently of x, it is known

that m = Θ(k log n) is necessary [DIPW10] and sufficient [CRT06a, GLPS10].

However, this sample complexity can be improved if A is chosen adaptively.

In adaptive sparse recovery, the algorithm picks A1 ∈ Rm1×n, observes

A1x, then picks A2 ∈ Rm2×n and observes A2x, and continues until ARx for

some number of rounds R. The goal is still to minimize the total number

of measurements m =
∑

imi. With O(log log n) rounds of adaptivity, it is

possible to achieve (1.1) with m = O(k log log n) [IPW11, NSWZ18]. On the

other hand, we know that Ω(k + log log n) measurements are necessary with

4

unlimited adaptivity [ACD13, PW13].

We consider sparse recovery with a small constant number of rounds of

adaptivity. For example, what is possible with R = 2? This is an important

question for applications, where adaptivity is typically costly. The number of

rounds of adaptivity corresponds to the number of passes of a streaming algo-

rithm, or the number of rounds of MapReduce; thus the overall communication

(which is usually the speed bottleneck in such applications) is proportional to

R. In other applications such as imaging or genetic testing, parallelism and

latency in setting up the measurements can make it difficult to perform many

rounds of adaptivity.

For k = 1 and R = O(1), it is known that m = Θ(log1/R n) is necessary

and sufficient [IPW11, PW13]. Thus one expects that the answer for k � 1

should probably be k log1/R n. However, the best prior algorithm (a variant of

[NSWZ18]) uses three “extra” rounds, giving only O(k log1/(R−3) n). This does

not benefit from anything less than five rounds of adaptivity. On the lower

bound side, existing work shows that m = Ω(k+log1/R n) [ACD13, PW13], but

cannot connect k and n. For C = 1 + ε, one can get an algorithm separating

the dependence on n and ε [NSWZ18]; perhaps the same could hold for n and

k?

We show upper and lower bounds that almost entirely address the prob-

lem. First, we show that Ω(k log1/R n) samples are necessary, for any k with

k < 2log1/R n. This settles the sample complexity for smallish k; for larger k,

up to no(1), we can still show that ω(k) samples are necessary. Second, we give

5

an algorithm that uses O(k log1/R n) samples for any sparsity parameter k.

1.3 Sparse Recovery under High SNR

Information-theoretic arguments show that for sparse recovery when

C � 1 in (1.1) Ω(k logC(n/k)) measurements are necessary [PW11, PW12].

As mentioned earlier, for a bound to be meaningful the input vector X must

be in the high-SNR regime. For such high-SNR x, we can hope to learn logC

bits per measurement; is this actually achievable?

We show that the answer is yes, and in fact `2/`2 recovery is possible

with the optimal O(k logC(n/k)) linear measurements.

We also show that the stronger `∞/`2 guarantee can be achieved with

O(k logC n) measurements. The best known algorithm prior to our algorithm

was Count-Sketch [CCF02] which achieves the same guarantee when C � 1

by using O(k log n) linear measurements.

While these results are not in line with the stated goal of the thesis i.e.

proving lower bounds for sparse recovery problems, they establish the tightness

of existing lower bounds and close the problem in the `2/`2 case.

1.4 Deterministic L2 Heavy Hitters in the Insertion-
Only Model

Heavy hitters or frequent elements is a fundamental problem in stream-

ing algorithms. In this problem, we wish to parse a sequence of items a1, . . . , am

6

from a set U = [n] and identify the frequently occurring elements (or heavy

hitters).

Suppose fi is the number of occurrences of i ∈ U in the stream, all

elements h such that:

|fh|2 ≥ ε2
∑
j∈U

f 2
j

are known as ε-`2-heavy hitters in the stream. In streams where insertions

and deletions are allowed, `∞/`2-sparse recovery algorithms may be used to

identify all heavy hitters in a stream by storing a linear sketch of the fre-

quency vector f . It is known that any algorithm that utilizes a linear sketch

to solve the deterministic `2-heavy hitters problem must use an Ω(n) dimen-

sional sketch[CDD09].

When we restrict ourselves to insertion-only streams, the algorithm

of Misra and Gries [MG82] can deterministically identify all ε-`2-heavy hitters

using O(
√
n
ε

logm) measurements. This algorithm does not store a linear sketch

and hence does not need to store Ω(n) bits.

We prove a lower bound of Ω(
√
n
ε

) on the space complexity of any algo-

rithm that identifies the ε-`2-heavy hitters in an insertion-only stream. This

matches the upper bound of [MG82] up to a logm factor.

Our lower bound uses a reduction from multi-party communication

complexity problem called Mostly Set Disjointness which we define in Chapter

4. We prove a communication complexity lower bound using a simple inductive

argument and describe a reduction from this problem to `2-heavy hitters to

7

obtain a space complexity lower bound for streaming algorithms.

1.5 Compressed Sensing with Generative Models

When performing compressed sensing, sparsity is chosen as a form of

structure because it is a commonly occurring form of structure.

In recent years, deep convolutional neural networks have had great

success in producing rich models for representing the manifold of images, no-

tably with generative adversarial networks (GANs) [GPAM+14] and varia-

tional autoencoders (VAEs) [KW14]. These methods produce generative mod-

els G : Rk → Rn that allow approximate sampling from the distribution of

images. So a natural question is whether these generative models can be used

for compressed sensing.

In [BJPD17] it was shown how to use generative models to achieve

a guarantee analogous to (1.1): for any L-Lipschitz G : Rk → Rn, one can

achieve

‖x− x̂‖2 ≤ C min
z′∈B2

k(r)
‖x−G(z′)‖2 + δ, (1.3)

where r, δ > 0 are parameters, B2
k(r) denotes the radius-r `2 ball in Rk and

Lipschitzness is defined with respect to the `2-norms, using only m = O(k +

k log Lr
δ

) measurements.

Thus, the recovered vector is almost as good as the nearest point in the

range of the generative model, rather than in the set of k-sparse vectors. We

8

will refer to the problem of achieving the guarantee (1.3) as “generative-model

recovery”.

We prove two theorems that further our understanding of this new

notion of structure and establish a connection between sparse recovery and

generative model recovery. Our first theorem shows that the [BJPD17] result

is tight: for any setting of parameters n, k, L, r, δ, there exists an L-Lipschitz

function G : Rk → Rn such that the [BJPD17] measurements bound is neces-

sary in order to achieving (1.3).

Our second result directly relates the two notions of structure: sparsity

and generative models. We produce a simple ReLU-based neural network

whose image is precisely the set of all k-sparse vectors.

1.6 Organization

This thesis is divided into 4 different chapters each corresponding to a

different paper. Each chapter is written such that it is self contained but we

have ensured that notation is consistent across chapters.

Chapter 2 covers the results of [KP19] where we proved improved lower

bounds and an almost tight upper bound for adaptive sparse recovery under

limited adaptivity. Our upper bound in that paper used sparse recovery under

high SNR as a black-box algorithm. In Chapter 3, we present the results

of [KP20] where we give a tight upper bound for sparse recovery under high

SNR and thereby close the gap in [KP19]. In Chapters 4 and 5, we return

9

to our overarching goal of proving lower bounds. In Chapter 4 we study the

deterministic `2-heavy hitters problem which is the streaming analog of the

sparse recovery problem. We present a new (and almost tight) lower bound

from [KPW20] where we studied this problem in the insertion-only model.

Chapter 5 presents two results from [KKP20]. The first establishes an

information theoretic lower bound on the measurement complexity for com-

pressed sensing with generative models. Our second result shows that com-

pressed sensing with generative models is a generalization of sparse recovery.

10

Chapter 2

Adaptive Sparse Recovery with Limited

Adaptivity

In this chapter we present a lower bound and a matching upper bound

for adaptive sparse recovery with O(1) rounds of adaptivity1.

Recall that in Chapter 1 (1.1), we said that an algorithm achieves the

(k, C)-approximate sparse recovery guarantee for a vector x ∈ Rn if it recovers

a vector x∗ ∈ Rn such that

‖x− x∗‖2
2 ≤ C min

k-sparse x′
‖x− x′‖2

2 . (2.1)

An algorithm performs (k, C)-sparse recovery with R adaptive rounds

of linear measurements if it picks A1 ∈ Rm1×n, observes A1x, then picks

A2 ∈ Rm2×n and observes A2x, and continues until ARx and then uses these

observations to recover the vector x∗.

It is known from previous results [IPW11, PW13] on adaptive sparse

recovery that for k = 1 and R = O(1), the number of measurements that is

necessary and sufficient is Θ(log
1
R n). Simple attempts at extending the lower

bound to apply for arbitrary k yield a lower bound of Ω(k + log
1
R n). The

1The results presented in this chapter appeared in [KP19].

11

Paper Measurements Rounds Comment

Upper

[IPW11] k
ε r log

1
r n O(r log∗ k)

[NSWZ18]
1
εkr log

1
r 1
ε + kr log

1
r n O(r log∗ k)

k
ε r log

1
r n r + 3

Corollary 2.11 k log
1
r n · 5r log∗ k r ε = O(1)

Lower

[PW13] r log1/r n r

[ACD13] k/ε r

Corollary 2.5 1
r · k log

1
r n r log k < log

1
r n

Theorem 2.4 ω(k) r k = no(1), r = O(1)

Table 2.1: Results for adaptive (k, 1 + ε)-sparse recovery. The measurements
column drops constant factors. The upper bounds above are not explicit in
previous papers, which only state the bounds for r = O(log log n). However, all
previous algorithms reduce to 1-sparse recovery as a black box, and plugging
in r-round O(r log1/r n)-sample 1-sparse recovery gives the above.

result of [IPW11] also gives a O(k log
1
R n) upper bound on the measurement

complexity with O(r log∗ k) rounds of adaptivity. In this chapter, we attempt

to bridge this gap between the upper bound and the lower bound for arbitrary

k.

2.1 Prior Work on Limited Adaptivity

The adaptive measurement model has been explored in many papers,

starting with empirical results [MSW08, JXC08, CHNR08] and theoretical re-

sults for k = 1 [CHNR08]. Results from the compressed sensing side of the

literature have focused on signal approximation accuracy, which corresponds

to the behavior for C = 1 + ε as ε → 0. With Gaussian noise, nonadap-

tive algorithms take m = O(1
ε
k log n), while [HCN11, HBCN12] improve this

12

to O
(
k log n+ 1

ε
k(log k + log log log n)

)
; a corresponding Ω(k/ε) lower bound

appeared in [ACD13]. On the sparse recovery side of the literature, [IPW11]

gave a fully adaptive algorithm using O(1
ε
k log log n) measurements performed

in R = O(log log n log∗ k) rounds. This was improved by [NSWZ18] in two

incomparable ways: either R can be improved to O(log log n) or the sample

complexity can be improved to O(
log log 1

ε

ε
k + k log log n), splitting n and ε in

the sample complexity.

The algorithms in [IPW11] and [NSWZ18] can easily be adapted to use

fewer rounds of adaptivity. Each algorithm’s round complexity is dominated

by black-box applications of the O(log log n)-round O(log log n)-sample O(1)-

approximate 1-sparse recovery algorithm of [IPW11]. By changing this to an r-

round O(log1/r n)-sample version, the algorithms can be performed with fewer

rounds; see Figure 2.1. Most relevantly, one of the algorithms in [NSWZ18]

would use O(k log1/r n) samples in r + 3 rounds. It seems likely that a more

careful analysis could reduce this to r+2 rounds, but no further: the approach

requires an initial round to find the important subproblem instances, and a

final round to clean up missing elements.

2.2 Our Results and an Overview of Techniques

We give a simple explanation of the techniques used in our lower bound

and upper bound in this section. In both cases, the reader will benefit from

knowledge of the previous results. We provide a simple explanation of previous

results from which we borrow techniques or derive inspiration.

13

2.2.1 Overview of Our Lower Bound

Prior Work (k = 1). We begin by giving an overview of the lower bound for

k = 1 from [PW13]. The lower bound instance consists of the signal eX + w,

where X ∈ [n] is a uniform random index and w ∼ N(0, In/n) is Gaussian.

This signal is such that successful 1.1-approximate 1-sparse recovery must

return a vector that is close to eX , and in particular reveals the identity of X.

Hence

I(X;Y1, . . . , YR) = Ω(log n).

On the other hand, [PW13] shows that after learning b bits about X, each

measurement in the next round reveals only O(b+ 1) bits. That is, for any set

of observations y1, . . . , yr−1 seen so far, if we define

b = H(X)−H(X | Y1 = y1, . . . , Yr−1 = yr−1) (2.2)

to be the information revealed so far about X, then it can be shown that the

next round has

I(X;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(b+ 1) (2.3)

where mr is the number of measurements in round r.

It follows that I(X;Y1, . . . , YR) ≤ CR
∏R

i=1mr. Then, an application of

AM-GM shows (O(m/R))R = Ω(log n), or m = Ω(R log1/R n). Thus the key

step is to show (2.3).

The intuition for why (2.3) should hold is as follows. For any single

14

measurement vector v of unit norm, the corresponding observation is

y = 〈v, eX + w〉 = vX + w′

where w′ ∼ N(0, 1/n). This is an additive white gaussian noise channel, so

the Shannon-Hartley Theorem (Theorem A.1) may be applied here to bound

the information capacity in terms of the signal-to-noise ratio:

I(X; y) ≤ 1

2
log(1 + nE[v2

X]).

This holds even conditioned on Y1 = y1, . . . , Yr−1 = yr−1, so we want to bound

E[v2
X | Y1 = y1, . . . , Yr−1 = yr−1]. Let p : [n] → R denote the probability

distribution of (X | Y1 = y1, . . . , Yr−1 = yr−1), so b = log n − H(p). If p

happens to be uniform over its support, then its value is 2b/n at n/2b locations;

then any unit norm v has

n E
X∼p

[v2
X] ≤ n ·

n∑
i=1

2b

n
v2
i = 2b

or I(X; y | Y1 = y1, . . . , Yr−1 = yr−1) ≤ 1
2

log(1 + 2b) . (b+ 1).

However, p is not necessarily uniform over its support, which necessi-

tates care. For example, consider if p(1) = 1/ log n and p is uniform otherwise.

Then b = O(1), yet by setting v = e1 we have

n E
X∼p

[v2
X] = n/ log n

so Shannon-Hartley would only show O(log n) bits per measurement. The

problem is that Shannon-Hartley is only a good bound if the signal – in this

15

case vX – is at a consistent scale. The fix is to partition the indices of X by

the scale of p(X); we define Tj = {i | np(i) ∈ [2j, 2j+1)} for j > 0, and T0 to

have the rest. Let J be the random variable denoting the j such that X ∈ Tj.

We can decompose (with implicit conditioning on y1, . . . , yr−1)

I(X; y) ≤ I(X; (y, J)) = I(X; y | J) + I(X; J). (2.4)

Then I(X; J) ≤ H(J) . b+ 1 by simple algebra, and since (X | J) is roughly

uniform over its support the Shannon-Hartley bound can give I(X; y | J) . b+

1. This bounds the information content in any single measurement; summing

over all mr measurements in Yr yields (2.3).

We now describe how to adapt these techniques to prove a result for

k > 1.

Problem instance for general k. We use the natural extension of the

problem instance, which is to concatenate k copies of the hard instance; that

is, for N = nk, we draw X1, . . . , Xk ∈ [n], and set the vector to

x =

(
k∑
i=1

e(i−1)n+Xi

)
+ w

where w = N(0, k
N
IN). Then successful 1.1-approximate sparse recovery must

recover most coordinates Xi, so

I(X1, . . . , Xk;Y1, . . . , YR) = Ω(k log n).

16

Defining the per-round goal. The first difficulty is how best to define the

goal (2.3). While (2.3) is true as stated, this is not enough: it would give a

lower bound of (k log n)1/R not k log1/R n. Yet (2.3) is also tight; given b bits

of information about the first coordinate, a single measurement can learn Ω(b)

bits about that coordinate.

However, with b bits of information overall, most coordinates will only

have O(b/k) of information “about them.” Each such coordinate can only be

observed with signal-to-noise ratio 2O(b/k). Thus we can hope to say that there

exists a large set of coordinates, W ⊂ [k] of size |W | > 0.99k, such that

I({Xi}i∈W ;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(
b

k
+ 1).

Unfortunately, this is false. Suppose we have learned the parity of Xi⊕X1 for

all i; this is only b = k−1 bits of information. Then the measurement vector v

which matches all the parities will have signal-to-noise-ratio k; with a variation

on this example2, the information learned in a single measurement can be

Ω(log k) bits for every large W even though b = k. Thus, the replacement

for (2.3) that we can show is

I({Xi}i∈W ;Yr | Y1 = y1, . . . , Yr−1 = yr−1) = mr ·O(
b

k
+ log k) +O(b+ k).

(2.5)

The extra O(b+ k) term comes from a term analogous to I(X; J) in (2.4).

2Partition [k] into log k pieces, and the prior information reveals the relative parities
within each partition.

17

Implications for sample complexity. In the first round we can replace

the bound (2.5) by the straightforward nonadaptive bound

I({Xi}i∈[k];Y1) ≤ O(m1).

Now, for simplicity of exposition suppose each mi = m/R = Θ(m). If m >

k log k, then after the first round the dominant term in (2.5) will be O(b · m
k

).

Hence chaining (2.5) gives a set WR such that

k log n . I({Xi}i∈WR
;Y1, . . . , YR) ≤ m ·

(
O(
m

k
)
)R−1

= k
(
O(
m

k
)
)R

.

Thus m = Ω(k log1/R n), as long as this is more than k log k.

Analog of J for general k. The proof of (2.5) is analogous to that of (2.3),

where we partition the X by “scale”, and bound the mutual information condi-

tioned on the scale by Shannon-Hartley. However, the new partition is subtle

so we describe it here.

The first coordinate X1 is partitioned the same way as its marginal

would be in the k = 1 case: the set Tj1 has {i ∈ [n] | np(X1 = i) ∈ [2j1 , 2j1+1)}

for j1 > 0, T0 has everything else, and J1 denotes the j1 ≥ 0 with X1 ∈ Tj1 .

The second coordinate is partitioned as its marginal conditioned on J1. That

is, we have sets

Tj1,j2 = {i ∈ [n] | np(X2 = i | X1 ∈ Tj1) ∈ [2j2 , 2j2+1)}

and the random variable J2 is such that x2 ∈ TJ1,J2 . This naturally extends to

xi ∈ TJ1,...,Ji .

18

We show that this partitioning J = (J1, . . . , Jk) of the coordinates

X1, . . . , Xk has the following properties: First,H(J) = O(b) so conditioning

on J does not reveal too much information. Second, the “signal power” Zi,J

that any measurement has about Xi conditioned on J obeys

E
i∈[k]

E
J

log(1 + Zi,J) .
b

k
. (2.6)

Since the Shannon-Hartley theorem implies

I(X1, . . . , Xk;Yr | J, Y1 = y1, . . . , Yr−1 = yr−1) . mr · E
J

log(1 +
k∑
i=1

Zi,J)

one would get—if (2.6) held for all i not just on average—that

I(X1, . . . , Xk;Yr | J, Y1 = y1, . . . , Yr−1 = yr−1) . mr · log(1 + k2b/k)

≈ mr(
b

k
+ log k)

as desired. Using Markov’s inequality to choose for each J a large set W of i

where (2.6) is not too far off, we can get (2.5) and complete the proof.

2.2.2 Overview of Our Upper Bound

Prior work for k = 1. The high-level intuition for our algorithm is based

on the intuition for k = 1 from the upper bound in [IPW11] and corresponding

lower bound in [PW13]. Suppose the vector x has one large coordinate i∗, of

value 1. For O(1)-approximate sparse recovery to be nontrivial, the amount of

“noise” in other coordinates, i.e.
∥∥x[n]\{i}

∥∥2

2
, will be at most a small constant.

At any given round, if we have learned b bits of information in the

previous round, we can expect to have located i∗ to within a set S of size

19

n/2b. Then our measurement matrix in this round can place zero mass on any

coordinate outside S. Effectively, in this round we are trying to find i∗ within

xS. This vector still has “signal” 1, but the “noise”
∥∥xS\{i}∥∥2

2
is likely to be

much smaller: if S is random, the noise will be O(1/2b) on average. With such

a high signal-to-noise ratio (SNR), we can hope to learn Θ(log SNR) = Θ(b)

bits per measurement. This will quickly reduce the size of our candidate

set S, further enriching the SNR of XS and increasing the information per

measurement.

Given r rounds with t measurements each, we expect to learn t bits in

the first round; Θ(t2) bits in the second round; Θ(t3) bits in the third round;

and so on till Θ(tR) bits in the Rth round. Setting t = log1/R n, we can learn

the desired log n bits of information in O(R log1/R n) measurements.

Algorithm for general k. Previous adaptive algorithms which achieve

m = o(k log n) use the k = 1 algorithm as a black box [IPW11, NSWZ18].

Unfortunately, such efforts seem to require additional rounds of adaptivity to

set up the subproblem instances and/or to clean up coordinates missed in the

first pass. Our algorithm avoids this by opening up the k = 1 algorithm and

extending its techniques to general k.

Our goal is to maintain a candidate set S ⊆ [n] of locations that include

the largest k elements of x, known as the “heavy hitters”. In each round

except for the last, we would like to take a number of measurements that are

insufficient to identify the heavy hitters of xS exactly, but that are sufficient

20

to find a small subset S ′ of S that contains (almost) all of the heavy hitters.

If S ′ is also fairly random, then xS′ will have almost all the signal while only

a small fraction of the noise, so it has much higher SNR.

A first attempt for finding such a subset S ′ could be as follows. Suppose

that the SNR is C—that is, the largest k elements of xS have C times more

`2
2 mass than the other elements. For some parameter D � k, we construct a

vector y ∈ RD by hashing xS as per Count-Sketch [CCF02]—so each coordinate

i ∈ S is assigned a random coordinate h(i) ∈ [D] and sign si ∈ {±1}, and

yj =
∑

i:h(i)=j xisi. The SNR of y will also be about C, so we can learn a

lot about y by performing nonadaptive C0.1-approximate sparse recovery of

it. This takes O(k logC(D/k) · log∗ k) measurements [PW12], so we can set

D = kC log1/R n and fit within our sample complexity budget. The top O(k)

elements of y will contain most of the heavy hitters of x, so we can set S ′ to

the pre-image of those elements; this has size about k(|S| /D) = |S| /C log1/R n.

Hence the C used in the next round will be roughly a C log1/R n factor larger;

after R rounds of this, C will grow from constant to n10, at which point the

problem is easy. In fact, the Rth round can estimate xU directly to avoid

needing an extra cleanup round.

This approach mostly works, but suffers from one major flaw: in every

stage, the set S ′ can miss a small fraction of the heavy hitters. Even with

zero noise, heavy hitters that collide in [D] can cancel out when combining

into y, causing them to disappear from S ′ and from the final reconstruction.

Previous algorithms based on the Count-Sketch hashing often run into this

21

issue, and address it by cleaning up the residual afterward [GLPS10, IPW11,

LNW18, NSWZ18]. In our context, such a solution would require more rounds

of adaptivity.

Triple gaussian hashing. We introduce a new approach to hashing for

sparse recovery that lets us avoid any major false negatives, based on replacing

the signs si with gaussians gi ∼ N(0, 1) in the computation of y, so yj =∑
i:h(i)=j xigi. This hash avoids the issue described above with zero noise,

since if xi 6= 0 then yh(i) 6= 0 with probability 1.

To understand how this hash behaves with noise, consider the following

example: x = v+w where v ∈ {0, 1}n is k-sparse and w is gaussian with norm

1. Successful O(1)-approximate recovery of x must find all but O(1) elements

in supp(v). In the gaussian hash y of x, the image of w is still very spread out

with norm about 1, but the image of v is no longer binary: each entry
∣∣yh(i)

∣∣
has a Θ(ε) chance of being less than ε. This means about k2/3 positions in

h(supp(v)) will be smaller than 1/k1/3. Since these collectively have norm 1,

successful O(1)-approximate recovery of y could miss all k2/3 of these positions,

which would be a problem.

We avoid such false negatives by repeating the hash three times, with

the same h and different g, and applying sparse recovery separately to the

three different y. In the above example, where coordinates are missing from

sparse recovery with probability 1/k1/3, the expected number of coordinates

that are missed three times in a row is O(1). In general, the chance qi that

22

h(i) is recovered by the sparse recovery algorithm may depend on i and xi in

a complicated fashion that we can’t control, since the sparse recovery algo-

rithm is a black box. Still, we can show that the (k, C)-approximate recovery

guarantee implies that the expected mass lost all three times—
∑

i q
3
i x

2
i—is

bounded in terms of the noise level.

Our triple Gaussian hash thus gives a set of locations without any sig-

nificant false negatives, so we do not need to clean up the missing coordinates.

We believe that this technique is likely to have applications in other, nonadap-

tive, sparse recovery settings.

Decreasing the noise. So far, we have outlined how the algorithm gets a

small set S ′ that does not lose much signal mass. Another key part of the

argument is that xS′ should have much less noise than xS. Since S ′ is much

smaller than S, this would be immediate if S ′ were random. However, since

S ′ is the pre-image of the largest coordinates of y, it is biased towards the

elements of x containing more noise.

We show that this effect is limited: after dropping O(k) noise coor-

dinates, the rest of the noise shrinks by a factor of
√
D/k. We tolerate the

O(k) large noise coordinates by increasing the sparsity k by a constant factor

in each round; and the
√
D/k factor, although not as good as the D/k factor

decrease in |S|, is still CΘ(log1/R k).

By choosing the parameters carefully, we can ensure the total error

and total failure probability remain small over all rounds. The measurement

23

complexity of our algorithm for constant R is O(k log1/R(n/k)). In our pa-

per [KP19], where we first published this result, the measurement complexity

was O(k log1/R(n/k) log∗(k)). This is because our algorithm makes black-box

calls to the C-approximate nonadaptive sparse recovery algorithm whose mea-

surement complexity at that time was O(k log(n/k) log∗ k). We have since

improved the measurement complexity of that algorithm and shaved off the

extra log∗ k factor. We present that result in Chapter 3.

2.3 Lower Bound for Adaptive Sparse Recovery with
Limited Adaptivity

In this section we present a lower bound on the total number of linear

measurements for adaptive R-round (k,O(1))-sparse recovery.

The instance for which we show a lower bound is as follows: Alice

divides the domain [N] into k contiguous “bins” of size n each (indexed by

[k]) and for every bin i chooses xi ∈ [n] uniformly at random. Alice then

chooses i.i.d. Gaussian noise w ∈ RN with E[‖w‖2
2] = σ2 = Θ(k), then sets x =

w +
∑k

i=1 e(i−1)n+xi . Bob performs R adaptive rounds of linear measurements

on x, getting yr = Arx = (yr1, . . . , y
r
mr) in each round r. Let Xi and Y r denote

the random variables from which xi and yr are drawn, respectively. In order

for sparse recovery to succeed under an appropriate setting of constant for σ2,

at least k/2 of the variables X1, . . . , Xk must be recovered.

For ease of notation, we use jr1 to denote the tuple (j1, . . . , jr). Similarly,

ji−1
1 , Ji denotes the tuple (j1, . . . , ji−1, Ji) where the distinction in the context

24

of this proof is that j1, . . . , ji−1 are fixed and Ji is a random variable. We use

(X)W for W = {i1, . . . , i|W |} ⊆ [k] to denote the tuple (Xi1 , . . . , XiW).

Definition 2.3.1. Given random variables X1, . . . , Xk ∈ [n] with joint prob-

ability distribution p(l1, . . . lk) = Pr[X1 = l1, . . . , Xk = lk], we define the

sequentially conditioned partition of the domain of Xi as follows

1. Tji1 = {l ∈ [n] | 2ji < npi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1
1

) ≤ 2ji+1} for

ji > 0, and

2. Tji1 = {l ∈ [n] | npi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1
1

) ≤ 2} for ji = 0.

where pi denotes the marginal distribution of Xi. Additionally, we define the

probability mass within each partition as

qji1 =
∑
l∈T

ji1

pi(l | X1 ∈ Tj11 , . . . , Xi−1 ∈ Tji−1
1

).

So, if we fix j1, . . . , ji−1, we have
∑∞

ji=0 qji1 = 1.

Denote the event X1 ∈ Tj11 , . . . , Xi ∈ Tji1 by Eji1 . These partitions are

defined in such a way that (Xi | Eji1) is close to uniform over its support. This

allows us to bound the maximum conditional probability within a sequentially

conditioned partition of the domain of Xi. So,

Mji1

def
= n ·max

l∈T
ji1

(
pi(l | Eji1)

)
≤ 2ji+1

qji1
. (2.7)

25

Additionally, for the random variable (Xi | Eji−1
1

) over [n], we define the

number of bits that the distribution knows about the location of Xi as:

bi(j1, . . . , ji−1) = H(U([n]))−H(Xi | Eji−1
1

)

= log(n)−H(Xi | Eji−1
1

).

We show for every i and ji−1
1 that Mji−1

1 ,Ji
is small on average over Ji:

Lemma 2.1. Consider random variables X1, . . . , Xk ∈ [n] with joint probabil-

ity distribution p(l1, . . . lk) = Pr[X1 = l1, . . . , Xk = lk] and suppose we know

that X1 ∈ Tj1 , . . . Xi−1 ∈ Tji−1
1

. Suppose that Ji is the discrete random variable

that denotes the ji such that Xi ∈ Tji1 conditioned on X1 ∈ Tj11 , . . . Xi−1 ∈ Tji−1
1

.

Then,

E
Ji

[log
(
1 +Mji−1

1 ,Ji

)
] ≤ O(bi(j1, . . . , ji−1) + 1).

Proof. Using (2.7) we get the bound:

E
Ji

[log
(
1 +Mji−1

1 ,Ji

)
] ≤ E

Ji

[
log
(
1 +

2Ji+1

qji−1
1 ,Ji

)]
=
∞∑
ji=0

qji1 log
(
1 +

2ji+1

qji1

)
≤

∞∑
ji=0

qji1 log(1 + 2ji+1) +
∞∑
j=0

qji1 log
(
1 +

1

qji1

)
≤

∞∑
ji=0

jiqji1 +
∞∑
ji=0

2qji1 +
∞∑
j=0

qji1 log
(
1 +

1

qji1

)
.

Since
∑∞

ji=0 qji1 = 1, Lemma A.2 implies:

E
Ji

[log
(
1 +Mi,ji−1

1 ,Ji

)
] ≤ O(bi(j1, . . . , ji−1) + 1).

26

For every i and collection of measurement vectors v1, . . . , vm, we now

show that the amount of “signal energy” for Xi is bounded even conditioned

on the partition Jk1 .

Lemma 2.2. Let X1, . . . , Xk be random variables over [n] with joint probability

distribution p(l1, . . . lk) = Pr[X1 = l1, . . . , Xk = lk]. For all i ∈ [k], define

bi = log(n) − H(Xi | X1, . . . , Xi−1). Let v1, . . . , vm ∈ Rnk be a fixed set

of vectors. Define random variable Zi,jk1
def
= EXi|Ejk1

[
∑m

s=1(vs)
2
n·(i−1)+Xi

] and

random variable Mi,jk1

def
= n ·maxl∈T

ji1

(pi(l | Ejk1)) . Then, for any i ∈ [k],

1. log(1 + Zi,Jk1) ≤ log
(
1 + (

∑m
s=1‖vs|i‖22

n
)
)

+ log(1 +Mi,Jk1
)

2. EJ1,...,Jk
[

log(1 +Mi,Jk1
)
]
≤ O(bi + 1)

where vs|i denotes the restriction of vs to the the index set [n(i− 1) + 1, ni].

Proof. Using the definition of Zi,jk1 and Mi,jk1
, we can write:

Zji1 =
m∑
s=1

∑
t∈[n]

(vs)
2
n·(i−1)+t · Pr[Xi = t | Eji1] ≤

(∑m
s=1

∥∥vs|i∥∥2

2

n

)
Mji1

.

Let Ji be the discrete random variable that denotes the ji such that Xi ∈ Tji1
conditioned on Eji−1

1
. Then, using Lemma 2.1,

E
Ji

[log(1 +Mji−1
1 ,Ji

)] ≤ O(bi(j1, . . . , ji−1) + 1).

27

We wish to bound EJ1...,Jk [log(1 +Mi,Jk1
)]. Using the concavity of log,

E
J1...,Jk

[log(1 + Zi,Jk1)] ≤ E
J1...,Ji

[log
(
1 + E

Ji+1,...,Jk
[Mi,Jk1

]
)
].

From the definitions of Mi,Jk1
and MJi1

, we know that:

E
Ji+1,...,Jk

[Mi,Jk1
] = E

Ji+1,...,Jk

[
E

Xi|EJk1

[
n ·max

l∈T
ji1

pi(l | Ejk1)
]]

= E
Xi|EJi1

[
n ·max

l∈T
Ji1

pi(l | EJi1)
]

= MJi1
.

So,

E
J1...,Jk

[log(1 +Mi,Jk1
)] ≤ E

J1...,Ji
[log(1 +MJi1

)]

≤ O(E
J1...,Ji−1

[bi(J1, . . . , Ji−1) + 1]).

Since conditioning decreases entropy, we also know:

E
J1,...,Ji−1

[bi(J1, . . . , Ji−1)] = H(U([n]))−H(Xi | EJi−1
1

)

≤ H(U([n]))−H(Xi | X1 . . . Xi−1)

= bi

and hence,

E
J1...,Jk

[log(1 +Mi,Jk1
)] ≤ O(bi + 1).

We can now show the key lemma, that if b bits of information are known

from the previous rounds, the next round will only reveal roughly m(b
k

+log k)

more bits of information.

28

Lemma 2.3. Suppose X1, . . . , Xk are random variables over [n] and W =

{l1, l2, . . . , l|W |} ⊆ [k] be a subset such that |W | = ck where c ≤ 1 is a constant.

We define the number of bits of information revealed about the subset W ,

conditioned on the variables {X}[n]\W as

b = |W | log(n)−H((X)W | (X)[n]\W).

Define X̃ =
∑k

i=1 e(i−1)·n+Xi + N(0, INσ
2/N) where σ2 = Θ(k). Consider a

fixed set of measurement vectors v1, . . . , vm ∈ RN independent of X1, . . . , Xk

with ‖vj‖2
2 = N for all j ∈ [m], and define Yj = 〈vj, X̃〉. Then, for all

0 < α < γ < 1 , with probability 1 − γ, there exists a subset W ′ ⊆ W ,

|W ′| ≥ (1− α
γ
) |W | such that

I((X)W ′ ;Y
m

1 | (X)[n]\W ′ ,W
′) ≤ c3

m

α

b

k
+m log(k) +

c4m

α
+ c2(b+ k)

for some constants c2, c3, c4.

Proof. Since we wish to condition out the indices not in W , we may perform

the analysis on a fixed set of values for (X)[n]\W and then use the fact that

I(A;B|C) = Ec[I(A;B | C = c)] to arrive at the theorem statement.

Suppose that for all i ∈ [n] \ W , Xi = xi. Then, the number of

bits of information known about (X)W may be denoted b̃ = b((x)[n]\W) =

|W | log(n)−H((X)W | (x)[n]\W). Now, we may construct sequentially condi-

tioned partitions only on the domains of (X)W and in the order l1, l2, . . . , l|W |.

We will denote by JW the conditioning over the partitions of the (X)W in the

chosen order.

29

Let W ′ ⊆ W be a set of indices which we shall choose later. Consider

the mutual information between a set of random variables (X)W ′ and the

measurements conditioned on the variables not in W ′. Using the chain rule of

mutual information:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ I((X)W ′ ;Y
m

1 | EJW , (X)W\W ′ , (x)[n]\W ,W
′) +H(JW | (x[n]\W)).

Using Lemma A.2, there exists a constant c2 such that for all i ∈ [|W |],

H(Jli | J
li−1

l1
, (x)[n]\W) ≤ c2(log(n) − H(Xl1 | J

li−1

l1
, (x)[n]\W) + 1). Since

conditioning only reduces entropy, we know that H(Jli | J
li−1

l1
, (x)[n]\W) ≤

c2(log(n) − H(Xl1 | Xl1 , . . . , Xli−1
, (x)[n]\W) + 1). So, H(JW | (x[n]\W)) =∑

i∈[|W |] H(Jli | J
li−1

l1
, (x)[n]\W) ≤ c2(b̃+ k). Using the definition of conditional

mutual information, and the fact that measurements are chosen independently,

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

(m∑
s=1

I((X)W ′ ;Ys | EJW , (x)[n]\W ′ ,W
′)
)

+ c2(b̃+ k).

Applying the Data Processing Inequality to the first term, we get:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

(m∑
s=1

I
(∑
i∈W ′

(vs)(i−1)n+Xi ;Ys | EJW , (x)[n]\W ′ ,W
′))

+ c2(b̃+ k).

Observe that Ys =
∑

i∈W ′(vs)(i−1)n+Xi+
∑

i∈[n]\W ′(vs)(i−1)n+xi+N(0, σ2). Since

30

(x)[n]\W ′ are conditioned out, we may subtract their contribution and we get:

I
(∑
i∈W ′

(vs)(i−1)n+Xi ;Ys | EJW , (x)[n]\W ′ ,W
′)

= I
(∑
i∈W ′

(vs)(i−1)n+Xi ;
∑
i∈W ′

(vs)(i−1)n+Xi + η | EJW , (x)[n]\W ′ ,W
′)

where η ∼ N(0, σ2) is additive white gaussian noise. We may now use the

Shannon-Hartley Theorem (Theorem A.1) on this quantity to bound the mu-

tual information in terms of a variance term:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
(x)W\W ′

m∑
s=1

E
jW

[
log
(
1 +

E(X)W ′ |EjW ,(x)[n]\W ′
(
∑

i∈W ′ [(vs)(i−1)n+Xi])
2

σ2

)]
+ c2(b̃+ k).

Using Cauchy-Schwartz, then applying Jensen’s inequality, and then using the

convexity of log and the definition of Zi,JW :

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ E
jW

(m∑
s=1

log
(
1 + |W ′|

∑
i∈W ′ EXi|EjW [(vs)

2
(i−1)n+Xi

]

σ2

))
+ c2(b̃+ k)

≤ m E
jW

(
log
(
1 +
|W ′|

∑
i∈W ′ EXi|EjW [

∑m
s=1(vs)

2
(i−1)n+Xi

]

σ2 ·m
))

+ c2(b̃+ k)

= m E
jW

(
log
(
1 +
|W ′|

∑
i∈W ′ Zi,jW

σ2 ·m
))

+ c2(b̃+ k). (2.8)

We need to set W ′ to be the set that contains indices in W with low values of

Zi,jW . More precisely, for a fixed partition sequence jw, we set

W ′ =
{
i ∈ W

∣∣∣ log(1 + Zi,jW) < log(1 +

∑m
s=1

∥∥vs|i∥∥2

2

n
) + (

c3

α
) · (b̃

k
+ 1)

}
31

where c3 is a constant which will be set later. Suppose that Mil,jW = n ·

maxl∈T
ji1

(Pr[Xil = xil | EjW]). We may use Lemma 2.2 on the indices in W

since the indices in [n] \W has been fixed. So, there is a constant c1 such that

for all il ∈ W ,

E
Ji1 ,...,Ji|W |

[
log
(
1 +Mil,JW

)]
≤ c1(b̃il + 1)

where b̃il = log(n) − H(Xil | Xi1 , . . . , Xil−1
, (x)[n]\W). Observe that

∑
b̃il =

|W | log(n)−
∑
H(Xil |Xi1 , . . . , Xil−1

, (x)[n]\W) = |W | log(n)−H(Xi1 , . . . , Xi|W | |

(x)[n]\W) = b̃. Suppose I is distributed uniformly over W . Then using Jensen’s

inequality,

E
I

[
E
JW

[
log
(
1 +MI,JW

)]]
≤ c1 E

I
[b̃I + 1]

≤ c1(b̃+ k)

|W |

≤ c3(b̃+ k)

k

where the third inequality follows because we are only considering W such

that |W | = ck for a constant fraction c and c3 = (c1/c).

Now, since each MI,JW ≥ 0, we may use Markov’s inequality to show

that:

Pr
(I,JW)

[
log(1 +MI,JW) ≥ c3(b̃+ k)

αk

]
≤ α.

Define U = {(i, jW) | i ∈ W, log(1 +Mi,jW) < c3(b̃+ k)/αk} and for all i ∈ W ,

we may define pUi = PrJW [(i, JW) /∈ U]. Note that E[|W \W ′|] ≤
∑

i∈W pUi ≤

α |W | and using Markov’s inequality, we say that Pr[|W \W ′| ≥ α |W | /γ] ≤

32

γ. Plugging the definition of W ′ and σ2 = Θ(k) = c′k, into (2.8) gives

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ m log
(

1 +
|W ′| ·

∑
i∈W ′ 2

log(1+ 1
n

∑m
s=1‖vs|i‖22)+ 1

α

(
c3(b̃/k)+1

)
c′mk

)
+ c2(b̃+ k)

≤ m log
(

1 +
|W ′| · 2

1
α

(
c3(b̃

k
)+1
)∑

i∈W ′
(
1 + 1

n

∑m
s=1

∥∥vs|i∥∥2

2

)
c′mk

)
+ c2(b̃+ k).

(2.9)

Since
∑

i∈[n]

∥∥vs|i∥∥2

2
= N , we know that

∑
i∈W ′

(
1 + 1

n

∑m
s=1

∥∥vs|i∥∥2

2

)
≤ |W ′|+

Nm
n

= |W ′|+ km. Plugging this into (2.9), we get:

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′)

≤ m log
(

1 +
|W ′| · 2

c3
α

(b̃/k+1) · (W ′ + km)

c′mk

)
+ c2(b̃+ k)

≤ m log(1 +
|W ′|
c′

) +m log(1 + 2
c3
α

(b̃
k

+1)) + c2(b̃+ k)

≤ m log(1 + k) +m log(1 +
c

c′
) +m log(1 + 2

c3
α

(b̃
k

+1)) + c2(b̃+ k)

≤ 2m+m log(k) +m log(1 +
c

c′
) + 2m+m log(2

c3
α

(b̃
k

+1)) + c2(b̃+ k)

≤ m log(k) +
c3mb̃

αk
+
c4m

α
+ c2(b̃+ k)

where c4 = 4 + log(1 + c/c′) is a constant. So, with probability 1 − γ there

exists a set W ′ ⊆ W such that |W ′| ≥ (1− α/γ) |W | and

I((X)W ′ ;Y
m

1 | (X)W\W ′ , (x)[n]\W ,W
′) ≤ c3

mb̃

αk
+m log(k) +

c4m

α
+ c2(b̃+ k).

Now, taking the expectation of this term over (x)[n]\W , with probability 1− γ

there exists a set W ′ ⊆ W such that |W ′| ≥ (1− α/γ) |W | and

I((X)W ′ ;Y
m

1 | (X)[n]\W ′ ,W
′) ≤ c3

mb

αk
+m log(k) +

c4m

α
+ c2(b+ k).

33

By applying Lemma 2.3 every round, we get the desired lower bound

on m.

Theorem 2.4. Any scheme using R adaptive rounds with m1, . . . ,mR mea-

surements in each round and m total measurements has a set W ⊆ [k], |W | ≥

Ω(k) such that with probability ≥ 3/4

I((Xi)i∈W ;Y1, . . . , Ym | (Xi)i/∈W ,W)

≤
(R∏

j=2

(
2c5 +

32c6R
2mj

k

))
max{k log(k),m1}

where c5 and c6 are constants. Consequently, for (k, C)-sparse recovery with

C = O(1), it must hold that

m ≥ k

C ′R
min

{(
log(N/k)

)1/R

,

(
log(N/k)

log(k)

)1/(R−1)}
for some constant C ′.

Proof. Let Ar be the measurement matrix in round r (which we may assume

is deterministically chosen as a function of all the previous rounds). Since

the first round is non-adaptive, we may use the Shannon-Hartley Theorem (as

per [PW12]) to show that for W2 = [k],

I((Xi)i∈W2 ;Y1,1, . . . , Y1,m1 | (Xi)i/∈W2 ,W2) ≤ m1.

For each round r, by pr we denote Bob’s prior distribution at the beginning

of that round. We also denote by b(r) = |Wr| log(n) − H(XWr | X[n]\Wr) the

number of bits of information in the prior (Xi)i∈Wr conditioned on (Xi)i/∈Wr .

34

Since the rows of Ar are deterministic given the observations in previous

rounds, we may apply Lemma 2.3 with α = 1/(16R2), γ = 1/4R, and with

probability (1 − (1/4R)) obtain a set Wr+1 ⊆ Wr such that |Wr+1| ≥ (1 −
α
γ
) |Wr| and:

I((Xi)i∈Wr+1 ;Y
r+1 | y1, . . . , yr, (Xi)i/∈Wr+1 ,Wr+1)

≤ c3
mr+1br
αk

+mr+1 log(k) +
c4mr+1

α
+ c2(br + k).

Let us define Br+1 = I((Xi)i∈Wr+1 ;Y
r+1, . . . , Y 1 | (Xi)i/∈Wr+1 ,Wr+1). Using

the chain rule of mutual information for r > 1

Br+1 = I((Xi)i∈Wr+1 ;Y
r, . . . , Y 1 | (Xi)i/∈Wr+1)

+ I((Xi)i∈Wr+1 ;Y
r+1 | Y r, . . . , Y 1, (Xi)i/∈Wr+1 ,Wr+1)

≤ Br + E
y1,...,yr

[I((Xi)i∈Wr+1 ;Y
r+1 | y1, . . . , yr, (Xi)i/∈Wr+1 ,Wr+1)].

So,

Br+1 ≤ Br + c3
mr+1Br

αk
+mr+1 log(k) +

c4mr+1

α
+ c2(Br + k)

≤
(
c5 +

c3mr+1

αk

)
Br +mr+1 log(k) +

c4mr+1

α
+ c2k (2.10)

where c5 = c2 + 1. We know using the Shannon-Hartley Theorem that B1 ≤

m1. Further, we assume that B1 ≥ k log(k). While this weakens our lower

bound, it allows us to make a cleaner inductive argument into Claim A.3.

Plugging α = 1/16R2 in Claim A.3, we get:

BR ≤
(R∏

j=2

(
2c5 +

32c6R
2mj

k

))
max{k log(k),m1}.

35

It follows using the AM-GM inequality that:

BR ≤ max
{
k ·
(

2c5 +
32c6R ·m

k

)R
, k log(k) ·

(
2c5 +

32c6R ·m
k

)(R−1)}
.

So, after R rounds with probability ≥ 3/4, we have a set WR such

that |WR| ≥ (1 − α
γ
)Rk ≥ e−4k with I((Xi)i∈WR

;Y R, . . . , Y 1 | (Xi)i/∈WR
,WR)

bounded as above. We may scale the variance of w (gaussian noise) by appro-

priate constants, so that for sparse recovery to succeed k(1− 1
2e4

) indices must

be fully recovered with probability ≥ 3/4. So, for the set WR it must hold that

I((Xi)i∈WR
;Y R, . . . , Y 1 | (Xi)i/∈WR

,WR) ≥ k
2e4

log(N/k) and as a consequence,

it must hold that:

max
{(

2c5 +
32c6R ·m

k

)R
,
(

2c5 +
32c6R ·m

k

)(R−1)

k log(k)
}
≥ k

2e4
log(N/k)

If we simplify this and set C ′ = 32c6, we get

m ≥ min

{
k

C ′R

(
log(N/k)

)1/R

,
k

C ′R

(
log(N/k)

log(k)

)1/(R−1)}

If we restrict our sparsity parameter k to be O(2(log(N))1/R) we observe

that this lower bound is tight.

Corollary 2.5. Let C > 1. Any (k, C)-sparse recovery scheme for vectors

in RN that uses R adaptive rounds and m total measurements with k =

O(2log1/RN) must satisfy

m ≥ k

C ′R

(
log(N/k)

)1/R

for some constant C ′.

36

2.4 Upper Bound for Adaptive Sparse Recovery with
Limited Adaptivity

In this section we present our algorithm for (k, C)-sparse recovery in R

rounds. The main goal is to prove Theorem 2.10 which shows that Algorithm

2.4.2 achieves (k, C) sparse recovery using O(k logC(n/k)1/R log∗(k) · 2R) mea-

surements. Lemma 2.7 shows that in each round we lose a small amount of

mass from the vector. Lemma 2.8 and Lemma 2.9 show that with a constant

increase in the sparsity parameter from one round to the next, we can ensure

that the “noise” carried over to the next round decreases by a factor.

2.4.1 Preliminaries

We start with a few definitions. Let x be an n-dimensional vector.

Definition 2.4.1. Define

Hk(x) = arg max
S∈[n]
|S|=k

‖xS‖2

to be the largest k coefficients in x.

Definition 2.4.2. Define the “noise” or “error”

Err2(x, k) =
∥∥∥xHk(x)

∥∥∥2

2
.

Definition 2.4.3. Given a vector x, a recovered vector x∗ satisfies (k, C)-

sparse recovery under the `2/`2 guarantee if:

‖x− x∗‖2
2 ≤ C Err2(x, k).

37

Definition 2.4.4. Given a hash function h : [n] → [D], a (D, h)-gaussian

hash projection of a vector x ∈ Rn into RD is given by y ∈ RD such that

yj =
∑

i:h(i)=j xi · gi where gi ∼ N(0, 1) is i.i.d normal with variance 1 and

mean 0.

We denote by HighSNR-Recover(x, k, C, δ) a black-box algorithm

which makes linear measurements on the input x and whose output achieves

(k, C) sparse recovery with probability 1 − δ. The best known algorithm for

achieving (k, C)-sparse recovery when C ≥ 1 is the algorithm from [KP20]:

Theorem 2.6. There exists an algorithm that takes O
(
k logC(n

k
) log(1

δ
)
)

lin-

ear measurements and outputs a k-sparse vector that achieves (k, C)-sparse

recovery under the `2/`2 guarantee with success probability 1− δ.

We prove this theorem in Chapter 3.

2.4.2 Algorithm

procedure 1-RoundSNRBoost(x, n, D, C, k, δ) . Recover most of the
mass of heavy hitters while reducing noise by factor D/k

For i ∈ [n], h(i)← [D]

For i ∈ [n], t ∈ {1, 2, 3} g
(t)
i ← N(0, 1)

For j ∈ [D], t ∈ {1, 2, 3} define y
(t)
j =

∑
i∈h−1(j) g

(t)
i xi

For t ∈ {1, 2, 3} , U (t) ← supp(HighSNR-Recover(y(t), k, C, δ/3))
return ∪j∈U(1)∪U(2)∪U(3)h−1(j)

end procedure

Algorithm 2.4.1: 1 round SNR-Boost

38

procedure R-Round-K-SparseRec(x, k, C, R)
S0 = [n]
C0 = C/8
for r ← 1, . . . , R− 1 do

kr ← k5r−1

Dr ← krC
5(logC0

(n))r/R

0

Cr ← C
(logC0

(n))(r−1)/R

0

δr ← 2−(r+3)

Sr ← 1-RoundSNRBoost(xSr−1 , |Sr−1| , Dr, Cr, kr, δr)
end for

return x̂← HighSNR-Recover(xSR−1
, 5kR−1, C

(logC0
n)

(R−1)
R

0 , 2−(R+3))
end procedure

Algorithm 2.4.2: R-Round-k-Sparse Recovery

Lemma 2.7. Let x ∈ Rn, D ≥ k, C ≥ 1. Suppose h : [n] → [D] is

drawn from a fully independent family of hash functions and y(1), y(2) and

y(3) are independent (D, h)-gaussian hash projections of x. Then, if A is

an algorithm that achieves (k, C) sparse recovery with probability ≥ 8/9, and

U (t) = supp(A(y(t))) for t ∈ {1, 2, 3},

E
[∑

j∈[D]

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣∣∣∣ E1,E2,E3

]
≤ 9C Err2(x, k)

where E(t) represents the event that A(y(t)) successfully performs (k, C)-sparse

recovery.

Proof. Let y be a (D, h)-gaussian hash projection of x. From the definition of

Hk(y), we know that for all S such that |S| ≤ k, Err2(y, k) =
∑

j∈Hk(y) y
2
j ≤∑

j∈S y
2
j . If we choose S = h(Hk(x)), we get Err2(y, k) ≤

∑
j∈h(Hk(x)) y

2
j .

39

Furthermore,

E
g
[Err2(y, k)] ≤ E

g
[
∑

j∈h(Hk(x))

y2
j]

= E
g
[
∑

j∈h(Hk(x))

(∑
i∈h−1(j)

xi · gi
)2

]

=
∑

j∈h(Hk(x))

∑
i∈h−1(j)

x2
i

≤
∑

i∈Hk(x)

x2
i = Err2(x, k)

where the second equality follows because gi ∼ N(0, 1) for all i ∈ [n].

Let Ej be the indicator random variable for the event that j /∈ U where

U = supp(A(y)). For a successful run of A, the `2 mass of the unrecovered

indices is bounded by: ∑
j∈[D]

Ejy
2
j ≤ C Err2(y, k).

Let E be the event that A(y) satisfies the (k, C)-sparse recovery guarantee for

y. Then, if I(E) is the indicator random variable for the event E,

E
g,A

[
∑
j∈[D]

Ejy
2
j | E] ≤ E

g,A
[(
∑
j∈[D]

Ejy
2
j)I(E)]/Pr

g,A
[E]

≤ 9C

8
E
g
[Err2(y, k)]

≤ 9C

8
Err2(x, k). (2.11)

Let qj = Eg,A
[
Ej
∣∣ E] denote the probability

(
over (D, h) projections

and A
)

that j /∈ supp(A(y)). Then for j ∈ [D] and any θ > 0,

E
g,A

[Ejy
2
j |E] ≥ Pr

[(
j /∈ U

)
∧
(
|yj| ≥ (qj/2)θ

) ∣∣∣ E] · θ2.

40

Observe that:

Pr
[(
j /∈ U

)
∧
(
|yj| ≥ θ

) ∣∣∣ E] ≥ 1− Pr
[
j ∈ U

∣∣∣ E]− Pr
[
|yj| < θ

∣∣∣ E].
Since yj ∼ N(0, θ2) we may use the gaussian anti-concentration inequality i.e.

Pr[|X| ≤ δθ] ≤ δ to get:

Pr
[(
j /∈ U

)
∧
(
|yj| ≥ θ

) ∣∣∣ E] ≥ 1− (1− qj)−
θ∥∥xh−1(j)

∥∥
2

.

Setting θ =
qj
2

∥∥xh−1(j)

∥∥
2
:

Pr
[(
j /∈ U

)
∧
(
|yj| ≥

qj
2

∥∥xh−1(j)

∥∥
2

) ∣∣∣ E] ≥ qj/2

and for all j ∈ [D],

E
g,A

[Ejy
2
j | E] ≥

q3
j

8

∥∥xh(−1)(j)

∥∥2

2
. (2.12)

Now, consider the U (t) = supp(A(y(t), k, C)) for t = 1, 2, 3 where

y(1), y(2), y(3) are independent (D, h) gaussian projections of x. Then,

E
[∑

j∈[D]:

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣∣∣ E1,E2,E3

]

=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· E[E

(1)
j · E

(2)
j · E

(3)
j | E1,E2,E3]

=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· E[E

(1)
j | E1] · E[E

(2)
j | E2] · E[E

(3)
j | E3]

=
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· q3

j

41

where the expectation is taken over g(1), g(2), g(3),A(y(1)),A(y(2)),A(y(3)). The

second equality follows from the independence of y(1), y(2), y(3). So, using (2.11)

and (2.12),

E
[∑

j∈[D]:

j /∈U(1)∪U(2)∪U(3)

∥∥xh−1(j)

∥∥2

2

∣∣ E1,E2,E3

]
≤
∑
j∈[D]

∥∥xh−1(j)

∥∥2

2
· q3

j

≤ 8
∑
j∈[D]

E
g,A

[Ejy
2
j I(E)]

≤ 9C Err2(x, k).

Lemma 2.8. Let z ∈ Rn and h : [n] → [D] be randomly chosen from a fully

independent family of hash functions where D ≤ n. Then, with probability

1− 2δ,

max
l∈[D]

[∑
i∈h−1(l)

z2
i

]
≤ 4

(
‖z‖2

2

D
+ 5 ‖z‖2

∞ log
(D · log(n/δ)

δ

))
.

Proof. Let βj = ‖z‖2
∞ · 2−j for all j ∈ Z and let t = O(log(n/δ)). Partition

[n] into t + 2 sets: Rj = {i ∈ [n] | βj+1 ≤ z2
i ≤ βj} for all 0 ≤ j ≤ t and

Rt+1 = {i ∈ [n] | z2
i ≤ βt+1}. Then, for a fixed Rj and l ∈ [D] we may apply

the Bernstein bounds (Theorem A.4) to get:

Pr
[∣∣Rj ∩ h−1(l)

∣∣ ≥ |Rj|
D

+ 4 log(1/δ) + 4

√
log(1/δ) |Rj|

D

]
≤ δ.

Taking a union bound over all R0, . . . , Rt and all l ∈ [D]:

Pr
[
∃j ∈ [t], l ∈ [D]

∣∣∣ ∣∣Rj ∩ h−1(l)
∣∣ ≥ |Rj|

D
+4 log

D · t
δ

+4

√
log(D·t

δ
) |Rj|

D

]
≤ δ.

42

The `2 mass from R0, . . . , Rt falling into any j ∈ [D] is bounded by:

t∑
j=0

βj

(|Rj|
D

+ 4 log(
D · t
δ

) + 4

√
log(D·t

δ
) |Rj|

D

)
≤ 2

t∑
j=0

βj
(|Rj|
D

+ 4 log(
D · t
δ

)
)

≤ 4
(‖z‖2

2

D
+ 4 log(

D · t
δ

)β0

)
= 4
(‖z‖2

2

D
+ 4 log(

D · t
δ

) ‖z‖2
∞
)

where the second inequality follows because
∑t

j=0 |Rj| βj ≤ 2
∑

i∈[n] z
2
i ≤

2 ‖z‖2
2.

Next, we bound contribution of Rt+1 to the `2 mass hashed to each

location. The total `2 mass in Rt+1 is
∥∥zRt+1

∥∥2

2
≤ βt+1 · n. So, the expected

amount of `2 mass in a given location l ∈ [D] is ≤ nβt+1/D. Using Markov’s

inequality, with probability 1− δ, we know that the `2 mass from Rt+1 hashed

to each location in [D] is ≤ n · ‖z‖2
∞ · 2−(t+1)/δ ≤ ‖z‖2

∞. So,

max
l∈[D]

[∑
i∈h−1(l)

z2
i

]
≤ 4

(
‖z‖2

2

D
+ 5 ‖z‖2

∞ log
(D · log(n/δ)

δ

))
.

Lemma 2.9. Let z ∈ Rn, k ≤ D ≤ n and h : [n] → [D] be randomly chosen

from a fully independent family of hash functions. Then, with probability 1−δ,

for all U ⊆ [D] :

Err2(zh−1(U), |U |+ k) ≤ ‖z‖2
2

|U |O(log(n/δ))√
kDδ

.

Proof. Consider all indices in the set J = {i ∈ [n] | z2
i ≥ ‖z‖

2
2 /L} where L =

√
kDδ. Observe that the expected number of collisions among these elements

43

under the hash function h is ≤
(
L
2

)
/D ≤ kδ/2. By Markov’s inequality, the

number of collisions is at most k with probability 1−(δ/2). So, with probability

1− δ/2:

∀U ⊂ [D],
∣∣J ∩ h−1(U)

∣∣ ≤ |U |+ k (2.13)

Suppose, we restricted ourselves only to the indices in the set J . Ob-

serve that ‖zJ‖2 ≤ ‖z‖2 and ‖zJ‖
2
∞ ≤ ‖z‖

2
2 /L. Applying Lemma 2.8, with

probability 1− δ/2:

max
l∈[D]

[∑
i∈J :h(i)=l

z2
i

]
≤ 4

(
‖z‖2

2

D
+

5 ‖z‖2
2

L
log
(4D log(4n/δ)

δ

))

= O

(
‖z‖2

2

O(log(n/δ))

L

)
(2.14)

So, with probability 1− δ, both (2.13) and (2.14) hold. Hence,

Err2(zh−1(U), |U |+ k) ≤ |U | ·
(
‖z‖2

2

O(log(n/δ))

L

)
≤ ‖z‖2

2

|U |O(log(n/δ))√
kDδ

Theorem 2.10. Suppose an algorithm that takes O(k logC(n
k
) log(1

δ
)·g(k)) lin-

ear measurements of its input where g(k) is a non-decreasing function in k and

outputs a k sparse vector that achieves (k, C) sparse recovery with probability

(1 − δ). Then, for R ≤ log log(n/k)/2 log log log(n) and C > 16, Algorithm

2.4.2 takes O(k5R(logC(n/k))1/R ·g(5Rk)) linear measurements of x ∈ Rn over

R adaptive rounds and outputs a vector that achieves (k, C) sparse recovery of

x with probability ≥ 3
4
.

44

Proof. In this proof, we will achieve (k, 16C) sparse recovery for all C > 1.

We may rescale C to get the theorem statement. We define

δr = 2−(r+3)

kr = k5r−1

Dr = krC
5(logC(n/k))r/R

Cr = C(logC(n/k))(r−1)/R

for r > 0 and S0 = [n]

In each round r ∈ {1, . . . , R − 1}, we use Algorithm 2.4.1 with these

parameters to get a subset Sr ⊆ Sr−1. We sample a random hash func-

tion h : Sr−1 → [Dr] and generate 3 independent (Dr, h)-gaussian hash pro-

jections y(1), y(2), y(3) of xSr−1 and perform HighSNR-Recover on each of

them with parameters (kr, Cr, δr/3). Let U (1), U (2), U (3) be supports of the

recovered vectors. Since HighSNR-Recover generates kr sparse output,∣∣U (1)
∣∣ , ∣∣U (2)

∣∣ , ∣∣U (3)
∣∣ ≤ kr. Let Ur = U (1) ∪ U (2) ∪ U (3) , and set Sr =

h−1(Ur) ⊆ Sr−1 to be the set of indices carried into the next round. So, if

we set z = xSr−1∩Hkr−1
(xSr−1

) and let U = Ur in Lemma 2.9:

Err2(zh−1(Ur), |Ur|+ kr−1) ≤ ‖z‖2
2√

Drδr/krO(log(n/δr))

≤ ‖z‖2
2

22(log(n))r/R

where the second inequality follows because log(n) = o(C2(logC(n))1/R) when

2r ≤ C2(logC(n))r/R and R ≤ log log(n)
2 log log log(n)

. Since z = xSr−1∩Hkr−1
(xSr−1

), we have

45

both ‖z‖2
2 =

∥∥∥xSr−1∩Hkr−1
(xSr−1

)

∥∥∥2

2
= Err2(xSr−1,kr−1) and Err2(zh−1(U), |U | +

kr) ≥ Err2(xh−1(U), |U | + kr−1 + kr−1). Since |U | ≤ 3kr−1 and 5kr−1 = kr, we

conclude:

Err2(xSr , kr) ≤
Err2(xSr−1 , kr−1)

C2(logC(n))r/R

If we successively apply Theorem 2.7 under the above parameters for rounds

1, . . . , R− 1, then for any r ∈ {1, . . . , R− 1}

E[
∥∥xSr − xSr+1

∥∥2

2
] ≤ Cr Err2(xSr , kr)

≤ Cr

C2(logC(n))r/R
Err2(xSr−1 , kr−1)

Since Err2(xSr−1 , kr−1) ≤ Err2(x, k) and we have set Cr = C(logC(n/k))(r−1)/R
,

E[
∥∥xSr − xSr+1

∥∥2

2
] ≤ 1

C(logC(n))r/R
Err2(x, k)

In the final round, we run HighSNR-Recover(xSR−1
, kR, CR) and find x̂ such

that
∥∥xSR−1

− x̂
∥∥2

2
≤ CR Err2(xSR−1

, kR). So,

E
[
‖x− x̂‖2

2

]
≤

R−1∑
r=1

E
[∥∥xSr−1 − xSr

∥∥2

2

]
+ E

[∥∥xSR−1
− x̂
∥∥2

2

]
≤

R∑
r=1

Cr Err2(xSr , kr)

≤ C Err2(xS1 , k1) +
R∑
r=2

1

C(logC(n))(r−1)/R
Err2(x, k)

≤ 2C Err2(x, k)

So, with probability ≥ 7/8, after R rounds ‖x− x̂‖2
2 ≤ 16C Err2(x, k).

In each round, we use independently call HighSNR-Recover(xSr−1 , kr, Cr)

46

thrice with failure probability δr/3 = 2−(r+3)/3 and condition on them being

successful. So, over R rounds all calls to HighSNR-Recover are successful

with probability ≥ 1−
∑R

r=1 δr = 1−
∑R

r=1 2−(r+3) = 7/8.

The total number of measurements over R rounds is bounded by:

R∑
r=1

3kr log(3/δr) · g(5rk) · (logCr−1
(Dr/k))

=
R∑
r=1

3kr log(3/δr) · g(5rk) · (logC(n/k))1/R

≤
R∑
r=1

3k · 5r · 2r · g(5rk)(logC(n/k))1/R

= O(5Rk(logC(n/k))1/R · g(5Rk))

So, the output of Algorithm 2.4.2 achieves (k, 16C) sparse recovery in R rounds

with probability ≥ 3/4 and uses O(5Rk(logC(n/k))1/R ·g(5Rk)) measurements.

If we rescale C by a factor of 16, we get the desired guarantee.

As a consequence of Theorem 2.10 and Theorem 2.6, we get the follow-

ing guarantee on our algorithm:

Corollary 2.11. For R ≤ log log(n/k)
log log log(n)

and C > 16, Algorithm 2.4.2 takes

O(k5R(logC(n/k))1/R · log∗(5Rk)) linear measurements of x ∈ Rn over R adap-

tive rounds and outputs a vector that achieves (k, C) sparse recovery of x with

probability ≥ 3
4
.

47

Chapter 3

Sparse Recovery under High SNR

Most sparse recovery literature has focused on the case where C = (1+

ε) for a small ε > 0 and in the non-adaptive case tight bounds on measurement

complexity are know. However, the exact measurement complexity for larger

approximation ratios i.e. C � 1 is an open question.

In this chapter1, we give upper bounds on the measurement complexity

for `2/`2-sparse recovery when C � 1. We prove bounds which match the

lower bound of [PW11, PW12]. Formally, we show that:

Theorem 3.1. Suppose C > 16. Then, there exists an algorithm that achieves

(k, C)-approximate `2/`2 sparse recovery with O(k logC(n
k
) log(1

δ
)) measure-

ments and with probability 1− δ. The running time of the recovery algorithm

is O(k polylog n).

The techniques we use to prove this theorem allow us to achieve a

somewhat stronger guarantee which we refer to as (k, C)-approximate `∞/`2

sparse recovery guarantee. This is also known as “heavy hitters”. Formally,

‖x− x∗‖2
∞ ≤

C2

k
min

k-sparse x′
‖x− x′‖2

2 . (3.1)

1The results presented in this chapter appear in [KP20].

48

We may compare this to the `2/`2 guarantee:

‖x− x∗‖2
2 ≤ C2 min

k-sparse x′
‖x− x′‖2

2 (3.2)

and notice that a vector that satisfies the `∞/`2 guarantee accurately recovers

every coordinate of x, whereas a vector that satisfies the `2/`2 guarantee only

recovers a vector such that the sum of errors is bounded.

It is known that any algorithm achieving (3.1) can achieve (3.2) (with

C →
√
C2 + 1) by thresholding the result to 2k coordinates. This guarantee

is also achievable with O(k log n) measurements using, for example, CountS-

ketch [CCF02]. We show that the `∞/`2 guarantee can be achieved with

O(k logC n) measurements.

Theorem 3.2. Suppose C > 16. Then, there exists an algorithm that achieves

(k, C)-approximate `∞/`2 sparse recovery with O(k logC(n) log(1
δ
)) measure-

ments and with probability 1− δ. The running time of the recovery algorithm

is O(k polylog n).

Our `∞/`2 algorithm is almost identical to our `2/`2 algorithm, only

differing in the last step. Whether this sample complexity is optimal—or if

O(k logC(n
k
)) is possible—is an open question even for constant C.

In Table 3.1, we list the various upper bounds and lower bounds for

high-SNR sparse recovery under both the `2/`2 and `∞/`2 guarantee.

49

Measurement Complexity Bound Paper Comment

`2/`2

Ω(k logC(n
k

)) [PW12]

O(k logC(n
k

) log∗(k) log(1
δ

)) [PW12]

O(k logC(n
k

) log(1
δ

)) Theorem 3.1

O(k logC(n
k

) + log(1
δ

)) [KP20] O(nk) recovery time

`∞/`2

Ω(k logC(n
k

)) [PW12] Implied by `2/`2 lower bound

Ω(k log(1
δ

)) [LNW18] when C = O(1)

O(k log(n) log(1
δ

)) [PW11] when C = O(1)

O(k logC(n) log(1
δ

)) Theorem 3.2

Table 3.1: Results for (k, C)-sparse recovery under the `2/`2 guarantee and
the `∞/`2 guarantee.

3.1 A Discussion of Previous Results

We denote the error of x ∈ Rn with respect to k-sparse vectors in Rn

as Err2(x, k) = mink-sparse x′ ‖x− x′‖2
2. We use S to denote the set of heavy

hitter indices in a vector x ∈ Rn i.e. S = {i ∈ [n] | |xi|2 > C2

k
Err2(x, k)}.

Our algorithm is similar to [PW12], which built on [GLPS10]. In

[GLPS10], the goal is to perform (k, 1 + ε)-approximate `2/`2 sparse recov-

ery. They run O(log(k)) iterations such that in each iteration, they identify

and peel off 3
4

fraction of the remaining heavy hitters.

In the next round, they perform the same process with parameters k
4

and ε. With these parameters, heavy hitters are indices i such that x2
i ≥

4 ε
k

Err2(x, k). So, some indices that were originally heavy hitters (e.g. i such

that x2
i ≈ 2 ε

k
Err2(x, k)) may be ignored in this iteration. However, the total

weight of heavy hitters “dropped” in this manner over all the iterations is

≤ εErr2(x, k). Since they focus on achieving an `2/`2 guarantee, these heavy

hitters may be ignored. [PW12] uses similar ideas with slightly more compli-

50

cated parameters. Their algorithm and analysis also allow for heavy hitters to

be dropped.

3.2 An Overview of Our Results

We will iteratively identify heavy hitters, estimate them and peel them

off similar to [PW12], [GLPS10] while ensuring that we never drop them. How-

ever, we stop after pruning the number of heavy hitters down to O(k
logC

) ele-

ments. Thereafter, performing (k
logC

, O(1))-approximate `∞/`2 sparse recovery

using an algorithm like [LNNT16] will allow us to identify all the remaining

heavy hitters using O(k
logC
· log(n)) = O(k · logC(n)) measurements in total.

Identify most heavy hitters in a round: In one round, given sparsity

parameter k and approximation parameter C > 2, we hash the indices [n] down

to [16k] buckets. Since there are at most k + k
C

heavy hitters, a heavy hitter

does not collide with any other heavy hitters with probability 7
8
. If the weight

from the tail (the non-heavy hitters) that lands in that bucket is≈ 1
k

Err2(x, k),

we can perform (1, C)-approximate recovery within a bucket and recover that

heavy hitter. So, we recover a set L of at most 16k elements(some of these are

heavy hitters and some are non-heavy hitters). The identification procedure

uses O(k logC(n
k
)) measurements.

Probability Amplification The locations of 7
8

fraction of the heavy hitters

are recovered in L with constant probability. We can amplify the success

51

probability by repeating this procedure log(1
δ
) times and constructing a set

containing only those elements that were recovered in more than half of the

attempts. Using Markov’s inequality, we get a set L of cardinality ≤ 32k that

contains more than 3
4

fraction of the heavy hitters with probability 1− δ.

Estimate elements in a round: We can then perform Count-Sketch with

O(log(128
δ

)) tables of size O(16k). This sketch gives us an estimate for all the

elements identified in L. Let vL ∈ Rn be a vector of these estimates. After

pruning these estimates off, we have a residual vector x′ ∈ Rn given by

x′ ← x− vL.

The Count-Sketch with O(log(128
δ

)) tables mis-estimates 1
128

fraction of the

identified elements with probability 1 − δ. So, the number of mis-estimated

elements is at most 32k · 1
128

= k
4
. The mis-estimation by the Count-Sketch

might estimate a non-heavy hitter as being heavy and when we peel it off, that

index might become heavy in x′. So, the total number of heavy hitters in the

residual for the following round is at most k
2
. So, in the following round the

top k′ = k
2

heaviest indices, of x′ contains the unrecovered heavy hitters in x′.

Keeping track of the heavy hitters: In the next round, we perform a

similar procedure to prune out the heavy hitters that we haven’t recovered.

If we perform the aforementioned identification and estimation procedures on

x′ with parameters k
2

and the same value of C, we risk dropping out elements

that are heavy hitters in x (similar to [GLPS10] and [PW12]). We would only

52

be recovering indices i such that ‖xi‖2
2 ≥

2C2

k
Err2(x, k) and might not recover

indices i′ whose weight is ‖xi′‖2
2 ≥

C2

k
Err2(x, k).

In order to get around this, we use a different SNR parameter C ′ =
√
C

and sparsity parameter k
2

in the next round. As a result, in the second round

we will find almost all coordinates larger than

2(C ′)2

k
Err2(x′,

k

2
) =

2C ′

k
Err2(x′,

k

2
)

≤ C2

k
Err2(x, k), (3.3)

which includes the original heavy hitters.

More formally, in round r we choose our SNR parameter Cr and the

sparsity parameter kr such that C2

k
Err2(x, k) ≥ Cr

kr
Err2(xr, kr) where xr is the

pruned vector in round r. By doing this we ensure that the set of (k, C)-heavy

hitters in x that have yet to be pruned out are also (kr, Cr)-heavy hitters in

xr.

Total Number of Measurements and Total Error: We carefully set

parameters δr, kr and Cr such that the number of measurements performed in

round r is geometrically decreasing in r. So, the total number of measurements

in the first phase is O(k logC(n
k
) log(1

δ
)). We also ensure that failure probability

can decreases such that
∑

r δr ≤ δ.

At the end of round log logC, we will have peeled off all but k
logC

heavy

hitters. We perform the (k
logC

, O(1)) approximate `∞/`2 sparse recovery algo-

53

rithm of [LNNT16] to peel off remaining heavy hitters with O(k logC(n) log(1
δ
))

measurements.

Comparison to previous work. The above approach is very similar to

[GLPS10] and [PW12], but with different settings of parameters. The two

differences are (I) because C � 1, we can iterate C →
√
C as in (3.3) and

still find all heavy hitters while
∏

r Cr remains bounded; and (II) once the

residual is only k
logC

–sparse, we clean up with a difference O(1)-approximate

algorithm. These differences also allow us to improve the analysis to get the

`∞/`2 guarantee.

3.3 Proof of Our Upper Bounds

Recall, that we define the error of x ∈ Rn with respect to k-sparse

vectors in Rn as

Err2(x, k) = min
k-sparse x′

‖x− x′‖2
2

and the heavy hitter indices in a vector x ∈ Rn as:

S =
{
i ∈ [n] | |xi|2 ≥

C2

k
Err2(x, k)

}
.

The core of our algorithm is the following (1, C) approximate sparse recovery

algorithm. Given x ∈ Rn, the indices [n] are hashed using a pairwise inde-

pendent hash function, h : [n]→ [C], into C buckets. If x has a heavy hitter,

due to the high SNR, we will be able to recover the hash location of the heavy

hitter. This gives us logC bits of information about the index of the heavy

54

hitter. We need to learn log n bits of information about the heavy hitter to

learn the index exactly. So, we can learn the exact index of the heavy hitter

using O(logC(n
k
)) linear measurements.

procedure IdentifySingle(x)
r ← logC(n) + log(1

δ
)

for i ∈ [r] do
Pick a pairwise independent hash functions hi : [n] → [C] and si :

[n]→ {±1}
Measurement 1: y2i ←

∑
j∈[n] xj · si(j) · hi(j)

Measurement 2 :y2i+1 ←
∑

j∈[n] xj · si(j)
αi ← Round(y2i

y2i+1
) for i ∈ [r]

end for
cj ← |{i ∈ [r] | hi(j) = αi}| for j ∈ [n]
S ← {j ∈ [n] | cj ≥ 5r

8
}

if |S| = 1 then
return j ∈ S

else
return ⊥

end if
end procedure

Algorithm 3.3.1: 1-sparse identification: In round i, hash items down to C
buckets and recover the identity of the buckets using measurements y2i and
y2i+1. Select the element that whose hash value has been the most over r
rounds

We then use an algorithm that recovers most coordinates, using the

desired number of measurements.

55

procedure IdentifyMost(x, k, δ)
r ← log(1

δ
)

for r ← [R] do
Pick pairwise independent hash function h : [n]→ [16k]
Lr ← {IdentifySingle(xh−1(i)) | i ∈ [16k]}

end for
cj ← |{r | j ∈ Lr}| for j ∈ [n]
L← {j ∈ [n] | cj ≥ R

2
}

return L
end procedure

Algorithm 3.3.2: Identify most heavy coordinates. In each round r, hash
indices [n] into [16k] buckets. Identify a single coordinate if it is heavy within
that bucket. Output a list of indices that have been identified in more than
5r
8

rounds.

The estimation algorithm EstimateMost runs Count-Sketch with log(1
δ
)

hash-tables of size O(k
ε
) where ε = 1

2
.

Lemma 3.3. With O(k logC(n
k
) log(1

δ
)) measurements, IdentifyMost returns a

set L of size 32k such that each j ∈ S has j ∈ L with probability 1− δ.

Lemma 3.4. (Lemma 10 from [PW12]) The result x̂L of IdentifyMost followed

by EstimateMost satisfies

Err2(x− x̂L, fk) ≤ C2 Err2(x, k)

with probability 1− δ and uses O(k logC(n
k
) log(1

fδ
) + k log(1

fδ
)) measurements.

These lemmas were proven in [PW12]. With O(k logC(n
k
) log(64

fδ
)) mea-

surements, IdentifyMost recovers a set of elements L of cardinality 32k such

that all but fk
2

elements of S are contained in L. Furthermore, performing

56

Count-Sketch with O(k log(128
fδ

)) measurements yields estimates for all but fk
4

elements to within εErr2(x, k). Lemma 3.4 follows by this bound on the total

weight of these elements.

Observe that the total number of elements that are either mis-estimated

and become heavy hitters or were un-recovered is bounded by fk. We use this

crucial observation in our proof of Lemma 3.6.

We show that a more careful analysis and choice of parameters can yield

two improvements over [PW12]: getting the optimal sample complexity, and

getting an `∞/`2 bound. We carefully tune the relevant parameters — the

sparsity(kr), failure probability(δr), and approximation ratio(Cr) — so that

the total failure probability, final approximation ratio, and total number of

measurements are bounded as desired.

57

procedure RecoverAll(y, δ)
k0 ← k, δ0 ← δ

16
, x̂(1) ← 0, C0 = C2−1

, R = log logC
for r ← [R] do

y′ ← y(r) − A(r)x̂(r)

L(r) ← IdentifyMost(y′, kr, δr)
v̂(r) ← EstimateMost(y′, kr, δr, L

(r))
x̂(r+1) ← x̂(r) + v̂(r)

δr+1 ← δ0 · 2−r+1, fr+1 ← 1
16·8r , Cr+1 ← C2−(r+1)

, kr+1 ← fr+1k.
end for
y′ ← y(R+1) − A(R+1)x̂(R+1)

v̂(R+1) ← ExpanderSketch(y′, kR+1, δ0)
x̂out ← x̂(R+1) + v̂(R+1)

return x̂out
end procedure

Algorithm 3.3.3: Identify all heavy coordinates. Each of the first log logC
rounds identifies a large number of the heavy hitters and peels them off until
there are only k

logC
heavy hitters remaining. ExpanderSketch[LNNT16] is used

to peel off the rest.

Matrices A(r) for r = 0 . . . , R, are the measurement matrices chosen

by IdentifyMost and EstimateMost and the matrix A(R+1) is the measurement

matrix of ExpanderSketch2. The algorithm ExpanderSketch is the recovery al-

gorithm of [LNNT16] which achieves (k,O(1)) `∞/`2 with probability 1 − δ

using O(k log(n) log(1
δ
)) linear measurements. We will see later that this

cleanup round requires O(k logC(n) log(1
δ
)) measurements and does not match

the lower bound of [PW12]. However, for an `2/`2 sparse recovery guarantee,

the final cleanup round need not achieve an `∞/`2 guarantee and we may use

the recovery algorithm of [GLPS10] instead of ExpanderSketch to achieve a

2Note: While we describe the algorithm in an iterative fashion over rounds, the actual
measurement matrices are chosen non-adaptively

58

tight upper bound of O(k logC(n
k
) log(1

δ
)) .

First, we show that the number of measurements made by our algorithm

is O(k logC(n)).

Lemma 3.5. The RecoverAll algorithm uses O(k logC(n) log(1
δ
)) linear mea-

surements.

Proof. The number of measurements made in round r is kr logCr(
n
kr

) log(16
δr

).

So, the total number of measurements made in rounds 0, . . . , R is:

R∑
r=0

kr logCr(
n

kr
) log(

16

δr
)

=
R∑
r=0

k

16 · 8r
· logC(

n

kr
)2r · log(

1

δ
) +

R∑
r=0

k

16 · 4r
· logC(

n

k
)2r · (r + 5)

≤ k logC(
n

k
) log(

1

δ
)

R∑
r=0

r + 5

16 · 2r

= O(k logC(
n

k
) log(

1

δ
)).

The number of measurements in the final round is:

kR+1 log(n) log(
1

δ0

) =
k

logC
log(n) log(

1

δ
)

= O(k logC(n) log(
1

δ
)).

So, the total number of measurements is O(k logC(n) log(1
δ
)).

In order to get an `∞/`2 guarantee, we keep track of the heavy hitters

and show that all of them will have been peeled off by the final round.

59

Lemma 3.6. RecoverAll achieves the C-approximate `∞/`2 guarantee with

probability 1− δ.

Proof. Our proof keeps track of the (k, C)-heavy hitters in round r i.e. :

Ŝr =
{
j ∈ [n] | (x− x(r))2

j ≥
C2

k
Err2(x, k)

}
.

In each round r ∈ [R], we recover all but 1
8

fraction of the (kr, Cr) ‘local’ heavy

hitters in that round. The set of (kr, Cr) heavy hitters in round r is defined

as:

Sr =
{
j ∈ [n] | (x− x(r))2

j ≥
C2
r

kr
Err2(x− x(r), k)

}
.

So, it suffices to show that Ŝr ⊆ Sr for each r ∈ [R + 1]. Thereafter, all

elements in ŜR+1 will be recovered by ExpanderSketch. First, observe that in

particular round r, Lemma 3.4 telescopes and gives us

Err2(x− x̂(r), kr) ≤ C
∑r+1
j=1 2−j Err2(x, k).

Using Corollary 3.3, we know that the number of (kr, Cr) heavy hitters that are

not recovered is at most fr
16
kr with probability 1− δr

2
. The number of elements

that are mis-estimated by EstimateMost is at most fr
16
kr with probability 1− δr

2
.

All other elements have `2 weight ≤ C2
r

kr
Err2(x − x̂(r), kr). So, any element in

Ŝr+1 will be in the top kr+1 = 1
8
kr coordinates of (x − x̂(r)). These elements

60

are also in Sr+1 because:

Cr+1

kr+1

Err2(x− x̂(r), kr+1) ≤ Cr+1

kr+1

Err2(x, k)
r∏
i=1

Ci

≤ 1

kfr+1

Err2(x, k)
r+1∏
i=1

C−2i+1

≤ C
1
2 (logC)3

k
· Err2(x, k)

≤ C2

k
Err2(x, k)

where the second inequality follows from the definitions of the quantities

Cr, kr, fr and the third inequality follows by observing that R ≤ log logC

implies that 1
fr
< (logC)3. Further,

∏i
r=1C

−2r+1 ≤ C
1
2 .

So, in each round r ∈ [R + 1], we have Ŝr ⊆ Sr. Consequently, ŜR+1

has at most kR+1 elements and all of them are (kR+1, O(1)) heavy. So, they

will be identified and recovered in the final clean-up round with probability

1 − δ′. The failure probability of the entire procedure can now be bounded

by the probability that elements of Ŝr are not (kr, Cr) heavy for some round

r ∈ [R] or ExpanderSketch fails:

Pr[RecoverAll fails]

≤ Pr[∃i ∈ [R],RecoverAll fails in round i] + Pr[ExpanderSketch fails]

≤
R∑
i=0

2δi + δ0

≤ 2δ0 ≤ δ.

So, RecoverAll achieves (k, C)-approximate `∞/`2 with probability 1− δ.

61

The proof of Theorem 3.2 follows from Lemma 3.6 and Lemma 3.5.

Also, observe that for the first R rounds, the computation per measurement

is O(1) and hence the time complexity for those rounds is O(k logC(n
k
) log(1

δ
))

and the time complexity for the final round is O(kpolylog(n, 1
δ
)). So, the time

complexity of RecoverAll is O(kpolylog(n, 1
δ
)).

We also claimed in Theorem 3.1 and in the preceding section that the

same algorithm using [GLPS10] in the cleanup round achieves `2/`2 guarantee

using O(k log(n
k
) log(1

δ
)) linear measurements.

Proof of Theorem 3.1. Observe that in Lemma 3.6 after the first R rounds fail

to recover at most kR+1 = k
logC

elements which are (kR+1, O(1)) heavy in x−

x̂(r). At this stage we can replace the final round that applies ExpanderSketch

in Algorithm 1 with the `2/`2 recovery algorithm of [GLPS10] to obtain an

(k
logC

, O(1)) approximate `2/`2-recovery of x− x̂R+1. So, this implies a (k, C)

approximate `2/`2-recovery of x. The measurement complexity in the cleanup

round will be

O(kR+1 log(
n

kR+1

) log(
1

δ
)) = O(k logC(

n

k
) log(

1

δ
))

and from the proof of Lemma 3.5, the first R rounds use O(k logC(n
k
) log(1

δ
))

measurements. So, the total measurement complexity is O(k logC(n
k
) log(1

δ
)).

62

Chapter 4

Deterministic L2 Heavy Hitters in the

Insertion-Only Model

In this chapter, we study the `2-heavy hitters problem1. This problem

is closely related to the sparse recovery problem and we use communication

complexity techniques here to prove lower bounds.

4.1 Introduction to Streaming Algorithms and Heavy
Hitters

A data stream is a sequence of data that is too large to be stored in

memory. Some examples of this include message or event logs on the internet,

sensor data from autonomous vehicles and scientific streams (in genomics and

astronomy). In such scenarios, the goal is to compute a function of the data

without having to store the data on disk. This has led to the study of the

streaming model of computation.

In the streaming model, we parse a sequence of elements a1, . . . , am

where each element is drawn from a universe U = [n]. The goal is to compute

a function of this data by parsing this sequence a few times.

1The results presented in this chapter appear in [KPW20].

63

Clearly, one could parse the sequence and store it on disk and compute

the function. This, however, is not practically feasible. For example, when

parsing logs of internet traffic, we might need to parse petabytes of data on a

machine that has a few gigabytes of memory. The main goal in the streaming

model is to minimize the space complexity of our algorithms.

One of the most fundamental problems in data streams is the heavy

hitters problem (also referred to as frequent elements or top-k elements). The

goal here is to find a list of size at most k that describes the elements that

occurred with high frequency in the stream. In this chapter, we will restrict

ourselves to the problem of `2-heavy hitters which is defined as follows:

Definition 4.1.1. Given a stream of data a1, . . . , am ∈ [n], let f ∈ Rn be

the frequency vector where fi denotes the number of occurrences of i in the

stream. Then, i ∈ [n] is an ε-`2-heavy hitter if:

|fi| ≥ ε ‖f‖2 .

Note the similarity between this guarantee and the `∞/`2 guarantee.

The sparse recovery algorithms discussed in Chapters 2 and 3 may be used

in streaming algorithms as well. For algorithms that are allowed only 1 pass

over the stream, we may use non-adaptive sparse recovery algorithms and for

multi-pass algorithms, adaptive sparse recovery algorithms may be used.

A common approach to solving streaming problems is to use a linear

sketch. In the case of the heavy hitters problem, the sketching algorithm stores

64

a linear sketch A · f of the frequency vector f . There is a rich literature on

sketching algorithms to solve streaming problems.

It is known that any deterministic compressed sensing algorithm that

achieves an `2/`2 guarantee must use Ω(n) linear measurements [CDD09]. In

[KPW20], we showed that this lower bound holds even for the `2-heavy hitters

problem in the insertion-only model.

The best known algorithm for the `2-heavy hitters problem in the in-

sertion only model is the Misra-Gries algorithms[MG82]. This deterministic

algorithm finds all the ε-`1-heavy hitters using 1
ε

counters. Since all ε-`2-heavy

hitters are ε√
n
-`1-heavy hitters, all ε-`2-heavy hitters can be recovered using

O(
√
n
ε

) counters (or O(
√
n
ε

logm) bits).

The Misra-Gries algorithms[MG82] is a non-linear algorithm and hence

the lower bound of [KPW20] does not apply. We show that a lower bound of

Ω(
√
n
ε

) bits applies for any algorithm that solves the `2-heavy hitters problem

in the insertion only model.

Our Results: We show that this lower bound holds using a reduction from a

communication complexity problem which we call Mostly Set Disjointness (or

MostlyDISJ). This problem is a generalization of the multi-party Set Disjoint-

ness problem. Set Disjointness is a well-studied problem both in the two-party

model [SK87] and more recently in the context of multi-party communica-

tion models[BEO+13, BO15]. We prove lower bounds on the communication

65

complexity of Mostly Set Disjointness by using techniques which were first

developed in [BJKS04].

Thereafter we describe a reduction from MostlyDISJ to the `2-heavy

hitters problem and this reduction allows us to infer a lower bound on the

space complexity of streaming algorithms for `2-heavy hitters.

The results proven in this chapter resemble the results in [KPW20]

where we prove lower bounds on the communication complexity of Mostly Set

Disjointness problem with δ-error. In this chapter we prove a lower bound

when δ = 0 using simpler techniques.

4.2 Communication Complexity Lower Bound

In this section, we prove lower bounds on the deterministic multi-

party communication complexity of the Mostly Set Disjointness problem. We

use techniques from communication complexity in order to prove these lower

bounds.

4.2.1 Preliminaries

Information Theoretic Measures We use the following measures of dis-

tance between distributions in our proofs.

Definition 4.2.1. Let P and Q be probability distributions over the same

countable universe U. The total variation distance between P and Q is defined

66

as:

dTV(P,Q) =
1

2
‖P −Q‖1

and the squared Hellinger distance between P and Q is defined as:

h2(P,Q) = 1−
∑
x∈U

√
P (x) ·Q(x) =

1

2
·
∑
x∈U

(√
P (x)−

√
Q(x)

)
.

In this chapter, we will sometimes abuse notation and consider dis-

tances between random variables instead of the underlying distributions.

Lemma 4.1. For any two probability distributions P and Q, the Hellinger and

total variation distances are related in the following manner:

h2(P,Q) ≤ dTV(P,Q) ≤ h(P,Q) ·
√

2− h2(P,Q) ≤ 1.

Multi-party Communication Model This model is a generalization of

the more well-known notion of two-party communication. We consider t-ary

functions F : X1 × X2 × · · · × Xt → Z. There are t parties (or players)

who receive inputs X1, . . . , Xt which are jointly distributed according to some

distribution η. In any protocol π, players speak in a particular order. The

message of player i is a function of the messages of the previous players, his

input and randomness i.e. mi = Mi(Xi,m1, . . . ,mi−1, Ri). The final player’s

message is the output of the protocol.

In this model of communication, every player’s message is visible to

every other player. This is more commonly known as the blackboard model of

communication.

67

The communication cost of a multi-party protocol π is the sum of the

lengths of the individual messages ‖π‖ =
∑
|Mj|.

The deterministic communication complexity of the function f is the

cost of the deterministic protocol of smallest communication cost that com-

putes the function and is denoted by D(f).

A protocol π is a δ-error protocol for the function f if for every input

x ∈ L, the output of the protocol equals f(x) with probability 1− δ.

The randomized communication complexity of f , denoted Rδ(f), is the

cost of the cheapest randomized protocol that computes f correctly on every

input with error at most δ over the randomness of the protocol.

The distributional communication complexity of the function f for error

parameter δ is denoted as Dδ
µ(f). This is the communication cost of the

cheapest deterministic protocol which computes the function f with error at

most δ under the input distribution µ.

By Yao’s minimax theorem, Rδ(f) = maxµD
δ
µ(f) and hence it suffices

to prove a lower bound on the distributional communication complexity for a

hard distribution µ.

In this chapter, instead of bounding the deterministic communication

complexity, we bound the randomized communication complexity of protocols

that do not err. Note that since every deterministic protocol for f is also a

0-error randomized protocol, D(f) ≥ R0(f).

68

Conditional Information Complexity and Direct Sum Theorem Our

lower bound on the randomized communication complexity will use the notion

of conditional information complexity and the direct sum theorem of [BJKS04].

We define some of these terms here:

Definition 4.2.2. Let π be a randomized protocol whose inputs belong to K ⊆

X1 × X2 . . .× Xt. Suppose ((X1, X2, . . . , Xt), D) ∼ η where η is a distribution

over K × D for some set D. The conditional information cost of π with

respect to η is defined as:

cCostη(π) = I(X1, . . . , Xt; π(X1, . . . , Xt) | D).

Definition 4.2.3. The δ-error conditional information complexity of f

with respect to η, denoted CICn,δ(f) is defined as the minimum information

cost of a δ-error protocol for f with respect to η.

Under these definitions the conditional information complexity of a

function with respect to any valid distribution lower bounds the randomized

communication complexity of that function. We may prove lower bounds on

conditional information complexity with respect to a hard distribution in order

to prove randomized communication complexity lower bounds.

Proposition 4.2 (Corollary 4.7 of [BJKS04]). Let f : K → {0, 1}, and let η

be a distribution over K×D for some set D. Then, Rδ(f) ≥ CICη,δ(f).

The Direct Sum Theorem allows us to reduce a t-player communication

problem with n-dimensional input (to each player) to a t-player communication

69

problem with a 1-dimensional input. This theorem applies only when the

function is decomposable and the input distribution is collapsing. We define

both these notions here.

Definition 4.2.4. Suppose K ⊆ X1×X2× . . .×Xt and Kn ⊆ Kn. A function

f : Kn → {0, 1} is g-decomposable with primitive h : K → {0, 1} if it can

be written as:

f(X1, . . . , Xt) = g(h(X1,1, . . . , X1,t), . . . , h(Xn,1, . . . , Xn,t)).

for g : {0, 1}n → {0, 1}.

Definition 4.2.5. Suppose K ⊆ X1×X2× . . .×Xt and Kn ⊆ Kn. A distribu-

tion η over Kn is a collapsing distribution for f : Kn → {0, 1} with respect

to h : K→ {0, 1} if for all Y1, . . . , Yn in the support of η, for all y ∈ K and for

all i ∈ [n],

f(Y1, . . . , Yi−1, y, Yi+1, . . . , Yn) = h(y).

We state the Direct Sum Theorem for conditional information complex-

ity below. The proof of this theorem in [BJKS04] applies to the blackboard

model of multi-party communication. We state this in the most general form

here.

Theorem 4.3 (Multi-party version of Theorem 5.6 of [BJKS04]). Let K ⊆

X1×X2× . . .Xt and let Kn ⊆ Kn. Suppose that the following conditions hold:

(i) f : Kn → {0, 1} is a decomposable function with primitive h : K →

{0, 1},

70

(ii) ζ is a distribution over K×D, such that for any d ∈ D the distribution

(ζ | D = d) is a product distribution,

(iii) η = ζn is a product distribution over Kn ×Dn, and

(iv) the marginal probability distribution of η over Kn is a collapsing distri-

bution for f with respect to h.

Then,

CICη,δ(f) ≥ n · CICζ,δ(h).

The Mostly Set Disjointness Problem:

Definition 4.2.6. Denote by MostlyDISJn,t, the multi-party Mostly Set Dis-

jointness problem in which every player j ∈ [t] receives an n-dimensional input

vector Xj = (Xj,1, . . . , Xj,n) where Xj,i ∈ {0, 1} and the input is guaranteed

to fall into one of the following two cases:

• NO: For all i ∈ [n],
∑

j∈[t] Xj,i ≤ 1.

• YES: There exists a unique i ∈ [n] such that
∑

j∈[t] Xj,i = t
2

and for all

other i′ 6= i,
∑

j Xj,i′ ≤ 1.

At the end of the protocol, the final player must output 1 if the input is in the

YES case and 0 in the NO case.

Let L ⊂ {0, 1}t be the set of valid inputs along one index in [n] for

MostlyDISJn,t i.e. the set of elements in x ∈ {0, 1}t with
∑

j∈[t] xj ≤ 1 or

71

∑
j∈[t] xj = t

2
. Let Ln ⊂ Ln denote the set of valid inputs to the MostlyDISJn,t

function.

Observe that MostlyDISJn,t : Ln → {0, 1} can be written as:

MostlyDISJn,t(X1, . . . , Xt) =
∨
i∈[n]

Ft(X1,i, . . . , Xt,i)

for the function Ft : L→ {0, 1} defined as:

Ft(x1, . . . , xt) =
∨
S⊆[t]

|S|= t
2

∧
j∈S

xj.

In particular, MostlyDISJn,t is OR-decomposable into n copies of Ft.

In order to prove a lower bound on the conditional information complex-

ity, we need to define a “hard” distribution over the inputs to MostlyDISJn,t.

We define the distribution η over Ln ×Dn where D = [t] as follows:

• For each i ∈ [n] pick Di ∈ [t] uniformly at random and sample XDi,i

uniformly from {0, 1} and for all j′ 6= Di set Xj′,i = 0.

• Pick I ∈ [n] uniformly at random and Z ∈ {0, 1}.

• If Z = 1, pick a set S ⊆ [t] such that |S| = t
2

uniformly at random and

for all j ∈ S set Xj,I = 1 and for all j /∈ S, set Xj,I = 0.

Let µ0 denote the distribution for each i ∈ [n] conditioned on Z = 0. For any

d ∈ [t], when D = d, the conditional distribution (µ0 | D = d) over L is the

uniform distribution over {0, ed} and hence a product distribution. Let η0 be

the distribution η conditioned on the event that Z = 0. Clearly, η0 = µn0 .

72

This definition of MostlyDISJn,t and the hard distribution η0 allows us

to apply the Direct Sum theorem (Corollary 4.3). This will enable us to prove

a lower bound on the conditional information complexity of the simpler single

coordinate multi-party problem, Ft, and as a consequence obtain a lower bound

on the conditional information complexity of MostlyDISJn,t.

Corollary 4.4 (of Theorem 4.3). Consider MostlyDISJn,t with input distribu-

tion η0 over Ln×Dn and Ft with input distribution µ0 over L×D. We have the

direct sum relation between the respect conditional information complexities:

CICη0,δ(MostlyDISJn,t) ≥ n · CICµ0,δ(Ft)

Proof. Observe that

(i) MostlyDISJn,t is OR-decomposable by Ft,

(ii) µ0 is a distribution over L × [t] such that the marginal distribution

(µ0 | D = d) over the L is uniform over {0, ed} (and hence a product

distribution),

(iii) η0 = µn0 , and

(iv) since MostlyDISJn,t is OR-decomposable and η0 has support only on in-

puts in the NO case, η0 is a collapsing distribution for MostlyDISJn,t with

respect to Ft.

We may apply Theorem 4.3 and conclude:

CICη0,δ(MostlyDISJn,t) ≥ n · CICµ0,δ(Ft)

73

4.2.2 Proof of Our Lower Bound

We prove a lower bound on the deterministic communication complex-

ity of this problem:

Theorem 4.5.

D(MostlyDISJn,t) = Ω(n).

As we stated earlier, we prove a lower bound on the randomized commu-

nication complexity of computing MostlyDISJn,t with 0-error. Since R0(f) ≤

D(f), this implies a lower bound on the deterministic communication com-

plexity of MostlyDISJn,t.

Using Proposition 4.2, we know that to prove R0(MostlyDISJn,t) ≥ Ω(n)

it is sufficient to prove that CICη0,0(MostlyDISJn,t) ≥ Ω(n). Instead we prove

that CICµ0,0(Ft) and Theorem 4.5 follows by an application of the Direct Sum

Theorem (Corollary 4.4).

In order to lower bound the CICµ0,0(f), we need show a lower bound

on cCostµ0(π) for every π that does not err. Using the connection between

conditional mutual information and Hellinger distance established in [BJKS04]

(Lemma 6.2) we know that:

cCostµ0(π) = I(π(X1, . . . , Xt);X1, . . . , Xt | D) ≥ E
i
[h2(πei , π0)]

where πx denotes the distribution of the transcript of the protocol π on input

x.

74

Instead of bounding this expectation, we bound the sum of total-

variation distance (denoted dTV) of the same distributions.

Lemma 4.6. Consider any n-player communication protocol π where each

player i has input Xi ∈ {0, 1} and l messages are sent in the protocol, such

that for any set S with |S| = k, dTV(πeS , π0) = 1, then:

n∑
i=1

dTV(πei , π0) ≥ n− k + 1.

Proof. We prove the theorem using induction on n, l and k.

Base Case: When k = 1 for any n, observe that dTV(πei , π0) = 1 for all

i ∈ [n] by supposition. So,
∑n

i=1 dTV(πei , π0) = n− k + 1.

Induction: Let n = n′, k = k′ and l = l′ and suppose n′ players speak in

the order i1, i2, · · · , il′ and for any set S such that |S| = k, dTV(πeS , π0) = 1.

We say that a message mi sent by player i is ambiguous if it could be sent

when Xi = 0 or Xi = 1. Let ‘E’ denote the event that mi1 is ambiguous and

p := Pr[E | Xi1 = 0]. We prove the claim under two cases:

Case 1 : Player i1 does not speak again.

Using the definition of p note that dTV(πei1 , π0) ≥ 1− p.

Suppose Xi1 = 0 and mi1 is ambiguous. Note that π′ = π | mi1 is

a protocol in which for all S ′ ⊆ [n] \ i1 such that |S ′| = k − 1, we must

have dTV(π′eS′ , π0) = 1 (else dTV(πeS′∪i1 , π0) < 1 and the lemma condition

75

is contradicted). We may now apply the induction hypothesis to π′ with

n = n′ − 1, k = k′ − 1 and l = l′ − 1 and we get:

∑
i∈[n]
i 6=i1

dTV(πei , π0 | E) ≥ (n′ − 1)− (k′ − 1) + 1 = n′ − k′ + 1.

When Xi1 = 0 and mi1 is unambiguous, π′ = π | mi1 is a protocol with

n = n′− 1 players, k = k′ and l = l′− 1 where the lemma conditions hold. We

may apply the induction hypothesis to obtain:

∑
i∈[n]
i 6=i1

dTV(πei , π0 | E) ≥ (n′ − 1)− (k′) + 1 = n′ − k′.

Now we have

∑
i∈[n]
i 6=i1

dTV(πei , π0) =
∑
i∈[n]
i 6=i1

E
mi1

dTV(πei , π0 | mi1)

=
∑
i∈[n]
i 6=i1

dTV(πei , π0 | E)× Pr[E] +
∑
i∈[n]
i 6=i1

dTV(πei , π0 | E)× Pr[E]

≥ p(n− k + 1) + (1− p)(n− k)

= n− k + p.

As desired the sum of the total variation distances is:

∑
i∈[n]

dTV(πei , π0) = dTV(π{i1}, π0) +
∑
i∈[n]
i 6=i1

dTV(πei , π0)

≥ (1− p) + (n− k + p)

= n− k + 1.

76

Case 2 : Player i1 speaks again in the protocol.

If Xi1 = 0 and mi1 is ambiguous, the induction hypothesis still holds for π | mi1

with n = n′, k = k′ and l = l′ − 1. So,
∑n

i=1 dTV(πei , π0 | E) ≥ n′ − k′ + 1.

Suppose Xi1 = 0 and mi1 is unambiguous. We define π′ to be a protocol

in which player i2 simulates i1 in the protocol π | mi1 . Now, the induction

hypothesis holds for π′ with n = n′ − 1, k = k′ and l ≤ l′ − 1. Hence

n∑
i=1

dTV(πei , π0 | E) = dTV(πei1 , π0 | E) +
∑
i∈[n]
i 6=i1

dTV(π′ei , π
′
0)

≥ 1 + (n′ − k′).

So we have
∑n

i=1 dTV(πei , π0) ≥ n′ − k′ + 1 and we have proven the claim for

all n, k, l using induction.

We know that any protocol which computes Ft with 0 error must have

dTV(πeS , π0) = 1 for all S ⊆ [t] such that |S| = t
2
. Using Lemma 4.6:

t∑
i=1

dTV(πei , π0) ≥ t− t

2
+ 1

=
t

2
+ 1.

Since dTV(P,Q) ≤ 1, we know that:

|{i ∈ [t] | dTV(πei , π0) ≤ 1/4}| ≤ 2t/3.

From Lemma 4.1 we know that for all P,Q, h(P,Q) ≥ dTV(P,Q)√
2

. Hence∣∣∣∣{i ∈ [t] | h(πei , π0) ≥ dTV(πei , π0)√
2

>
1

4
√

2
}
∣∣∣∣ > t/3.

77

Hence,
t∑
i=1

h2(πei , π0) >
t

3
· 1

32
=

t

96
.

So, we get a lower bound on the conditional information cost of any protocol

for Ft:

Corollary 4.7. Suppose π is a t-player 0-error randomized protocol for Ft.

Then,

cCostµ0(π) ≥ E
i

[
h2(πei , π0)

]
= Ω(1).

This corollary together with the Direct Sum theorem implies a lower

bound on the deterministic communication complexity of MostlyDISJ.

Proof. (of Theorem 4.5)

D(MostlyDISJn,t) ≥ R0(MostlyDISJn,t)

≥ CICη0,0(MostlyDISJn,t)

≥ n · CICµ0,0(Ft)

≥ Ω(n)

where the first equality uses the fact that all deterministic algorithms are also

randomized, the second inequality uses Proposition 4.2, the third inequality

uses Corollary 4.4 and the fourth inequality uses Corollary 4.7 and the defini-

tion of conditional information complexity.

78

4.3 Reduction to L2 Heavy Hitters

Now we show that a lower bound for the `2-heavy hitters problem fol-

lows using reductions from the Mostly Disjointness problem and the commu-

nication lower bound.

Definition 4.3.1. In the ε-`2-heavy hitters problem, we are given ε ∈ (0, 1)

and a stream of items a1, . . . , am where ai ∈ [n]. If fi denotes the frequency of

item i in the stream, the algorithm should output a list of all elements j ⊆ [n]

such that

fj ≥ ε ‖f‖2 .

Theorem 4.8. Given ε ∈ (1√
n
, 1

2
), any deterministic r-pass insertion-only

streaming algorithm for ε-`2-heavy hitters must have space complexity of Ω(
√
n
rε

)

bits.

Proof. Let A be a deterministic r-pass streaming algorithm for ε-`2-heavy

hitters in the insertion-only model. We describe a multi-party protocol to de-

terministically solve the Mostly Set Disjointness problem i.e. MostlyDISJn,4ε√n

that uses the A. The players simulate a stream which updates a vector x ∈ R2n.

Instead of starting with 02n (as is the case with most streaming algorithms),

the protocol starts off with a frequency vector defined as follows.

f0 =



0
...
0
1
...
1



nn

79

Each player performs an update f ← f + δi to the vector and passes the state

of A to the next player. The update vector δi that is processed by player i is

just their input xi padded to length 2n.

δ =


xi

0
...
0


Observe that if the input to the players is a NO-instance of MostlyDISJn,4ε√n,

then the final vector f ′ in the turnstile stream consists of 0-1 entries with at

least n 1-s. Since ‖f ′‖2
2 ≥ n and ε ≥ 1√

n
, no element is a ε-`2 heavy hitter.

If the input is a YES-instance, then the final vector, f ′, consists of

≤ 2n − 1 entries that are 1 and one entry at which is 2ε
√
n. Since 4ε2n ≥

ε2(2n+4ε2n), that entry is a ε-heavy hitter. Using the lower bound of Theorem

4.5, we know that the total communication in the protocol is Ω(n). Since the

number of messages sent over r rounds in the protocol is r · 4ε
√
n, there exists

at least one player whose message in a given round is Ω(
√
n
rε

) bits and this is a

lower bound on the space complexity of A.

80

Chapter 5

Compressed Sensing with Generative Models

In this chapter, we study compressed sensing with a new notion of

structure1. In compressed sensing, one would like to learn a structured signal

x ∈ Rn from a limited number of linear measurements y ≈ Ax. The unknown

signals x being observed are structured or “compressible”: although x lies in

Rn, it would take far fewer than n floating point numbers to describe x. In

such a situation, one can hope to estimate x well from a number of linear

measurements that is closer to the size of the compressed representation of x

than to its ambient dimension n.

In order to do compressed sensing, you need a formal notion of how

signals are expected to be structured. As we noticed in Chapters 2 and 3, the

classic answer is to use sparsity. In sparse recovery, given linear measurements

y = Ax of an arbitrary vector x ∈ Rn, one can hope to recover an estimate x̂

of x satisfying

‖x− x̂‖ ≤ C min
k-sparse x′

‖x− x′‖ (5.1)

for some constant C and norm ‖·‖. In this chapter, we focus on achieving

a similar guarantee with 3/4 probability. Thus, if x is well-approximated by

1The results presented in this chapter appeared in [KKP20].

81

a k-sparse vector x′, it should be accurately recovered. Classic results such

as [CRT06b] show that (5.1) is achievable when A consists of m = O(k log n
k
)

independent Gaussian linear measurements. This bound is tight, and in fact

no distribution of matrices with fewer rows can achieve this guarantee in either

`1 or `2 [DIPW10].

Although compressed sensing has had success, sparsity is a limited

notion of structure. Can we learn a richer model of signal structure from

data, and use this to perform recovery? Generative models are one such

form of structure that model the manifold of “natural images”. Over the

last decade neural networks based models like generative adversarial networks

(GANs) [GPAM+14] and variational autoencoders (VAEs) [KW14] been used

successfully to produce generative modelsG : Rk → Rn that allow approximate

sampling from the distribution of “natural images”. So one obvious question

is: can these models can be used as a form of structure for compressed sensing.

In [BJPD17] it was shown how to use generative models to achieve

a guarantee analogous to (5.1): for any L-Lipschitz G : Rk → Rn, one can

achieve

‖x− x̂‖2 ≤ C min
z′∈B2

k(r)
‖x−G(z′)‖2 + δ, (5.2)

where r, δ > 0 are parameters, B2
k(r) denotes the radius-r `2 ball in Rk and

Lipschitzness is defined with respect to the `2-norms, using only m = O(k +

k log Lr
δ

) measurements. Thus, the recovered vector is almost as good as the

nearest point in the range of the generative model, rather than in the set of

82

k-sparse vectors. We will refer to the problem of achieving the guarantee (5.2)

as “generative-model recovery”.

Our first theorem is that the [BJPD17] result is tight: for any setting

of parameters n, k, L, r, δ, there exists an L-Lipschitz function G : Rk → Rn

such that the [BJPD17] measurement bound is optimal for achieving (5.2):

Theorem 5.1. Consider any n, k, L, r, δ. There exists an L-Lipschitz function

G∗ : Rk → Rn such that, if A is an algorithm which picks a matrix A ∈ Rm×n,

and given Ax returns an x̂ satisfying (5.2) with probability at least 3/4, then

m = Ω(min(k + k log(Lr/δ), n)).

The same result holds if the `2 norms in (5.2) are replaced with `1

norms.

That our lower bound caps out at m = Θ(n) is of course necessary,

since the problem is trivial for m = n; thus our bound is tight for the whole

range of possible parameters. Notably, and in contrast to sparse recovery,

the additive error δ is necessary for Lipschitz generative model recovery. One

cannot achieve (5.2) with δ = 0 and m = o(n).

Our second result is to directly relate the two notions of structure:

sparsity and generative models. We produce a simple ReLU-based neural

network Gsp : R2k → Rn whose range is precisely the set of all k-sparse vectors.

Theorem 5.2. There exists a 2-hidden-layer ReLU-based neural network Gsp :

R2k → Rn with width O(nk) such that Im(G) = {x | ‖x‖0 ≤ k}.

83

This matches a second result of [BJPD17], which shows that for ReLU-

based neural networks, one can avoid the additive δ term and achieve a different

result from (5.2):

‖x− x̂‖2 ≤ C min
z′∈Rk

‖x−G(z′)‖2 (5.3)

using O(kd logW) measurements, if d is the depth and W is the maximum

number of activations per layer. Applying this result to our sparsity-producing

network Gsp implies, with O(k log n) measurements, recovery achieving the

standard sparsity guarantee (5.1). So the generative-model representation of

structure really is more powerful than sparsity.

Connecting the results. Theorem 5.2 directly implies a weaker form of

Theorem 5.1. The network Gsp produces all k-sparse binary vectors from

seeds of radius r = n
√
k and with L = 2. The standard sparse recovery lower

bound shows that recovering these vectors for δ =
√
k requires Ω(k log(n

k
))

measurements, which is Ω(k log n) for n > k1.1. Therefore we immediately

see an Ω(k log Lr
δ

) bound for Lipschitz recovery for these parameters. The

advantage of Theorem 5.1 over such an approach is that it applies to all values

of L, r, and δ, rather than these polynomially-bounded ones; and indeed, such

an approach would not show that the additive δ is necessary in (5.2).

Concurrent work. This chapter presents the results of [KKP20]. A con-

current paper [LS20] proves a very similar lower bound to our Theorem 5.1.

However, the [LS20] result is weaker in an important way, analogous to the

84

implication from Theorem 5.2: it requires n to equal Lr
δ

, so the lower bound is

equal to Θ(k log n). As a result, it neither applies to superpolynomial L, nor

does it imply that any dependence on δ is necessary.

Our result is also stronger than [LS20] in a couple other ways. Our

bound applies to non-uniform algorithms where each matrix A only works for

3/4 of possible inputs x, rather than requiring A to work for all x, and our

bound applies to the `1 as well as the `2 guarantee. The [LS20] approach likely

can be extended to non-uniform algorithms, but extending their techniques to

`1 seems quite challenging. Even in the standard sparse-recovery setting, our

communication-complexity–based techniques extend to the `1 guarantee, while

(to our knowledge) the information-theory techniques used in [LS20] do not.

5.1 Overview of Our Results

As described above, this section contains two results: a tight lower

bound for compressed sensing relative to a Lipschitz generative model, and

an O(1)-layer generative model whose range contains all sparse vectors. The

techniques are independent, and are outlined below.

5.1.1 Lower Bound for Compressed Sensing with Generative Mod-
els

Over the last decade, lower bounds for sparse recovery have been stud-

ied extensively. The techniques in this chapter are most closely related to the

techniques used in [DIPW10].

85

Similar to [DIPW10], our proof is based on communication complexity.

We will exhibit an L-Lipschitz function G and a large finite set Z ⊂ Im(G) ⊂

Bp
n(R) of points that are well-separated. Then, given a point x that is picked

uniformly at random from Z, we show how to identify it from Ax using the

generative model recovery algorithm. This implies Ax also contains a lot of

information, so m must be fairly large.

Formally, we produce a generative model whose range includes a large,

well-separated set:

Theorem 5.3. Given R > 0 satisfying R > 2Lr, p ∈ {1, 2}, there exists an

O(L)−Lipschitz function G : Rk → Rn, and X ⊆ Bp
k(r) such that

(1) for all x ∈ X, G(x) ∈ {± R

n
1
p
}n

(2) hence for all x ∈ X, ‖G(x)‖p = R

(3) for all x, y ∈ X, ‖G(x)−G(y)‖p ≥
R

6
1
p

(4) log(|X|) = Ω
(
min(k log(Lr

R
)), n

)
Now, suppose we have an algorithm that can perform generative model

recovery with respect to G from Theorem 5.3, with approximation factor C,

and error δ < R/24 within the radius r ball in k-dimensions. Set t = Θ(log n),

and for any z1, z2, . . . , zt ∈ Z = G(X) take

z = εtz1 + εt−1z2 + εt−1z3 + . . .+ zt

86

for ε = 1
48(C+1)

a small constant. The idea of the proof is the following: given

y = Az, we can recover ẑ such that

‖ẑ − zt‖ ≤ ‖z − zt‖ + ‖ẑ − z‖ + δ

≤ (C + 1) ‖z − zt‖ + δ

≤ (C + 1)
εR

1− ε
+ δ

< R/24 +R/24 = R/12,

where the first inequality comes from the generative model recovery guarantee

for zt when treating z − zt as noise. Now, because Z has minimum distance

R
61/p

, we can exactly recover zt by rounding ẑ to the nearest element of Z. But

then we can repeat the process on (Az−Azt) to find zt−1, then zt−2, up to z1,

and learn t lg |Z| = Ω(tk log(Lr
R

)) bits total. Thus Az must contain this many

bits of information; but if the entries of A are rational numbers with poly(n)

bounded numerators and (the same) poly(n) bounded denominator, then each

entry of Az can be described in O(t+ log n) bits, so

m ·O(t+ log n) ≥ Ω(tk log(
Lr

R
))

or m ≥ Ω(k log(Lr
R

)).

There are two issues that make the above outline not totally satis-

factory, which we only briefly address how to resolve here. First, the the-

orem statement makes no supposition on the entries of A being polynomi-

ally bounded. To resolve this, we perturb z with a tiny (polynomially small)

amount of additive Gaussian noise, after which discretizing Az at an even tinier

87

(but still polynomial) precision has negligible effect on the failure probability.

The second issue is that the above outline requires the algorithm to recover

all t vectors, so it only applies if the algorithm succeeds with 1− 1
t

probability

rather than constant probability. This is resolved by using a reduction from

the augmented indexing problem, which is a one-way communication problem

where Alice has z1, z2, . . . , zt ∈ Z, Bob has i ∈ [t] and zi+1, · · · , zn, and Alice

must send Bob a message so that Bob can output zi with 2/3 probability.

This still requires Ω(t log |Z|) bits of communication, and can be solved in

O(m(t+ log n)) bits of communication by sending Az as above.

Constructing the set. The above lower bound approach, relies on finding

a large, well-separated set Z = G(X) as in Theorem 5.3.

We construct this set in two stages. First, we consider the k = 1 case,

producing a Lipschitz map from R to Rn with Lr
R

points of appropriate distance.

We do this by linearly interpolating between elements of a high-distance code

over {± R
n1/p}n; because codewords are Θ(R) apart, an L-Lipschitz function

from [−r, r] can reach Lr
R

such elements (as long as this is less than the 2Ω(n)

total number of codewords).

To extend this construction to a mapping from Rk to Rn, we take

the product distribution of k such functions, each run with n′ = n/k. This

results in a Lipschitz generative model with the desired radius and number of

elements; unfortunately, the minimum distance would be too small. We fix

this by concatenating the code: we use an error correcting code over [n/k]k to

88

choose a subset of these points that is still large enough but has the desired

distance.

5.1.2 A Sparsity-Producing Generative Model

For our second result, to produce a generative model whose range con-

sists of all k-sparse vectors, we start by mapping R2 to the set of positive

1-sparse vectors. For any pair of angles θ1, θ2, we can use a constant number

of unbiased ReLUs to produce a neuron that is only active at points whose

representation (r, θ) in polar coordinates has θ ∈ (θ1, θ2). Moreover, because

unbiased ReLUs behave linearly, the activation can be made an arbitrary posi-

tive real by scaling r appropriately. By applying this n times in parallel, we can

produce n neurons with disjoint activation ranges, making a network R2 → Rn

whose range contains all 1-sparse vectors with nonnegative coordinates.

By doing this k times and adding up the results, we produce a network

R2k → Rn whose range contains all k-sparse vectors with nonnegative coordi-

nates. To support negative coordinates, we just extend the k = 1 solution to

have two ranges within which it is non-zero: for one range of θ the output is

positive, and for another the output is negative. This results in Theorem 5.2.

5.2 Proof of Our Lower Bound

In this section, we prove a lower bound for the sample complexity of

generative model recovery by a reduction from a communication game. We

show that the communication game can be won by sending a vector Ax and

89

then performing generative model recovery. A lower bound on the communi-

cation complexity of the game implies a lower bound on the number of bits

used to represent Ax if Ax is discretized. We can then use this to lower bound

the number of measurements in A.

Since we are dealing in bits in the communication game and the entries

of a sparse recovery matrix can be arbitrary reals, we will need to discretize

each measurement. We show first that discretizing the measurement matrix

by rounding does not change the resulting measurement too much and will

allow for our reduction to proceed.

Notation. We use Bp
k(r) = {x ∈ Rk | ‖x‖p ≤ r} to denote the k-dimensional

`p ball of radius r. Given a function g : Ra → Rb, g⊗k : Rak → Rbk denotes a

function that the maps a point (x1, . . . , xak) to (g(x1, . . . , xa), g(xa+1, . . . , x2a),

. . . , g(xa(k−1)+1, . . . , xak)). For any function G : A → B, we use Im(G) to

denote {G(x) | x ∈ A}.

Matrix conditioning. We first show that, without loss of generality, we

may assume that the measurement matrix A is well-conditioned. In particular,

we may assume that the rows of A are orthonormal.

We can multiply A on the left by any invertible matrix to get another

measurement matrix with the same recovery characteristics. If we consider

the singular value decomposition A = UΣV ∗, where U and V are orthonormal

and Σ is 0 off the diagonal, this means that we can eliminate U and make the

90

entries of Σ be either 0 or 1. The result is a matrix consisting of m orthonormal

rows.

Discretization. For well-conditioned matrices, we use the following lemma

(similar to one from [DIPW10]) to show that we can discretize the entries

without changing the behavior by much:

Lemma 5.4. Let A ∈ Rm×n be a matrix with orthonormal rows. Let A′ be the

result of rounding A to b bits per entry. Then for any v ∈ Rn there exists an

s ∈ Rn with A′v = A(v − s) and ‖s‖p < n22−b ‖v‖p for p ∈ {1, 2}.

Proof. Let A′′ = A−A′ be the error when discretizing A to b bits, so each entry

of A′′ is less than 2−b. Then for any v and s = ATA′′v, we have As = A′′v.

For p = 2, we have:

‖s‖2 =
∥∥ATA′′v∥∥

2
≤ ‖A′′v‖2

≤ m2−b ‖v‖2 ≤ n2−b ‖v‖2

and for p = 1,

‖s‖1 =
∥∥ATA′′v∥∥

1
≤
√
n ‖A′′v‖1

≤ m
√
n2−b ‖v‖1 ≤ n22−b ‖v‖1 .

91

The Augmented Indexing problem. As in [DIPW10], we use the Aug-

mented Indexing communication game which is defined as follows: There are

two parties, Alice and Bob. Alice is given a string y ∈ {0, 1}d. Bob is given

an index i ∈ [d], together with yi+1, yi+2, . . . , yd. The parties also share an ar-

bitrarily long common random string r. Alice sends a single message M(y, r)

to Bob, who must output yi with probability at least 2/3, where the proba-

bility is taken over r. We refer to this problem as Augmented Indexing. The

communication cost of Augmented Indexing is the minimum, over all correct

protocols, of length |M(y, r)| on the worst-case choice of r and y.

The following theorem is well-known and follows from Lemma 13 of

[MNSW98] (see, for example, an explicit proof in [DIPW10])

Theorem 5.5. The communication cost of Augmented Indexing is Ω(d).

A well-separated set of points. We would like to prove Theorem 5.3, get-

ting a large set of well-separated points in the image of a Lipschitz generative

model. Before we do this, though, we prove a k = 1 analog:

Lemma 5.6. Given p ∈ {1, 2}, there is a set of points P in Bp
n(1) ⊂ Rn of

size 2Ω(n) such that for each pair of points x, y ∈ P

‖x− y‖ ∈
[(1

3

)1/p
,
(2

3

)1/p
]
.

Proof. Consider a τ -balanced linear code over the alphabet {± 1
n1/p} with mes-

sage length M . It is known that such codes exist with block length O(M/τ 2)

92

[BATS09]. Setting the block length to be n and τ = 1/6, we get that there is

a set of 2Ω(n) points in Rn such that the pairwise hamming distance is between[
n
3
, 2n

3

]
i.e. the pairwise `p distance is between

[(
1
3

)1/p
,
(

2
3

)1/p
]
.

Now we wish to extend this result to arbitrary k while achieving the

parameters in Theorem 5.3.

Proof of Theorem 5.3. We first define an O(L)-Lipschitz map g : R → Rn/k

that goes through a set of points that are pairwise Θ
(

R
k1/p

)
apart. Consider

the set of points P from Lemma 5.6 scaled to Bp
n/k(

R
k1/p

).

Observe that |P | ≥ exp (Ω (n/k)) ≥ min
(
exp (Ω (n/k)) , Lr

R

)
. Choose

subset P ′ such that it contains exactly min
(
Lr
R
, exp(Ω(n/k))

)
points and let

g1 : [0, r
k1/p

] → P ′ be a piecewise linear function that goes through all the

points in P ′ in any order. Then, we define g : R→ Rn/k as:

g(x) =


g1(0) if x < 0

g1(x) if 0 ≤ x ≤ r
k1/p

g1(R
k1/p

) if x ≥ r
k1/p

Let I = { r
k1/p|P ′| , . . . ,

r
k1/p
} be the points that are pre-images of elements of

P ′. Observe that g is O(L)-Lipschitz since within the interval [0, r
k1/p

], since it

maps each interval of length r
k1/p|P ′| ≥

rR
k1/pLr

= R
Lk1/p

to an interval of length

at most O(R
k1/p

).

Now, consider the function G := g⊗k : Rk → Rn. Observe that G is

93

also O(L) Lipschitz,

‖G(x1, . . . , xk)−G(y1, . . . , yk)‖pp

=
∑
i∈[k]

‖g(xi)− g(yi)‖pp

≤
∑
i∈[k]

O(Lp) ‖xi − yi‖pp

= O(Lp) ‖x− y‖pp .

Also, for every point (x1, . . . , xk) ∈ Ik, we know that ‖G(x1, . . . , xk)‖p =

(
∑

i∈[k] ‖g(xi)‖pp)1/p ≤ R. However, there still exist distinct points x, y ∈

Ik(e.g. points that differ at one coordinate) such that ‖G(x)−G(y)‖p ≤

O(R
k1/p

).

We construct a large subset of the points in Ik such that any two points

in this subset are far apart using error correcting codes. Consider the A ⊂ P ′

s.t. |A| > |P ′| /2 is a prime. For any integer z > 0, there is a prime between z

and 2z, so such a set A exists. Consider a Reed-Solomon code of block length

k, message length k/2, distance k/2 and alphabet A. The existence of such

a code implies that there is a subset X ′ of (P ′)k of size at least (|P
′|

2
)k/2 such

that every pair of distinct elements from this set disagree in k/2 coordinates.

This translates into a distance of R
61/p

in p-norm. So, if we set G = g⊗k

and X ⊂ Ik to G−1(X ′), we get a set of points of cardinality (|P
′|

2
)k/2 ≥

(min(exp(Ω(n/k)), Lr
R

))k/2 with minimum distance R
61/p

in the p-norm that lie

within the `p ball of radius R.

Lower bound. We now prove the lower bound for generative model recovery.

94

Proof of Theorem 5.1. An application of Theorem 5.3 with R =
√
Lrδ gives

us a set of points Z and G such that Z = G(X) ⊆ Rn such that log(|Z|) =

Ω(min(k log(Lr
δ

), n)), and for all x ∈ Z, ‖x‖ ≤
√
Lrδ and for all x, x′ ∈ Z,

‖x− x′‖ ≥
√
Lrδ/6. Let d = blog |X|c log n, and let D = 48(C + 1).

We will show how to solve the Augmented Indexing problem on instances

of size d = log(|Z|) · log(n) = Ω(k log(Lr) log n) with communication cost

O(m log n). The theorem will then follow by Theorem 5.5.

Alice is given a string y ∈ {0, 1}d, and Bob is given i ∈ [d] together

with yi+1, yi+2, . . . , yd, as in the setup for Augmented Indexing.

Alice splits her string y into log n contiguous chunks y1, y2, . . . , ylogn:

y1, . . . , ylog|X|︸ ︷︷ ︸
y1

, ylog|X|+1, . . . , y2 log|X|︸ ︷︷ ︸
y2

, . . . , yd−log|X|, . . . , yd︸ ︷︷ ︸
ylogn

where each chunk contains blog |X|c bits and represents an index into X.

She uses yj as an index into the set X to choose xj. Alice defines

x = D1x1 +D2x2 + · · ·+Dlognxlogn.

Alice and Bob use the common randomness R to agree on a recovery matrix

A with orthonormal rows. Both Alice and Bob round A to form A′ with

b = Θ(log(n)) bits per entry. Alice computes A′x and transmits it to Bob.

Note that, since x ∈
{
± 1
n1/p

}
the x’s need not be discretized.

From Bob’s input i, he can compute the chunk j = j(i) for which the

bit yi occurs in yj. Bob’s input also contains yi+1, . . . , yn, from which he can

95

reconstruct xj+1, . . . , xlogn, and in particular can compute

z = Dj+1xj+1 +Dj+2xj+2 + · · ·+Dlognxlogn.

Set w = 1
Dj

(x − z) = 1
Dj

∑j
i=1 D

ixi. Bob then computes A′z, and using A′x

and linearity, he can compute 1
Dj
· A′(x− z) = A′w. Then

‖w‖ ≤ 1

Dj

j∑
i=1

R ·Di < R.

So from Lemma 5.4, there exists some s with A′w = A(w − s) and

‖s‖ < n22−b ‖w‖ < R

Djn2
.

Ideally, Bob would perform recovery on the vector A(w − s) and show that

the correct point xj is recovered. However, since s is correlated with A and w,

Bob needs to use a slightly more complicated technique.

Bob first chooses another vector u uniformly from Bp
n(R

Dj
) and computes

A(w − s − u) = A′w − Au. He then runs the estimation algorithm A on A

and A(w − s − u), obtaining ŵ. We have that u is independent of w and s,

and that ‖u‖ ≤ R
Dj

(1− 1/n2) ≤ R
Dj
−‖s‖ with probability

Vol(Bpn(R

Dj
(1−1/n2)))

Vol(Bpn(R

Dj
))

=

(1−1/n2)n > 1−1/n. But {w−u | ‖u‖ ≤ R
Dj
−‖s‖} ⊆ {w−s−u | ‖u‖ ≤ R

Dj
},

so as a distribution over u, the ranges of the random variables w − s− u and

w−u overlap in at least a 1−1/n fraction of their volumes. Therefore w−s−u

and w − u have statistical distance at most 1/n. The distribution of w − u is

independent of A, so running the recovery algorithm on A(w− u) would work

with probability at least 3/4. Hence with probability at least 3
4
− 1

n
≥ 2

3
(for

96

n large enough), ŵ satisfies the recovery criterion for w − u, meaning

‖w − u− ŵ‖ ≤ C min
w′∈Im(G)

‖w − u− w′‖ + δ.

Now,

‖xj − ŵ‖ ≤ ‖w − u− xj‖ + ‖w − u− ŵ‖

≤ (1 + C) ‖w − u− xj‖ + δ

≤ (1 + C)

(
‖u‖ +

1

Dj
·
j−1∑
i=1

∥∥Dixi
∥∥)+ δ

≤ 2(1 + C)R/D + δ

< R · 2(1 + C)

D
+ δ

=
1

24
·R + δ.

Since δ < Lr/24, this distance is strictly bounded byR/12. Since the minimum

distance inX is R/6, this means ‖Djxj − ŵ‖ < ‖Djx′ − ŵ‖ for all x′ ∈ X, x′ 6=

xj. So Bob can correctly identify xj with probability at least 2/3. From xj he

can recover yj, and hence the bit yi that occurs in yj.

Hence, Bob solves Augmented Indexing with probability at least 2/3

given the message A′x. Each entry of A′x takes O(log n) bits to describe

because A′ is discretized to up to log(n) bits and x ∈ {± 1
n1/p}n. Hence,

the communication cost of this protocol is O(m · log n). By Theorem 5.5,

m log n = Ω(min(k log(Lr/δ), n) · log n), or m = Ω(min(k log(Lr/δ), n)).

97

5.3 Construction of a Sparsity Producing Generative
Model

We show that the set of all k-sparse vectors in Rn is contained in the

image of a 2 layer neural network. This shows that generative model recovery

is a generalization of sparse recovery.

Lemma 5.7. There exists a 2 layer neural network G : R2 → Rn with width

O(n) such that {x | ‖x‖0 = 1} ⊆ Im(G)

Our construction is intuitively very simple. We define two gadgets G+
i

and G−i . G+
i ≥ 0 and G+

i (x1, x2) 6= 0 iff arctan(x2/x1) ∈ [i · 2π
n
, (i + 1) · 2π

n
].

Similarly G−i (x1, x2) ≤ 0 and G−i (x1, x2) 6= 0 iff arctan(x2/x1) ∈ [π+ i · 2π
n
, π+

(i + 1) · 2π
n

]. Then, we set the ith output node (G(x1, x2))i = G+
i (x1, x2) +

G−i (x1, x2). Varying the distance of (x1, x2) from the origin will allow us to

get the desired value at the output node i.

Proof. Let α = π
n+1

. Let [x]+ = x·I(x ≥ 0) denote the unbiased ReLU function

that preserves positive values and [x]− = x·I(x ≤ 0) denote the unbiased ReLU

function that preserves negative values. We define G+
i : R2 → R as follows:

x1

x2

a+
(i),1

a+
(i),2

b+
i

cos(iα)

cos(iα+ α
2

)

− sin(iα)

− sin(iα+ α
2

)

1/ sin(α)

−1/ sin(α/2)

98

G+
i is a 2 layer neural network gadget that produces positive values at output

node i of G. We define each of the hidden nodes of the neural network G+
i as

follows:

a+
(i),1 =

[
cos(iα)x1 − sin(iα)x2

]
+

a+
(i),2 =

[
cos
(
iα +

α

2

)
x1 − sin

(
iα +

α

2

)
x2

]
+

b+
(i) =

[a+
(i),1

sin(α)
−

a+
(i),2

sin(α/2)

]
+
.

In a similar manner, G−i which produces negative values at output node i of

G with the internal nodes defined as:

a−(i),1 =
[

cos(π + iα)x1 − sin(π + iα)x2

]
+

a−(i),2 =
[

cos
(
π + iα +

α

2

)
x1 − sin

(
π + iα +

α

2

)
x2

]
+

b−(i) =
[a−(i),2

sin(α/2)
−

a−(i),1
sin(α)

]
−

The last ReLU activation preserves only negative values. Since G+
i and G−i

are identical up to signs in the second hidden layer, we only analyze G+
i ’s.

Consider i ∈ [n]. Let β = iα and (x1, x2) = (t sin(θ), t cos(θ)). Then using the

identity sin(A) cos(B)− cos(A) sin(B) = sin(A−B),

cos(β)x1 − sin(β)x2 = t
(

cos(β) sin(θ)− sin(β) cos(θ)
)

= t sin(θ − β).

This is positive only when θ ∈ (β, π + β). Similarly, cos(β + α/2)x1 − sin(β +

α/2)x2 = t sin(θ−(β+α/2)) and is positive only when θ ∈ (β+α/2, π+β+α/2).

99

So, a+
(i),1 and a+

(i),2 are both non-zero when θ ∈ (β + α/2, π + β). Using some

elementary trigonometry, we may see that:

a
(i)
1

sin(α)
− a

(i)
2

sin(α/2)

= t
(sin(θ − β)

sin(α)
−

sin(θ − (β + α
2
))

sin(α/2)

)
=
t sin(β − θ + α)

sin(α/2)
.

In Fact B.1, we show a proof of the above identity. Observe that when θ >

β + α, this term is negative and hence bi = 0. So, we may conclude that

G+
i ((x1, x2)) 6= 0 if and only if (x1, x2) = (t sin(θ), t cos(θ)) with θ ∈ ((i −

1)α, iα). Also, observe that G+
i (t sin(β + α/2), t cos(β + α/2)) = t. Similarly

G−i is non-zero only if and only if θ ∈ [π + iα, π + (i + 1)α] and G−i (t sin(π +

iα+α/2), t cos(π+ iα+α/2)) = −t. Since α = π
n+1

, the intervals within which

each of G+
1 , . . . , G

+
n ,G−1 , . . . , G

−
n are non-zero do not intersect.

So, given a vector z′ such that ‖z‖0 = 1 with zi′ 6= 0, if zi′ > 0, set

x1 = |zi′| sin(i′α + α/2)

x2 = |zi′| cos(i′α + α/2)

and if zi′ < 0, set

x1 = |zi′ | sin(π + i′α + α/2)

x2 = |zi′ | cos(π + i′α + α/2).

Observe that:

G+
i′ ((x1, x2)) +G−i′ ((x1, x2)) = zi′

100

and for all j 6= i′

G+
j ((x1, x2)) +G−j ((x1, x2)) = 0.

So, if G(x) = (G+
1 (x) + G−1 (x), . . . , G+

n (x) + G−n (x)), G is a 2-layer neural

network with width O(n) such that Im(G) = {x | ‖x‖0 ≤ 1}.

Now, we extend this gadget to a construction whose image is the set of

all k-sparse vectors.

Proof of Theorem 5.2. Given a vector z that is non-zero at k coordinates, let

i1 < i2 < · · · < ik be the indices at which z is non-zero. We may use copies of G

from Lemma 5.7 to generate 1-sparse vectors v1, . . . , vk such that (vj)ij = zij .

Then, we add these vectors to obtain z. It is clear that we only used k copies

of G to create Gsp. So, Gsp can be represented by a neural network with 2

layers.

Theorem 5.1 provides a reduction which uses only 2 layers. Then, using

the algorithm from Theorem 5.3, we can recover the correct k-sparse vector

using O(kd log(nk)) measurements. Since d = 4 and ≤ n, this requires only

O(k log n) linear measurements to perform `2/`2 (k, C)-sparse recovery.

101

Appendices

102

Appendix A

Theorems for Chapter 2

Theorem A.1 (Shannon-Hartley). Let S be a random variable such that

E[S2] = τ 2. Consider the random variable S + T , where T ∼ N(0, σ2). Then

I(S;S + T) ≤ 1

2
lg
(
1 +

τ 2

σ2

)
.

Lemma A.2. Consider a random variable X ∈ [n] with probability distribution

p(l) = Pr[X = l]. Suppose b = lg(n)−H(X). Let Ti = {j | 2i ≤ np(j) ≤ 2i+1}

and T0 = {j | np(j) ≤ 2} and let qi =
∑

j∈Ti p(j). Then,

(a)
∑∞

i=0 iqi ≤ b+ 1

(b)
∑∞

i=0 qi lg(1 + 1
qi

) ≤ O(b+ 1)

(c) if J is the random variable that denotes the index of the partition con-

taining X, then H(J) < O(b+ 1).

103

Proof.

∞∑
i=0

iqi =
∑
i>0

∑
j∈Ti

Pr[X = j] · i

≤
∑
i>0

∑
j∈Ti

Pr[X = j] lg(nPr[X = j])

= b−
∑
j∈T0

Pr[X = j] lg(nPr[X = j])

= b− q0 lg(nq0/ |T0|)

≤ b+ |T0| /ne

using convexity and minimizing x lg(ax) at x = 1/ae. Hence,

∞∑
i=0

iqi ≤ b+ 1 (A.1)

Next, consider
∑∞

i=0 qi lg(1+ 1
qi

). When qi ≤ 1/2, we have lg(1+ 1
qi

) ≤ 2 lg(1
qi

).

So,

∞∑
i=0

qi lg(1 +
1

qi
) ≤ 2

(∑
i|qi≤1/2

ti lg(1/ti) +
∑

i|qi>1/2

1
)
≤ 2
(
H(J) + 1

)
(A.2)

Now, in order to bound the entropy term, consider the partition T+ = {i |

qi > 1/2i} and T− = {i | qi ≤ 1/2i}. Then

H(J) =
∑
i

qi lg(
1

qi
)

≤
∑
i∈T+

iqi +
∑
i∈T−

qi lg(
1

qi
)

≤ b+ 1 +
∑
i∈T−

qi lg(
1

qi
)

104

Observe that x log(1/x) increases on [0, 1/e], so∑
i∈T−

qi lg(
1

qi
) ≤ q0 log(

1

q0

) + q1 lg(
1

q1

) +
∑
i≥2

1

2i
lg(1/2i) ≤ 2/e+ 3/2 < 3

Hence H(J) < b+ 4. So, in (A.2),
∞∑
i=0

qi lg(1 +
1

qi
) ≤ 2(b+ 5) (A.3)

Claim A.3. Let the sequence B1 ≤ B2 ≤ B3 . . . ,, satisfy B1 ≥ k log(k) ,B1 ≤

max{m1, k log(k)} and for all r ≥ 1,

Br+1 ≤
(
c5 +

c3mr+1

αk

)
Br +mr+1 log(k) +

c4mr+1

α
+ c2k

for constants c2, c3, c4, c5 > 1. Then, for all r ≥ 1,

Br ≤
(r+1∏

j=2

(
2c5 +

2c6mj

kα

))
max{k log(k),m1}

where c6 is a constant.

Proof. The base case holds because :

B1 = max{m1, k log(k)}

Now, assume that the claim holds for r, then:

Br+1 ≤ Br

(
c5 +

c3mr+1

αk

)
+mr+1 log(k) +

c4mr+1

α
+ c2k

= Br

(
c5 +

c3 ·mr+1

αk

)
+
mr+1

k
(k log(k)) +

c4mr+1

α
+ c2k

≤ 2Br

(
c5 +

c6 ·mr+1

αk

)
≤
(r+1∏

j=2

(
2c5 +

2c6mj

kα

))
max{k log(k),m1}

105

where the third line follows because Br ≥ B1 ≥ k log(k) and Br ≥ B1 ≥ m1

and c6 = max(c3, c4 + 1) is a constant.

The following form of Bernstein’s inequality is well known:

Theorem A.4 (Bernstein). Let X1, . . . , Xn be i.i.d Bernoulli random variables

with parameter p and X =
∑n

i=1Xi. Then,

Pr[X ≥ np+ 4 log(1/δ) + 4
√
np log(1/δ)] ≤ δ.

106

Appendix B

Theorems for Chapter 5

Fact B.1.
sin(β + α

2
− θ)

sin(α/2)
− sin(β − θ)

sin(α)
=

sin(β − θ + α)

sin(α/2)

Proof.

sin(β + α
2
− θ)

sin(α/2)
− sin(β − θ)

sin(α)

=
sin(β + α

2
− θ) sin(α)− sin(β − θ) sin(α/2)

sin(α) sin(α/2)

=
1

2 sin(α) sin(α
2
)

(
cos(β − θ − α

2
)− cos(β − θ +

3α

2
)

− cos(β − θ − α

2
) + cos(β − θ +

α

2
)
)

=
cos(β − θ + α

2
)− cos(β − θ + 3α

2
)

2 sin(α) sin(α/2)

=
sin(β − θ + α) sin(α)

sin(α) sin(α/2)

=
sin(β − θ + α)

sin(α/2)

where we use the identity that sin(A) sin(B) = 1
2
[cos(A−B)−cos(A+B)]

107

Bibliography

[ACD13] Ery Arias-Castro, Emmanuel J. Candès, and Mark A. Daven-

port. On the Fundamental Limits of Adaptive Sensing. IEEE

Transactions on Information Theory, 59(1), 2013.

[BATS09] Avraham Ben-Aroya and Amnon Ta-Shma. Constructing Small-

Bias Sets from Algebraic-Geometric Codes. In Proceedings of

the 50th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), 2009.

[BEO+13] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi,

and Vinod Vaikuntanathan. A Tight Bound for Set Disjointness

in the Message-Passing Model. In Proceedings of the 54th Annual

IEEE Symposium on Foundations of Computer Science (FOCS),

2013.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi

Kumar. The Sketching Complexity of Pattern Matching. In Ap-

proximation, Randomization, and Combinatorial Optimization,

Algorithms and Techniques, 7th International Workshop on Ap-

proximation Algorithms for Combinatorial Optimization Prob-

lems (APPROX-RANDOM), 2004.

108

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar.

An information statistics approach to data stream and commu-

nication complexity. Journal of Computer and System Sciences,

68(4), 2004.

[BJPD17] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis.

Compressed Sensing Using Generative Models. In Proceedings of

the 34th International Conference on Machine Learning (ICML),

2017.

[BO15] Mark Braverman and Rotem Oshman. The Communication

Complexity of Number-In-Hand Set Disjointness with No Promise.

Electronic Colloquium on Computational Complexity, (ECCC),

22, 2015.

[CCF02] M. Charikar, K. Chen, and M. Farach-Colton. Finding Fre-

quent Items in Data Streams. In Proceedings of the 29th Inter-

national Colloquium on Automata, Languages and Programming

(ICALP), 2002.

[CDD09] Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Com-

pressed sensing and best k-term approximation. American Math-

ematical Society, 22, 2009.

[CHNR08] Rui M. Castro, Jarvis D. Haupt, Robert D. Nowak, and Gil M.

Raz. Finding Needles in Noisy Haystacks. In Proceedings of the

109

IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2008.

[CM04] G. Cormode and S. Muthukrishnan. Improved Data Stream

Summaries: The Count-Min Sketch and its Applications. In

LATIN 2004: Theoretical Informatics, 6th Latin American Sym-

posium, 2004.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial Algorithms

for Compressed Sensing. In Proceedings of Structural Informa-

tion and Communication Complexity, 13th International Collo-

quium, (SIROCCO), 2006.

[CRT06a] E. Candes, J. Romberg, and T. Tao. Robust Uncertainty Prin-

ciples: Exact Signal Reconstruction from Highly Incomplete Fre-

quency Information. IEEE Transactions on Information Theory,

52(2), 2006.

[CRT06b] E. J. Candès, J. Romberg, and T. Tao. Stable Signal Recovery

from Incomplete and Inaccurate Measurements. Communica-

tions on Pure and Applied Mathematics, 59(8), 2006.

[DDT+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly,

and R. Baraniuk. Single-Pixel Imaging via Compressive Sam-

pling. IEEE Signal Processing Magazine, 2008.

110

[DIPW10] K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower Bounds

for Sparse Recovery. In Proceedings of the 25th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), 2010.

[ECG+09] Yaniv Erlich, Kenneth Chang, Assaf Gordon, Roy Ronen, Oron

Navon, Michelle Rooks, and Gregory J Hannon. DNA Sudoku-

harnessing high-throughput sequencing for multiplexed specimen

analysis. Genome Research, 19(7), 2009.

[GGI+02] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis,

S. Muthukrishnan, and Martin Strauss. Fast, Small-Space Algo-

rithms for Approximate Histogram Maintenance. In Proceedings

of the 34th Annual ACM Symposium on Theory of Computing

(STOC), 2002.

[GLPS10] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss.

Approximate Sparse Recovery: Optimizing Time and Measure-

ments. In Proceedings of the 42nd ACM Symposium on Theory

of Computing (STOC), 2010.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,

David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua

Bengio. Generative Adversarial Nets. In Proceedings of the

27th International Conference on Neural Information Processing

Systems (NIPS), 2014.

111

[GSB16] Raja Giryes, Guillermo Sapiro, and Alexander M. Bronstein.

Deep Neural Networks with Random Gaussian Weights: A Uni-

versal Classification Strategy? IEEE Transactions on Signal

Processing, 64(13), 2016.

[HBCN12] Jarvis D. Haupt, Richard G. Baraniuk, Rui M. Castro, and

Robert D. Nowak. Sequentially designed compressed sensing. In

Proceedings of the IEEE Statistical Signal Processing Workshop

(SSP), 2012.

[HCN11] Jarvis D. Haupt, Rui M. Castro, and Robert D. Nowak. Distilled

Sensing: Adaptive Sampling for Sparse Detection and Estima-

tion. IEEE Transactions on Information Theory, 57(9), 2011.

[IPW11] Piotr Indyk, Eric Price, and David P. Woodruff. On the Power

of Adaptivity in Sparse Recovery. In Proceedings of the 52nd

Annual IEEE Symposium on Foundations of Computer Science

(FOCS), 2011.

[JXC08] Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian Compressive

Sensing. IEEE Transactions on Signal Processing, 56(6), 2008.

[KKP20] Akshay Kamath, Sushrut Karmalkar, and Eric Price. On the

Power of Compressed Sensing with Generative Models. In Pro-

ceedings of the 37th International Conference on Machine Learn-

ing (ICML), 2020.

112

[KP19] Akshay Kamath and Eric Price. Adaptive Sparse Recovery with

Limited Adaptivity. In Proceedings of the 30th Annual ACM-

SIAM Symposium on Discrete Algorithms, (SODA), 2019.

[KP20] Akshay Kamath and Eric Price. Optimal Algorithms for Sparse

Recovery under High SNR. Manuscript, 2020.

[KPW20] Akshay Kamath, Eric Price, and David Woodruff. Lower Bounds

for Insertion-only Deterministic L2 Heavy Hitters. Manuscript,

2020.

[KW14] Diederik P. Kingma and Max Welling. Auto-encoding variational

bayes. In Proceedings of the 2nd International Conference on

Learning Representations (ICLR), 2014.

[LDSP08] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Com-

pressed Sensing MRI. IEEE Signal Processing Magazine, 25(2),

2008.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel

Thorup. Heavy Hitters via Cluster-Preserving Clustering. In

Proceedings of the IEEE 57th Annual Symposium on Foundations

of Computer Science (FOCS), 2016.

[LNW18] Yi Li, Vasileios Nakos, and David P. Woodruff. On Low-Risk

Heavy Hitters and Sparse Recovery Schemes. In Approxima-

113

tion, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques (APPROX/RANDOM), 2018.

[LS20] Z. Liu and J. Scarlett. Information-Theoretic Lower Bounds for

Compressive Sensing With Generative Models. IEEE Journal

on Selected Areas in Information Theory, 1(1), 2020.

[MG82] Jayadev Misra and David Gries. Finding Repeated Elements.

Science of Computer Programming, 2(2), 1982.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigder-

son. On Data Structures and Asymmetric Communication Com-

plexity. Journal of Computer and System Sciences, 57(1), 1998.

[MSW08] Dmitry M. Malioutov, Sujay Sanghavi, and Alan S. Willsky.

Compressed Sensing with Sequential Observations. In Proceed-

ings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2008.

[NSWZ18] Vasileios Nakos, Xiaofei Shi, David P. Woodruff, and Hongyang

Zhang. Improved Algorithms for Adaptive Compressed Sens-

ing. In Proceedings of the 45th International Colloquium on

Automata, Languages, and Programming (ICALP), 2018.

[Pol90] David Pollard. Section 4: Packing and covering in Euclidean

spaces, volume Volume 2 of Regional Conference Series in Prob-

114

ability and Statistics, pages 14–20. Institute of Mathematical

Statistics and American Statistical Association, 1990.

[PW11] Eric Price and David P. Woodruff. (1 + eps)-Approximate

Sparse Recovery. In Proceedings of the 52nd Annual IEEE Sym-

posium on Foundations of Computer Science (FOCS), 2011.

[PW12] Eric Price and David P. Woodruff. Applications of the Shannon-

Hartley Theorem to Data Streams and Sparse Recovery. In Pro-

ceedings of the 2012 IEEE International Symposium on Informa-

tion Theory (ISIT), 2012.

[PW13] Eric Price and David P. Woodruff. Lower Bounds for Adaptive

Sparse Recovery. In Proceedings of the 24th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2013.

[Sha11] Ohad Shamir. A Variant of Azuma’s Inequality for Martingales

with Subgaussian Tails. CoRR, abs/1110.2392, 2011.

[SK87] Georg Schnitger and Bala Kalyanasundaram. The probabilistic

communication complexity of set intersection. In Proceedings of

the Second Annual Conference on Structure in Complexity The-

ory, 1987.

115

	Acknowledgments
	Abstract
	List of Tables
	Chapter 1. Introduction
	Overview of Sparse Recovery
	Sparse Recovery Guarantees
	Adaptivity in Sparse Recovery
	Sparse Recovery under High SNR
	Streaming Algorithms for Heavy Hitters

	Adaptive Sparse Recovery with Limited Adaptivity
	Sparse Recovery under High SNR
	Deterministic L2 Heavy Hitters in the Insertion-Only Model
	Compressed Sensing with Generative Models
	Organization

	Chapter 2. Adaptive Sparse Recovery with Limited Adaptivity
	Prior Work on Limited Adaptivity
	Our Results and an Overview of Techniques
	Overview of Our Lower Bound
	Overview of Our Upper Bound

	Lower Bound for Adaptive Sparse Recovery with Limited Adaptivity
	Upper Bound for Adaptive Sparse Recovery with Limited Adaptivity
	Preliminaries
	Algorithm

	Chapter 3. Sparse Recovery under High SNR
	A Discussion of Previous Results
	An Overview of Our Results
	Proof of Our Upper Bounds

	Chapter 4. Deterministic L2 Heavy Hitters in the Insertion-Only Model
	Introduction to Streaming Algorithms and Heavy Hitters
	Communication Complexity Lower Bound
	Preliminaries
	Proof of Our Lower Bound

	Reduction to L2 Heavy Hitters

	Chapter 5. Compressed Sensing with Generative Models
	Overview of Our Results
	Lower Bound for Compressed Sensing with Generative Models
	A Sparsity-Producing Generative Model

	Proof of Our Lower Bound
	Construction of a Sparsity Producing Generative Model

	Appendices
	Appendix A. Theorems for Chapter 2
	Appendix B. Theorems for Chapter 5
	Bibliography

