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The Gravity Recovery and Climate Experiment (GRACE) mission, its

follow on (GRACE-FO) and the Gravity-field and steady-state Ocean Circula-

tion Experiment (GOCE) mission have been key contributors to the advance-

ment of the study of Earth’s gravity field in the 21st century. The gravity gra-

diometers on GOCE are limited in their sensitivity and are therefore limited

to studying the Earth’s static gravity field. However, recent advancements

in atomic interferometry have increased the feasibility of implementing this

technology to the study of time-variable aspects of the Earth’s gravity field,

as with the GRACE satellite-to-satellite tracking technology. It is anticipated

that these measurement types will provide information about the time-variable

gravity field at different wavelengths, and as such a hybrid architecture mis-

sion implementing both has been presented. A measurement proof of concept
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study is performed for this proposed architecture, analyzing the possible im-

provements over current best time-variable gravity models at mid and small

spatial scales and the effects of prominent sources of error.

A series of simulations is performed through an orbit that is nearly

polar, nearly circular, with an altitude of 450 km and the satellites spaced

220 km apart. The noises present in the gradiometer and pointing knowledge,

which serves as a second form of gradiometer error, are tested in combination

at varying levels to gain insight into their impact upon the accuracy of the

resulting estimated gravity field. The impact of aliasing error upon this hy-

brid architecture is also tested and analyzed. The results demonstrate clear

improvement over the GRACE-FO architecture when the gradiometer noise

is sufficiently small. Even at the largest gradiometer noise levels, the inclu-

sion of the gravity gradient data greatly reduces the impact of aliasing error.

At varying noise levels, it is shown that either the gradiometer or attitude

determination system can become the limiting factor of the architecture.

This analysis serves to quantify the improvements in gravity field recov-

ery a hybrid architecture can create with both current and under-development

technologies.
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Chapter 1

Introduction

1.1 Background

There are few, if any, known life forms that can persist without liquid

water. Liquid water is believed to be so integral to life, its presence is one of

the first criteria astronomers look for when searching for other planets with

the potential for hosting life [5]. We define our ecosystems by how much water

they contain, and build cities and civilizations around waterways. But water

also has the potential to take life. Powerful storms and large floods devastate

cities, taking and ruining countless lives. For all of these reasons, working to an

understanding of the water cycle has been of constant importance since ancient

times. Hebrew Scholars observed in Ecclesiastes 1:6-7 that, despite all rivers

flowing into the sea, the sea never seemed to fill. In the Ramayana, further

understanding of the water cycle is shown through speculation that water is

heated by the sun before being sent back to the surface as rain [6]. The study of

the water cycle has, of course, developed significantly since these observations

were made. In 1580, Bernard Palissy became the first to assert, rightfully, that

springs and rivers must be completely dependent upon rainwater (as opposed

to underground channels that brought seawater inland) [7]. In the early 20th

century, Sir Gilbert Walker provided, among other things, an explanation for
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the El Niño-Southern Oscillation Phenomenon [8].

A vast array of improvements in the study of the movement of water

across the Earth were made in the 20th century. While the field at large is

worthy of further discussion, this study will focus more narrowly on the signif-

icant developments made with the advent of space based experimentation in

the late 20th and early 21st centuries. Satellite laser ranging missions such as

LAGEOS and the Gravity Recovery and Climate Experiment (GRACE) and

gravity gradient missions such as the Gravity-field and steady-state Ocean

Circulation Experiment (GOCE) have shown that improved understanding of

time-variations in the water cycle lead to a broader understanding of the pro-

cesses taking place within our planet writ large [9, 10]. Continued effort to

understand the water cycle by carrying on the work of these missions with

improved instruments will further our ability to understand and address plan-

etary problems, such as global climate change.

1.2 Previous Studies

Gravitational force exerted by objects upon each other depends upon

the objects’ potential, which in turn is determined by the mass and the dis-

tribution of that mass within the objects. Therefore, as the distribution of

mass in and on the Earth changes, the geopotential and the gravitational field

around Earth change as well. Various processes cause such changes - shifting

tectonic plates, atmospheric wind patterns, melting ice sheets and, principally,

the hydrological cycle. Weather events that move large amounts of water, such
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as rain runoff in the Amazon and monsoon season in southeast Asia, have large

notable impacts upon the Earth’s gravity field. Due to this direct connection,

measuring the Earth’s gravity field leads to important insights into the water

cycle. Geopotential measurements can be collected either from the surface or

from space. Surface based gravimeters are accurate but expensive and cumber-

some, thus make them difficult for use in collecting measurements over large

areas and large periods of time [11]. Satellite based gravimetry, while also

expensive, offers the ability to cover the entire surface of the Earth regularly

in short periods of time. Many satellite missions have been developed in the

past 50 years dedicated solely to furthering our understanding of the Earth’s

geopotential and, by extension, the water cycle.

The Laser Geodynamics Satellite (LAGEOS) 1, launched by NASA in

1976, was the first satellite ever launched for the explicit purpose of satellite

laser ranging; it’s successor mission, LAGEOS 2, was launched in 1992. Both

satellites are completely passive, covered in 426 cube corner reflectors used

for ground based laser ranging. Laser ranging technology improved drastically

in the first 15 years of LAGEOS, with associated precision decreasing from

approximately a meter in 1976 to 10 mm in 1991 [12]. These missions made

many contributions to the understanding of geophysical perturbations that

act on objects in orbit around Earth; however, large scale improvements in

tracking capabilities in the early years of these missions did not change the

simplicity of the satellites themselves, capable of no more than providing a

point for tracking from the ground. Spatial resolution of gravity field models
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created with data from the LAGEOS missions was limited to the hemispheric

scale, and the temporal resolution limited the study of time variable grav-

ity to secular changes and seasonal variations in J2 [13]. The Challenging

Mini-satellite Payload (CHAMP) mission, launched only two years before the

GRACE mission in 2000, was a single satellite that proved the viability of

precise electrostatic accelerometers for the removal of non-gravitational effects

on the orbital motion; this use of accelerometers, as well as the use of GPS

receivers and the ”Small Sat” design, were adopted by the GRACE mission,

which quickly changed the paradigm of gravity sensing from space [14].

The GRACE missions - the Gravity Recovery and Climate Experiment

(GRACE) launched in 2002 and GRACE Follow-On (GRACE-FO) launched

in 2018 - marked a significant step forward in gravity sensing from space.

GRACE provided, for the first time, data sensitive enough to allow scien-

tists to map the Earth’s gravitational field at a spatial resolution of 300 km.

The first GRACE mission consisted of two satellites in the same orbit track-

ing each other through low-low satellite-to-satellite tracking (LL SST) using

K-band ranging (KBR), tracked from the ground through SLR and tracked

from GPS satellites above via high-low (HL) SST. The information gathered

by GRACE allowed for the monitoring of many causes of subtle changes in

the gravitational field over 15 years, such as glacial ice loss, terrestrial wa-

ter storage and ocean bottom pressure [1]. Data recorded by GRACE led to

the construction of monthly gravity fields with geoid height accuracy of 2-3

mm at spatial scales greater than 600 km and annual gravity fields with the
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same accuracy at spatial scales greater than 400 km. However, monthly mean

gravity fields were shown to be impacted by aliasing error, introduced through

short-period atmosphere, ocean and continental hydrology variations. This

requires de-aliasing with approximate models of the mass variability, reducing

but not eliminating aliasing error, with the benefits clearest at middle and

high spherical harmonic degrees [15]. A study done by Kurtenbach et al. was

able to use information from prior hydrological models of the Earth’s gravity

field to establish temporal correlation patterns in the Earth’s gravity field,

which they then used to create single day models of the Earth’s gravity field

[16]. There is some sense in utilizing temporal correlations for certain applica-

tions of GRACE data, such as the long term study of patterns in glacial mass.

However, it is not possible to model variations at these short time scales re-

liably with current hydrological models; models of much higher fidelity than

currently exist would be needed to properly de-alias the results of extremely

small time scale variations. While it may be possible to do so with tracking

data from other satellites, this method has not been successfully applied to

date. Thus, while Kurtenbach’s methodology is sound, current technology is

not sufficient for its application.

The GRACE-FO mission has largely the same architecture as the orig-

inal GRACE mission, with each of the instruments on board being updated to

modern standards. The only major difference between the two missions is the

addition of a laser ranging interferometer (LRI), which measures the distance

between the satellites in parallel with the K-band instrument on board. The
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LRI - designed to be 26 times as precise as the KBR instrument that was

on GRACE - was expected to lead to improved accuracy in recovered gravity

fields [1]. These instruments are compared against each other by the average

size of their post-fit residuals, the differences between their collected data and

the corresponding values predicted by the gravity field estimated using that

data. GRACE-FO KBR post-fit residuals are on average approximately half

the magnitude of GRACE KBR post-fit residuals, and the average GRACE-

FO LRI post-fit residuals are approximately half the size of KBR residuals.

The LRI field estimates themselves show little overall improvement over those

estimated with KBR data - this is due to both short-period variations that are

currently not covered by de-aliasing models and the accelerometer becoming

the limiting error source [17]. The GRACE-FO mission - which has by all

accounts been a success - was mandated by NASA under funding from the

Climate Continuity Initiative, whose directive was to continue “as-is” for the

extension of data records [18].

The GOCE mission, launched in 2009, was the first to use a gravity gra-

diometer to observe the Earth’s gravity field from space [19]. The gradiometer

on the GOCE mission was composed of three pairs of electrostatic accelerome-

ters. This gradiometer had a sensitivity of 1 mE (or 10−12
m
s2

m
) in two axes with

the third axis being slightly less sensitive. This gradiometer, considered to be

high performing at the time, was far less sensitive than the atom interferomet-

ric gradiometer to be discussed in this study. It reached the level necessary for

the GOCE missions to complete the assigned mission, but would not be suffi-
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cient for a time variable gravity mission. Of note is the choice, during a 1998

review, to utilize the accelerometer based gradiometer over another type which

required cryogenic cooling to 2 K, was considered to be too heavy and had less

development maturity at the time [20]. The method by which this other gra-

diometer worked is not made clear; however, it is likely the case that an early

version of an atom interferometry gradiometer was briefly under consideration

for use on the GOCE mission. It is true, however, that this technology was far

less developed at the time. The sensitivity of the electrostatic accelerometer

based gradiometer was adequate for the mission designers as they were seeking

only to model the Earth’s static gravity field, not time variations which are

mostly on a scale smaller than the sensitivity of the instrument. However, a

processing guide published several years following the launch of the mission

details the practice of taking into account and eliminating from the GOCE re-

sults the effects of both tidal and non-tidal gravity field time variations. The

data used to make these corrections come from various different models and

GRACE data [21]. This practice demonstrates the expectation on the part of

the researchers that gravity gradient measurements are capable of detecting

temporal variations in the gravity field.

In the time since GOCE was launched, data analyses have shown re-

peatedly the usefulness of gravity gradiometry data. Modeling with GOCE

data (supplemented by GRACE data at low degrees) is shown to be reliably

more accurate at 145 degrees [22]. Various studies involving data from both

the GRACE and GOCE missions have shown that gravity field modelling ben-
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efits from the presence of both SST and gravity gradient data. Farahani et

al. demonstrated the superiority of models utilizing both types of data to

models utilizing GRACE data only. This was confirmed via the comparison

of mean ocean dynamic topography models, derived from the static gravity

field models, against an independent, state-of-the-art mean ocean dynamic

topography model and the ability of the models to predict future GRACE

and GOCE data. These mixed models are also shown to compare favorably

with EGM2008, particularly in areas with poor terrestrial gravimetry cover-

age, though not at high (above 200) spherical harmonic degrees [23]. The

aforementioned sensitivity of the GOCE gradiometer to time variable gravity

signals was applied by Rexer et al. [10] to be capable of rendering a reduction

in striping in GRACE monthly and bi-monthly solutions. This effect was only

achievable while applying both types of data (gradiometry and GPS) from

GOCE, with the effect focused on spherical harmonic degrees 45-60. However,

they do admit that they were only able to prove this application of the GOCE

data in months with relatively weak performance by GRACE at and above de-

gree 45; the possibility of this application of GOCE data in this manner during

other time periods is speculated but left to further study [10]. The suggestion

that gradiometry data of limited sensitivity from GOCE, in combination with

GPS data, has the potential to consistently improve GRACE solutions implies

that a single hybrid mission capable of collecting low-low satellite-to-satellite

tracking, gravitational gradiometry at an improved sensitivity level and GPS

data together could be the logical next step in space based gravity sensing.
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This expectation paired nicely with the knowledge that gravity gradient data

outperforms SST at middle and high harmonic degrees. Given this knowledge

and the search, as outlined in the Decadal survey [24], for a mission architec-

ture that can improve upon the capabilities of GRACE and GRACE-FO, this

study into a hybrid SST-QGG gravity sensing mission was initiated.

1.3 Mission Overview

The GRACE missions, representing the most recent advancement in

gravity sensing missions, made use of more advanced architecture capabilities.

The GRACE architecture utilizes a constellation of two satellites in the same

orbit, separated by 220 ± 50 km [1]. The satellites fly in a circular near-polar

orbit with altitude of approximately 500 km [25]. Due to this flying formation,

mass variations in the Earth have slightly different impacts on the orbits of

the two satellites, depending on the distance at a given moment from a mass

variation to each of the satellites. There are known variations, accounted for in

existing gravity field models, and anomalies, variations that affect the satellites

which are not accounted for by current gravity field models. Anomalies can be

caused by misunderstood or completely unknown structures on or within the

Earth, an unknown material composition, an unknown density, or any such

gap in knowledge used to create a gravity field model. As the lead satellite

approaches a variation, it will accelerate with respect to the rear satellite,

causing the range and range-rate between the two satellites to change. Shortly

thereafter, as the lead satellite orbits away from the variation and the rear
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satellite approaches, the rear satellite will be subjected to an acceleration

matching the one the lead satellite experienced just prior. As the satellites

continue to orbit over various mass variations around the Earth, constantly

varying accelerations result in constantly varying range and range-rate; this

data, via a thorough estimation process, can used in tandem with GPS data

to conclude the Earth’s spherical harmonic gravity field over the time of data

collection [26]. Known variations do not lead to new information; anomalies

create data residuals, which in turn provide new information about the gravity

field and the cause(s) of the anomalies.

Each satellite is equipped with a suite of identical instruments to make

the necessary measurements. Included in that instrument suite on GRACE-FO

are a dual frequency K/Ka band microwave ranging instrument (MWI) and

laser ranging interferometer (LRI), both for tracking the inter-satellite range,

three star camera sensors and an angular rate sensing inertial measurement

unit (IMU) for attitude determination, a precise accelerometer at the satellite’s

center of mass for tracking non-gravitational forces and a GPS receiver for

precise orbit determination (POD) [17, 3]. On GRACE-FO, to allow for orbit

determination, the GPS receiver provides position and velocity data accurate

within 20 cm and 0.1 m
s

, respectively, at an update rate of 0.5 Hz with a pulse

per second time signal accurate within 300 pico-seconds. The accelerometer is

accurate on the scale of 10−10m
s2

along the X axis and 10−12m
s2

along the Y and

Z axes, allowing for removal of non-conservative, non-gravitational forces such

as solar and Earth radiation pressure, drag, etc. The star cameras provide

10



Figure 1.1: GRACE and GRACE-FO Architecture [1]
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attitude information accurate on the order of 10 µRad.

On the architecture studied in this thesis, the instruments from GRACE-

FO will be paired with an atom-interferometer (quantum) gravity gradiometer

mounted to one of the two satellites in a hybrid architecture. All instruments

will work in tandem to provide satellite to satellite tracking (SST) and quan-

tum gravity gradients (QGG) caused by mass variations within the Earth. A

gravity gradient is simply the gradient of the gravitational acceleration vec-

tor. As the gradient of a vector, gravity gradient data comes in the form of

a dyad. These two data types, paired with GPS data, will be utilized by a

weighted least-squares estimator. This process will produce high degree and

order spherical harmonic gravity field solutions.

1.4 Thesis Objective and Outline

This study aims to validate the measurement concept of a hybrid QGG-

SST mission and to show that it has the potential to improve upon the time-

variable gravity field recovery sensitivity of the GRACE-FO mission, particu-

larly at smaller spatial scales. Such a hybrid architecture advances the science

objectives from the most recent Decadal Survey for Earth Science and Ap-

plications [24]. The Decadal Survey explores the needs of the Earth Science

community then proceeds to list requirements for technological improvements

that could be used to meet those needs. Improvements for gravity sensing at

these smaller spatial scales allow for the application of the results of the mis-

sion to fields which are just out of reach for the GRACE missions, particularly

12



relevant to climate science, including hydrometeorology and ocean dynamics.

This validation is performed through a series of simulations of the hy-

brid architecture with various levels of instrument specifications. These sim-

ulations, performed with existing data analysis architecture at the Center for

Space Research (CSR), present a strong set of tools for understanding the

sensitivity of recovered gravity fields to a variety of different error sources all

at once. For this ability to show interactions of the different error sources,

simulations were chosen as the preferred method of validation over simple er-

ror propagation or covariance analyses. Preliminary tests were performed to

understand which of these sources of error would be the most relevant to this

study and therefore would be the focus of the study.

Through these preliminary studies it was shown that the primary error

sources are the QGG sensitivity itself and the knowledge of the angular orien-

tation and angular motion, which are vitally important to the usefulness of the

QGG data. Error models are based upon currently existing and expected near

future sensor capabilities. Aliasing errors and smoothing methods are also dis-

cussed; aliasing the limiting error source for the GRACE missions, warranting

study of how it is affected by QGG data. An analysis is performed by varying

these error levels to understand how they interact to set an expected overall

sensitivity for the mission architecture.

Chapter 2 discusses the process for estimating Earth’s gravity field.

Non-gravitational forces are separated out so that gravitational forces may

be related to Earth’s potential and described in spherical harmonic models.
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Figure 1.2: Spatio-Temporal Observation Requirements [2]
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These force models are utilized in establishing equations of motion for the two

satellites. These equations of motion are described in terms of the position and

velocity of the satellites. The necessary observables for a hybrid architecture

are range, range-rate and GPS measurements, as with the GRACE missions,

and gravity gradient measurements. Application of these equations of motion,

the orbit determination and least squares solution for estimating the Earth’s

gravity field is outlined.

Chapter 3 outlines the method by which the QGG collects data and

the main error sources that impact the capabilities of the hybrid architecture,

pointing knowledge and control and aliasing. The use of white noise in sim-

ulating the primary error sources is discussed as the method for investigating

the robustness of the architecture as it exists in the simulations. With the

pointing knowledge and control (via the star camera noise), the QGG pre-

cision and the de-aliasing methods tested, all other aspects of the simulated

mission are maintained from the GRACE-FO mission.

Chapter 4 begins by describing the design of the parametric study con-

ducted to determine the precision benefits of a hybrid architecture over the

GRACE missions. The configuration for testing the hybrid architecture with

different levels of the most vital error sources, as described in Chapter 3, is laid

out. This study allows for determination of whether the hybrid architecture,

generally, will lead to improvements over the GRACE missions. Additionally,

it allows for an understanding of how the hybrid architecture will perform with

various combinations of the levels of each of the pertinent error sources. In
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Chapter 5, these findings are converted to conclusions about whether a mission

with a hybrid architecture is recommended and, in the case that it is, what

instrument sensitivities are needed.
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Chapter 2

Gravity Field Estimation and Processing

2.1 Introduction

The range between the two satellites detected by the SST device and

the gravity gradient detected by the QGG on the lead satellite are the two

primary measurables for the hybrid time-varying gravity sensing mission. Nu-

merical differentiation is used with the range data to acquire range-rate and

range-acceleration information, while the accelerations caused by the gravity

gradient tensor are isolated. These measurements, in combination with GPS

tracking data, are the basis for gravity field estimation. The process for recov-

ering a geopotential field from this data is rooted in the variational method for

differential corrections. This study accesses that process by first simulating

LL SST, QGG and GPS data in a ’true’ gravity field. The simulated data

is degraded with measurement and instrumentation noise to reach a data set

similar to one which may be reported to ground by the satellites; the process

to this point is accomplished through the Multi-Satellite Orbit Determination

Process (MSODP), developed at the Center for Space Research at the Uni-

versity of Texas at Austin (CSR). This data set is then used by the AESoP, a

parallel least squares estimator, to determine the gravitational field, which can

then be compared to the ’truth’ field used by the simulation and the results
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of other similar simulations. The difference between the truth and estimated

fields is an indication of the sensitivity of results to various causes of error.

This chapter will provide an abridged discussion of gravity field esti-

mation theory. More detailed analyses of the process are provided by Kaula

[27], Tapley [28] and Frommknecht [29]. An overview of the application of

these theories in MSODP and AESoP is provided along with dicsussion of

how the mission observables tie in with particular focus on the gravity gradi-

ent data. Full descriptions of MSODP and AESoP are provided by Rim [30],

and Gunter, respectively [31].

2.2 Gravity Field Estimation Theory

2.2.1 Equations of Motion

For a near-Earth satellite, the equations of motion can be described in

an inertial reference frame in the following manner [30]:

~̈r = ~ag + ~ang + ~aemp (2.1)

where

~ag is the sum of accelerations due to gravitational forces acting on the

satellite

~ang is the sum of accelerations due to non-gravitational forces acting

on the surfaces of the satellite

18



~aemp is the sum of accelerations due to remaining unmodeled forces

acting on the satellite due to an either incorrect or incomplete description of

the forces acting on the satellite or the values of the parameters inherent to

the description of those forces

The accelerometer, as mentioned in section 1.3, measures all of the non-

gravitational forces that act on the satellite, hence the combination of all of

those forces into one acceleration, ~ang. The remainder of this section will focus

on the gravitational forces. The gravitational forces acting on the satellite can

be expressed via the following [30]:

~ag = ~Pgeo + ~Pdtides + ~Potides + ~Protdef + ~Pnbody + ~Prel (2.2)

where

~Pgeo is perturbations due to the geopotential of the Earth

~Pdtides is perturbations due to solid Earth tides

~Potides is perturbations due to ocean tides

~Protdef is perturbations due to rotational deformation

~Pnbody is perturbations due to Sun, Moon, planets

~Prel is perturbations due to relativity

Perturbing forces of the satellite due to the gravitational attraction of

the Earth can be expressed as the gradient of the Earth’s potential, which

satisfies the Laplace equation, ∇2U = 0 [30]:
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∇U = ∇(Us + ∆Ust + ∆Uot + ∆Urd) = ~Pgeo + ~Pdtides + ~Potides + ~Protdef (2.3)

where Us is the potential due to the solid-body mass distribution and

the other values ∆U are the potential changes due to solid-body tides, ocean

tides and rotational deformation, respectively. The perturbing potential of the

solid-body mass distribution of the Earth is generally expressed in terms of a

spherical harmonic expansion in a body fixed reference frame formulated in

the following manner [27, 32]:

Us(r, φ, λ) =
GMe

r
+
GMe

r

∞∑
l=1

l∑
m=0

(ae
r

)l
P̄lm(sinφ)

[
C̄lm cosmλ+ S̄lm sinmλ

]
(2.4)

where

GMe is the Universal Constant of Gravitation times the mass of Earth

ae is the mean equatorial radius of Earth

P̄lm(sinφ) is the normalized associated Legendre function of degree l

and order m

C̄lm, S̄lm are the normalized Stokes spherical harmonic coefficients

r, λ, φ are the spherical coordinates where the potential is calculated
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2.2.2 Orbital Models

The hybrid SST-QGG architecture has three main observables: the

range measurements (which are differentiated into range-rate and range-acceleration),

the GPS phase and pseudo-range and the QGG gravity gradient measure-

ments. As with the GRACE missions, the range and GPS tracking data are

utilized through phase double differences, the desired observable for generating

simulations through MSODP.

The instantaneous LL SST range is determined in the terms of each

satellite’s position vector, as shown in equation 2.6 and figure 2.1; the line-of-

site (LOS) unit vector is formulated via 2.7.

Figure 2.1: Satellite Range

~ρ = ~r1 − ~r2 (2.5)
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ρ =
√
~ρ · ~ρ (2.6)

êρ =
~ρ

ρ
(2.7)

Twice differentiating the range yields the range-rate and range-acceleration,

formulated in equations 2.8 and 2.9, respectively.

ρ̇ = ~̇ρ · êρ + ~ρ · ˙̂eρ = ~̇ρ · êρ + êρ ·
[
~̇ρ− ρ̇ · êρ

]
= ~̇ρ · êρ (2.8)

ρ̈ = ~̈ρ · êρ + ~̇ρ · ˙̂eρ (2.9)

The range-acceleration equation, simplified with equation 2.7, yields

the form in equation 2.10.

ρ̈ = ~̈ρ · êρ +
1

ρ

[
|~̇ρ|2 − ρ̇2

]
(2.10)

With the equations for the range, range-rate and range-acceleration

along the satellite’s LOS defined in terms of the position vector of each satellite,

the LL SST phase double difference can be calculated. GPS double differences

are calculated via a process utilizing the ranges between two GPS satellites,

a ground station and one of the hybrid architecture satellites in low Earth

orbit (LEO). This process serves to eliminate errors, providing positioning
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accuracy within 1 cm [33]. As this study is focused on the combined use of

SST and QGG measurements, the derivation of these GPS measurements is

not included. A detailed derivation is given by Rim [30].

2.2.3 Gravity Gradient Data Processing

The QGG collects and processes accelerations due to gravity gradient

data in a manner similar to the GOCE mission. That process, as described in

Frommknecht et al. [29], is outlined herein.

The QGG instrument collects accelerations at two locations (described

in detail in section 3.3.1) separated by some distance. The final measurable

output of the QGG, the total differential phase shift, is the difference between

the accelerations at the two measurement points, which are formulated as

follows.

ā ≈ −
(
U − Ω2 − Ω̇

)
· Ā+ D̄ (2.11)

where

U is the gravity gradient tensor

Ω2 is the square of the angular rates tensor

Ω̇ is the angular acceleration matrix

Ā is the vector from the origin of the QGG of the center of mass of the

individual accelerometer
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D̄ is the vector of non-conservative accelerations acting on the satellite’s

center of mass

U , Ω and Ω̇ are of the forms described in equations 2.12 through 2.14.

U =

Uxx Uxy Uxz
Uyx Uyy Uyz
Uzx Uzy Uzz

 (2.12)

Ω2 =

−ω2
z − ω2

y ωxωy ωxωz
ωxωy −ω2

z − ω2
x ωyωz

ωxωz ωyωz −ω2
x − ω2

y

 (2.13)

Ω̇ =

 0 −ω̇z ω̇y
ω̇z 0 −ω̇x
−ω̇y ω̇x 0

 (2.14)

where

Uij = ∂2U
∂xi∂xj

ωi is the angular rate of the satellite

The QGG observable is the difference between the accelerations at the

two measurement points. As Ā represents the vector from the center of mass of

the QGG, which is symmetrical, the vector Āi to one of the accelerometers is

equal and opposite the vector Āj to the other. Therefore, the in line differential

acceleration between the two accelerometers is of the following form.

ād,ij =
1

2
(āi − āj) = −(U − Ω2 − Ω̇) · Āi (2.15)
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Knowledge of the angular rates and angular acceleration allow for sep-

arating out their effects to isolate the acceleration due to the gravity gradient.

With a single-axis gradiometer such as the one utilized by the hybrid architec-

ture, it is necessary to collect this information independent of the gradiometer.

The process for determining the angular accelerations, which necessary for de-

riving the angular rates and angular acceleration, is detailed by Frommknecht

et al. [29].

2.3 Orbit Determination and Least Squares Solution

The simulation procedure is described herein; a more detailed descrip-

tion is given by Gunter [31]. The first step involves choosing a truth field,

which will serve as the correct description of the Earth’s gravity field in the

simulation environment. All of the gravity fields estimated are compared back

to this field. For this study, the GIF48.2000.GEO mean background gravity

field was chosen as the truth. The field is complete to degree and order 360,

but only information up to degree and order 120 is utilized in this study.

With the truth model and an initial condition, the ephemeris is derived

by numerically integrating the position and velocity of the LEO satellites over

the entire trajectory. Through this, MSODP generates a series of GPS, K/Ka

band ranging (KBR) and QGG observations. Both the LL and HL SST mea-

surements are treated through the variational method [34]. This method, as

described by Bettadpur and McCullough [35] and shown through the following

formulation, treats the difference between observations and expected values ex-
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pected based on the truth gravity field as being due to variations in the state

and parameters of the two LEO satellites from those expected values.

y(t) = O(r(t), ṙ(t), β)− C(r∗(t), ṙ∗(t), β∗) (2.16)

where

O is observed data

C is data computed with best a priori models

r(t) and ṙ(t) are range and range-rate between the LEO satellites

β is observational parameters

∗ represents best known versions of the state and parameters based on

the nominal model

The nominal model is a gravity field used by the software to prepare

partials for estimation. Most simulations discussed in this study utilize the

same gravity field for both the truth and nominal gravity fields. With this

setup, the differences between O and C are known to be directly attributable

to measurement noise. To model aliasing error, as discussed in 3.5, the truth

and nominal models are made to differ.

Treating the range, range-rate and observational parameters as combi-

nations of their best known values and variations from those values, equation

2.16 can be re-framed in the following manner with a mathematical model

that converts state components and parameters to observations, G.
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r(t) =r∗(t) + δr(t)

ṙ(t) =ṙ∗(t) + δṙ(t)

β =β∗ + δβ

(2.17)

y(t) = G(r∗(t) + δr(t), ṙ∗(t) + δṙ(t), β∗ + δβ)−G(r∗(t), ṙ∗(t), β∗)

=
∂G

∂r
δr(t) +

∂G

∂ṙ
δṙ(t) +

∂G

∂β
δβ

(2.18)

At each time step up to the final observation time m, the observational

residuals at each time step are expressed as follows.

y(t1) = H̃r∗1
δr(t1) + H̃ṙ∗1

δṙ(t1) + H̃β∗δβ∗

...

y(tk) = H̃r∗k
δr(tk) + H̃ṙ∗k

δṙ(tk) + H̃β∗δβ∗

...

y(tm) = H̃r∗mδr(tm) + H̃ṙ∗mδṙ(tm) + H̃β∗δβ∗

(2.19)

To reduce y(t) to fewer parameters and establish an explicit dependence

upon the force model parameters (the values of which will be estimated) a state

transition matrix is created based on the assumption that δr(t) and δṙ(t) must

be dynamically consistent as a function of time. Thus, using the observational

residuals at each time step, the data is now prepared for estimation [35].

The variational method is not necessary for data collected by the QGG.

Rather, a direct parameter estimation method is permissible.
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These observations have simulated measurement and instrument noise

added to them. The noise models included in this simulation represent QGG

measurement noise, star camera pointing knowledge and accelerometer error.

Non-gravitational perturbation effects, including Earth and Solar radiation

pressure and atmospheric drag, are introduced. MSODP then generates par-

tials for all three data types with respect to the truth field, collected in Regres

files. The least squares estimation process is then performed with AESoP,

utilizing the generated observations and partials with optimal weighting im-

plemented. This process is outlined in the following flow chart.

Figure 2.2: Least Squares Estimation Process Flowchart
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Chapter 3

Satellite-to-Satellite and Gravity Gradient

Measurements

3.1 Introduction

The hybrid SST-QGG architecture described and simulated in this

study is intended to continue the work of the GRACE missions, adding the

QGG technology to allow for higher sensitivity at smaller spatial scales. An

understanding of the SST and QGG measurement methods and the errors ac-

counted for in the simulation process is necessary for a proper evaluation of

the simulation results. This chapter will provide an overview of these topics.

Because the simulation specifications are based upon the instruments utilized

by the GRACE-FO mission, an outline of the specifications of that instru-

ment suite and the numerical methods for processing the SST data are given.

The atom interferometer gravity gradiometer measurement methods, as de-

scribed by Yu [4], are provided alongside the gravity gradient data processing

formulation. Due to the focus of this study upon the impact of introducing

a gradiometer measurements to the GRACE-FO architecture, a analysis of

the GPS tracking measurement methods is forgone. An decsription of these

measurements and their intrinsic errors is given by Kim [33].
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The error sources which present the most immediate barriers to full

utilization of the capabilities of the hybrid architecture, pointing knowledge

and aliasing, are considered. Methods and architecture design choices for

minimizing the effects of these error sources are given, and expected impacts

of these error sources upon the final results despite these mitigation methods

are discussed. This chapter will provide the context necessary to properly

interpret the simulation results to follow.

3.2 Satellite to Satellite Measurement Process

The microwave ranging instrument (MWI) on each of the GRACE-FO

satellites, shown in detailed schematic in figure 3.1, is used to collect SST

measurements. This instrument consists of a K/Ka-band Ranging (KBR) As-

sembly, three GPS antennas operating at L1 and L2 GPS frequencies with

associated low noise amplifiers (LNA), a redundant pair of Ultrastable Oscil-

lators (USO) and a redundant pair of Instrument Processing Units (IPU). The

KBR assembly, with a pair of redundant Microwave Assemblies (MWA) and

a single horn antenna transmits signals to and receives signals from the sister

satellite in the 24 GHz K-band and 32 GHz Ka-band [3].

As the the MWIs on the satellite pair are exact twins, on one satellite

an interferometric beat note is utilized to create a phase offset between the

incoming and outgoing signals, to allow for ease of distinguishing between

signals. Measurements taken on the satellite receiving these offset signals

account for this imposed phase shift [3].
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Figure 3.1: GRACE-FO Single Satellite MWI and GPS Antenna Block
Diagram [3]

The LRI instrument, as discussed in section 1.2 and shown in detail

in figure 3.2, is also used to collect SST measurements. On each satellite is

a Triple Mirror Assembly (TMA), a laser source (LAS) and a laser frequency

cavity assembly (CAV) and an optical bench assembly (OBA). The master

spacecraft sends a frequency stabilized light beam to the distant satellite,

which receives the signal and (similar to the MWI) uses an interferometric

beat note to determine the phase offset between the incoming and local lasers.

This is used to offset the local laser, which then sends a signal back to the

master satellite. The master satellite then receives a signal which corresponds

to the round trip distance between the two satellites.

The simulations in this investigation utilize simulated LRI data with

an applied noise square-root power spectral density (PSD) of 0.08 µm/
√
Hz.
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Figure 3.2: GRACE-FO Two Satellite LRI Block Diagram [3]

Detailed attention is not given to the fidelity of SST measurements as the study

is intended only as a measurement proof of concept. In discussion in chapter

4, these measurements will be referred to simply as SST, with no distinction

between MWI and LRI.

3.3 Atomic Interferometer Gradiometer

3.3.1 Measurement Process

An overview of the process by which the Atomic Interferometer Gra-

diometer collects gravity gradient data is presented by this section. A more

complete description, lab setup and implementation are available in Yu, Ko-
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hel et al. [4]. An expected accuracy range of the QGG given an extended

interrogation time and gradiometer arm length were provided via private cor-

respondence by Sheng-wey Chiow [36].

Figure 3.3: Illustration of the QGG Geometry [4]

As shown in figure 3.3, the atom interferometer gravity gradiometer
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is composed of two magneto-optic traps (MOTs) which collect and cool up

to 109 Cesium atoms prior to launching them vertically in a one dimensional

atomic fountain. Following launch, both fountains are subjected to a π/2 −

π − π/2 laser pulse sequence parallel to the vertical launch axis along which

the acceleration is to be measured. These pulses, which serve to separate the

atoms between hyperfine ground states, redirect and then recombine them,

causing a net phase difference ∆φ between the two interferometer paths. This

phase shift is shown in equation 3.1 to relate directly to the acceleration to

which the atomic fountain is subjected.

∆φ = keff · aT 2 (3.1)

where

T is the time between pulses

keff is the effective Raman laser wave number

a is the vector sum of the acceleration due to gravity g and the platform

accelerations ap

The inclusion of platform accelerations in the measurement (which

would only be avoidable in an inertial measurement environment) necessitates

the use of two MOTs simultaneously with the same Raman laser pulses, as

shown in figure 3.3. Differencing the net phase difference from the two MOTs

removes the platform accelerations from the equation, allowing for the calcu-

lation of a total differential phase shift, shown in equation 3.2, that is related
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to the difference between the gravitational accelerations at the locations of the

two MOTs. This in line differential acceleration, as discussed in section 2.2.3,

is the observable desired for the estimation process.

∆Φ = ∆φ1 −∆φ2 = keff (g1 − g2)T 2 (3.2)

Several design aspects of the atom interferometer factor in determining

the accuracy of the QGG. Most notable are the temperatures to which the

MOTs cool the atoms, the distance between the MOTs (or gradiometer arm

length) and the time between the Raman laser pulses. The gradiometer built

for the experiment described in Yu [4], a cold atom interferometer, cools the

atoms to a temperature of approximately 2 µK. At this temperature, given a

reasonable interrogation time of 5 seconds and a reasonable arm length of 25

cm (more on these below), a QGG is expected to be limited to a sensitivity

of 1 E/rt(Hz). As will be discussed in chapter 4, this sensitivity level is not

sufficient to allow the hybrid architecture to improve upon the performance of

the GRACE-FO mission. However, gradiometer where the atoms are cooled to

the Bose-Einstein Condensate (BEC) state, in the range of 0.1 - 1 nK, would

lead to improved sensitivity levels. Given the 5 s interrogation time and 25

cm arm length, the QGG sensitivity would reach of 1 mE/rt(Hz).

This improvement in sensitivity created by cooling the atoms to BEC

temperatures, while significant, will still prove insufficient for allowing the

hybrid architecture to recover gravity field maps more accurate than those
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recovered by GRACE-FO. However, improvements in sensitivity can still be

made with larger interrogation times and arm length. Interrogation time di-

rectly impacts gradiometer sensitivity due to the presence of its square, T 2,

in equation 3.2. By increasing the interrogation time and therefore the mag-

nitude of the total differential phase shift, the same difference between the

two gravitational acceleration values causes a shift of greater magnitude in the

total differential phase shift, allowing for higher sensitivity to the difference

between those two values. The gradiometer arm length, the distance between

the two MOTs that create the atomic fountains, impacts the gradiometer sen-

sitivity as it directly determines the difference between the two gravitational

acceleration values. An increased distance between the MOTs allows for a

greater understanding of the change in gravity along the measurement axis,

and therefore a higher level of sensitivity for the QGG. Increasing both the in-

terrogation time and arm length to the greatest possible extent on the satellite

- approximately 30 s and 1 m, respectively - should allow for QGG sensitivity

to reach levels between 10-100 µE/rt(Hz) [36]. Chapter 4 will provide an as-

sessment of the possible increases in accuracy that sensitivities in this range

are sufficient for the hybrid architecture to achieve over the accuracy level of

GRACE-FO. Technology currently under development is expected to lead to

QGG of further improved sensitivity to the level of 1 µE/rt(Hz) [36].
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3.3.2 Signal Size

Viewed through the lens of gravity gradients, the Earth’s gravity field

is best considered in three separate parts: the central term, the static gravity

field due to spherical harmonic terms, and temporal variations. Each of these

three components of the Earth’s total gravity field create gravity gradient

signals at different orders of magnitude. A local gravity gradient tensor at a

given location anywhere around the Earth is described in the following form.

←→
G ENU =

GEE GEN GEU

GEN GNN GNU

GEU GNU GUU

 (3.3)

This tensor is in the local East-North-Up frame (ENU). The total gra-

dient values in this tensor are of the following orders of magnitude (in units

Eotvos, E, where 1E = 10−9m
s2
/m). It is mainly the terms along the diagonal

of this tensor that are of interest. The satellite will be flying in a near-polar

orbit; in a perfectly polar orbit, the X, Y and Z axes of the on-board Satellite

Reference Frame (SRF), also known in astrodynamics literature as the Local

Vertical, Local Horizontal (LVLH) frame, are exactly equivalent to ± N, ± E

and -U axes at all times, respectively. As the QGG must be aligned with one

of these main three axes, measurements must be collected along one of the

main three local axes.
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GEE, GNN , GUU ≈ O(103)

GNU ≈ O(100)

GEN , GEU ≈ O(10−3)

(3.4)

UEE =
1

r2 cos2 φ
Uλλ −

tanφ

r2
Uφ +

1

r
Ur

UEN =
1

r2 cosφ
Uλφ +

sinφ

r2 cos2 φ
Uλ

UEU =
1

r cosφ
Uλr −

1

r2 cosφ
Uλ

UNN =
1

r
Uφφ +

1

r
Ur

UNU =
1

r
Uφr −

1

r2
Uφ

UUU =Urr

(3.5)

Figure 3.4: Visual Representation of (a) Zonal, (b) Sectoral and (c) Tesseral
Spherical Harmonic Values

Due to the forms of the directional second derivatives of the Earth’s

potential, as described by Bettadpur, Schutz and Lundberg [37], and shown

in equation 3.5, the GEN and GEU terms have no dependence upon the zonal

harmonic terms (including J2). All terms in the equations for these two compo-

nents have at least one derivative taken with respect to the longitude. As zonal
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terms are axially symmetric around the globe, shown in figure 3.4, longitudi-

nal derivatives necessarily exclude their effect. Therefore, while the magnitude

GNU is scaled with respect to the point mass (and therefore the diagonal grav-

ity gradient terms) by the size of the largest zonal term, J2 ≈ O(10−3), the

magnitudes of GEN and GEU are scaled with respect to the point mass by the

size of the largest non-zonal harmonic term, ≈ O(10−6). This results in the

orders of magnitude listed in equation 3.4.

The total diagonal gravity gradient signals collected throughout a day

are shown below. Note that variations on this scale are due to spatial move-

ment of the satellite throughout the gravity field, not time.

Figure 3.5: Total EE Gravity Gradient Signal through One Day
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Figure 3.6: Total NN Gravity Gradient Signal through One Day

Figure 3.7: Total UU Gravity Gradient Signal through One Day
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These total signals are dominated by the central term. At all points

on the surface of the Earth, the diagonal central gravity gradient signals are

approximately equal to the following, units again E.

←→
G central =

−1200 . . . . . .
. . . −1200 . . .
. . . . . . 2400

 (3.6)

Removing the signal from the two body term, with gradients of order

of magnitude O(103) E, allows for a clear picture of the static gravity field

due to the spherical harmonic terms. The diagonal terms of this portion of

the gravity field are of order of magnitude O(100) E. This is well represented

by table 3.1, which displays the RMS of gravity gradient signals collected in

simulation throughout a day following the removal of the signal due to the two

body term. Once again, note that fluctuations are spatial, not temporal; as

the name suggests, this portion of the gravity field is constant with respect to

time.

Table 3.1: Static Gravity Field Signal Spatial RMS, Collected in Simulation
at 500 km Altitude

Gravity Gradient Term RMS (E)

GGEE 3.01
GGEN 0.03
GGEU 0.09
GGNN 4.22
GGNU 4.83
GGUU 7.23

41



Note the difference between the NU term and the other off-diagonal

terms, for reasons noted above. This will be especially relevant to section 3.4.

As with the central term, fluctuations in the signal in the radial direc-

tion (UU) are approximately twice the size of the fluctuations in the fluctua-

tions in the other diagonal directions; this will hold true for the time variable

signal as well. For purposes of seeing the largest signal, figures 3.8 and 3.9 map

the fluctuations of the radial gravity gradient signals from the average gravity

field, as calculated at two altitudes. Figure 3.9 shows fluctuations in the static

signal as calculated at 450km altitude, similar to the altitude at which the

GRACE missions (and a potential future hybrid mission) orbit. Figure 3.8

shows fluctuations in the static signal as calculated at 260km altitude.
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Figure 3.8: Radial Static Spherical Harmonic Gravity Gradients Spatial
Fluctuations at 260km Altitude
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Figure 3.9: Radial Static Spherical Harmonic Gravity Gradients Spatial
Fluctuations at 450km Altitude

The signal collected at the higher altitude is smaller in magnitude and
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contains far less detail about the subtleties of the gravity field, particularly

evident around Indonesia and Malaysia, in the regions of the Pacific south of

Japan and north of New Zealand and off the west coast of South America.

This higher altitude is necessary for the missions to remain in orbit for an

extended period of time, but it comes at the cost of this detail.

Removing the signal due to the static gravity fields reveals the signal

due to time variations in the gravity field, the intended observable of the QGG

on the hybrid architecture. Similar to the signal due to the static gravity field,

the time variations are best described as fluctuations from the average. Images

3.10, 3.11 and 3.12 display these fluctuations as corrections to the prior based

knowledge gravity field based upon data collected by GRACE-FO at 450km

altitude and averaged over a month. These corrections represent signals that

were previously unknown or unmodeled. The months chosen for display show

that, while the signal at various points across the surface of the Earth is

dependent upon the time of year, the maximum magnitude of the fluctuations

is always approximately 100µE.
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Figure 3.10: June 2018 Radial Gravity Gradients Due to the GRACE-FO
Monthly Average Estimates

Figure 3.11: February 2019 Radial Gravity Gradients Due to the
GRACE-FO Monthly Average Estimates
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Figure 3.12: November 2020 Radial Gravity Gradients Due to the
GRACE-FO Monthly Average Estimates

Once again, the GGEE and GGNN signals vary at approximately half

the magnitude of the GGUU signal. The diagonal elements of the time varying

gravity gradient signal can therefore be expected to have the following orders

of magnitude.

GUU,tv ≈ O(10−4)

GEE,tv, GNN,tv ≈ O(10−5)
(3.7)

3.4 Pointing Error Realization

The hybrid architecture is designed to measure gravity gradients across

the lead satellite in the SRF. The SRF is defined with the X-axis in the positive

In-track direction, the Y-axis in the positive Cross-track direction and the Z-
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axis in the negative Radial direction. The single-axis QGG will point in the

Cross-track (Y) direction on the satellite; this section will serve to justify this

choice as the best for reaching the highest possible level of pointing knowledge,

and therefore the best for the highest possible level of accuracy in time variable

gravity gradient collection.

Gravity gradient tensors are understood in the ENU frame, as described

in equation 3.3, with orders of magnitude as listed in equation 3.4. An analysis

of the rotation between ENU and SRF is therefore relevant to understanding

the error propagation in rotating from between frames.

The rotation from ENU to SRF, described in equation 3.8, can be

represented by a [3,2,1] rotation. The full rotation matrix, M , is given by

equation 3.9, where M3 is a rotation about the Z-axis, M2 is a rotation about

the Y-axis and M1 is a rotation about the X-axis. These three rotations in

combination produces the full rotation matrix, M .

M = M1(ψ)M2(θ)M3(φ)

~rSRF = M~rENU

←→
G GRF = M

←→
G ENUM

T

(3.8)

M =

 cosφ cos θ sinφ cos θ − sin θ
cosφ sin θ sinψ − sinφ cosψ sinφ sin θ sinψ + cosφ cosψ cos θ sinψ
cosφ sin θ cosψ + sinφ sinψ sinφ sin θ cosψ − cosφ sinψ cos θ cosψ


(3.9)
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The angles used to rotate the in-flight measurement of the gravity gradi-

ents between these two frames can be expected to have some amount of error

accompanying them. This results from error in the knowledge (dependent

upon the attitude sensors on the satellite) of the rotation angles between the

frames. The full rotation angles can be represented by the following equations.

ψ = ψ̄ + εψ

θ = θ̄ + εθ

φ = φ̄+ εφ

(3.10)

For each angle, ᾱ represents the true value and ε represents the error.

The following trigonometric identities are useful for expanding the terms in

the rotation matrix.

sin ᾱ + ε = sin ᾱ cos ε+ cos ᾱ sin ε

cos ᾱ + ε = cos ᾱ cos ε− sin ᾱ sin ε
(3.11)

Applying these identities across the rotation matrix M and expanding

all terms, the rotation matrix can then be split into the sum of two matrices.

M = M̄ + ∆ (3.12)

M̄ is the true rotation between the frames and ∆ is the erroneous

rotation. M̄ has the same form as M , given by equation 3.9, with all of the

49



angles replaced by the true angle values, ᾱ. ∆ takes the form given term by

term in equation 3.13, derived through symbolic manipulation in MATLAB™.
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∆1,1 =εθεφ sin θ sinφ− εφ cos θ sinφ− εθ sin θ cosφ

∆1,2 =− εθεφ sin θ cosφ+ εφ cos θ cosφ− εθ sin θ sinφ

∆1,3 =− εθ cos θ

∆2,1 =εψεφ sinψ cosφ+ εψεθ cosψ cos θ cosφ− εψεφ cosψ sin θ sinφ

− εθεφ sinψ cos θ sinφ− εψεθεφ cosψ cos θ sinφ+ εψ sinψ sinφ

− εφ cosψ cosφ+ εψ cosψ sin θ cosφ+ εθ sinψ cos θ cosφ

− εφ sinψ sin θ sinφ

∆2,2 =εψεφ sinψ sinφ+ εψεθ cosψ cos θ sinφ+ εψεφ cosψ sin θ cosφ

+ εθεφ sinψ cos θ cosφ+ εψεθεφ cosψ cos θ cosφ− εφ cosψ sinφ

− εψ sinψ cosφ+ εψ cosψ sin θ sinψ + εθ sinψ cos θ sinφ

+ εφ sinψ sin θ cosφ

∆2,3 =− εψεθ cosψ sin θ + εψ cosψ cos θ − εθ sinψ sin θ

∆3,1 =εψεφ cosψ cosφ− εψεθ sinψ cos θ cosφ− εθεφ cosψ cos θ sinφ

+ εψεφ sinψ sin θ sinφ+ εψεθεφ sinψ cos θ sinφ+ εψ cosψ sinφ

+ εφ sinψ cosφ+ εθ cosψ cos θ cosφ− εψ sinψ sin θ cosφ

− εφ cosψ sin θ sinφ

∆3,2 =εψεφ cosψ sinφ+ εθεφ cosψ cos θ cosφ− εψεθ sinψ cos θ sinφ

− εψεφ sinψ sin θ cosφ− εψεθεφ sinψ cos θ cosφ+ εφ sinψ sinφ

− εψ cosψ cosφ+ εθ cosψ cos θ sinφ+ εφ cosψ sin θ cosφ

− εψ sinψ sin θ sinφ

∆3,3 =εψεθ sinψ sin θ − εψ sinψ cos θ − εθ cosψ sin θ

(3.13)
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Substituting the expanded rotation matrix from equation 3.12 into the

dyad rotation from the third line of equation 3.8, the rotation can be expanded;

the first term in 3.14 is the true rotation; the full rotation error can therefore

be represented by equation 3.15.

←→
G SRF = M̄

←→
G ENUM̄

T + M̄
←→
G ENU∆T + ∆

←→
G ENUM̄

T + ∆
←→
G ENU∆T (3.14)

E←→
G SRF

= M̄
←→
G ENU∆T + ∆

←→
G ENUM̄

T + ∆
←→
G ENU∆T (3.15)

Simulations performed for this study have the hybrid architecture in the

same near-polar orbit GRACE-FO utilizes. Taking this orbit to be perfectly

polar for simplicity, the angles to rotate from ENU to SRF are ψ = 0, θ = π

and φ = π
2
. The true rotation matrix takes the following values.

M̄ =

0 1 0
1 0 0
0 0 −1

 (3.16)

This means, as mentioned in section 3.3.2, the following axes are equiv-

alent: XSRF = NENU , YSRF = EENU and ZSRF = −UENU (when the satellite

is ascending; the signs change in the XSRF and YSRF equivalencies when the

satellite is descending). Rotating the ENU gravity gradient dyad through the

true angles, the diagonal SRF gradient terms are given by equation 3.17.
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GGXX = GGNN

GGY Y = GGEE

GGZZ = GGUU

(3.17)

However, including the error, each diagonal SRF gradient can be ex-

pressed as six separate terms, one for each of the ENU gradient values. For

visual simplicity, these terms are listed in table 3.2. All cubic or higher order

error terms are discarded as small enough to be negligible.

Table 3.2: SRF Gravity Gradients Expression by ENU Terms

GGXX GGY Y GGZZ

GGEE ε2φ 1 ε2ψ
GGEN −2ε2φ 2εφ + 2εψεθ −2εψεθ
GGEU 2εθεφ 2εψ −2εψ − 2εθεφ
GGNN 1 ε2φ ε2θ
GGNU −2εθ 2εψεφ 2εθ − 2εψεφ
GGUU ε2θ ε2ψ 1

Each SRF gravity gradient is equal to the sum of the column under it, with
each value multiplied by the ENU gradient term at the row head. These are

again derived through symbolic manipulation in MATLAB™.

The error in each rotation angle is taken to be approximately 1 µRad (≈

O(10−6)), the error expected from the attitude sensors utilized by the IceSAT-2

mission, one of the most advanced currently available [38]. Utilizing this error

size and the orders of magnitude of the total ENU gravity gradient values listed

in equation 3.4, the order of magnitudes of the largest, and therefore overall,
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errors accompanying each of the diagonal SRF gravity gradient values are

calculated. For example, the XX gradient’s largest error comes from the GGNU

term - the true gradient value is O(100) and it is multiplied by a single rotation

error, introducing a gradient error that is O(10−6). This is larger than the error

introduced by, for example, the GGUU term, which has a larger true value

with O(103) but is multiplied by the square of a rotation error, introducing

a gradient error that is O(10−9). The same calculations are performed with

all terms in table 3.2, with the following being the orders of magnitude of the

largest error introduced along each SRF axis.

EGGXX
≈ O(10−6)

EGGY Y
≈ O(10−8)

EGGZZ
≈ O(10−6)

(3.18)

Comparing these error magnitudes with the time variable signal mag-

nitudes listed in equation 3.7, it is evident GGEE is the best option for data

collection. The signal along this axis is three orders of magnitude larger than

the noise expected, given pointing knowledge error of magnitude O(10−6) ra-

dians. The GGUU signal is only two orders larger than the associated noise,

and the GGNN signal only 1 order larger than the associated noise. Due to

this best signal to noise ratio, the EE gravity gradient value will provide the

most information for contribution to the estimation of gravity fields.
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3.5 Aliasing Error Realization

As described in P.F. Thompson’s dissertation [15], aliasing error in

gravity sensing is the result of differences between the Earth’s true gravity

field and the nominal model utilized in preparing partials for estimation from

collected observations. Certain time-variable aspects of the Earth’s gravity

field, particularly short-period effects, are not captured by current models to

a high degree of accuracy. Gravity fields recovered from observations through

the process described in section 2.3 thus contain error not only due to the

limitations of the instruments on the satellites, but also due to incorrect aspects

of the nominal field that must be used in the process of estimating the true

gravity field.

A separate set of simulations are conducted to model the effect of alias-

ing error on the hybrid QGG-SST architecture. In this set of simulations,

following the creation of observations and the addition of measurement and

instrument noise, partials are generated for the data with respect to orbits

integrated using a different gravity field than the truth field used to generate

the observations. For the construction of this other field (referred to herein

as the nominal field) the same base static gravity field - GIF48.2000.GEO -

is utilized. However, different models are included for various elements that

cause short-period variations in the gravity field, leading to slight differences

between the nominal and truth gravity models - making the nominal field

incorrect within the universe of the simulation.

The true and nominal gravity field models in the simulation are de-
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scribed in the following equation.

Gtrue(t) = G+ δGtrue(t)

Gnom(t) = G+ δGnom(t)
(3.19)

where

G is the static gravity field

δGi(t) represents perturbations due to time-variable potential

Through the least squares estimation process, an update to the nominal

gravity model is found such that measurement residuals are minimized. This

update is in the form of a set of constant corrections to each spherical harmonic

coefficient during the data span Ts. Effectively, the update the information

contributed by the simulated mission; it is represented below.

δĜ(Ts) = L{Yi − f(Gnom(ti)}, i = 1, . . .m (3.20)

where

δĜ(Ts) is the estimation update over the time span Ts

L is the linearized least squares problem

Yi − f(Gnom(ti)) is the observed minus computed, O − C, values

With real mission data, this update would include both desired infor-

mation about unmodeled phenomena causing temporal variations in geopo-

tential, such as hydrometeorology and ocean dynamics, and the time average
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difference between the Earth’s true gravity field and the nominal field. In

simulations, as these unmodeled phenomena do not exist in the truth field,

the update ideally should only contain the time averaged difference between

the two fields. However, this is not the case; error is introduced to the up-

date through measurement noise, inconsistencies between the true and nominal

fields and inherent limitations of the estimation process itself [15].

δĜ(Ts) ≈< Gtrue(t) > − < Gnom(t) >≈< δGtrue(t) > − < δGnom(t) >

(3.21)

The error (which is dominated by aliasing) is then the difference be-

tween the two sides of equation 3.21.

ε = δĜ(Ts)− (< δGtrue(t) > − < δGnom(t) >) (3.22)

As the exact time average difference between the true and nominal

fields can be calculated in the simulation, this difference can be removed from

the update. This permits direct calculation of aliasing error, ε, in equation

3.22. An understanding of the exact impact aliasing error has upon the hybrid

architecture during simulations will allow for more precise removal of this error

source while processing real data from a mission utilizing this architecture.
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Chapter 4

Configuration Parametric Study

4.1 Introduction

The simulations performed and analyzed in this chapter model a hybrid

gravity sensing architecture that collects both gravity gradient and satellite-

to-satellite tracking data, and will serve as a proof of measurement concept

for such a mission. The simulated architecture contains all of the instruments

from the GRACE-FO mission, which collects SST, and a QGG as developed

by Yu et al [4]. The simulation mission design maintains many aspects of the

GRACE missions, utilizing a constellation of two satellite in the same 500 km

radius near-polar orbit, separated by 220 ± 50 km [25, 1]. The simulation

procedure applies white noise to several types of instrument data in place

of real-life instrument error. The noise levels applied in simulations of the

GRACE-FO for the accelerometer and SST are maintained throughout all

simulations. The accelerometer full-scale range applied is 5× 10−5m
s2

and the

SST PSD is 0.08 µm
√
Hz, as described in section 3.2.

As shown through analysis in section 3.4, the SRF Y axis (equivalent

to the orbital cross-track axis) is the optimal pointing direction for the QGG,

minimizing contributions from error in pointing knowledge. This chapter, prior
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to discussion of full simulations, will review simulated gravity gradient data

collected along all three SRF axes to demonstrate the validity of this analysis.

This review will be performed with and without the application of noise in

the numerical simulations to the star camera (SCA) data, which, as the main

attitude determination instrument on board, contributes significantly to the

satellite’s pointing knowledge. SCA will serve in this study as a stand in for a

general attitude determination system.

The star camera instrument on each satellite simulated herein consists

of two separate star camera sensor heads, each of which collects and outputs

attitude data every five seconds. Noise is simulated and applied by first ro-

tating the true orientation to the frame of each star camera sensor head, then

corrupting that orientation data according to the PSD of the measurement

model applied. The information from each of the star cameras is then opti-

mally combined. Quaternion data and measurement noise from each sensor

head is rotated into the SRF, and the difference between the attitude orien-

tations reported by each are calculated as small angle values. This difference

is mapped to an optimal change from one of the sensor heads to represent the

rotation from the inertial frame to the SRF.

The necessity of a hybrid architecture that incorporates SST, QGG and

GPS data will be shown via the overall contribution of each data type to the

simulation results. It is shown through simulations that a mission utilizing only

QGG and GPS data will not be capable of outperforming GRACE-FO at the

simulation altitude of 450 km, as a crucial amount of information that would be
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gathered by the SST measurements goes uncollected by such an architecture.

It becomes evident that the QGG and SST measurements complement each

other; each is able to make unique contributions to the estimation of certain

spherical harmonic coefficients the other does not.

The simulations will be used to evaluate the performance of the hybrid

architecture subject to the three error types determined to be most likely to

limit its performance: QGG instrument error, pointing knowledge error and

aliasing error. SCA is used as the representation of pointing knowledge error in

these simulations. As with the other measurement noise types, QGG and SCA

error will be modeled with white noise. The architecture will be simulated at

varying levels of each of these error types. The primary metric for evaluation

of the results from these simulations will be degree difference variance (DDV).

DDV is a measure of how similar the gravity field resulting from the estimation

process is to the true gravity field used to generate the observation data. A

gravity field recovered by the estimation process is shown to be more similar

to the simulation’s true gravity field with smaller DDV values.

DDVl = a

√√√√ l∑
m=0

(Cest
lm − Ctrue

lm )2 + (Sestlm − Struelm )2 (4.1)

where

a is the average radius of the earth, 6378.136×106 mm

l and m are the spherical harmonic degree and order, respectively

Cest
lm and Sestlm are the estimated gravity field spherical harmonic values
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Ctrue
lm and Struelm are the true gravity field spherical harmonic components

Equation 4.1 describes DDV calculated with one cumulative value at

each spherical harmonic degree. Results will be given in this manner as well

as values at each individual degree and order combination, calculated via a

similar equation without the summation.

DDVlm = Cest
lm − Ctrue

lm (4.2)

The same is done for S coefficients. Results in this study are produced

out to degree and order 120. Scaling by the radius of the Earth attains the

geoid height error, which represents the contribution from terms of that degree

to the total global root mean square geoid error.

The models utilized for simulations investigating aliasing error are dis-

cussed. The results of these simulations are evaluated through both DDV and

the applicability of resulting gravity fields to smoothing, with the use of gravity

field maps for interpretation. As the hybrid architecture is expected to bring

about improvements specifically at small spatial scales, specific attention will

be given to the results at medium and high degree spherical harmonic values

- above degree 20. These values correlate directly with medium and small

spatial scales.
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4.2 Design of Parametric Study

The simulated orbits are set at the start of each day, or arc, of the simu-

lation with the initial conditions the GRACE satellites had in August of 2008.

This orbit is nearly polar, nearly circular and has an altitude of approximately

450 km. There are three types of parameters solved for: local, common and

global. Local parameters, such as SST biases, are estimated using only one

type of data from one arc. Common parameters, such as accelerometer biases,

are estimated using all data types from one arc. Global parameters, such as

the spherical harmonic coefficients, are estimated using all data types from all

arcs. Implementation of these varying parameter types is discussed in further

detail by Gunter [31].

4.2.1 Gradiometer and Pointing Knowledge Error Parameters

Given that that pointing knowledge maintains a high level of impor-

tance to the mission specifically because it directly impacts the accuracy of the

gradiometer measurements, this error source and the gradiometer error itself

are studied in tandem. Each of these sources of error are adjusted to varying

levels to establish an idea of how the architecture would perform with different

combinations of error from these two sources. The error levels tested for each

of these sources are based upon currently achievable and experimental/under

development levels of accuracy. The results of these simulations will be com-

pared to both each other and a simulated GRACE-FO mission: a simulation

which maintains all of the parameters (including the pointing knowledge) of
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GRACE-FO and does not utilize QGG data.

Pointing knowledge error is adjusted in these simulations via the SCA

noise levels, but pointing knowledge need not necessarily come from star cam-

eras. Any type of attitude determination system can substitute; star cameras

are simply the tools used by the GRACE missions. These star cameras do not

carry the same accuracy along each of their three axes, though the order of

magnitude along all three axes is the same. For this reason, pointing knowl-

edge error levels will be described by orders of magnitude, rather than exact

numbers. The noise levels employed by this study, as described by PSDs, are

listed in table 4.1.

Table 4.1: Pointing Knowledge Error Sqare-Root Power Spectral Densities

PSD (µRad/
√
Hz) Source

O(10) GRACE-FO Attitude Sensors
O(1) IceSAT-2 Attitude Sensors [38]
O(0.1) IRASSI Attitude Determination Estimator [39]

QGG noise at current technology levels, as mentioned in section 3.3.1,

can be expected to have a PSD in the range of 10-100 µE/rt(Hz), with tech-

nology currently under development expected to yield noise levels as low as 1

µE/rt(Hz) [36]. These three noise levels - 1, 10 and 100 µE/rt(Hz) - will be

utilized by this study. In following from section 3.3.2, the GGEE component at

altitude 450 km of the time variable gravity gradient signal is unlikely to ever

reach a magnitude of 100µE. The expectation is that the simulations limited
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by instrument noise (in which aliasing error is not applied) with a QGG noise

PSD of 100µE will provide no significant improvements over the GRACE-FO

mission. However, it is expected that with PSDs of 1µE and 10µE, the QGG

instrument will be able to collect meaningful data that will contribute to large

improvements over GRACE-FO.

4.2.2 Aliasing Study Modeling

As discussed in section 3.5, when creating simulations to study aliasing

error, the true gravity field model is different from the nominal gravity field

model, which is used to integrate orbits and create partials for estimation from

the noisy observation data. This mimics the mission reality that the gravity

field based on the best available knowledge at the time will not be a true

representation of the Earth’s gravity field, particularly not short-period time

variable aspects. This introduces aliasing errors to the update, which result

from the limited ability of the estimation process to reconcile the results of

these short period variations in the observation data due to the inadequacies

of the nominal field it is based upon.

The true and nominal fields are each synthesized from a variety of mod-

els. These models represent different aspects of the geopotential. For the static

field component, both the true and nominal field use the GIF48.2000.GEO

model. They use identical static gravity fields because the linearized least-

squares process is designed to provide a correction exactly equal to the dif-

ference between the true and nominal fields, which would tell us nothing new
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with regards to the static fields in these simulations. If a different estimator

were used for the simulations or the focus were on the effects of the omission of

higher degree terms, the two models would been created using different static

gravity fields.

It is in the models used for various sources of time variable gravity

that the true and nominal fields in the simulation differ. The models used to

construct both the true and nominal gravity field models in simulations for

this study are listed in table 4.2.

Table 4.2: Time Variable Gravity Models in True and Nominal Aliasing
Simulations

True Nominal

Ocean Tides GOT4.8 [40] FES2004 [41]
Atmosphere and Non-Tidal AOD1B RL05 [42] IB-NCEP [43]
Variability in the Oceans
Ocean Pole Tide Model Desai [44] Desai
Other Variability Over Land XBL [45] None
and Ice-Sheets

Model lists are as provided via private communication from Srinivas
Bettadpur [46] with descriptions accumulated in the GRACE CSR Level 2

Processing Standards Document [47]

XBL was constructed with a blend of information from GRACE and

land surface model data. This includes long period (annual, semi-annual and

secular) signals from GRACE and the GLDAS-1 model for high-frequency

temporal signals [48]. The process by which these were blended is described
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by Sakumura [45]. The true gravity model time average described in equation

3.21 for the aliasing simulations discussed in this chapter will be equal to the

mean of the sum of models in the first column.

4.3 Outcomes and Analysis

4.3.1 Validation of Gradiometer Axis for Pointing Knowledge Op-
timization

Through manipulation of the rotation between the SRF and ENU

frames in section 3.4, it was shown that the signal-to-noise ratio for gravity

gradient data is largest along the SRF Y axis, equivalent to the ENU E axis.

It was determined for this reason that the QGG instrument on the hybrid ar-

chitecture should collect data along this axis. Prior to analyzing gravity field

results from the simulations, this section will analyze the simulated gravity

gradient data to validate this conclusion.

The PSDs of the error present, the differences between the O and C

values, in gravity gradient data collected along each of the satellite’s three axes,

calculated in the manner described by Widner [49], are displayed in figures 4.1,

4.2 and 4.3.
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Figure 4.1: Smoothed Power Spectral Density of Monthly Average Gravity
Gradient Error along SRF X Axis

Figure 4.2: Smoothed Power Spectral Density of Monthly Average Gravity
Gradient Error along SRF Y Axis
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Figure 4.3: Smoothed Power Spectral Density of Monthly Average Gravity
Gradient Error along SRF Z Axis

These PSDs are calculated with errors averaged over a full month of

simulated data collected. As the majority of X and Z terms are between

0.02 and 0.008 mE/rt(Hz) while the Y terms are between 10−2 and 10−4

mE/rt(Hz), it is clear upon inspection that the error along the Y axis is less

impactful than the error along the two other axes, as expected. Along all three

axes, there is a once per revolution spike due to slight errors in the calculated

orbit. Having confirmed this to be the case, the results of full simulations with

QGG data collected along the SRF Y axis may be discussed.
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4.3.2 Hybrid Architecture Data Contribution

Results contained in this section come from four varying architectures.

Those architectures collect and estimate using the following combinations of

data types: GPS only, SST+GPS, QGG+GPS, and SST+QGG+GPS. Re-

sults from each of these architecture, analyzed individually and in comparison

to each other, make evident the benefit of a hybrid architecture that utilizes all

three data types to outperform the GRACE-FO mission. All simulations ana-

lyzed in this subsection are performed with 1 µRad pointing error. Simulations

which include QGG data are performed with 1µE QGG error.

Figure 4.4: All Architecture Type Comparison

Via figure 4.4, it is immediately evident that the GRACE-FO architec-

ture (SST+GPS) performs much better than the QGG+GPS architecture, but

69



is inferior to the hybrid architecture that uses all three data types, particu-

larly at medium and high degree spherical harmonics. The GPS only solution

is vastly inferior to all others.

Figure 4.5: All Architecture Type Comparison (Triangle Plots), (a) GPS
only, (b) QGG+GPS, (c) SST+GPS and (d) SST+QGG+GPS
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The coefficient difference values for each architecture at individual spher-

ical harmonic coefficients in figure 4.5 provide further clarity into the ways the

architectures compare with each other. In these plots, blue signifies small DDV

- the estimated values are very close to the corresponding true field values, so

the noise did not move the estimation far from the truth and these are well

determined harmonics. Red signifies large DDV - the estimated values are

far from the corresponding true field values, so the noise moved the estima-

tion far from the truth and these harmonics are not as well determined. The

QGG+GPS case performs particularly well with sectoral and near-sectoral

harmonic values, but fails to provide adequate information for quality estima-

tion of the zonal terms. The SST+GPS case is just the opposite; it performs

well with zonal and near-zonal tesseral terms, but fails with all sectoral terms

and with near-sectoral tesseral terms higher than degree 50.

The benefits of both of these cases carry into the hybrid architec-

ture. With all three data types, this case recovers zonal terms as well as

the SST+GPS case and sectoral terms as well as the QGG+GPS case.
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Figure 4.6: Contribution Towards Hybrid Architecture Results from (a)
QGG and SST Data Combined, (b) QGG Data andd (c) SST Data

The plots in figure 4.6 show the contribution of each data type to the

estimated field of the hybrid architecture. The data contained within these

plots is not DDV, but a variation on the DDV. This data is still calculated

via the form of equation 4.2, but rather than subtracting the true harmonic

coefficient values from the estimated values, it subtracts the estimated coef-

ficient values of one case from the estimated coefficient values of another, as

such. Absolute values are shown.

DDVlm = Chyb
lm − C

contr
lm (4.3)

where

Chyb
lm is the spherical harmonic coefficient estimated by the hybrid ar-

chitecture

Ccontr
lm is the spherical harmonc coefficient estimated by the simulation
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using the data types not included in the contribution

This means that, for plot (a), the calculation of the contribution of

QGG and SST combined involved subtracting from the hybrid estimation the

GPS only estimation, and so on. In this case, blue means the contribution of a

data type is low at that harmonic value, while red shows a high contribution.

This data confirms the conclusions drawn from 4.5. The QGG data

makes the greatest contributions at the sectoral and near-sectoral tesseral

values, while the SST data makes the greatest contributions at zonal and

near-zonal tesseral terms. These results also confirm those collected by Yi

and Rummel; in a gravity field recovered with SST data and gravity gradi-

ents collected along all three axes, they also showed the Y Y gradient values

contributed the most to sectoral and near-sectoral tesseral values [22].

It is because of this way in which the QGG and SST data complement

each other - each contributing to sections of the spherical harmonic field the

other can not - that a future mission incorporating an atomic interferometer

gravity gradiometer must retain the ability to collect SST data. While the

QGG data will provide never before collected information about the Earth’s

time variable gravity field, the SST data will still be needed to properly recover

the full gravity field at 450 km.

4.3.3 Gradiometer and Pointing Knowledge Error Results

The following results are compared to a simulation with the specifica-

tions of the GRACE-FO mission (no QGG data, O(10µRad pointing error) and
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the requirements which were imposed upon the GRACE-FO mission. These

requirements are included for reference only - any requirements upon a future

hybrid QGG-SST mission are likely to be more stringent. Results at each level

of QGG noise are collected with to display performance of each of these error

levels and make clear the impact of the pointing knowledge error.

Figure 4.7: Hybrid Architecture with 100µE QGG Noise Simulation Results
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Figure 4.8: Hybrid Architecture with 10µE QGG Noise Simulation Results

Figure 4.9: Hybrid Architecture with 1µE QGG Noise Simulation Results
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It is evident, via figure 4.7, that a hybrid architecture with 100µE

QGG noise can make only insignificant improvements upon the performance

of the GRACE-FO mission, as expected. At this level of QGG noise, there

is no differentiation between the results with varying amounts of pointing

knowledge noise. At this noise level, the QGG noise is the limiting factor for

improvement.

Performance improves significantly with only 10µE of QGG noise. All

simulations in this case perform notably better than GRACE-FO, particularly

at medium and high degree spherical harmonics. The cases with 1µRad and

0.1µRad pointing error show improvement over the case with 10µRad pointing

error, but are not different from each other. This implies that, with this level

of QGG noise, the pointing error is the limiting factor of the performance at

10µRad, but at 0.1µRad, the QGG noise is the limiting factor.

Figure 4.9 shows the simulations with the best case QGG noise, 1µE.

The cases with 1µRad and 0.1µRad are noticeably different at this point -

with this level of QGG noise, the pointing knowledge is still the limiting factor

with a PSD of 1µRad. The absolute best case scenario - 1µE QGG noise

and 0.1µRad pointing knowledge noise - has a DDV approximately an entire

order of magnitude better than the GRACE-FO case at all medium and high

spherical harmonics.
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Figure 4.10: Hybrid Architecture with O(0.1µRad) Pointing Knowledge
Noise Simulation Results

Figure 4.10, which collects the results of all the simulations with 0.1µRad

pointing error, allows for clarity that with this best case pointing knowledge,

the QGG error is the limiting factor with both 10 and 100µE noise levels. With

the same attitude determination system set to be installed on the IRASSI mis-

sion [39], the QGG will be the limiting factor of the mission at all currently

achievable levels of QGG noise. Therefore, with this current best case pointing

knowledge error, further development of the QGG instrument to 1µE noise or

better between the time of this study and the launch of a future hybrid QGG-

SST mission will be sufficient for improved overall result accuracy.
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Figure 4.11: Hybrid Architecture with 100µE QGG Noise Simulation Results
(Triangle Plots) with (a) 10µRad , (b) 1µRad and (c) 0.1µRad of Pointing

Knowledge Noise

Figure 4.12: Hybrid Architecture with 10µE QGG Noise Simulation Results
(Triangle Plots) with (a) 10µRad , (b) 1µRad and (c) 0.1µRad of Pointing

Knowledge Noise
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Figure 4.13: Hybrid Architecture with 1µE QGG Noise Simulation Results
(Triangle Plots) with (a) 10µRad , (b) 1µRad and (c) 0.1µRad of Pointing

Knowledge Noise

The plots in figures 4.11, 4.12 and 4.13 confirm the results and in-

terpretation of figures 4.7, 4.8 and 4.9. Additionally, these plots allow for

interpretation of which specific spherical harmonic values move closer to the

truth with smaller amounts of QGG and pointing knowledge noise. Improving

from 10µRad to 1µRad pointing knowledge error with either 10µE or 1µE

QGG error, most major improvements are located at middle degree tesseral

and sectoral harmonic values. There is little improvement made at zonal or

near-zonal tesseral values, which are well determined in all cases at low and

middle degrees. With 1µE QGG noise, an improvement in pointing knowl-

edge from 1µRad to 0.1µRad is accompanied by major improvements in the

determination of sectoral and near-sectoral tesseral values at high degrees. As

stated previously, improvement with the determination of middle and high
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degree values is the goal of the hybrid architecture.

4.3.4 Aliasing Study Results

The information contained in figure 4.14 comes from a series of simu-

lations applying aliasing error through the models described in section 4.2.2.

All of these simulations were performed with 1µRad pointing error. One of

the simulations contains only SST and GPS data; the other three each contain

QGG data, one for each of the QGG noise levels listed in section 4.2.1. The

DDV values contained in these plots were calculated after the removal of the

ideal correction, the time averaged difference between the true and nominal

fields. Therefore, the values in these plots are the aliasing error as described

in equation 3.22.
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Figure 4.14: Aliasing Error with 1µRad Pointing Error and (a) No QGG
Data, (b) QGG Noise 100µE, (c) QGG Noise 10µE and (d) QGG Noise 1µE

Though the aliasing noise is of a larger magnitude than the measure-
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ment noise, the pattern of improvement which accompanies improvements in

the QGG instrument are the same. Plots b, c and d of figure 4.14 look very

similar to the b plots in figures 4.11 through 4.13, which have the same 1µRad

pointing noise and descending QGG noise values. There are also some impor-

tant differences that should be noted. The 100µE case, which added little to

the simulations without aliasing, is noticeably better than the SST+GPS case

at reducing aliasing noise. It is still the case that major improvements are

made in the estimation of high degree sectoral and near-sectoral harmonic val-

ues when the QGG noise level decreases from 100µE to 10µE. However, there

is very little difference between the cases with 10µE and 1µE QGG noise. In

the results at this pointing noise level, this jump in QGG noise made a small

but certain notable difference. Aliasing noise appears to cancel out that effect

so that, with 1µRad pointing noise, a QGG with 1µE noise does not provide

an advantage over one with noise 10µE.

It is interesting to see the striping around spherical harmonic order 15

reduced significantly with the inclusion of the two more accurate levels of QGG

data. This striping is due to a resonant frequency of the orbital motion, as

sensed by the satellite tracking data. Order 15 (and all multiples of it, though

these additional stripes are less visible in plot a) corresponds to a division of

the geoid into sectors with a size that matches up with that resonant frequency,

reducing the accuracy of estimation at these orders with only SST and GPS

data. However, the distance does not correspond to a resonant frequency for

the QGG data. Plots c and d in figure 4.14 make clear that accurate QGG
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data, in addition to improvements in estimation of sectoral values, drastically

reduces this striping effect. It does not completely erase this effect; as the

main contribution of the QGG data is concentrated in the high degree sectoral

values, it seems that they don’t provide quite enough information to completely

negate these effects, as the effects are mostly with harmonics nearer to zonal

than sectoral.

Figure 4.15: Aliasing Error Geoid Height Maps with 1µRad Pointing Error
and (i) No QGG Data, (ii) 100µE QGG Noise, (iii) 10µE QGG Noise, (iv)

1µE QGG Noise, Smoothed to (a) 150km, (b) 200km and (c) 300km
Resolution

The striping present in figure 4.15 is assessed qualitatively. This reduc-

tion in aliasing error created by the inclusion of QGG data allows for smoothing

to dealias at finer resolutions. The case with no QGG data included requires

a large resolution for the complete removal of striping. Even at the largest
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resolution tested, 300km, plot c-i in figure 4.15 still contains notable stripes.

However, when QGG data is included with noise levels at either 10 or 1µE,

smoothing at resolution 200km is enough to completely remove stripes from

plots b-iii and b-iv. With 1µE QGG noise, smoothing at the fine resolution of

150km is enough to remove nearly all striping in plot a-iv.

Smoothing works well to dealias solutions, but it is accompanied by

the inherent danger of discarding of useful signal alongside the aliasing error.

This danger is particularly relevant to the hybrid architecture mission, which

is focused on detecting time variable gravity signals that take occur over small

spatial scales; if it were necessary to smooth across large spans to dealias these

solutions, it is likely that this desired information would be smoothed out as

well. By allowing for dealiasing at finer resolutions, the QGG data makes it

more likely that all of the information about the time variable gravity field

collected by the mission is retained through this lesser smoothing process.

It is clear to see, generally, that the inclusion of QGG data decreases

the amount of aliasing noise present, particularly in sectoral and near-sectoral

tesseral values. The exact contribution of SST and QGG are detailed in the

following images. As with the contribution analysis in section 4.3.2, the sim-

ulations displayed and discussed in the following images all have a pointing

error of 1µRad and, when QGG data is included, QGG noise of 1µE.
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Figure 4.16: All Architecture Type Comparison (Triangle Plots) with
Aliasing, (a) QGG+GPS, (b) SST+GPS and (c) SST+QGG+GPS

Displayed in figure 4.16 are the results of differnet architectures with

aliasing error applied. These plots bear a resemblance to plots b, c and d from

figure 4.5 but present some very noticeable differences. Striping effects due to

resonances are far more noticeable in both plots a and b, but damp out sig-

nificantly in plot c. As the stripes are due to an orbital resonance frequency,

it appears that overall the more non-GPS data present, the less significant

the striping. The QGG+GPS and SST+GPS cases both perform worse indi-

vidually than their counterparts without aliasing error at high degrees. The

full hybrid architecture, however, appears to maintain an accuracy level at

these high degrees that is only moderately worse than its counterpart without

aliasing. It is still the case that the QGG+GPS simulation performs best at

sectoral and near-sectoral harmonics, and the SST+GPS case still performs

best at zonal and near-zonal harmonics
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Figure 4.17: Contribution Towards Hybrid Architecture Results with
Aliasing from (a) QGG Data and (b) SST Data

As with before, the contributions plots confirm the results of the in-

dividual architecture plots. The data in the plots in figure 4.17 is calculated

via equation 4.3, with blue indicating a low contribution and red indicating

a high contribution. These plots are similar to 4.6, with some of the same

differences noted in discussion of 4.16. The performance overall is worse than

cases without aliasing error, as expected, but the patterns of performance are

the same.
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Chapter 5

Conclusions

The study of the movement of water around the Earth is thousands of

years old. In the modern era, the continuation of this study is vitally important

as we enter a time of climate change unprecedented in the human era. Over the

past two decades, advancements in our understanding of time variable elements

of the Earth’s gravity field provided by the GRACE missions have led the study

of the water cycle into the 21st century. This study performs a proof of concept

for the continuation of the study of time variable gravity through a hybrid

mission architecture which combines the SST with precise gravity gradients

measured by a QGG. This study tested the hypothesis that the combination

of these two types of data (and GPS) would allow for improved gravity field

recovery, in particular with small and medium scale spatial variations. The

contributions from each data type and the effects of major sources of error are

simulated and analyzed with the architecture in a GRACE-FO like orbit with

most instruments maintaining GRACE-FO accuracy levels.
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5.1 Summary of Results

As expected, a hybrid architecture was shown to significantly improve

gravity field recovery when simulated at an altitude of 450 km; the conclusions

discussed in this chapter are valid for this chosen orbit and all of the associated

assumptions. This improvement was particularly notable with medium and

high degree spherical harmonic values, which correspond directly to medium

and small spatial variations, respectively. Without aliasing error, low de-

gree estimates are not improved, as the contribution analysis shows the QGG

adding little information in this region, and therefore the architecture has little

advantage at degrees below 50. With aliasing error, estimates of coefficients

at degrees as low as 20 are improved. The main contributions of the QGG

data are in sectoral and near-sectoral tesseral spherical harmonic terms; the

majority of contribution to zonal terms continues to come from the SST data.

This contribution analysis is evidence of the necessity to pair the QGG on a fu-

ture mission with SST measurements, as opposed to a mission solely collecting

QGG data.

The pointing and gradiometer error analysis confirms that these are the

error sources, outside of aliasing, that present the most immediate challenge

to the accuracy of the gravity field recovery. The gradiometer, of course, is

the main difference between the hybrid mission simulated and the GRACE-FO

mission; with too much gradiometer noise present, the mission would be effec-

tively no differnet than GRACE-FO. The pointing knowledge error was shown

to be prominent due to its direct impact upon the gradiometer measurements.
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Possible levels of attitude determination noise were studied in search of accu-

racy levels necessary to bring the associated gradient errors to levels similar to

QGG noise. This similarity of scaling allows either of these measurements to

be the limiting factor for a given simulation with defined noise levels. When

gradiometer noise is 100µE, it does not matter what the pointing knowledge

accuracy is among the levels tested, as the gradiometer is not accurate enough

in itself to make an impact on the estimation of the gravity field. This stands

in contrast to a scenario with gradiometer error 1µE; such a gradiometer is

accurate enough to force all tested attitude determination methods to be the

limiting factor of the mission.

The best noise levels tested for both the gradiometer (1µE) and the

attitude determination system (0.1µRad) are both currently developmental.

As the benefit target of the gradiometer must take into account what is feasible

with the available quality of pointing knowledge and vice versa, the pairings of

these best case noise levels with other levels of the other noise type are closely

considered. In a scenario in which an attitude determination system with a

PSD of 0.1µRad/
√
Hz is ready but a gradiometer with a PSD of 1µE/

√
Hz is

not, this advanced attitude determination would provide little to no advantage

over the 1µRad system currently on the IceSAT-2 mission. This is also the case

in a scenario in which a 1µE gradiometer is available but a 0.1µRad attitude

determination system is not. When aliasing error is included in simulations

run with 1µRad pointing error, this is little difference between the cases with

1µE and 10µE gradiometer error, as the aliasing and pointing error combine
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to become a limiting factor.

To provide measurements accurate enough to impact the estimation

process, the gravity gradiometer must have a very long interrogation time and

a very long arm length, given the current state of the technology. While it

is feasible to design the instrument in this manner, it is possible that fitting

such an instrument on a satellite will create a significant design challenge in

the future. It is possible that the technology will be improved in the coming

years to allow for similarly accurate measurements at a reduced footprint.

The advantage of pointing the QGG along the orbital cross-track axis

confirmed evidence presented by Yi and Rummel [22]. Simulation results

showed that the gravity field estimation performed better with the gradiometer

pointed along the cross-track; the derivation in section 3.4 explains why this is

the case. With this mathematical reasoning and the noise PSDs discussed in

section 4.3.1, it is unequivocally clear that the SRF Y-axis is the best option

for collecting data with the QGG in order to minimize the effect of pointing

error at 450 km altitude.

Finally, the study of aliasing provided evidence that the inclusion of suf-

ficiently accurate QGG data would reduce aliasing error. This error reduction

impacted the estimation of both the sectoral and near-sectoral tesseral values,

as in the cases without aliasing error, and the stripes at harmonic order 15

and its multiples caused by an SST resonant frequency. This overall reduc-

tion in aliasing error allows for the smoothing of the results to be adequate

at finer resolutions than needs to be applied to GRACE-FO. Smoothing over
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these smaller distances decreases the chance that the smoothing will remove

the desired information, the effects of time variable gravity. Given that the

hybrid mission is intended specifically to detect time variable effects at smaller

spatial scales than GRACE-FO, this finer smoothing resolution is particularly

important, and again shows that this architecture concept for a future gravity

sensing mission would be a significant step forwards from GRACE-FO.

5.2 Recommendation for Future Analysis

As this study is meant to serve only as a proof of measurement concept

for a hybrid QGG-SST architecture, it focused only on the major concerns

surrounding such an architecture. There are many other details of this archi-

tecture - such as the accelerometer, the orbit, the integration of the gradiome-

ter instrument on the satellite, etc. - that will require further investigation

before this architecture can be implemented. The assumption that a mission

utilizing this architecture would fly with all of these details exactly the same

as the GRACE-FO mission served well for investigating the more pertinent

details of gradiometer, pointing and aliasing error and the contribution from

the data types. However, it is possible that changes in these aspects of the

mission, large or small, may prove to provide some amount of benefit which

was outside the scope of this study.

The methods by which the simulations in this study were run were at

times tedious. These methods fit well within the classical definition of a sim-

ulation, allowing for an advanced understanding of how a hybrid architecture
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will perform without direct testing. As the industry pivots towards DevOps,

wherein the simulations and operations of satellites are performed via soft-

ware while the engineers focus on the creation of blocks of code which can be

reused and reorganized by that software [50], the simulation schema at CSR

will prove convenient. MSODP and AESoP are, effectively, already large code

blocks of this manner that are developed and maintained by the engineers at

CSR. Therefore, a significant step towards DevOps has already been taken

by CSR. The main addition necessary for a complete transition is software

capable of utilizing these code blocks in the various necessary ways to create

the simulations such as those discussed in this study without the intervention

of the engineers.

This study demonstrates that a future mission with a hybrid QGG-

SST architecture would be a good choice for continuing on from the GRACE

missions, maintaining and improving upon their capabilities for detecting time

variable gravity and understanding the movement of water across Earth.
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Appendix A

Least Squares Estimation Algorithm

The AESoP code, designed for use at The Center for Space Research,

runs a batch least squares filter to complete the gravity field estimation process.

The process is described here, and can be found in greater detail in Tapley

[28]. The equations of motion for a satellite are described in equation A.1.

Ẋ = F (X, t), X(tk) = Xk (A.1)

where

X is an n-dimensional state vector

F is a non-linear n-dimensional vector function describing the system

dynamics

X0 is an n-dimensional initial state vector

The state is related to the observations, Y (p-dimensions), by a model

G. The observations are discretized. Error ε is introduced as the model is not

a completely perfect representation of the relationship between the state and

the observations.
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Yi = G(Xi, ti) + εi, i = 1, ...l (A.2)

Generally speaking, p < n. m, the total number of observations, is

equal to p × l > n [28]. To allow for proper linearization, it is best for the

nominal trajectory X to be close to the reference trajectory X∗ throughout

the entire time period during which observations are made. This allows for

expanding the motion of the satellite into a Taylor series over the course of

its trajectory about the reference trajectory, thus describing the motion as

a set of differential equations. This method can be used to create a linear

relationship between the state and the observations. Differencing the nominal

trajectory and the reference trajectory determines the deviations from the

reference trajectory; successive iterations of changing the state parameters

ideally lead to the deviations getting smaller, eventually producing a converged

orbit resembling the reference trajectory [30]. Models for these deviations can

be described as in equation A.3.

x(t) = X(t)−X∗(t), y(t) = Y (t)− Y ∗(t) (A.3)

Substituting the parts of equation A.3 into equations A.1 and A.2 al-

lows them to be functions of the deviations in the state and observations,

respectively. Taylor series expansion and truncation by remomving higher or-

der terms (under the assumption that those terms are much smaller than the

first order terms) allows for these formulas to become linear approximations,
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as mentioned above [28].

ẋ(t) = A(t)x, x(tk) = x(k)

yi = H̄ixi + ε, i = 1, ...k
(A.4)

H̄i is a p × n dimensional linear relation between the state and obser-

vation at time i

A(t) =
∂F (X∗, t)

∂X
(A.5)

H̄i =
∂G(X∗, t)

∂X
(A.6)

This completes the replacement of the original non-linear problem with

an approximately equivalent linear estimation problem. The state can be

propagated as shown in equation A.7. The state transition matrix, used in

propagation, is defined by equation A.8.

x(t) = Φ(t, tk)xk (A.7)

Φ̇(t, tk) = A(t)Φ(t, t0), Φ(tk, tk) = I (A.8)

All parts i of the observation component of equation A.4 are consoli-

dated into equation A.9.
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y = Hxk + ε, y =

y1...
yl

 , H =

H̄1Φ(t1, tk)
...

H̄lΦ(tl, tk)

 , ε =

ε1...
εl

 (A.9)

y and ε are m × 1 vectors, xk is an n × 1 vector and H is an m × n

mapping matrix. This is a system of m equations with n unknowns; because

in this study there are more observations than estimated parameters (as with

most orbit determination problems) the system is over-determined.

Given the intention to find an estimate of the state x so that the error

is minimized, the performance index described in equation A.10 is utilized

[51, 52].

J(x) =
1

2
εT ε (A.10)

Substituting equation A.9 into equation A.10 yields the following ex-

pression for the performance index.

J(x) =
1

2
(y −Hx)T (y −Hx) (A.11)

The conditions for a unique minimum of this expression are described

in equation A.12.

∂J

∂x
= 0, δxT

∂2J

∂x2
δx > 0 (A.12)

97



for all δx 6= 0. Due to the second (sufficient) condition in equation

A.12, it is evident that the second derivative of J must be positive definite.

Determining the full expression for conditions described in equation A.12 with

equation A.11 yields the following.

∂J

∂x
= −(y −Hx)TH = 0 (A.13)

∂J

∂x2
= HTH (A.14)

With the sufficient condition met in equation A.14 as long as H is full

rank, equation A.13 can be rearranged to show the best estimate of the state,

x̂, is as given in equation A.15.

x̂k = (HTH)−1HTy (A.15)

However, as some observations are preferred over others, it is necessary

to introduce a method for weighting some over others. This is done by in-

troducing an associated weighting matrix, W , into the performance index in

equation A.10.

J =
1

2
εTWε (A.16)

where W is a diagonal matrix of dimensions l × l. The values along

the diagonal, wi, are values between 0 and 1, representing the weight given to
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observation i. The new formulation of the least squares solution then becomes

the following.

x̂k = (HTWH)−1HTWy = PkH
TWy (A.17)

where

Pk is the variance-covariance matrix (so long as W is properly selected)

Pk is a representation of the accuracy of the estimate x̂k. Larger values

in Pk imply a less accurate estimate.
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