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Abstract

This paper reviews some of the recent additive manufacturing research and development works
in China. A considerable amount of AM research activities in China focuses on directed energy
deposition processes, powder bed fusion processes and stereolithography, with much of the
effect dedicated to system and application development. Although many of the recent results
are not readily available from the literatures published in China, from the available information
the areas of focus for research and development could be clearly seen. Despite some
speculations, the AM research in China is vibrate and aggressive, with some areas at least
several years ahead of the other countries.

1. Introduction

China is among the earliest countries that started additive manufacturing (AM) research. Back in
around 1990, several groups in China had started AM various AM research efforts, which include
Tsinghua university (led by Dr. Yongnian Yan), Huazhong University of Science and Technology
(led by Dr. Yungan Wang) and Xi’an Jiao Tong University (led by Dr. Binheng Lu). After over 20
years, the AM research in China has greatly expanded into a wide range of areas from
aerospace, defense, automobile, biomedicine to appliance, tooling, micro/nano-fabrication and
art design. Currently there exist over 10 large research groups and companies in China that have
been extensively involved in AM research, which include Northwestern Polytechnical University,
Beihang University, South China University of Technology, Nanjing University of Aeronautics and
Astronautics, University of Science and Technology of China, Shanghai Jiao Tong University,
Northwest Institute for Nonferrous Metal Research, China Academy of Engineering Physics and
Beijing Longyuan beside the other three mentioned previously. Unlike some of the other
countries such as U.S. and U.K., most of the research institutes in China also own their
companies that sell their own systems and provide AM services. Therefore, one of the unique
characteristics of AM research in China is that a significant portion of research efforts is
dedicated to the system integration including both hardware and software. On the other hand,
the AM market in China is still largely focused on a few high value-added applications, while the
overall manufacturing market as well as the personal desktop printer market largely untapped.

Likely due to the market demands, several AM processes including stereolithography (SLA),
powder bed fusion (PBF) and directed energy deposition (DED) have seen quite considerable
development in China in the recent years. For example, China is among the most advanced
countries in the use of directed energy deposition technologies in the manufacturing of large
aerospace components. On the other hand, some of these achievements are largely unfamiliar
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to the researchers outside of China. Therefore, in this paper, we attempt to review some of
these works that have been published in various Chinese science and engineering journals.
Although many of these publications did not offer sufficient technical details about certain
works, overall some general observations can be made for the process/material development
and applications. Also, as research areas such as bio-printing and organ printing represent a
rather unique branch of AM, these works were not within the scope of this review despite the
fact that extensive research has been performed.

2. Stereolithography (SLA)

Multiple research groups in China started research works related to SLA back in early 1990s.
Recently, more application oriented research works were performed by groups such as Xi’an
Jiao Tong University by Dr. Binheng Lu and Dr. Dichen Li. On the other hand, relatively limited
works are focused on new photopolymer development [1,2].

2.1 Equipment

A lot of the research was focused on the development of new light source and the improvement
of process accuracy. Several groups explored the use of non-laser UV light source in SLA systems
including mercury-xenon UV lamp [3, 4, 5] and UV-LED [6]. Mercury-xenon UV lamp was used as
a low-cost substitute of the traditional UV laser sources, however suffers from low coherence,
which requires additional optical manipulations [3, 4]. Jun et al. reported the development of a
SLA system with LED as energy source, which could achieve a stable output power of over
30mW and a beam diameter of about 0.3mm [6]. Wu et al. suggested that the LED UV SLA
system could result in significant cost saving as well as an energy saving of over 99%, although
currently it also suffers the disadvantage of lower energy density and coarser beam size [4]. In
the effort of improving control and fabrication accuracy, various techniques were studied by
multiple groups, including the laser based resin position measurement [7], surface-constrained
recoating [8], and resin compensation [9], which were implemented in different commercial
systems. Various commercial SLA systems are available from companies such as Shanxi
Hengtong and Beijing Yinghua, which are capable of fabricating photopolymer and ceramic parts
with a layer thickness of 0.04mm and accuracy of 0.08mm [10], although layer thickness of 0.01-
0.02mm was also reported for research systems [8]. In addition, Shanxi Hengtong also released
their digital light projection (DLP) based SLA system. Fig.1 shows some of the SLA systems
developed by the same company.

a. SCPS3508 (DLP b. SPS600 ¢ S.PSZSOM d. SPS350C (ceramic)
based) (medical grade)

Fig.1 SLA systems from Shanxi Hengtong
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2.2 Process development

A considerable portion of the researches related to the SLA process in China focuses on the
accuracy improvement, which approach the problem from various aspects such as scanning
strategy [11-15], support generation [16] and residual stress reduction [17]. As many research
groups develop their own SLA systems and therefore have full control of all process parameters,
some interesting process strategies were investigated. For example, Lei et al. combined the
double-scanning curing strategy with the scanning area sectioning in order to reduce warping of
overhanging structures, which showed significant improvement compared to both the original
double-scanning strategy and the STAR-WEAVE strategy [11]. The same group also suggested
that the proper design of sectioning and section scanning strategy based on the curing
characteristic of the photopolymer could along potentially result in significant reduction of part
warping and improvement of part quality [17]. In another work, through experimental based
process optimization, Xiang et al. reported the successful fabrication of micro-gears with
minimum feature size of about 70um using standard SLA system [18]. Hong et al. developed an
algorithm that recognizes different types of overhanging structure and generates support
structures accordingly, which was implemented into the commercial systems by Shanxi
Hengtong [16]. In addition, The group at Xi’an Jiao Tong University also performed extensive
research works on the material and process development of specific systems, such as the
investigation of time-dependent curing profile evolution for ceramic particle loaded
photopolymer and regular photopolymer with mercury-xenon UV source utilizing both
experimentation and molecular dynamics simulation using Monte Carlo method [15, 19].

Due to the conflict of commercial interest between different research institutes, much of the
process/material development research works published in China represent independent but
often overlapping efforts with same problems. In general, due to the focus on commercialization
as well as the relatively mature level of technological development, there exist limited recent
research works in China that focus on the process/material development of SLA.

2.3 Applications

With the rapid development of biomedical and aerospace industries in China, various studies
have investigated the use of SLA for these applications, especially for those with stringent
requirements with geometrical accuracies. Xi’an Jiao Tong University has worked extensively on
the fabrication of wind tunnel and ceramic turbine blades using SLA as either direct or indirect
methods, as shown in Fig.2 [20-23]. Due to the limitation of material strength, the application of
SLA in aerospace areas primarily focuses on the fabrication of molds and patterns that are
subsequently used for investment casting. The parts fabricated by SLA could either be used
directly as pattern for casting or as shells that can be reinforced by metal-resin composites to
serve as the mold for wax pattern casting [24-26]. This type of processes was studied in various
works in details using either finite element simulation or experimentation, which reported the
resulting alleviation of thermal residual stress due to the casting process and the elimination of
thermal cracks [25, 26].
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a. Wind tunnel [22] b. Turbine blade [23]
Fig.2 SLA applications in aerospace

In biomedical areas, extensive studies have been performed in various applications utilizing SLA,
which is led by the group in Xi’an Jiao Tong University. These works primarily focused on the
fabrication of scaffolds for soft tissue regeneration or for hard tissue implantation [27-34].
Zhuang et al. developed a three-step process for the fabrication of PEG (polyethylene glycol)/
PLA (polylactide)/B-TCP (tricalcium phosphate) composite bone/cartilage joint scaffold shown in
Fig.3 [30, 31]. The B-TCP structure was realized from the pattern fabricated by SLA, the PLA
anchor structure was fabricated by weaving PLA fibers that mimic the ligaments, and the PEG
cartilage was fabricated directly by SLA. This hybrid manufacturing method was also applied to
fabricate ligament-bone composite scaffold [33] and magnesium-ceramic composite bone
scaffold [34], which generally resulted in improved biological and biomechanical responses in
both in-vivo and clinical experiments. For hard tissue prostheses, using SLA parts as investment
casting pattern, Yaxiong et al. have implemented custom AM titanium implants in more than
100 clinical trials [28]. Overall the adoption of AM in biomedical applications has been
significantly more aggressive than most other countries including U.S., which can be expected to
serve as a critical advantage for the development of this technology in the long term.
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PEGbone & PEG channel & 33 Ciﬁ‘f(“»{ i +2.7% [{98-TCP
- Double channel *D";-’ RLCA
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PLA anchor
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a. Large joint scaffold [30] b. Ligament-bone scaffold [31, 35]

Fig.3 Composite scaffold via SLA

3. Powder bed fusion (PBF)

Various groups in China have been extensively involved in PBF related research, which include
Tsinghua University, Northwest Institute for Nonferrous Metal Research, South China University
of Technology, Huazhong University of Science and Technology and Nanjing University of
Aeronautics and Astronautics. Most of these research groups have developed their own PBF
systems, such as the EBSM-150 electron beam PBF from Tsinghua University, DiMetal-
240/280/100 laser melting PBF from South China University of Technology, RAP-1 laser PBF from
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Nanjing University of Aeronautics and Astronautics, and various laser polymer PBF systems from
Huazhong University of Science and Technology.

3.1 Equipment

3.1.1 Electron beam melting systems

Tsinghua University developed its first electron beam based PBF system named electron beam
selective melting (EBSM) around 2004, which was among the first research groups that
independently developed such type of systems [36]. The research group led by Dr. Feng Lin has
performed extensive research with the EBSM system including powder spreading, powder
preheat and scanning control. The prototype system utilizes a hopper-roller powder spread
mechanism as shown in Fig.4a [37], which was later replaced by a vibration based powder
spread mechanism that could achieve minimum layer thickness of 0.1mm via closed-loop
powder weight control [38]. Recently, Chao et al. further developed a vibration based dual-
powder spread system as shown in Fig.4b, which could realize the controlled mixing of two
powders [39]. It was suggested that this new mechanism could realize more efficient fabrication
of digital materials and functionally graded materials. In addition, the same group has also
demonstrated the successful spread of titanium powder with very low flowability and
spreadability that were non-printable via traditional powder spread mechanism. Furthermore, a
tilted comb spreader was also designed for the EBSM system, which could reduce shear stress
exerted on the fabricated parts during the powder spreading [39]. Beside this group, multiple
other groups also performed extensive research on platform development [40, 41]. The
selective electron beam (SEBM) S1 system developed by Northwest Institute for Nonferrous
Metal Research was reported to have layer thickness of 50-200um, beam size 200um, scanning
speed of 8km/s, material melting speed 10-100m/s and fabrication accuracy of 1mm [40].
Overall these systems still lack the level of system integration and process accuracy of the
commercial electron beam system by Arcam. However, due to their open architecture hardware
and software, these systems are currently sought after as research platforms for new material
development with electron beam energy sources.

Powder A

a. Hopper-roller system b. Vibration based dual-powder system
Fig.4 Powder spread mechanism in EBSM

3.1.2 Laser melting systems

South China University of Technology was among the first groups in China to develop laser
melting PBF systems, and some of their systems are shown in Fig.5. Led by Dr. Yonggiang Yang,
this research group also performed extensive research on the material development using their
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in-house laser melting systems, which will be introduced in the following section [42, 43].
Huazhong University of Science and Technology also developed their own HRPM-II laser melting
PBF system, and performed extensive research works in the improvement of laser deflection
and focusing mechanisms using various approaches [44-46]. It was reported that the HRPM-II
system has a positioning repeatability of 30um and scanning accuracy of 0.1mm/100mm [46].
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a. DiMetal-240 b. DiMetal-280 c. DiMetal-100
Fig.5 DiMetal laser melting systems

3.1.3 Laser sintering systems
Huzhong University of Science and Technology is among the earliest groups in China that
developed polymer laser sintering PBF systems [47-49]. Wuhan Binhu Mechanical & Electrical
Co. Ltd, which is affiliated to the university, currently offers at least six different models of laser
sintering systems, which include the largest HRPS-VIII system with build envelop of
1400x1400x500mm, layer thickness of 0.08-0.3mm and part accuracy of 0.2mm/200mm [50].
Recently, the Changsha based Farsoon also started to provide laser sintering solutions from
equipment to material supply [51]. By collaborating with BASF, Farsoon is also developing new
polymer materials suitable for laser sintering PBF, although no further details are currently
available. Fig.6 shows some of the commercial laser sintering PBF systems developed in China.

a. HRPS-III b. Farsoon 402

1617



c. Lasercore-7000 d. MEMA450A
Fig.6 Laser sintering PBF systems in China

3.2 Process development

For electron beam PBF, extensive works have been carried out in the investigation of
relationships between scanning strategies and the microstructure and properties of the
fabricated parts. Qi et al. developed a kinematic model for the powder bed, which was
subsequently used for the design of vacuum system in the EBSM system and the optimization of
preheat strategies [52]. In another work, He et al. proposed an electron beam preheat strategy,
which gradually increases the preheating electron beam current in order to realize preheat of
Ti6Al4V powder with relatively low electrical conductivity [53]. In addition, it was also suggested
that the pre-sintering effect could help reduce the tendency of balling during the melting
process [53]. Several studies investigated the effect of powder mixing on their processiability,
and concluded that when the mixing ratio between the more spherical gas atomized powder
and the irregular water atomized powder is around 40%:60%, the powder bed exhibits highest
processibility with both preheating and melting [54, 55]. In a recent work, Guo et al. studied the
relationship between the input energy density and the surface texture of the 316L stainless steel
fabricated via EBSM, and proposed a two-step process strategy that aimed to improve the
surface finish of each newly fabricated layer [56]. The proposed method utilizes low energy
density scanning to introduce partial melting in the fabricated layer, which is followed by a
subsequent re-melting with higher energy density. It was reported that this approach potentially
allows for more sufficient melting pool evolution by forming large-size melting pools, which
resulted in a top surface finish of less than 8um, as well as 99.96% density with microstructure
dominated by refined columnar and equiaxial grains [56].

For metal laser melting PBF, extensive studies have been carried out by various groups that
focus on the process-microstructure-property relationships of the laser melting PBF systems
using various materials including 316L stainless steel, CoCrMo alloys, 304 stainless steel and
Inconel 718 alloy [57-70]. Wu et al. developed a core-shell process strategy for the rapid
fabrication of 316L stainless steel parts with fully dense shell and porous cores. Using the laser
laser power (85W), higher scanning speed and larger scanning spacing (700mm/s and 0.08mm,
respectively) were used for the core fabrication, while lower scanning speed and smaller
scanning spacing (300mm/s and 0.06mm, respectively) were used for the skin fabrication. It was
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reported that this approach helped reducing the thermal distortion of the fabricated parts by
about 75% and process time by about 25% [60]. Song et al. studied the effect of laser process
parameters (power, scanning speed and spacing) on the mechanical properties of the CoCrMo
alloy, and it was reported that the higher yield strength, ultimate strength as well as hardness of
the as-fabricated parts were superior compared to the ASTM F75 specifications, while the
elongation was significantly lower [61]. Lu et al. studied the in-situ alloying and fabrication of Fe-
8Ni-0.5C alloy from pre-mixed elemental powder [65]. The process parameters were optimized
through single-layer study, and a metal lattice part as shown in Fig.7a was successfully
fabricated with 22A power, 45mm/s scanning speed, 0.07mm spacing and layer thickness of
0.18mm. Subsequent microscopy observed predominantly needle-shaped martensite in the
microstructure as well as some retained austenite as shown in Fig.7b-c, while no significant
element segregation was reported [65]. Zhang et al. compared the process parameters of a
series of aluminum alloys including AlSi25, AlSi10mg, AIMg5 and AIMgSi0.5, and analyzed the
mechanisms of internal porosity generations [66]. It was suggested that at least two porosity
generation mechanism exist. When the input energy is insufficient, internal porosity could form
due to the lack of fusion. On the other hand, when excessive input energy is used, the
evaporation of magnesium contributes to the formation of small spherical porosities, which also
result in the change of overall material compositions. The group at Nanjing University of
Aeronautics and Astronautics led by Dr. Dongdong Gu has also performed extensive research
with the process development for various materials including Inconel 718 and various metal
matrix composite materials. Ying et al. studied the influence of input energy density to the
solidification characteristics of the molten material [71]. It was found that at low input energy
density, the microstructure of the IN718 parts fabricated by laser melting PBF exhibit large
columnar y grains with large cracks within these grains as well as small grains at the grain
boundaries. In addition, there also exists significant epitaph growth in the structure. As the input
energy density increases, the IN718 microstructure start to exhibit more aligned columnar
grains with less epitaph growth and refined grain size [71]. Meng et al. studied the fabrication of
TiC reinforced Titanium matrix composite structure using laser melting PBF [67]. Using pre-
mixed TiC-Ti powder, the group investigated the effect of different processing parameters on
the density and defects of the fabricated parts, and discussed the mechanism for the existence
of an optimum input energy density. As shown in Fig.8, the microstructure of the TiC-Ti
composite exhibit homogeneous microstructure with nano-size TiC phase dispersed within the
Ti matrix until the energy density becomes excessive, at which point the microstructure
becomes large dendrite with large grain sizes [67]. The same group also performed some very
interesting studies with the process of non-traditional materials and structures, such as the
modeling of the melting pool dynamics for W-Cu dual-material system with tungsten particles
remain solid during the melting process [68], as well as the use of foaming agent in the direct
laser fabrication of 316L stainless steel with honeycomb porosities as shown in Fig.9 [69].
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a. Fabricated part b. Microstructure 1000x
Fig.7 Fe-Ni-C parts by laser melting system via in-situ alloying [65]

a.200J/m b.267J/m c. 400)/m d. 800J/m
Fig.8 Microstructure of TiC/C composite under different energy densities [67]

a. Surface b. Cross-section
Fig.9 316L stainless steel with honeycomb porosity fabricated by laser melting PBF [69]

The research group in Huazhong University of Science and Technology led by Dr. Yusheng Shi
have performed systematic research with polymer laser sintering processes, while some of the
other research groups focused more on non-traditional sintering materials. Recently, Yan et al.
studied the sintering phenomenon during the laser sintering process with several different
materials, which found that the undesired secondary sintering between the processed region
and the surrounding areas could be reduced by adding inorganic filler materials with high
melting temperature [72]. It was also suggested that the secondary sintering is more significant
for polymers with higher degree of crystallinity [73]. As it is widely known that current laser
sintering process has considerable degree of uncertainty in process control. In an attempt to
address this issue, Liu et al. explored the feasibility of implementing neural network based
control algorithm for the process control optimization, although the authors did not find further
works that verify its efficiency [74]. The same group also developed a hybrid process that
combines laser sintering with hot isostatic pressing (HIP), in which the laser sintered parts were
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used as the pattern for HIP mold, and the HIP was used as the primary shape generation process
[75]. This approach overcomes some of the limitations of the laser sintering process in the
manufacturing of metal parts, and was demonstrated to be capable of producing high strength
AISi316L parts with complex geometry as shown in Fig.10.

Fig.10 Complext AISi316L parts fabricated by SLS/HIP

3.3 Applications

Despite the extensive research, currently there exist relatively limited applications for metal PBF
processes in China. Various groups have demonstrated the capability of PBF in the direct
fabrication of metal structures and components in a range of applications including orthopedics
[76, 77], surgical devices [78], complex mechanical joints [79], turbine engine plates [80] and
emboss sculpture [81]. However, only a few areas that have high demand of high value-added
metal components have adopted metal PBF processes, such as aerospace and orthopedics. On
the other hand, the polymer and non-metal PBF processes have been widely used in tooling
industries to fabricate wax patterns, sand cores and even direct tooling for a range of industries
including automobile and aerospace [82, 83]. Fig.11 shows a pair of casting mold for an engine
block of 2000mmx1000mmx450mm in size fabricated by laser sintering process, with each half
of the mold assembled from two pieces [83].

Fig.11 Engin-e block mold by laser sintering, left is drag and right is cope

4. Directed energy deposition (DED)

One of the most rapidly advancing AM areas in China is the DED, which has started to receive
considerable attentions worldwide. Started in late 1990s, various groups in China have worked
extensively on this type of processes, with research almost exclusively focused on the process-
microstructure-property studies with various aerospace materials using laser based systems.
Currently the two leading research institutes are Northwestern Polytechnical University and
Beihang University, which have collaborated with defense agencies and independently
demonstrated the fabrication of large titanium aerospace components using in-house
developed laser DED systems.
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4.1 Equipment

There currently exist several commercial laser DED systems in China, which are mostly
developed by owned Xi’an Bright Ltd that is owned by Northwestern Polytechnical University.
Until 2012, this group has developed various laser DED systems that use CO2 laser, Nd:YAG
laser, fiber laser and diode laser as energy sources depending on their applications, and have
sold multiple of these equipment to Chinese aerospace companies as well as GE China Research
Center. These systems can achieve atmospheric control of 0,<10ppm and possess real-time
closed-loop feedback control systems based on melting pool temperature, melting pool size and
layer height [84]. Fig.12 shows two of the systems developed by Bright. Recently, Beihang
University also found a commercial company that starts to offer laser DED equipment [85].

RO ) 3
iz :

b. LSF-IV

Fig.12 Laser DED by Xi’an Bright [84, 86]

4.2 Process development

The research group in Northwestern Polytechnical University led by Dr. Weidong Huang focus
extensively on the solidification process and microstructural control during the laser DED
processes. As part of the State Key Laboratory of Solidification Processing, this research group
has developed relatively comprehensive expertise on the fabrication of large metal components
with controlled thermal stress and microstructure. Starting from 1998, the research group in
Beihang University as part of the Engineering Research Center of Ministry of Education on Laser
Direct Manufacturing for Large Metallic Component led by Dr. Huaming Wang have also
performed extensive research works on the development of process parameters of various
aerospace alloys including titanium alloys, Ni-superalloys, Fe-superalloys, high strength steels
and intermetallics, as well as their post heat treatment processes for improved microstructural
and performance control.

Various literature works are available for the process development of various titanium alloys
using laser DED, including TC2 (Grade 3), TC4 (Ti6Al4V), TC17 (Ti-5AI-2Sn-2Zr-4Mo-4Cr) and TC18
(Ti-5Al-4.75Mo0-4.75V-1Cr-1Fe) [87-101], as well as the in-situ alloying study of Ti-xAl-yV (X<11,
Y<10) [102-104], TiB+TiC/TA15 and Ti-6Al-2Zr-Mo-V alloys [105-107]. Ma et al. developed a
fractal scanning strategy, which helped to improve the temperature field homogeneity due to
the self-similar pattern of the fractal scanning paths [108]. Combined with the partial laser beam
offset strategy, this scanning method was reported to significantly improve the part quality by
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reducing insufficient fusion and internal porosity. In another study, in order to avoid non-
uniform thermal dissipation characteristics in different part of the scanning area in each layer,
Ma et al. also developed a geometrical style recognition based automatic scanning path
generation and process parameter control [109]. For regions A and B as shown in Fig.13a, the
automated algorithm generates different process parameters that reduces various
manufacturing defects and improve the fabrication quality and accuracy for the direct
manufacturing of the C919 aircraft wing chord shown in Fig.13b. Although no research literature
was found by the authors, it was explicitly suggested that the fatigue and creep properties of
the fabricated components are either comparable or better compared to the traditionally
manufactured parts.

moving direction

it

a. Geometrical style recognition b. aircraft wing chord
Fig.13 Geometry-based process adjustment of laser DED [109]

Extensive works have also been performed on the development of 17-4PH stainless steel for
component repair [110-112]. It was reported that the microstructure of the 17-4PH fabricated
by laser DED exhibit two types of martensite as well as precipitated secondary phases, which
evolves into fine lath martensite with coarsened secondary phases during tempering [110, 111].
The same group also employed cellular automata in the modeling of solidification and dendrite
growth [112], as well as epitaph growth on Fe-C single crystal substrate [113]. In the
experimental investigation of the solidification behavior of laser DED process, Wang et al.
utilized transparent butanedinitrile-2.0% ethanol alloy and realized real-time simulation of
melting pool formation and non-equilibrium solidification that mimics the real laser DED process
[114]. It was found that the solidification and microstructure are affected by the melting pool
morphology as well as the grain orientation of the substrate. There also exist interesting works
from the other research groups. For example, Wang et al. explored the use of ultrasonic
vibration in laser DED fabrication of BT20 (Ti-6Al-1.5Mo-1.5V) alloy [115]. Using excitation
frequency of 19.56kHz, it was found that the internal porosity and resulting grain size showed
considerable improvement, however the deposition rate were also negatively affected. Pi et al.
studied the self-stabilizing effect during the laser DED process that facilitates smooth finish, and
proposed to employ process spacing at off-focus distance in order to utilize this effect [116].
Wang et al. studied the adjustment of powder delivery rate in order to improve the accuracy
and surface quality of the tilted thin-wall structures [117].
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4.3 Applications

Laser DED technologies have been adopted in various areas in China, including aerospace,
biomedical, tooling, automobile and shipbuilding. One of the most widely reported applications
is the direct fabrication of large aerospace components. Fig.14a shows a Ti6Al4V C919 aircraft
wing chord with 450x350x3000mm size fabricated by Northwestern Technical University [118].
It was reported that the long-term dimensions stability of this part is smaller than 1mm without
any post heat treatment. In addition, both the quasi-static and fatigue properties of the
component are better than the wrought parts. Fig.14b shows a dual-alloy bearing case based on
Ni-superalloy, which was fabricated with two material compositions in order to better
accommodate the thermal characteristics between different parts of the aircraft engines [118].
Beihang University fabricated various aerospace components including corner case, fitting for
aircraft seats (shown in Fig.14c), pelvic joints and other secondary titanium structural
components, which have been installed in various models [119, 120]. It was reported that the
material utilization was improved by 5 times, and the fabrication time and cost were reduced by
67% and 50% respectively. Recently this group also successfully fabricated large TA15 titanium
part for main structural components in aircraft with overall dimension over 1730x250x230mm
as shown in Fig.14d.

IN961 # {4

b. Bearing case [118]

c. Seat fitting [119] d. Large aircraft structural comonent [119]
Fig.14 Aircraft components fabricated by laser DED

Northwestern Polytechncial University has also been collaborating with the Fourth Military
Medical University to fabricate dental prostheses using laser DED. As shown in Fig.15, it was
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expected that functionally graded structures with metal-hydroxylapatite graded material
composition and varying porosity can be directly fabricated to accommodate both biological and
mechanical requirements for the prostheses [121]. It was reported that this concept has been
proved with multiple material combinations including stainless steel, CoMoCr alloys, titanium
alloys and Ti/HA graded materials via preliminary clinical trial [121].

Fig.15 Dental crn and mandibular based plate by laser DED [121]

5. Conclusions

It was the impression of the authors that the AM research in China is highly aggregated in
several major research institutes, which is partly contributed by the research resources that
these institutes are capable of attracting. Almost all the research groups in China developed
their own research systems, and some of these systems have been commercialized. In general,
much of the equipment focused research between different groups exist significant overlap,
which makes it difficult to grasp the most recent advancement of the technologies.

Many of the AM research works focus on application development, especially with the relatively
well-developed AM processes such as stereolithography and powder bed fusion. On the other
hand, several research groups in China have demonstrated extensive research expertise and
achievement with both the fundamental process development and application development for
the directed energy deposition processes. With aggressive adoption by aerospace and
biomedical industries, the application of AM may experience a more rapid progress compared to
most other countries.

There currently does not exist a research collaboration platform between U.S. and China. On the
other hand, several mechanisms exist for the collaboration between Europe and China. There
exist considerable potentials in collaborations between U.S. and China, which appear to have
complementary expertise in many areas.
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