Trends in System Cost and Performance

Balances and Implications for the Future of
HPC

John D. McCalpin, PhD

mccalpin@tacc.utexas.edu

TAUU TEXAS ADVANCED COMPUTING CENTER

1. Review: Changes in HPC Systems

2. Technology Trends & System Balances

3. Fundamental Flaws in Modern Architectures
4. An Alternative Architectural Approach

Part 1

CHANGES IN HPC SYSTEMS

TNuu TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by System Architecture

2000 2005 2010
Accelerated

VECTOR

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

100%

90%

80%

70%

60%

50% -

40% -

30%

20%

10%

0%

TOP500 Rmax Contributions by Microprocessor Family
1995 2000 2005 2010

B x86
OPA-RISC|—
BMIPS
mIA-64 —
Bi860
OSPARC |
B Alpha
B Power

0L oONoOLOY YN NLOEYANRYRYNYOLONRYDYNYNLOLY DYDY
O O < - VWO O© O NNMNMOOWOO O O O «~“ T~ NN OMOMSTST T LU O© O NMNMOOWOWOWOO OO~ T AN ANOMOMS - W
DO OO0 0000 OO0 O O O O O 0O 000000000000 ™“ ™ ™ ™ ™ ™ ™ ™ ™ ™ v«
D O OO0 0000000 O O O 0O O OO0 O OO OO OO 0O O0O0O0O0OO0OO0OOO0OOLOOoOOoOOo o o o
T T T T OTIOTIOTIOTIOT T T v v v AN AN AN AN AN AN AN AN AN NN NN AN AN AN AN AN AN AN NN NN NN NN NN

PENYN THE UNIVERSITY OF TEXAS AT AUSTIN
TAU TEXAS ADVANCED COMPUTING CENTER

Contributions of Various Accelerator Familiesto TOP500 RPeak
2010

35%

-

30%
. Xeon Phi
20%

15%

10%

NVIDIA GPUs

Percent of Aggregate RPeak of Entire List

5%

IBM Cell

0%
2006.9 2007.5 2007.9 2008.5 2008.9 2009.5 2009.9 2010.5 2010.9 2011.5 2011.9 2012.5 2012.9 2013.5 2013.9 2014.5 2014.9 2015.6

TA/;)@ THE UNIVERSITY OF TEXAS AT AUSTIN
\ & TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by System Architecture

2000 2005 2010
Accelerated

VECTOR

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

System Price per "Processor"
$10,000,000

Vector

$1,000,000 \ === Price/Processor

\ RISC - -@- - Price/Socket
$100,000 _\\\
$10,000

$1,000 x86
$100
1980 1985 1990 1995 2000 2005 2010 2015 2020

_ / \ / \ THE UNIVERSITY OF TEXAS AT AUSTIN
TA TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by System Architecture

2000 2005 2010

Accelerated

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by System Architecture

2000 2005 2010

Accelerated

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by System Architecture

2000 2005 2010

Accelerated

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

TOP500 Rmax Contributions by Cores/Package

100% Note: x86 processors in Accelerated Systems are
90% not included in these Rmax contributions.
80%
m 18 Core/Pkg
70% 16 Core/Pkg
14 Core/Pkg
60% = 12 Core/Pkg
50% m 10 Core/Pkg
m 8 Core/Pkg
40% =6 Core/Pkg
m 4 Core/Pkg
30% = 2 Core/Pkg
0%, m 1 Core/Pkg
(o]
10%
0%

1993.5
1993.9 -

1994.5 -

1994.9
1995.5
1995.9

L I

I R R R R I R R I R I SR B N SR B R
© O N 00 0 0O O O O ™~ N AN OOM T I UL O O NMMNNMNMOWOWO OO OO~ AN NOOMMMST T W0
o O OOOOO0O) O O O O O O O O O O 0O 0O 00000000 ™™ ™ ™ ™ ™ ™ ™ ™ ™ v
O OO OOOO O O O O O O O O O O O O OO0 0O 0O 0O OO0 O0OO0OoOO0OoOOoOoOOoOOoOOoOOoOoo o o
T T T v v v v v NN AN AN AN AN AN AN AN AN AN AN NN NN AN N AN AN N AN NN AN NN N

TAO

oW

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

What about accelerators?

Accelerators can provide better performance per price and
performance per watt, but they do this by increasing the
required parallelism — more functional units at lower frequency.

 What about a different approach?

A homogeneous system cannot be “optimal” for a
heterogeneous workload!

« “Optimal” here can refer to performance, power, overall cost.

Heterogeneous Systems

* More sites are building “clusters of clusters”, e.qg.:
— Sub-cluster 1: standard 2-socket nodes with small memory
— Sub-cluster 2: standard 2-socket nodes with large memory
— Sub-cluster 3: standard 4-socket nodes with very large memory
— Sub-cluster 4: 1-socket or 2-socket nodes with accelerators, etc...

* This is consistent with the observation that the shift to
accelerators has stalled at ~30% of Rpeak, split between
many-core and GPU.

— TACC runs at least 10 clusters, about 1/3 of these have some
accelerators (GPU or Xeon Phi or both)

Part 2

TECHNOLOGY TRENDS &

SYSTEM BALANCES

TAUU TEXAS ADVANCED COMPUTING CENTER

Technology Trends

« Performance is many-dimensional, and all the dimensions seem
to be changing at different rates!

Technology Trends

« CPU:
— Frequency: - %lyear
— FP/Hz: +30%/year 2x/2.7 years

— Cores/package: +24%lyear 2x/3.3 years

TAGO

Technology Trends

- CPU:
— Frequency: -7 %lyear
— FP/Hz: +30%/year 2x/2.7 years

— Cores/package: +24%lyear 2x/3.3 years
« DRAM

— Transfer rate: +15%/year 2x/5 years
— Width: +7%/year 2x/10 years
— Latency: Flat to slightly increasing

TALO

Technology Trends

- CPU:
— Frequency: -7 %lyear
— FP/Hz: +30%/year 2x/2.7 years

— Cores/package: +24%lyear 2x/3.3 years
- DRAM

— Transfer rate: +15%/year 2x/5 years

— Width: +7%lyear 2x/10 years

— Latency: Flat to slightly increasing
 Interconnect:

— Transfer rate: +20%/year 2x/4 years

— Width: Flat

FLOPS vs BW “Balance” Ratios

* Net CPU trends: 1.5x/year to 1.6x/year in Peak FLOPs
 Net DRAM trends: 1.23x/year in sustained BW
* Net Interconnect trends: 1.2x/year in sustained BW

* This suggests that processors should be increasingly
Imbalanced with respect to data motion....

TACC

Bandwidth is getting more costly, Latency is much worse

10,000 l l

1,000

—_
o

Balance Ratio (FLOPS/memory access)
S
o

e o0 e Peak FLOPS perldle Memory Latency

e=lll==Pegk FLOPS / Word of Sustained Memory BW

= A= Peak FLOPS /Word of Sustained Network BW

oo’ v 5%/year

/«"/ +22.3%lye
A %

-7-:{/

Date of Introduction

A J /
) ‘ : V4 ‘ i
o° , +14.2%/year
o ® >
° []
/‘. 1=
RISC systems (IBM, MIPS, Alpha) x86-64 systems (AMD & Intel)
1990 1995 2000 2005 2010 2015 2020

3

¢

C

~
\

J
4\\“
L/

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Latency, Bandwidth, and Concurrency

« “Little’s Law” from queuing theory describes the relationship
between latency (or occupancy), bandwidth, and concurrency.

Latency * Bandwidth = Concurrency

« Flat Latency * increasing Bandwidth = increasing Concurrency
— Increasing concurrency - decreasing locality

— Decreasing locality - decreased DRAM efficiency
* Unless compensated by massive reordering

— Decreasing locality = decreasing energy efficiency

Latency-Bandwidth Products per Package (64B transfers)

10000

1000

100

10

1
1995 2000

g o
o
® Manycore & GPU processors =]
B Mainstream Processors B B
g N
O +22%/year
2x [3.5 years
|
g
2005 2010 2015 2020

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Required Memory Bandwidth for Blocked DGEMM vs Maximum Sustainable Memory

Bandwidth
100%
7
90%
80%
H
70%
60% E
H

50%

40% .

30% . .

H
20% . .
H
10% B O
0% .
1990 1995 2000 2005 2010 2015 2020

TNuu TEXAS ADVANCED COMPUTING CENTER

What about Power/Energy?

 Power density is important in processor implementations
— Frequencies can be limited by small-scale (core-sized) hot spots
— Multi-core frequencies are now limited by package cooling

— E.g., Xeon E5 v3 (Haswell) can only run DGEMM or LINPACK on 7 of
the cores before running out of power & needing to throttle frequency

TACC

What about Power/Energy?

* Power is not a first-order concern in cost!!!
— Purchase price is $2500-$4000/socket
— Socket draws 100-150 Watts & needs 40-50 Watts for cooling
— At $0.10/kWh, this is 5%-7% of purchase price per year
— This ratio is very hard to change!!!

TACC

Part 3

FUNDAMENTAL FLAWS IN CURRENT
COMPUTER ARCHITECTURES

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

TAUU TEXAS ADVANCED COMPUTING CENTER

What is an “Architecture”?

« An “architecture” describes the explicit functionality of a computer
system

— This is typically expressed as a defined instruction set with required
behaviors

TALO

What is an “Architecture”?

« An “architecture” describes the explicit functionality of a computer
system

— This is typically expressed as a defined instruction set with required
behaviors
« The architecture does not /imit the functionality of the system, but
only the explicit functionality is directly visible and only these
explicit functions are directly optimizable functions.

What is an “Architecture”?

« An “architecture” describes the explicit functionality of a computer
system

— This is typically expressed as a defined instruction set with required
behaviors
« The architecture does not /imit the functionality of the system, but
only the explicit functionality is directly visible and only these
explicit functions are directly optimizable functions.

« What if this explicit functionality does not represent the most
important functions that need to be optimized?

— Optimization would necessarily be indirect and almost certainly
inefficient.

The Missing Elephant(s) in the Room
« So what are the most important functions to optimize?

 FIRST! Applications differ by orders of magnitude in their
requirements for different performance components!

The Missing Elephant(s) in the Room

« So what are the most important functions to optimize?

 FIRST! Applications differ by many orders of magnitude in their
requirements for different performance components!

* Here | focus on the data motion issues suggested by the
technology scaling:

— Memory Access (“vertical” data motion)
— Interprocessor Communication (“horizontal” data motion)

Elephant #1: Vertical Data Motion

 Memory Access (“vertical” data motion)

— Aload from memory has an effective performance cost that is a random
value between 0 and 1000 processor cycles.

— The power cost is also a random value with a similarly large range.

* |n current architectures Data Motion is invisible & uncontrollable
— Easy to use, effectively impossible to optimize.

— Cache hints are seldom useful
« Limited by implementation details (e.g., inclusivity)
« Limited by random page coloring, associativity, undocumented pseudo-LRU, etc.

TACC

Invisible, Uncontrollable Vertical Data Motion

» This was the right answer in the late 1980s and early 1990’s....
— Memory access was less expensive than arithmetic until ~1990.

— Single-layer caches were only trying to hide a modest ratio of CPU cycle
time to memory latency — e.g., 50 ns vs 400 ns (8:1) on my 1990-era IBM

RS/6000-320.
— Single processor systems did not need communication/synchronization.
« This was a reasonably practical hack for most of the 1990’s

— Performance gains from reduced system sharing and faster CPUs
allowed for a very rapid rate of performance growth.

— This allowed parallelism to remain modest for most users.

TACC

Invisible, Uncontrollable [...] (cont'd)

 Invisible & uncontrollable is not an option if we need efficiency
to increase and price to drop in the many-core era.

« Example: STREAM on Xeon E5-2660 v3 (Haswell EP)
— Bandwidth (up to) 55.9 GB/s per socket (82% of peak)

« 5 cores required to reach asymptotic BW

* 1 core at <1 GHz could deliver corresponding FLOPS
— Energy Use can be as low as 206 pJ/bit

« 28 pJ/bit in DRAM, 178 pdJ/bit in cores (using 5 cores)

— Single core: 19.4 GB/s @ 1008 pJ/bit

TNVL

Elephant #2: Horizontal Data Motion

* Interprocessor Communication (“horizontal” data motion)
— Completely implicit in architectural specifications

Elephant #2: Horizontal Data Motion

* Interprocessor Communication (“horizontal” data motion)
— Completely implicit in architectural specifications

« Example: Producer/consumer latency on Xeon E5-2680
— Same chip: >200 cycles (~67 ns) (>1600 Peak FLOPS)
— Different chips: >750 cycles (~245 ns) (>6000 Peak FLOPS)
— Non-optimized implementations can be dramatically slower (10x or more)

TAGO

Elephant #2: Horizontal Data Motion

* Interprocessor Communication (“horizontal” data motion)
— Completely implicit in architectural specifications

« Example: OpenMP Barrier Synchronization on Xeon E5-2680:

— 8 threads, same chip: ~1580 cycles (~510 ns) (>100k Peak FLOPS)
— 16 threads, two chips: ~3875 cycles (~1250 ns) (~500k Peak FLOPS)

TAGO

Part 4: “A New Hope”

AN ALTERNATIVE
ARCHITECTURAL APPROACH

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

TAUU TEXAS ADVANCED COMPUTING CENTER

Caveat: What this is Not

« Existing architectures are remarkably well-suited to handling
complex, branchy code with low rates of main memory access
(excellent cache re-use) and low off-node bandwidth
requirements.

« If your HPC application looks like this, then keep on using what
IS available!
— NAMD uses ~30% of cycles on TACC’s Stampede system
— Extremely high cache re-use, almost no stalls, excellent parallel scaling
— SIMD vectorization does not help performance, but otherwise excellent

TACC

Target of this set of proposals

 Enable dramatically reduced cost and energy consumption in
algorithms that are limited by vertical or horizontal data motion
on current systems.

— Note that significantly reduced acquisition cost will make power a first-
order expense unless power is also significantly reduced

— l.e., a $5 processor must draw 0.5W or less to keep power cost at 5%

» Big gains come from exposing functions to HW that are
currently inefficient due to architectural choices.

TACC

A New Paradigm: Quit Fighting Physics

1. Don'’t throw away information!
— Information about spatial locality & about temporal locality
— Semantic information: e.g., private memory references vs communication

2. Don’t move data if you don’'t need to move it!
— If you do need to move it, control the motion precisely (where/when/how)

3. Don’t use expensive processors to do simple computations!
— Distribute highly efficient processors everywhere in the system

4. Don'’t use a serial programming model + hacks!
— Exploit the human brain’s ability to understand causality

TACC

1. Don’t throw away information

 Data Motion is a first-order feature of the architecture

— Information about expected memory reference patterns must
be conveyed from the source code through the compiler to
the processor core and then to the memory hierarchy.

« Communication is a first-order feature of the
architecture.

— Communication is distinguishable from private memory
references and will be treated differently by the hardware.

TNVL

2. Don’'t move data unless necessary

 Move computation to memory, not data to processor
— “Processor At Memory”, not necessarily “In Memory”

 \ertical Data Motion:

— Accesses that can be analyzed should go through explicitly controlled
non-coherent scratchpad memories.

— Give memory controllers visibility into future access patterns — no need
for huge, expensive reorder buffers to get excellent performance at
minimum energy cost.

e Horizontal Data Motion
— Communication & Synchronization in a single message

TACC

2a. Vertical Data Motion

« Data motion through an invisible, uncontrollable hierarchy can
be done (of course), and done well in some cases, but it can't
be done well at low complexity and low power consumption.

— Development cost & power consumption must both be very low for
processors to be cheap enough to distribute to the DRAMSs.

e Scratchpad memories have lower power, smaller size, no
Impact on latency to more distant memory, and no controllability
problems due to limited associativity and LRU mechanisms.

— Vector load/store architecture to explicit on-chip scratchpad memory

TACC

2b. Horizontal Data Motion

« Communication & Synchronization in a single message
— Requires metadata — full/empty (valid/invalid) bit is @ minimum

« Memory references with side effects can be used to couple
processors to hardware FIFOs and other very efficient
mechanisms for horizontal data motion via dataflow.

— Current processors are full of efficient HW FIFOs that SW cannot use
« Mailboxes, doorbells, & work queues can allow much smaller

overhead for fine-grained parallelism using control flow.

— MDP(*,1987) message processing in <1 usec with 10 MHz CPU.

N / g\
TA (*) Dally, et al. Message-Driven-Processor (1987)

3. Use efficient processors

« Distributed processors don't need expensive features
— No caches, minimum translation/protection
— Accesses that can be analyzed should go through explicitly controlled
non-coherent scratchpad memories.
 Don’t provide more resources than are practically useful, but
make sure they are optimized for the task
— Vector processors with scratchpad memories
— Not SIMD - this is neither needed, nor desirable

— Linear Algebra/FFT PE (*) — 2 GFLOPS (scalar 64-bit FP), 0.05 Watts
(max), 0.12 mm”2 in 45nm

TA/ G (*) Pedram, McCalpin, Gerstlauer 2013 & 2014

4. Don't use serial programming models

« “[...] non-trivial multi-threaded programs are incomprehensible
fo humans.” (Edward Lee, Berkeley, 2006)

 BUT, humans intuitively understand causality, so data
dependence is not just comprehensible, it is natural

* The challenge is to build an intrinsically parallel programming
model that can be efficiently mapped to hardware that has an
intrinsic hierarchical structure that is not derived from the
problem that we want to solve.

Programming Models (cont’'d)

« Sequoia had some good ideas on how to manage the memory
hierarchy

— Not particularly successful on cached systems because they are not
actually controllable (associativity, undocumented LRU, undocumented
prefetchers, etc).

 Victor Eijkhout: Integrated Model for Parallelism (IMP)

— Specifies data dependence for computational kernels, compiler and run-
time derive the required communication and scheduling.

— Analyzable HW + Analyzable SW - productivity and efficiency

TACC

Summary & Closing Thoughts

« Market + Technology are keeping us stuck with outdated
architectures that cannot deal with increasing parallelism

TNou

Summary & Closing Thoughts

* Market + Technology are keeping us stuck with outdated
architectures that cannot deal with increasing parallelism

* Physics dictates that reduced cost & increased energy
efficiency must come from even more parallelism

Summary & Closing Thoughts

* Market + Technology are keeping us stuck with outdated
architectures that cannot deal with increasing parallelism

* Physics dictates that reduced cost & increased energy
efficiency must come from even more parallelism

« (Good News: Some things are slow because the architecture
does not make them explicit — we can fix these by exposing this
functionality & allowing HW to be optimized for them

Summary & Closing Thoughts

* Market + Technology are keeping us stuck with outdated
architectures that cannot deal with increasing parallelism

* Physics dictates that reduced cost & increased energy
efficiency must come from even more parallelism

« (Good News: Some things are slow because the architecture
does not make them explicit — we can fix these by exposing this
functionality & allowing HW to be optimized for them

 Programming models based on data dependence can allow
high-level expression and much more effective automatic
program transformations.

TA

John D. McCalpin, PhD
mccalpin@tacc.utexas.edu

512-232-3754

For more information:
www.tacc.utexas.edu

BES0HAN =

TNVL

Appendix

BACKUP SLIDES

TAUU TEXAS ADVANCED COMPUTING CENTER

Change of System Sizes

« Since ~2003, the list has been dominated by clusters of
“small-node” systems.

« Since ~2005 these clusters have been dominated by x86.
« Sizes have changed qualitatively:

— 1995:
— 2000:
— 2005:
— 2010:
— 2015:

60% of systems had <= 16 cores — easy!

60% of systems had <= 128 cores — a bit of work

>50% of systems had > 512 cores — a lot of work

>80% of systems had > 4096 cores — beyond almost all users
>70% of systems have > 16,384 cores — only a few users?

TACC

