A large-scale 3D micromechanical computational myocardium model

David S. Li^{1*}, Emilio A. Mendiola¹, Reza Avazmohammadi², Frank B. Sachse³, Michael S. Sacks¹⁺

¹ James T. Willerson Center for Cardiovascular Modeling & Simulation, Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin ² Computational Cardiovascular Bioengineering Lab, Department of Biomedical Engineering, Texas A&M University ³ Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Biomedical Engineering, The University of Utah * d.s.li@yale.edu, + msacks@oden.utexas.edu

Pulmonary arterial hypertension (PAH)

PAH: Pressure overload in the right ventricle (RV) that causes maladaptive growth and remodeling of the RV free wall (RVFW) [1]

(1) Stenosis of pulmonary artery (PA)

(2) Increased pulmonary vascular resistance (PVR)

PAH negatively impacts cardiac function via ventricular dysfunction and reduction in cardiac output (CO) (3)

Modeling RVFW mechanical behavior

Computational modeling of RVFW mechanics: Allows for investigation of factors influencing onset, progression, and reversibility of post-PAH remodeling

Myofiber-collagen interaction: Modeling interaction is necessary to fully describe RVFW mechanical properties, hypothesized to arise from network of collagen fibers at the microanatomical scale

Objective Develop a high-fidelity micromechanical myocardium model to elucidate the role of myofiber-collagen microanatomy

Changes in actin/myosin isoform

Change in titin compliance

Changes in collagen undulation

Reorientation of myocytes

Changes in fiber stiffness/contractil

RV dilation

Myocardial hypertrophy

Finite element model of representative tissue element (RTE) Finite element (FE) model generation: Semi-automatic segmentation approaches used to reconstruct myocytes, coronary vessels, fibroblasts, and extracellular space in confocal microscopy dataset of rabbit myocardium [4] Tetrahedral mesh of 1.1x10⁶ elements constructed from "myofiber" and combined gradually via Γ_s^c when stretched beyond their slack stretch "extracellular matrix" (ECM) phase **Mvofibers** Two-phase RTE FE model Compression-free mounting and imaging Myofibers Finite element mest Coronary **Planar biaxial simulations:** Equibiaxial (1) and non-*Image segmentation* [4] Extracellular matrix Fibroblasts equibiaxial (2,3) deformations, 204 µm assuming perfect bonding Simulations performed on Extracellula Stampede2 supercomputer at the Texas Advanced Computing Center

Connecting RTE-level and tissue-level mechanics

Constitutive modeling: Myofibers and ECM modeled with hyperelastic, anisotropic constitutive forms (ψ_{mvo} , ψ_{ECM}) Collagen fibers in ECM distributed by Γ_A^c and are recruited

 $\psi_{\rm myo} = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \} \qquad \psi_{\rm ECM} = \frac{\mu_{\rm col}}{2} (I_1 - 3) \\ + \frac{a_{\rm f}}{2b_{\rm f}} \{ \exp[b_{\rm f}(I_{\rm 4f} - 1)^2] - 1 \} \qquad + \frac{\eta_{\rm col}}{2} \int_{0}^{1} \Gamma_{\theta}^{\rm c}(\theta) \Big|$

Path 1

— Undeformed

Path 2 $E_{11}: E_{22} = 0.30: 0.15$ $E_{11}: E_{22} = 0.30: 0.30$

---- Deformed

-90 -60 -30 0 30 60 90

1.1

Summary & Ongoing Work

Key findings

Micromechanical myocardium model recapitulates RVFW mechanics top-down and bottom-up to link the tissue and sub-tissue scales

Cardiac microanatomy drives myofiber-collagen interactions essential in myocardial behavior

Ongoing Work: Compute stress-strain profiles at the sub-tissue scale to quantify the myocardium microenvironment in normal and diseased conditions

Acknowledgments & References

The authors thank Dr. Hossein Aghakhani for assistance in model implementation. Funding was provided by the NIH (R01 HL063954, K99 HL138288, R01 HL094464, T32 EB007507).

[1] Lai, Y et al., Circ Res, 115(1):115-130, 2014. [2] Avazmohammadi, R et al., APL Bioeng, 16(2):561-581, 2017. [3] Macchiarelli, G et al., Histol Histopathol, 17(3):699-706, 2002. [4] Seidel, T et al., Ann Biomed Eng, 44(5):1436-1448, 2016.