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A New Upscaling Method for Flow Simulation of

Fractured Systems

Supervisor: Kamy Sepehrnoori

Fractured reservoirs have gained continuous attention in oil and gas in-

dustry since a huge amount of reserves are stored in such reservoirs. Fractures

add complexity in reservoir models and thus have potentially large effects on

the reservoir simulation results. Though a lot of fine scale fracture models

for reservoir simulation have been developed to capture the fracture effects,

they are generally complicated and time consuming for the cases with large

number of fractures and problems (for example, some inverse problems and

optimization problems) where lots of forward simulations are required.

Upscaling is a method to fasten the flow simulations by constructing

reduced models in coarse scale to approximate the original fine scale models. It

is important to construct coarse models in a proper way since the approximated

models will generate errors as opposed to the fine scale models. Therefore,

a new upscaling method is proposed in this work to capture the effects of

fractures in fractured reservoir.
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First, two hypothetical flow problems are presented to provide pres-

sure solutions for calculation of parameters in coarse models. Unsteady state

method, one of these two flow problems, is firstly introduced in this work to

obtain reasonable pressure solutions for reservoirs without source term. Sec-

ond, we developed two partitioning methods to associate coarse grids with

fine grids. Since these two partitioning approaches are suitable for different

types of fracture networks, we proposed a multi-level partitioning method that

is a general approach and could capture fracture effects of different fracture

patterns. Third, we developed an efficient time-stepping algorithm for the un-

steady state problem to reduce the computational efforts of upscaling process.

The applicability of the new upsclaing methodology is verified from

numerical tests of different types of reservoirs with different fracture patterns

and well configurations. Errors of pressure solution, oil saturation, and pro-

duction solutions are generally limited below 5% in coarse scale. Furthermore,

speedup of simulation is significant in all of the presented numerical tests.
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Chapter 1

Introduction

1.1 Background

Flow simulation for fractured porous media is highly important since

nearly 60% of hydrocarbon reserves are in fractured reservoirs. Besides oil

production, fractures are also included in many other geological systems, such

as heat extraction in geothermal reservoirs [22, 52] and contaminant transport

in groundwater flow [9, 30]. The high contrast in permeability between frac-

tures and matrix makes the fine scale simulation expensive and challenging.

Difficulties of flow simulation in fractured systems also stem from different

scales, conductivities (high conductivity as hydraulic fractures or low conduc-

tivity like natural fractures), patterns (sparsely distributed fractures or densely

interconnected fractures), and complex geometries of fractures.

Though fine scale fracture modeling has been largely developed to cap-

ture flow behaviors associated with fractures, it requires too many extra frac-

ture grids for geological formations with numerous number of natural fractures

(see Figure 1.1). Different scales and complex geometries of fractures may also

add the complexity of the modeling and computational efforts. Moreover, to-

day’s iterative modeling workflows require many simulations of the forward
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problems, for example, in some inverse problems, uncertainty quantification

problems and optimization problems. Fine scale simulation may not be appli-

cable under such conditions, and approximating models are therefore needed

to lessen the computational efforts.

Upscaling is a way to construct approximate models by coarsening the

fine grids and generating new parameters for coarse grids to solve the time-

consuming issue in fine scale simulations. But conventional flow-based upscal-

ing approaches have some limitations for the application in fractured systems.

Firstly, hypothetical flow problems proposed for this upscaling method are all

steady state problems, which may not suitable for the no-source systems (such

as the reservoir with no-flow boundaries and only production wells). Besides,

although aggregation methods for matrix grids have been studied, research

on how to aggregate fine scale fracture grids to coarse scale is limited. Since

fracture has relatively high permeability than its neighboring matrix, how to

aggregate those fractures may have large effects on the final flow simulation

results.
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Figure 1.1: An example of reservoir with numerous natural fractures (source:
https://www.golder.com/).

1.2 Objectives

Base on the problems described above, the objectives of this research

are

• Form a non-intrusive upscaling framework for fracture reservoir systems

to generate reduced order models for the coarse scale modeling, which

could still generate relatively accurate results compared to the fine scale

simulation.

• Apply the embedded discrete fracture model (EDFM) to form fine scale

models to speedup the upscaling process.
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• Establish new upscaling methods appropriate to different fracture pat-

terns, different reservoir conditions and well configuration by extending

flow-based upscaling approaches. Besides, using numerical tests in dif-

ferent scenarios to verify the applicability, accuracy and efficiency of the

proposed upscaling method.

1.3 Brief description of chapters

In Chapter 2, a literature review of reservoir simulation methods for

fractured systems and and some reduced models for such systems are pre-

sented. In Chapter 3, the governing equations and fines scale discretized sys-

tem is described. Then the upscaling methodology for flow simulation in frac-

tured reservoirs is introduced in Chapter 4. Numerical tests are presented in

Chapter 5 to verify the proposed upscaling method. Finally, conclusions and

recommendations for future work are presented in Chapter 6.
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Chapter 2

Literature Review

2.1 Fine scale flow simulation models of fractured sys-
tems

Much efforts have been devoted to the development of fine scale flow

simulation models associated with fractures in porous media. Although differ-

ent methods vary between each other, most of them can be categorized into

three models: dual-porosity /dual-permeability models (DP/DK model), dis-

crete fracture models (DFM) and embedded discrete fracture model (EDFM).

2.1.1 Dual-porosity and dual-permeability models

Dual-porosity and dual-permeability model (DPDK), firstly proposed

in [6] and then developed by [54], has been used for a few decades. Flow trans-

fer function are defined between fractures and matrix in such models, and a

lot of studies have been conducted to improve their applicabilities and efficien-

cies in [36, 48, 39, 47]. Due to various assumptions are always related to the

transfer function, the dual-porosity and dual-permeability models , however,

are not appropriate for cases with disconnected fractures in [36] or with strong

gravity and viscous forces in [32].
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2.1.2 Discrete fracture models

Due to the large error introduced in DPDK models, discrete Fracture

Model (DFM) was developed, which typically deploys unstructured grids to

explicitly represent fractures and matrix. DFM is among the most accurate

methodologies to simulate flow in fractured systems since it describes proper-

ties of fractures directly. Due to high computational cost of DFM, its appli-

cation in real field application is still limited. Furthermore, this approach is

not suited for dynamic fracture problems, such as new fractures are generated

in refracturing/infill drilling technologies of stimulated reservoirs in [53] and

enhanced geothermal systems in [26], where updates of the fracture systems

are frequently needed.

2.1.3 Embedded discrete fracture models

Embedded Discrete Fracture Model (EDFM), as a comprise, using

structured grids to honor the accuracy of DFM while saving the computa-

tional costs. The 3D application of the model is firstly presented by Moinfar

et al. in [42]. For a matrix grid and each fracture segment within the matrix

grid, EDFM computes a transport index (transmissibility) between them by

assuming that the pressure around the fracture is linearly distributed, and that

the pressure gradient is the same in both sides of the fracture. The accuracy

and efficiency were verified both by synthetic cases in [13, 55] and by field

simulation cases in [20]. Recently, the EDFM method was further extended to

modeling dynamic behaviors of fractures in [56] and impermeable flow barriers

6



in [1].

2.2 Reduced models for flow simulation in fractured sys-
tems

Though fine scale fracture modeling has been largely developed to cap-

ture flow behaviors associated with fractures, it requires many extra fracture

grids for geological formations with numerous number of natural fractures.

Different scales and complex geometries of fractures may also add the com-

plexity of the modeling and computational efforts. Moreover, today’s iterative

modeling workflows require many runs of the forward problems, for example, in

some inverse problems, uncertainty quantification problems and optimization

problems. Fine scale simulation may not be applicable under such conditions,

and approximating models are therefore needed to lessen the computational

efforts.

2.2.1 Multiscale methods

One way to reduce the model complexity is to use multiscale simulation

methods. During the last decade, different multiscale finite element (MSFE)

or multiscale finite volume (MSFV) methods have been proposed for fractured

systems. Hadi Hajibeygi et al. [26] proposed a MSFV method for fractured

porous media, in which only one additional degree of freedom (DOF) was in-

troduced for each interconnected fracture network and local functions were

introduced to capture the fractures at the coarse scale. Later, this method

7



was extended to unstructured grids in [12]. Matei Tene et al. [2] proposed an

algebraic multiscale method with embedded discrete fracture (F-AMS). This

method introduced the basis functions based on coarsening ration and consid-

ered four different coupling strategies. Furthermore, a multiscale restriction

smoothed basis (MsRSB) method was developed in the fractured media re-

cently by Swej Shah et al. [50]. The method partitioned grids representing

fractures into independent coarse grids and constructed the basis functions by

restricted smoothing to get stable and robust performance. J.R. Natvig et al.

[44] combined streamlines and multiscale simulation mimetic solver into a new

simulation approach.

2.2.2 Upscaling methods

Upscaling is another way to construct approximate models by coarsen-

ing the fine grids and generating new parameters for coarse grids to solve the

time-consuming issue in fine scale simulations. Coarse scale models for frac-

tured systems are constructed from two different approaches: single continuum

approach and dual-continuum approach. Single continuum approach merges

fractures and matrix into one continuum and calculates equivalent permeabil-

ity tensor for each assigned grid, for example, in [45, 10, 40, 46, 3, 37, 17, 23].

Oda tensor method [45], assigning only one DOF for a matrix grid and all frac-

tures in it, assumes that all fractures are connected, the imposed pressure for

each matrix grid linearly decreases and fractures exist sufficiently. As a result,

Oda’s method is limited to well-connected fracture networks due to not con-
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sidering different fracture scales and connectivity. Pozdniakov and Tsang [46]

applied self-consistent approach to obtain effective permeability of the frac-

tured system by assuming that fractures interact with matrix medium but not

directly with other fractures, which limited the method to cases with spatially

distributed fractures but not highly connected fractures. Single continuum

approach is limited to some certain fracture systems due to the assumptions

where it is based.

Another way to coarsen fracture-related models is the dual-continuum

approach. Flow based upscaling for fractured systems is the mostly used coars-

ening method and has been developed for the last decade. This method solves

a simple hypothetical flow problem (usually single phase flow) in fine scale,

then partitions fine scale fracture grids into coarse grids, and finally applies

the solution of the flow problem to calculate parameters of the coarse model.

For the hypothetical flow problems, different flow problems were solved either

locally or globally.

Choice of hypothetical flow problems is crucial in flow-based upscal-

ing framework since it determines the fidelity and thus the effectiveness of the

coarse model. During the last decade, different local or global single phase flow

problems have been applied to coarsen fine scale fractured models. Karimi-

Fard et al. [34] firstly applied pseudo-study-state flow problem (Poisson equa-

tion was solved) locally for each coarse region to calculate transmissibility

between matrix and fractures through it, and then employed steady-state flow

problem (Laplace equation was solved) for each neighboring coarse region pair

9



to account for flow between different coarse fractures blocks. Gong et al. [25]

then extended this local method by adding a local flow problem to account for

the gravitational forces in geological systems where gravity force dominates.

These local flow problems were further improved in [27, 21, 4] to enhance the

performances of the coarse fracture models. Since local method introduce error

by assigning assumed local boundaries and has to be frequently solved for each

coarse region and each neighboring coarse pair, the global flow problem was

introduced. Karimi-Fard et al. [33, 31] solved steady state single phase flow

problem globally by assuming flow boundaries to drive flow in each coordinate

direction, and then combined these independent solutions such that the local

pressure gradient aligns with the vector normal to interface between neigh-

boring coarse grids. The coarse model performances depend on the boundary

conditions used, according to [14]. Therefore, the result of the modeling may

highly depend on the boundaries, sources and sinks conditions prescribed to

the flow problem.

For the grid aggregation problem, different ways were conducted in

different studies. In [34, 25, 27, 21], a multiple sub-region (MSR) method is

developed, where

the entire model has been partitioned into several regions at first, then

only one DOF of fracture is assigned to each coarse region, and the matrix

continuum of this region is partitioned using the solution of flow problem solved

before (the number of coarse matrix grids in each coarse region is given as

input). This approach is limited to systems with highly and strongly connected

10



fractures. Subsequently, Gong [24] developed a combined method by using

MSR to deal with large and well-connected fractures, and applying DFM to

model distributed and disconnected fractures. Later, Fumagalli [4] improved

the MSR partitioning approach by using a recursive breadth-first search and a

splitting algorithm, which allow more than one DOF for fractures through each

coarse region. Another aggregation method used in [31, 28] gathers fractures

that are intersected for each coarse region.

11



3.1 Governing equations

In this section, we summarize the governing equations and fine scale

discretized system for the flow simulation considered in fractured porous me-

dia.

Three-phase black oil model is considered for both the fine and coarse

scales simulations. Without loss of generality, we assume that Ω ⊂ Rd (here we

only discuss d=2) is the entire simulation domain. Let Ωm denotes the matrix

domain, and Ωf = Ω\Ωm represents the fracture domain. The governing

equations for black oil model can be expressed as

φ
∂

∂t

(
Sg
Bg

+
RsoSo
Bo

)
+∇ ·

(
1

Bg

ug +
Rso

Bo

uo

)
= fg, x ∈ Ω, (3.1a)

φ
∂

∂t

(
So
Bo

)
+∇ ·

(
1

Bo

uo

)
= fo, x ∈ Ω, (3.1b)

φ
∂

∂t

(
Sw
Bw

)
+∇ ·

(
1

Bw

uw

)
= fw, x ∈ Ω, (3.1c)

where ρα, Sα, Bα and fα are the density, saturation, formation factor and

external source of each phase α ∈ {g, o, w}, respectively. Rso is the solution

gas oil ration, which represents the amount of gas dissolved in the oil at given
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condition. Velocity of each phase uα could be expressed in Darcy’s law:

uα = −krα
µα

K∇pα, α ∈ {g, o, w}, (3.2)

where K is the permeability tensor, µα, krα and pα are the viscosity, relative

permeability and pressure of phase α. In addition to equations 3.1 and 3.2,

the saturations of phases are constrained by

∑
α

Sα = 1 (3.3)

and the capillary pressure between different phases are defined by setting oil

phase as the reference:

pcα = pα − po, α ∈ {g, w, } (3.4)

where pco represents the capillary pressure of the gas phase, and pcw represents

the negative water phase capillary pressure.

The pressure equation is derived by combining the previous equations

with the pressure-volume-temperature (PVT) properties. The formulation and

detail derivation of pressure equation for black oil model can be found in [15].

3.2 Fine scale discretization

We split the matrix domain Ωm in uniform Cartesian grids with dimen-

sion Nm
x ×Ny. As for fractures, EDFM is used to construct the fracture grids

and their connections with the matrix grids. EDFM could deploy a structured

grid to represent each fracture segment partitioned by matrix grids in the

13



physical domain and then append the new grid (denoted as "embedded grid")

to the original matrix grids to form the computational domain. The volume

of the fracture grid equals to the physical volume of the fracture by adjusting

the porosity of the grid. The transition from upper layer to the middle layer

in Figure 3.1 is an example showing this process.

In the context of this thesis, we append the embedded fracture grids

in the x direction. Assuming that the matrix grids are distributed in the first

Nm
x columns in x direction, and the last N f

x columns of grids in x direction

are fracture grids, we have Nm
x +N f

x columns of grids in total and we denote

this number as Nx. We denote i as the 2D index point of each grid by

i := (i1, i2), i1, i2 ∈ Z.

Let I, Im and If be the index sets of all grid, matrix grids, and fracture grids

respectively, given by

I := {i = (i1, i2) : 1 6 i1 6 Nx, 1 6 i2 6 Ny},

Im := {i = (i1, i2) : 1 6 i1 6 Nm
x , 1 6 i2 6 Ny},

If := I\Im.

We also denote the physical domain of grid i as ωi and Ni as the index set of

each grid’s neighbors by

Ni := {j ∈ I : ωi ∩ ωj 6= ∅, j 6= i}.
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Here we apply Darcy’s law to two grids that have connection and define

the transmissibility between them as

Tij =
qij, α

kr α
µα

(p+ij, α − p−ij, α)
, ∀i, j ∈ I s.t. i ∈ Nj, j ∈ Ni, (3.5)

where qij, α is the volume flux of phase α between grid i and grid j, which

is positive. p+ij, α is the larger pressure of (pi, α, pj, α), and p−ij, α is the lower

pressure of (pi, α, pj, α). The transmissibility only depends on the permeability

and geometry of the computational domain considered.

Besides transmissibility between matrix grids, transmissibility involved

with fracture grids (also called "non-neighbor connections") are generally cat-

egorized into three types: T Innc is the transmissibility between fracture and

matrix it penetrates, T IInnc is the transmissibility between connected fracture

segments in each individual fracture, and T IIInnc is the transmissibility between

intersecting fracture segments. The formula to calculate transmissibilities and

the detail derivations of these formula can be found in [55].
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Type I

Type II

Type III

Figure 3.1: A sketch for illustration of embedded discrete fracture model. Upper layer:
the physical domain considered here has 9 fine matrix grids and 2 fractures intersected with
each other (green line and red line). Middle layer: the computational domain is constructed
by embedding three fracture grids to the original matrix grids. The green grids correspond
to the green fracture and the red one to the red fracture. Lower layer: extra connections
considered to take the effects of fractures. The blue arrows represent connections between
matrix and fracture grids, red arrow indicates connection between fracture segments in
an individual fracture, and the yellow arrow represents the connection between different
intersected fractures.
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In this section, the upscaling framework is presented by steps. Firstly,

we explained different hypothetical flow problems that could be deployed to

provide fine pressure solution. Then, we discussed different methods used to

agglomerate fine scale fracture grids in order to form the coarse scale fracture

girds. Parameters of the new system of coarse model are then discussed. At

the end of this chapter, we presented the implication approach of the time-

stepping method in unsteady state problem.

Two main procedures needed to be done are: constructing the coarse

grids and calculating the model parameters for new coarse system. Coarsening

grids is done by aggregating the original fine grids. How coarse is the new

model constructed and how the fine grids are agglomerated determine the

speed up and the accuracy of the simulation of coarse model. Besides, the

method for generating coarse model parameters also controls how close are

the simulation results as fine scale simulation.
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Chapter 4

Upscaling Methodology for Flow Simulation of 
Fractured Systems



4.1 Hypothetical fine scale flow problems

The fine scale pressure used for calculating coarse transimissibilities

are the solution of hypothetical single-phase flow problems. Different flow

problems, studied in the past few decades, would generate different coarse

scale transmissibilites. The performance of transmissibilies depends how the

boundary conditions and well conditions were applied. Generally, using real

boundary and well configurations could generate better coarse simulation re-

sults. For the simulation problem with both source and sink terms, steady

state solution exists when real boundary and well conditions are applied. But

for the simulation cases with only sinks (for example, the case with no-flow

boundaries and only production wells), the flowing of flow comes from the

compressibility of flow and no steady-state solution exits under such condi-

tions.

4.1.1 Steady state problem

By using real boundary and well conditions, a steady state solution

exists when the reservoir model has both the sink and source. The steady

state flow problem solved is

∇ · (K∇p) = r, (4.1)

where r is the source/sink term which stems from boundary and well condi-

tions. In most of the computational domain, the steady state problem solves

Laplacian equation. The discretized form of this problem is simply solved in

a system of linear equations.
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4.1.2 Unsteady state problem

For models with only sinks but no sources, the flowing of the fluid is

caused by the compressibility of the fluid. Here we introduce a time-stepping

method to involve the true boundary and well conditions and then to calculate

the coarse transmissibilites. The flow problem considered under such condition

is a slightly compressible single-phase fluid (for example, water) flow. The mass

conservation equation and Darcy’s law for such flow can be expressed as

∂(φρ)

∂t
+∇ · (ρu) = r, (4.2)

u = −K

µ
∇p, (4.3)

where r is the source/sink term and is positive when fluid flows in. We denote

the compressibility of rock and fluid as cf and cl. The density and porosity

can be calculated as

ρ = ρr[1 + cl(p− pr)], (4.4)

φ = φr[1 + cf (p− pr)], (4.5)

where ρr and φr are the referenced density and porosity under referenced

pressure pr and referenced temperature Tr.

For the accumulation term, we have

∂(φρ)

∂t
= φ

∂(ρ)

∂t
+ ρ

∂(φ)

∂t

= φ
dρ

dp

∂p

∂t
+ ρ

dφ

dp

∂p

∂t

= [ρrφrct + 2ρrφrclcf (p− pr)]
∂p

∂t
, (4.6)
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where ct = cf + cl is the total compressibility. Since the second term in the

above equation is too small compared to the first one (cl and cf usually have

the order of 10−6), we can approximate the accumulation term as:

∂(φρ)

∂t
= ρrφrct

∂p

∂t
. (4.7)

For the flux term, we have

∇ · (ρu) = ∇ · (ρr(1 + cl(p− pr)u))

= ρr∇ · ((1 + (p− pr)u)). (4.8)

The pressure equation can be finally derived by substituting the equations 4.7,

4.8 and 4.3 into equation 4.1:

ρrφrct
∂p

∂t
+ ρr∇ · ((1−

(p− pr)
µ

K∇p)) = r. (4.9)

Next, we use two-point flux approximation (TPFA) finite volume scheme

to get discretization of the above equation in the fine scale. We assume we are

dealing with the fine grid of index i at the (n+1)th time step. For accumulation

term, we have
ˆ
ωi

ρrφrct
∂p

∂t
dv =

ρrViφrct
4t

(pn+1
i − pni ), (4.10)

where 4t is the time step size.

By using Divergence Theorem, the flux term can be converted to
ˆ
ωi

ρr∇ · ((1 + (p− pr)u))dv =

˛
∂ωi

ρr(1 + (p− pr)u)ds

= −
∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)(pn+1

j − pn+1
i ). (4.11)
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Therefore, the discretized form of the equation can be derived as

ρrViφrct
4t

(pn+1
i − pni ) =

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ) +Ri. (4.12)

A system of linear equations is solved to obtain the fine scale pressure

solution at each time step. A realistic implementation problem associated with

this time-stepping method is how many time steps should be solved to get the

appropriate pressure solution to be used.

4.2 Coarse grids construction

In this section, we mainly discuss three agglomeration methods for

fractures grids from fine to coarse scale. The construction of coarse matrix

grids is out of discussion.

We note that no near-well upscaling is performed in our coarsening

framework. Extra upscaling procedure is always required when blocks near

wells are also expected to upscaled to coarse scale. The reason is that high

pressure gradient and multiple phase flow effects both add complications in

the near-well region. For example, the gas condensate may happen near wells

and have large effects on the gas productivity. Under such conditions, using

only the well index could not capture the phase behaviors. Many near-well

upscaling methods have been studied for practical simulation purpose, one

could refer to [19], [43] for some of these methods. In this paper, we do not

upscale the blocks intersected by wells.
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steady state problem unsteady state problem

injector
producer

∂p
∂n

= 0

∂p
∂n

= 0
∂
p
∂
n

=
0

∂
p
∂
n

=
0

Figure 4.1: An illustration of flow problems used for calculating coarse scale transmissibil-
ities. The steady state problem (upper left) is used for flow systems with both source and
sink (in this case, both injector well and production well exist). The pressure profile of this
problem (lower left) is the solution of the Laplacian equation. The unsteady state problem
(upper right) is used for flow systems with only sinks (in this case, the flow boundaries are
no-flow boundaries and only production well exists). The pressure distribution (lower right)
is the solution by solving equations of slightly compressible single-phase flow. Note that,
the pressure varies from high values (red) to low values (blue).

In this thesis, the structured coarse matrix grid size is generally deter-

mined by the averaged size of the matrix domain using the given number of

the coarse matrix grids (for example, see the "problem setup" in Figure 4.2).

For the near-well region, moderate size of grid is used as buffer to adjust the

abrupt change from coarse matrix grid to fine matrix grid. For each coarse

matrix grid I, we denote by ÎI the index set containing all the indexes of the

fine matrix grids in I, by F̂I the index set containing all the fine fractures grid
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within I, we also define the domain of the coarse matrix grid I as:

ω̂I :=
⋃
i∈ÎI

ωi,

and ĈI as all the pairs of interconnected fine fractures (either intersected or in

a same fracture) in I:

ĈI := {(f1, f2) : f1, f2 ∈ F̂I , ωf1 ∩ ωf2 6= ∅}.

We also introduce Âm as the index set for each interface between two neigh-

boring matrix grids. For each interface s ∈ Âm, we denote by ÎAs and F̂As

the index set for coarse matrix grids sharing the interface and index set for

pairs of fine fracture grids through the interface:

ÎAs = (I1, I2), I1, I2 ∈ Îm, ωI1 ∩ ωI2 = ωs,

F̂As = {(f1, f2) : f1 ∈ F̂I1 , f2 ∈ F̂I2 , ωf1 ∩ ωf2 6= ∅},

where ωs represents the domain of the interface s.

For the upscaling methods exploiting unstructured grids, grouping fine

scale matrix grids can be achieved by different partitioning methods: graph

partitioning technique [35], geological partitioning [31], and flow-based parti-

tioning [31].

4.2.1 Greedy aggregation

A simple way to agglomerate fine fracture grids in a coarse matrix grid

is to gather them all in one coarse fracture grid (see Figure 4.2). We denote
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fine scale
(15× 15)

coarse scale
(3× 3)

problem setup

greedy aggregation

local aggregation

Figure 4.2: An illustration of greedy aggregation and local aggregation methods. The
problem (middle) presented here has 3× 3 coarse matrix grids constructed by 15× 15 fine
matrix grids with 8 fractures (left). Here we consider centered matrix grid (in red), the
neighboring matrix grids of which are shaded in yellow. Greedy aggregation method (upper
right) agglomerates all the fine fracture grids in the matrix grid into one coarse fracture grid
(in red). Local aggregation method (lower right) only gathers fine fracture segments of each
individual fracture (each color represents each coarse fracture grid).

the coarse fracture grid associated with the coarse matrix grid I as J and fine

fracture grids included in this grid are

ÎJ =
⋃
i∈ÎI

(Ni ∩ If ). (4.13)

In this scheme, at most one degree of freedom is assigned to fractures

within each matrix grid. This method is simple and could generate limited frac-

ture grids in coarse scale, which results in accelerating the simulation speed.

We will show in the numerical tests section that this aggregation method
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works well especially for systems with short natural fractures. But this greedy

aggregation could impair the connectivity information of large fractures (for

example, hydraulic fractures) which transverse several coarse blocks. The er-

ror generated at one local matrix grid may even propagate along the large

fractures to other regions in the domain.

4.2.2 Local aggregation

Local aggregation method deals with fine scale fractures based on the

local intersections of different fractures or local interconnections within an in-

dividual fracture. To be specific, for fractures intersected in a coarse matrix

grid I, all the fine fracture segments should be aggregated to construct one

coarse fracture agglomerate. For fractures without intersections with other

fractures in I, coarse fracture grids are constructed individually by gather-

ing only fine grids of each fracture in I. The lower right figure in Figure 4.2

illustrates an example of the local aggregation scheme. Based on fracture in-

tersections, 5 clusters (in different colors) were formed in the matrix grid that

is considered (in red). Algorithm algorithm 1 presented tow basic functions

to combine fracture indices within a set. Furthuremore, a pseudo-code algo-

rithm 2 is presented to show the local aggregation algorithm for each coarse

matrix grid I.

The reason behind this method is that intersected or interconnected

fractures have similar pressure values comparing with fractures without con-

nections, since fractures can be considered as high speed flow conduits com-
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Algorithm 1: getIndex (f, I) and combine(f1, f2, I)

1 Function getIndex(f, I):
2 i← 0 // if f /∈ I, i is set as 0
3 if f ∈ I then
4 i← 1
5 while f /∈ I[i] do
6 i← i+ 1 // if f ∈ I, i is the index of set where f firstly

occurred

7 return i

8 Function combine(f1, f2, I):
9 i1 = getIndex (f1, I), i2 = getIndex (f2, I)

10 if i1 = 0 and i2 = 0 then // both f1 and f2 are not in I
11 I← I ∪ {f1, f2}
12 else if i1 = 0 and i2 6= 0 then // f1 is not in I but f2 is in I
13 I[i2]← I[i2] ∪ {i1}
14 else if i1 6= 0 and i2 = 0 then // f1 is in I but f2 is not in I
15 I[i1]← I[i1] ∪ {i2}
16 else if i1 6= 0, i2 6= 0 and i1 6= i2 then // f1 and f2 are in the different

subsets of I
17 I[i1]← I[i1] ∪ I[i2], I← I\I[i2]
18 return I

paring with background matrix. However, the limitation of this aggregation

method is that the maximum number of coarse fracture grids constructed fi-

nally is not guaranteed. For regions with numerous fractures (for example,

some natural fractured reservoirs), this method could generate a lot of frac-

ture grids, the number of which may be many times the number of matrix

grids.

4.2.3 Multi-level aggregation

Here we introduce a multi-level aggregation progress in order to pre-

serve the fidelity of fractures with long lengths and lessen the number of coarse

fracture grids in total. Three new attributes are defined as following:
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Algorithm 2: local (I, F̂I , ĈI)
� construct sets based on fracture connections in coars matrix I

1 if F̂I 6= ∅ then
2 if ĈI 6= ∅ then
3 for (f1, f2) ∈ ĈI do
4 combine(f1, f2, Q̂I)

5 for f ∈ F̂I do
6 if f /∈ Q̂I then
7 Q̂I ← Q̂I ∪ {f}

8 return Q̂I

• τs ∈ {0, 1}: neighboring connection attribute for each interface s ∈ Âm.

• βI ∈ N: length attribute for each coarse matrix grid I ∈ Îm.

• γs ∈ [0, 1): volume attribute for each interface s ∈ Âm.

We introduce the index set ÎI that contains all the index of fine scale

grids in coarse grid I, and index set N̂I that contains all the index of coarse

grids who share common interfaces with grid I,

ÎI := {i ∈ I : ωi ∈ ω̂I},

N̂I := {J ∈ Î : ω̂I ∩ ω̂J 6= ∅, J 6= I}.

Multi-level aggregation algorithm is illustrated in algorithm 3. The

steps for this aggregation method are as follows:

1. Construct the coarse fracture grids based on the local aggregation method

(the first "for" loop in algorithm 3).
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2. For each interface between neighboring coarse matrix grids, if βI = 1,

we consider the neighboring fracture intersections. If two fractures are

in the same coarse fracture grid in one matrix grid, these two fractures

should in the same grid in another matrix grid (the second "for" loop in

algorithm 3).

3. For each coarse matrix grid, all marked short fractures should be ag-

gregated to one coarse fracture cell (the third "for" loop in algorithm

3).

4. For each interface between neighboring coarse matrix grids, neighboring

coarse fracture grids should be aggregated if their volume is less than

the volume attribute (the fourth "for" loop in algorithm 3).

A geometric illustration of multi-level partition is presented in Figure

4.3. The start point of the multi-level aggregation method is the coarsening

scheme constructed by local aggregation method (as (a) in Figure 4.3). To

simplify the illustration, we assume the neighboring connection attribute τs

as the same value for all coarse interfaces s ∈ Âm, and denote it as N . Simi-

larly, we assume the length attribute I as the same value for all coarse matrix

grids I ∈ Îm, and denote it as L. If we consider three different inputs for the

neighbor attribute N and fracture length attribute L (here we assume that

all coarse matrix blocks share the same length attribute). (1) N = 1, L = 4:

considering fracture intersection in the neighbor matrix blocks (in yellow), we

can combine two fracture sets (yellow and purple in (a)) into one (purple in
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(a) (b) (c)

(d)

(e)

N = 1, L = 4
N
=
0/
1,
L
≥
5

N
=
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1

Figure 4.3: An illustration of multi-level aggregation method.

(b)). Since two long fractures (in gray) intersect the matrix block, we can

combine the short fracture sets (green and red in (b)) into one set (red in (c)).

The final number of coarse fracture sets associated with the considered matrix

grid is reduced from 5 to 3. (2) N = 0, L = 1: without considering neigh-

boring fracture intersections, and treating all fractures as long fractures make

the coarse fracture sets remain the same (as exactly the results of local aggre-

gation method). (3) N = 0/1, L ≥ 5: whenever considering the neighboring

intersections, the value of L decides that all fractures in this problem are seen

as short fractures, and all the fracture sets in (a) could be aggregated into 1

(as in (d)). This is exactly the scheme of the greedy aggregation method.
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Algorithm 3: MultiLevel
input : coarse scale set: Îm, Âm, F̂I , F̂AA, L̂m, L̂f
output: coarse scale fracture sets.
� construct sets based on local aggregation method

1 for I ∈ Îm do
2 local (I, F̂I , ĈI)

� reduce sets based on neighboring fracture intersections

3 for s ∈ Âm s.t. F̂As 6= ∅, τs = 1 do
4 (I, J) = ÎAs

5 for (f1, f2), (t1, t2) ∈ F̂As s.t. (f1 6= t1) do
6 i1 = getIndex(f1, Q̂I), i2 = getIndex(t1, Q̂I), j1 = getIndex(t1, Q̂J),

j2 = getIndex(t2, Q̂J)
7 if (f1, t1) ∈ ĈI and j1 6= j2 then
8 combine(f2, t2, Q̂J)

9 if (t1, t2) ∈ ĈJ and i1 6= i2 then
10 combine(f1, t1, Q̂I)

� reduce sets based on fracture length

11 for I ∈ Îm s.t. F̂I 6= ∅, βI > 1 do
12 flag ← 0

13 for q ∈ Q̂I do
14 if ∀fi ∈ q s.t. L̂fi < βI then
15 if flag = 0 then
16 fshort = q[1], flag ← 1

17 else
18 combine(fshort, q[1], Q̂I)

� reduce sets based on fracture set volume

19 for s ∈ Âm s.t. F̂As 6= ∅ do
20 (I, J) = ÎAs

21 for (f1, f2) ∈ F̂As do
22 i = getIndex(f1, Q̂I), j = getIndex(f2, Q̂J)
23 if volume(Q̂I [i]) < γs volume(Q̂J [j]) then
24 Q̂J ← Q̂J ∪ Q̂I [i], combine (f1, f2, Q̂J), Q̂I ← Q̂I\Q̂I [i]

25 if volume(Q̂J [j]) < γs volume(Q̂I [i]) then
26 Q̂I ← Q̂I ∪ Q̂J [j], combine (f1, f2, Q̂I), Q̂J ← Q̂J\Q̂J [j]

27 return Q̂

30



4.3 Coarse model parameters

The coarse grid volume is the summation of fine grids’ volume it con-

tains, given by

V̂I :=
∑
i∈ÎI

Vi.

The porosity and pressure of the coarse grid are defined on the basis of volume

weighted average:

φ̂I :=

∑
i∈ÎI

Viφi

V̂I
,

p̂I :=

∑
i∈ÎI

Vipiφi

V̂I φ̂I
.

For two adjacent coarse grids I and J who share an interface, we define

D̂IJ as the index set of fine grids in coarse grid I who share an interface with

fine grid in J , and D̂I as the index set of all fine grids who share interfaces

with other coarse grids, given by

D̂IJ := {i ∈ ÎI : ωi ∩ ω̂J 6= ∅},

D̂I :=
⋃
J∈ÂI

D̂IJ .

And the coarse transmissibility across the interface between grid I and J is

given by

T̂IJ :=

∑
i∈D̂IJ

∑
j∈ÎJ∩Ni

Tij(pi − pj)(1 + cl4p+ij)

(p̂I − p̂J)(1 + cl4p̂+IJ)
, (4.14)
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where4p+ij and4p̂+IJ are the bigger pressure difference based on the referenced

pressure of two adjacent grids, and can be expressed as

4p+ij = p+ij − pr, p+ij = max {pi, pj},

4p̂+IJ = p̂+IJ − pr, p̂+IJ = max {p̂I , p̂J}.

By defining coarse properties in such ways, the coarse scale models still

preserve mass conservation in the single phase flow.

Theorem 4.3.1. Mass conservation is satisfied in coarse scale of single phase

flow at each time step by using the transmissibilities defined in equation 4.14.

Proof. Let us consider a coarse grid with index I, we can add up equation 4.12

for all the fine grids in coarse grid I and derive

∑
i∈ÎI

ρrViφrct
4t

(pn+1
i − pni ) (4.15)

=
∑
i∈ÎI

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ) +
∑
i∈ÎI

ri. (4.16)

For the left hand side term in equation 4.15, by using the previous definition

we can obtain

∑
i∈ÎI

ρrViφrct
4t

(pn+1
i − pni ) (4.17)

=
ρrV̂I φ̂Ict
4t

(∑
i∈ÎI Vip

n+1
i φi

V̂I φ̂I
−
∑

i∈ÎI Vip
n
i φi

V̂I φ̂I

)
(4.18)

=
ρrV̂I φ̂Ict
4t

(p̂n+1
I − p̂nI ). (4.19)
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Note that

Îi = D̂I ∪ (ÎI\D̂I), (4.20)

∀i ∈ ÎI , Ni = (Ni ∩ ÎI) ∪ (Ni\ÎI), ∅ = (Ni ∩ ÎI) ∩ (Ni\ÎI). (4.21)

We introduce fij to denote the fine scale flux term at (n+ 1)th time step,

fn+1
ij :=

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ), ∀i ∈ ÎI , j ∈ Ni

The first term in the right hand side of equation 4.15 can then be abbreviated

as

∑
i∈ÎI

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ) (4.22)

=
∑
i∈ÎI

∑
j∈Ni

fn+1
ij (4.23)

=
∑
i∈D̂I

∑
j∈Ni\ÎI

fn+1
ij +

∑
i∈D̂I

∑
j∈Ni∩ÎI

fn+1
ij +

∑
i∈ÎI\D̂I

∑
j∈Ni

fn+1
ij . (4.24)

We also note the following facts:

• Ni\ÎI =
⋃

J∈ÂI

(Ni ∩ N̂J), ∀i ∈ ÎI

• (Ni ∩ N̂J1)
⋂

(Ni ∩ N̂J2) 6= ∅, ∀J1, J2 ∈ N̂I , J1 6= J2

• D̂I = D̂IJ ∪ (D̂I\D̂IJ), ∀J ∈ N̂I

• Ni ∩ ÎJ = ∅, ∀J ∈ N̂I ,∀i ∈ D̂I\D̂IJ
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Based on these facts, we can simplify the first term on the right hand side of

equation 4.22:

∑
i∈D̂I

∑
j∈Ni\ÎI

fn+1
ij =

∑
i∈D̂I

∑
J∈N̂I

∑
j∈(Ni∩ÎJ )

fn+1
ij (4.25)

=
∑
J∈N̂I

∑
i∈D̂I

∑
j∈(Ni∩ÎJ )

fn+1
ij (4.26)

=
∑
J∈N̂I

∑
i∈D̂IJ

∑
j∈(Ni∩ÎJ )

fn+1
ij +

∑
J∈N̂I

∑
i∈(D̂I\D̂IJ )

∑
j∈(Ni∩ÎJ )

fn+1
ij

=
∑
J∈N̂I

∑
i∈D̂IJ

∑
j∈(Ni∩ÎJ )

fn+1
ij . (4.27)

By using previous coarse scale parameter definitions, we can change the form

of equation 4.25 in to coarse scale form:

∑
i∈D̂I

∑
j∈Ni\ÎI

fn+1
ij (4.28)

=
∑
J∈N̂I

∑
i∈D̂IJ

∑
j∈(Ni∩ÎJ )

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ) (4.29)

=
∑
J∈N̂I

ρr
µ

(1 + cl4p+nIJ )T̂IJ(p̂n+1
J − p̂n+1

I ). (4.30)

Let us assume (ÎI\D̂I) 6= ∅ at first. Recalling some definitions set previously,

we notice that for ∀i ∈ (ÎI\D̂I), we have

• Ni ⊆ ÎI and Ni ∩ ÎI = Ni

• ∀j ∈ Ni, i ∈ Aj

• ∀j ∈ Ni, p+ij = p+ji and Tij = Tji
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For the last two terms on the right hand side of equation 4.22, we have

2
∑
i∈D̂I

∑
j∈Ni∩ÎI

fn+1
ij + 2

∑
i∈ÎI\D̂I

∑
j∈Ni

fn+1
ij (4.31)

= 2
∑
i∈ÎI

∑
j∈Ni

fn+1
ij

=
[∑
i∈ÎI

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i )
]
+ (4.32)

[∑
j∈ÎI

∑
i∈Aj

ρr
µ

(1 + cl4p+ji
n
)Tji(p

n+1
i − pn+1

j )
]

=
∑
i∈ÎI

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij[(p

n+1
j − pn+1

i ) + (pn+1
i − pn+1

j )] = 0. (4.33)

For the condition when (ÎI\D̂I) = ∅, since D̂I ⊆ ÎI , we have D̂I = ÎI . Thus,

equation 4.31 still hold. Substituting equations 4.28 and 4.31 into equation

4.22, we obtain ∑
i∈ÎI

∑
j∈Ni

ρr
µ

(1 + cl4p+ij
n
)Tij(p

n+1
j − pn+1

i ) (4.34)

=
∑
J∈N̂I

ρr
µ

(1 + cl4p+nIJ )T̂IJ(p̂n+1
J − p̂n+1

I ). (4.35)

For source and sink term, we have

r̂I :=
∑
i∈ÎI

ri. (4.36)

After substituting equations 4.17, 4.34 and 4.36 into equation 4.15, we obtain:

ρrV̂I φ̂Ict
4t

(p̂n+1
I − p̂nI ) =

∑
J∈N̂I

ρr
µ

(1 + cl4p+nIJ )T̂IJ(p̂n+1
J − p̂n+1

I ) + r̂I . (4.37)

Comparing with the fine scale discretized form of mass balance (equation 4.12),

equation 4.37 is exactly the coarse scale discretized form of mass balance.
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4.4 Time step adjustment in unsteady state method

Since the unsteady state method proposed in previous sections contains

time-steppings, the implementation issue of this method is discussed here. The

linear solver used for solving the matrices in this research is conjugate gradient

(CG), and the preconditioner of the matrices deploys incomplete LU (ilu0)

factorization, both of which are implemented in PETSc linear algebra library

([5]). Here we propose a time-stepping algorithm 4 to adjust time steps and

terminate iterations. Discussion of the effects of this algorithm is in Chapter

5.

Some given parameters as criteria are defined as follows:

• cl, 4t ∈ R: compressibility and initial time step.

• itrmax ∈ N: maximum iteration number.

• κmin, κmax ∈ R: minimum and maximum condition number allowed.

• 4pc ∈ R: minimum pressure change allowed.

Some calculated parameters at each time step are defined as follows:

• 4tn: time step size at nth step.

• Ntmax: tn+1 < tn ×Ntmax.

• infnT : number of infinite transmissibility.

• 4pnmin: minn(p̂− p̂init).
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• κn: approximated matrix condition number at step n.

Algorithm 4: newTimeStepSize

Input : parameters at iteration step n (infnT ,4tn, 4pnmin, κ
n).

Output: terminating iteration or adjusted 4tn+1 for iteration step n+1.
1 while n < itrmax do
2 if infnT = 0 and 4pnmin > 4pnc and κn < κmax then
3 break

4 else if κn > κmax then
5 4tn ←4tn × κn

κmax
, n← n

6 else if κn < κmin then
7 4tn+1 ←4tn ×min(Ntmax,

κmax+κmin

2κn
), n← n+ 1

8 else
9 4tn+1 ←4tn, n← n+ 1

10 return 4tn+1
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In this chapter, numerical experiments with different fracture patterns

and well conditions are presented to verify the introduced upscaling method

in Chapter 4.

For fracture patterns, test 1 and test 2 use short and randomly dis-

tributed fractures, test 3 deploys long and well-connected fractures, and test

4 is embedded with large hydraulic fractures and large number of short nat-

ural fractures either intersected or separated with hydraulic fractures. As for

well configurations, test1 employs both injection and production wells to ver-

ify the efficiency of the general upscaling method, test 2 and test 4 only use

vertical production wells to demonstrate the efficiency of the unsteady state

flow problem and corresponding algorithm. Besides, a five-spot well pattern

is presented in case 3 and a horizontal production well is deployed in test 4 to

illustrate the advantages of the multi-level partitioning method.

All numerical tests performed in this section are simulated using a

black-oil simulator with three phase flow. The PVT properties under the

reference pressure are listed in Table 5.1. PVT properties of oil and gas as the

38

Chapter 5

Numerical Tests for Flow Simulation of 
Fractured Systems



Table 5.1: Fluid properties under reference pressure pressure pref .

pref ρw ρo ρg µw cw co
(kPa) (kg/m3) (kg/m3) (kg/m3) (10−3Pa · s) (kPa−1) (kPa−1)

101.325 947.516 814.612 1.125 0.96 5.40× 10−7 1.45× 10−6

Table 5.2: Oil and gas PVT properties as functions of pressure (rs is the gas-oil ration, eg
is the gas expansion factor, µo and µg are oil and gas viscosity).

p rs eg µo µg

(kPa) (m3/m3) (m3/m3) (10−3Pa · s) (10−3Pa · s)

103.4 1.0010 0.7306 0.9030 0.0136
2289.1 13.9532 16.9861 0.7190 0.0139
4481.6 29.9993 34.0841 0.5970 0.0144
7770.4 57.0740 61.0608 0.4840 0.0154
12148.6 96.8836 98.3311 0.3940 0.0171
14341.1 117.9916 116.8294 0.3630 0.0181
27847.9 260.5732 212.9748 0.2550 0.0256
39162.2 392.0799 266.5061 0.2100 0.0319
51710.7 565.4125 312.2136 0.1780 0.0390
55158.1 616.1920 321.0613 0.1750 0.0412
58605.5 668.5710 328.3629 0.1700 0.0435

function of pressure are showen in Table 5.2. Relative permeability curves of

different phases are showed in Figure 5.1.

The errors of coarse scale simulation results are evaluated based on

certain fine scale simulation as reference solution. Here we introduce two

parameters to represent pressure error of the coarse solution. For a given time

t ∈ (0, T ], we denote p̂tI as the pressure of the coarse grid I at time t, and p̂t

as the set consisted of pressure at time t of all the coarse grids. Similarly, pI t
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Figure 5.1: Relative permeability curves used for numerical tests.

is introduced to represent the fine scale pressure at time t which is averaged

based on the volume of fine grids included in the coarse grid I, and pt is to

used as the set consisted of averaged pressure at time t of all coarse grids.

As for errors, relative pressure error of coarse grid I at time t is defined

as

εtp,I =
|p̂tI − pI t|

pI
t t ∈ (0, T ], (5.1)

and relative pressure error over the whole reservoir domain is defined as

εtp =
‖p̂t − pt‖`2
‖pt‖`2

t ∈ (0, T ]. (5.2)
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5.1 Test 1: a heterogeneous reservoir with natrual frac-
tures and without source term

5.1.1 Setup

We consider a 1100× 600× 80 ft3 heterogeneous matrix domain in this

case. 1000 randomly generated fractures with average length of 15 m exit in

this reservoir model, which is shown in Figure 5.2. A production well with

constant pressure of 1000 psi is located at the middle part of the reservoir. All

the boundaries in this case are considered as no-flow boundaries. Parameters

for fracture domain and matrix domain are listed in Table 5.3.

The ground truth solution is obtained from the case with fine grids

of size 10 × 10 ft2, and the number of which is 6600 for matrix and 11389

for fractures. The coarse simulation is deployed for cases with and without

fractures, for grids of number as 7× 10, 9× 13 and 15× 20 respectively.

The unsteady state method is used for the hypothetical single phase

flow problem and greedy aggregation method is deployed to partition the

coarse fracture grids.
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(a) Fracture distribution
(green triangle represents the production well)

(b) Permeability distribution
(modified from 28th layer of SPE 10th problem)

Figure 5.2: 2D reservoir model of test 1.

5.1.2 Results

Oil production results are showed in Figure 5.3. From fine solution

results in (a), heterogeneity and natural fractures both have effects on the

simulation results. Same production profiles obtained using different time in

(b) for the unsteady state problem indicate that the long time simulation time

is unnecessary in this case.
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Table 5.3: The reservoir model parameters for flow simulation of test 1.

Domain Parameter Value

Fracture
number 1000

permeability (mD) 10000
aperture (m) 0.03

average length (m) 15

Matrix
porosity 0.05

initial pressure (psi) 8000
compressibility (psi−1) 1× 10−6

Well pressure (psi) 1000

The accuracy of the reduced models is verified from production profile,

pressure error and saturation error in different scales. Figure 5.3 (c) and (d)

indicate that all the three different scales of coarse simulations can match well

with the ground truth oil production and rate profiles. Indeed, the relative

error of final production volume are 2.8E-2 for 1% grids, 1.7E-2 for 2% grids,

and 3.0E-3 for 5% grids respectively. Figure 5.4 presents the relative pressure

error after 1 year production. The highest relative pressure error is less than

5% in all scales, and pressure error is reduced as the number of grids increases.

Besides, highest pressure error happens at the production region, which is

reasonable because no extra upscaling manipulation is employed for the near-

well regions. Absolute saturation error after 1 year production showed in

Figure 5.5 also indicates the accuracy of the coarse models.

From fine solution results, we can observe that existence of fractures

in this case enhances the oil an gas productions. Comparison results between
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Table 5.4: Comparison of simulation errors and CPU time of Test 1 between cases with
and without fractures for different scales at different simulation times. t1 represents 1 year
and t2 represents 10 years.

Scale εt1p,`2
εt1p,`∞ εt2p,`2

εt2p,`∞ εt1So,`2
εt1So,`∞

εt2So,`2
εt2So,`∞

time
(s)

Nf = 1000

7× 10 8.3E-3 2.5E-2 3.1E-3 3.8E-2 7.0E-3 1.3E-2 8.5E-2 1.4E-2 0.44
9× 13 6.5E-3 2.8E-3 3.2E-3 2.7E-2 5.4E-3 1.3E-2 6.6E-3 1.4E-2 0.50
15× 20 6.5E-3 1.3E-2 3.6E-3 2.4E-2 4.7E-3 9.9E-3 5.4E-3 9.7E-3 0.73

Nf = 0

7× 10 4.6E-3 7.5E-3 3.3E-2 3.7E-2 7.6E-3 1.3E-2 9.1E-3 1.3E-2 0.31
9× 13 4.6E-3 7.4E-3 3.0E-2 3.5E-2 7.2E-3 1.2E-2 8.2E-3 1.2E-2 0.41
15× 20 4.5E-3 6.5E-3 2.9E-2 3.4E-2 5.9E-3 1.2E-2 6.8E-3 1.0E-2 0.60

cases with and without fractures in Figure 5.3 and Table 5.4 show that the

error of production, pressure and oil saturation distribution are nearly in the

same magnitude, which indicate that fracture existence of natural fractures

does not largely influence the upsclaing effects.

As for the efficiency, the results for different scales are showed in Table

5.5. The speedup of reduced model is significant since the coarsest model is 156

times faster than the fine scale simulation, which demonstrate the efficiency

of the upscaling methodology introduced in Chapter 4.

Table 5.5: Convergence results of Test 1 (t1 represents 1 year and t2 represents 10 years.
#m is the number of matrix grids, #f is the number of fracture grids, and #dof is the
number of total grids.)

Scale
Accuracy Efficiency

εt1p,`2
εt1p,`∞ εt2So,`2

εt2So,`∞
εt2Vo

#m #f #dof time speedup
110× 60 - - - - - 6600 4789 11389 68.64 -
7× 10 4.5E-3 3.4E-2 1.0E-2 2.1E-2 2.8E-2 70 68 138 0.44 156
9× 13 4.0E-3 1.7E-2 8.0E-3 1.9E-2 1.7E-2 117 115 232 0.50 137
15× 20 3.7E-3 1.5E-2 5.3E-3 1.1E-2 3.0E-3 300 296 596 0.73 94
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(a) fine solution (b) time effects
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Figure 5.3: Oil production results of test 1: time effects in unsteady state problem is
presented in (b), results of case with fractures is showed in (c) and (d), results of case
without fractures is showed in (e) and (f).
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(a) 7× 10 (1% grids)

(b) 9× 13 (2% grids)

(c) 15× 20 (5% grids)

Figure 5.4: Relative pressure error of Test 1 after 1 year production.
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(a) 7× 10 (1% grids)

(b) 9× 13 (2% grids)

(c) 15× 20 (5% grids)

Figure 5.5: Absolute oil saturation error of Test 1 after 1 year production.
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5.2 Test 2: a natural fractured reservoir with injection
and production wells

5.2.1 Setup.

We consider a 1010× 1010× 80 ft3 homogeneous matrix domain in this

case. 200 randomly generated fractures with average length of 100 ft embedded

in this reservoir model, which is shown in Figure 5.6. An injection well injecting

water under constant pressure of 8000 psi is located at the lower left corner of

the reservoir model, and a production well with constant pressure of 1000 psi

is located at the upper right corner of the reservoir. All the boundaries in this

case are considered as no-flow boundaries. Parameters for fracture domain

and matrix domain are listed in Table 5.6.

The ground truth solution is obtained from the case with fine grids of

size 7.14 × 7.14 ft2, and the number of which is 20164 for matrix and 3787

for fractures. The coarse simulation is deployed for cases with and without

fractures, for grids of number as 12 × 12, 16 × 16 and 28 × 28 respectively.

Correspondingly, the coarse scales are consisted of 1%, 2% and 5% grids of the

fine scale solution.

Since both production and injection wells exist in this case, steady state

problem could be used. Simulations are conducted either under steady or un-

steady state methods, with greedy partitioning or local partitioning methods.
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Figure 5.6: 2D reservoir model of case 2.

Domain Parameter Value

Fracture
number 200

permeability (mD) 10000
aperture (m) 0.03

average length (m) 30.48

Matrix
porosity 0.05

permeability (mD) 0.1
initial pressure (psi) 5000

compressibility (psi−1) 1× 10−6

Table 5.6: Parameters of fracture domain
and matrix domain in case 2.

5.2.2 Results

Figure 5.7 shows the cumulative oil production of Test 2 of three coarse

scales under four different upscaling methods, respectively. Figure 5.8 presents

the convergence rate of the steady state and unsteady state problem of single

time step under cases with and without fractures. Table 5.8 compare results

of pressure error, saturation error and final recovery error between greedy and

local partitioning of steady state method.

Greedy partitioning vs. local partitioning. From Figure 5.7, we can see

that greedy partitioning shows better production profile than local method in

both steady and unsteady state tests as opposed to the ground truth solution.

Table 5.8 shows that the error are comparable between greedy and local par-

titioning, but greedy method has smaller error mostly. From Figure 5.9, the
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greedy method clearly has better pressure distribution after 1 year production

of oil and gas. Besides, local partitioning has larger number of embedded frac-

ture grids, thus with more simulation time since each fracture segment will

generate an extra fracture grid.

Generally, we can conclude that greedy partitioning works better under

condition with numerous natural fractures separately distributed in clusters.

We should note that the better performance of greedy partitioning is not al-

ways the case for all the fracture patterns, which will be observed in Test 3

and Test 4.

Steady state method vs. unsteady state method. From Figure 5.7,

unsteady state method matches the ground truth solution more accurate than

the steady state method, though they are comparable with each other and

the difference between them is small. From 5.9, the pressure error difference

of steady state method and unsteady state method is negligible. Therefore,

we can conclude that the unsteady state method generate better production

results, but not better pressure profiles.

But unsteady state method has a great advantage of efficiency. From

Figure 5.8, unsteady state problem has much higher convergence rate than

steady state method since steady state problem has residual of 1.E-6 after

300 iterations, while unsteady state problem could converge to 1.E-10 after

only 11 iterations (note that these two problem has same number of dof, thus

the iteration time is comparable with the iteration steps). This problem is
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especially important for systems with fractures, since the iteration number of

the case without fractures are very similar between these two problems. The

reason for this phenomenon is that existence of fractures has large effects on

the matrix structures, which increase the ill conditioning of the steady state

case.

As for the efficiency, the upscaling effects is significant in this test.

From Table 5.7, the coarse model of scale 12× 12 (1% grids) could achieve a

speedup of 19000, with only 0.7% cumulative production error after 20 years

and 1.4% `∞ relative pressure error.
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Figure 5.7: Cumulative Oil production results of reduced models in Test 2. "SS" represents
steady state method, and "unSS" means unsteady state method. "GP" represents greedy
partitioning and "LP" represents local partitioning.
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Figure 5.8: Convergence history of steady state and unsteady state problems with or
without fractures by using CG as linear solver and ilu0 as preconditioner (the unsteady
state problem is solved in one time step with ρl

Mt = 2.5E-6).

Table 5.7: Convergence results of Test 2 using unsteady state problem and greedy parti-
tioning.

Scale
Accuracy Efficiency

εt1p,`2
εt1p,`∞ εt2So,`2

εt2So,`∞
εt2Vo

#m #f #dof time speedup
142× 142 - - - - - 20164 3787 23951 2505.59 -
12× 12 3.0E-2 1.4E-1 2.8E-1 1.3E-1 6.8E-3 144 89 233 0.13 1.9E+4
16× 16 2.5E-2 8.0E-2 2.8E-1 8.5E-2 5.6E-3 256 192 448 0.69 3.6E+3
26× 26 2.0E-2 8.0E-2 4.2E-1 1.5E-1 8.2E-3 676 412 1088 1.86 1.3E+3

Table 5.8: Comparison of pressure and oil saturation errors between coarse models with
greedy and local partitioning by using steady state problem.

Scale
Greedy Partitioning Local Partitioning

εt1p,`2
εt1p,`∞ εt2So,`2

εt2So,`∞
εt2Vo

εt1p,`2
εt1p,`∞ εt2So,`2

εt2So,`∞
εt2Vo

12× 12 2.0E-2 8.7E-2 2.6E-1 1.4E-1 3.4E-2 2.1E-2 8.9E-2 2.7E-1 1.4E-1 2.9E-2
16× 16 2.3E-2 8.9E-2 3.0E-1 1.2E-1 4.0E-2 1.6E-2 6.4E-2 2.6E-1 1.1E-1 5.8E-2
26× 26 1.7E-2 7.9E-2 3.9E-1 1.6E-1 1.6E-2 1.9E-2 8.0E-2 3.3E-1 9.7E-2 3.2E-2
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Figure 5.9: Relative pressure error of Test 2 by using unsteady state problem or steady
state problem, and greedy partitioning method or local partitioning method after 1 year
production.
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5.3 Test 3: a five-spot case with large connected frac-
tures

5.3.1 Setup

We consider a 1010× 1010× 80 ft3 homogeneous matrix domain in this

case. 70 randomly generated large fractures embedded in this reservoir model,

which is shown in Figure 5.10. An injection well injecting water under constant

pressure of 8000 psi is located at the lower left corner of the reservoir model,

and 4 production wells with constant pressure of 1000 psi is located at the

four corners of this reservoir. All the boundaries in this case are considered as

no-flow boundaries. Parameters for fracture domain and matrix domain are

listed in Table 5.3.

The ground truth solution is obtained from the case with fine grids

of size 10 × 10 ft2, and the number of which is 10201 for matrix and 2585 for

fractures. The coarse simulations are all conducted on the base of matrix grids

with number as 21× 21.
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 Since both production and injection wells exist in this case, steady 

state problem could be used. Coarse models are all generated from steady 

state method in this test. To study the partitioning approaches, we conduct 

simulation under greedy, local and multi-level partitioning methods. Figure 

5.11 (a) shows the number of intersecting matrix cells of each fracture. The 

largest number of intersected cells is 20. (b) and (c) showed fractures which 

intersect no less than 7 and 10 matrix grids (denoted as "L=7" and 

"L=10", respectively).



Inj

P1 P3

P2 P4

Figure 5.10: 2D reservoir model of Test 3.

Table 5.9: Parameters of fracture domain and matrix domain in Test 3.

Domain Parameter Value

Fracture
number 70

permeability (mD) 10000

Matrix
porosity 0.05

permeability (mD) 0.1
initial pressure (psi) 8000

compressibility (psi−1) 1.0× 10−6
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(a) Length of fractures

(b) L = 7

(c) L = 10

Figure 5.11: Pressure profile of the reference solution and relative pressure error of upscal-
ing results by using unsteady state problem and greedy partitioning after 1 year production.
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5.3.2 Results

Figure 5.12 presents the oil production results of different partitioning

methods in 4 production well respectively. Figure 5.13 displays fine pressure

profile and relative pressure errors for different methods. Figure 5.14 shows

the saturation contours of fine simulation results and coarse model simulation

results.

Greedy partitioning vs. local partitioning. From Figure 5.12, local

method works better than greedy method at production wells P1, P2 and P4.

Produciton results of local partitioning method are acceptable at these three

wells. From Figure 5.13, the pressure error of greedy method is relatively large.

The reason why greedy partitioning fails at this test is that lots of fractures

are very long and intersected with each other, from which small error could be

propagated to the whole reservoir, and thus impair the production accuracy of

all the four wells. For production well P3, all the simulation results are more

or less deviated form the ground truth solution because there is one fracture

oriented directly to the production well. Simulating such kind of fractures

are not easy, thus extra upscaling manipulations should be added for the near

well regions. But this is far from the objective of the study in this discussion.

In conclusion, the greedy partitioning method is not enough for such systems

with long fractures intersected with each other.
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Local partitioning vs. multi-level partitioning. For multi-level parti-

tioning method, we can observe that results of case with "L = 10" is similar

to the local partitioning, and the results of the case with "L = 7" is more

similar to the greedy one. This indicates that setting L = 10 is not enough

in this test. We should note that setting the number of aggregation attribute

"L" is dependent on the case, which is a disadvantage of this method. But

practically, several setting could be implemented till the results do not change

largely. From Figure 5.13 and Figure 5.14, the multi-level partitioning gen-

erate smallest error in pressure and most similar saturation contour shapes

compared to the ground truth solution. The errors are logged in Table 5.10,

from which we could conclude that multi-level partitioning with L = 7 has

smallest error of pressure, and generates less fracture grids, and thus faster

than the local method.

Table 5.10: Convergence results of Test 3: t1 represents after 1 year production, t2 rep-
resents after 5 years of production ("multi-1" represents case with "L = 7", "multi-2"
represents case with "L = 10").

Method
Accuracy Efficiency

εt1p,`2
εt1p,`∞ εt2So,`2

εt2So,`∞
#m #f #total time speedup

reference - - - - 10201 2585 12786 183.86 -
greedy 3.8E-2 1.3E-1 1.7E+0 3.4E-1 441 279 720 2.54 7.2E+1
multi-1 2.5E-2 7.4E-2 1.6E+0 3.6E-1 441 367 808 3.67 5.0E+1
multi-2 3.4E-2 1.3E-1 1.6E+0 3.8E-1 441 346 787 3.49 5.3E+1
local 2.9E-2 7.5E-2 1.6E+0 3.9E-1 441 434 875 4.1 4.5E+1
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(a) Production well P1 (b) Production well P2

(c) Production well P3 (d) Production well P4

Figure 5.12: Cumulative Oil production results of Test 3.
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(a) Averaged fine result: (b) Coarse: greedy partitioning

(c) Coarse: multi-level partitioning (d) Coarse: local partitioning

Figure 5.13: Pressure profile of the reference solution (a) and relative pressure errors (b)-
(d) of coarse models generated from different partitioning methods after 1 year production.
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(a) Averaged fine result (b) Coarse: greedy partitioning

(c) Coarse: multi-level partitioning (d) Coarse: local partitioning

Figure 5.14: Saturation profile of the reference solution (a) and relative pressure errors
(b)-(d) of coarse models generated from different partitioning methods after 5 years of
production.

62



5.4 Test 4: a hydraulic fractured reservoir with complex
fracture networks

5.4.1 Setup

We consider a 3300× 1510× 80 ft3 homogeneous matrix domain in this

test. 10 long hydraulic fractures go through the entire reservoir with 300 ft

distance between each other. Besides, 1500 natural fractures are randomly

generated with different permeability (see Figure 5.15. Note that some of

these natural fractures are intersected with hydraulic fractures, which gener-

ate complex fracture networks over the entire reservoir domain. For matrix

background, we deployed porosity of 0.05 and permeability of 0.001 mD to

simulate the production of shale oil reservoirs. A horizontal production well

through 10 hydraulic fractures is located at the middle of the reservoir. All

the boundaries in this case are considered as no-flow boundaries. Parameters

for fracture domain and matrix domain are listed in Table 5.11.

The ground truth solution is obtained from the case with fine grids of

size 10× 10× 80 ft3, and the number of which is 49830 for matrix and 23935

for fractures. Simulations of coarse models are all conducted on the base of

matrix grids with number as 30× 13. Note that all multi-level coarse models

have the aggregation attribute of L = 61, which indicate that only the 10

hydraulic fractures are treated as long fractures. Since only production and

no flow boundaries exit in this test, unsteady state problem should be used to

generate all the coarse models.
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(a) 3D model of hydraulic fractures distribution in Test 4

(b) 2D model of natural fractures and their permeability distribution in Test 4

Figure 5.15: Reservoir models of Test 4.

64



Table 5.11: Parameters of fracture domain and matrix domain in Test 3.

Domain Parameter Value

Hydraulic
Fractures

number 10
permeability (mD) 10000

aperture (ft) 0.1
length (ft) 610

Natural
Fractures

number 1500
permeability (mD) 1000-2000

aperture (ft) 0.001
length (ft) 80-150

Matrix

porosity 0.05
permeability (mD) 0.001
initial pressure (psi) 8000

production pressure (psi) 1000
initial water saturation 0.17
compressibility (psi−1) 1.0× 10−6

5.4.2 Results

5.4.2.1 Efficiency of the time-stepping algorithm

Figure 5.16 presents results of coarse models generated by unsteady

state method with only 1 time step using cl
4t = 5.0E − 8 and cl

4t = 1.0E − 9

respectively. By setting cl
4t = 5.0E−8, pressure changes are very small after 1

time step, and production result deviate a lot from the ground truth solution.

This indicate that insufficient pressure change in the unsteady state problem

would generate bad transmissibilities for the reduced models. After setting
cl
4t = 1.0E − 9 as a small value, though pressure changes are sufficient, the

pressure solution is wrong even we used implicit scheme, and the transmissibil-
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ities are also far from the truth, which will generate wrong production profile.

Thus, it is important to generate sufficient pressure change and adjust value

of cl
4t in the unsteady state method.

By using the time-stepping algorithm proposed in Chapter 4, we gen-

erate new coarse models by setting cl
4t = 5.0E − 6, cl

4t = 5.0E − 7, and
cl
4t = 5.0E − 8 respectively, and the production results of which are displayed

in Figure 5.17. The accuracy of this algorithm can be observed from the figure

since results of all these three cases match the fine solution very well. The

efficiency of the time-stepping algorithm is revealed in Table 5.12. The ter-

mination criteria of this algorithm determine that sufficient pressure changes

can be achieved. Furthermore, adjustment of time steps in this algorithm can

control the total CG iterations. We note that though this algorithm has an

advantage of setting random values for cl
4t , ill-conditioning caused by small

values should be avoided.
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Figure 5.16: Importance of choosing ratio of compressibility over time step using multi-
level partitioning method on a coarse model (results represent models generated by only one
time step).
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Figure 5.17: Cumulative oil production results of coarse models after using time-stepping
algorithm.
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Table 5.12: Summary of time steps and total iterations of CG solver for coarse models
using time-stepping algorithm in unsteady state method.

cl
4t #time steps #iterations

5.0E-6 4 638
5.0E-7 3 576
5.0E-8 4 649

5.4.2.2 Efficiency of multi-level partitioning method

From Figure 5.18, we can observe that the greedy method could not

capture the fidelity of this model. The reason is that natural fractures in-

tersected with hydraulic fractures in this test, which forms complex fracture

networks. However, both local and multi-level partitioning methods could

match the ground truth solution. Figure 5.19 shows saturation contours of

the three methods, which also indicate that greedy method failed in this test,

and local and multi-level methods have similar saturation profiles as the fine

solution. Table 5.13 summarizes results for this test. The advantage of multi-

level partitioning over the local one in this test is that multi-level generates

much smaller number of fracture grids, and thus is more efficient than the local

method.
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Figure 5.18: Cumulative oil production results of coarse models by using different parti-
tioning methods.

Table 5.13: Summary of simulation results of coarse models by using different partitioning
methods in Test 4 (t represents 5 year).

Method εtSo,`2 #m #f #total time speedup %grids

fine - 49830 23935 73765 2099.11 - -
greedy 5.3E-2 390 68 755 2.78 755 1.0

multi-level 2.7E-2 390 419 809 2.79 752 1.0
local 3.0E-2 390 296 4061 36.91 57 5.5
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Figure 5.19: Saturation profile of the reference solution (a) and saturation errors (b)-(d)
of coarse models generated from different partitioning methods after 5 years of production.
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Chapter 6

Summary, Conclusions and Recommendations
for Future Work

In this chapter, the summary and conclusions are presented followed

by recommendations for the future work.

6.1 Summary and conclusions

We present the summary of this work as follows:

• An upscaling framework was proposed to speedup the flow simulations

in fractured systems by constructing reduced models to approximate the

original fine-scale models. Applicability of this framework was verified

by numerical tests presented in this thesis.

• An unsteady state method was introduced in this work to obtain rea-

sonable pressure solutions to generate more accurate coarse models for

reservoirs without source term. Applicability of this method for reser-

voir models without source term was demonstrated by different numer-

ical tests. Furthermore, the unsteady state method showed higher con-

vergence rate than the steady state method for systems with source
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• Different partitioning methods were proposed to associate coarse model

grids with fine-scale girds. The greedy partitioning method is suitable for

systems with numerous short and isolated fractures. While the greedy

method might fail in systems with long, well-connected complicated frac-

ture networks, where the local partitioning method generates relatively

accurate results.

• Based on the greedy and local partitioning methods that are suitable

for different reservoir types, we proposed a more general approach called

multi-level partitioning method. The applicability and advantage of this

method is presented in the last two numerical tests, where the multi-level

approach could generate relatively accurate models with limited fracture

grids.

• Implementation issues were discussed for the unsteady state method. We

proposed an efficient time-stepping algorithm to adjust the time steps,

control the iteration number, and terminate iterations. Efficiency of

this algorithm was verified from different perspectives of a hydraulically

fractured reservoir model.
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terms since matrices formed by unsteady state problems are more well- 

conditioned than the matrices formed by steady state problems in 

fractured systems.



6.2 Recommendations for future work

Some recommendations for the future work is presented as follows:

• Verify the upscaling methodology in real reservoir models using field

cases to extend the applicability of this method.

• Integrate this upscaling approach with methods used for inverse problems

and optimization problems to reduce CPU time for solving such problems

where many forward simulations are required.

• Extend and develop upscaling method for the three-dimensional reservoir

models.
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