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Abstract 

 

Broken Passivity and Time-Reversal-Symmetry Bounds in Acoustic 

Devices 

 

Curtis Paul Rasmussen, Ph.D. 

The University of Texas at Austin, 2021 

 

Supervisors:  Michael R. Haberman, Andrea Alù 

 

We collect information about the world through our senses, two of which, hearing 

and touch, are attuned to the mechanical vibrations travelling around us. Scientists and 

engineers have learned to control these acoustic waves, and in so doing they have opened 

new possibilities in how we interact with each other and the natural world. One area of 

rapid progress is acoustic metamaterials, which are architected structures that can shape 

sound waves in ways that go beyond what is possible with natural materials. Given the 

potential of these new materials, it is important to consider their limits and identify the 

underlying physical principles responsible for them. In this dissertation we examine 

limitations in the response of acoustic materials and devices due to passivity and time-

reversal symmetry. 

An important constraint that arises due to time-reversal symmetry is reciprocity. 

Reciprocity must be broken to create devices that allow sound through in only one 

direction. This work explores acoustic nonreciprocity with particular attention to 

applications in surface acoustic wave devices and topological acoustic demonstrations. 
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One way to achieve acoustic nonreciprocity is with fluid flow. Based on this technique, we 

present an acoustic Mach-Zehnder isolator and nonreciprocal leaky-wave antenna. 

A different but equally fundamental and important constraint in acoustics 

technology is the trade-off between the size, efficiency, and bandwidth of a small resonator. 

By considering arbitrary stored and radiated sound fields surrounding a compact source, 

we derive a theoretical lower bound on the quality factor of a passive acoustic radiator. 

This work discusses opportunities to overcome this constraint by considering active 

resonators. We experimentally demonstrate a three-fold bandwidth improvement to the 

passive case by synthesizing a non-Foster circuit load for a piezoelectric sonar transducer. 

By using a Green’s function approach and by connecting the physics of a disordered 

array to the statistical theory of random walks, we also explore the physics of near-zero-

index materials, and leverage their unusual sound-matter interactions to enable robust and 

highly directive acoustic sources. This work introduces an entirely new way to achieve 

highly directional sound beyond traditional techniques. 
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Chapter 1: Introduction 

1.1 BROKEN TIME-REVERSAL SYMMETRY 

While sound is not visible to the human eye, with a little imagination we can 

visualize the songs of birds or the rumble of passing cars as waves expanding outward and 

bouncing through the surrounding landscape. We can create mental movies of passing 

sound waves by visualizing sound in this way and even imagine how these movies would 

look if played backward. Through this mental exercise, we find that many sound waves 

look perfectly natural when they are reversed. For example, the sound wave of a birdsong 

travelling by from left to right when played backwards simply looks like a birdsong moving 

instead from right to left. The movie played backwards appears to obey the laws of physics 

as readily as when played forward and we would simply suppose that the unseen songbird 

was on our right instead of on our left. Even the sound waves spreading out from a concert 

violinist on a stage could be reversed and still look plausible – we would simply need to 

envision a large array of speakers surrounding the violinist, all simultaneously playing a 

recording of the musical number, creating waves that, instead of emanating away, converge 

toward the violinist. This ability of sound waves to look natural either forward or reversed 

is due to the time-reversal invariance of acoustic wave propagation. Mathematically, the 

scalar wave equation, , is invariant under the transformation . Time-

reversing a solution of this equation returns an equally valid solution [1]. 

How can this reversibility be broken? Perhaps the simplest effect that breaks time-

reversibility is loss. As sound travels, it decreases in volume both through geometrical 

spreading and through absorption. The spreading effect is perfectly time reversible, but 

absorptive losses violate the reversal relationship. Imagine the birdsong passing from left 

to right. As it travels, it loses to heat about one decibel of sound pressure level for every 
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one hundred meters that it travels due to dissipative effects. In the forward version of the 

mental movie, we picture a passing wave that fades in strength as it travels with the 

surroundings slightly heated by its passing. The movie played in reverse shows a wave that 

mysteriously seems to suck up heat and gains in strength as it passes from right to left. This 

looks unnatural as it violates the second law of thermodynamics. The absorption process 

is time-reversible in the sense that the heat, which is composed of a multitude of collisions 

and vibrations of air particles, could conspire in perfect unison to add amplitude to a 

passing sound wave, but this process goes against the grain of the inevitable local entropy 

increase and so we say it breaks the time-reversibility. 

Other effects break time-reversal symmetry while, additionally, violating another 

important symmetry of wave propagation, namely reciprocity. Reciprocity relations are 

mathematical equivalencies between signals received when source and receiver locations 

are swapped [2,3]. These relations are inherent to linear, time-invariant wave propagation 

in the presence of time-reversibility. Effects based on the motions of particles that modify 

acoustic wave propagation can break reciprocity [4]. Examples include fluid flow (i.e., 

wind currents carrying sound waves), magnetoelasticity (i.e., moving charged particles 

creating magnetic fields that couple to acoustic vibrations), and elastic gyricity (i.e., 

spinning particles coupling to acoustic vibrations). Reciprocity is violated as there is a 

coupling between these motions and the wave motion that does not occur equally from 

different directions. 

To check whether these material motions break reciprocity or time-reversal 

symmetry, we examine the behavior of wave propagation in the reciprocal scenarios while 

the directions of these motions remain unreversed. For reciprocity, we examine the effect 

of swapping source and receiver locations while the material motions are unchanged. For 

time-reversal symmetry, we play the movie forward and backward while keeping the 
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motions moving in the same direction in both cases. If reversing the movie while keeping 

the motions unchanged is unphysical, we say that there is broken time-reversal symmetry. 

Defining broken time-reversal symmetry or reciprocity in this way is useful from an 

engineering standpoint as a typical scenario involves a device that includes some 

symmetry-breaking motions which are steady, no matter the direction acoustic waves 

might take through it. 

These concepts and definitions are illustrated by continuing the birdsong example. 

We suppose there is a steady wind blowing from left to right, speeding up the chirps and 

whistles of a songbird on the left as its song heads with the wind. We play the movie 

backward now, keeping the wind in its left-to-right direction, and it looks unnatural because 

the sound, now going against the wind, is travelling faster than it should. The time-reversal 

symmetry is broken. Reciprocity is broken as well as there is a difference between signals 

recorded by two microphones – one on the right recording a birdsong from the left and 

another on the left recording an identical birdsong from the right (see Ref. [5] for a 

discussion of reciprocity broken by flow). The broken reciprocity is evident as the two 

recorded signals are time-shifted relative to each other. The birdsong begins sooner in the 

recording of the right microphone compared to that of the left due to the rightward wind. 

As a further example, we consider a wind that is instead blowing directly up from out of 

the ground, say through a vent under our feet. As the wind is now perpendicular to the 

motion of the sound, whose propagation we take to be in the horizontal plane, the effect of 

the wind is to sweep the sound up vertically in the air as it passes. In the forward movie we 

see sound travel from lower left to upper right in the presence of an upward wind; in the 

backward movie we see sound travel from upper right to lower left, which is clearly at odds 

with the upward wind. Again, time-reversal symmetry is broken. However, reciprocity is 

intact as swapping source and receiver between right and left locations results in identical 
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recorded signals. While wind or other material motions are able to break reciprocity, the 

breaking is not guaranteed. 

Breaking time-reversibility is useful as it enables acoustic phenomena and devices 

where sound behaves differently when the wavenumber, and therefore the direction of 

travel, is reversed. This includes beamforming arrays that can receive and transmit in 

different directions [6,7], one-way acoustic waveguides that are immune to backscatter 

[6,8,9], and structures hosting topologically protected unidirectional surface states [10–12]. 

1.2 BROKEN PASSIVITY 

When sound passes through a material without gaining energy there are restrictions 

placed on the wave’s behavior. The absence of acoustic gain is known as passivity and it 

implies causality, where a material’s response function describable by a convolution 

integral has no contribution from future times [13]. In a passive material, the real and 

imaginary parts of the response function are connected through the Hilbert transform (the 

Kramers-Kronig relations). These relations imply that exotic material parameters are 

always accompanied by frequency dispersion, which limits the functional bandwidths of 

passive devices. Additionally, in passive reciprocal materials, the imaginary part of the 

acoustic density and bulk modulus are necessarily positive (for the  convention) [14]. 

Breaking passivity requires an energy source that can feed the acoustic wave. While 

material flows such as ocean currents or gyric materials composed of rotating spinners may 

contain motions that break reciprocity, they do not supply energy to acoustic waves and 

are unable to create acoustic gain. This can be understood by considering that, in the 

absence of friction, these motions require no energy input in order to be maintained. A 

force is required to get a flow circulating in a waveguide, but after the initial acceleration, 

no more force is needed. In the linear acoustic model, a passing sound wave extracts no 
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energy from the motion, though its propagation is affected. Other techniques are needed to 

couple energy into the wave. Passivity can be broken using an electroacoustic transducer 

loaded with a gain element such as an op amp. This is a straightforward way to break 

passivity in acoustics due to the maturity of electroacoustic transducer technology [15]. 

Time-modulation can also provide energy to acoustic waves, such as with a parametric 

pump [16]. 

New functionalities are unlocked through the inclusion of gain elements. By 

breaking passivity, the narrow ranges of exotic material parameters implied by the 

Kramers-Kronig relations can be widened. It has been shown, for example, how it is 

possible in an active material to achieve a constant negative material parameter over a finite 

frequency range [17,18]. For sources, breaking passivity can widen the bandwidths of 

radiation resonances as it circumvents a fundamental relationship between radiator size and 

bandwidth, known in electromagnetics as the Chu limit. This limit, a consequence of the 

inevitable stored energy surrounding a source, constrains the useable bandwidth and 

efficiency of small radiators and effective materials composed of subwavelength 

resonators. Another constraint that is broken through the use of gain is Foster’s reactance 

theorem. Applicable to systems describable by a one-port network representation, Foster’s 

theorem states that, in the absence of loss or gain, the system’s reactance or susceptance 

always increases with frequency [19,20]. A consequence of this is the inability of passive 

systems to provide broadband impedance compensation. Loss may be introduced to 

improve the bandwidth performance, but only at a loss of efficiency. Through the use of 

gain media, wider impedance compensation bandwidths are enabled without necessarily 

degrading efficiency. 

Idealized components, such as negative inductors, capacitors, and resistors can be 

synthesized from active elements and act as conceptually simple building blocks for use in 
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electroacoustic circuit models. Negative resistances can be used to compensate the positive 

resistances that arise due to inevitable losses from dissipation in propagation or 

inefficiencies in transducers. Furthermore, with suitable spatial arrangements of gain and 

loss, novel parity-time symmetric effects, such as unidirectional transparency and a 

decoupling between an emitter and the eigenstates of its environment are made possible 

[15,21–24]. It should be noted, however, that active systems do not enjoy the same 

protection from instabilities that passive systems enjoy. Instabilities, where the wave 

amplitude grows without bound either at a single point (absolute instability), at a moving 

point (convected instability), or in a bounded medium (global instability) may be 

introduced and in many applications must be avoided. 

1.3 DISSERTATION ORGANIZATION 

This work explores broken time-reversal symmetry and passivity in acoustics, 

through theoretical analysis and experimental demonstrations. Chapter 2 is an overview of 

acoustic nonreciprocity, including an introduction to reciprocity theorems and techniques 

used to break them. The wide usefulness of broken reciprocity is made clear through a 

review of promising applications, such as surface acoustic wave technology and 

topological acoustics. In chapter 3, nonreciprocal devices based on material flow are 

presented, including the acoustic Mach-Zehnder isolator which allows sound to pass 

through in only one direction and a nonreciprocal metamaterial leaky-wave antenna 

capable of transmitting in a different direction than it receives. In chapter 4, the acoustic 

Chu limit is developed and it is shown how, by breaking passivity, a synthesized non-Foster 

circuit element can widen resonant bandwidths. In an experimental demonstration, the 

amplitude-bandwidth of a piezoelectric transducer is improved by 450% while maintaining 

system stability. A discussion of the applicability of the technique to acoustic 
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metamaterials is also included, with exotic material properties realizable over large 

bandwidths. Chapter 5 presents a highly-directive acoustic source based on a metamaterial 

compressibility-near-zero response. Conclusions and future work are outlined in chapter 6. 
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Chapter 2: Acoustic nonreciprocity1 

In this chapter we further consider the similarities and differences between time-

reversal symmetry and reciprocity and give a broad review of recent research in broken 

reciprocity. Breaking reciprocity is one of the main motivating factors in current research 

on time-reversal-symmetry-breaking effects as it is essential in creating robust one-way 

propagation where sound waves or elastic vibrations are permitted to travel in only one 

direction. This unidirectional response forms the basis for devices such as acoustic isolators 

and circulators, and it also unlocks new functionalities for complex systems such as 

acoustic topological insulators. After reviewing the principles of acoustic reciprocity, we 

look at techniques to achieve large reciprocity breaking, including nonlinearities, moving 

media, spatiotemporal modulation, and nonlinear bianisotropy. We then discuss the recent 

surge of progress in nonreciprocal surface acoustic wave devices and topological acoustic 

systems, areas which we predict will continue to flourish in the coming years. We 

anticipate that these and other applications of nonreciprocity will continue to enhance 

acoustic technology and form the basis for new acoustic devices. Reciprocity is a 

fundamental principle in wave manipulation, and techniques for breaking its symmetry will 

continue to be discovered, refined, optimized, and applied to several acoustic domains as 

the understanding of the underlying principles and new technologies mature. 

2.1 INTRODUCTION 

The study of acoustics explores the excitation, propagation and measurement of 

acoustic waves in natural and engineered environments. Among these, the study of acoustic 

propagation has flourished in the past twenty years, in large part due to the emergence of 

 
1 Reprinted from C. Rasmussen, L. Quan, and A. Alù, Acoustic nonreciprocity, J. Appl. Phys. 129, 210903 

(2021), with the permission of AIP Publishing. 
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acoustic metamaterials [25–27], which have greatly extended our ability to manipulate 

sound waves. Early studies focused on the exploration of reciprocal functionalities. In this 

scenario, acoustic metamaterials, no matter the complexity of their structure and no matter 

how counterintuitive their routing of acoustic waves may be, are subject to the rule of 

reciprocity. That is, if we interchange the location of sound source and receiver the received 

signal will always be the same, regardless of the microstructure of the material. This 

general rule is satisfied in both time and frequency domains.  

The concept of reciprocity is easily confused with time-reversal symmetry, as they 

are both symmetries between two different wave fields with strong relations with each 

other. Time-reversal symmetry can be understood by visualizing a video of an acoustic 

wave played backward. When this backward-scrolling video is an allowed physical process 

(that is, it obeys the relevant laws of physics), time-reversal symmetry is intact. This global 

reversing of the wavefield in a region of space is the central focus of the field of time-

reversed acoustics [1]. For example, a time-reversed acoustic experiment may seek to 

create a converging spherical wave, the time-reversed version of a point source, where an 

array of sources is used to create the converging wave with a focus at the location where 

the original source would reside. Studies in acoustic reciprocity differ in that they are 

typically concerned with the symmetric relation between a source and receiver. That is, 

instead of examining the relationship between a forward and a fully-reversed wave field, 

reciprocity establishes a relationship between field amplitudes and phases at locations or 

ports in wave fields that may appear globally quite different from each other. There is also 

the difference that strict time-reversal means that all involved physical processes must be 

reversed, whereas reciprocity is typically concerned with reversing propagation features. 

This difference is apparent in the presence of material loss, which is the most common 

example in which reciprocity and time-reversal symmetry diverge. When an acoustic wave 



 10 

travels through a lossy medium the wave energy is dissipated through countless 

microscopic collisions of the particles in the medium. When time is reversed (i.e., the 

movie is played backward) the inverted collisions perfectly come together to create gain 

for the reversed wave. The movie looks unrealistic because it shows an unlikely local 

spontaneous decrease in entropy, but the Newtonian equations describing the collisions 

have not been violated. In reciprocity, sources and receivers are swapped, but material loss 

can still be present, implying that waves are equally attenuated in either direction, as it 

would occur in a realistic experimental setup. In a reciprocal system, transmission in 

opposite directions is still identical, even though the lossy channel obviously does not obey 

time-reversal symmetry as the signals decay in both directions. It is for this reason that, 

compared with time-reversal symmetry, reciprocity is often considered a more general 

phenomenon in wave engineering [28]. 

The reciprocity principle was originally introduced by Helmholtz in 1860 [2]. It 

concerns the definition of acoustic reciprocity where, by interchanging the sound source 

and receiver, both the amplitude and phase of the received signal remain the same. This 

general notion of reciprocity can be illustrated by considering the very familiar example of 

human communications. We assume that if we can hear someone talking to us, they should 

be able to hear us if we talk back to them with the same volume. We do not expect the 

shape of the room or any nearby sound absorbing materials to change this property, which 

is an intuitive understanding that reciprocity holds even in the presence of spatial 

inhomogeneities and linear dissipation. 

Acoustic reciprocity may also involve reciprocal couplings of the acoustic field 

with other phenomena, for example, electromagnetic waves. Many acoustic transducers 

used for sound generation and reception are based on the coupling of acoustic and 

electromagnetic phenomena in piezoelectrical materials. This coupling obeys reciprocity, 
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hence, if the electrical and acoustic signals are interchanged, the piezo-electric and electric-

piezo switching efficiencies are identical. With this property, an acoustic transducer can be 

utilized as both a sound source and an acoustic sensor. 

The photoacoustic (or optoacoustic) effect, based on which ultrasound waves are 

generated by the thermal expansion of a material as it absorbs light, is another situation in 

which acoustic propagation involves other phenomena. Interestingly, reciprocity does not 

hold for this effect. Photoacoustic waves are generated by light absorption in a material 

sample, causing thermal expansion, and then resulting in ultrasound propagation [29]. The 

reversed coupling effect, i.e., generating light by sound waves has been rarely reported due 

to thermal phenomena being involved in the coupling. Actually, the reciprocity principle 

can be broken in several other situations. Aside from nonreciprocal coupling with other 

phenomena, any kind of acoustic nonlinearity or bias through moving media will result in 

nonreciprocity. In fact, the acoustic wave equation itself is nonlinear, indicating that 

acoustic propagation can become nonreciprocal as the intensities grow in the presence of 

geometrical asymmetries [30–33]. Only in the small signal approximation can the wave 

equation be considered linear and admit a reciprocity principle. 

Biased moving media, such as air currents between two speakers, also breaks the 

symmetrical transmission of reciprocity as sound propagation in the upstream and 

downstream directions are different. So why do we adopt acoustic reciprocity in our daily 

life? Why, when conversing with others, do we generally not notice any asymmetry? 

Because in most scenarios the acoustic pressures involved are indeed very small and 

because the speeds of any nearby breeze are often tiny compared with the speed of sound. 

The resulting small amounts of nonreciprocity are too weak to be observed or matter. The 

aim of nonreciprocal acoustic wave engineering, then, is to strengthen these effects by 

developing techniques to enlarge nonreciprocity for small pressure amplitudes and slow-
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moving media. While any amount of nonlinearity or external modulation breaks the exact 

reciprocity symmetry, in practice systems must be carefully designed to achieve an effect 

large enough to be useful. Two useful metrics in quantifying nonreciprocity are isolation, 

commonly defined as the ratio between forward and backward transmission, and insertion 

loss, which is how much signal power is lost in the forward transmission due to the 

presence of the nonreciprocal element. We will first review statements of reciprocity in 

acoustics, then discuss techniques for large reciprocity breaking, highlighting some of the 

promising applications for nonreciprocity and discussing future possibilities for this vibrant 

field of research. 

2.1.1 Example reciprocity statements in acoustics 

A reciprocity relation is any symmetrical relation between field quantities when 

sources and receivers are interchanged. For example, suppose there is a monopole source 

distribution mi and a dipole source distribution di in the acoustic field (pi, vi), where i can 

be 1 or 2, indicating acoustic fields generated by source distributions 1 and 2, respectively. 

In the frequency domain, the sound equations can be written as  

 , (2.1) 

 . (2.2) 

After some mathematical manipulation, we can arrive at the reciprocity relation 

 . (2.3) 

Suppose there is a monopole source  located at r
1
 and another 

monopole source  located at r
2
. Substituting these into Eq. (2.3), we get 
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 . (2.4) 

If we assume , Eq. (2.4) indicates that the acoustic pressure at r
2
 produced 

by a monopole source at r
1
 will be identical to the acoustic pressure at r

1
 produced by a 

monopole source at r
2
, as sketched in Fig. 2.1(a). 

 

Figure 2.1: Forms of acoustic reciprocity. Reciprocity indicates a symmetry between two 

fields when sources and receivers are interchanged. (a) For monopole sources, the pressure 

at a receiver in field 1 is equal to the pressure at a receiver in field 2 when the source and 

the receiver are swapped. (b) Projected acoustic velocities are equal for acoustic dipole 

sources. (c) In an elastic string, the induced displacements are equal. (d) In a scattering 

problem with well-defined ports, reciprocity is the condition that the input and output ports 

are related by a symmetric scattering matrix. 
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If there is instead a dipole source  located at r
1
 and another dipole 

source  at r
2
, from Eq. (2.3) we get 

 . (2.5) 

This reciprocity relation is illustrated in Fig. 2.1(b). If we suppose  and 

they are both in the x-direction, we could infer , indicating that the x-component 

of the particle velocity at r
2
 produced by an x-directed dipole source at r

1
 will be identical 

to the x-component of the velocity at r
1
 produced by an x-directed dipole source at r

2
. 

Other forms of reciprocity follow similar derivations, for example a statement of 

reciprocity in an elastic string, where the induced displacements due to interchanged loads 

are equal [Fig. 2.1(c)], and in a general scattering formalism, where the reciprocity 

statement implies that the resulting scattering matrix is symmetric [Fig. 2.1(d)]. 

2.1.2 Nonreciprocity research in electromagnetics 

Research on reciprocity breaking in electromagnetics began earlier than in 

acoustics in part because magneto-optical materials, which can strongly break reciprocity 

through the application of a dc magnetic bias, are relatively common in nature. Hence, the 

earliest nonreciprocal wave devices were mostly based on ferrites and found application in 

both microwave engineering and optics. The principle of magneto-optical nonreciprocity 

is to utilize the biasing static magnetic field to influence the electron cyclotron orbiting 

motion inside the material, which nonreciprocally affects electromagnetic wave 

propagation through the material.  This is the working principle of the earliest 

electromagnetic waveguide circulators and isolators [34,35]. However, nonreciprocal 

devices based on magneto-optical media are usually bulky and large because the 

underlying phenomena are rather weak, which prevent on-chip integration. 
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Later, several magnetic-free approaches were proposed to break reciprocity. 

Inspired by the biased magnetic field to break reciprocity, an effective approach was to use 

dynamic modulation to create an effective magnetic field [36]. In this technique, although 

there is no real magnetic field biasing the structure, a gauge field is formed that mimics the 

magnetic field and can manipulate light nonreciprocally [37]. Spatio-temporal modulation 

on the basis of resonant systems was then proposed by mimicking angular momentum as a 

way of replacing the magnetic bias, which removes the degeneracy between opposite 

resonant states, to realize giant nonreciprocity with modest requirements on the modulation 

frequency and amplitude. This approach was first applied by modulating effective material 

parameters [38], and it was later introduced into circuit designs [39] and finally realized in 

on-chip integration [40]. Other approaches to break electromagnetic reciprocity are based 

on nonlinear materials combined with geometrical asymmetries [41–43]. 

2.2 BREAKING RECIPROCITY IN ACOUSTICS 

Similar techniques have found success in breaking acoustic reciprocity. In general, 

reciprocity theorems cease to apply in the presence of effects that violate the underlying 

assumptions of linearity, passivity, and time-invariance, though their presence does not 

guarantee broken reciprocity. For example, as sketched in Fig. 2.2(a) for an acoustic wave, 

reciprocity may be broken as the wave passes through a nonlinear medium, but only if there 

is an accompanying spatial asymmetry. Aside from nonlinearity, reciprocity can also be 

violated by the presence of any quantity that is odd under time reversal, meaning that their 

sign changes with a change of sign of the time coordinate (the position of the particle is 

time even – the length quantity is unchanged by the time reversal; the velocity of a particle 

is time odd – the time reversal switches its direction). For this reason, reciprocity does not 

hold when an acoustic wave is travelling through moving media, such as an ocean current. 
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Figure 2.2: Breaking acoustic reciprocity. (a) Nonlinear media can break reciprocity. 

However, reciprocity is maintained unless there is spatial asymmetry. (b) Moving media, 

such as airflow, can break reciprocity between fields 1 and 2 as the direction of motion of 

the media is the same in both scenarios. (c) Nonreciprocity is induced when a magnetic 

field couples to an acoustic wave, as in the case of a magnetoelastic medium in the presence 

of an external magnetic bias H. This can also be understood as a moving medium, 

considering that the dc magnetic field is moving charged particles. (d) A medium with 

nonreciprocal microstructure, such as an elastic gyric medium, displays nonreciprocity. 

This is again a form of moving medium, as it is a result of microscopic motions that are 

not reversed in the two scenarios. 

However, reciprocity is restored if the time-odd quantities are reversed along with 

the source and receiver positions [Fig. 2.2(b)]. Magnetic fields, which arise due to moving 

charged particles, break reciprocity unless the direction of the charged particles (and hence 

the direction of the magnetic bias) is also reversed [Fig. 2.2(c)]. And reciprocity only holds 

for nonreciprocal media, where the homogenized material properties arise from hidden 

sources of motion such as gyroscopic spinning as in Fig. 2.2(d), when the directions of the 

hidden motions are reversed. As examples of techniques to break reciprocity, we now 

discuss nonlinearity, moving media, spatiotemporal modulation, and bianisotropy in 

greater detail. 
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2.2.1 Nonlinearity 

In principle, the acoustic wave equation is nonlinear, and strong nonlinear features 

may be observed as the intensities grow. Nonlinearity in acoustics can introduce frequency 

harmonics, seen in the time response as waveform distortions, and an amplitude-dependent 

response, which results from effective material properties that vary with the amplitude. The 

systematic study of nonreciprocal acoustics started by looking at nonlinearities. In 2009, 

by combining a phononic crystal with nonlinear materials, a so-called acoustic diode was 

proposed to realize sound energy isolation [30]. The idea is to place a phononic crystal 

adjacent to a nonlinear material so that the phononic crystal is able to block sound waves 

at the fundamental frequency while allowing transmission of the second harmonic. If the 

acoustic wave encounters the phononic crystal first it is totally blocked. But, when incident 

from the opposite direction, the wave passes instead through the nonlinear material first 

where some of the acoustic energy is converted into the second harmonic and is then free 

to pass through the phononic crystal. Due to the effective filter function of the phononic 

crystal, the transmission asymmetry for this system can be very high. However, since there 

is no phase-matching in the system, energy conversion from the fundamental frequency to 

the harmonic is very limited, resulting in a comparatively low working efficiency. This 

proposal was implemented experimentally by utilizing the high nonlinearity of ultrasound 

contrast agent microbubbles [31]. To overcome the low efficiency in energy conversion, 

an active approach was then proposed [32]. Here, Helmholtz resonators were used for 

frequency filtering in place of a phononic crystal and a loudspeaker was used in place of a 

nonlinear media. In 2011, a different approach based on bifurcation-based acoustic 

switching was proposed for sound isolation [33]. Similar designs have included modulating 

geometric nonlinearity [44] and utilizing nonlinear interfaces [45]. These nonlinear 

approaches to nonreciprocity do not require frequency shifting and energy conversion, and 
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hence are able to operate at the fundamental frequency. However, due to the involved 

nonlinearities, waveform distortion is unavoidable [46,47]. 

2.2.2 Moving media 

Nonreciprocal devices based on nonlinearity suffers from several drawbacks. First, 

the working properties are generally amplitude dependent. Second, waveform distortion is 

always involved due to media nonlinearity. Third, to obtain large levels of transmission 

asymmetry the operation amplitudes need to be relatively high. And, fourth, there is 

possible degradation in performance when both forward and backward waves are present 

at the same time, a problem known in photonics as dynamic reciprocity [48], with a tradeoff 

between forward transmission and nonreciprocal intensity range [41]. These drawbacks 

have encouraged research into alternative routes to acoustic nonreciprocity. 

Nonreciprocal phenomena are commonly encountered in underwater acoustics and 

aerodynamics, as in the case of large ocean currents or high-speed airflow. Giant 

nonreciprocity typically requires very high moving speeds and/or very long distances to 

accumulate the nonreciprocal effect. However, in 2014, by introducing biased angular 

momentum into a circular resonator with sharp resonance, giant acoustic isolation was 

achieved with a slow airflow in a subwavelength scale metamaterial [8]. The introduced 

angular momentum split the resonance mode for clockwise and anti-clockwise waves into 

two different frequencies, mimicking the Zeeman effect in quantum mechanics. Though in 

this setup the frequency splitting is proportional to the biased flow speed, because the 

resonator supported a very sharp resonance, even a tiny frequency difference could result 

in large sound isolation. This design was then soon applied in proposals for acoustic Chern 

insulators [49,50], with an experimental realization recently reported [51]. Nonreciprocal 

acoustic isolators based on the Mach-Zehnder interferometer have also been reported 
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where, by coupling two acoustic waveguides with different moving media (in reality, 

typically one waveguide is with static media while the other is with moving flow), one can 

realize constructive interference in one direction and destructive interference in the 

opposite direction [6,9]. Some of these designs were introduced by the author and are the 

subject of chapter 3. 

2.2.3 Spatiotemporal modulation 

While biased moving media is a good solution for sound isolation, the working 

bandwidth is typically narrow and the robustness to dissipation is quite weak. In addition, 

the moving flow will typically cause undesired additional sound, for example noise from 

fans which are used to create a steady flow. Moreover, the moving media approach is 

practically limited to fluids, which prevent its applicability in elastic wave propagation. 

Spatiotemporal modulation, which can mimic the effect of moving media, was 

subsequently proposed. By dynamically changing the effective bulk modulus of three 

connected resonant cavities, acoustic isolation levels of over 40 dB with insertion losses as 

low as 0.3 dB were seen in simulations of a noise-free, integrable, frequency scalable 

subwavelength device [52]. In this study, the volume of the cavities was alternately 

modulated in the clockwise direction, which introduces an effective angular momentum to 

break the reciprocity among the ports. In another example, by modulating two tightly 

coupled resonators inside an acoustic waveguide, an isolation factor greater than 25 dB has 

also been reported [53]. This approach has additionally been utilized in nonreciprocal 

sound transmission between two acoustic resonators [54].  Specifically, by introducing an 

initial spatial phase bias to the space-time modulated coupled resonators, acoustic energy 

could be always confined in one of the two connected resonators. All above-mentioned 

spatiotemporal modulations involve changes to the volumes of resonators, which is a 
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modulation of the effective bulk modulus. To instead achieve nonreciprocity through a 

time-varying effective density, a scheme has been proposed to modulate elastic membranes 

[55]. Using piezoelectric transducers to modulate solid media, similar nonreciprocal 

transmission has also been reported for elastic waves [56,57]. Another approach is 

mechanical modulation in nonlinear media to change the local effective stiffness [44,58]. 

2.2.4 Nonreciprocal bianisotropy 

In regular acoustic media, momentum change is a function of acoustic velocity, and 

volume change is a function of acoustic pressure. Acoustic bianisotropy, also called Willis 

coupling, considers the coupling between acoustic pressure and velocity, resulting in 

momentum and volume change as functions of both acoustic pressure and velocity [59]. In 

Willis media, the mass conservation equation and the momentum equation can be written 

as [14,60–63] 

 , (2.6) 

 . (2.7) 

Here E
eff

 and  are the effective bulk modulus and density, while  and 

are the Willis coefficients, quantifying the coupling between acoustic pressure and 

velocity. The dispersion relation of the above two equations is 

 . (2.8) 

The first term with plus and minus signs indicates the reciprocal portion of the 

wavenumber while the second term indicates the nonreciprocal portion of the wavenumber. 

When  and  but , the nonreciprocal portion of the wavenumber 
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is zero, indicating that the presence of Willis coupling does not necessarily imply that 

reciprocity is broken. However, when , Willis coupling can result in large 

nonreciprocity. Based on active Willis materials, broadband sound isolation has been 

reported in both airborne acoustics [64,65] and mechanical waves [66]. On the passive side, 

by modulating both elastic moduli and mass density in space and time in a wave-like 

fashion, nonreciprocal wave propagation has also been reported [67–69]. There is some 

debate about whether this method of introducing effective moving materials should be 

considered a passive approach, because it requires extra energy to operate the system. 

However, this type of modulation only converts the energy in the moving parts while 

leaving the acoustic energy conserved and therefore it is useful to distinguish it from 

modulation schemes which explicitly input acoustic energy. A nonreciprocal acoustic lens 

based on passive modulation of Willis coupling which only images an object from one side 

has also been proposed [70]. 

2.3 APPLICATIONS 

Reciprocity is a powerful concept in the analysis, design and operation of acoustic 

systems. Knowing that a system obeys reciprocity implies that there are underlying 

symmetries that can in many cases simplify the analysis of complex systems. For instance, 

a complex measurement of an acoustic quantity can in many instances be substituted by a 

simpler one when reciprocity holds. Consider what a driver hears when operating a vehicle. 

How much of the total noise produced by the vehicle is due to the airborne sound generated 

by the tires? Answering this question directly could mean placing microphones in the ears 

of an artificial head in the driver’s seat and then deactivating or disconnecting all other 

sources of sound, such as any structure-borne vibrations. This is no small feat. But the same 

information can be obtained through a reciprocal measurement. In this case sound sources 
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are instead placed in the ears of the artificial head and the resulting pressure is then 

measured at points on the tire surface [71]. For many years reciprocity has served as a 

useful tool in physical acoustics, including for calibrating microphones [72], for deriving 

analytical scattering solutions in the presence of a flaw [73], and for inverse parameter 

estimation in seismic experiments [74]. 

While the absence of reciprocity might make the analysis more difficult, it enables 

novel wave guiding phenomena, such as in the examples so far discussed. Nonreciprocity 

finds application in all typical acoustic wave domains: air, water, biological tissues, and 

solids. We discuss here in particular two areas of application that are poised to make lasting 

contributions in the acoustics community. The first is surface acoustic wave (SAW) 

devices, which are a promising platform for nonreciprocity because of their widespread 

industrial and research use. The second application area is topological acoustics, where 

nonreciprocity is tied to the time-reversal symmetry breaking that is essential to many 

topological effects. 

2.3.1 Nonreciprocal SAWs 

Waves confined to an interface between two materials are called surface waves and 

are characterized by an exponential decay of the wave amplitude into the materials. The 

lower symmetry and tighter energy confinement of surface waves relative to bulk waves 

have made them a promising avenue for large nonreciprocal response. In these waves the 

matter at the interface undergoes harmonic motion as displacement from equilibrium is 

counterbalanced by a restoring force. In the case of ocean waves, the displaced water at the 

water/air interface is restored by the gravitational force. In solid media, the dominate 

restoring force is the elastic resistance to deformation. Surface waves on solids are called 

Rayleigh waves, after Lord Rayleigh who described their existence in an 1885 paper [75]. 
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In these waves, the solid particles undergo elliptical motion where the size of the ellipses 

shrinks with depth. In an isotropic solid these ellipses lie fully in the plane made by the 

direction of travel and the surface normal. And, in a semi-infinite elastic block, these waves 

are non-dispersive. 

Rayleigh waves are of technological significance as they are the primary type of 

wave used by SAW devices. In these devices, metal electrodes launch and receive Rayleigh 

waves on a piezoelectric substrate. Because the Rayleigh wave speed in a typical substrate 

is a few thousand meters per second, the wavelengths in a SAW signal are many orders of 

magnitude smaller than they would be if the signal was in the form of an electromagnetic 

wave. The ability of SAW devices to process signals in a small volume makes them well 

suited as components of integrated circuits and they are consequently widely used in 

modern electronic systems (a typical cell phone contains dozens of SAW filters) [76,77]. 

SAW devices are also widely used in microfluidics, such as in the manipulation of 

biological matter, and are also being increasingly utilized in basic quantum research, for 

example as a way to controllably transmit single electrons [76]. To date these devices have 

been largely constrained by reciprocity. But recent effort has begun to show how this 

restriction might be efficiently overcome, opening even more possibilities for these 

microelectromechanical devices. For example, incorporating nonreciprocity could allow a 

single SAW device to serve dual roles as a filter and an isolator. Nonreciprocity can also 

help minimize the degrading effect of reflections from the substrate boundaries. 

To date, the most studied technique for SAW nonreciprocity is the magnetoelastic 

effect. The amount of nonreciprocity achieved by the coupling of magnetic and elastic 

fields is dependent on the relative orientations of the applied magnetic field, the direction 

of wave propagation, and any special directions dictated by various symmetries of the 

system such as the crystal structure and material shape [78]. The first studies on surface 
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wave magnetic nonreciprocity were conducted decades ago, but only modest effects were 

demonstrated. In one early study, nonreciprocity was observed in a single-crystal 

aluminum block where the applied magnetic field caused the conduction electrons to 

undergo cyclotron orbits, influencing the elastic wave propagation nonreciprocally due to 

the presence of the symmetry-breaking surface. The nonreciprocity was small, and the 

setup needed to be kept at very low temperature (4 K) [79]. 

Through a recent surge of interest, devices are now being introduced that can obtain 

large nonreciprocal effects while at room temperature. In a remarkable demonstration, a 

magnetic SAW device operating at 1435 MHz was recently reported to achieve 48.4 dB of 

isolation, which is substantially higher than that of commercial Faraday isolators (~20 dB) 

in this frequency range [80]. The setup, illustrated in Fig. 2.3(a), consists of SAW waves 

generated on a piezoelectric LiNbO3 substrate and then sent through a ferromagnetic 

(FeGaB) bilayer stack where resonant magnetoelastic coupling between SAW and 

magnetic spin waves induces large dissipation. This magnetically induced interaction is 

nonreciprocal and, as plotted in Fig. 2.3(b), depends on the relative angles of the anisotropy 

direction of the ferromagnetic layer, applied magnetic field (highest isolation was seen at 

~10 Oe), and direction of SAW propagation. In another study, a similar ferromagnetic 

bilayer structure was found to achieve high amounts of nonreciprocity over a wide 6 GHz 

frequency range in simulations [81]. Nonreciprocity has also been studied in devices that 

use Dzyaloshinskii-Moriya interactions in a ferromagnetic/metal bilayer [82,83] and in 

platforms with magnetic nanowires [84,85]. Another recent approach was to achieve 

nonreciprocity through magneto-rotation, as illustrated in Fig. 2.3(c) [86]. SAW devices 

with magnetic layers have also shown promise as magnetic field sensors [87] and 

nonreciprocal spin wave devices [88]. 



 25 

 

Figure 2.3: Nonreciprocal SAW devices. (a) Schematic of a magnetoelastic SAW isolator. 

The propagating wave is attenuated more when traveling in the reverse direction, in which 

case it is resonantly coupled to magnetic spin waves in the FeGaB bilayer. Shah et al., Sci. 

Adv. 6, eabc5648 (2020). Copyright 2020 Author(s), licensed under a Creative Commons 

Attribution (CC BY) license. (b) Color maps show the amount of transmission at different 

angles and magnitudes of external magnetic field. When the magnetic field is angled at 

150° or 330° and ∼10 Oe, the device exhibits 48.4 dB of isolation. Shah et al., Sci. Adv. 6, 

eabc5648 (2020). Copyright 2020 Author(s), licensed under a Creative Commons 

Attribution (CC BY) license. (c) A magneto-rotation effect is studied as an alternative to 

magnetoelastic coupling to achieve magnetic nonreciprocity. Xu et al., Sci. Adv. 6, 

eabb1724 (2020) Copyright 2020 Author(s), licensed under a Creative Commons 

Attribution (CC BY) license. (d) Nonreciprocity due to spatiotemporal modulation is 

investigated by considering a surface loaded with an array of resonators. The modulation 

is a traveling wave modulation of the spring constants. Reproduced with permission from 

Palermo et al., J. Mech. Phys. Solids 145, 104181 (2020). Copyright 2020 Elsevier. Note 

that this setup is equivalent to the one shown in Ref. 70, published simultaneously. 
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While not yet demonstrated experimentally, spatiotemporal modulation is another 

feasible route to SAW nonreciprocity. A pair of papers, published simultaneously in the 

same journal, analyzed one possibility of this where an elastic surface is loaded with an 

array of masses with modulated spring constants, as shown in Fig. 2.3(d) [89,90]. 

Connecting SAW devices to modulating circuit components, such as switches or varactors, 

is another direction being pursued [91,92]. 

2.3.2 Topological acoustics 

Nonreciprocal acoustics has also found application in the dynamic field of 

topological acoustics, which is the study of acoustic systems that can be characterized by 

quantities (topological invariants) that remain unchanged even when the system is distorted 

through continuous transformations. Both topological acoustics and its counterpart in 

electromagnetics, topological photonics, arose from pioneering work on the integer 

quantum Hall effect in condensed matter physics. In this effect, seen in a collection of 

electrons constrained to move in a plane and subject to a magnetic field which breaks the 

time-reversal symmetry, there are electron states that are confined to the outer surface, 

largely unaffected by the shape of the surface. Analogues to this effect have been shown 

in acoustics where time-reversal symmetry is broken through the use of a moving fluid or 

time modulation. If the acoustic system is then excited by a source in a suitable frequency 

range, the vibrations counterintuitively travel exclusively around the perimeter of the 

system, though the middle remains open. Figures 2.4(a) and 2.4(b) shows a realization of 

this effect in elastic wave propagation on a polyester plate with attached time-modulated 

piezoelectric disks [10]. The spatiotemporal modulation breaks time-reversal symmetry 

and opens topological band gaps in the system that support topologically protected modes 

propagating along the edges of the lattice. 
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Figure 2.4: Topological acoustics. (a) Photograph of mechanical Chern insulator consisting 

of a plate with attached piezoelectric disks. Synthetic angular momentum biasing is 

imparted by modulations in circuits connected to the piezoelectric disks. Darabi et al., Sci. 

Adv. 6, eaba8656 (2020). Copyright 2020 Author(s), licensed under a Creative Commons 

Attribution (CC BY) license. (b) Displacement measurements show an excitation traveling 

around the perimeter of the system, protected against defects by the topological order of 

the 2D lattice. Darabi et al., Sci. Adv. 6, eaba8656 (2020). Copyright 2020 Author(s), 

licensed under a Creative Commons Attribution (CC BY) license. (c) In a demonstration 

of topological pumping in airborne acoustics, the boundary of an acoustic waveguide is 

modulated by the mechanical rotation of a shaft. Sound is topologically transported through 

the waveguide when incident from the right end, but largely blocked when incident from 

the left end. Reproduced with permission from Xu et al., Phys. Rev. Lett. 125, 253901 

(2020). Copyright 2020 American Physical Society. (d) Left: The eigenfrequency 

evolution as a function of the crank angle over a complete cycle. Right: The normalized 

pressure in the waveguide at points (i)–(iii). Solid lines are theoretical results; markers 

show the experimental results. Energy supplied to the right end feeds the right localized 

mode, crosses the bulk, and ends up in the edge state on the opposite side after the pump 

cycle is completed. Reproduced with permission from Xu et al., Phys. Rev. Lett. 125, 

253901 (2020). Copyright 2020 American Physical Society. (e) In another demonstration 

of topological pumping, two arrays of hollow cylinders are connected by a narrow central 

channel. Reciprocity is broken by the system as the top cylinder array is continuously 

translated. Reproduced with permission from Cheng et al., Phys. Rev. Lett. 125, 224301 

(2020). Copyright 2020 American Physical Society. (f) A source injects energy into the 

left edge of the bottom array. The time trace shows the response at the receiver on the right 

end, where signal is repeatedly picked up each time the system goes through a complete 

pumping cycle. Reproduced with permission from Cheng et al., Phys. Rev. Lett. 125, 

224301 (2020). Copyright 2020 American Physical Society. 
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Topological effects also arise in passive systems that obey reciprocity, such as the 

acoustic counterparts of the spin Hall and valley Hall effects. These phenomena are 

interesting as they exhibit robust propagation effects similar to the integer Hall effect 

without the need to break time-reversal symmetry, although this means that they are often 

more susceptible to breakdown due to perturbations that break the needed spatial 

symmetries in the system. 

An exciting recent development has been the experimental demonstration of 

topological pumping, where an edge state is adiabatically carried through the bulk to the 

opposite edge. Using a motorized crank to rotate a helical waveguide boundary as shown 

in Fig. 2.4(c), researchers transported an acoustic wave from one end to the other of a 

waveguide using topological pumping [93]. The energy is transported from one end of the 

system to the other as the modal structure evolves from being localized at the right end to 

being localized at the left end [Fig. 2.4(d)]. As the pumping is topological, it is robust to 

perturbations. This is a clearly a nonreciprocal result, and energy sent in from one direction 

is not equivalently carried back in the opposite direction. One limitation of topological 

pumping is that the transfer of the localized states must occur slowly enough for the 

adiabatic condition to apply. The speed of the topological energy transfer from one edge 

state to another can be increased by exploring more complex modulations of couplings, as 

examined recently with optimal control methods [94]. Further progress can be made by 

tapping into the rich literature on shortcuts to adiabaticity [95]. 

An exciting recent development has been the experimental demonstration of 

topological pumping, where an edge state is adiabatically carried through the bulk to the 

opposite edge. Using a motorized crank to rotate a helical waveguide boundary as shown 

in Fig. 2.4(c), researchers transported an acoustic wave from one end to the other of a 

waveguide using topological pumping [93]. The energy is transported from one end of the 
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system to the other as the modal structure evolves from being localized at the right end to 

being localized at the left end [Fig. 2.4(d)]. As the pumping is topological, it is robust to 

perturbations. This is a clearly a nonreciprocal result, and energy sent in from one direction 

is not equivalently carried back in the opposite direction. One limitation of topological 

pumping is that the transfer of the localized states must occur slowly enough for the 

adiabatic condition to apply. The speed of the topological energy transfer from one edge 

state to another can be increased by exploring more complex modulations of couplings, as 

examined recently with optimal control methods [94]. Further progress can be made by 

tapping into the rich literature on shortcuts to adiabaticity [95]. 

Topological acoustics is a currently a highly active area of inquiry with new 

phenomena being demonstrated almost weekly. By no means exhaustive, a list of other 

nonreciprocal topological advances described in recent articles includes a hybrid integer / 

valley Hall acoustic effect [12], particle pulling using topological chiral modes [11], 

feedback control as a versatile platform for topological effects [96], and observation of 

bulk-edge correspondence in a non-Hermitian active mechanical system [97]. 

2.4 DISCUSSION AND OUTLOOK 

Nonreciprocity in acoustic wave propagation is useful because it dampens the effect 

of obstacles. Vibrations can travel to an intended destination in spite of perturbations that 

would otherwise impede their progress. For example, the inclusion of an isolator as part of 

an acoustic signal chain guarantees that no signal will be reflected back to the source, 

regardless of what comes after it in the signal chain. And a device with a topologically 

protected edge mode ensures one-way acoustic propagation even through convoluted 

material interfaces. This simplifies the design of complete acoustic systems, because it 

introduces extra latitude in the design – many designs can have the same functionality. 
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What ingredients are required to violate reciprocity is well understood. But there is 

still substantial work to be done in developing the most effective nonreciprocity recipes for 

various applications. A feel for this large variation in potential applications can be obtained 

by considering three common scenarios of engineered acoustic propagation and the 

frequency ranges involved. First, airborne acoustics, where most devices deal with 

frequencies that fall in the range of human hearing (20 to 20 000 Hz), though higher 

frequencies are also routinely utilized in devices such as ultrasonic vehicle detectors. 

Second, biomedical ultrasound, where vibrations travelling through complex biological 

tissue fall in the 2 to 15 MHz range for diagnostic imaging and 0.25 to 2 MHz for high-

intensity heating or ablating of tissue. And third, underwater sonar, where common 

working frequencies cover a range from about 1 kilohertz to a megahertz. The large range 

of length scales and material properties at play in applied acoustics indicates that a diverse 

range of strategies for efficient nonreciprocal phenomena is needed. In this regard it can be 

useful to consider which nonreciprocity techniques have or have not yet been applied in 

different acoustic wave platforms. Examples of these combinations are shown in Fig. 2.5. 

Ideas for future work can be found by considering combinations of techniques mentioned 

in the top row, representing different mechanisms to achieve nonreciprocity paired with 

the acoustic platforms mentioned in the lower row. The arrows indicate combinations that 

have been already at least partially explored, but several others remain to be explored. 
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Figure 2.5: Acoustic nonreciprocity combinations. Top row: mechanisms to achieve 

nonreciprocity. Bottom row: example acoustic wave platforms. By exploring the different 

combinations, researchers have the opportunity to further widen the scope of acoustic 

nonreciprocity. Links illustrate a few combinations that have been explored at least to a 

certain extent. 

Aside from the study of techniques to break reciprocity, a field that will continue 

to be studied in its own right, nonreciprocal components will continue to find place in 

demonstrations of novel acoustic phenomena. An example of this is seen in acoustic arrays, 

used widely for beamforming in sonar communications and biomedical imaging, where the 

breaking of reciprocity means that the reception and transmission can be independently 

tuned. Initial studies have numerically studied how this might be accomplished [6,7], but 

experimental demonstrations are still lacking. There is also work to be done with 

nonreciprocal acoustic metasurfaces. Breaking reciprocity and time-reversal symmetry for 

a surface breaks the constraint that the reflection and transmission coefficients are 

equivalent between a pair of incidence angles. That is, breaking reciprocity and time-

reversibility allows  and , opening new degrees of freedom for 

transmissive and reflective surfaces [98]. 

As highlighted above, two application areas with high potential for further 

investigation in this context are SAW devices and topological acoustics. While 

nonreciprocal SAW devices based on magnetoelastic coupling have received extensive 
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recent attention, further work could develop nonreciprocal SAW devices based on 

nonlinearity, building on established nonlinear SAW theory [99,100]. Even within the 

magnetoelastic paradigm, there is much left to explore in terms of heterostructure 

composition and theoretical descriptions of the complex spin/elastic wave interactions in 

these structures. It would also be instructive to consider the topological features of 

unidirectional SAW devices. The current wave of discoveries in topological acoustics will 

certainly continue forward. In addition, though topological effects can arise in reciprocal 

systems, the much larger degree of robustness given to these systems by nonreciprocity 

implies that methods to break reciprocity will continue to remain pertinent and important 

for this field. One promising direction is pursuing time modulation as a synthetic spatial 

dimension to realize higher-dimensional topological effects in lower spatial 

dimensionalities. Another possibility going forward is using nonreciprocity techniques to 

break time-reversal symmetry in order to create new forms of acoustic Weyl semimetals, 

which have been realized so far only through the breaking of inversion symmetries [101–

103]. Nonlinear topological phenomena, such as topological phase transitions triggered by 

the intensity of the input signal, have also been recently discussed [104,105], on the model 

of their electromagnetic counterparts [106,107], but much of the potential of nonlinear 

topological acoustics remains untapped. 

The study of nonreciprocity also intersects with research in out-of-equilibrium 

systems, such as active matter, where the constituent particles of the wave-bearing 

materials have internal sources of energy. This includes the study of the nonreciprocal 

wave dynamics in everything from flocking birds to biological swimmers and colloidal 

spinners [108,109]. Continued study of such nonreciprocal systems will lead to 

demonstrations of novel nonreciprocal physics and provide more insight into the complex 

emergent behavior frequently observed in these systems. Platforms allowing precise 
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control over particle couplings, such as electromechanical devices attached to 

programmable microcontrollers [96,110], are a promising way to demonstrate new wave 

phenomena. In general, as the speeds involved in wave propagation in mechanical and 

acoustical systems are much smaller than in other wave physics domains and as the scales 

are often conveniently macroscopic, they are an attractive realm for demonstrating 

increasingly complex nonreciprocal wave phenomena. 

In this chapter we have discussed the fundamental principles of acoustic reciprocity 

and explained its relationship with time-reversal symmetry. While various other forms of 

reciprocity in fluid dynamics [111] and elastodynamics [112] exist, we have reviewed as 

examples reciprocity relations for simple sources in an acoustic medium. We have shown 

how, by breaking the underlying assumptions of reciprocity, there are a number of 

opportunities for breaking acoustic reciprocity and pointed out recent experimental 

demonstrations of these techniques. Research in acoustic nonreciprocity is now mature to 

the point that applications are possible as we have shown through our discussion of 

nonreciprocal SAW devices and topological acoustics. We have also highlighted the many 

other possibilities for further investigation.  

Physical symmetries are transformations that leave a system unchanged and offer 

powerful frameworks for understanding a wide variety of phenomena. Reciprocity is a 

symmetry in that it is a transformation that interchanges sources and receivers while 

leaving certain field quantities unchanged. Much like other symmetries, it offers a 

simplifying view of a number of related phenomena. The study of this symmetry, how to 

break it, and how it can be harnessed to control acoustic fields, is a rich endeavor that will 

continue to inspire new research for many years to come. 
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Chapter 3: Nonreciprocal acoustic propagation and leaky-wave 

radiation in a waveguide with flow2 

We now examine a few specific implementations of broken time-reversal symmetry 

in creating acoustic devices with unidirectional functionalities. These devices depend on 

material flow to break the time-reversibility and include spatial asymmetries to additionally 

violate reciprocity. 

Isolators, devices with unidirectional wave transmission, are integral components 

in computing networks, enabling a one-way division of a large system into independent 

subunits. Isolators are created by breaking the inversion symmetry between a source and a 

receiver, known as reciprocity. In acoustics, a steady flow of the background medium in 

which sound travels can break reciprocity, but significant isolation is typically achieved 

only for large, often impractical speeds. In this work, we propose acoustic isolator designs 

enabled by duct flow that do not require large flow velocities. A basic isolator design is 

simulated based on the acoustic analogue of a Mach-Zehnder interferometer, with 

monomodal entry and exit ports. The simulated device footprint is then reduced by using 

bimodal ports. Further, a nonuniform velocity profile combined with a grating to induce 

phononic transitions is considered, which, combined with filters, can provide significant 

isolation. By coupling a waveguide with flow to free space through an array of small 

apertures, largely nonreciprocal leaky-wave radiation is demonstrated, breaking the 

symmetry between reception and transmission patterns of an acoustic linear aperture array. 

These investigations open interesting pathways towards efficient acoustic isolation, which 

 
2 Reprinted with permission from C. P. Wiederhold, D. L. Sounas, and A. Alù, Nonreciprocal acoustic 

propagation and leaky-wave radiation in a waveguide with flow, J. Acoust. Soc. Am. 146, 802 (2019). 

Copyright 2019, Acoustical Society of America. Note that author’s name changed from C. P. Wiederhold 

to C. Rasmussen in 2019. 
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may be translated into integrated acoustic and surface acoustic waves, as well as phononic 

technology. 

3.1 INTRODUCTION 

Reciprocity in sound propagation is the principle for which the same transmission 

signal is expected when source and receiver switch places. In a multi-port system, this 

implies that the scattering matrix of a reciprocal system is inherently symmetric [113,114], 

i.e., the acoustic signal transmitted from one port to a second one is identical to the signal 

transmitted from the second to the first when all other ports are impedance matched. Recent 

interest in acoustic and elastodynamic devices that break reciprocity has been driven by 

their applicability in several practical situations, including in sonar and ultrasound 

technology, or for full-duplex acoustic communications, in which asymmetric transmission 

or routing of signals to different portions of a transmit-receive module are desirable 

[82,115–118]. In a multi-port system nonreciprocity provides protection from arbitrary 

backscatter from the loads, which can protect sensitive equipment and allows components 

to be added in a modular fashion. In antenna theory, reciprocity requires that an emitter’s 

reception pattern is always identical to its transmission pattern, for all angles. By breaking 

this reciprocity, an antenna can transmit more than it receives which shields it from echoes. 

Electromagnetic radiators with this broken reciprocity have been studied and fabricated, 

with applications including thermal management [119,120]. Reciprocity breaking is also 

integral to the study of topological acoustics, where it gives rise to unidirectional 

topological modes that can propagate in a crystal lattice immune to defects and disorder 

[49,121–125]. 

It is known that a steady fluid flow is a simple avenue to break reciprocity for sound 

[117,126], and recent work has shown how adding a slow material flow to a resonant device 
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can make it, under a suitable design, highly nonreciprocal [8]. In the following, we describe 

the operation, design, and performance of innovative acoustic isolators not based on 

resonant cavities. The first isolator design, an acoustic Mach-Zehnder interferometer, 

consists of a single mode duct split into two paths and later recombined. By exploiting the 

directional interference between these paths it is possible to realize an efficient isolator. A 

more compact version of this isolator is then explored, at the expense of using bimodal 

input and output waveguides. We then also use bimodal ducts with a nonuniform velocity 

profile and a grating to induce a phononic transition. To conclude we consider how simple 

duct flow may also realize non-reciprocal leaky-wave radiation for sound. 

3.2 BREAKING RECIPROCITY USING FLOW 

Reciprocity in acoustics is inherently rooted in the linearity and time-reversal 

symmetry of the wave equation, which in the time harmonic regime using the  

convention reads [5]: 

 , (3.1) 

where p is the acoustic pressure,  the angular frequency, c the small-signal speed of 

sound, i the imaginary unit, and  the time-invariant velocity field. Consider two 

sourceless time-harmonic fields, p
1
 and p

2
, each satisfying this equation. Multiplying the 

wave equation for p
1
 by p

2
 and subtracting the result from the wave equation for p

2
 

multiplied by p
1
 gives 

 . (3.2) 
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In the case of no flow the right-hand side of this equation vanishes leaving a reciprocity 

relationship between fields 1 and 2. But, as the equation demonstrates, a reciprocity 

relationship is not guaranteed when a steady flow is present. 

Reciprocity is a result of the time-reversibility of the fluid dynamics. The 

propagation of acoustic waves is underpinned by time-symmetric equations of classical 

mechanics and should exhibit reciprocity when all the relevant field quantities are 

transformed appropriately in time. The velocity vector field, , representing the underlying 

motion of the fluid particles in steady flow, flips sign under the time reversal operation, T. 

When this odd vector is not flipped between fields 1 and 2, the conditions for T are not 

fully satisfied, and nonreciprocity is possible. A challenge of this way of breaking 

reciprocity is that the required flow velocity should be large compared to the group velocity 

of sound for the effects to be large. 

It is also possible to break reciprocity using nonlinear techniques [30–33,127], but 

nonreciprocity becomes then a function of the input intensity and does not allow for 

simultaneous excitation from multiple ports. The magnetic field, an odd vector field, can 

also be used to break reciprocity, as in magnetoelastic coupling [82,115], but these 

phenomena tend to be very weak in natural materials. At first glance it would seem that 

reciprocity would also not hold in the presence of loss when, under T, material absorption 

is not transformed into gain. But reciprocity is described in terms of ratio of field quantities, 

such as the ratio of the transmitted vs incident powers. In this case, if the loss is maintained 

as loss in the reciprocal condition, the wave is attenuated when propagating in either 

direction and these ratios remain unchanged [28], though there is the possibility of still 

breaking reciprocity if the loss is direction dependent [128]. In the following, we explore 

how to engineer acoustic devices to take advantage of small medium flows to realize large 

nonreciprocal effects. 
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3.3 WAVEGUIDE WITH UNIFORM FLOW 

In a rigid walled waveguide with transversely uniform flow, the phase velocity of 

a sound wave in the direction of the fluid flow differs from the sound speed according to 

, where k̂  is the wavevector direction. For the waveguide’s plane wave 

mode, this means that it travels faster or slower by an amount  depending on whether 

it is propagating with or against the direction of flow. Higher-order modes, described as 

the superposition of waves reflecting off the sides of the duct at an angle , have their 

phase speed along the waveguide axis increased or decreased by . 

The dispersion relation in a waveguide with uniform flow along the x-axis and no 

z-component of the wavenumber is, from Eq. (3.1), 

 . (3.3) 

For the plane wave mode, with , the group velocity, , is increased or 

decreased by v. On a band diagram, this modification appears as a change of the slope of 

the plane wave line, which extends to zero frequency (Fig. 3.1). For higher-order modes 

the behavior is simplified when the Mach number, v c, is small. In this regime, the 

wavenumber of all modes is increased or decreased by . The flow creates an 

asymmetry in the dispersion diagram about the frequency axis. This asymmetry can be 

quantified by the nonreciprocal phase shift, , the difference in the real part 

of the wavenumber along the waveguide axis, k
x
, between a forward and a backward 

propagating wave. At low Mach numbers the phase difference is approximately equivalent 

in the forward and backward directions and it is linear with the fluid velocity, 

, with  being the wavenumber shift due to fluid flow. It is this 

nonzero nonreciprocal phase shift that can be exploited to create a sound isolator. 
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Figure 3.1: (a) Diagram of waveguide with uniform flow. (b) Band diagram of propagating 

waveguide modes when the waveguide height H is 0.2m and the operating frequency is 

1500 Hz for 0 (black) and 12.4 m/s (blue) flow velocity. The nonreciprocal phase shift is 

approximately  for a low Mach number flow. 

 

3.4 ACOUSTIC ISOLATORS 

3.4.1 Background 

An isolator is a two-port device that allows large transmission in one direction while 

blocking backscattered waves [34]. A wave entering the device through an input port, say 

port 1, is transmitted out the exit port, port 2, while a wave coming from port 2 is blocked 
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from exiting either port 1 or 2. Such a device clearly breaks reciprocity and linearity and 

passivity require that it includes loss, meaning its scattering matrix is inherently non-

symmetric and non-unitary. Reciprocity must be broken because, if left intact, large 

transmission through the device from port 1 to port 2 necessarily implies large transmission 

through the device from port 2 to port 1. And there must be a mechanism for loss because 

without loss the scattering matrix being unitary allows only non-reciprocity in the phase 

but not in the amplitude. The loss can come from cumulative effects, such as thermoviscous 

attenuation, or by including additional ports that collect the energy incident from port 2. A 

three-port device that breaks reciprocity, called a circulator, was recently demonstrated in 

acoustics using moderate flow in a circular resonant cavity [8]. The small  induced in 

the cavity was largely amplified by its resonance, implying a trade-off between bandwidth 

and flow velocity. A circulator can function as an isolator when one of the ports is 

terminated with a matched impedance, such as a wave absorbing anechoic wedge. The 

unused port provides the loss required by the isolator. 

3.4.2 Nonreciprocal Mach-Zehnder isolator 

A Mach-Zehnder interferometer is a device that splits a monochromatic beam of 

light in two and recombines the beams after they travel down separated paths [129,130]. 

The amount of interference, constructive or destructive, at the point where the beams are 

recombined indicates the phase difference accumulated by the beams on their individual 

paths. To work as an isolator, an interferometer additionally needs the two essential 

features of an isolator: broken reciprocity and loss. Reciprocity is broken by embedding 

nonreciprocal phase shifters in the two arms of the Mach-Zehnder interferometer. These 

are the areas where the phase of the beam advances more in one direction than in the reverse 

direction. In electromagnetic Mach-Zehnder isolators, nonreciprocal phase shifters are 
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implemented using magnetic materials [131,132] or suitably modulated material properties 

[133,134]. In our proposed acoustic Mach-Zehnder interferometer (Fig. 3.2), the 

nonreciprocal phase shifters are areas of flow. In these waveguide sections the phase of a 

propagating sound wave advances more when travelling in the direction of flow than when 

travelling against it. The loss comes from extra ports included above and below the input 

and output ports. Sound incident from port 2 exits the system through these ports 

terminated with impedances matched to the waveguide impedance. 

Beam splitting in our proposed acoustic Mach-Zehnder interferometer is 

accomplished using a multimode interference coupler, a type of beam splitter found in 

optics [135]. It operates by decomposing the incident energy into many transverse modes. 

Output ports are placed on the other side of the splitter at locations where the modal 

interference pattern has high field strength so that ideally all of the input energy is equally 

split into the two output paths. In our design, a sound wave enters the system in the 

dominant mode (plane-wave like) from port 1 at a frequency below the cutoff of any 

higher-order modes. It enters the beam splitter where, because the input to the cavity is 

along the centerline, the interference pattern of the modes is transversely symmetric. By 

optimizing the length of the cavity and placing the two cavity outputs equidistant from the 

centerline, the sound is split equally into the upper and lower paths. The phase at the 

entrance to these two paths is also equal. The two separated waves traverse their individual 

paths before being recombined with another identical beam splitter on the output (right) 

side of the device. If the waves from the two paths have the same phase when they reach 

the second beam splitter, they excite the symmetric mode of the cavity and the wave 

predominantly gets out through the center waveguide. On the other hand, if they have a 

phase difference of 180 degrees, the antisymmetric mode is excited and there is no output 

power at the center waveguide, since this mode has a zero at the location of this waveguide.  
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Figure 3.2: (a) Schematic of nonreciprocal acoustic Mach-Zehnder isolator. (b) 

Dimensions of isolator given in meters. All waveguides are equal in height. The geometry 

is left/right symmetric. (c) Normalized sound pressure level in decibels when the flow 

velocity is 3 m/s, frequency is 1497 Hz, and the wave enters from the left/right. (d) Isolation 

and insertion loss as a function of frequency when the flow velocity is 3 m/s, and as a 

function of flow velocity when the frequency is 1497 Hz. 
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For any other phase difference between the two waveguides, the output power is between 

these two extreme cases. The intensity of the wave exiting the output port is then dependent 

on the difference between the phase length of the upper path versus the lower path. 

In order to break reciprocity, it is also necessary to break the vertical symmetry of 

the device. Reciprocal phase shifting areas serve this purpose. Their necessity can be seen 

by considering a horizontal and vertical reflection of the geometry without them. The 

transformation from these two reflections returns the same device geometry even though 

the input and output ports are now flipped. The result is that transmission from port 1 to 

port 2 is the same as from port 2 to port 1. It is possible to break the symmetry between the 

two paths, and thus break reciprocity, by putting flow in just one of the two paths, negating 

the need for the reciprocal phase shifting segments. But this then requires a higher rate of 

flow. An alternative way is to add reciprocal phase shifters to one of the paths, which is 

what we do here (upper path in Fig. 3.2). The reciprocal phase shifting segments in this 

case are simply extra duct length. The physical length of the upper path is then slightly 

longer than that of the lower path. 

The device is modelled as a slab with acoustically hard walls. A wave entering the 

device from port 1 (input port, on left) ideally passes through the device and exits port 2 

(output port, on right). But a wave incident from port 2 ideally neither exits port 1 nor is 

reflected back out port 2. It instead exits the system through one of extra ports included 

above and below the input and output ports. These extra ports are needed for it to function 

as an isolator since the acoustic medium and waveguide walls are assumed lossless. In the 

upper path the wave travels in the same direction as the material flow and in the lower path 

against the flow, producing a nonreciprocal phase response at the other end. The length is 

chosen to achieve a nonreciprocal phase difference of  between the two paths for 

propagation in the forward direction. The included reciprocal phase shifters make the upper 
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path slightly longer than the lower path, yielding a  reciprocal phase difference 

between them. In the forward direction these two phase differences cancel out, and the 

waves constructively interfere at the beam splitter on the right side, giving large 

transmission to port 2. When a plane wave instead enters the device from the right (port 2), 

the reciprocal phase difference is still , but the nonreciprocal phase difference is now 

also . The beams arrive at the left beam splitter out of phase and therefore destructively 

interfere. There is an interference null where port 1 branches off the beam splitter and 

interference maxima at the loss ports, where most of the energy exits the system. The 

interference can also be explained in terms of asymmetric wave speeds. In the forward 

direction, the wave in the upper path travels faster than in the lower path, because it is in 

the same direction as the flow. But the upper path wave also has to travel a longer distance 

because of the extra duct sections (the reciprocal phase shifters). The longer distance and 

faster speed cancel, and the upper path wave arrives in phase with the lower path wave for 

constructive interference at the point of recombination. In the reverse direction, the upper 

path wave has to both travel further and at a speed reduced by the flow. It arrives out of 

phase with the lower path wave and destructively interferes. 

Isolation is given by 20log S
21
S

12
 where the scattering parameter S

ij
 is the ratio 

of the field exiting the system through port i to the field entering the system from port j. 

Using the finite element software COMSOL Multiphysics we see that the peak isolation is 

69 dB with a modest flow velocity of 3.2 m/s at an operating frequency of 1497 Hz. The 

nonreciprocal phase difference of  requires that , where l  is the length of 

the flow region. Using the relation between  and v for the plane wave mode predicts a 

needed flow velocity of 4.8 m/s. This prediction is based on the isolator being an idealized 

Mach-Zehnder. The duct corners and imperfect multimode beam splitters cause it to 

deviate from this ideal model, as they add reactive loads to the system, reducing the 
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required flow velocity. However, there is still a similar tradeoff between required flow rate 

and length of the flow region. The total footprint of the device is roughly 4 x 18  at the 

operating frequency, with the smallest dimension being the height of the ducts. 

While developed in two dimensions for conceptual simplicity, this design can 

naturally be extended to three dimensions, as the plane wave mode has no out-of-plane 

wavevector component. But the fields inside the cavities are not propagating plane waves, 

so the locations of the adjoining ducts need to be chosen appropriately to get the desired 

energy splitting. Membranes could be used to contain flow in the desired regions. With no 

tension applied, such membranes have a response dictated by the bending stiffness, and 

can present small impedance under proper conditions [5,136]. Air flow could enter the 

device through regions that present a high impedance to the passing acoustic waves. 

Helmholtz resonators, quarter wave resonators, or subwavelength metamaterials could be 

used to this end [137]. The flow in the device is shown as unidirectional, but could be part 

of a flow system that loops back on in a region external to the device.  

3.4.3 Parallel isolator 

An improved isolator design that reduces the required footprint can be obtained by 

considering two transverse modes at the input and output waveguides (Fig. 3.3). An 

incoming plane wave from the input port is split into two by a hard wall, modelled as 

perfectly thin, that runs down the middle of the waveguide. The upper beam encounters a 

side cavity, which reciprocally shifts its phase relative to the lower beam. The other 

necessary component of our isolator, a nonreciprocal phase shift, again comes from flow 

regions. As the separating wall ends, the beams are recombined in phase, and a plane wave 

is transmitted through the output port. If instead the system is excited from the right, an 

incoming plane wave is split into two paths which are out of phase at the point of 
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recombination because of the nonreciprocal phase shift. Since the waveguide supports an 

odd second-order mode, instead of being reflected back the two signals efficiently couple 

to the odd mode, which then propagates away from the device through the input port. 

 

Figure 3.3: (a) Schematic of isolator with parallel flow-biased waveguides. (b) Dimensions 

of isolator given in meters. (c) Normalized pressure amplitude when the flow velocity is 4 

m/s, frequency is 1500 Hz, and a plane wave is incident from the left/right. (d) Isolation 

and insertion loss versus frequency when the flow velocity is 4 m/s, and versus flow 

velocity when the frequency is 1500 Hz. 
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Using this device in combination with mode filters at the entrance and exit to absorb 

the odd mode completes the isolating behavior. From the left, an input plane wave passes 

through the device with high transmission, but if the same plane wave enters the device 

from the right is converted to the odd mode and absorbed by the filter on the left, implying 

large nonreciprocity and isolation. The device peak isolation is 29 dB, with a lower 

insertion loss than the first design. The required flow velocity is roughly 4 m/s with a device 

footprint of 2 x 15  at the optimal frequency. 

3.4.4 Phononic transition isolator 

Spatiotemporal modulation in wave-carrying media can induce transitions to other 

modes of the system with a resultant change in frequency and wavenumber [138]. This 

mode conversion is known in optics as a photonic transition, in analogy to quantum 

electronic transitions in solid state physics. For example, an electromagnetic wave 

travelling in a silicon waveguide can be transitioned from one mode of propagation, say 

mode 1, to another, say mode 2. The transition takes place as the wave travels through a 

region where the material property is modulated with a travelling wave perturbation of the 

form  where t  is time, the z-direction is along the waveguide axis, and 

 and  are the frequency and wavenumber difference between modes 1 and 2. The 

amplitudes of modes 1 and 2 oscillate in the modulated region whose length is chosen so 

that only mode 2 is present at its end. Full oscillations between modes 1 to 2 are possible, 

and the small modulation lends the problem to an analytical treatment using perturbation 

theory. When a wave is instead incident as mode 1 from the opposite side, very little mode 

conversion takes place and it remains in mode 1 form. This happens because the incident 

wave is now travelling in the direction opposite to that of the material property 

perturbation, so the mode matching condition is no longer satisfied. The total effect is large 
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nonreciprocal mode conversion. When the system is combined with appropriate filters, the 

phenomenon is used to create highly-nonreciprocal linear isolators for light [39,139]. 

In acoustics, fluid flow modifies the phase speed for passing waves and can be used 

to induce transitions between modes. However, a travelling wave perturbation of the 

velocity field is difficult to achieve as the background fluid flow is not governed by a wave 

equation. If instead steady flow is used, nonreciprocal mode conversion is still possible, 

but extra features are needed to make the effect large and the analysis is not as 

straightforward. Time-invariant flow implies that mode conversion can only occur between 

modes of the same frequency. The system in this case is governed by the convected wave 

equation [Eq. (3.3)] where there is no mechanism for frequency conversion. 

Full-wave simulations are relied on to optimize the setup (Fig. 3.4), with guidelines 

taken from the perturbation analysis of photonic transitions. For one, optimal coupling 

between modes come from maximizing their overlap integral in the presence of the flow, 

, integrated over the waveguide cross section in the flow region. In our case, P
0
 is 

the profile of the plane wave mode – a constant. P
1
 is the profile of the first higher-order 

mode, given by the cosine function. To maximize the integral with these modal profiles, 

the velocity function v should be anti-symmetric over the waveguide cross-section. 

Limiting the flow profile to a single speed and only pointed in the forward direction, the 

integral is maximized when the flow covers half the waveguide height [Fig. 3.4(a)]. 

Nonreciprocal mode conversion is now possible, but a large velocity is still needed 

for good performance. This requirement can be relaxed by introducing a grating to provide 

a z-directed modulation, analogous to the  modulation in a photonic transition. The  

difference between the two waveguide modes predicts a notch spacing of 5.7 , close to 

the optimal result, 5.9 , obtained from simulations. Unlike the case for photonic 

transitions, there is still considerable mode oscillation that occurs when a wave passes 
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through the system in the backwards direction. Modal oscillations occur in both directions, 

but with different periodicities. The length of the flow region is chosen to enhance the 

nonreciprocal response. Ideally, a plane wave mode incident from the left oscillates until 

it exits the system out the right as a plane wave mode. But a plane wave mode incident 

from the right oscillates in that same distance to the higher order mode, exiting the system 

on the left. 

 

 

Figure 3.4: (a) Schematic of the phononic transition isolator. (b) Dimensions of isolator 

given in meters. (c) Normalized pressure amplitude when the flow velocity is 12.4 m/s, 

frequency is 1500 Hz, and plane wave mode is incident from the left/right. (d) Isolation 

and insertion loss versus frequency when the flow velocity is 12.4 m/s, and versus flow 

velocity when the frequency is 1500 Hz. 
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In the geometry presented here, whether from the right or left, an incident plane 

wave exits the system on the other side as a linear combination of the two modes, but the 

weight of each mode is asymmetric in the forward and backward directions [Fig. 3.4(b)]. 

In practice, mode filters on either side would remove the second mode. The isolation is 

then given as the ratio between how much of the plane wave mode makes it through the 

device when entering from the left versus the right. The phononic transition waveguide 

provides 15 dB of isolation at a flow velocity of 12.4 m/s when its length is ~100  (17 

grating notches). 

3.5 NONRECIPROCAL LEAKY-WAVE ANTENNA 

We use broken reciprocity from flow to create a nonreciprocal leaky-wave antenna 

(Fig. 3.5). Flow fills the full waveguide height. The waveguide is coupled to free space by 

shunts and is terminated on the right with a matched absorber. The free space background 

is modelled as a semi-infinite medium with a hard boundary condition in the plane on top 

of the antenna. As expected from reciprocity, in the absence of flow reception and 

transmission patterns are equivalent [Fig. 3.5(b), left]. But when flow is added, a large 

asymmetry between the beampatterns arises. The behavior can be understood by looking 

at the dispersion lines for the lower order (plane wave like) mode in Fig. 3.1(b), with the 

blue lines representing the waveguide modes in the flow region and the free space sound 

cone lying on the lower black line (equivalent to the plane wave dispersion). In 

transmission, the wave travels in the direction of flow which increases its phase velocity, 

reducing the wavenumber so the blue line on the right side is within the sound cone. The 

wavenumber is shifted outside the sound cone in the reverse direction. The transmit 

beampattern is effectively rotated counterclockwise by including flow while the receive 

pattern is rotated clockwise. The angle of rotation can be estimated from the simple 
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waveguide with flow by , which for a 12.4 m/s flow, is 15 degrees. In 

the main emission direction, the receive sensitivity is over 10 dB smaller. The effect relies 

on operation near endfire, where the rotation of the receive beampattern pushes its main 

lobe outside of the sound cone. The amount of nonreciprocity seen at the angle of peak 

emission is dictated by the length of the antenna, which affects the angular width of the 

lobes, and the flow velocity, which determines how much the lobes in the transmit and 

receive patterns are rotated away from each other. 

 

Figure 3.5: (a) Geometry of nonreciprocal leaky-wave antenna. Shunt dimensions given in 

meters. (b) Transmit and receive beampatterns at a radial distance 130 from the antenna 

without flow (left column) and with flow (right column) for modes 1 (bottom row) and 2 

(top row). Values are in decibels, normalized to the maxima when there is no flow. 
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3.6 CONCLUSION 

Steady fluid flow is a powerful way to break time-reversal symmetry in acoustic 

systems, as it is a property that naturally remains constant regardless of the direction of 

incoming waves. We have shown that low Mach number flow through straight channels is 

sufficient to achieve a significant amount of isolation in waveguiding structures. Acoustic 

Mach-Zehnder interferometry, where incoming sound is split into two paths and later 

recombined, allows for isolating devices with footprints of a few wavelengths. 

Alternatively, a waveguide that induces phononic transitions also provides isolation 

because the transitions are directionally dependent. Frequency-preserving transitions can 

be enabled by a nonuniform transverse profile combined with a grating. We showed how 

a directional antenna that violates the typical symmetry between its direction of 

transmission and reception can be formed by coupling a waveguide with flow to free space. 

These one-way structures provide a valuable tool in the creation of complex acoustic 

networks where the ability to isolate one subsection can greatly facilitate system design. 
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Chapter 4: Non-Foster acoustic radiation from an active piezo-electric 

transducer3 

In the previous chapters we have reviewed techniques to break acoustic time-

reversal symmetry and used one of these techniques, material flow, to create novel 

unidirectional acoustic devices. In this chapter we consider the breaking of another 

common constraint in acoustic devices – the one of passivity. We pay particular attention 

to the bandwidth limitations that arise in passive acoustic sources and metamaterials and 

show how these can be surmounted. 

In particular, we show that the quality factor of a passive, linear, small acoustic 

radiator is fundamentally limited by its volume normalized to the emitted wavelength, 

imposing severe constraints on the bandwidth and efficiency of compact acoustic sources, 

and of metamaterials composed of arrangements of small acoustic resonators. We 

demonstrate that these bounds can be overcome by loading a piezoelectric transducer with 

a non-Foster active circuit, showing that its radiation bandwidth and efficiency can be 

largely extended beyond what possible in passive radiators, fundamentally limited only by 

stability considerations. Based on these principles, we experimentally observe a three-fold 

bandwidth enhancement compared to its passive counterpart, paving the way towards non-

Foster acoustic radiation and more broadly active metamaterials that overcome the 

bandwidth constraints hindering passive systems. 

This work is of significance as many of the exciting wave phenomena found in 

acoustic metamaterials arise as a result of the collective response of subwavelength 

resonators. To widen the frequency range of these phenomena, it is necessary to understand 

the source of these bandwidth limitations and explore techniques that can overcome them. 

 
3 Reprinted with permission from C. Rasmussen and A. Alù, “Non-Foster acoustic radiation from an active 

piezoelectric transducer,” Proc. Natl. Acad. Sci. U.S.A. 118, e2024984118 (2021). 
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To that end, we quantify the general tradeoff between size and bandwidth of passive 

acoustic resonators, and show how this constraint can be overcome by actively loading 

them. As an example, we demonstrate a large bandwidth enhancement of a sonar transducer 

by connecting it to a specialized active non-Foster circuit. This important finding can have 

long-lasting impact in acoustic metamaterials for exotic sound interactions, paving the way 

to enhanced compact resonant acoustic devices that can be used as sources and sensors of 

sound and vibrations. 

4.1 INTRODUCTION 

Techniques to widen the bandwidth over which a system resonates are important in 

various settings and technologies, given the ubiquity of resonances in wave-based systems. 

Radiation sources typically operate near a resonance to ensure efficient radiation towards 

a distant receiver. Resonances are also crucially important in the field of metamaterials, 

structures with exotic bulk responses arising from subwavelength elements whose 

resonance ensures strong wave-matter interactions in small volumes. Acoustic 

metamaterials supporting novel phenomena, such as negative refraction and cloaking, have 

been recently demonstrated, but their unusual features are inherently limited in frequency 

because of the narrowband resonances of the underlying unit elements [25,26,140]. 

In electromagnetics, the well-established trade-off between bandwidth and 

electrical volume of a small resonant antenna [141] is known as Chu limit, and it provides 

an important benchmark for antenna design, setting a lower bound on the fractional 

bandwidth of the antenna given its size [142–145]. Extending the bandwidth beyond this 

bound is possible only by breaking one or more of its underlying assumptions, notably 

linearity, passivity and time-invariance. Indeed, temporal modulations of the antenna 

element or the connected circuitry can overcome this limit, as demonstrated in direct 
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antenna modulation approaches [146,147], and in switched [148–150] or parametrically 

modulated [151] systems. Mechanically moving antennas have also been shown to radiate 

with bandwidths beyond Chu limit [152,153]. Another approach to build broadband 

electrically small antennas consists in loading them with active circuitry, embedding 

powered components such as transistors or operational amplifiers (op-amps) to break the 

passivity condition. This is commonly done by synthesizing a circuit that violates Foster’s 

reactance theorem, i.e., with a reactance that decreases with frequency, e.g., in a negative 

impedance converter (NIC) circuit topology [154–160]. Such non-Foster circuits have also 

been recently employed to realize parity-time symmetric systems [15,161]. While in 

principle the bandwidth of non-Foster antennas can be infinitely extended [162], the main 

issue that limits the performance of these devices is their stability [163–166]. 

In the following, we first extend the Chu limit to acoustic radiators showcasing 

relevant differences between the electromagnetic and acoustic wave domains. We then 

explore ways to overcome this limit and broaden the bandwidth of small acoustic sources 

using non-Foster impedance matching. In this context, time modulation has been recently 

explored to improve the low frequency response of a sonar projector [167,168]. Here, 

instead, we explore the integration of non-Foster circuit loads in acoustic piezoelectric 

transducers, commonly used in airborne and waterborne sound transmission, showing a 

viable path to enhance bandwidth and efficiency of compact sound emitters. We also show 

how these techniques can be used to widen the bandwidth of exotic material properties in 

a metamaterial composed of piezoelectric elements. 

4.2 ACOUSTIC CHU LIMIT 

The quality factor  of a resonant sound source is defined as the 

dimensionless ratio of the time-averaged stored energy W (units of joules) at angular 
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frequency ω to the power P (units of watts) lost in radiation or dissipation, and it is 

inversely related to its fractional bandwidth. Following pioneering works in 

electromagnetics [141,144,145], here we derive a lower bound for Q assuming that the 

radiator is linear, passive, and time-invariant. As sketched in Fig. 4.1, we consider a sphere 

of radius a that encloses in its entirety the sound source. In evaluating W, we ignore the 

additional energy stored inside this spherical region, which depends on the specific 

implementation of the radiating element, and calculate the stored energy in the acoustic 

near-fields outside the sphere. This will provide a lower bound to the radiative Q, which 

can be approached minimizing the stored energy within the source. We also ignore 

dissipation losses possibly arising within the sphere. They can certainly lower the overall 

Q, but only at the expenses of lowering the overall radiation efficiency, which is typically 

not a viable solution to broaden the bandwidth. 

The total stored energy in the near-fields of an acoustic source is given by the sum 

of kinetic and potential energy contributions. In order to induce a resonance, so that the 

source can efficiently radiate the input energy, an additional reactive element must be 

added to impedance match the structure. This tuning reactive element must store sufficient 

energy to make up for the difference between kinetic and potential energies around the 

source. After impedance matching, the total stored energy is twice the value of either the 

kinetic or potential energy in the near-fields, depending on which is larger: 

. Assuming no losses other than those associated with radiation, the 

quality factor at resonance is therefore 

 . (4.1) 
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Figure 4.1: An acoustic source connected to a non-Foster element to overcome the Chu 

bound. The emitted sound field consists of inductive energy stored in the near-fields and 

resistive energy lost in radiation to the far-field. Adding a capacitive element can create a 

resonance with a Q constrained by the size of the radiator. However, with the use of a non-

Foster element such as a negative inductor, the constraint can be overcome. 

 

The total kinetic and potential energies in the waves generated by an acoustic source 

are composed of both stored and radiated energy, and they are infinite as the traveling 

portion extends to infinity. The sum of kinetic and potential stored energies can be 

calculated by subtracting from the total energy the portion traveling outward: 
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 , (4.2) 

where * denotes the complex conjugate and r̂  is the normalized radial vector. The first and 

second terms in the integral are indeed the kinetic and potential energy densities, 

proportional to the squares of the local acoustic pressure and velocity. The last term is the 

subtracted energy density of the travelling wave. The ambient density and speed of sound 

are ρ0 and c0. The difference between the two stored energies is given by the imaginary 

part of the equation for the conservation of energy, describing the power flow, 

corresponding to the reactive acoustic intensity [169]: 

 . (4.3) 

Combining Eqs. (4.2) and (4.3) we can derive the stored kinetic and potential 

energies, which can be used in Eq. (4.1). The radiated power is the flux of the power density 

along any surface that encloses the source: 

 . (4.4) 

By generally expressing the radiated field as a sum of outward propagating 

spherical harmonics centered at the source location, the quality factor can be calculated in 

terms of a multipole expansion. The pressure is generally given by a sum of multipoles 

with complex amplitudes Alm, 

 , (4.5) 

where  is the spherical Hankel function of the second kind, defined with 

spherical Bessel functions of the first and second kinds, and Y
l

m
 is the spherical harmonic 
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function of degree l and order m. The velocity can be calculated from the pressure gradient 

using the momentum equation , with the eiwt  time convention. Using these 

expressions, we can evaluate Q in closed form, arriving at 

   (4.6) 

where 

  (4.7) 

is the individual quality factor when only multipole harmonic of degree l and any order m 

is excited. It is expressed in terms of spherical Bessel and Hankel functions with argument 

ka (wavenumber multiplied by radius). The form of Eq. (4.6) reveals that Q is a weighted 

average of the quality factors of degree l where |Alm|2 are the weights. 

We have derived the quality factor in terms of each outward propagating spherical 

harmonics with index l, with Ql being the quality factor when the radiation consists solely 

of harmonic l. As shown in Fig. 4.2, the values of Ql increase with index l. As the total Q 

is a weighted sum of these individual values, as a function of the different contributions of 

each harmonic to the overall radiation, the minimum achievable Q is Q0. Therefore, the 

minimum quality factor for a small acoustic radiator scales with the radius of the sphere 

enclosing the source as 1/ka, where k is the wavenumber and a the radius, and it can be 

approached for a purely monopolar source. In electromagnetics, this limit instead scales as 

1/(ka)3, attained for electric or magnetic dipolar radiation, hence our derivation shows that 
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acoustic monopolar sources offer broader bandwidths than electromagnetic antennas in the 

subwavelength limit. In order to approach this lower bound, a passive acoustic source must 

store as little energy as possible in the region r < a. As the size of a passive radiator shrinks, 

the fields at resonance grow close to the origin, contributing more to the near-field stored 

energy than to the radiated energy. This fundamentally limits the overall achievable 

bandwidth. 

 

Figure 4.2: Quality factors for multipolar orders 0 to 3. (a) Expressions for acoustic and 

electromagnetic multipoles. The Chu bound (final row) is the lowest possible Q in the limit 

. (b) Plot of the acoustic Q showing the divergence for subwavelength radiators. 

The lowest curve, corresponding to Q0, is the ultimate bound for acoustic radiators. 

4.3 BROADBAND IMPEDANCE MATCHING USING NON-FOSTER CIRCUITS 

At resonance, the cancellation of excess kinetic or potential stored energy through 

an impedance matching element makes sure that the input reactance of the system goes to 

zero. While a system largely detuned by its natural resonance has a very large reactance, 

corresponding to the large stored energy in its near-fields, we induce a subwavelength 
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resonance by loading it with a reactive lumped element that compensates for it. However, 

this form of impedance matching can be achieved only at a single frequency when 

considering passive loads, due to the fact that Foster’s reactance theorem requires both the 

input and load reactance to grow with frequency. On the contrary, an active non-Foster 

matching element, not bound by this passivity constraint, can compensate the input 

reactance over a broad frequency range. 

We consider, as a common acoustic source, an electro-acoustic transducer, which 

radiates an acoustic signal proportional to the input voltage signal applied at its terminal 

and finds widespread use in research and commercial applications. A common way to 

couple the electrical and acoustic domains is the piezoelectric effect, based on which an 

applied electric field creates mechanical strain in the material. When the structure is small 

relative to the radiation wavelength, a lumped-parameter circuit model can well describe 

the piezoelectric response, as shown in Fig. 4.3(a). An input voltage is applied to the 

clamped electrical capacitance Ce and to the mechanical portion of the circuit through a 

transformer with coupling constant N. The mechanical portion of the circuit is a resonant 

mass spring system moving at velocity v and radiating into the surrounding medium with 

radiation impedance Zrad. 

These transducers are commonly operated in the frequency range around their 

mechanical resonance, for which the reactance in the mechanical branch is small while the 

electrical capacitance dominates the reactive response of the system. A common technique 

to improve the transducer performance around this frequency is to use a tuning inductor to 

compensate for this capacitance [170]. The overall quality factor of the dissipation-free 

source is therefore typically larger than the Chu limit, due to the additional presence of 

stored energy in the reactive elements Ce, Lm, and Cm, in addition to the energy in the tuning 

inductor. At resonance, the wavelength of the elastic wave is generally on the same order 
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of magnitude as the size of the structure. The wave speed of commonly used piezoelectric 

ceramics is about ten times higher than the one in air and about twice than in water, so the 

source typically operates at a moderate value of ka, with k being the wavenumber in the 

surrounding medium. The Chu limit is not particularly constraining at these frequencies, 

since ka is not small. 

Here, we are interested in the source operation in the deeply subwavelength regime. 

In this frequency range the transducer response is capacitive, as seen in Fig. 4.3, where we 

show the input susceptance, which linearly increases at low frequencies. A resonance can 

be induced in this range by using a tuning inductor with a larger inductance than the typical 

tuning inductor. However, the susceptance of a passive inductor, negative at all 

frequencies, can cancel the input capacitance only at a single frequency in this low 

frequency regime [Fig. 4.3(b)]. This is due to Foster’s reactance theorem, which requires 

the reactance (or susceptance) of any passive, lossless circuit to always increase with 

frequency. In the context of Fig. 4.3(b), the slope of any possible blue curve can only be 

positive and therefore cancel the low-frequency positive slope of the transducer (green 

curve) at one or more isolated frequencies. 

By breaking the assumption of passivity, the slope of the matching reactance can 

be made negative using a non-Foster component and the transducer’s low-frequency 

susceptance can be cancelled over a broader frequency range. The susceptance of a 

negative capacitor is the mirror reflection of the transducer’s positive capacitance and it 

can compensate the capacitive response over a broad frequency range [Fig. 4.3(c)]. A 

source connected to this transducer with cancelled total susceptance can then radiate with 

high efficiency over the entire low-frequency range.  
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Figure 4.3: Non-Foster cancellation of input susceptance in a piezoelectric radiator. (a) An 

acoustic piezoelectric circuit model with tuning element, electrical capacitance, 

electromechanical turns ratio, mechanical RLC components, and radiation impedance. (b), 

(c) The total susceptance of the circuit (dashed) is the sum of the transducer (green) and 

tuning (blue) susceptances. (b) The total susceptance is small only around one frequency 

when the transducer is tuned with an inductor. (c) The susceptance is cancelled over a broad 

frequency range when tuned with a non-Foster negative capacitance. 

 

When deriving the lower bound on Q in the previous section, we did not make any 

assumption on the specifics of the radiator, and in particular on the additional energy stored 

in the piezoelectric element, which largely contributes to the total reactance resulting in a 

Q factor larger than the lower bound. A non-Foster matching element, powered by its own 

energy source, can partially compensate for the stored energies in the transducer and 

acoustic near-fields, offering an effective way to lower the overall Q factor and extend the 

resonance bandwidth well beyond what achievable with a passive tuning inductor. 

4.4 NON-FOSTER PIEZOELECTRIC RADIATOR 

We employ a negative impedance converter (NIC) to realize our non-Foster 

matching load. A NIC circuit inverts the sign of the impedance of a circuit element by 

flipping the sign of its input voltage or current. For example, a current inversion NIC can 

transform the impedance of a component from Z to –Z by supplying current to a source 

instead of drawing current from it in response to an applied voltage. The flow can be 
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reversed because the NIC is an active circuit with its own power source. These circuits 

have historically found use in the design of active RC filters and, more recently, in the 

study of non-Hermitian and PT symmetric systems. NIC circuits can be synthesized using 

op-amps or transistors. Floating (ungrounded) NICs require the use of multiple op-amps 

[171]. We choose instead to use a grounded NIC topology, which can be realized with a 

single op-amp. This choice necessitates the use of a current source, or a voltage source with 

a large internal resistance Rs. The goal is to combine this grounded NIC negative capacitor 

in parallel with a piezoelectric transducer to create a broad low frequency resonance (Fig. 

4.4).  

 

Figure 4.4: A non-Foster piezoelectric radiator. (a) A negative impedance converter is used 

to induce a low-frequency resonance in a piezoelectric transducer. (b) The real part 

(resistance) and imaginary part (reactance) of the input impedance to the NIC circuit, 

showing experimental (solid) and theoretical (dashed) results. The NIC is composed of a 

single op-amp whose feedback gain is controlled by two resistors and turns capacitor Ci 

into a negative capacitor with a non-Foster, negatively-sloped reactance. 
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The NIC negative capacitor topology, shown in the inset of Fig. 4.4(b), is a non-

inverting amplifier with the capacitor placed between its input and output. The complex 

impedance of the NIC is a function of the closed loop gain G, 

 , (4.8) 

where s is the complex frequency. When the closed loop gain is 2, the NIC impedance is 

the one of a negative capacitor –Ci. However, since the gain is a dispersive complex 

function, there is an accompanying real part of ZNIC and the effective negative capacitance 

is bandwidth limited. This limitation is captured by modeling the open loop gain of the op-

amp with a single pole model, , where A0 is the zero-frequency open loop 

gain and ωp is the 3 dB frequency. The closed loop gain is then 

 . (4.9) 

Resistors Rf and Rg form a voltage divider where G0 is the reciprocal of the voltage 

division ratio: . The amount of closed-loop feedback is controlled by 

adjusting the ratio of Rf and Rg. The desired closed-loop feedback gain is much less than 

the zero-frequency open loop gain of a typical op-amp. This feedback gain is achieved by 

keeping G0 small such that G0 A0. As seen from Eq. (4.9), the feedback gain G is then 

given by G0 at low frequencies. 

We physically implemented this NIC circuit and measured its input impedance to 

compare with our circuit model predictions [Fig. 4.4(b)], finding an overall good 

agreement. An Agilent E5071C network analyzer is used to measure the S11 scattering 

parameter (reflection coefficient) of the NIC circuit. The input impedance is then calculated 
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from S11 using  where Z0 is the 50 Ω line impedance. We observe 

the desired non-Foster negative slope of the negative capacitor in the frequency range of 

interest with some accompanying negative resistance. The synthesized non-Foster element 

can be used to induce a broadband low-frequency resonance in our piezoelectric transducer. 

4.5 EXPERIMENTAL REALIZATION OF A NON-FOSTER ACOUSTIC SOURCE 

The non-Foster acoustic source is completed by placing the fabricated NIC circuit 

[Fig. 4.5(a)] in parallel with a cylindrical piezoelectric transducer [Fig. 4.5(b)] and a 

waveform generator. A swept sine input is used for input and the velocity of the transducer 

is measured from 0 to 45 kHz with a laser Doppler vibrometer [Fig. 4.5(c)]. We see that 

the amount of negative capacitance provided by the NIC is enough to induce a resonance 

near 20 kHz, significantly lower than the transducer’s 120 kHz natural resonance. As a 

point of comparison, the same measurement is performed when an inductor is used as the 

tuning element. The inductor is subject to Foster’s reactance theorem and the bandwidth is 

limited. With the Foster-violating NIC circuit, we see that the bandwidth shows a 320% 

improvement. The peak level of the NIC response is also modestly higher, resulting in a 

combined gain bandwidth improvement of 450%. 

The piezoelectric transducer is a 1 mm thick, 10 mm long PZT-4 cylinder with an 

outer radius of 5 mm. The overmold is Stycast 2651 and covered the cylinder and two 

Macor end caps [172]. The piezoelectric material was radially poled and the primary 

mechanical resonance is the radial breathing mode. The NIC circuit is based on the Texas 

Instruments OPA549 op-amp. The capacitor and feedback gain parameters, 3 nF and 2.03 

respectively, are chosen as they were observed to induce a subwavelength resonance at a 

frequency and amplitude similar to that of the Foster tuning element, which was a 22 mH 

inductor (Bourns RL181S-223J-RC). 
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Figure 4.5: Bandwidth of a non-Foster acoustic source. (a) Implementation of the NIC 

circuit. External connections are to the cylindrical piezoelectric transducer, shown in (b), 

to the power source for the op-amp, and to the function generator. (c), (d) Experimental 

and modelled velocity spectra of the piezoelectric transducer when connected to the Foster 

(blue) and non-Foster (red) tuning elements. The non-Foster tuning extends the measured 

low-frequency resonant bandwidth while ensuring stability. 

The measurement is performed with an Agilent 33120A function generator 

connected in series with a 10 kΩ resistor to provide approximately constant-current output. 

The velocity of the transducer is measured at a central point on the curved face of the 

protective overmold using a Polytec PSV-500 laser Doppler vibrometer. The piezoelectric 

element supports predominately a breathing radial motion in this frequency range with the 

highest levels of vibration seen along the central equator of the cylinder. The vibrometer 

captures the magnitude of this motion by measuring the outward surface velocity at a point 
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in this region of maximum response. Extraneous low frequency noise is removed with a 1 

kHz high pass filter. The function generator supplies a 3 Vpp swept frequency input and 

the op-amp is powered by an Agilent E3631A supply set to a symmetric 25 V which 

supplies on average 24 mA during the measurements. 

The theoretical model of the non-Foster acoustic source is completed by retrieving 

the circuit model parameters for the piezoelectric transducer. Circuit model parameters are 

retrieved based on a measurement of the velocity of the piezoelectric transducer connected 

to the Foster tuning element. Parameters are chosen that provide the best fit around the 

induced and mechanical resonant frequencies. In this retrieval process, loss in the tuning 

inductor is modelled as a series 30.8 Ω resistance, a value estimated from the quality factor 

and DC resistance provided by the manufacturer. The self-resonant frequency of the 

inductor is sufficiently high to ensure that any effective capacitance could be safely 

neglected. The best fit is found with the transducer parameters Ce = 3.4 nF, N = 0.3, Cm = 

0.48 nF, Lm = 3.85 mH, and Rm = 60 Ω. 

With a fully specified circuit model, we can examine the predicted velocity of the 

transducer per input volt. The transfer function between the velocity output and voltage 

input is a function of the complex variable s. To see how our circuit model compares to our 

experimental results, we plot the magnitude of the transfer function as a function of the real 

frequency ω by letting s = iω [Fig. 4.5(d)]. We find that it captures the salient features of 

the measured response. An even better fit could be obtained by using a more complex 

circuit model to describe the transducer response. The level of circuit complexity we chose 

to use here ensures that the model is able to make accurate predictions (for example, for 

the stability analysis in the following), while maintaining enough simplicity for the results 

to be easily interpretable. 
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We further our results by exploring the system response as the parameters of the 

NIC are varied. Experimentally we observe that, by increasing the amplifier feedback gain 

G0, we can adjust the bandwidth and peak amplitude of the radiator with great flexibility 

[Fig. 4.6(a)]. In numerical simulations, we employ our circuit model to explore 

combinations of G0 and Ci over a wide range. A suitable performance metric is the gain 

bandwidth product (GBW, peak amplitude multiplied by bandwidth) of the non-Foster 

system normalized to the one of a passive matching network. The numerical results reveal 

a band in parameter space where the performance is maximized, reaching gain bandwidth 

improvements of about eight [Fig. 4.6(b)]. 

However, the magnitude of the transfer function only contains information about 

the steady-state response of the transducer. Attention must be paid to the transient response, 

as it may grow without bound in systems with active components and become oscillatory 

or unstable. A system is unstable if any pole of the transfer function (i.e., any frequency s 

where it diverges) lies in the right half of the complex plane. By evaluating the location of 

the transfer function poles as G0 and Ci are varied, we can see what combinations assure 

stable operation [Fig. 4.6(b), red curve]. We see that the band of highest gain bandwidth 

follows the region of instability, indicating a tradeoff between maintaining a margin of 

stability and achieving the best possible performance. We also have experimentally 

validated the instability contour by measuring the onset of instability at a few locations in 

parameter space [Fig. 4.6(c)], verifying that it indeed follows our theoretically derived 

contour. To create the instability curve, a potentiometer is used to increase the feedback 

gain to the point where unstable oscillations were seen in the velocity and voltage signals. 

After swapping in a new capacitor Ci the process is repeated. We continue this procedure 

until the full parameter space is sufficiently explored. These results make clear that, within 

the region of high gain-bandwidth, there is increased sensitivity to the system parameters,  
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Figure 4.6: Stability bound of non-Foster acoustic source. (a) The velocity frequency 

response as the amplifier’s feedback gain, G0, is increased from 2 to 2.26. (b) Numerical 

examination of the non-Foster gain bandwidth, GBW, normalized to the Foster gain 

bandwidth, GBW0, as G0 and Ci are varied in the NIC. The red curve is the boundary of 

stability predicted by the model. (c) To validate the numerical stability results, we compare 

the theoretical instability curve (red, dashed) to measured points of instability onset (black, 

solid). 

which is helpful in understanding why there is not more agreement with the experimental 

results in Fig. 4.5. A more complex model of the underlying circuits may be able to capture 

better the dispersion in this region, but at the price of a less intuitive physical picture. 

Anyhow, both the experimental demonstration and the analysis of our model confirm that 
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the proposed technique can practically achieve broadly enhanced gain-bandwidth products 

for acoustic radiation from a subwavelength transducer, well beyond the limitations of 

passive radiating elements. 

4.6 NON-FOSTER ACOUSTIC METAMATERIAL 

A metamaterial with exotic effective constitutive parameters can be realized as an 

array of subwavelength resonators. However, the frequency dispersion of the effective 

parameters is generally limited by passivity and causality considerations, consistent with 

Kramers-Kronig relations, which are the analogue of the Foster’s reactance theorem 

applied to material properties. These considerations imply that exotic material responses, 

such as a negative density or bulk modulus, necessarily occur over a narrow frequency 

range in passive metamaterials, typically aligned with the resonant response of the 

underlying constituent elements.  

As already discussed, the resonant response of small resonators can be extended 

well beyond the passivity limitations by non-Foster loading. By realizing a metamaterial 

with these active inclusions, the effective material properties are not expected to obey the 

bandwidth limitations of passive metamaterials. Consider for instance a 3D array of 

subwavelength piezoelectric elements with non-Foster loading. In a pressure field with 

wavelength significantly larger than the element size, the incident pressure pinc is roughly 

uniform over the surface of the piezoelectric and causes the element to uniformly expand 

and contract. This modulation of the element’s volume works as a harmonic source of 

volume in the fluid of density ρ, with a volume velocity  where M is the 

monopole moment . In a time-harmonic field we can write the relations

, where the volume velocity is the integrated normal velocity 

over the element surface, which we take to be a constant. The velocity u is the expansion 
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and contraction of the element by the incident pressure, which can be obtained from the 

element’s mechanical input impedance: .  The amount of monopole moment 

created by an incident pressure is given by the monopole polarizability α, defined by 

 With these relations in place, we find 

 . (4.10) 

An array of these elements in the background fluid of bulk modulus B0 supports an 

effective bulk modulus Beff that can be defined through a suitable homogenization 

procedure [62,173]: 

 , (4.11) 

where c is the speed of sound in the background fluid. When the elements are not densely 

packed, we can neglect the interaction term Cint and the bulk modulus is linearly related to 

the element’s polarizability. Exotic values of the effective bulk modulus are obtained when 

the element’s polarizability are resonant which, from Eq. (4.10), we achieve by minimizing 

the element’s input impedance. As before, we can use a tuning element placed across the 

electrical terminals of the piezoelectric to cancel the reactance of the transducer and bring 

the impedance to a very small value at a subwavelength frequency. Using the circuit model 

from before, we have impedances from the electrical and mechanical portions of the 

transducers (Ze and Zm) and an impedance from the tuning element (Zt). While previously 

we examined the input impedance into the electrical portion of the circuit model, the 

impedance of interest here is the one looking into the mechanical portion of the circuit. 
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Circuit theory allows us to express the input impedance in a form where the effect 

of the tuning impedance is readily apparent [174], using the circuit model in Fig. 4.7. We 

get: 

 , (4.12) 

where  is the input impedance if the tuning element is open-circuited and ZN and 

ZD are the impedances seen by the tuning element with the input shorted and open, 

respectively. To bring Zin to a small value, we need the tuning impedance to minimize both 

real and imaginary parts of ZN.  

 

 

Figure 4.7: Input impedance of a piezoelectric transducer with mechanical and electrical 

impedances. Tuning impedance Zt is applied across the terminals of the piezoelectric to 

make the input impedance small. 

The impedance seen by the tuning element with the input shorted is the parallel 

impedance of the mechanical and electrical portions of the transducer: ZN = Zm || Ze. At low 

frequency, the transducer impedance is dominated by the electrical and mechanical 

capacitances and the main requirement for the tuning element is to cancel out the large 

imaginary impedance of the parallel capacitances. This can be clearly seen by examining 

a plot of the susceptance as in Fig. 4.8. We use the model parameters from before for a 
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spherical element with a 5 mm radius. The transducer susceptance (Im[1 Z
N
]) is nearly a 

straight line as expected from an effectively capactive response. We can cancel this 

susceptance near kd = 0.15 (k is the wavenumber in the background medium and d is the 

average distance between neighboring array elements) by adding to it the negative 

susceptance of a 1.5 H inductor. Shown in Fig. 4.8(a), this brings the total input susceptance 

to zero in a narrow range. Alternatively, using a non-Foster circuit such as a theoretical 

negative capacitor [Fig. 4.8(b)] we can cancel the susceptance over a broad range. As a 

specific example of a negative capacitor, we consider our NIC circuit with a capacitance 

and feedback gain of 3 nF and 2.1477, respectively connected in series with a 206 Ω resistor 

to eliminate residual negative resistance [Fig. 4.8(c)]. The non-Foster tunings are able to 

bring the susceptance low over a broad frequency range. 

 

Figure 4.8: Susceptance of the piezoelectric transducer (Im[1 Z
N
]), the tuning element 

(Im[1 Z
t
]) , and the resulting total input impedance (Im[1 Z

in
]) . (a) The addition of the 

transducer capacitance with a tuning inductance minimizes the susceptance over a narrow 

frequency range. (b) An ideal negative capacitance can drive the susceptance to zero over 

a broad range. (c) A synthesized negative impedance circuit also drives the susceptance 

near zero with some dispersion. 

Considering water as the background material and a filling ratio of 0.1, we plot the 

polarizability and bulk modulus of our metamaterial using Eqs. (4.10) and (4.11). As 

expected, driving the input impedance close to zero creates a resonant peak in the 
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polarizability [Fig. 4.9(a)] and a large dispersion in the effective bulk modulus [Fig. 

4.9(b)]. A negative effective bulk modulus is achieved due to the collective response of the  

 

Figure 4.9: Frequency dispersion of the effective bulk modulus of an array of piezoelectric 

elements in water is widened by non-Foster tuning. (a) Polarizability and (b) resulting 

effective bulk modulus are very narrow when an inductor is used as the tuning element of 

the resonant inclusions, but it can be made mich larger using an ideal negative capacitor. 

A realistic negative impedance circuit (NIC) enables a realistic implementation of a 

negative capacitor, yielding a broad bandwidth over which the effective bulk modulus is 

negative. 

resonant inclusions. In the case of an ideal negative capacitor, the bandwidth is made 

extremely wide with a bulk modulus that is negative until the frequency is high enough 

that the transducer’s mechanical inductance and resistance become comparable to the 

capacitances. The NIC tuning case illustrates the wide bandwidth behavior that can arise 

from a realizable non-Foster tuning of metamaterial elements, implying an ultrabroadband 

negative bulk modulus, well beyond the bandwidth limitations implied by Kramers-Kronig 

relations for passive media. Ref. [175], as an example, shows a passive metamaterial 

offering a relatively broad range of frequencies over which the bulk modulus is negative. 

However, its dispersion is fundamentally limited by the Kramers-Kronig bounds, and 
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flatter frequency dispersion, leading to broader bandwidths of operation for practical 

devices, may be achieved only by overcoming passivity, linearity or time invariance, as 

proposed in our work. With our approach, a three-dimensional acoustic metamaterial with 

near zero or negative parameters can be created with a bandwidth constrained only by 

stability considerations. 

This result shows that the non-Foster loading opens unique opportunities to realize 

broadband acoustic metamaterials overcoming the bandwidth limitations of passive 

systems for a variety of opportunities in the context of exotic sound manipulation. 

4.7 DISCUSSION 

Our results outline the exciting opportunities offered by non-Foster circuits in the 

context of active acoustic sources and metamaterials, offering bandwidth enhancements 

well beyond the limits of passive systems. Our derived quality factor limit provides a 

general lower bound on the bandwidth of any passive acoustic resonator, given its size. To 

approach this limit, a transducer needs to minimize its internal stored energy and loss. For 

a piezoelectric transducer, this requires low moving mass, high compliance, high electro-

mechanical coupling, and low electrical and mechanical losses. A typical piezoelectric 

transducer operates far from this limit, and our approach to active circuit loading can 

compensate for this excess stored energy, extending significantly the available bandwidth 

for low-frequency resonances. 

Stability considerations determine the ultimate limits of performance in these 

scenarios. In our work, we have presented an analytical model that captures the main 

phenomena describing active radiating elements, which can accurately predict the stability 

boundaries of this approach. Our simple non-Foster op-amp circuit loading a piezoelectric 

transducer already shows a significant bandwidth enhancement, and further improvements 
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can be expected by considering more complex circuit layouts and dispersion engineering 

to extend the stability region. Further optimization of the dispersion of the active tuning 

elements paves the way towards even larger gain bandwidths from subwavelength acoustic 

sources, of interest in a wide range of applications. 

Non-Foster loads also offer a new approach to improve the bandwidth of acoustic 

metamaterials, which have been shown to enable exotic sound-matter interactions but 

typically only over a narrow frequency range. This limitation is tied to the frequency 

response of the individual subwavelength resonators that constitute the material. By using 

active non-Foster loads, the bandwidth of each individual element can be extended beyond 

the passivity limitations, while maintaining a subwavelength footprint that ensures the 

possibility of homogenizing the array of elements as a bulk material response. We have 

studied a metamaterial made of an array of subwavelength non-Foster elements, showing 

that it can support exotic bulk material properties over large bandwidths, beyond the 

limitations of passive acoustic metamaterials. Our findings therefore open interesting 

opportunities for metamaterial technology, not necessarily limited only to the acoustic 

domain, but extendable also to mechanics, electromagnetics and nano-optics.  
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Chapter 5: Compressibility-near-zero acoustic radiation4 

In the previous chapters we have discussed constraints that arise due to time-

reversal symmetry and the absence of gain. Part of the motivation for this research is to 

improve the performance of acoustic metamaterials. These architected structures are 

noteworthy for their ability to shape sound waves in ways that exceed what is possible with 

natural materials. In this chapter we present a novel acoustic source based on a 

metamaterial zero-index effect. As the basic functionality of the device, a structure that 

transforms a simple omnidirectional source into a highly directive beam of sound, does not 

rely on broken time-reversal symmetry or passivity, its performance is bound by the 

constraints discussed in the previous chapters. Future work could include the addition of 

symmetry or passivity-breaking effects to endow the acoustic zero-index directional device 

with asymmetrical propagation characteristics or broader bandwidth performance. 

A hallmark of near-zero-index materials is the uniform phase profile that the waves 

experience as they propagate with static-like properties in these media. This feature has 

been exploited in electromagnetics for several applications, including for the realization of 

compact, highly directive antennas illuminated by a single source. Here we discuss the 

promise of near-zero metamaterials for acoustic radiation, based on the cutoff of a higher-

order mode in a waveguide with small holes. We show that the near-zero nature of this 

phenomenon ensures unusual robustness to disorder, which is analyzed using a statistical 

description of the radiation patterns for randomly generated location of the holes. The 

radiation pattern can be made more directive by simply increasing the overall radiating 

aperture, without having to worry about the specific location of the individual holes and 

their relative distance. The proposed zero-compressibility material offers a promising 

 
4 Reprinted with permission from C. Rasmussen and A. Alù, Compressibility-near-zero acoustic radiation, 

Phys. Rev. Appl. 15, 024022 (2021). Copyright 2021 by the American Physical Society. 
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alternative to traditional acoustic directive sources due to its design simplicity, inherent 

robustness and compact profile. 

5.1 INTRODUCTION 

Highly directive radiation implies the need for a large aperture, since the far-field 

angular distribution of a given source is the spatial Fourier transform of the source plane 

[72]. Transducer arrays can provide a large radiating area, but they are overly costly and 

require a complex feeding network, making them unappealing for many applications. 

Reflectors and lenses, such as the sound domes used in museums to broadcast sound to a 

single listener, are simpler, but rely on large and bulky external structures. Superdirectivity 

from small apertures is possible, but it implies extremely large reactive fields, in practice 

enabling only modest gains over the directivity of a uniform aperture of the same size 

[176]. In another alternative, the tradeoff between aperture and directivity can be 

sidestepped by exploiting nonlinear phenomena, such as in parametric arrays, where a 

beam of high amplitude ultrasound is demodulated to audible frequencies through 

nonlinearities during propagation. The resulting radiated beam is highly directional, though 

these speakers generally suffer from poor bass response, limited efficiencies and large 

costs. 

Recent advances in the field of near-zero materials provide an intriguing alternative 

to these approaches [177,178]. Acoustic metamaterials supporting exotic values of their 

effective density and compressibility have enabled a plethora of new phenomena, such as 

enhanced absorption, cloaking, and subdiffraction imaging [25,140]. These properties have 

been associated with negative effective constitutive parameters, which are necessarily 

bandwidth limited, implying that there is always a frequency where density and/or 

compressibility transition from negative to positive values, at which the material shows 
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near-zero-index properties, with propagation characterized by very long wavelengths and 

a quasi-static phase distribution. This field uniformity has been used in electromagnetic 

near-zero materials to realize various phenomena, including the possibility of 

implementing highly directive antennas [179,180]. 

In acoustics, negative and near-zero density can arise from collective dipolar 

resonances, such as in dense arrays of resonant membranes forming metamaterials 

[181,182]. Collections of monopolar resonances, as in Helmholtz resonators [183], modify 

instead the effective compressibility. Resonances of both these constitutive parameters in 

the same frequency band can result from scatterers that support multiple mode types 

[184,185], such as coupled membranes [186], star-shaped scatterers [187], cylindrical 

inclusions [188], coiled space structures [189] or Mie resonators [190,191]. As an 

alternative technique, it has been recently shown that the dispersion of a hollow waveguide 

operated at its higher-order acoustic mode can provide a simple yet effective way to 

implement negative or zero compressibility with very low loss and maximized bandwidth 

[192]. This is dual to the electromagnetic scenario, in which negative permittivity has been 

achieved in a parallel-plate waveguide by Rotman [193], and exploited in various 

metamaterial implementations [194,195]. 

In this work, we demonstrate how the effective zero-index response of a cavity 

excited near its higher-order cutoff, with small holes coupling the fields to free-space, can 

be used to realize a highly directive acoustic source. The field uniformity in this radiating 

structure makes it resilient to changes in geometry and disorder. We show that the 

directivity can be simply controlled by varying the lateral dimensions of the cavity and that 

its directive emission is largely independent of the location of the radiating holes. 
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5.2 A ZERO-INDEX DIRECTIVE ACOUSTIC SOURCE 

In an acoustic waveguide, transverse confinement induces inherent dispersion of 

the phase speed for all modes that are not uniformly distributed in the transverse plane. 

This implies the presence of a cutoff frequency, below which the mode cannot propagate. 

At the cutoff, forward and backward propagation are degenerate, the phase velocity is 

infinite, since the wave number is zero, and the wavelength is correspondingly infinite. 

Figure 5.1(a) shows the propagation of an incoming sound wave through narrow channels 

feeding a larger middle waveguide section designed to operate at the cut-off of its higher-

order mode. Indeed, we can observe how the wave experiences close to zero phase advance 

throughout this middle section, despite its length being comparable to the wavelength in 

the feeding channels. The feed and exit waveguides are located near the antinodes of the 

excited mode in the middle section to ensure large coupling. In this region the effective 

index of refraction, defined as the ratio of the sound speed to the phase speed, 

, is effectively zero because the phase speed diverges. In particular, 

it is the effective compressibility in the middle section to go to zero , not the 

density. This can be seen by noting that the impedance  is infinite 

instead of zero as the axial particle velocity . The effectively zero phase speed 

means that the axial wavenumber is also effectively zero:  where  is 

the angular frequency. The middle section in Fig. 5.1(a) therefore acts as an axial 

compressibility-near-zero (CNZ) medium around its cut-off frequency. The difference in 

cross-section between the feeding channels and the middle section in this geometry 

compensates for the large impedance mismatch between the two media, enabling complete 

tunneling of the wave through the zero-index cavity, known as supercoupling [196]. As 

detailed in [192], the channel is connected at the bottom of the large CNZ section, so that 

the zero-order plane wave mode in the feeding waveguides can efficiently couple to the 
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higher-order mode of the larger middle section operated at cut-off. Despite the cut-off, and 

correspondingly very large impedance, the wave is fully transmitted through the cavity and 

preserves the same phase throughout the length of the CNZ section. 

 

Figure 5.1: Compressibility-near-zero directive radiation. (a) The phase of an incoming 

travelling wave is unchanged as it traverses the CNZ cavity operated near the cutoff of its 

higher-order mode. The wave is fully transmitted through the exit waveguide. (b) Efficient 

broadside radiator with a uniformly-illuminated aperture realized by a square array of holes 

carved in the top wall of the CNZ cavity. 

The uniform phase distribution across a large aperture is ideally suited for efficient 

broadside acoustic radiation with large directivity, in analogy with the wavefront 

manipulation properties of zero-index materials in optics [197]. We achieve this 

functionality by carving small holes in the top plate of the CNZ section and removing the 

exit waveguide, as illustrated in Fig. 5.1(b), small enough to only weakly perturb the 

resonant mode, but sufficient to efficiently couple the incoming wave to free space. 

Interestingly, because the resonance of interest in the cavity arises transversely, as the mode 

is at cutoff, the distance between the lateral walls of the cavity is irrelevant to control the 

resonance features, and the established mode is expected to efficiently leak towards the 

far-field in the broadside direction for any total size of the hole array, given its uniform 



 84 

field profile. This is in contrast to an electromagnetic cavity antenna operating in its lowest 

mode (of type 101 or 011), where the aperture efficiency is at most 81%, because of its 

nonuniform phase profile [198]. In contrast, the CNZ cavity uniformly broadens the size 

of the localized source for broadside radiation, leading to unitary aperture efficiency. Our 

design also differs from acoustic leaky-wave antennas, in which a travelling wave is made 

leaky through periodic holes introducing a -1 spatial Floquet mode within the sound cone 

[199,200]. Acoustic leaky-wave antennas typically suffer from largely inefficient use of 

the aperture, as the wave is attenuated along the waveguide and eventually absorbed to 

prevent backreflection [199]. These leaky modes also typically experience a cutoff for 

radiation at broadside, implying very inefficient radiation. 

Insights into the operation of the CNZ acoustic radiator can be gained using a 

Green’s function approach, assuming that the cavity is fed by a generic monopole source 

placed inside the cavity, as in Fig. 5.2. Using an  time convention, we seek a solution 

to the equation  for the acoustic pressure p at location  due 

to a source at . Assuming for simplicity that all walls are sound hard, the solution can be 

expressed in terms of the three-dimensional orthonormal cavity eigenmodes 

, where the cavity side length is 

L, the height is H, and the mode index is . The normalization factor 

, where  if ,  if , ensures orthonormality over the 

cavity volume, . The solution in the cavity with walls of (large) wall 

impedance Z is [72] 

 . (5.1) 
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In the case of all sound hard walls ( ), the last term in the denominator 

vanishes and the level of excitation of mode m is determined by how close the mode 

wavenumber  is to the free space wavenumber 

 and by the overlap integral between the source and the modal distribution which 

in this case is simply . In our CNZ cavity, all the walls are sound hard except 

for the top surface, where the response of the surface patterned with holes is approximated 

by a large impedance Z
t
. In this case, the surface integrals collapse and the expression for 

the pressure reduces to 

 , (5.2) 

where the amplitude of mode m is a
m

. 

 

 

Figure 5.2: Green’s function analysis with a holey top surface. (a,b) Theoretical calculation 

of the normalized pressure response in the CNZ cavity. The source is centrally located on 

the bottom of the cavity and it produces a wave field consisting mainly of the 001 mode 

with xy uniformity. (c,d) Corresponding full-wave simulation results. 
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The impedance Z
t
 of the top surface is the one of a holey plate. Intriguing scattering 

phenomena have been shown to arise in holey plates when the acoustic wavelength is 

comparable to either the hole length or hole-to-hole spacing due to collective resonant 

behavior [201,202]. Further effects due to surface and plates modes are expected when the 

plate elasticity is taken into account [203]. In our geometry the structural parameters are 

sufficiently subwavelength that the specific acoustic transfer impedance can be rigorously 

homogenized and is well-approximated by a lumped mass and resistance [204]: 

 . (5.3) 

The resistance scales with the free space wavelength, while the reactance grows as 

the hole size shrinks. For the cavity in Fig. 5.2, with hole radius a = 1 mm, hole length l = 

2 mm, and hole spacing d = 5 cm operating at 2000 Hz, the impedance is mostly reactive, 

Z
t
= 443 + 44,770i Pa·s/m. We further model the air as inviscid and thermally non-

conducting with density  = 1.21 kg/m3 and sound speed c = 343 m/s. While some amount 

of thermoviscous loss is expected in the subwavelength holes, the overall behavior of the 

cavity as a directive source remains largely unaffected by the presence of dissipation as the 

viscous and thermal boundary layers, = 0.049 mm and = 0.057 mm, are significantly 

smaller than the hole size. Maa’s model for the impedance of a microperforated plate with 

thermoviscous losses can be used to capture the role of viscothermal effects [205]. The 

impedance in this case is 1,365 + 46,135i Pa·s/m. Vibroacoustic coupling can be minimized 

by choosing a high impedance material with sufficient thickness. A thicker top plate would 

lead to more thermoviscous losses, affecting the radiation efficiency, but due to symmetry 

the uniform aperture illumination would remain unchanged. 
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The time-averaged power supplied by the source can be retrieved by integrating the 

intensity vector over a sphere of vanishing size centered at the source. This procedure 

yields 

 , (5.4) 

where  is the power radiated by the source in free space. With Eq. (5.2), 

the relative amount of power injected by the source to mode m is then . 

In a cavity with all walls sound hard ( ) there is no mechanism for energy 

dissipation and all modal amplitudes are purely real. As the power is proportional to the 

imaginary part of the pressure, the power delivered by the source is zero, as it is unable to 

deliver any power to a totally reactive load. In a practical realization of the antenna, a feed 

network that transforms the input impedance of the radiator to match the source impedance 

would enable maximum power transfer. 

Using the lumped impedance model of the holey top surface, we can calculate the 

power provided by a source located in the bottom center of the cavity to each mode, in 

order to ensure that the response is dominated by the desired 001 mode. We plot the 

acoustic pressure given by Eq. (5.2) in Fig. 5.2(a) for a cavity with side length L = 0.5 m 

and height H equal to half wavelength (~8.6 cm). Based on Eq. (5.4), we estimate that the 

power provided to mode 001 is 90 times (19.5 dB) larger than the one provided to the 

closest mode (440). To validate our analysis, we also ran full-wave finite-element 

simulations of the geometry, finding very good agreement, as shown in Fig. 5.2(b). 

Extracting the modal power from the full-wave results indeed shows that the 001 and 440 

are the two dominant modes, separated by 18.5 dB. Similar results have been obtained for 

other source positions, confirming the robustness in performance of the CNZ radiator. 
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5.3 DIRECTIVITY CONTROL 

The uniform phase distribution on the top plate of the cavity and the fact that its 

shape does not affect the cutoff frequency for the z-directed mode ensure that we can 

increase or decrease the source directivity by simply increasing or decreasing the lateral 

dimensions of the cavity. With reconfigurable walls we may span the directivity from the 

one of a compact source – with directivity near unity – to a highly directive beam as the 

aperture area increases. We test the variation in directivity as the aperture is increased in 

Fig. 5.3, where we plot the directivity retrieved from simulations as a function of kL, the 

wavenumber multiplied by the side length, assuming a lattice constant d = 5 cm, 

subwavelength at the operation frequency of 2000 Hz. The simulations agree well with the  

 

 

Figure 5.3: Directivity controlled by the cavity side length. (a) Underneath a surface 

patterned with holes, a cavity with adjustable side walls can be used to control the 

directivity of the CNZ radiator. (b) The directivity from full-wave simulations (blue) 

matches the one of a square array of monopole sources (red), showing the nearly perfect 

illumination regardless of size. Insets: Beam patterns in the xz plane for three side lengths 

showing directivity ranging from omnidirectional to highly directive. 
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directivity of a rectangular array of point sources excited with uniform phase and 

amplitude, for which the directivity  is obtained through 

the array factor 

 , (5.5) 

where  and . For the square array of holes in our 

CNZ cavity  and . The good agreement between our simulations and 

the analytical formula for a phased array clearly demonstrates the nearly ideal aperture 

illumination and inherent reconfigurability of our CNZ radiator. 

5.4 DISORDER INTOLERANCE 

The field uniformity in the CNZ cavity adds the interesting advantage of immunity 

to disorder. The eigenfrequency of an electromagnetic zero-index cavity can be made 

robust to shape variations by embedding a dielectric inclusion [206]. In the geometry at 

hand, the array of holes is expected to achieve uniform illumination regardless of the lateral 

cross-sectional cavity shape, as long as the excited field is dominated by the selected cavity 

mode. Interestingly, this insensitivity to disorder applies also to the position of the holes in 

our geometry. In the extreme case of holes being positioned entirely at random over the 

aperture, the main broadside beam is still expected to arise, with little change in directivity. 

Figure 5.4 shows the effect of this disorder, as we study the x-z plane beam patterns for 

1,500 randomly generated hole samples, and compare them to the periodic square array. 

For each disordered sample, the position of the 100 holes was pulled from a uniform 

distribution over the 0.5 m by 0.5 m top surface. Figure 5.4(a) shows one of the disordered 

samples, where the location of any individual hole was equally likely to be anywhere in 
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the square cross section. The baseline ordered array is a square lattice with 5 cm spacing 

between holes. All results are calculated for airborne propagation at 2000 Hz with 100 

coupling holes of radius 1 mm and height 2 mm. The far-field intensity patterns are 

retrieved from full-wave simulations assuming the aperture in an infinite baffle. 

 

Figure 5.4: Effect of disorder in the hole position. (a) Top surfaces for the periodic square 

array of holes and a sample disordered array. (b) Comparison of the xz intensity radiation 

pattern from full-wave simulations of the 1,500 disordered samples (blue) and the baseline 

periodic square array (red). All results are normalized to the intensity of the ordered array 

at broadside. The main lobe of the beampattern maintains its width and direction in all 

randomly generated geometries. (c) Probability distributions of the intensities of the 

disordered samples at 5º and 20.06º from broadside with theoretically predicted results 

(black dashed line). The small red bars mark the intensities of the periodic array. 
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The statistical distribution of the random beam patterns can be understood by 

examining the Fraunhofer far-field where the sound pressure is the Fourier transform of 

the source plane velocity: 

 , (5.6) 

with r as the radial coordinate. In particular, the intensity  at broadside (x = y 

= 0) is simply given by the integration of the particle velocity across the aperture: 

 . (5.7) 

Considering the holes as point velocity sources of unit strength, the volume velocity 

Q remains unchanged as long as the number of holes is kept constant and as long as the 

position and geometry of the holes do not significantly affect the cavity mode: 

. This matches the agreement across all samples 

at broadside seen in Fig. 5.4(b) and it indicates that the holes do not largely influence the 

cavity mode excitation, meaning that the particle velocities are the same at all coupling 

holes and that the system can be analyzed as a nonuniformly spaced (spatially tapered) 

array of point sources with equal amplitude. Normalizing these values, we can describe the 

distribution of the intensities of the random samples as a delta function centered at one: 

. 

Away from broadside, the statistical distribution of the intensities can be obtained 

using the central limit theorem. Because the holes are uniformly excited, the far-field 

pressure is simply the sum of the phases due to the relative positions of the holes. In the x-

z plane, only the x positions of the holes are relevant. The normalized pressure magnitude 

is , where  is the phase contribution of the l-th hole in terms 
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of the x coordinate X
l
 uniformly sampled over the interval defined by the cavity length: 

. At the critical angle , given by , the phase  is sampled 

over the full  angular range. At that angle of radiation, the composite pressure is a 

sum of N two-dimensional (2D) vectors in the complex plane of unit length with random 

orientation. 

Interestingly, this property connects our problem to the theory of random walks, 

with a probability distribution in terms of Bessel functions, derived using characteristic 

functions [207] 

 . (5.8) 

As the number of holes becomes large this integral becomes equal to the Rayleigh 

distribution with variance 1 2N : 

 . (5.9) 

The statistics for the intensity can be similarly derived, and follow an exponential decay: 

 . (5.10) 

These distributions are a common first step in describing the statistics of disordered media, 

such as that of speckle patterns, rogue events or spectroscopy. In the problem at hand, they 

are a first approximation, as they rigorously apply only at the angle . At other angles, the 

phases can take on values over an arbitrary range , which can be thought of as 

a 2D random walk where the orientation of each step is limited to an angular range of  

radians. In this case, with recourse to the central limit theorem the probability distribution 

for the intensity is derived assuming a large number of holes, and is given by 
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 . (5.11) 

The dependence on  is contained in the mean and variances of the underlying 

Gaussian distributions that arise from the central limit theorem. The closed-form 

expressions are 

   (5.12) 

Here, X and Y refer to the distributions of the real and imaginary parts of the random 

variable . As the interval is symmetric about the real axis, the mean of Y is 

always zero. Eq. (5.10) is used to plot the probability distribution at the critical angle 

 in Fig. 5.4(c) and Eq. (5.11) is used to plot it at an angle closer to the 

normal ( ). The good agreement found with the histograms from the full-wave 

simulations validates that the operation of the CNZ source is well protected from disorder. 

The coupling holes are uniformly illuminated even when they are randomly placed, and 

can thus be treated simply as a nonuniformly spaced array. 

Nonuniform hole locations can be used as a knob to reduce sidelobe levels or 

increase directivity. Foundational theoretical studies [208,209] and more recent 

optimization schemes [210,211] describe the advantages and design procedures for 

spatially tapered arrays. Here, these advantages are achieved using a single source. For 

example, grating lobes are generically not present in non-uniform arrays as seen in Fig. 5.5 

(inset, gray lines). A lack of periodicity can then be a useful approach to limit the levels of 

all sidelobes. To examine this effect, we widen the hole spacing of the previous geometry 
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to the size of a wavelength and correspondingly increase the cavity size to  

(the  factor is to avoid the excitation of spurious modes). We are operating now at the 

point of a Rayleigh-Wood anomaly, where Fig. 5.5 shows the expected horizontal grating 

lobes appearing in the periodic array, compared to the aperiodic radiation patterns for a 

few random samples. At small , i.e., close to broadside, the distribution is a delta function 

centered at 1, as previously noted. This is apparent in Fig. 5.5, as the dark blue distributions 

approach the shape of a Gaussian peaked at 1 as  reaches its lowest values. 

 

Figure 5.5: Probability distributions as the radiation angle increases from broadside. The 

distributions of intensity values are color coded according to what angle of radiation 

corresponds to the particular value of . Inset: The intensity radiation patterns of an 

ordered array of holes spaced one wavelength apart (black) compared to the aperiodic 

patterns of five disordered runs (gray). Colored lines indicate the radiation angles at which 

the probability distributions are evaluated. 

 



 95 

At angles of radiation where ,  the distributions are the exponential 

functions in Eq. (5.10). While at these multiples of  the distributions are exactly 

exponential, the behavior between multiples of  is somewhere between the one of an 

exponential decay and a Gaussian centered away from the origin. However, there is less 

deviation from the exponential behavior between multiples of  as l becomes large. This 

can be understood by considering where a random walker would end up after taking N = 

100 steps: when  is small, only a narrow range of angles in the forward direction is 

allowed for each random step. After the full 100 steps, the walker inevitably ends up in 

about the same place as any other walker (all disordered samples have the same behavior 

near broadside). When  is a multiple of , all directions are equally likely for each step 

and it is likely that the walker will be found somewhere near the origin after the 100 steps. 

In the intermediate case , the walker can step in any direction, but it is 2 times as 

likely to take a step in the forward direction, the  angular range, than in the 

backward direction. If , the walker is now just 1.5 times as likely to take a step in 

the forward direction. In this way, as  gets large, the exact value of  becomes less 

important and the distribution approaches the one of an exponential decay for any large 

value of , as seen in Fig. 5.5. The implication is that the sidelobe levels of our random 

hole arrays are unlikely to ever match the level of the main lobe, in the same way as the 

random walker with all directions available for each step is unlikely to take 100 consecutive 

steps in the same direction. Strictly speaking, the random walker analogy holds for the 

distribution of pressure magnitudes , though the conceptual framework gives insight 

into  as well. 
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5.5 CONCLUSIONS 

Following ideas developed in the context of zero-index electromagnetic 

metamaterials, we have introduced an approach for directive sound radiation robust to 

disorder. By selectively exciting a suitable cavity mode at cutoff, we have shown that an 

acoustic resonant cavity provides ideal aperture efficiency, even in the presence of 

disorder. It should be emphasized that some care should be taken into the cavity geometry 

and source location, so that the desired mode is selectively excited. For example, while the 

lateral dimensions of the cavity were able to increase over many lattice increments, it is 

necessary that the lattice constant is not a simple fraction of the wavelength to avoid the 

excitation of other modes with lateral field variations. In addition to cavity shape, the 

desired mode may be selectively excited through the use of a judicious source 

configuration, such as the location and shape of a waveguide feed.  

The decoupling of temporal and spatial variation in near-zero media gives freedom 

to modify the overall aperture geometry without affecting the useful properties of the wave 

field. As an example, we have shown how reconfigurable walls in a CNZ cavity can 

directly shape the directionality of the emitted sound. And, drawing from probability 

theory, we have developed a statistical model to demonstrate that the CNZ source is highly 

robust to disorder. With a sufficient number of holes, the radiation of disordered samples 

becomes predictable in the presence of any level of disorder. The model shows that disorder 

can potentially become even beneficial, generically acting to suppress grating lobes while 

maintaining the behavior of the zeroth-order broadside beam. 

The resonant condition dictates that the cavity be a half wavelength in height. The 

coupling holes modify this condition slightly and a stronger response in the cavity is 

possible at a slightly shifted frequency, but this is a small effect and the results are not 

presented here, as the overall behavior is similar in both cases. It should be pointed out 
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that, by modifying the impedance of the top surface, for example with a more sophisticated 

engineered surface, the profile of the cavity can be drastically reduced, as demonstrated in 

electromagnetics [212,213]. This concept is illustrated in Fig. 5.6. A resonant broadside 

beam is maintained as the height of the radiator decreases by specifying the required phase- 

 

Figure 5.6: Phase-shifting metasurfaces to reduce the radiator height. Pressure isosurfaces 

are shown within the structure and radiation patterns are shown above. (a) A holey sound 

hard top surface with the structure height equal to a half-wavelength. (b-d) The radiator 

height is decreased while changing the impedance of the top plate to ensure a resonant 

response. 

shifting impedance for the top plate. The wave in the cavity is reflecting off the bottom 

surface, which is sound hard and so it imparts no phase shift in reflection, and the top 

surface, which can also be approximated as a sound hard boundary. In this case the resonant 
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condition is given by the phase relationship , with m being an integer. If the 

top surface is instead engineered to impart a phase shift  to the reflected wave, the phase 

relationship becomes . In essence, the reflection phase is a degree of 

freedom that uncouples the relationship between the height of the cavity and the 

wavelength of operation. Figure 5.6 shows the case for which the top surface offers 

different amounts of reflection phase shift, enabling the antenna profile to become much 

smaller than a wavelength. In addition, a phase shifting surface can also be useful to 

increase the source frequency bandwidth by compensating the frequency-dependent free 

space phase with a linearly-varying reflection phase, as demonstrated for an 

electromagnetic antenna in [214]. 

A waveguide operated near cutoff provides a particularly straightforward path 

towards near-zero-index responses in acoustics. But other near-zero methods, such as the 

use of resonant inclusions, provide further options for acoustic near-zero directive sound, 

though it can be difficult to maintain consistency among the inclusions. Regardless of how 

the near-zero behavior is obtained, our work shows a promising pathway of the underlying 

phenomena to shape acoustic radiation patterns as an alternative to more traditional 

directive acoustic designs. 
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Chapter 6: Conclusions and Future Work 

Time-reversal symmetry and passivity are broad concepts in the study of wave 

propagation. Surveying these topics is a bit like a stargazer observing the vast panorama of 

the nighttime sky. The expansive sight gives the viewer an understanding of the overall 

structure among the celestial bodies and can reveal large-scale relationships and patterns. 

An examination of fundamental aspects of wave propagation is valuable in this way and it 

allows us to make sweeping statements about the behavior of acoustic systems based on 

only a couple of pieces of information. Describing acoustic systems in terms of physical 

symmetries is an example of this. These symmetries, broken or not, act as great organizing 

principles, allowing us to make firm predictions about the performance of a device or 

material without needing to know the details of its composition. In this work we have 

adopted this broad vantage point and illustrated the possibilities that are opened by the 

breaking of time-reversal symmetry. We have showed how it is often accompanied by the 

breaking of reciprocity and enables devices and phenomena that are sensitive to the 

direction of acoustic propagation. An overview of phenomena enabled by these 

nonreciprocal effects and a thorough description of reciprocity theorems was given. This 

included a discussion of what techniques have been used or could be used in the future to 

break these reciprocity theorems. We also broadly considered passivity and showed how 

this leads to the acoustic Chu limit, which gives a strict bound on the bandwidth-efficiency 

of any passive acoustic radiator based only on its maximum radial length. 

This dissertation also contains analysis of some specific acoustic devices. These 

projects provided a different vantage point – that of an astronomer with a telescope, now 

narrowing in on a particular promising piece of the sky. The broad principles are brought 

to life as the individual systems are specific illustration of the underlying scientific laws. 

These acoustic systems are devices or materials with properties that are predictable based 
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on the general principles of wave propagation. This dissertation contained studies of time-

reversal- and passivity-breaking structures that exemplify this zoomed-in perspective, 

brought to life through numerical simulations and physical proofs of concept. In chapter 3, 

we used steady flow to create an acoustic isolator with a design inspired by the Mach-

Zehnder interferometer. Other isolator designs were presented, including one based on 

phononic transitions induced in a notched waveguide with flow. By coupling such a 

structure to free space, we demonstrated an acoustic leaky-wave antenna with 

transmission/reception asymmetry. Chapter 4 contained an illustration of the bandwidth 

enhancement made possible by the inclusion of a gain element in an acoustic radiator. We 

synthesized a non-Foster circuit and connected it to a piezoelectric transducer and 

measured its widened resonant linewidth. This work showed how it is possible to overcome 

the acoustic Chu limit through the use of acoustic gain, subject to stability concerns. And, 

by considering an array of acoustic transducers loaded with non-Foster elements, we 

showed how the frequency range of negative material properties of acoustic metamaterials 

can be widened. 

This work paves the way for many future research opportunities, with possibilities 

in both fundamental studies on time-reversal- and passivity-breaking and in innovations 

centered around the particular devices and structures described here. One promising future 

direction is the breaking of time-reversal by temporal modulation. By keeping temporal 

modulations unreversed in reciprocal scenarios, they are sources of time-reversal breaking 

and nonreciprocity. Dynamic metamaterials, in which waves interact with time-dependent 

systems, enable effects such as active steering and frequency mixing not seen in their static 

counterparts [215,216]. As discussed in chapter 2, modulation has been previously studied 

in the context of nonreciprocal effects, but the focus up to now has been mostly restricted 

to fairly simple modulation schemes. There is a large body of theoretical, computational, 
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and technological work to be done in examining more arbitrary spatiotemporal variations. 

Also of future interest is time-reversal and passivity breaking in acoustic bianisotropic 

structures. Bianisotropic, or Willis, media have coupled momentum density and volume 

strain fields which gives them substantial ability to shape sound and vibration, for example 

in recent demonstrations of bianisotropic metasurfaces efficiently redirecting [217] and 

blocking sound [64]. These promising features could be extended through the introduction 

of gain elements. And, in a demonstration of the possibilities unlocked by broken time-

reversal symmetry in Willis structures, a recent paper has shown unusual material property 

response made possible by flow in a Willis structure [68]. Another direction is to advance 

the work in near-zero acoustics. A highly-directive acoustic source based on the 

compressibility-near-zero response of a waveguide at cutoff was introduced in this work, 

but other directive sources based on various near-zero acoustic effects are possible. The 

inclusion of active sources or temporal modulations in zero-index antennas could lead to 

novel capabilities and wider bandwidths. Future work could also include developing a 

better understanding of the tradeoff between stability margin and the bandwidth and 

efficiency of active acoustic materials and devices. While in principle, active media can 

bypass constraints such as the Chu limit or Kramers-Kronig relations, the amount of 

improvement is difficult to predict without an accurate accounting of stability margins. 

More work, in both simple toy models and in commonly used acoustic devices such as the 

piezoelectric transducer studied in chapter 4, could elucidate the sources of instabilities and 

indicate design principles when including gain sources. There is still much that can be done 

in the area of active acoustic devices and metamaterials. 

By stopping to consider the contributions made by research in acoustics, we see 

that the ability to harness acoustic waves has led to remarkable advances in our ability to 

communicate with each other and explore the world around us. This is perhaps most readily 
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evident by considering the loudspeaker and microphone, devices that are foundational to 

an incredible array of modern technologies. With access to more knowledge and 

computational resources than ever before, we continue to uncover new ways to manipulate 

acoustic waves. And, through this process, we can bring into existence the acoustic devices 

of the future. The work presented here is a step in that direction.  
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