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Key findings
Micromechanical myocardium model recapitulates 
RVFW mechanics top-down and bottom-up to link
the tissue and sub-tissue scales
Cardiac microanatomy drives myofiber-collagen 
interactions essential in myocardial behavior

Top-down model: Derived from previous tissue-level model 
(Avazmohammadi et al. [2]), specialized for highly aligned 
(~3° splay) RTE fiber orientation distributions (Γ!", Γ!#)
RTE FE model successfully fitted stress-strain predictions of 
top-down model under biaxial loading
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PAH: Pressure overload in the right ventricle (RV) that 
causes maladaptive growth and remodeling of the RV free 
wall (RVFW) [1]
① Stenosis of pulmonary artery (PA)
② Increased pulmonary vascular resistance (PVR)

PAH negatively impacts cardiac function via ventricular 
dysfunction and reduction in cardiac output (CO) ③

Normal heart PAH heart

Computational modeling of RVFW mechanics: Allows for 
investigation of factors influencing onset, progression, and 
reversibility of post-PAH remodeling
Myofiber-collagen interaction: Modeling interaction is 
necessary to fully describe RVFW mechanical properties, 
hypothesized to arise from network of collagen fibers at the 
microanatomical scale
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Bottom-up model: Represented
bulk tissue behavior as effective
response of ~104 rotated RTE
model stress-strain responses
Reproduced previously predicted
tissue-level model (~20° splay) in
all biaxial responses [2]

Modeling biaxial
mechanical response [2]

Myofiber-collagen
microanatomy [3]

• Data
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Constitutive modeling: Myofibers and ECM modeled with 
hyperelastic, anisotropic constitutive forms (𝜓"$%, 𝜓&'()

Collagen fibers in ECM distributed by Γ!# and are recruited 
gradually via Γ)# when stretched beyond their slack stretch

Two-phase RTE FE model

Planar biaxial simulations: 
Equibiaxial (1) and non-
equibiaxial (2,3) deformations, 
assuming perfect bonding
Simulations performed on 
Stampede2 supercomputer at 
the Texas Advanced 
Computing Center
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Challenge
Improved knowledge of myofiber-collagen interaction is 
required to link between multiscale adaptations in PAH

Objective
Develop a high-fidelity micromechanical myocardium model 
to elucidate the role of myofiber-collagen microanatomy
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Ongoing Work: Compute stress-strain profiles at the
sub-tissue scale to quantify the myocardium micro-
environment in normal and diseased conditions


