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Abstract 

 

Mechanical properties of products produced with the Fused Deposition Modeling (FDM) 

process are known to be dependent on bead direction, especially when short fiber reinforcement 

is added to the polymer filament feedstock. As a result, the structural performance of fiber-filled 

FDM parts is expected to be improved by simultaneously computing preferred deposition 

directions while optimizing the internal support structure. This paper presents a topology 

optimization method for computing the material distribution within a fiber-reinforced polymer 

composite FDM part that incorporates the non-isotropic mechanical properties of the bead 

structure. Unlike the well-established homogenization topology optimization method which 

determines pointwise orthotropic properties by increasing the complexity of the design problem, 

our approach takes advantage of the simplicity of the SIMP method where the underlying 

orthotropic orientation is assumed. Computed results show the effect that the orientation of fiber 

filled bead orthotropic microstructure has on part topology for 2D FDM parts. 
 

Introduction 

 

 The use of Fused Deposition Modeling (FDM) has expanded greatly over the past two 

decades due in part to its low cost and selection of materials. Unfortunately, the reduced 

mechanical properties of a typical FDM layered structure must be addressed for this technology 

to reach its full potential in producing engineering products. The method of extrusion during part 

processing has been shown to give the final FDM product non-isotropic properties with 

increased stiffness in the deposition direction [1].  The stiffness and strength of ABS polymer 

structures produced with FDM has also been shown to improve with the added reinforcement of 

single-walled carbon nanotubes and short glass fibers [2], [3].  Recently, the effects of carbon 

fiber content and fiber length have been found to increase the Young’s modulus of FDM parts to 

varying degrees [4], increasing the modulus of elasticity by as much as 4X in the print direction. 

 

Topology optimization has been shown to be an effective tool for the design of structures 

produced with additive manufacturing where an optimal material distribution in a design domain 

is determined for a given material volume [5], [6]. Topology optimization is commonly 

performed to maximize the stiffness of a part while retaining a given fraction of material volume 

in the design domain.  The Homogenization Method was developed to determine an optimal 

material distribution and orthotropic material orientation distribution within a structure [7]. 

Unfortunately, the homogenization method, as well as SIMP methods that have been extended to 

include pointwise material orientation as part of the design problem [8], is impractical to 

implement in FDM, as it is not possible to produce a part where each point within the structure 

has a unique material direction.  An alternative approach, the SIMP (Solid Isotropic Material 

with Penalization) method [9], or density method [10], computes material distributions for 

isotropic materials. The SIMP method has seen extensive use in additive manufacturing where 
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unique three dimensional microstructures designed for a prescribed mechanical response are 

printed with additive manufacturing methods (see e.g., Hollister, et al., (2003)) [11]. More 

recently, the distribution of varying microstructure has been computed with a modified SIMP 

method where the printed optimal design includes the details of optimal unit cell geometries (see 

e.g., Sundararajan (2010) and Zhang, et al., (2015)) [12], [13]. This latter research computes the 

effective orthotropic material matrix for a unit cell having varying density which serves as the 

design variable in the topology optimization. Alamo and da Silva (2012) extended the SIMP 

method to compute a material distribution for a fixed orthotropic material distribution in a 

biomechanics structure [14]. 

FDM offers a unique advantage in that beads of material having a preferred orientation 

can be deposited in nearly any desired orientation. Unfortunately, to the best of our knowledge, 

design tools to date have not addressed the topology optimization problem for a predefined 

underlying orthotropic material for the FDM process. This paper considers a modified SIMP 

approach that determines the optimal distribution of an orthotropic material with fixed material 

orientation to design fiber-reinforced FDM parts.  

 

Two-dimensional Orthotropic Model for Fused Deposition Modeling 

 

In this work, a topology optimization method for linear elastic orthotropic materials is 

implemented in MATLAB using the framework developed by Sigmund [15]. Previous studies 

that focused on orthotropic materials using the homogenization method optimized both material 

orientation and distribution within a design domain.  Rather than optimizing the orientation of 

material at each point as in the homogenization method, the present work assumes the underlying 

orientation of the material and the related elastic properties are known and thus are not part of 

the design problem.  To this end the SIMP method is modified with the goal of direct application 

to FDM deposition of optimal structures.  The optimization problem formulated for minimization 

of compliance 𝑐 of a statically loaded structure analyzed with the finite element method is [15] 

 

𝑚𝑖𝑛:  𝑐(𝒙) =   𝑼𝑇 𝑲 =  ∑(𝑥𝑒)
𝑝𝑢𝑒

𝑇

𝑁

𝑒=1 

𝑘0𝑢𝑒  

𝑠. 𝑡. :    
𝑉(𝑥)

𝑉0
= 𝑓,     𝑲𝑼 = 𝑭,      0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1 

 

 

 

(1) 

where the 𝑥𝑒 are elemental densities that form the design variable vector 𝒙, 𝑢𝑒 are elemental 

nodal displacements, and 𝑘0 is the elemental stiffness matrix.  The penalization parameter p is 

used to penalize intermediate element densities by driving them towards 0 or 1. The SIMP 

topology optimization is constrained by a predefined volume fraction f, which is equated to the 

sum of element volumes  𝑉(𝒙) divided by the total volume 𝑉0 where each elemental volume is 

scaled by its respected element density 𝑥𝑒. A finite element analysis of the structure is performed 

to evaluate nodal displacements U, where K is the global stiffness matrix and F the nodal force 

vector.  To avoid matrix singularities while solving the finite element system of equations, the 

lower limit on the design variables is set to 𝑥𝑚𝑖𝑛 = 0.001. 

 

 In the topology optimization problem, each element is assigned an independent elemental 

density, which collectively compose the design variables of the optimization problem.  In our 

simulations, design variables are updated as in Sigmund [9] based on design sensitivities 
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computed with the Adjoint Variable Method as the derivatives of the objective function and 

constraints with respect to the design variable vector.  A density filter is implemented in the 

update of the elemental densities to reduce the well-known checkerboarding effect [16].  The 

optimization problem is solved to minimize the compliance using an optimality criteria (OC) 

method with a predefined move limit.  In the SIMP method, the modulus of elasticity for each 

element is defined as a function of the related elemental density with p = 3, which tends to cause 

an element to vanish (i.e., the element density becomes zero) or cause it to become fully solid 

(i.e., the element density becomes unity).  

 

 Topology optimizations solved with the SIMP method assumes that elements in the 

model are composed of an isotropic elastic material.  In this paper, the SIMP method is modified 

such that the material in each element is orthotropic elastic. The resulting topology optimization 

which scales the predefined elemental elasticity matrix with the element density is designated as 

the SOMP method (Solid Orthotropic Material with Penalization) as in [14]. For plane stress, the 

2D elasticity matrix derived from Hooke’s Law is given as  

𝐷 =  

[
 
 
 
 
 
 

𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝜈𝑦𝑥𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

𝜈𝑦𝑥𝐸𝑥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑦

1 − 𝜈𝑥𝑦𝜈𝑦𝑥
0

0 0
𝐸𝑥

2(1 + 𝜈𝑥𝑦)]
 
 
 
 
 
 

 

 

 

 

 

(2) 

The elemental stiffness matrix 𝑘0 in equations (1) is defined as the integral 

 

𝑘0 = ∫ 𝐵𝑇𝐷𝐵

𝐴𝑒

 𝑑𝐴 

(3) 

where B is the strain-displacement matrix and the integration is performed over the element 

domain 𝐴𝑒.  In equation (2), 𝐸𝑥 and 𝐸𝑦 are the Young’s modulus in the x- and y- directions, 

respectively, and 𝜈𝑥𝑦 and 𝜈𝑦𝑥 are the Poisson’s ratios in the x-y plane.  The ratio between 

Young’s modulus and Poisson’s ratio in respective directions, due to the required symmetry of 

the compliance matrix, is 

𝐸𝑥

𝜈𝑦𝑥
= 

𝐸𝑦

𝜈𝑥𝑦
 

 

(4) 

It is important to note that in our approach, the elastic properties and material orientation 

are defined apriori and remain fixed throughout the optimization. The fixed elemental elasticity 

matrix D is simply scaled by the elemental density xe in the compliance calculation of equation 

(1) during the optimization to obtain the desired result. Our implementation is simplified by 

considering only square element of unity length on a side to yield a closed form solution for the 

integral that defines 𝑘0 in equation (3).  In addition, the direction of orthogonal orientation may 

be rotated through an angle theta formed with x-axis with  
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𝐷′ = 𝑅𝐷𝑅𝑇 (5) 

where 𝑅 is a rotation matrix about the z- axis:  

𝑅 =  [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0

0 0 1

] (6) 

The resulting element stiffness matrix for an orthotropic material aligned as specified by the 

angle theta is given as  

𝑘0 = ∫𝐵𝑇𝑅𝐷𝑅𝑇𝐵 𝑑𝐴𝑒  

 

(7) 

The stiffness matrix in equation (7) in the finite element analysis of equation (1) allows for both 

varying Young’s modulus and Poisson’s ratios in two orthogonal directions, as well as a rotation 

of the properties throughout the material distribution by a specified angle.  Implementing this in 

the existing topology optimization structure yields a simple, yet effective two-dimensional model 

for determining the material distribution of solid-filled two-dimensional FDM parts with the 

inclusion of desired boundary conditions on the design domain.  It must be stressed, however, 

that the optimization model determines optimal material orientation for stiffness, not part 

strength, and as such, the optimized orthotropic models should not be necessarily expected to 

have a higher yield strength than those predicted by the isotropic topology optimization.  

Computational Results 

In order to show the applicability of the orthotropic model to FDM part design, several 

tests of the 2D model are shown, using the Messerschimitt-Bölkow-Blohm (MBB) beam and the 

Michell truss [17].  Two-dimensional versions of these beam designs are implemented with a 

varying range of conditions to compare these optimal structures with those obtained assuming an 

isotropic SIMP model. In addition to adding orthotropic properties to the topology optimization 

model, the code has been vectorized to improve the speed of the finite element analysis 

calculations significantly as in [18]. It is worth noting the simplicity of this approach; modifying 

the construction of the elemental stiffness matrices is a simple way to model a layer of a carbon 

fiber-reinforced FDM part, assuming that certain material properties, such as Young’s modulus 

and Poisson’s ratio of the material are known. 

 

First, in order to test the validity of the orthotropic modifications against the original 

isotropic SIMP model, optimizations are performed with our orthotropic code using isotropic 

material properties for comparison with isotropic code results.  Our model runs identically to the 

isotropic case, solving it with same topology in the same number of iterations.  Young’s modulus 

is defined as an initial unit of 1 Pa in both directions for the purpose of illustrational ease.  

Poisson’s ratio of the major direction (greater Young’s modulus) is defined to be 0.36, an 

approximate ratio for polylactic acid (PLA) polymer-printed structures, and p = 3.  The topology 

optimization scheme iterates until the greatest change in elemental density is less than 1%.   
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The MBB beam is a truss-like structure popularized in many topology optimization 

studies.  In the following optimizations, a design domain of 601 by 100 elements is discretized, 

with a prescribed volume fraction of 50%.  The design domain is set to be fixed vertically at the 

bottom corner nodes with a load applied downward at the top of the center.  Figure 1 shows the 

result of the topology optimization with Young’s Modulus equal in both orthogonal directions, 

equivalent to the isotropic case. 

 

Figure 1: Full MBB beam, isotropic case (𝐸𝑥 = 𝐸𝑦) 

 

 
 

 It is worth noting that the developed microstructure of the isotropic case is symmetric.  

To demonstrate the orthotropic properties of the material, the Young’s modulus is increased in 

one direction only by a magnitude of 10.  Figures 2 and 3 show the resulting material 

distributions produced by the topology optimizations where, respectively, 𝐸𝑦 and 𝐸𝑥 are 

increased by 10x in separate optimizations. 

 

Figure 2: Full MBB beam, 𝐸𝑦 increased 10x 

 

 
 

Figure 3: Full MBB beam, 𝐸𝑥 increased 10x 

 

 
 

 

With this variation in orthotropic properties, it is apparent that an increase in Young’s 

modulus by an order of magnitude leads to a sufficient change in material distribution of the part.  

When the value of Young’s modulus is increased significantly in the y- direction, for instance, 

the solution design provides more directional reinforcement at an angle that is nearer to the 

direction of increased modulus.  Likewise, the directional reinforcement along the x- axis 

increases greatly when the Young’s modulus in that direction is an order of magnitude greater.  
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The optimal topologies are characterized by thick reinforcement near the top and bottom of the 

beam.  This reinforcement spreads the load out along the width of the MBB beam to the bottom 

corner nodes.  In some areas of the microstructure for these examples, there are areas of thinner 

reinforcement similar to the isotropic model.  However, the fact that thinner areas of 

reinforcement are typically oriented more in the direction of higher Young’s modulus is an 

expected artifact of the orthotropic material properties employed in the finite element analysis.  

 

Figure 4 shows the effect of additional reinforcement in the y- direction by a factor of 

1.35, which is more realistic of a layer of carbon fiber-reinforced plastic extruded by FDM.  

There is still a noted difference in the resulting topology as compared with the isotropic case, 

indicating that the physical modeling of orthotropic materials more accurately determines 

optimal FDM material distribution than isotropic models. Likewise, Figure 5 shows the increased 

elastic modulus in the x- direction by a factor of 1.35.  

 

 

Figure 4: Full MBB beam, 𝐸𝑦 increased 1.35x 

 

 
 

Figure 5: Full MBB beam, 𝐸𝑥 increased 1.35x 

 

 
 

Compliance minimization values for the optimization cases noted are shown in Table I.  

Compliance is assumed to be calculated as the inverse of stiffness for this study as the load is set 

to be equal to 1 N.  Stiffness values are shown alongside compliance for the structures.  

Interesting to note is the fact that an increase in 𝐸𝑦 has a minimal increase in stiffness of the 

MBB beam, whereas an increase in 𝐸𝑥 has a much more profound effect on stiffness.   
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Table I: Compliance and Stiffness Values for Orthotropic MBB Beam Topology Optimizations 

 

MBB Young’s 

Modulus Ratio 

Minimum 

Compliance (N∙m) 

Maximum 

Stiffness (N/m) 

1 x : 1 y (Isotropic) 94.25 0.011 

10 x : 1 y 13.82 0.072 

1 x: 10 y 82.70 0.012 

1.35 x: 1 y 71.83 0.014 

1 x: 1.35 y 91.57 0.011 

 

 In addition to the MBB beam, the Michell truss is also optimized with varying 

orthotropic material properties.  The Michell truss features a set of fixed points, often in a circle, 

at a location interior to the design domain on its left side, with a downward force at the right 

center of the design domain.  Here, four fixed points, spaced at a distance 1/6 of the distance 

along the length of the domain, are chosen centered in the vertical direction.  Studies of this 

structure are computed with a design domain of size 300 by 250 elements, with a fixed volume 

fraction of 15%.  Figure 6 shows the computed isotropic topology for the Michell truss.  

 

Figure 6: Michell Truss, isotropic case  

 

 
 

 The resulting material distribution of the Michell truss is concentrated near the fixed 

nodes.  The effects of orthotropic material properties on material distribution are observed and 

shown in Table II.  Figure 7 shows the resulting material distribution produced by an increase in 

Young’s modulus in the y-direction by a factor of 2. 
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Figure 7: Michell Truss, y-modulus increased 2x 

 
 As before, the directional reinforcement is much more pronounced vertically than the 

isotropic case.  Certain horizontal reinforcements that were present in the isotropic topology 

optimization have either disappeared, faded, or have simply shrunk in size.  The reinforcement 

pushes to the vertical boundaries of the design domain.  Likewise, Figure 8 shows the effects of 

increased Young’s modulus in the horizontal direction. 

 

Figure 8: Michell Truss, x-modulus increased 2x 

 
 The structural reinforcement appearing in Figure 8 in the x-direction is thicker, due to the 

defined increased stiffness in this direction.  The Michell truss is not as thick vertically due to the 

relative decrease in elastic modulus in this direction.  Table II shows a comparison of compliance 

and stiffness between these structures. 

 

Table II: Compliance and Stiffness Values for Orthotropic Michell Truss Topology Optimizations 

 

Michell Truss Young’s 

Modulus Ratio 

Minimum 

Compliance (N∙m) 

Maximum 

Stiffness (N/m) 

1 x : 1 y (Isotropic) 27278.38 3.67*10
-5

 

2 x : 1 y 15085.24 6.63*10
-5

 

1 x: 2 y 22005.29 4.54*10
-5
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 To further explore the effect of optimal topologies on the directional properties of the 

underlying material, additional simulations were performed on the MBB beam with varying 

orthotropic material values. In addition to the physical change in the design domain, the effects 

of changing ratio of Young’s modulus and material distribution upon minimum structural 

compliance for the MBB beam are explored.  The minimum compliance of the MBB beam as 

calculated by the model for a variety of ratios and material volume fractions are shown in Figure 

9.  Here, the minimum compliance of the MBB beam is plotted as a function of the ratio of 

Young’s modulus in the horizontal direction to the vertical direction.  The Poisson’s ratio in the 

horizontal direction is held constant again at 0.36, and Young’s modulus in the vertical direction 

set as an arbitrary value of 1. 

 

Figure 9: Parametric Study of MBB Beam 

 

 
 

 As the ratio of Young’s modulus increases in the horizontal direction (i.e., 𝐸𝑥  increases), 

the minimum compliance of the computational model decreases, indicating an inverse 

relationship as expected.  It is also true that an increase in volume fraction in the material 

distribution decreases the minimum compliance for all Young’s modulus ratios, and a decrease 

in volume fraction will increase the minimum compliance for all ratios.   

 

Finally, a method of multi-material orthotropic topology optimization is developed for 

considering varying properties in FDM on a domain.  In this work, most important is the effect 

of   Two sets of orthotropic properties are proposed and split in two even areas on the domain.  

The inclusion of continuum orthotropic properties is accomplished through the use of a single 

elemental stiffness matrix 𝑘0.  However, in order to demonstrate the usefulness of the method, 

the design domain can be broken up into multiple sections with varying orthotropic properties 
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and the topology optimization performed.  The formulation of the optimization problem then 

changes slightly in the compliance calculation and finite element analysis: 

 
 

𝑚𝑖𝑛:  𝑐(𝒙) =   𝑼𝑇 𝑲 =  ∑(𝑥𝑖)
𝑝𝑢𝑖

𝑇

𝑁1

𝑖=1 

𝑘1𝑢𝑖 + ∑(𝑥𝑗)
𝑝𝑢𝑗

𝑇

𝑁2

𝑗=1 

𝑘2𝑢𝑗 

 

 

 

(8) 

 

where 𝑘1 and 𝑘2 are separate elemental stiffness matrices, 𝑁1 and 𝑁2 are, respectively, the 

number of elements on the zones 1 and 2 of the design domain. Similarly, 𝑥𝑖 and 𝑥𝑗 are the 

elemental densities for the zones 1 and 2 of the design domain, respectively.  Loop vectorization 

is used to keep computational time as low as possible for each iteration.  In the finite element 

analysis, two different elemental stiffness matrices 𝑘1 and 𝑘2 are calculated based on their 

respective elemental properties and assembled in the global stiffness in the usual manner.  The 

respective compliance values, physical elemental densities and design sensitivities are then 

calculated and summed.  Figure 10 shows the design domain split into thirds, with two zones of 

orthotropic properties.  Figure 11 shows the solution of the multi-orthotropic model with 

properties in zone I having reinforcement in the vertical direction 𝐸𝑦 =1, 𝐸𝑥 = 10, and properties 

in zone II of 𝐸𝑥 = 1, 𝐸𝑦 = 10. Figure 12 shows the same optimization, but with the material 

properties of the zones reversed. 

 

Figure 10: Multi-zone topology optimization 

 

 
 

 

Figure 11: 3-zone orthotropic topology optimization, zone I horizontal, zone II vertical 
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Figure 12: 3-zone orthotropic topology optimization, zone I vertical, zone II horizontal 

 

 
 

The material distribution of the beam in Figure 11 in the left and right regions is 

comparable to the same thickened arch reinforcement of the MBB beam that was optimized 

entirely in the horizontal direction (Fig. 3).  However, the center of the beam exhibits some 

structural similarities to the vertically reinforced beam in pushing the material distribution to the 

top and bottom.  In Figure 12, the layout is consistent with that of the vertically optimized beam 

(Fig. 2), except in zone II, where the material is weak in the vertical direction.  These results 

show the ability of topology optimization to predict correct material distribution for varying print 

orientations of non-isotropic carbon-fiber reinforced polymers.  The computational results 

demonstrate the high importance of varying orthotropic material properties in determining the 

correct distribution of the material topology, as well as the maximum stiffness of resulting 

printed structures.  

 

Experimental Setup 

 

 In order to demonstrate the usefulness of the method, full MBB beams are printed with 

varying orientations using carbon fiber-reinforced PLA (3DxTECH). The filament contains 

approximately 20% carbon fibers by weight in a 1.77 mm diameter filament.  For FDM 

processing, MBB structures are produced with a MakerBot Replicator 2.0 printer with a standard 

0.4 mm nozzle size.  The Young’s Modulus and Poisson’s ratios of the topology optimized 

structures are computed with a fixed directional modulus ration having an order of magnitude 

difference as before to highlight the effect of orthotropic properties on maximum stiffness of the 

structure, as well as solution microstructure.   

 

 To produce a printable format of the topology optimizations, the code Top3dSTL_v3.m 
was used to convert the physical array of elemental densities to .stl file format [19].  The 

resulting files were then exported using MakerBot Desktop property settings and printed.  As in 

the computations above, a 50% material distribution throughout the design domain was chosen, 

as very thin structures that could not be printed accurately were not desired to be tested.  Parts 

were printed with a solid, linear fill with the major bead direction pertaining to the direction of 

the computational model’s increased Young’s modulus and a layer thickness of 0.2 mm.  A single 

shell is printed for each layer.  The shell layer is expected to have some effect upon the material 

properties in testing as this shell is not printed in the vertical or horizontal orientation as defined 

in the topology optimization results. 

 

The goal of testing is to show the effectiveness of compliance minimization in relation to 

the build orientations developed through the topology optimization model.  A straightforward 

method to determine the usefulness of the orthotropic model involves the printing and testing of 
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structures proposed with clear sets of orthotropic properties.  Two samples are printed: 

Orthotropic horizontally reinforced with horizontal bead direction, orthotropic vertically 

reinforced with vertical bead direction.  For the purpose of the test, the models are printed with a 

uniform bead direction (except for the shell layer as mentioned above).  Figure 12 shows the 

printed structures. 

 

Figure 12: Printed MBB Structures 

 

 
A) Orthotropic horizontal distribution, printed in the horizontal direction 

 
B) Orthotropic vertical distribution, printed in the vertical direction 

 

 The MBB structures are weighed and results reported in Table III.  There is some 

variation due to the print direction, although all parts were printed at 50% of the fixed volume 

region. 

 

Table III: Carbon Fiber MBB-Beam Weight 

 

MBB Beam Weight (g) 

Orthotropic in x-direction, printed in horizontally 26.98 

Orthotropic in y-direction, printed vertically 28.29 

 

 

The stiffness of each truss is determined using an INSTRON 2-kN loading machine via a 

3-point bend test.  A test fixture was machined with a 1/2” aluminum base plate and fixtures that 

contain slots to allow the MBB beam structure to move horizontally, but sit upright during the 

test as a load is applied.  The test setup is shown in Figure 13. 

 

Figure 13: Test Setup for MBB Beam Samples 
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  A load is applied at the center of the top of the beam in a compression test.  The goal is 

not to test structures to failure.  By recording the slope of the linear portion of the load-

displacement curve, the stiffness of the structure is determined.  Structures are tested at a rate of 

1 mm/min to determine the linear relationship between load and displacement and pushed to an 

extension near 2.5 mm. 

 

Experimental Results 

 

 Since the ratio of the Young’s modulus for carbon-reinforced PLA is estimated in the 

topology optimization model, it is expected that there will be some deviation between the 

calculated optimal material distribution and the actual optimal material distribution of the printed 

sample.  However, the inclusion of orthotropic material continuum in the model produces a 

significant change in topology given the fact that Young’s modulus of FDM-produced layers is 

higher along the bead direction than the orthogonal direction.  Figure 14 shows the load-

displacement curve of the parts that are printed in the horizontal and vertical directions with 

given orthotropic properties. 

 

 The stiffness of the part printed and optimized in the horizontal direction is slightly 

higher than the stiffness of the part printed and optimized in the vertical direction.  This is 

attributed to the orthotropic material properties relative to the vertical loading condition.  A linear 

regression is used to determine the linear elastic region of the sample curves, with a calculated 

correlation coefficient of R > 0.99999 for each curve. Table IV shows the calculated stiffness of 

the MBB samples. 
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Figure 14: Load Curves 

 

 
 

 

Table IV: Relative Stiffness Values of Varying MBB Beams 

 

MBB Beam Experimental Stiffness 

(N/m) 

Scaled Model 

Stiffness (N/m) 

1.35 x 

Scaled Model 

Stiffness (N/m) 

10 x 

Orthotropic X 2.66*10
5
 7.70*10

4
 3.96*10

5
 

Orthotropic Y 2.29*10
5
 6.05*10

4
 6.6*10

4
 

 

The horizontally reinforced beam has a higher stiffness than the vertically reinforced beam, 

which is also true in the computational results shown in Table I, showing the effect of orthotropic 

properties on the beam structure.  The ratio between the beams reinforced by a factor of 1.35 is 

closer to the experimental results than the factor of 10 scaled model, indicating that for this 

carbon fiber PLA filament, the increase in modulus along the bead direction is closer to a factor 

of 1.35, as expected.  The evidence of directional dependence in the topology optimization 

results is indicative of a further application for topology optimization in FDM, specifically with 

short fiber-reinforced polymers, which make structurally designed parts more viable for practical 

applications. 

 

Conclusions and Future Work 

 

 A method for topology optimization of 2D structures has been developed with regards to 

materials which exhibit varying measures of strength in two orthogonal directions and 

specifically for carbon fiber-reinforced FDM products.  The stiffness of the structures are 

maximized for a particular volume fraction given the boundary conditions, and computed results 

agree with the isotropic model computed by the SIMP method in previous works.  There is 
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significant variance in structural topology exhibited by the orthotropic model solutions, 

depending on the direction of increased Young’s Modulus.  This method provides a basis for 

which topology optimization of FDM produced parts can be produced given the orthotropic 

nature of the printed products. 

Future work includes further testing of optimized structures when printed in the correct 

orientation, and the carbon-fiber reinforced PLA offers a distinct advantage for the production of 

stiff parts, such as supports and trusses, for commercial applications.  In order to better model the 

orthotropic properties, more data needs to be determined on the Poisson’s ratios and Young’s 

modulus of carbon fiber-reinforced PLA in printed FDM parts.  These can then be easily 

implemented with the topology optimization model to improve solution accuracy.  The inclusion 

of an orthotropic filter based on the orthotropic nature of the material will also be investigated. 

Ultimately, the goal is to extend orthotropic prediction properties to a 3D model, where a certain 

number of layers of polymer bead are modeled by a layer of hexahedral elements.  Thus, the 

orthotropic properties of the material can be modeled with a three dimensional structure for a 

more practical application to FDM.  Plans for the addition of an additional overhang constraint to 

the topology optimization routine will restrict the design domain to feasible designs for the FDM 

process.  Additionally, FDM modeling of 3D carbon-fiber reinforced structures will be 

experimentally tested to show improved stiffness in the desired build orientations.   
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