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Abstract 

 

 This paper investigates a density improvement method for Ti6Al4V alloy processed by the selective 

laser melting method. A modified inert gas inlet baffle has been employed to develop improved mechanical 

properties for these materials. Comparisons of the top surface and cross-section porosities of solid blocks 

processed by the original and modified gas inlet baffles indicate that the modified baffle greatly increases the 

properties of the processing blocks. Results showed that the porosity of the Ti6Al4V alloy was lower than 0.1% 

by area. The microstructure of the SLM Ti6Al4V alloy exhibited martenstic α' phase. The UTS tensile strength 

was 920-960MPa and the elongation at the fracture was 3-5%. The fracture surfaces of the tensile samples 

demonstrated a mixture of ductile and brittle fracture. 

 

Introduction 

 

Titanium alloys are extensively used in the aerospace and aeronautical [1], energy [2] and biomedical 

[3] industries due to its properties, such as high specific strength at elevated temperature, outstanding fracture 

resistance, excellent fatigue behavior, exceptional corrosion resistance and superior bio-compatility. However, 

the complexity of the extraction process, difficulty of melting and problems during fabrication and machining of 

titanium alloys make them expensive compared to most other metals, which limits their application [4]. At 

present, most titanium parts are manufactured by conventional machining methods. All types of machining 

operations, such as turning, milling, drilling, reaming, tapping, sawing, and grinding, are utilized, which results 

in significant energy consumption and material wastage. In recent year, selective laser melting (SLM) processes 

have been developed to build components [5] with the advantage of being cost effective for producing one off 

parts with complex shape and structures [6]. Titanium alloys are some of the metal materials under investigation 

for SLM production [7-11]. As with many other SLM materials, the qualities of the components processed by 

the SLM methods produced a major concern as compared to those processed by hot work plus post heat 

treatment [7,12,13]. High-density SLM Ti6Al4V alloys cannot always be achieved due to the processing 

characteristics of the additive SLM process. Good bonding of the melted layers and lines is needed the issues to 

obtain high density within parts. Hence, it is necessary to understand the processing effects on the parts 

produced. Materials processed by the SLM process undergo a rapid cooling process. The microstructure of the 

Ti alloy processed by SLM will be different from those obtained with conventional manufacturing methods. 

This will also affect the mechanical properties of the components. It is therefore necessary  to understand the 

microstructure and mechanical properties of titanium alloys processed by SLM. In this paper, the authors 

describe a method to improve the density of Ti6Al4V alloy components processed by SLM 250 system using a 

modified inert gas buffle. The high-density parts processed by the modified SLM have been metallographically 

and mechanically characterized. 

 

Experimental Methods 

 

The SLM equipment used was a SLM250 system from MTT Ltd, Which is shown schematically  in 

Figure 1. A 200W laser was delivered through an optical train, which includes a variable focus lens, 
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galvanometer and F-theta lens before reaching the processing platform. The metal powders were spread on to 

the processing platform during the interval time of laser scanning. The processing chamber was sealed and 

evacuated before Argon gas was pumped in to provide an inert gas atmosphere. Throughout processing, the 

inert gas was circulated within the processing chamber by using an extractor pump to take gas out of the 

processing chamber on the left side, and deliver it back though the right side baffle. Oxygen sensors were used 

to ensure that the O2 was below 900ppm at all times. If the oxygen level was higher than this value, the inert gas 

valve opens to refill more argon gas into the chamber. 

 

 

                         
Figure 1. Schematic image of the SLM250 system                 Figure 2. Plasma gas atomized Ti6Al4V powder  

 

Plasma atomized Ti6Al4V powder (provided by LPW Ltd., UK) was used to process thin wall and solid 

blocks using the SLM250 system. Figure 2 shows an SEM image of the powder. Experiments were carried out 

on both the original inert gas inlet baffle and a modified thin slit gas inlet baffle (Figure 3). The gap of the thin 

slit was 300µm (Figure 3b).  

 

Thin walls were processed at a ‘real’ laser power of 177W, laser exposure point distance of 50-70µm 

and laser pulse exposure time of 60-371µs. The thin wall thickness was measured using vernier callipers. Solid 

blocks with dimensions of 10 × 12 × 10 mm
3
 were processed at a laser power of 177W, point distance of 60-

65µm, laser pulse exposure time of 60-371µs and hatch spacing of 100-280 µm. The layer thickness was 50µm 

and the platform background temperature was 150°C. The scanning strategy used was ‘meander scanning’, in 

which the scanning direction rotates 67° clockwise for each layer. 

 

Optical microscopy, field emission gun scanning electron microscopy (SEM) and energy dispersive X-

ray spectroscopy (EDX) were used to analyze the powder, thin walls, and the top surface and cross sections of 

the individual solid blocks. X-ray was used to check the metallographic phase of Ti6Al4V alloy’s powder and 

solid blocks. The samples were cross-sectioned perpendicular to the blocks and the porosity percentages of the 

blocks were recorded using a low magnification optical microscopy. Recorded images were processed by 

software to obtain a statistical measurement on porosity percentage of the viewed areas. Cross-sectioned 

samples were etched using Kroll’s reagent with a composition of 3ml HF, 6ml HNO3 and 100ml distilled water 

according to standard ASTM E407-07 and observed by optical microscope. The microhardness was tested with 

a load of 500 gram and duration time of 15 second. 

 

Tensile tests were performed using an Instron 3369 tensile system (Instron Ltd, Bucks, UK). The tensile 

samples were designed according to standard ASTM E8/E8M-09 with the subsize specimen, i.e. width of 6mm. 

The thickness of the samples was 3mm. Tensile specimens were processed on the platform in the direction of X, 
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Y and Z direction. Five samples were prepared in each processing direction. The ultimate tensile strength, yield 

strength and the elongation values are the average values of the test. 

 

 

 
 

Figure 3. Inert gas inlet baffle on the processing chamber. (a) Original baffle, pump at 24Hz; (b) Thin slit baffle, 

pump at 13Hz.  

 

Results and Discussion 

 

The initial experiments were carried out using the original inert gas inlet baffle (Figure 3a). In order to 

optimize the processing parameters, thin walls were processed to find the possible parameters to build solid 

blocks. Figure 4 shows the relationship between thin wall thickness and energy input. The results indicate an 

approximately proportional relationship between energy input and thin wall thickness. The energy input per unit 

length is the control factor for the wall thickness. The completed full height thin walls were on those energy 

inputs higher than 0.45Jmm-1. 

 

 

  
   Figure 4. Relationship between energy input per               Figure 5. Hatch spacing and the porosity percentage 

   unit length and the thin wall thickness  

 

Solid blocks were processed at laser power of 177W, point distances of 65 and 60µm, exposure times of 

200µm and 170µm on various hatch spacings. The energy input per unit length was 0.54 and 0.50 Jmm
-1

 

respectively. The porosity percentage vs. hatch spacing is shown in Figure 5. Minimum porosity percentages 

were acquired with hatch spacings of 140 or 160µm, depending on the energy input. Samples processed at a 

laser power of 177W, point distance of 65µm, laser exposure time of 200µs and hatch spacing 160 µm, which 

has a minimum porosity percentage, was examined both on the top surface and the cross-section. It was found 

that there still existed large pores on both the top surface (Figure 6a) and the cross-section (Figure 6b) of the 

block. The largest pores reached 500µm. In order to reduce the porosity percentage, more experiments were 
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carried out at the increased the energy input with various hatch spacings. However, surface morphology 

observation of the samples (images are not show in this paper) gave no trend of pores to the hatch spacing 

variation. It was found that the samples on the left side (close to the inert gas extraction side) had better surface 

quality than those on the right side (close to the inert gas inlet position).  

 

 

 
Figure 6. Large pores on top surface and in the cross section of the blocks  

 

 

 
 

Figure 7. SEM top surface morphology of the position effect with original gas inlet baffle 

 

To verify the position effect on the processing platform, an experiment was designed to put samples on 

the four corners and the center of the platform. The same processing parameters were used at a laser power of 

177W, point distance of 60µm, exposure time of 185µs and hatch spacing of 140µm. The surface SEM 

morphology (Figure 7) indicates that position affects the surface qualities of these blocks. Samples close to the 

inert gas extraction (left side of platform) had better surface quality than samples on the centre and samples 

close to the inert gas inlet side (right side of platform). 
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Figure 8. Top surface morphology of the samples processed using MTT’s original gas inlet baffle 

          (a) 0.45J/mm, (b) 0.55J/mm, (c) 0.60J/mm, (d) 0.70J/mm, (e) 0.80/mm, (f) 1.0J/mm 

 

 
Figure 9. Top surface morphology of the samples processed using the modified thin slit gas inlet baffle 

    (a) 0.45J/mm, (b) 0.55J/mm, (c) 0.60J/mm, (d) 0.70J/mm, (e) 0.80/mm, (f) 1.0J/mm 

 

In order to test the effect of the gas inlet baffles (shown in Figure 3), experiments were processed with 

the original inert gas inlet baffle and the modified thin slit inert gas inlet baffle. The same series of processing 

parameters and sample position were used with a laser power of 177W, point distance of 50µm, exposure times 

of 127-155µs and hatch spacing of 180µm. Samples were put on the centre of the processing platform for both 

experiments. The surface morphology of the samples processed using the MTT’s original gas inlet baffle and 

the modified thin slit gas inlet baffle are shown in Figures 8 and 9. The results indicate that using the original 

MTT gas inlet baffle, increasing the energy input can reduce the number of the top pores on the samples (Figure 

8), but the pore size is still large even with a high energy input (Figure 8f). Conversely, smooth surfaces can be 

obtained at almost every set energy input when using the modified thin slit inert gas inlet baffle (Figure 9). A 

possible reason for the thin slit gas inlet baffle having an effect on increasing the surface quality may be 

because it provides greater gas velocity across the build envelope. The gas flow with this design can more 
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effectively remove fume and fine powders during processing. These fume and fine powders floating within the 

chamber can block the laser energy during processing and when they deposit on the protective lens a further 

reduction on the input laser energy occurs.  

 

 
 

Figure 10. SEM top surface morphology of the position effect with the modified thin slit gas inlet baffle 

 

 

   
Figure 11. Energy input per unit length vs. porosity %      Figure 12. Cross-section image of block processed  

with thin slit baffle                                                              with thin slit baffle 

 

To test the position effect samples built with modified thin slit gas inlet baffle, an experiment was 

designed with samples on the centre, four corners and four sides of the platform with the same processing 

parameters of laser power of 177W, point distance of 50µm, exposure time of 226µm, hatch spacing of 180µm. 

The surface morphologies of the samples are shown in Figure 10. No position effect can be observed on the 

samples processed using the thin slit gas inlet baffle.   
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The porosity percentage of samples processed using the thin slit gas inlet baffle vs. energy input is 

shown in Figure 11. The porosity percentage decreases with energy input increases. The lowest porosity 

achieved was 0.1% in area. Cross-section images show that the porosity sizes are much smaller than seen in 

those samples processed using the original gas inlet baffle. Figure 12 is an example of a sample processed using 

the thin slit gas inlet baffle. The processing parameters was of laser power of 177W, point distance of 50µm, 

laser exposure time of 200µs and the hatch spacing of 180µm. The pore (white) sizes in the sample processed 

using the thin slit gas inlet baffle (Figure 12) are much smaller (less than 100µm) than those seen in sample 

processed using the original gas inlet baffle (Figure 6b).  

 

 

 
Figure 13.  Microstructure of Ti6AlV SLM solid blocks. (a) 0.45J/mm (b) 0.60J/mm (c) 0.8J/mm (d) 1.0 J/mm 

 

 

 
 Figure 14. XRD pattern of the powder and solid block        Figure 15. the energy input vs. microhardness 

 Solid block processed at 0.8Jmm
-1       

100µm100µm

100µm 100µm
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Microstructures of the samples processed using the thin slit gas inlet baffle are shown in Figure 13. 

Elongated grains are observed growing through the deposition layers (50µm). Martensite plates are visible 

within the grains, which is consistent with results by other authors [7,9]. The pores formed when using a low 

energy input (Figure 13 a-c) are mainly due to the lack of bonding between layers. X-ray diffraction spectra 

(Figure 14) indicate the presence of hcp (α′ martensite) phase only, on both the powder and selective laser 

melted solid block processed with an energy input of 0.8Jmm-1[7,9,14]. The microhardness results from these 

samples are shown in Figure 15. The microhardness values increase with energy input. The possible reason for 

this is the reduction of the porosity within the samples (Figure 11 & 13).  

 

The tensile testing results are shown in Table 1 and the initial areas of the strain-stress curve for samples 

prepared in Y and Z directions are shown in Figure 16. The yield strength (on 0.2% offset) and ultimate tensile 

strength of the testing results are lower than those by other authors and the elongation at fracture values are 

similar [8,9].  The fracture morphology in the samples prepared in the X, Y and Z direction are very similar. 

Figure 17 shows the fracture structure of a sample prepared in the Y-direction. Mixture of ductile fracture 

(dimple network) and brittle fracture (cleave and shear lip region) was found. The un-melted pores within the 

tensile testing samples may be one of the reasons for the reduction of the YS and UTS compared with others 

results [8, 9]. 

 

Table 1. Tensile test results of the Ti6Al4V alloy in different processing directions 

 

SLM250 

Average YS 

0.2% offset 

Mpa 

Average 

UTS 

Mpa 

Average 

Elongation 

% 

X-direction  938±8.1 3.90±0.73 

Y-direction 800 967±11 3.45±0.19 

Z-direction 770 920±5.2 4.44±0.94 

 

 

    
Figure 16. Strain-stress curves of for samples prepared         Figure 17. Fracture structure of samples built in  

in Y and Z direction                                                               the Y direction sample 

 

 

Conclusions 

 

A modified thin slit gas inlet baffle was seen to solve the problem of the position effect for the samples 

in different areas of the platform. It also reduced the percentage and size of pores in solid blocks. The lowest 

porosity percentage of 0.10% was seen in sample with an energy input of 1.0 Jmm
-1

 and its microhardness was 

375 kgmm
-2

. The microstructure of the solid blocks were hcp α' martensite phase. The UTS was 920-960MPa 

cleave and shear lip 

dimple network
Unsealed pore
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and elongation was 3-5%. The fracture structure was a mixture of dimple networks, cleave and shear lip 

regions. 
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