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In this dissertation, we present a scalable parallel version of hp3D—a finite element

(FE) software for analysis and discretization of complex three-dimensional multiphysics ap-

plications. The developed software supports hybrid MPI/OpenMP parallelism for large-scale

computation on modern manycore architectures. The focus of the effort lies on the devel-

opment and optimization of the parallel software infrastructure underlying all distributed

computation. We discuss the challenges of designing efficient data structures for isotropic

and anisotropic hp-adaptive meshes with tetrahedral, hexahedral, prismatic, and pyrami-

dal elements supporting discretization of the exact sequence energy spaces. While the code

supports standard Galerkin methods, special emphasis is given to systems arising from dis-

cretization with the discontinuous Petrov–Galerkin (DPG) method. The method guarantees

discrete stability by employing locally optimal test functions, and it has a built-in error

indicator which we exploit to guide mesh adaptivity. In addition to interfacing with third-

party packages for various tasks, we have developed our own tools including a parallel nested

dissection solver suitable for scalable FE computation of waveguide geometries. We present

weak-scaling results with up to 24 576 CPU cores and numerical simulations with more than

one billion degrees of freedom.

vi



The new software capabilities enable solution of challenging wave propagation prob-

lems with important applications in acoustics, elastodynamics, and electromagnetics. These

applications are difficult to solve in the high-frequency regime because the FE discretization

suffers from significant numerical pollution errors that increase with the wavenumber. It

is critical to control these errors to obtain a stable and accurate method. We study the

pollution effect for waveguide problems with more than 8 000 wavelengths in the context of

robust DPG FE discretizations for the time-harmonic Maxwell equations. We also discuss

adaptive refinement strategies for multi-mode fiber waveguides where the propagating trans-

verse modes must be resolved sufficiently. Our study shows the applicability of the DPG

error indicator to this class of problems.

Finally, we present both modeling and computational advancements to a unique three-

dimensional DPG FE model for the simulation of laser amplification in a fiber amplifier.

Fiber laser amplifiers are of interest in communication technology, medical applications,

military defense capabilities, and various other fields. Silica fiber amplifiers can achieve

high-power operation with great efficiency. At high optical intensities, multi-mode amplifiers

suffer from undesired thermal coupling effects which pose a major obstacle in power-scaling

of such devices. Our nonlinear 3D vectorial model is based on the time-harmonic Maxwell

equations, and it incorporates both amplification via an active dopant and thermal effects

via coupling with the heat equation. The model supports co-, counter-, and bi-directional

pumping configurations, as well as inhomogeneous and anisotropic material properties. The

high-fidelity simulation comes at the cost of a high-order FE discretization with many degrees

of freedom per wavelength. To make the computation more feasible, we have developed

a novel longitudinal model rescaling, using artificial material parameters with the goal of

preserving certain quantities of interest. Numerical tests demonstrate the applicability and

utility of this scaled model in the simulation of an ytterbium-doped, step-index fiber amplifier

that experiences laser amplification and heating.
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Chapter 1

Introduction

1.1 Motivation

hp finite elements. hp-adaptive methods are considered to be among the most powerful

but difficult to implement finite element (FE) technologies. By orchestrating an optimal

distribution of element size h and polynomial order p, one can achieve exponential rates

of convergence for irregular solutions. Combined with the preasymptotic stability delivered

by the discontinuous Petrov–Galerkin (DPG) method [32], the methodology offers a unique

tool for fast and reliable discretization of challenging modeling problems. The finite ele-

ment software hp3D, developed by Demkowicz et al. [37, 57, 83], supports many advanced

FE technologies, including exact-sequence conforming discretizations, fully anisotropic hp-

refinements, and hybrid meshes with elements of “all shapes” (tetrahedra, hexahedra, prisms,

pyramids). Because of that, hp3D is applicable to a great variety of complex multiphysics

models. However, these models often require high-order discretizations, complex geometries,

and coupled multiphysics variables, yielding very large problems that typically exceed the

memory and computational capacities of a single compute node. While parallel FE libraries

are widely available, few support hp meshes. For that reason, a distributed-memory, scal-

able parallel implementation of hp3D is of great interest to advancing the state-of-the-art

computational capabilities in hp-adaptive FE computation.
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Fiber laser amplifiers. Optical fiber amplifiers play a critical role in our world. For ex-

ample, optic communication technology relies on fiber amplifiers to transfer data over long

distance [107], and astronomers use fiber lasers as highly coherent light sources to calibrate

telescopes [126]. Silica fiber amplifiers have emerged as excellent candidates for achieving

high power outputs with great efficiency while providing superior beam quality. The research

in, fabrication of, and applications for optical fibers have greatly benefited from the growth

and ubiquity of the telecommunications industry, leading to more reliable, lower cost, and

higher power fiber laser systems [75, 66]. Nonetheless, the efforts of power-scaling beam

combinable fiber amplifiers have encountered numerous roadblocks in the form of nonlin-

ear effects [75]. In continuous wave operation, stimulated Brillouin scattering (SBS) [84]

and stimulated Raman scattering (SRS) [117] impose limits on the achievable power. One

effective mitigation strategy for these nonlinear effects is to increase the core size while si-

multaneously decreasing the fiber length. Unfortunately, these large-mode-area fibers permit

additional guided higher-order modes, which ultimately can reduce the output beam quality

if any significant amount of power is transmitted in these modes. This happens above a

certain power threshold, at which point the fundamental mode begins to exchange energy

with the higher-order modes. This effect is called the transverse mode instability (TMI) [44].

The origins of these mode instabilities are understood to be tied to thermal effects and the

interference patterns between the guided modes of the amplifier [76].

Experimental investigations of nonlinear effects in fiber amplifiers are slow, costly, and

provide limited data. Indeed, the fabrication of rare-earth doped fiber amplifiers is very

expensive, and manufacturing techniques limit the options and time-to-delivery of custom

configurations. Additionally, experimental data are limited with regard to accuracy and

placement of sensors. In fact, measurements are largely confined to observing the output

of the fiber amplifier. Therefore, the need for modeling and simulation of fiber amplifiers is

evident.
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1.2 Objectives

The objectives of this dissertation are:

• The development of a mathematical model and DPG finite element discretization for

analyzing optical fiber amplifiers.

• The parallelization and optimization of the hp3D finite element software for supporting

large-scale numerical simulations of complex multiphysics applications.

1.3 Background

Following a brief introduction to the Maxwell equations, this section provides an overview

of common approaches to fiber amplifier modeling, some of the challenges related to solving

high-frequency wave propagation problems, and applications of the discontinuous Petrov–

Galerkin method.

1.3.1 Maxwell’s equations

The propagation of optical fields in fibers is governed by Maxwell’s equations. Stated in

differential form, the Maxwell equations are,

∇ ·D = ρf , (1.1)

∇ ·B = 0, (1.2)

∇× E = −∂B
∂t
, (1.3)

∇×H = Jf +
∂D
∂t

, (1.4)

with the definitions given in Table 1.1 (see Table A.1 for an overview of SI units).

Jf and ρf represent the sources for the electromagnetic field. D is also referred to
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Symbol Description Unit

E Electric field vector V/m
H Magnetic field vector A/m
D Electric flux density vector C/m
B Magnetic flux density vector Wb/m2

Jf (Free) Current density vector A/m2

ρf (Free) Charge density C/m3

Table 1.1: Maxwell’s equations: symbols

as the electric displacement vector, and ∂D/∂t is the displacement current Jd. Maxwell’s

equations imply the continuity equation for charge and current:

∇ ·Jf +
∂ρf
∂t

= 0. (1.5)

Remark: The electric polarization P, defined in (1.6), produces a bound charge ρb =

−∇·P; a change in the electric polarization causes a polarization current Jp = ∂P/∂t. The

magnetic polarization M, defined in (1.7), produces a bound current Jb = ∇ ×M. The

Maxwell equations imply that the total current density J = Jf +Jp +Jb and charge density

ρ = ρf + ρb satisfy the continuity equation.

Optical fibers are made of silica glass. In the absence of free charges in a dielectric

medium (electrical conductivity σ = 0) such as silica glass, Jf = σE = 0 (by Ohm’s law) and

ρf = 0. The flux densities D and B are a response to the electromagnetic fields propagating

inside the medium. The following constitutive equations [64, 74] relate the flux densities to

the field vectors:

D = ε0E + P , (1.6)

H =
1

µ0

B −M, (1.7)

where P and M are the induced electric and magnetic polarization, respectively, ε0 is the

electric permittivity in vacuum, µ0 is the magnetic permeability in vacuum, and c = 1/
√
ε0µ0
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is the speed of light (cf. Table A.2). P andM are generally nonlinear functions of the electric

and magnetic field, obtained by constitutive modeling. In a linear medium,

D = εE , (1.8)

B = µH. (1.9)

In isotropic materials, ε and µ are scalar values; in anisotropic materials, ε and µ are second-

rank tensors. In a homogeneous medium, ε and µ are uniform. Assuming the dielectric

medium is linear, isotropic, and homogeneous, we can rewrite the Maxwell system as:

∇ · E = 0, (1.10)

∇ ·H = 0, (1.11)

∇× E = −µ∂H
∂t

, (1.12)

∇×H = ε
∂E
∂t
. (1.13)

Time-harmonic Maxwell equations in a linear medium. The time-varying electric

and magnetic fields are E and H; let the corresponding time-harmonic fields be denoted by

E andH , respectively. Then, the time-harmonic version of the Maxwell equations is derived

using the following ansatz:

E(x, y, z, t) = Re
{
E(x, y, z)eiωt

}
, (1.14)

H(x, y, z, t) = Re
{
H(x, y, z)eiωt

}
, (1.15)

where i =
√
−1, ω is the angular frequency of the (monochromatic) light, and Re{·} refers

to the real part of the complex-valued vector field.
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The time-harmonic linear Maxwell equations are then given by:

∇×E = −iωµH , (1.16)

∇×H = iωεE. (1.17)

Remark: It is important to note that we chose the ansatz exp(+iwt) while others

may choose the ansatz exp(−iwt). Either choice is suitable, but it is important to keep the

particular ansatz in mind for correctness of the sign as we proceed.

1.3.2 Modeling of fiber amplifiers

The state of the art in numerical simulation of fiber amplifiers consists of beam propagation

methods (BPMs), coupled mode theory (CMT) approaches, and a variety of other mod-

els that make certain approximations and assumptions to achieve simplified, but efficient

simulations. Some models couple to a time-dependent heat equation [125, 96], others solve

the thermal problem in the frequency domain [67, 116]. Generally, these models are de-

rived from the time-harmonic Maxwell equations and make certain assumptions to arrive at

simpler models that are easier to discretize and compute. BPMs postulate that the propa-

gating fields are guided along the longitudinal fiber direction with some propagation constant

(wavenumber); they proceed to solve the corresponding field envelope by stepping along the

fiber in the wave propagation direction, treating the problem as an initial value problem.

Both 3D vectorial BPMs [110] and, more commonly, scalar BPMs [59, 124] have been pro-

posed. These BPMs tend to work better in frequency domain problems where each transverse

guided mode is given its own unique frequency and wavenumber, leading to a coupled system

with a different partial differential equation (PDE) for each guided mode. Otherwise, one is

left with a single PDE with a given wavenumber that must capture all of the guided modes

simultaneously, straining the limits of the slowly varying envelope approximation.
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Scalar models additionally assume that the propagating fields are strictly polarized

in one of the transverse directions, and that the fiber is polarization maintaining, thereby

eliminating two of the vector components from the equations. Moreover, the field envelopes

may be assumed to be slowly varying in the direction of propagation, reducing the model

to a 2D BPM. A further simplification is made by the CMT approach that decomposes the

electric field into a discrete set of propagating guided modes of the fiber, which are explicitly

connected to one another via coupling coefficients [96, 65].

These models, posed as an initial value problem, are most amenable to forward prop-

agating light. While they can be made to handle bi-directional light propagation, doing so

tends to be very computationally intensive. For this reason, Brillouin scattering in fibers is

most often modeled separately in codes written specifically for that phenomenon.

1.3.3 Numerical solution of high-frequency wave problems

The pollution effect. Discretizing the time-harmonic Maxwell equations for an optical

fiber domain poses the difficulty of capturing a high-frequency wave over many wavelengths.

It is well-known that an accurate numerical solution for wave problems with high frequency

is difficult to obtain [9, 89, 48]. Finite element discretizations are usually dependent on satis-

fying the Nyquist stability criterion, implying that all propagating wave frequencies must be

“resolved” to a certain extent in order to have a stable discretization. Typically, this requires

a FE mesh where the element size h is on the order of one wavelength or smaller. However,

even if the Nyquist criterion is satisfied, the error still grows with increasing wavenumber;

this is called the numerical pollution effect [9]. Some FE methods such as the discontinuous

Petrov–Galerkin method can circumvent the stability problem and deliver a robust discretiza-

tion for any wavenumber [127, 39, 102, 104], but they do not eliminate the pollution error in

multiple dimensions. Numerical pollution can manifest itself in different forms: commonly,

we observe a diffusive effect causing wave attenuation and/or a dispersive effect resulting in
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a phase shift. It is critical to control the pollution error for obtaining accurate results. The

pollution effect in wave propagation has been studied extensively for the Bubnov–Galerkin

FE method, as well as discontinuous Galerkin methods, least-squares methods, and various

other approaches (see [72, 73, 9, 40, 3, 89, 39] and references therein).

Solution schemes. Overcoming the pollution error in high-frequency applications is com-

putationally expensive as it typically requires fine meshes and high-order discretizations.

Additionally, acoustic or electromagnetic wave propagation problems in the time-harmonic

setting lead to PDEs with an indefinite Helmholtz or Maxwell operator, respectively. There-

fore, the resulting linear systems are both very large and difficult to solve. In particular,

many advanced solver techniques are not directly applicable to these problems: direct solvers

are often prohibitively expensive both in memory and computational complexity while most

state-of-the-art iterative solvers are not reliably convergent for these systems [48]. In the last

decade, however, notable advances were made toward more robust iterative solution schemes

[56], e.g., the sweeping preconditioner [45, 46, 123], source transfer methods [22, 85], the

L-sweeps method [121], shifted Laplacian techniques [55], multigrid methods [120] including

a DPG-based adaptive multigrid scheme [103, 104], and others. Still, these techniques are

not always scalable in parallel computation, sometimes are limited to certain types of do-

mains or source functions, or may have other limitations. Thus, developing fast and robust

solution schemes for wave propagation problems remains an active research field.

1.3.4 Discontinuous Petrov–Galerkin methods

The discontinuous Petrov–Galerkin (DPG) FE method of Demkowicz and Gopalakrishnan

[30, 29, 33, 127, 32] offers guaranteed discrete stability for well-posed variational formula-

tions. The stability comes from using so-called optimal test functions that are computed

locally (i.e., per element) on-the-fly. To localize the determination of optimal test functions,

broken (discontinuous) test spaces are used. These broken test spaces give rise to additional
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interface terms on the element boundaries. In other words, the DPG method is a hybrid

method with a group variable consisting of the solution defined on elements and additional

traces defined on the mesh skeleton. The additional unknowns (traces) are discretized by

using traces of standard element shape functions [32]. The DPG method can be classified

as a minimum residual method with the residual measured in an (approximate) dual norm;

it therefore always delivers a positive definite Hermitian matrix. It can also be formulated

as a mixed method with an extra unknown—the Riesz representation of the residual—that

serves as a built-in a-posteriori error indicator. The method is therefore adaptivity ready

without further work on a-posteriori error estimation. The guaranteed stability of the DPG

method comes at the computational cost of first locally determining optimal test functions

and then solving a linear system with additional (trace) degrees of freedom. The method

is thus more expensive than the weak Galerkin formulation. However, this increased com-

putational complexity can be justified for challenging problems where standard techniques

may not yield robustly stable discretizations. Its stability properties make the DPG method

particularly applicable to solving high-frequency wave propagation problems [103, 104] or

singular perturbation problems [71, 51, 111], where preasymptotic stability is essential for

guiding efficient hp-adaptivity.

The DPG method can be applied to any well-posed variational formulation [20]. It

has been used to solve applications in convection-diffusion [34, 18], elasticity [99, 79, 49],

fluid dynamics [21, 108, 80, 106], plate bending [53, 54], acoustic wave propagation [127, 39,

60, 19], Maxwell’s equations [20, 98, 102], and others (see also [15] and references therein).

Additionally, DPG methods have been used for space-time discretizations [36, 63, 47], time-

marching schemes [52, 109, 95, 94], polygonal and polyhedral elements [7, 10], and in the

Banach space setting [93, 86]. DPG-based preconditioners have been developed in [62, 87,

13, 104].
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1.4 Contributions

Fiber amplifier model. The first accomplishment of this dissertation is the development

of a 3D vectorial Maxwell model for the simulation of laser gain in optical fiber amplifiers.

The model is based on a DPG finite element discretization for the ultraweak variational

formulation of the time-harmonic Maxwell equations (see Chapter 2). This model is unique

in several aspects. Rather than treating the problem as an initial value problem, the model

states a boundary value problem. In this approach, we make as few assumptions as possible

with the aim to provide a tool for high-fidelity numerical simulations. The 3D model builds

on the work of Nagaraj et al. [98], who have used a Maxwell model to simulate passive

Raman amplification in a fiber. Building on that framework, we added the ability to model

the more common active gain amplification through a rare-earth, lanthanide metal dopant in

the fiber core region [70]. Like Raman gain, active gain causes our Maxwell system to become

nonlinear. Additionally, we augmented our simulation with a thermal model that analyzes

the interplay between heat deposition, the induced thermal perturbations to the refractive

index of the medium, and the response of the propagating optical fields to this perturbed

medium. To the best of our knowledge, this is the only fiber model that is computed using

a 3D finite element discretization. This fiber amplifier model is discussed in Chapter 5.

Solving the time-harmonic Maxwell model numerically poses a challenge because it is

inherently a high-frequency wave propagation problem. The FE discretization is therefore

suffering from numerical pollution errors. We have investigated the pollution effect for DPG

finite element discretizations of the time-harmonic Maxwell equations in a numerical study

for waveguide problems with more than 8 000 wavelengths and high order of approximation

[69]. We corroborate theoretical results by Melenk and Sauter [89, 90] and provide guidance

on how to best discretize wave problems with high frequency. The results and our approach to

mitigating these errors are discussed in Chapter 4; there, we also study how the DPG method

can be effectively used to perform isotropic or anisotropic mesh adaptivity to resolve higher-
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order modes in fiber simulations. The DPG methodology offers a framework for setting up

automatic hp-adaptivity, which may be pivotal to capturing the onset of nonlinear effects in

a fiber amplifier.

Finite element software. The second key contribution of this dissertation is the develop-

ment of a parallel MPI/OpenMP version of the hp3D finite element code [37, 57, 83], detailed

in Chapter 3. This effort extends the capabilities of the FE software from shared-memory,

single-node computation to distributed-memory computation across many compute nodes.

The underlying distributed data structures and parallel routines fully support all of the ad-

vanced features of hp3D, particularly the hp-adaptive refinement capabilities. The parallel

code also exploits shared-memory parallelization via OpenMP threading and performs ef-

ficiently in hybrid MPI/OpenMP computation. Additionally, interfaces to well-established

third-party libraries were created for various tasks: linear solve (MUMPS [4], PETSc [12]),

mesh partitioning and load balancing (ParMETIS [78], PT-Scotch [23], Zoltan [41]), I/O

and visualization (HDF5 [122], ParaView [2]), and others. Besides the parallelization, sev-

eral other optimizations contributed to increasing the simulation capabilities of hp3D. This

included the development of a more efficient computation for conforming traces in DPG

discretizations and the implementation of a static condensation module for accelerating the

element assembly procedure.

For solving the fiber amplifier model at large scale, we developed a custom parallel

nested dissection solver that exploits the structure of the distributed linear system arising

from discretizing the fiber domain. This solver is discussed in Chapter 3.

In Chapter 6, we study the performance and scalability of the parallel code for the fiber

amplifier simulation, using the Stampede2 supercomputer at the Texas Advanced Computing

Center (TACC). We also conduct large-scale numerical experiments for various configurations

of the fiber amplifier model. We were able to scale the size of the full 3D fiber model

simulation from computing less than 100 wavelengths to solving circa 10 000 wavelengths.
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Chapter 2

Discontinuous Petrov–Galerkin (DPG) Methodology

The DPG finite element method can be introduced from various points of view [32]. We first

introduce it as a Petrov–Galerkin method with optimal test functions that directly addresses

the issue of discrete stability in an abstract variational setting. Two other perspectives are

then discussed: DPG as a minimum residual method, and DPG as a mixed method. Each

point of view provides new insight into the methodology.

2.1 The ideal DPG method

Consider an abstract variational problem of the form,

 u ∈ U ,

b(u, v) = l(v), v ∈ V ,
(2.1)

where U (trial space) and V (test space) are Hilbert spaces equipped with norms ‖ · ‖U and

‖ · ‖V induced by the inner products (·, ·)U and (·, ·)V , respectively; b(·, ·) is a continuous

bilinear (sesquilinear) form on U × V (with continuity constant M),

|b(u, v)| ≤M ‖u‖U ‖v‖V , (2.2)
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that satisfies the continuous inf–sup condition (with inf–sup constant γ),

inf
‖u‖U=1

sup
‖v‖V=1

|b(u, v)| =: γ > 0; (2.3)

and the continuous linear (antilinear) form l(·) satisfies the compatibility condition,

l(v) = 0 ∀v ∈ V0, where V0 := {v ∈ V : b(u, v) = 0 ∀u ∈ U} . (2.4)

Let U ′ and V ′ denote the space of continuous linear (antilinear) functionals on U and V ,

respectively. By the Babuška–Nečas theorem, the variational problem (2.1) is well-posed,

i.e., there exists a unique solution u ∈ U that depends continuously upon the data,

‖u‖U ≤
1

γ
‖l‖V ′ . (2.5)

Consider finite-dimensional subspaces Uh ⊂ U and Vh ⊂ V , where dim(Uh) = dim(Vh),

and the corresponding discrete abstract variational problem,

 uh ∈ Uh ⊂ U ,

b(uh, vh) = l(vh), vh ∈ Vh ⊂ V .
(2.6)

If the discrete inf–sup condition is satisfied, i.e.,

inf
‖uh‖U=1

sup
‖vh‖V=1

|b(uh, vh)| =: γh > 0, (2.7)

then the discrete problem (2.6) is well-posed, and by Babuška’s theorem [8, 27],

‖u− uh‖U ≤
M

γh
inf

ωh∈Uh
‖u− ωh‖U , (2.8)

where u is the exact solution of (2.1), M/γh is the stability constant, and infωh∈Uh ‖u−ωh‖U
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is the best approximation error measured in the trial norm ‖·‖U . The continuous inf–sup

condition (2.3) does not in general imply the discrete inf–sup condition (2.7). A natural

question arises: is it possible to find a test space Vh such that (2.3)⇒(2.7)?

2.1.1 A Petrov–Galerkin method with optimal test functions

In the DPG method, the issue of discrete stability is solved by finding a unique test space,

called the optimal test space Vopt. Given any trial space Uh ⊂ U , we define its optimal test

space by

Vopt := T (Uh), (2.9)

where the trial-to-test operator T : U → V is defined by

(Tuh, v)V = b(uh, v) ∀uh ∈ Uh, v ∈ V . (2.10)

For any uh ∈ Uh, equation (2.10) uniquely defines Tuh by the Riesz representation theorem.

Let B : U → V ′ denote the linear operator induced by the form b(·, ·),

〈Bu, v〉V ′×V = b(u, v), v ∈ V , (2.11)

where 〈·, ·〉V ′×V denotes the duality pairing on V ′×V . Then, T = R−1
V B, where RV : V → V ′

is the Riesz map. In other words, for every trial function uh, the trial-to-test operator

defines a unique optimal test function, vuh = R−1
V Buh. The optimal test functions realize

the supremum in the inf–sup condition. Indeed,

sup
06=v∈V

|b(uh, v)|
‖v‖V

= sup
06=v∈V

|(Tuh, v)V |
‖v‖V

= ‖Tuh‖V =
|b(uh, vuh)|
‖vuh‖V

. (2.12)

Therefore, γh ≥ γ, i.e., discrete stability is guaranteed by construction.
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2.1.2 A minimum residual method

An equivalent formulation arises from minimizing the residual in the dual test norm,

uh = arg min
wh∈Uh

‖l − Bwh‖2
V ′ = arg min

wh∈Uh
‖R−1
V (l − Bwh)‖2

V , (2.13)

where we used the fact that the Riesz map is an isometric isomorphism. uh is the solution to

(2.6) with optimal test functions if and only if uh minimizes the residual in (2.13). Taking

the Gâteaux derivative, we obtain a minimum residual formulation:

 uh ∈ Uh,

(R−1
V (l − Buh),R−1

V Bwh)V = 0, wh ∈ Uh.
(2.14)

Furthermore, we define the energy norm ‖·‖E on the trial space U by

‖u‖E := ‖Bu‖V ′ = ‖R−1
V Bu‖V . (2.15)

By construction, the stability constant is equal to 1 in the energy norm; hence,

‖u− uh‖E ≤ inf
wh∈Uh

‖u− wh‖E, (2.16)

so uh is the best approximation in the energy norm.

2.1.3 A mixed method

Let ψ be defined as the Riesz representation of the residual,

ψ := R−1
V (l − Buh). (2.17)
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When uh minimizes the residual (2.13), then

(ψ,R−1
V Bwh)V = 0, wh ∈ Uh. (2.18)

We arrive at a mixed Galerkin formulation:
uh ∈ Uh, ψ ∈ V ,

(ψ, v)V + b(uh, v) = l(v), v ∈ V ,

b(wh, ψ) = 0, wh ∈ Uh.

(2.19)

The error measured in the energy norm can be computed explicitly,

‖u− uh‖E = ‖B(u− uh)‖V ′ = ‖l − Buh‖V ′ = ‖R−1
V (l − Buh)‖V = ‖ψ‖V , (2.20)

hence ‖ψ‖V offers a built-in a-posteriori error indicator. Finally, note that the choice of the

test norm ‖·‖V is critical, as it dictates the norm in which the method converges.

Optimal test norm. The ideal DPG method delivers the orthogonal projection in the

energy norm, i.e.,

‖u− uh‖E = inf
wh∈Uh

‖u− wh‖E. (2.21)

Then, given a trial norm ‖ · ‖U , we can ask how to choose the test norm ‖ · ‖V , so that

‖u− uh‖U . ‖u− uh‖E = ‖ψ‖V . (2.22)

Consider the linear operator B′ : V → U ′, induced by the bilinear form b(·, ·),

B′ : V 3 v → 〈B′v, ·〉U ′×U = b(·, v) ∈ U ′, (2.23)
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where b(·, v) denotes the complex conjugate of b(·, v). Suppose that B is injective; then,

‖v‖V := sup
u∈U

|b(u, v)|
‖u‖U

= ‖B′v‖U ′ , (2.24)

defines a norm, and

‖u− uh‖E = ‖u− uh‖U . (2.25)

Use of this test norm within the ideal DPG method delivers the projection in the trial norm

‖ · ‖U ; it is therefore called the optimal test norm [32].

Among the various variational formulations that can be discretized with the DPG

method, the ultraweak formulation is special because the optimal test norm can be de-

rived explicitly. We will show this for the case of the ultraweak Maxwell formulation in

Section 2.5.1.

2.2 Breaking the test space

In the discussion so far, we have neglected computational aspects of the DPG method. One

question that arises immediately in the context of practicality is the cost of the inversion of

the global Riesz map RV . Let Ω ⊂ R3 denote a bounded domain (open and connected set)

with Lipschitz boundary Γ ≡ ∂Ω, and let Ωh denote a suitable finite element triangulation of

Ω with mesh skeleton Γh. By “breaking” the test space, i.e., employing a larger discontinuous

test space, V(Ωh) ⊃ V(Ω), the inversion of the Riesz map on Ω is localized and can be done

independently element-wise. The element-local computational costs are still significant, but

they can be parallelized efficiently. By enlarging the test space, new interface terms arise on

the mesh skeleton with interface unknowns û. The resulting variational problem is

 u ∈ U , û ∈ Û ,

b(u, v) + 〈û, v〉Γh = l(v), v ∈ V(Ωh),
(2.26)
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where 〈·, ·〉Γh denotes an appropriate duality pairing on the mesh skeleton. The new interface

unknowns may be interpreted as Lagrange multipliers that enforce conformity of test func-

tions [32, 27]. The stability of the formulation with broken test spaces is inherited from the

continuous problem. In particular, the broken formulation (2.26) is well-posed with a mesh-

independent stability constant of the same order as the stability constant for the continuous

problem [20].

2.3 The practical DPG method

Until now, the trial-to-test operator T has only been defined in the infinite-dimensional

setting (2.10). To compute optimal test functions in practice, the inversion of the global

Riesz map must be approximated on a truncated finite-dimensional test space Vr ⊂ V ,

where dim(Vr)� dim(Uh); Vr is also called the enriched test space [31, 61]. With the Riesz

map defined on this truncated test space, RVr : Vr → (Vr)′, the approximate trial-to-test

operator T r : Uh → Vr is defined by:

T r := R−1
Vr ιTB, (2.27)

where ι : Vr → V is the inclusion map. Consequently, the practical DPG method with

optimal test functions solves

 uh ∈ Uh ⊂ U ,

b(uh, vh) = l(vh), vh ∈ Vr,opt = T rUh,
(2.28)

with the additional interface term from (2.26) when breaking the test space Vr.

The enriched test space in practice. In choosing the enriched test space, the goal is

to approximate the semi-continuous problem (2.19), i.e., the residual ψ, as well as possible.

The test space is typically enlarged by increasing the discretization order p of the trial space

18



uniformly to p + ∆p, where ∆p ∈ {1, 2, 3, . . .}. Of course, the element-wise computational

and memory complexity increases with larger ∆p. Some alternatives for enriching the test

space are discussed in [111]. Another approach is the so-called double-adaptivity paradigm

where the test space is enlarged by local hp-adaptivity in a separate test mesh [25, 38].

The numerical results reported in this dissertation were obtained with uniform polynomial

enrichment ∆p = 1.

Fortin operator. Because the optimal test functions are approximated, some stability

loss is inevitable. Several papers have addressed the issue of controlling and quantifying the

stability loss in the DPG method [61, 20, 97]. The main tool for analyzing the stability of the

practical DPG method is the Fortin operator. We state the main result of [61]: Assuming

the existence of a linear and continuous operator Π : V → Vr such that for all v ∈ V ,

b(wh,Πv − v) = 0, wh ∈ Uh, (2.29)

then the variational problem (2.28) is well-posed and the following stability estimate holds:

‖u− uh‖U ≤
MCΠ

γh
inf

ωh∈Uh
‖u− ωh‖U , (2.30)

where CΠ is the continuity constant of the Fortin operator Π.

2.4 Energy spaces of the exact sequence

The DPG method can be applied to any well-posed variational formulation. A conforming

discretization of DPG formulations requires the conforming discretization of the energy spaces

of the exact sequence. The standard energy spaces on a bounded domain Ω ⊂ R3 with
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Lipschitz boundary Γ ≡ ∂Ω are defined as follows:

L2(Ω) := {y : Ω→ F : ‖y‖ <∞},

H1(Ω) := {w : Ω→ F : w ∈ L2(Ω),∇w ∈ (L2(Ω))3},

H(curl,Ω) := {q : Ω→ F3 : q ∈ (L2(Ω))3,∇× q ∈ (L2(Ω))3},

H(div,Ω) := {v : Ω→ F3 : v ∈ (L2(Ω))3,∇ · v ∈ L2(Ω)},

(2.31)

where ‖·‖ is the L2(Ω) norm induced by the L2(Ω) inner product (·, ·), F = R (or C), and the

differential operators (grad, curl, div) are understood in the distributional sense. Assuming

that Ω is homeomorphic with an open ball, the energy spaces form an exact sequence [27]:

H1(Ω)
∇−→ H(curl,Ω)

∇×−→ H(div,Ω)
∇·−→ L2(Ω). (2.32)

In the definition of the broken energy spaces, we follow the exposition in [20]. Suppose

Ω is partitioned into a set Ωh of open disjoint elements {K}K∈Ωh
with Lipschitz element

boundaries {∂K}K∈Ωh
. The broken energy spaces defined on the finite element mesh Ωh are:

L2(Ωh) := {y ∈ L2(Ω) : y|K ∈ L2(K) ∀K ∈ Ωh} = L2(Ω),

H1(Ωh) := {w ∈ L2(Ω) : w|K ∈ H1(K) ∀K ∈ Ωh} ⊃ H1(Ω),

H(curl,Ωh) := {q ∈ (L2(Ω))3 : q|K ∈ H(curl, K) ∀K ∈ Ωh} ⊃ H(curl,Ω),

H(div,Ωh) := {v ∈ (L2(Ω))3 : v|K ∈ H(div, K) ∀K ∈ Ωh} ⊃ H(div,Ω).

(2.33)

Additionally, energy spaces are needed for the trace unknowns that arise from breaking

the test space. These spaces are defined on the mesh skeleton Γh. On each element K ∈ Ωh,
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the following (continuous and surjective) trace operators are defined:

H1(K) 3 w 7−→ γKw := w|∂K ≡ ŵ ∈ H1/2(∂K),

H(curl, K) 3 q 7−→ γKt,⊥q := (n̂× q)× n̂|∂K ≡ q̂t,⊥ ∈ H−1/2(curl, ∂K),

H(curl, K) 3 q 7−→ γKt,aq := n̂× q|∂K ≡ q̂t,a ∈ H−1/2(div, ∂K),

H(div, K) 3 v 7−→ γKn v := v|∂K · n̂ ≡ v̂n ∈ H−1/2(∂K),

(2.34)

where n̂ is the outward unit normal on ∂K. Corresponding to the definition of the trace

operators, we will refer to the unknowns in these trace spaces as continuous traces, tangential

traces, rotated tangential traces, and normal traces, respectively.

The global trace operators in the broken spaces can now be defined element-wise:

H1(Ωh) 3 w 7−→ γw :=
∏
K∈Ωh

γK(w|K) ∈
∏
K∈Ωh

H1/2(∂K),

H(curl,Ωh) 3 q 7−→ γt,⊥q :=
∏
K∈Ωh

γKt,⊥(q|K) ∈
∏
K∈Ωh

H−1/2(curl, ∂K),

H(curl,Ωh) 3 q 7−→ γt,aq :=
∏
K∈Ωh

γKt,a(q|K) ∈
∏
K∈Ωh

H−1/2(div, ∂K),

H(div,Ωh) 3 v 7−→ γnv :=
∏
K∈Ωh

γKn (v|K) ∈
∏
K∈Ωh

H−1/2(∂K).

(2.35)

The trace spaces on the mesh skeleton are defined as element-wise traces of globally

conforming functions, hence they are single-valued on element interfaces:

H1/2(Γh) := γH1(Ω),

H−1/2(curl,Γh) := γt,⊥H(curl,Ω),

H−1/2(div,Γh) := γt,aH(curl,Ω),

H−1/2(Γh) := γnH(div,Ω).

(2.36)
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These trace spaces are equipped with minimum energy extension norms:

‖ŵ‖H1/2(Γh) := inf
w∈H1(Ω)
γw=ŵ

‖w‖H1(Ω) ,

‖q̂t,⊥‖H−1/2(curl,Γh) := inf
q∈H(curl,Ω)
γt,⊥q=q̂t,⊥

‖q‖H(curl,Ω) ,

‖q̂t,a‖H−1/2(div,Γh) := inf
q∈H(curl,Ω)
γt,aq=q̂t,a

‖q‖H(curl,Ω) ,

‖v̂n‖H−1/2(Γh) := inf
v∈H(div,Ω)
γnv=v̂n

‖v‖H(div,Ω) .

(2.37)

We can now define the mesh skeleton term 〈·, ·〉Γh in the broken formulation (2.26).

Suppose that trace unknown Ê ∈ H−1/2(curl,Γh) and broken test function F ∈ H(curl,Ωh).

Then,

〈n× Ê,F 〉Γh :=
∑
K∈Ωh

〈n̂× Ê|∂K , γKt,⊥(F |K)〉∂K , (2.38)

where 〈·, ·〉∂K denotes the H−1/2(div, ∂K) × H−1/2(curl, ∂K) duality pairing on element

boundary ∂K (see [20, Lem. 2.2]).1

Polynomial spaces. In the FE computation, we use polynomial subspaces of the energy

spaces that satisfy the exact sequence property at the discrete level. That is, the polynomial

spaces,

W p ⊂ H1(Ω), Qp ⊂ H(curl,Ω), V p ⊂ H(div,Ω), Y p ⊂ L2(Ω), (2.39)

form an exact sequence analogous to (2.32). The polynomial spaces used in this dissertation

are defined for standard elements of all shapes in [50]. The spaces correspond to Nédélec’s

sequence of the first type; for each element, W p contains complete polynomials of order p,

while Qp, V p, and Y p contain complete polynomials of order p−1. We refer to the polynomial

order p as the order of approximation.
1In practice, the arguments of the boundary operator 〈·, ·〉∂K are piecewise smooth functions so that the

operator becomes a surface integral over ∂K.
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2.5 The DPG method for Maxwell’s equations

In this section, the DPG methodology is applied to the time-harmonic Maxwell equations.

We introduce the ultraweak variational formulation that is used throughout this dissertation.

For this, we consider the linear equations (1.16)–(1.17). The set of nonlinear equations used

for modeling active gain and thermal coupling in fiber amplifiers is discussed in Chapter 5;

however, most of the following discussion on variational formulations translates directly to

the nonlinear problem. Error and residual convergence results for the DPG method are

shown with different orders of approximation for a low-frequency manufactured solution.

In the context of multimode fiber waveguides, we discuss the need for absorbing boundary

layers in Section 2.5.2.

2.5.1 Ultraweak variational formulation

Because DPG is a Petrov–Galerkin method, it can solve any well-posed linear variational

problem, with or without symmetric functional setting. Various variational formulations

can be derived for the time-harmonic Maxwell equations (1.16)–(1.17). More precisely, we

can formulate six different variational formulations, each one stated in a different energy

setting. In [20], all six formulations are presented, and it is shown that well-posedness

of one formulation implies the well-posedness of the other formulations. However, in the

context of high-frequency wave propagation problems, the ultraweak DPG formulation has

proven superior in the sense that it has better approximability properties than the other

DPG formulations [127, 98, 102]. Moreover, the ultraweak formulation stands out because

it is the only formulation for which the optimal test norm can be derived explicitly. In the

following, we derive the ultraweak variational formulation in the globally conforming and in

the broken setting, discuss the choice of the test norm, and show convergence results for a

simple manufactured problem.

Let Ω ⊂ R3 be bounded with Lipschitz boundary Γ ≡ ∂Ω. Consider the time-harmonic
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Maxwell problem in a linear, isotropic, homogeneous, and dielectric medium,



∇×E + iωµH = 0 in Ω,

∇×H − iωεE = 0 in Ω,

n×E = n×E0 on Γ1,

n×H = n×H0 on Γ2,

(2.40)

where Γ1 ∩ Γ2 = ∅, Γ̄1 ∪ Γ̄2 = Γ, with sufficiently regular boundary data.

The variational form can be stated as a second-order problem or as a first-order system.

Depending on how the equations are relaxed (integrated by parts), six different variational

formulations can be derived. All formulations are simultaneously well- or ill-posed [20].

The ultraweak formulation is the weak form of the first-order system with the most relaxed

functional setting for the trial functions; it is obtained by testing (2.40) with test functions

(F ,G), integrating over Ω, and relaxing both equations:


E,H ∈ (L2(Ω))3,

(E,∇× F ) + (iωµH ,F ) = −〈n×E0,F 〉Γ1 , F ∈ V2,

(H ,∇×G)− (iωεE,G) = −〈n×H0,G〉Γ2 , G ∈ V1,

(2.41)

where Vi := {q ∈ H(curl,Ω) : n × q = 0 on Γi}, i ∈ {1, 2}. Notice that the test functions

were chosen to satisfy homogeneous boundary conditions such that the boundary terms with

unknown tangential traces vanish from the formulation.

Remark: Similar to (2.38), the boundary term 〈·, ·〉Γ is defined as the H−1/2(div,Γ) ×

H−1/2(curl,Γ) duality pairing on boundary Γ. The prescribed boundary data is assumed to be

in the corresponding energy space. However, on subset Γi ⊂ Γ of the boundary, H−1/2(div,Γi)

and H−1/2(curl,Γi) are not dual to each other. To make sense of the boundary term 〈·, ·〉Γi
,

additional regularity is assumed in this case. For example, F ∈ {q ∈ V2 : q|Γ1 ∈ L2(Γ1)}

and G ∈ {q ∈ V1 : q|Γ2 ∈ L2(Γ2)}. See [27] for further discussion of this issue.
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Broken ultraweak formulation. Because of the relaxed setting in the ultraweak formu-

lation, the trial unknowns—electric field E and magnetic field H—have no global conti-

nuity requirements. Conforming discrete trial spaces can therefore be constructed locally

(i.e., per element). However, when breaking test spaces, the additional trace unknowns do

require global conformity over the mesh skeleton. The discontinuous (broken) test spaces

are discretized by locally H(curl)-conforming test functions. Corresponding to the abstract

formulation (2.26), we obtain the broken ultraweak Maxwell formulation:


E,H ∈ (L2(Ω))3, Ê ∈ Û1, Ĥ ∈ Û2,

(E,∇h × F ) + 〈n× Ê,F 〉Γh + (iωµH ,F ) = 0, F ∈ H(curl,Ωh),

(H ,∇h ×G) + 〈n× Ĥ ,G〉Γh − (iωεE,G) = 0, G ∈ H(curl,Ωh),

(2.42)

where

Û1 :=
{
q̂ ∈ H−1/2(curl,Γh) : n× q̂ = n×E0 on Γ1

}
,

Û2 :=
{
q̂ ∈ H−1/2(curl,Γh) : n× q̂ = n×H0 on Γ2

}
,

(2.43)

and h denotes element-wise operations. The trace space H−1/2(curl,Γh) and the duality

pairing 〈·, ·〉Γh on the mesh skeleton were defined in (2.36) and (2.38), respectively. The

previous assumption for test functions to vanish on part of the boundary is no longer neces-

sary; the corresponding terms can be computed as part of the duality pairing on the mesh

skeleton involving the new unknowns—electric field trace Ê and magnetic field trace Ĥ .

In the DPG finite element computation, these unknowns are approximated as the traces of

H(curl)-conforming elements.

Adjoint operator. The ultraweak formulation can also be stated more succinctly using

the adjoint operator. First, we define the following group variables:

u := (E,H), v := (F ,G). (2.44)
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The Maxwell operator from (2.40) can be written as:

Au = (∇×E + iωµH , ∇×H − iωεE) , (2.45)

where, using L2(Ω) := (L2(Ω))3 × (L2(Ω))3, the domain of A is given by:

D(A) :=

{
u ∈ L2(Ω) : Au ∈ L2(Ω), n×E = n×E0 on Γ1,

n×H = n×H0 on Γ2.

}
. (2.46)

Then, the sesquilinear form corresponding to the ultraweak formulation (2.41) is

b(u, v) = (u, A∗v), (2.47)

with the formal adjoint operator defined by:

A∗v = (∇× F + iωεG, ∇×G− iωµF ) , (2.48)

with domain D(A∗) := {v ∈ L2(Ω) : A∗v ∈ L2(Ω), n× F = 0 on Γ2, n×G = 0 on Γ1} .

In summary, we can state the ultraweak formulation as:


u ∈ L2(Ω),

(u, A∗v) = l(v), v ∈ D(A∗),

(2.49)

where l(v) = −〈n×E0,F 〉Γ1 − 〈n×H0,G〉Γ2 .

Test norm. As mentioned before, the choice of the test norm ‖·‖V in the DPG method is

important because it determines the norm in which the method converges. In the ideal DPG

method with unbroken test spaces, the optimal test norm (2.24) can be derived explicitly for

the ultraweak variational formulation [32]. In this case, the optimal test norm is the adjoint
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norm: ‖v‖V = ‖A∗v‖. With this particular test norm,

‖u‖ = sup
v∈V

|b(u, v)|
‖v‖V

= ‖u‖E. (2.50)

Consequently, the method delivers the L2 projection.

In the broken setting, however, this test norm can not be employed because it is not

localizable. It can be augmented with an additional term to obtain a (quasi-optimal) test

norm: ‖v‖2
V(Ωh) = ‖A∗hv‖2 +α‖v‖2, where the notation A∗h indicates element-wise operations.

We refer to this norm as the adjoint graph norm (with scaling parameter α ∈ O(1)). The

optimal test norm and the adjoint graph norm are equivalent norms and, crucially, the

equivalence constants are independent of frequency ω (assuming the bounded domain Ω is

star-shaped with smooth boundary or convex) [88, 39, 20]. We revisit this point in the

context of studying numerical pollution in Section 4.2. If not otherwise mentioned, we use

α = 1 in all numerical experiments.

In the same way that elimination of the boundary conditions in D(A∗) (i.e., testing on

the whole boundary) leads to the introduction of additional unknowns on the boundary Γ,

the breaking of the test space leads to the introduction of additional unknowns on the entire

mesh skeleton Γh. For the broken formulation, we define û = (Ê, Ĥ) and the corresponding

interface terms:

〈û, v〉Γh := 〈n× Ê,F 〉Γh + 〈n× Ĥ ,G〉Γh . (2.51)

The energy space for the trace û is defined element-wise:

Û := {û : ∃u ∈ D(A) : trΓhu = û} , (2.52)

where the (tangential) trace operator trΓh is defined similar to (2.35). The trace space is
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equipped with a minimum energy extension norm:

‖û‖Û := inf
u∈D(A)
trΓhu=û

‖u‖Q, (2.53)

where ‖u‖2
Q := ‖Au‖2 + ‖u‖2. The broken ultraweak variational problem (2.42) can then be

written as:  u ∈ L2(Ω), û ∈ Û ,

(u, A∗hv) + 〈û, v〉Γh = l(v), v ∈ V(Ωh),
(2.54)

where V(Ωh) := {v ∈ L2(Ω) : A∗hv ∈ L2(Ω)}, and the load l(v) = 0 in this case.

Remark: Both the functional setting and the norm used for the traces derive from the

choice of the norm for the broken test space. For a more thorough discussion of this point,

we refer to [20, 27].

Convergence rates. To conclude this section, we show convergence results for the broken

ultraweak Maxwell formulation (2.42) for a manufactured solution on a uniformly refined

cube. Let Ω = (0, 1)3, and let (Ex(x, y, z), 0, 0)T = (sin(x) sin(y) sin(z), 0, 0)T be the exact

solution of the electric field. The boundary conditions, derived from the exact solution, are

imposed on the tangential trace of the electric field, i.e., Γ1 = Γ in (2.42).

Figure 2.1 shows the convergence rates for the relative error of the electric and magnetic

fields, measured in L2, and for the relative residual, computed with (2.20) and measured in

the (quasi-optimal) test norm (α = 1). The rates were obtained by uniform h-refinements,

using fixed order of approximation, p ∈ {2, 3, 4, 5}; consequently, according to the discrete

exact sequence spaces (2.39), the fields (E,H) are approximated with linear, quadratic, cu-

bic, and quartic polynomials, respectively. The obtained convergence rates are thus optimal

for both the error and residual.
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Figure 2.1: Error and residual convergence rates for a manufactured low-frequency solution
on a uniformly refined cube, computed with the ultraweak DPG Maxwell formulation. We
observe optimal convergence rates for any order of approximation.

2.5.2 Perfectly matched layer

The numerical simulation of waveguide problems such as the propagation of light in an optical

fiber is performed in a truncated computational domain of finite length. At the end of the

domain, usually where the light exits the optical fiber, it is important to avoid unrealistic

reflections of the electromagnetic wave that may be caused by imposing (artificial) boundary

conditions. Absorbing boundary conditions are designed to eliminate or at least mitigate

this issue. In the context of multimode fiber simulations (Chapter 4) or the nonlinear gain

problem (Chapter 5), it is not sufficient to impose impedance boundary conditions through

an impedance relation between the electric and magnetic field since an exact impedance

relation only works for a single propagating mode. In these numerical simulations, we employ

a perfectly matched layer (PML) to absorb the propagating wave at the fiber end. PMLs, first

introduced in [14], are a popular tool in the finite element simulation of wave propagation

phenomena in unbounded domains (see [24, 17, 91, 6] and references therein); in recent

work, stretched coordinate PMLs have been extended to the DPG methodology [6, 98, 102].

Details of our PML implementation are given in Appendix B.3.
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Chapter 3

hp3D Finite Element Software

hp3D is a three-dimensional finite element software developed by Demkowicz et al. [26, 37].

The current (fifth) version of the code is implemented in Fortran 90 and supports the solution

of coupled problems and discretization of the H1-, H(curl)-, H(div)-, and L2-conforming

finite elements necessary for complex multiphysics models. Moreover, hp3D supports the use

of hybrid meshes using elements of “all shapes”: tetrahedra, hexahedra, prisms, and pyramids.

The use of orientation-embedded shape functions [50] and projection-based interpolation [28]

enables efficient computation of hanging (constrained) nodes and anisotropic hp-refinements.

For a fundamental discussion of the underlying finite element code design in hp3D, we refer

to [37, 57, 83, 50].

The main contribution of this work to the hp3D code is the development of a scal-

able MPI/OpenMP parallel version for distributed hp-adaptive finite element computation of

complex multiphysics problems. In particular, we are interested in large-scale simulations of

the fiber amplifier model introduced in Chapter 5 to study nonlinear gain in high-power fiber

laser amplifiers.

This work’s contributions to hp3D also include the implementation of DPG interface

variables (trace unknowns) and efficient static condensation for local element matrices, both

of which are discussed in this chapter (see Sections 3.4.2 and 3.4.3, respectively). In the

context of DPG methods, recent work showed the importance of sum factorization for the
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integration of tensor product shape functions to accelerate element computation [92, 11].

This fast integration technique is briefly described and its computational performance shown

in the ultraweak Maxwell setting in Section 3.4.1.

We begin with a description of the parallel mesh distribution, where each MPI process

is assigned a distinct subdomain and stores the corresponding degrees of freedom (DOFs).

This approach builds on the lean data structures of the sequential hp3D code, discussed in

Section 3.1. To perform static partitioning and dynamic repartitioning, Zoltan [41] has been

integrated with hp3D, see Section 3.2.2. Load balancing is essential to maintain an even

computational workload and memory usage between compute nodes, particularly for succes-

sive hp-adaptive mesh refinements. Some numerical examples for this are discussed in the

context of multimode propagation in linear waveguides in Section 4.3. OpenMP support is

enabled in hp3D to exploit intra-node shared memory parallelism, which provides significant

speedup for single-node computation on modern manycore architectures [102]. Besides par-

allelizing computation of the finite element stiffness and load assembly, hp3D interfaces with

parallel sparse direct solvers (e.g., MUMPS [4]) and iterative solver packages (e.g., PETSc

[12]). We have implemented a custom parallel nested dissection solver, as well as a custom

repartitioner for load balancing purposes, to achieve excellent scaling for certain applica-

tions (e.g., waveguide problems). We discuss its implementation in Section 3.3 and present

scaling results in Section 6.1. Recent work on DPG multigrid solvers [103, 102] provides

a starting point for the development of a parallel iterative solver with geometric multigrid

preconditioning in a future project. Additionally, a host of MPI related infrastructure has

been implemented in hp3D as part of this work, including parallel I/O and visualization.

3.1 Data structures and hp-adaptivity

Although the concept of hp-refinements is relatively intuitive, its realization in finite element

codes is challenging. In particular, h-refinements require flexible mesh data structures and
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advanced processing routines to enforce conformity of basis functions on irregular meshes.

The idea of automatic hp-adaptivity where both element size h and polynomial order p are

determined based on a-posteriori error estimation goes back to a series of papers published by

Demkowicz et al. in the late eighties [35, 100, 105]. The need for such capability was driven

by the aim for exponential convergence, i.e., an exponential decrease in the error in terms

of the number of degrees of freedom, for difficult problems with singularities or boundary

layers. One principle idea that is anchored in the hp3D data structure design to support

these refinements is the “growing” of trees for all topological entities in the mesh—edges,

faces, and element interiors—instead of growing element trees only.

The backbone of the hp3D code are two data structures: ELEMS and NODES. The array

ELEMS stores information on the elements in the initial mesh, and it is statically allocated in

the beginning of the program run. Each initial mesh element (object) consists of attributes

typical for a classical FE code for unstructured meshes: element nodes, neighbors, etc. The

initial element mesh is built from a regular mesh (containing no hanging nodes) that may

range from a few elements to several thousand. This is done via a Geometric Modeling

Package (GMP), described in [57], that supports the use of both isoparametric and exact

geometry elements; interfaces to established unstructured mesh generators (e.g., CUBIT [16],

NETGEN [112]) are also provided.

The other essential data structure is the NODES array, consisting of abstract nodes :

vertices, edges, faces, and element interiors. We refer to these node types as vertex node,

edge node, face node, and middle node, respectively. The NODES array keeps information on

node attributes such as the type of the node, polynomial order, nodal tree structure (father

and sons), etc., as well as the degrees of freedom. It also stores information about the type

of physics variables that are supported on each node and the corresponding boundary or

interface conditions. The p-refinement of an element translates into updating the information

for its nodes (new DOFs), while the h-refinement translates into “breaking” nodes. For

example, an edge breaks into two edge- and one vertex-son. New nodes, i.e., entries in
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the NODES array, are created, and the corresponding information on nodal trees is updated.

Anisotropic refinements can therefore result in various different ways to break a node.1 We

emphasize that the NODES data structure represents a tree but is stored as an array. That is,

the nodal tree can be reconstructed on-the-fly but instead of storing pointers, we use unique

node IDs that correspond to the location of a node in the NODES array. This serves primarily

for fast lookup of nodal information. Newly created nodes are always appended at the end

of the array. Figure 3.1 illustrates how nodal trees are grown for a simple 2D example.

Vertices Edges Face Interior

   E      E     V    E      E     V    E      E     V    E      E     V    F      F     F      F      E      E      E     E      V

   E      E     V    E      E     V   F      F     E

Level 0 

Level 1 

Level 2 

Mesh adaptation Node trees

Figure 3.1: Nodal trees in hp3D [83, Fig. 3.6]. The NODES data structure supports “growing”
trees for all topological entities in the mesh: edges, faces, and element interiors.

3.2 MPI/OpenMP parallelization

The hp3D finite element software is primarily designed for solving complex multiphysics

applications that require mesh adaptivity, including anisotropic adaptivity (e.g., to resolve

boundary layers) and locally adaptive order of approximation (p-adaptivity), discretization of

physics variables in different energy spaces (possibly supported in only a part of the domain),
1hp3D ensures that the new mesh is 1-irregular: that is, parent nodes of constrained (hanging) nodes

must be unconstrained [37]. The process of enforcing this rule is called “closing” the mesh and may lead to
additional refinements but makes the implementation of constrained approximation more efficient.
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or hybrid meshes with elements of different shapes. If none of these advanced finite element

features are required for an application, for example to compute the classical variational

Poisson problem with a Galerkin discretization in a low-order uniform mesh (or a-priori

defined mesh), then simpler codes can be used that will most likely perform faster. In recent

years, DPG methods have become a focus for applications computed with hp3D because

they naturally fit into the hp-adaptive framework. In this setting, computations usually

start with a coarse mesh and guide automatic hp-adaptivity with a reliable a-posteriori

error indicator to successively build a hierarchy of adaptively refined meshes. Using mixed

isotropic and anisotropic h-adaptivity in hybrid meshes requires additional code complexity

(e.g., to maintain 1-irregular meshes). The hp3D code hides this complexity from the user;

the same approach was taken for the MPI/OpenMP parallelization that mostly concerns the

data structures hidden from the user application. The use of MPI or OpenMP is optional;

each one can be switched on independently. The changes needed to accommodate the parallel

environment in the user application are minimal. In particular, all of the data structures

used in the hp3D library support both distributed as well as single-node computation. This

is a distinction from other FE libraries that define specific parallel datatypes that require

the user to adapt the application code to the computing environment.

Compute architectures. The parallel code is designed to run efficiently on small ma-

chines (e.g., a single workstation or laptop), as well as large-scale computing facilities (e.g.,

Stampede2 at TACC). Due to the quickly changing high-performance computing landscape,

the meaning of “large-scale” computation has evolved constantly; nowadays, large-scale com-

putation could be understood in terms of a large number of degrees of freedom (e.g., several

billion DOFs), big storage requirements (e.g., hundreds of Terabytes of main memory), many

compute cores (e.g., thousands of CPU cores, or millions of GPU cores), or various other

measures. Additionally, supercomputing platforms have become more heterogeneous and

traditional performance measures (e.g., FLOPS) are only one metric of interest. In hp3D,

34



we have targeted CPU-based manycore architectures which require less specialized code than

GPU-based systems. The Intel Xeon “Skylake” (SKX) compute nodes of TACC’s Stampede2

cluster are state-of-the-art manycore chips that were used for development, tests and pro-

ductive runs with hp3D. Each compute node consists of a two-socket NUMA architecture.2

Per socket, 24 cores are available, and each compute node has a total of 192 GB main mem-

ory. In a hybrid MPI/OpenMP setting, one or a few MPI processes per compute node are

typically used so that shared-memory parallelism is exploited via OpenMP threading. The

number of OpenMP threads per MPI process is selected in such a way that the total number

of threads per compute node equals the total number of available compute cores (e.g., 48 on

TACC’s Stampede2 SKX nodes). The parallel hp3D code was used to conduct numerical

experiments with up to 512 compute nodes (24 576 cores) and two billion DOFs. Scaling

results are discussed in Section 6.1.

3.2.1 Mesh distribution

Key to the parallel code efficiency is an efficient design of the parallel data structures, i.e.,

one that supports a distributed finite element mesh, partitioned into subdomains, that re-

quires only a minimum amount of communication between MPI processes. We are leveraging

the existing data structures for that purpose. Mesh distribution in the hp-adaptive setting

requires dynamic load balancing; therefore, a certain amount of communication is unavoid-

able. In this section, we describe in detail our approach to implementing the distributed

data structures.

Partitioning. The mesh partitioning follows a hybrid MPI/OpenMP parallelization ap-

proach where mesh data is distributed to MPI processes and each MPI process uses OpenMP

threading to parallelize its computational workload. We distinguish between two stages of
2Non-uniform memory access (NUMA) architectures provide local memory for each processor which can

be accessed faster than the non-local memory. In other words, memory access times depend on the memory
location.
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the mesh distribution process: the logical partitioning that determines the distribution of the

mesh, and the actual distribution of the data structures that represent the distributed mesh.

Logically, the finite element mesh is partitioned into N (non-overlapping) subdomains, where

N is the total number of MPI processes. Each subdomain is “owned” by one distinct MPI

process, and the subdomain ID is equal to the corresponding MPI rank, numbered from 0 to

N − 1. Neighboring subdomains interface through faces, edges, and vertices at the subdo-

main boundary. The logical mesh partitioning into subdomains is accomplished by setting

a subdomain flag, called subd, for all (unbroken) middle nodes of the (active) mesh. Middle

nodes correspond to the element interiors and can therefore be identified uniquely with an

element. Within each subdomain, MPI processes use OpenMP threading to compute tasks

in parallel. Usually, within the subdomain, one thread is performing the workload for one

distinct element at a time. Due to p-adaptivity and other factors that contribute to varying

element workload, dynamic thread scheduling typically performs best.

Data distribution. The initial mesh elements (depending on the specific application and

geometry), stored in ELEMS, typically account for a negligible portion of the overall storage

requirements. The bulk of the main memory is occupied by the dynamically growing NODES

array and by the internal data structures of the direct or iterative linear solver. Therefore,

each MPI process initially receives one copy of the ELEMS array that it retains throughout

the program run. This is done only once at the beginning and may thus be considered part

of the startup cost of the parallel hp3D solver. The redundancy in storage requirements is

compensated for by the communication-avoiding access to the ELEMS array throughout the

rest of the program run. We considered two different approaches for distributing the NODES

data structure. We will argue why we favor one over the other.

First approach: distributing nodes. The first approach immediately suggests itself:

since we are looking to decompose the domain primarily based on geometrical information
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and workload (dynamic load balancing), we may use the nodes’ attributes and spatial coor-

dinates to distribute the NODES array accordingly. Every node stores geometry data which

can easily be accessed. This approach avoids storing redundant NODES data except where

absolutely necessary (at subdomain interfaces). The issue with this approach lies in the fact

that there is no data locality with respect to nodal connectivities in the NODES array due to

adaptive mesh refinements. As a mesh refinement is executed, new nodal sons of an edge,

face, or element interior are appended at the end of the NODES array (cf. Figure 3.1). Contin-

uous reordering of the NODES data structure to guarantee data locality would be very costly

with regard to memory operations; additionally, as the location of each node in the NODES

array is also used as its unique ID for fast access, nodal connectivity information would have

to be rewritten in any reordering. Therefore, forcing data locality is not a feasible (scalable)

option in the current setting. If data locality is not possible, then the NODES array would

have to be distributed in small chunks, and connecting location of a node to its ID would

involve complex calculations and additional information about offset and size of each chunk

to be kept by each MPI process. Every mesh refinement and repartitioning would require

this information to be updated accordingly.

Second approach: distributing degrees of freedom. Given these limitations, we have

implemented an alternative decomposition of the NODES array. We believe that storing a

certain amount of redundant data reduces the complexity and provides better scalability by

avoiding communication between MPI processes. The idea is to distinguish node attributes

(type, order, father and sons, ...) from local data (DOFs). The node attributes are essential

in coordinating across MPI processes (e.g., in mesh refinement) but the majority of the data

associated with a node are typically DOFs.

To illustrate that, we need to consider a specific application because the size of the

local data on a node depends on many factors: type of the node, polynomial order of the

shape functions, number of physics variables and their respective number of components (e.g,
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vector-valued or scalar-valued), whether they are complex- or real-valued, and the energy

space (H1, H(curl), H(div), L2). On the other hand, the amount of data allocated for node

attributes is fixed. Through successive optimizations, the non-DOF data has been reduced

to only 64 bytes per node.
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Figure 3.2: Degrees of freedom for a hexahedral element, depending on the polynomial order.
For high-order finite elements, DOFs account for the majority of data in the NODES array.

To make this notion more precise, consider the ultraweak DPG Maxwell formulation

(see (2.42)), where the degrees of freedom describe a time-harmonic electromagnetic field.

That is, DOFs define complex-valued vector fields with L2 components and H(curl) interface

variables for both the electric and magnetic field. This adds up to a total of six L2 variables

(interior solution DOFs) and two H(curl) variables (interface solution DOFs). The middle

node of a fifth-order hexahedral element therefore stores 750 interior solution DOFs (cf.

Figure 3.2a). Using complex double precision, its solution DOFs occupy a total of 12 kB.

Additionally, geometry DOFs must be stored for each node (three H1 variables). With p = 5,

DOF data occupies about 99.5 percent of middle node storage (cf. Figure 3.2b).

Based on these observations, we let each MPI process keep global information about

node attributes while storing only local DOFs associated with its subdomain. To provide an

estimate for the scalability of this approach, we consider the ultraweak Maxwell problem.

38



Scalability of the approach. Each of TACC’s Stampede2 SKX compute nodes has two

sockets and a total of 192 GB main memory. Assuming one MPI process per socket—a

typical hybrid MPI/OpenMP configuration—96 GB memory are available per subdomain.

Further assuming that it is reasonable to allocate at most ten percent of local memory with

global data structures, the storage for the NODES array should not surpass 10 GB.

To give a storage estimate for the ultraweak Maxwell problem, we consider a uniform

fifth-order hexahedral mesh. In this mesh, the (average) number of nodes per hexa element

is eight (one vertex node, three edge nodes, three face nodes, one middle node).3 Since

each node allocates 64 bytes for its attributes, a hexa element needs 512 bytes on average.

Thus, as shown in Table 3.1, nodal attributes for a total of 10 000 000 hexahedral elements

can be stored with ca. 5 GB memory. For the ultraweak Maxwell problem, each hexahedral

element has (on average) 1 020 solution DOFs: 750 L2 DOFs and 270 H(curl) trace DOFs.

Therefore, the total number of solution DOFs for a uniform mesh with 10 000 000 hexa

elements is approximately 10 200 000 000 (cf. Table 3.1).

Mesh data Number of solution DOFs

Hexahedral
elements

NODES
(MB)

L2 fields H(curl) traces

1 000 0.5 750 000 270 000
1 000 000 512 750 000 000 270 000 000
10 000 000 5120 7 500 000 000 2 700 000 000

Table 3.1: Nodal data and ultraweak Maxwell solution DOFs in a uniformly refined fifth-
order hexahedral mesh. To store 10 000 000 hexahedral elements, global information in the
NODES array accounts for ca. 5 GB main memory. On this mesh, the total number of solution
degrees of freedom is 10 200 000 000.

The above storage estimate constitutes a practical limit for the scalability of the finite

element code. However, at this point we believe solving systems with up to several billion
3A hexahedral element consists of 27 nodes (8 vertices, 12 edges, 6 faces, and 1 element interior), but

most of these nodes are shared with neighboring elements. Considering hexa elements in the domain interior
(away from the boundary) of a uniformly refined mesh, there are precisely 3 faces, 3 edges, 1 vertex, and 1
element interior, per hexa element.
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degrees of freedom is providing sufficient scalability to justify the described approach.

Refinements. Parallel mesh refinement in the hp-adaptive setting poses a challenging task:

mesh reconciliation. The main ideas behind mesh reconciliation in the context of hp3D are

described in [37]. First, to make decisions on h- and p-refinements, automatic hp-adaptivity

requires global communication to exchange element-local error indicators between processes.

Then, assuming each MPI process computes the mesh refinements only within its own sub-

domain and updates its NODES array accordingly, different MPI processes would obtain a

different version of the NODES array (i.e., mesh), hence the need for mesh reconciliation. This

would require additional global communication and a complex reconciliation procedure [37]

that is counter to our approach of storing global node attributes for simplicity and efficiency.

Storing the entire NODES array (except DOFs) on every compute node opens up a

different possibility to perform the mesh refinements. After the error indicators have been

collected by every MPI process, each one could perform the (adaptive) mesh refinement on

the NODES array globally. This poses the scalability question again. The mesh refinement

can be seen as a two-step procedure: first, it is decided if and how elements are to be refined,

and for every h-refinement new nodal sons are created—including allocating space for DOFs;

the second step involves updating the respective geometry DOFs. While the first step is

essential for the structure of the NODES array and building consistent nodal trees, the second

one involves only local computations (except for hanging nodes on the subdomain interface).

Moreover, the first step is computationally cheap while the second one may be expensive,

especially for isoparametric elements with higher p. Therefore, the first step of the mesh

refinement is performed globally on each processor (though DOFs are only allocated for

nodal sons within the subdomain) but the second step is parallelized based on the mesh

distribution. This approach incurs some amount of redundant work but greatly simplifies

the refinement procedure by avoiding complex mesh reconciliation and the associated global

communication.
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3.2.2 Dynamic load balancing

High-order finite element methods are typically computationally intensive and are thus

good candidates for distributed large-scale computations which are often memory-bandwidth

bound otherwise. In the context of adaptive mesh refinements, dynamic load balancing

is essential to provide a balanced workload. This is even more important in a hybrid

MPI/OpenMP implementation for manycore architectures, as one idle MPI process may

cause many compute cores to be idle. A sufficient workload must be maintained within each

subdomain so that OpenMP can be exploited.

In the first stage of load balancing, hp3D interfaces with Zoltan to determine a mesh

partition. Zoltan is a dynamic load balancing library maintained by Sandia National Labo-

ratories [41]. The library supports many load balancing algorithms that can be selected by

changing a single parameter in the call to Zoltan’s load balancing routine. The geometric

partitioners include algorithms based on space filling curves as well as recursive bisection;

the latter category is applicable to waveguide problems, particularly when used with nested

dissection solvers. The geometric partitioners require spatial coordinates of each element and

a weight representing the respective computational workload, both of which are available or

can be computed based on the data in the NODES array. Zoltan also provides graph-based

partitioners where elements serve as the graph’s vertices, and faces between elements serve

as edges in the graph. The corresponding weights are simply the number of interior DOFs

and local interface DOFs, respectively. In Section 4.3.2, different load balancing strategies

for waveguide problems are discussed in more detail.

The second step of the load balancing is data migration. Once the decision about

optimal load balance has been made, i.e., new subdomains have been defined, the mesh has

to be redistributed. In our approach, this means both logical redistribution of the mesh, as

well as allocating DOFs within the subdomain and deallocating them otherwise. It may also

entail exchanging DOFs between MPI processes when element ownership has changed and
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the current solution DOFs are required for the next solution process (e.g., in time-stepping

methods). Geometry DOFs are always recomputed.

3.2.3 Assembly

In this section, we discuss the implementation of the distributed finite element matrix and

load assembly. In particular, we show how local-to-global DOF maps are computed in parallel

based on the mesh distribution. This process serves to assemble a distributed sparse global

matrix, usually in COO-format, which can either be directly used by a linear solver (direct

or iterative) or converted to another sparse matrix format if necessary. Matrix-free methods

have not yet been implemented in the distributed code.

While the mesh distribution is based on partitioning elements, the assembly routine

works with degrees of freedom that are associated with nodes. This is an important dis-

tinction, because global DOF maps can be directly computed using the NODES array rather

than first building global element-wise information. In essence, an MPI process can avoid

constructing local node lists and corresponding constraints for elements outside of its sub-

domain that share nodes with elements within. In both the sequential and distributed hp3D

code, the assembly process is done in two steps: 1) gathering of assembly information, and

2) distributed stiffness and load assembly, including element integration. The sequential as-

sembly that is performed when computing without MPI parallelism executes a subset of the

distributed assembly tasks corresponding to the assembly within a single subdomain. While

most of the computational workload is in the conveniently parallel element integration, it

has proved important to optimize the first step (gathering assembly information) for parallel

scalability.

Gathering of assembly information. To describe the assembly algorithm, we are break-

ing down the implementation of this part into four distinct steps (A)–(D), each illustrated

by means of a simple 2D example. Consider a mesh (or a part of the mesh) with two quadri-
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lateral elements (“quads”), as shown in Figure 3.3, each belonging to one distinct subdomain

(or MPI process). Each quad consists of four vertex nodes, four edge nodes, and one face

(interior) node. One edge node and two vertex nodes are shared between the two elements,

i.e., these nodes are at the subdomain interface. The displayed nodal information (node,

type, and subd) is accessible to both MPI processes through the NODES array. The subd

values correspond to the partitioning (i.e., the left element is owned by the processor with

rank 0, and the right element is owned by the processor with rank 1). Suppose we are

interested in gathering assembly information for the discretization of one H1 variable with

third-order polynomial spaces (e.g., classical variational Poisson formulation with Galerkin

discretization). Then, there are one, two, and four solution DOFs per vertex, edge, and face

node, respectively.

        node = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15] 
        type = [ v, v, v, v, e, e, e, e, f, v, v, e, e, e, f] 
        subd = [ -, -, -, -, -, -, -, -, 0, -, -, -, -, -, 1]

1 2
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Figure 3.3: Distributed assembly illustrated by a simple 2D example. Some nodal informa-
tion is accessible across all processors.

A. Node ownership: To compute local-to-global DOF maps in parallel, we introduce

the concept of node ownership. Recall that during the partitioning of the mesh, element

ownership was defined through the assignment of an element (resp. middle node) to a specific

subdomain. Unlike middle nodes that are always in the interior of a subdomain, vertex,
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edge, and face nodes cannot be identified with a distinct subdomain when they are at the

subdomain interface. Each of these node types could be shared with elements of multiple

other subdomains. In order to compute unique global indices for DOFs associated with such

nodes, we determine one subdomain as the distinct owner of the node in each case. First,

every MPI process marks nodes that are needed by elements within their subdomain with

their own rank; then, through a global reduction with the “min” operator, every node is

uniquely assigned to an owner—the MPI process with the lowest rank which had previously

marked the node. This owner will now be responsible for determining the correct mapping

for DOFs associated with the node.

In our simple 2D example, middle nodes are face (interior) nodes. Face node 9 is

owned by [0] (the MPI process with rank 0), and face node 15 is owned by [1] (the MPI

process with rank 1). Both MPI processes create a node ownership array, called NOD_OWN,

where they mark the nodes that are connected to their respective element. Other entries are

initialized with N , the total number of processes (here, N = 2). As illustrated by Figure 3.4,

both processes, [0] and [1], have marked the nodes 2, 3, and 6, which are at the subdomain

boundary. Through a reduction operation, [0] is determined as the owner of these nodes.
        node = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15] 
        type = [ v, v, v, v, e, e, e, e, f, v, v, e, e, e, f] 
        subd = [ -, -, -, -, -, -, -, -, 0, -, -, -, -, -, 1] 

[0]  NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, N, N, N, N, N, N] 
[1]  NOD_OWN = [ N, 1, 1, N, N, 1, N, N, N, 1, 1, 1, 1, 1, 1] 
-> allreduce(min): NOD_OWN 
     NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 

[0]  NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 0, 0, 0, 0, 0, 0] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[0] SUBD_DOF = [16, 0] 
[1]  NOD_DOF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 4] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 8] 
[1] SUBD_DOF = [ 0,12] 
-> allreduce(max): NOD_DOF, SUBD_DOF 
     NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 4] 
    SUBD_DOF = [16, 12] 
    SUBD_OFF = [ 0, 16] 

[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0,16,17,18,20,22,24] 
-> allreduce(max): NOD_OFF 
     NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12,16,17,18,20,22,24]

Figure 3.4: Distributed assembly. Processes communicate to determine node ownership.

B. Local offsets: Once node ownership has been determined, MPI processes com-

pute local node offsets for all of their owned nodes. The offsets are used to map the DOFs

of a node to the global matrices and vectors. This step of the process corresponds to the

gathering of assembly information in the sequential code, whereas steps (A), (C), and (D)

are additional communication needed in the distributed version. Figure 3.5 shows the ac-

cumulated information in the 2D example: node DOFs (NOD_DOF), offsets (NOD_OFF), and a
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total DOF count per subdomain (SUBD_DOF).

        node = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15] 
        type = [ v, v, v, v, e, e, e, e, f, v, v, e, e, e, f] 
        subd = [ -, -, -, -, -, -, -, -, 0, -, -, -, -, -, 1] 

[0]  NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, N, N, N, N, N, N] 
[1]  NOD_OWN = [ N, 1, 1, N, N, 1, N, N, N, 1, 1, 1, 1, 1, 1] 
-> allreduce(min): NOD_OWN 
     NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 

[0]  NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 0, 0, 0, 0, 0, 0] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[0] SUBD_DOF = [16, 0] 
[1]  NOD_DOF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 4] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 8] 
[1] SUBD_DOF = [ 0,12] 

-> allreduce(max): NOD_DOF, SUBD_DOF 
     NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 4] 
    SUBD_DOF = [16, 12] 
    SUBD_OFF = [ 0, 16] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0,16,17,18,20,22,24] 

-> allreduce(max): NOD_OFF 
     NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12,16,17,18,20,22,24]

Figure 3.5: Distributed assembly. Processes determine local node offsets per subdomain.

C. Global offsets: To compute global offsets, MPI processes only need to exchange

the number of DOFs for owned nodes per subdomain (in SUBD_DOF) and calculate their re-

spective subdomain offset via a prefix sum (in SUBD_OFF); consequently, the global ordering

of DOFs is determined first by subdomain, then by elements within the subdomain. This

a-priori defined ordering is advantageous for data locality and matches the expected par-

titioning of sparse matrices into successive blocks of rows typically used by parallel linear

solvers (e.g., PETSc). At the end of this step, processes have computed global DOF offsets

(in NOD_OFF) for all nodes owned by their subdomain, as illustrated by Figure 3.6.

        node = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15] 
        type = [ v, v, v, v, e, e, e, e, f, v, v, e, e, e, f] 
        subd = [ -, -, -, -, -, -, -, -, 0, -, -, -, -, -, 1] 

[0]  NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, N, N, N, N, N, N] 
[1]  NOD_OWN = [ N, 1, 1, N, N, 1, N, N, N, 1, 1, 1, 1, 1, 1] 
-> allreduce(min): NOD_OWN 
     NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 

[0]  NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 0, 0, 0, 0, 0, 0] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[0] SUBD_DOF = [16, 0] 
[1]  NOD_DOF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 4] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 8] 
[1] SUBD_DOF = [ 0,12] 

-> allreduce(max): NOD_DOF, SUBD_DOF 
     NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 4] 
    SUBD_DOF = [16, 12] 
    SUBD_OFF = [ 0, 16] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0,16,17,18,20,22,24] 

-> allreduce(max): NOD_OFF 
     NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12,16,17,18,20,22,24]

Figure 3.6: Distributed assembly. Processes communicate to determine global offsets.

D. Exchanging information: In the last step, processes must exchange offset infor-

mation to receive DOF offsets for nodes at their subdomain boundary that are owned by

another process. Figure 3.7 illustrates the final DOF mapping with global offsets for every

node.
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        node = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15] 
        type = [ v, v, v, v, e, e, e, e, f, v, v, e, e, e, f] 
        subd = [ -, -, -, -, -, -, -, -, 0, -, -, -, -, -, 1] 

[0]  NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, N, N, N, N, N, N] 
[1]  NOD_OWN = [ N, 1, 1, N, N, 1, N, N, N, 1, 1, 1, 1, 1, 1] 
-> allreduce(min): NOD_OWN 
     NOD_OWN = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] 

[0]  NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 0, 0, 0, 0, 0, 0] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[0] SUBD_DOF = [16, 0] 
[1]  NOD_DOF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 4] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 8] 
[1] SUBD_DOF = [ 0,12] 

-> allreduce(max): NOD_DOF, SUBD_DOF 
     NOD_DOF = [ 1, 1, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 4] 
    SUBD_DOF = [16, 12] 
    SUBD_OFF = [ 0, 16] 
[0]  NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12, 0, 0, 0, 0, 0, 0] 
[1]  NOD_OFF = [ 0, 0, 0, 0, 0, 0, 0, 0, 0,16,17,18,20,22,24] 

-> allreduce(max): NOD_OFF 
     NOD_OFF = [ 0, 1, 2, 3, 4, 6, 8,10,12,16,17,18,20,22,24]

Figure 3.7: Distributed assembly. Processes communicate offsets for owned nodes.

All in all, the assembly information is gathered with the help of a few global reduc-

tions over integer arrays indicating node ownership and offsets. Apart from these reduction

operations, the computation is local to subdomains and thus can be easily parallelized.

Element integration, and distributed stiffness and load assembly. Since offsets

have previously been computed, the elements in each subdomain can be processed indepen-

dently and in parallel by OpenMP threads. From the assembly perspective, it is at this

point not relevant whether the element matrices are computed for a DPG formulation or a

standard Galerkin discretization. The user sets flags to indicate the properties of the matrix

(e.g., symmetry, definiteness). Dirichlet boundary conditions and constraints from hanging

nodes are incorporated during the construction of the element matrices (these features are

hidden from the user application). In this part of the code, the distributed hp3D assembly

works in the same way as the sequential code; in other words, every MPI process indepen-

dently works on assembling their part of the global stiffness matrix and load vector that

corresponds to the subdomain they own. The final stiffness matrix is stored in a distributed

COO-format where values with duplicate indices are understood to be summed (this occurs

for nodal interactions at subdomain interfaces). Many parallel linear solvers can work di-

rectly with this distributed matrix format. Figure 3.8 illustrates how the non-zero values of

the global stiffness matrix are distributed in the 2D example.
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(b) Subdomain [1] stiffness matrix

Figure 3.8: Distributed assembly. The stiffness matrix is distributed according to the parti-
tioning into subdomains. Non-zero values (marked by x) are stored in COO-format.

Remark: The PETSc solver interface is slightly more complicated than the described

assembly procedure in this section, because the stiffness matrix must be distributed by rows

in such a way that all interactions of a degree of freedom (a particular row) with any other

degree of freedom (a particular column) is assembled by the owner of the row. Therefore,

some interactions must be communicated when degrees of freedom are associated with nodes

at the subdomain boundary.

3.3 Nested dissection solver

Nested dissection solvers are a class of direct methods for solving sparse linear systems. The

method was originally proposed by Alan George [58] for solving the linear system arising

from finite element discretizations. In essence, nested dissection is a method for finding a

specific ordering of unknowns in Gaussian elimination that strives to reduce the fill-in from

factorization. The algorithm is based on a divide-and-conquer strategy that makes it suitable

for parallelization, because subproblems can be computed independently. Nested dissection
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can be explained from various perspectives; in our discussion, we will illustrate the method

by means of a simple example that is relevant to solving waveguide applications at large

scale. For a general discussion of nested dissection algorithms, we refer to [82] and references

therein.

Overview. The implementation of a parallel nested dissection solver in hp3D was moti-

vated by the optical waveguide application (Chapter 5), but it extends to other types of

problems with similarly partitioned domains. The optical fiber has a cylinder shape where

the cylinder length (e.g., 10 000 wavelengths ≈ 7 000 µm) is substantially larger than its ra-

dius (≈ 200 µm). If subdomains are defined through cuts normal to the (longitudinal) fiber

axis (e.g., by recursive bisection), interfaces between subdomains are cross-sections of the

cylinder. A nested dissection solver is a natural choice to tackle this problem, because the

size of each subdomain interface problem is relatively small due to the cylindrical shape of

the domain. Furthermore, the subdomain interface does not increase in size (geometrically)

when the fiber length is increased to simulate more wavelengths.

Initially, the interior DOFs of each subdomain are eliminated with static condensation;

unlike the static condensation inside elements (cf. Section 3.4.3), this involves a sparse linear

solve in each subdomain. In this first step, communication between MPI processes is not

needed. The remaining interface problem is coupled between adjacent subdomains, as shown

in Figure 3.9 for eight subdomains. This implies that the matrix representing the global

interface problem is sparse and its non-zero entries are confined along a diagonal band. The

matrix structure is illustrated for eight subdomains (i.e., seven interfaces) in Figure 3.10;

each of the dense 4×4 blocks corresponds to the interaction of interface DOFs with each other

(blocks on the diagonal) or with neighboring interface DOFs (blocks on the off-diagonal).

The size of each dense block depends on the number of unknowns per interface. The total

size of the coupled interface problem is therefore proportional to the number of interfaces

between subdomains.
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Algorithm. In a recursive (nested) process, coupled interface problems are separated into

subproblems that are solved independently. Essentially, this process is equivalent to statically

condensing subdomain interior DOFs onto the interfaces but with each separator defining

a new interface. In a parallel implementation, communication between MPI processes that

own neighboring subdomains is required. The large coupled interface problem is recursively

subdivided into smaller ones that can efficiently be solved by a single processor (or some

small number of processors) with a direct solver. In the recursive backtracking, the solution

of the interface problem is propagated (broadcasted) to the corresponding subdomains (i.e.,

the MPI processes who own them) and the local interface solutions can be extracted inde-

pendently by every processor. In the last step, backward substitution is executed in each

subdomain to compute the subdomain interior DOFs from the interface solution.

[0] [1] [2] [3] [4] [5] [6] [7]

Coupled interface problem

(1) (2) (3) (4) (5) (6) (7)

[subdomain]

(interface)

Figure 3.9: Coupled interface problem for the optical waveguide with eight subdomains.
After MPI processes have independently eliminated interior subdomain DOFs, the remaining
interface problem (1-7) is coupled between neighboring subdomains [0-7].

It is perhaps most descriptive to illustrate the recursive structure of the algorithm with

a binary separator tree. Nested dissection can be viewed as a recursive divide-and-conquer

algorithm on an undirected graph; it uses graph separators (sets of vertices) whose removal

divides the graph approximately in half (for binary trees). In the optical waveguide, graph

separators correspond to the set of degrees of freedom on a particular fiber cross-section.

For example, the first separator can be chosen as the middle interface; Figure 3.11 shows
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Figure 3.10: Structure of the (Hermitian positive definite) stiffness matrix for the coupled
interface problem with eight subdomains. The matrix is sparse and its non-zero entries are
confined along a diagonal band. Each dense block indicates the interaction of an interface
with itself or with one of its neighboring interfaces.

how the interactions of the corresponding degrees of freedom separate the non-zero matrix

entries. Once the separator has been defined, the non-zero matrix entries are divided into

two uncoupled subproblems representing the interfaces on the left and on the right of the

separator, as depicted in Figure 3.12. Each subproblem is computed by a subset of the

processors: [0-3] and [4-7] independently work on the subproblems defined by interfaces

(1-3) and (5-7), respectively. Note that this split naturally follows from the partitioning of

the domain, because the processors will work on a part of the domain where their respective

subdomain lies. Once these subproblems are solved (i.e., statically condensed onto the

separator interface), the remaining separator problem (4) can be computed. The separator

solution is used to retrieve the final solution to the subproblems. For large problem instances,
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the method is applied recursively. For example, if the subproblems (1-3) and (5-7) are too

large to be statically condensed directly, then a new separator can be defined for each one.

In this example, choosing the middle interface of each subproblem as a separator defines four

independent subproblems (see Figure 3.13). Each subproblem consists of one interface only

and is solved by the two MPI processes that own the attached subdomains. At this point,

the binary separator tree consists of three stages: first, all eight processes participate to solve

the uncoupled subproblems (1,3,5,7) (leafs of the tree); then, four processes compute the

two uncoupled separator problems (2,6); at last, two processes solve the original separator

problem (4) (root of the tree).

The remainder of this section is dedicated to the implementation of the nested dis-

section solver in hp3D. A performance analysis and numerical experiments for the fiber

application are shown in Section 6.1.

Implementation. There are two distinctions between the previous description of the al-

gorithm and the hp3D implementation of the solver: 1) the separator tree is not necessarily

a binary tree; the current implementation supports binary trees, quadtrees, octrees, or any

combination of trees of size 2n, n = 1, 2, 3, . . .; and 2) the implemented solver traverses the

tree structure bottom-up, i.e., it is eliminating the smallest size subproblems first (corre-

sponding to the leafs of the separator tree), then recursively calling itself on the remaining

(and possibly still large) coupled interface problem, thereby progressing one level up in the

tree. With every additional level, fewer MPI processes are involved in the solution process.
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Figure 3.11: Coupled interface problem. Choosing a separator corresponds to selecting the
set of degrees of freedom from a particular fiber cross-section.
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Solve left and right subproblems independently
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Figure 3.12: Coupled interface problem. The separator divides the global problem into two
subproblems that can be solved independently. This is equivalent to statically condensing
the left interfaces (1-3) and right interfaces (5-7) onto the separator interface (4).
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Solve left and right subproblems independently
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Figure 3.13: Coupled interface problem. Recursive application of the algorithm produces a
(binary) separator tree, dividing coupled interface problems into smaller subproblems that
can be solved efficiently by a small number of processors.
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Preliminary step. Condensing the subdomain interior. As previously mentioned,

the first level of the nested dissection solver is the static condensation of a subdomain interior

onto its interfaces. The assembly of this subdomain problem only involves one communica-

tion step between MPI processes to identify whether a node is shared with other processes

(i.e., it is on the subdomain interface) or whether it is in their subdomain interior. This step

is similar to computing node ownership in the distributed assembly (cf. Section 3.2.3). Since

eliminating subdomain interior DOFs does not involve communication between MPI pro-

cesses, it can be done independently per subdomain with a sparse direct solver. In hp3D, the

sequential MUMPS solver is used for this. To be precise, there are N independent MUMPS

instances (one per subdomain) and each MPI communicator consists of a single MPI process

that owns a particular subdomain. Once subdomain interior DOFs are eliminated, the re-

maining coupled interface problem is assembled in a distributed MUMPS instance (i.e., the

banded sparse matrix, as in Figure 3.10, is distributed across all processors). This instance

is the input for the recursive nested dissection routine. We break the routine into five steps.

Step 1. Communicators for the subproblems. To simplify the description of the al-

gorithm, we assume that the number of processes in the input instance, called mPROCS, is

a power of two; that is, mPROCS = 2l, where l ∈ {1, 2, 3, . . .}. Every process has a unique

rank in this input instance: mRANK ∈ {0, 1, . . . , mPROCS − 1}. Next, we define the size of

the base case for the recursion in terms of the number of processes (subdomains) involved:

mSUB_PROCS. Each subproblem involves a parallel direct solve of this size, and we assume

that mSUB_PROCS = 2k, where k ∈ {1, 2, 3, . . .}. A subproblem consists of 2k − 1 inter-

faces. The choice of the subproblem size determines the structure of the separator tree:

mSUB_PROCS = 2 results in a binary tree, mSUB_PROCS = 4 in a quadtree, and so on. A sub-

problem has to be at least of size mSUB_PROCS = 2 in which case it involves two (neighboring)

MPI processes solving a single interface problem. If the size of the input problem is small

enough (l ≤ k), then the instance will be solved directly without further recursion. Other-
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wise, the input problem is separated into 2l/2k = 2l−k uncoupled subproblems by choosing

2l−k − 1 separators. To compute subproblems independently, the MPI communicator of the

input instance is split into subcommunicators (groups) of size mSUB_PROCS. Every process

calculates its group number, mSUB_COMM ∈ {0, 1, . . . , 2l−k − 1}, and subcommunicator rank,

mSUB_RANK ∈ {0, 1, . . . , 2k − 1}, from their input rank:

mSUB_COMM = mRANK / mSUB_PROCS;

mSUB_RANK = MOD(mRANK,mSUB_PROCS).

Step 2. Communicator for the separator problem. One more subcommunicator is

defined to compute the remaining separator problem with 2l−k − 1 interfaces. Since assem-

bling this distributed separator problem requires information (Schur complements) from the

subproblems, each group has one representative (MPI process) that participates in com-

puting the separator problem. That group representative is responsible for communicating

information from the static condensation of their subproblem to the separator problem, as

well as broadcasting the solution from the separator problem to the other group members

so they can retrieve their respective subdomain solutions. In each group, the process with

mSUB_RANK = 0 is dedicated as the representative. The number of processes participat-

ing in the separator problem therefore is mINT_PROCS = 2l−k. Every group representative

obtains their rank in the new subcommunicator, called mINT_RANK, from their group num-

ber, mSUB_COMM. The defined variables are summarized below, and an example for an input

instance with 32 processes and subproblems with four processes is shown in Table 3.2.

mPROCS: Number of processes in the input instance;

mRANK: Rank of each process in the input instance;

mSUB_PROCS: Number of processes in each subproblem;

mSUB_RANK: Rank of each process in the subproblem;

mINT_PROCS: Number of processes in the (separator) interface problem;

mINT_RANK: Rank of each process in the (separator) interface problem.
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mRANK mSUB_RANK mINT_RANK

0 0 0
1 1 -
2 2 -
3 3 -

4 0 1
5 1 -
6 2 -
7 3 -

8 0 2
9 1 -
10 2 -
11 3 -

12 0 3
13 1 -
14 2 -
15 3 -
...

...
...

28 0 7
29 1 -
30 2 -
31 3 -

Table 3.2: Nested dissection communicators: an example with 32 subdomains (mPROCS = 32),
split into eight subproblems (mINT_PROCS = 8) of four subdomains each (mSUB_PROCS = 4).

Step 3: Assembling the subproblems. Once all subcommunicators are defined, the

corresponding subproblems can be extracted from the input instance. Because of the partic-

ular structure of the partitioning that is assumed a-priori, this subproblem assembly does not

require any communication between MPI processes. Consider a coupled interface problem

with one separator: 
All Ali −

Ail Aii Air

− Ari Arr



xl

xi

xr

 =


bl

bi

br

 , (3.1)
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where the indices {l, i, r} refer to contributions from degrees of freedom “left” of the interface,

on the interface, and “right” of the interface, respectively. The processes in the two subcom-

municators (“left” and “right”) assemble and solve the two subproblems independently:

Left subproblem:

LHS = [All],

RHS = [bl | Ali],

Solve⇒ [A−1
ll bl | A

−1
ll Ali];

Right subproblem:

LHS = [Arr],

RHS = [br | Ari],

Solve⇒ [A−1
rr br | A−1

rr Ari].

Step 4: Assembling the separator problem. In the previous step, the right-hand side

was assembled with the load {bl, br} and with interface interactions {Ali, Ari} to compute

Schur complement factors. These are now used by the group representatives to statically

condense the left and right subproblems onto the separator:

Left subproblem:

ASchur
l = AilA

−1
ll Ali,

bSchur
l = AilA

−1
ll bl;

Right subproblem:

ASchur
r = AirA

−1
rr Ari,

bSchur
r = AirA

−1
rr br.

Separator (interface) problem:

LHS = [Aii − ASchur
l − ASchur

r ],

RHS = [bi − bSchur
l − bSchur

r ],

Solve⇒ xi.

In this particular example, the separator problem consists of only one interface and can be

solved directly. Generally, this problem instance (“solving xi”) is computed by recursively

applying nested dissection to it. In other words, the assembled problem as shown above

serves as the input to the next level of the nested dissection solver and steps (1)–(5) are

repeated for that instance.

58



Step 5: Retrieving the solution to subproblems. Once the separator problem has

been solved directly or through recursive application of nested dissection, the group repre-

sentatives compute the solutions to the subproblems and broadcast them to the other group

members:

Left subproblem:

xl = A−1
ll bl − A

−1
ll Alixi;

Right subproblem:

xr = A−1
rr br − A−1

rr Arixi.

Final step: Retrieving the solution in the subdomain interior. In the same way

that the separator solution of step (4) serves to retrieve the subproblem solution in step

(5), the solution to the coupled interface problem solved in steps (1)–(5) serves to retrieve

the solution to subdomain interior DOFs that were eliminated in the preliminary step. This

final step is local to each subdomain, hence it does not involve communication between MPI

processes.

3.4 Coding DPG

DPG methods have been used in hp3D to compute variational formulations for a variety

of multiphysics applications (see Section 1.3.4). Therefore, optimizing the computational

performance of DPG implementations has been a focus of the hp3D development in recent

years. In this section, some of these optimizations that the author has contributed to are

presented:

• Computing optimal test functions in the enriched test space comes at a computational

cost in the element integration, including construction of the Gram matrix. In Sec-

tion 3.4.1, we discuss sum factorization techniques for the DPG linear system that can

accelerate numerical integration by more than one order of magnitude.

59



• Trace unknowns that arise from breaking the test space in the DPG method can be

discretized conformingly by using shape functions for standard elements of the exact

sequence, evaluated on the element boundary. In Section 3.4.2, we show how trace

variables have been incorporated in the hp3D code.

• Static condensation is a technique widely used in finite element coding, but we would

like to emphasize the importance of it in the context of ultraweak variational formula-

tions. In Section 3.4.3, we describe hp3D’s static condensation module which is hidden

from both the user application and the constrained approximation routines.

Before these points are discussed in more detail, we briefly recap how the DPG linear system

is constructed.

The DPG linear system. In the description of the DPG linear system, we follow the

concise exposition of [32, 102]. We would like to point out that other DPG variants, e.g.,

discrete least-squares FE [81], lead to a different linear system. The implementation of the

DPG method can be explained from the perspective of the mixed problem (2.19). Consider

the corresponding broken formulation:



uh ∈ Uh, ûh ∈ Ûh, ψ ∈ Vr(Ωh),

(ψ, v)V + bh(uh, v) + 〈ûh, v〉Γh = l(v), v ∈ Vr(Ωh),

bh(wh, ψ) = 0, wh ∈ Uh,

〈ŵh, ψ〉Γh = 0, ŵh ∈ Ûh.

(3.2)

We reduce (3.2) to a matrix equation. Let Uh = {ui}Ni=1, Ûh = {ûi}N̂i=1, and Vr = {vi}Mi=1

(where M > N + N̂) denote bases for the discrete trial space Uh × Ûh and the enriched test

space V r, respectively. We define the stiffness matrix for the modified bilinear form, the
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Gram matrix, and the load vector as follows:

Bij = b(uj, vi), B̂ij = 〈ûj, vi〉, Gij = (vj, vi)V , li = l(vi). (3.3)

In matrix form, the problem can now be formulated in the following way:

Find the set of coefficients (over field F = R (or C))

w = [wi]
N
i=1 ∈ FN , ŵ ∈ [ŵi]

N̂
i=1 ∈ FN̂ , and q = [qi]

M
i=1 ∈ FM (3.4)

such that

uh =
N∑
i=1

wiui, ûh =
N̂∑
i=1

ŵiûi, and Ψ =
M∑
i=1

qivi (3.5)

satisfy 
G B B̂

B∗ 0 0

B̂∗ 0 0




Ψ

uh

ûh

 =


l

0

0

 . (3.6)

The residual Ψ can be eliminated by static condensation so that we obtain a linear system

for the approximate solution [uh ûh]:

 B∗G−1B B∗G−1B̂

B̂∗G−1B B̂∗G−1B̂


 uh

ûh

 =

 B∗G−1l

B̂∗G−1l

 . (3.7)

Note that the positive definite Gram matrix is block-diagonal because the test space is

discontinuous. Therefore, Ψ can be removed from the system element-wise. Later, the

residual may be post-processed if needed (e.g., for adaptivity). Once the matrices and

vectors in (3.7) are set up for each element, we can proceed with the distributed assembly

as described in Section 3.2.3. The remainder of this section describes techniques on how to

efficiently implement the construction of the linear systems (3.6)–(3.7).
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3.4.1 Sum factorization

One common critique of the DPG method is the computational complexity due to determin-

ing optimal test functions. While the computation of optimal test functions is element-local

and can be easily parallelized, it can indeed become a computational bottleneck when using

a high-order discretization. The main reason for this is the computational cost of standard

numerical integration (Gaussian quadrature) techniques. For example, integration for hexa-

hedral and prismatic elements usually requires O(p9) operations, where p is the polynomial

order. The optimal test functions are computed by using an enriched test space that has

a larger dimension than the trial space. This is typically accomplished by using a higher

order of discretization for the test space (see Section 2.3). This “enriched order” is defined

by pr := p + ∆p, where p is the discretization order of the trial space; we use ∆p = 1 uni-

formly. Therefore, the Gram matrix G that derives from the test inner product (cf. (3.3))

can be particularly costly to compute. It is essential to optimize the numerical integration

to achieve an efficient method. Mora and Demkowicz [92] and Badger et al. [11] have shown

that the computational complexity of the element integration for DPG linear systems can

be reduced from O(p9
r) to O(p7

r) for hexahedral and prismatic elements, respectively. This

is accomplished by employing sum factorization techniques that exploit the tensor-product

structure of the element shape functions for these element types (full tensorization of the

hexahedron and partial tensorization of the prism). For algorithms and further discussion

of sum factorization techniques, see [92, 11] and references therein.

The implementations for fast numerical integration in hp3D were created by the au-

thors of [92, 11]. Figure 3.14 illustrates the importance of sum factorization for computing

the matrices G,B, l (defined in (3.3)) in the ultraweak DPG Maxwell formulation. In this

formulation, the Gram matrix is computed using the test inner product that induces the

adjoint graph norm (Section 2.5.1). As depicted in Figure 3.14a, compute times are reduced

dramatically with sum factorization. For both element types, hexahedra and prisms, the
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Figure 3.14: Sum factorization for the element-local computation of the matrices G,B, l in
the ultraweak DPG Maxwell formulation: (a) the asymptotic complexity is reduced from
O(p9

r) to O(p7
r); (b) for high-order elements, the computation is accelerated by more than

one order of magnitude. Runtimes collected on Stampede2 SKX compute node with multi-
threading enabled (one thread per element). Algorithms and implementations from [92, 11].

observed asymptotic complexity is reduced from O(p9
r) to O(p7

r). High-order-element com-

putation is significantly accelerated in particular: we observe up to 35x speedup for prisms

and 200x speedup for hexahedra (see Figure 3.14b).

3.4.2 Trace unknowns

In this section, we outline how the DPG trace unknowns are implemented in hp3D.

Recall that depending on the energy space setting of the variational formulation (Sec-

tion 2.4), the broken DPG formulation requires trace unknowns that are element-wise traces

of globally conforming functions in H1, H(div), or H(curl) (cf. (2.36)). In other words, on

element interfaces, traces of H1 must be continuous, traces of H(div) must be continuous

in normal direction, and traces of H(curl) must be tangentially continuous. In a three-

dimensional FE code that supports discretizations of these energy spaces, i.e., discretiza-

tions with H1-, H(div)-, and H(curl)-conforming elements,4 the simplest way to discretize
4In hp3D, conforming discretizations of vector-valued H(div)- and H(curl)-functions are realized with

Raviart–Thomas and Nédélec elements, respectively. See [50] for details.
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the DPG trace unknowns is by using restrictions of these elements to the element boundary.

This way, much of the code infrastructure that is in place for standard Galerkin discretiza-

tions can be reused for the traces (e.g., implementation of element shape functions). While

there is no notion of a trace for L2-functions, L2-conforming elements are needed for the

discretization of ultraweak formulations.

Parameter Description DOFs

nrdofE H(curl) variable 3p(p+ 1)2

nrdofEi H(curl) trace 12p2

nrdofEb H(curl) bubble 3p(p− 1)2

nrdofQ L2 component p3

Table 3.3: Trial DOFs in a hexahedral element for the ultraweak DPG Maxwell formulation,
depending on the polynomial order p.

Consider the ultraweak DPG Maxwell formulation (2.42) discretized with a hexahedral

FE mesh. To compute the electric field E and magnetic field H , we set up two vector-

valued L2-variables with three components each. Additionally, we require two vector-valued

H(curl)-variables for the traces Ê and Ĥ . The number of trial DOFs for each component in

a hexahedral element of order p is given in Table 3.3. Consequently, there are 2 ∗ nrdofEi+

6 ∗ nrdofQ trial DOFs for a hexahedron in the ultraweak DPG Maxwell problem.

If standard H(curl)-conforming elements are used for the discretization of the traces,

then the corresponding element-interior (bubble) DOFs must be deleted from the linear

system. In hp3D, a simple but effective procedure is implemented where each H1-, H(div)-,

and H(curl)-variable has a flag that specifies whether it is a standard variable defined on the

entire domain or a trace variable defined on the mesh skeleton. If a variable is defined as a

trace, then its bubble DOFs are not allocated in the local element matrix for assembly. Since

the constrained approximation routines5 do not modify bubble DOFs, the usual assembly

routines can operate directly on this reduced local element matrix.
5For elements with constrained (hanging) nodes, the constrained approximation routines are used to con-

struct the modified element that expresses constrained element DOFs as linear combinations of unconstrained
(parent) DOFs. Element-interior (bubble) DOFs cannot be constrained DOFs. See [37] for details.
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Figure 3.15: Eliminating bubble DOFs for DPG trace unknowns. The local element matrices
for the DPG ultraweak Maxwell formulation avoid storing element-interior DOFs for the
traces of H(curl)-conforming elements.

Figure 3.15 illustrates the element-local matrix entries for the ultraweak DPG Maxwell

problem, discretized with or without specifying an interface (trace) variable in hp3D. The

parameters used in Figure 3.15 relate to the quantities shown in Table 3.3. As depicted in

Figure 3.15, the submatrix (2,2) does not change because it only concerns the L2 degrees of

freedom. However, any interactions with the element trace unknown’s interior DOFs (which

are meaningless) are omitted from the matrix. This reduces both storage requirements as

well as computation time since subsequent modification to eliminate these contributions is

no longer needed.

3.4.3 Static condensation

Static condensation plays an important role in computing DPG finite element discretiza-

tions. Firstly, the local residual DOFs are usually eliminated (statically condensed) in the

construction of the DPG linear system (3.7) as previously described. Then, static condensa-

tion is used to locally eliminate bubble DOFs associated with the middle node of an element.
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In ultraweak formulations, this includes all L2-trial DOFs. The corresponding bubble DOF

interactions form independent blocks (submatrices) within the element stiffness matrix in

the sense that they have no global conformity requirements. These DOFs can therefore be

eliminated from the system element-wise. The resulting global problem is a significantly

smaller linear system that involves only the interface unknowns (i.e., DOFs associated with

shape functions whose support extends to more than one element). Particularly in high-

order discretizations, the number of eliminated interior DOFs can be significant, leading to

a drastic reduction of the computational cost in the linear solve. For example, the ultra-

weak DPG Maxwell problem has 6p3 bubble L2-DOFs and 24p2 trace H(curl)-DOFs locally

per hexahedral element (cf. Table 3.3). Therefore, the size of each local element matrix is

reduced by a factor of 6p3/(6p3 + 24p2) = p/(p+ 4). In the global system, the factor is even

larger since interface DOFs are shared among elements.

In hp3D, we developed a static condensation module that is integrated with the as-

sembly procedure and removes bubble DOFs from the system automatically. A significant

computational advancement came from eliminating these bubble DOFs directly from the

local element matrix before creating the modified element matrix via constrained approxi-

mation routines. The static condensation of interior DOFs for each variable can be enabled

or disabled by the user. The user may also control whether Schur complement factors are

stored or later recomputed on-the-fly when the element-interior DOFs are retrieved by back-

substitution.

Remark: The statically condensed system has the same size for all DPG formulations

of a particular problem. However, the conditioning of the global linear system is not the same

for every formulation [102].
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Chapter 4

DPG Method for Linear Optical Waveguides

In this chapter, we introduce the governing equations of linear waveguide theory and the

closed-form solutions (eigenmodes) to the corresponding eigenproblem in step-index fibers.

We discuss the pollution effect in long waveguides and conduct numerical waveguide sim-

ulations with DPG discretizations of the ultraweak Maxwell system. We also study mesh

adaptivity for multi-mode waveguide propagation in weakly-guiding step-index fibers, lead-

ing into the computation of the nonlinear fiber model in the next chapter. In the context of

large-scale distributed computation, we discuss the benefits of dynamic load balancing and

show numerical results.1

4.1 Linear waveguide theory

A step-index fiber is an optical waveguide. The propagation of the (confined) optical field

in the fiber can be described as a guided wave along the longitudinal fiber axis. The theory

of linear waveguide problems is well established [64, 74, 1]. In this section, we derive the

guided wave equations in a linear medium. The solutions (eigenmodes) to the corresponding

eigenvalue problem are the modes of the waveguide. Any propagating (guided) field in the

waveguide is a linear combination of these (guided) modes.
1The contents of this chapter are partially taken from a previous publication: S. Henneking and L.

Demkowicz. “A numerical study of the pollution error and DPG adaptivity for long waveguide simulations”.
In: Comput. Math. Appl. (2020).
The author contributed to both numerical implementation of the method and analysis of the results.
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4.1.1 Guided modes

Recall the time-harmonic Maxwell equations in a linear, isotropic and homogeneous medium

(cf. (1.16)–(1.17)):

∇×E = −iωµH , (4.1)

∇×H = iωεE. (4.2)

In the absence of free charges in a dielectric medium, this time-harmonic Maxwell system

reduces to vectorial Helmholtz equations:2

∆E + µεω2E = 0, (4.3)

∆H + µεω2H = 0. (4.4)

Suppose that the center of the waveguide is aligned with the z-axis, so that (x, y) are the

transverse directions. At the radial boundary (i.e., the boundary of the transverse domain),

we assume perfect electrical conductor (PEC) boundary conditions; that is, the tangential

electrical field vanishes on the boundary. Assuming a guided wave propagating along the

z-direction, the fields take the form:

E(x, y, z) = E(x, y)e±ikz, (4.5)

H(x, y, z) = H(x, y)e±ikz, (4.6)

where β = ±ik is called the propagation constant and k is the wavenumber. We consider

waves that are traveling in the forward (+z) direction, hence we assume the ansatz eiwt−ikz.

Note that, in principle, backward traveling waves are possible as well, and they are usually

discussed in the context of resonant cavity problems. Using the ansatz (4.5) and (4.6) for the
2a) apply the curl operator to (4.1); b) substitute ∇×H via (4.2); c) use vector identity ∇× (∇×E) =

∇(∇ · E)−∆E; d) apply Gauss’s Law in the absence of free charges: ∇ · E = 0. Analagous for (4.2).
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Helmholtz equations (4.3) and (4.4), respectively, we obtain (transverse) Helmholtz equations

for the field envelopes,

[
∆t + (µεω2 − k2)

] E(x, y)

H(x, y)

 = 0, (4.7)

where ∆t is the transverse part of the Laplacian operator. Analysis of the corresponding

eigenvalue problem, (∆t + γ2)Ψ = 0, where γ2 ≡ µεω2 − k2, with appropriate boundary

conditions, yields a spectrum of positive eigenvalues γ2
λ, and eigenmodes Ψλ, λ = 1, 2, . . .;

guided modes are those for which the corresponding wavenumber kλ is real-valued; otherwise,

the mode is decaying and called evanescent.

Modes in a weakly-guiding step-index fiber. A circular step-index fiber consists of a

fiber core of radius r1 and a surrounding cladding of radius r2. The material refractive index

of the core (n1) is larger than the refractive index of the cladding (n2), i.e.,

n(r) =

n1 , r ≤ r1,

n2 < n1 , r1 < r < r2.
(4.8)

where r =
√
x2 + y2. We equivalently refer to these quantities as rcore, rclad, ncore, and nclad,

respectively. The step-index fiber is called weakly-guiding if (n1 − n2)/n1 � 1. Under the

weakly-guiding condition, the wave equation may be posed for the transverse electric field

components:

Core:
[
∆t +

(
ω2

c2
n2

1 − k2

)] Ex

Ey

 = 0, (4.9)

Cladding:
[
∆t −

(
k2 − ω2

c2
n2

2

)] Ex

Ey

 = 0. (4.10)
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The corresponding eigenvalue problem with appropriate boundary and core-cladding inter-

face conditions yields transverse core-guided modes ψλ that satisfy

ω

c
n2 < |kλ| <

ω

c
n1. (4.11)

These modes have two possible linear polarizations in the transverse directions: êx and êy.

They are therefore called LP modes. In cylindrical coordinates, they must satisfy the fol-

lowing characteristic equation involving l-th order Bessel functions Jl and modified Bessel

functions Kl (cf. [74, Eqn. (8.128)]):

(γr1)J ′l (γr1)

Jl(γr1)
=

(βr1)K ′l(βr1)

Kl(βr1)
, l = 0, 1, 2, . . . , (4.12)

as well as

(r1γ)2 + (r1β)2 = r2
1

ω2

c2
(n2

1 − n2
2) ≡ V 2, (4.13)

where

γ2 =

(
ω2

c2
n2

1 − k2

)
, β2 =

(
k2 − ω2

c2
n2

2

)
. (4.14)

V is called the normalized frequency or V -number, and NA :=
√
n2

1 − n2
2 is the fiber core

numerical aperture.

Given any suitable fiber parameters n1, n2, r1, r2, and frequency ω, for every l =

0, 1, 2, . . ., there are infinitely many solutions γ, β that satisfy (4.12) but only finitely many

of these may satisfy (4.13) as well. These are denoted γlp, βlp, p = 1, 2, . . . , N . We find that

only for l = 0, there exists a solution for any V > 0. This fundamental mode is the LP01

mode, and it does not have a cutoff frequency (i.e., a frequency Vc below which the mode

cannot propagate). All other LP modes do have a cutoff frequency and can only propagate

if the V -number is larger than their cutoff frequency. These cutoff frequencies can be calcu-

lated for each mode and are shown in Table 4.1 for the lowest-order LP modes (cf. roots of

Bessel functions—see Tables A.9 and A.10).
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Guided mode LP01 LP11 LP21,LP02 LP31 LP12 · · ·

Cutoff frequency Vc - 2.405 3.832 5.136 5.520 · · ·

Table 4.1: Cutoff frequencies of lowest-order LP modes in a weakly-guiding step-index fiber.
The fundamental mode (LP01) has no cutoff and can propagate at any frequency.

Denoting Ψ0 ≡ AJl(γa) = CKl(βa) for some constants A,C, we can write the modes as:

Ψ(r, θ) = Ψ0 cos(lθ)

 Jl(γr)/Jl(γa), r ≤ rcore,

Kl(βr)/Kl(βa), rcore < r ≤ rclad.
(4.15)

Since the cos(lθ) ≡ 1 for l = 0, the LP0p modes are radially symmetric. For example,

Figure 4.1 shows the transverse profile of the fundamental mode (LP01) in a weakly-guiding

step-index fiber.

Figure 4.1: Transverse guided mode profile (magnitude of the electric field). The fundamental
mode (LP01) in a weakly-guiding step-index fiber is radially symmetric.

4.1.2 Optical power

The optical power in a waveguide is one of the essential quantities of interest. In particular,

when studying (nonlinear) gain amplification in a fiber laser (Chapter 5), we model the

transfer of optical power from one field to another and want to measure the power in each field
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at any point (z) along the length of the fiber. The average power flow of the electromagnetic

field is given by the real part of the time-averaged Poynting vector:

S := E ×H∗, (4.16)

where H∗ denotes the complex conjugate of H . For a fixed position 0 < z̄ < L, let

Ωt(z̄) := {(x, y, z̄) : x2 + y2 < r2
clad} denote the transverse domain of the fiber, and let n̂ be

the normal vector on Ωt (i.e., n̂ = êz). We assume that the power flow in the waveguide is

in the forward direction (guided wave assumption), and thus the power is calculated by

P (z̄) :=

∣∣∣∣∫
Ωt(z̄)

n̂ ·Re{S}dxdy
∣∣∣∣ . (4.17)

Recall that the broken ultraweak Maxwell formulation has trace unknowns Ê and Ĥ

that are defined on the mesh skeleton Γh. To be precise, these trace unknowns are defined

in the energy space H−1/2(curl,Γh), thus for every element K ∈ Ωh, the duality pairing

〈n̂× Ê, Ĥ〉H−1/2(div,∂K)×H−1/2(curl,∂K) (4.18)

is well-defined. Since we assume that the power flow is in the forward direction, contributions

from faces that are not orthogonal to the fiber axis (êz) vanish and the computation of the

power can be interpreted as a duality pairing on fiber cross-sections:

P (z̄) =

∣∣∣∣∫
Ωt(z̄)

n̂ ·Re{Ê × Ĥ∗}dxdy
∣∣∣∣ =

∣∣∣∣∫
Ωt(z̄)

Re{(n̂× Ê) · Ĥ∗}dxdy
∣∣∣∣ . (4.19)

Therefore, the power flow along the fiber is computed directly from the solution to the

Maxwell problem without additional post-processing.
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Confinement ratio. Another quantity of interest in our simulations is the confinement

ratio, denoted by Γ. The confinement ratio is defined as the fraction of the energy of the

propagating wave that is confined to the core of the fiber. In general, a guided mode is more

tightly confined to the core if the normalized frequency (V-number) is much larger than the

mode’s cutoff frequency (i.e., V � Vc). As V approaches Vc, the cladding fields become more

significant. For an LPlp mode that is polarized along x, the confinement ratio is given by:

Γlp :=
P core
lp

P total
lp

=

∫ r1
0
|Ex|2r dr∫ r2

0
|Ex|2r dr

. (4.20)

The mode confinement ratio plays an important role for discretizing the transverse do-

main. This point is investigated in the multi-mode fiber adaptivity study in Section 4.3.

Additionally, the confinement ratio of the propagating field indicates how the power is dis-

tributed in the fiber cross-section (more power outside the fiber core indicates that higher-

order modes are carrying more energy). Consider the transverse domain of the fiber core:

Ωcore
t (z̄) := {(x, y, z̄) : x2 + y2 < r2

core}. Then, using the computation of optical power in the

waveguide, we can calculate the confinement ratio of the propagating field at a fixed position

0 < z̄ < L by

Γ(z̄) =

∣∣∣∣ ∫
Ωcore

t (z̄)

Re{(n̂× Ê) · Ĥ∗}dxdy
∣∣∣∣/∣∣∣∣ ∫

Ωt(z̄)

Re{(n̂× Ê) · Ĥ∗}dxdy
∣∣∣∣. (4.21)

4.1.3 Mode projection

Given a time-harmonic electromagnetic field in a weakly-guiding circularly symmetric step-

index fiber, we want to determine how much of the power is in each of the guided modes.

This section shows how the a-priori knowledge of the fiber modes can be utilitized to com-

pute the power of each propagating mode. Suppose we have a (multi-mode) fiber operated

at a normalized frequency of V ≈ 4.43. From Table 4.1, we know that the fiber supports four

guided modes: {LP01,LP11,LP21,LP02} (with one additional rotation each for the asymmet-
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ric modes LP11 and LP21). As usual, the fiber axis is assumed to be aligned with the z-axis,

the length of the fiber is L, and for a fixed position 0 < z̄ < L, we denote the transverse

domain of the fiber by Ωt(z̄), and the respective core and cladding transverse domains by

Ωcore
t (z̄) and Ωclad

t (z̄). The eigenmode solutions to the transverse Helmholtz problem (4.9)–

(4.10) form an L2-orthogonal basis on the transverse domain Ωt(z̄) for any 0 < z̄ < L.

Therefore, any (guided) propagating field E(x, y, z̄) is approximately a linear combination

of the (guided) modes of the fiber. Approximately, because the Helmholtz eigenvalue prob-

lem is derived with certain simplifying assumptions that are not exactly true for the real

step-index fiber. In other words,

E(x, y, z̄) ≈
N∑
i=1

[
Am ·ϕm(x, y)e−ikmz̄

]
, (4.22)

where N is the number of guided modes, Am the amplitude (vector) of the m-th mode, ϕm

the (normalized) eigenmode, and km the propagation constant of the mode. For a guided

mode, km is a real number. In the multi-mode fiber with V ≈ 4.43, N = 4. By orthogonality

of the eigenmodes,

(ϕm,ϕn) =

∫
Ωt

ϕm ·ϕ∗n dxdy =

 0, m 6= n ,

1, m = n .
(4.23)

Theorem 4.1.1. (Hilbert space projection) [5, Thm. 3.14] Suppose H is a (complex) Hilbert

Space equipped with the inner product (·, ·), and {u1, . . . ,uN} ⊂ H is an orthonormal set.

Let x ∈ H. Then, the orthogonal projection of x ontoM = span{u1, . . . ,uN} is given by:

PMx =
N∑
i=1

(x,ui)ui . (4.24)

By the Hilbert space projection theorem, the orthogonal projection of the transverse
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field E(x, y, z̄) onto mode ϕm is

[∫
Ωt(z̄)

E(x, y, z̄) ·ϕ∗m dxdy

]
ϕm(x, y) ≡ αmϕm , (4.25)

where αm is the (complex) projection coefficient.

Recall that we can calculate the power flow of the electromagnetic field through the

transverse domain Ωt(z̄) by (4.19). Suppose we want to calculate how much of the power

resides in the m-th mode at 0 < z̄ < L. Let Pm(z̄) denote the power of the orthogonal

projection of the field onto the m-th mode. Then,

Pm(z̄) =

∣∣∣∣∫
Ωt(z̄)

n̂ ·Re

{
αmϕm(x, y, z̄)×

[
− 1

iωµ
∇× (αmϕm)

]∗
(x, y, z̄)

}
dxdy

∣∣∣∣
= |αm|2

∣∣∣∣∫
Ωt(z̄)

n̂ ·Re

{
ϕm(x, y, z̄)× 1

iωµ
∇×ϕ∗m(x, y, z̄)

}
dxdy

∣∣∣∣ , (4.26)

where we used Faraday’s law, ∇×E = −iωµH . Based on (4.26), the power that resides in

each of the guided modes for a given propagating field can be computed.

Numerical experiments and verification. For convenience, we restrict ourselves to

injecting x-polarized electric fields only; consequently, only the x-polarized electric fields of

the guided modes are considered. We denote the (unnormalized) guided modes by

ψm = Amϕm, m = {1, 2, 3, 4} ≡ {LP01,LP11,LP21,LP02} . (4.27)

Remark: LPlp modes with l > 0 have two possible rotations in each polarization state (see

Appendix B.2). We show results for one of the rotations of the LP11 and LP21 modes.
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L2 norm of the unnormalized eigenmodes. For the (unnormalized) LP modes, defined

in (4.15), we can directly calculate ‖ψlp‖ by

‖ψlp‖ =

[∫ 2π

0

cos2(lθ)dθ

(∫ r1
0
J2
l (γlpr)rdr

J2
l (γlpr1)

+

∫ r2
r1
K2
l (βlpr)rdr

K2
l (βlpr1)

)]1/2

. (4.28)

We obtain: ‖ψ1‖ ≈ 5.74447, ‖ψ2‖ ≈ 2.63182, ‖ψ3‖ ≈ 2.09447, and ‖ψ4‖ ≈ 3.15927.

Numerically, these norms are computed by integrating over the element boundaries {Ωf
t }Ff=1

that discretize the transverse domain Ωt, i.e.,

‖ψm‖ =

[∫
Ωt

ψm ·ψ∗m
]1/2

=

[
F∑
f=1

∫
Ωf

t

ψm ·ψ∗m

]1/2

. (4.29)

The numerically calculated values for the discretized modes (on the initial geometry) are:

‖ψ̃1‖ ≈ 5.74447, ‖ψ̃2‖ ≈ 2.63180, ‖ψ̃3‖ ≈ 2.09443, and ‖ψ̃4‖ ≈ 3.15926. As the mesh

is further refined in the radial direction, the numerical values approach the analytically

computed values for the exact modes.

Linear combination of guided modes. If exactly one of the guided modes is injected

into the fiber, say ψm, then the coefficients take values αm = 1, αn = 0, n 6= m. In this case,

the power P (z̄) of the field should be equal to the power Pm(z̄) of the orthogonal projection

onto ψm, while the powers Pn(z̄), n 6= m, should equal zero. The numerical solutions for the

discretized modes are shown in Table 4.2.

Injected mode Projection coefficient

α̃1 α̃2 α̃3 α̃4

ψ1 1.00 10−7 10−5 10−5

ψ2 10−10 1.00 10−10 10−10

ψ3 10−6 10−8 1.00 10−5

ψ4 10−5 10−7 10−5 1.00

Table 4.2: Projection coefficients of the numerical solution for each guided mode. The
obtained values are accurate for all tested modes.
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Figure 4.2 shows the numerical solution for the power of the projected field for each

guided mode in two scenarios: in Figure 4.2a, the fiber was excited with the LP02 mode,

and in Figure 4.2b, the fiber was excited with a combination of all four guided LP modes.

In the case of a single mode, the entire energy (referred to as the power of the signal in the

plots) projects onto the LP02 mode, as expected from Table 4.2. In the case of the linear

combination of injected modes, the sum of the power in the projections is equal the total

power (i.e., the projection coefficients sum up to 1). The confinement ratio Γ is also shown in

both plots (“core power ratio”): in the case of the single LP02 mode, the confinement ratio is

Γ02 = 59.58%, while for the multi-mode propagation, the ratio is a weighted sum (weighted

with the squared projection coefficients) of the ratios Γlp, (l, p) ∈ {(0, 1), (1, 1), (2, 1), (0, 2)}.

In both cases, the numerical results are accurate.

0 0.005 0.01 0.015 0.02
Fiber length (mm)

0

2

4

6

8

10

12

14

16

P
o

w
er

 (
W

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o

re
 p

o
w

er
 r

at
io

Signal power
LP01+LP11+LP21 power
LP02 power
Power ratio

(a) Injecting the LP02 mode
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(b) Injecting a combination of guided modes

Figure 4.2: Computation of the optical power projected onto modes for a guided field in a
fiber of 32 wavelengths. The numerical results for the projected power are accurate when
the fiber is excited with a linear combination of guided modes.

Exciting the fiber with a symmetric field. Next, the fiber is excited with a field that

is not composed of guided modes only. Consider the following (electric) field as the fiber
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input:

Er̃ = (Ex, 0, 0)r̃ = e−iωz

 1 , r ≤ r̃,

e−(r−r̃)2
, r > r̃,

where rcore < r̃ < rclad. Because the field Er̃ is circularly symmetric, we expect most of

the energy to be projected onto the circularly symmetric modes LP01, LP02. Indeed, the

analytical calculations show, for r̃ ≈ rcore/0.9,

{α01, α11, α21, α02} ≈ {2.52567, 0.00, 0.00, 2.09587}, (4.30)

{P01, P11, P21, P02}/P ≈ {47.53, 0.00, 0.00, 32.73}% . (4.31)

Therefore, approximately 80.26% of the field’s power is captured by the guided modes while

the remaining energy should occupy either evanescent (decaying) modes or (guided) cladding

modes. The discrete numerical solution yields the following approximations:

{α̃01, α̃11, α̃21, α̃02} ≈ {2.52563, 10−8, 10−4, 2.09586}, (4.32)

{P̃01, P̃11, P̃21, P̃02}/P̃ ≈ {47.52, 0.00, 0.00, 32.71}% . (4.33)

Figure 4.3 shows the power of the orthogonal projections onto the guided modes. Clearly,

the LP01 and LP02 mode carry most of the total energy, but a significant amount of power

(≈ 20%) is not captured by any of the guided modes. If the remaining power resides in

cladding modes, it propagates similar to the core-guided modes without loss of energy in the

simulation (except for numerical errors).
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Figure 4.3: Computation of the optical power projected onto modes for an unguided field
in a fiber of 32 wavelengths. The numerical results accurately reflect that only some of the
energy is captured by guided modes when the fiber is excited with a (symmetric) field that
is not composed of guided modes only.

4.2 Numerical pollution in long waveguide simulations

It is well-known that an accurate numerical solution for wave problems with high frequency

is difficult to obtain. Unfortunately, the finite element discretization for these problems

suffers from significant numerical pollution errors that increase with the wavenumber [9].

It is critical to control these errors to obtain a stable and accurate method. Section 1.3.3

discusses previous work on mitigating the pollution effect and some recent advances in de-

veloping robust solution schemes for high-frequency wave problems. However, to the best of

our knowledge, numerical studies in three dimensions have mostly been limited to acoustic

wave problems with a moderate number of wavelengths. As mentioned in Section 1.3.3, the

DPG method can circumvent the stability problem and deliver a robust discretization for

any wavenumber [39], but it does not eliminate the numerical pollution error in multiple

dimensions. In this section, we discuss how the frequency ω enters the DPG error analysis,

79



and we report numerical results for the propagation of the fundamental mode in a rectan-

gular waveguide. In particular, we show results for the DPG method applied to the 3D

vectorial time-harmonic Maxwell problem in waveguides with more than 8 000 wavelengths,

using high order of approximation. Our results corroborate previous analysis for the Galerkin

discretization of the Helmholtz and Maxwell operators by Melenk and Sauter [89, 90].

4.2.1 Pollution estimates

The mathematical setting for different variational formulations of the time-harmonic Maxwell

equations in context of DPG is analyzed in much detail in [20]. We recap a few points that

are relevant for our discussion regarding the ultraweak formulation. Recall from Section 2.5.1

that, defining group variables u = (E,H), v = (F ,G), and û = (Ê, Ĥ), the broken ultra-

weak Maxwell problem (2.42) can be written as:

 u ∈ U , û ∈ Û ,

b(u, v) + 〈û, v〉Γh = l(v), v ∈ V(Ωh),
(4.34)

where the load l(v) = 0, b(u, v) = (u, A∗hv), and 〈û, v〉Γh is given by (2.51). In the ultraweak

formulation with conforming test functions, the optimal test norm is the adjoint norm:

‖v‖V = ‖A∗v‖; with this norm, the method delivers the L2 projection. For the broken

formulation (2.54), the optimal test norm must be augmented with an additional term, and

we obtain a quasi-optimal test norm—the adjoint graph norm: ‖v‖2
V(Ωh) = ‖A∗hv‖2 + α‖v‖2,

with scaling parameter α ∈ O(1) (see Section 2.5.1 for additional details). The adjoint graph

norm is robustly equivalent with the optimal test norm, i.e., independent of the frequency ω,

and the robust stability constant is maintained in the broken formulation [20]. This implies

that the approximation error is bounded by the best approximation error (BAE) uniformly

in ω [39]:

‖u− uh‖2 + ‖û− ûh‖2
Û ≤ C

[
inf
wh

‖u−wh‖2 + inf
ŵh

‖û− ŵh‖2
Û

]
, (4.35)
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where constant C is independent of the mesh and frequency ω, and ‖ · ‖Û refers to the

minimum energy extension norm defined in (2.53). The estimate (4.35) implies that the

L2 best approximation is pollution free because it is independent of ω. In one dimension,

the BAE for the traces is zero, thus the method is in fact pollution free [127, 39, 103]. In

multiple dimensions, however, the BAE for the traces is measured in the operator-dependent

minimum energy extension norm ‖ · ‖Û , and this norm does depend on the frequency ω. In

other words, the projection in the minimum energy extension norm is not pollution free,

hence the method exhibits numerical pollution.

The estimate for the standard Galerkin method on the other hand has a stability

constant that is not ω-independent, thus the Galerkin discretization is not robustly stable.

The DPG method hides the perturbation parameter ω in the best approximation and by

doing so yields a stable discretization for any wavenumber. This can practically be exploited

by starting computation on a coarse mesh where the pollution error is high, and driving hp-

adaptivity with the DPG error indicator. This approach yields superior meshes for resolving

localized waves [102, 104].

A wavenumber explicit analysis for the Helmholtz equation is presented for the DPG

method in [39] and for the Galerkin method in [89]. For the Galerkin discretization, Melenk

and Sauter show that quasi-optimality is obtained under the conditions that ωh/p is suffi-

ciently small and p is at least O(logω), where h is the mesh size and p the polynomial order

of approximation [89]. A similar estimate was shown for the Maxwell operator [90]. Based

on these estimates, the best approach to counter the pollution error may be an hp-strategy

that preferably increases the polynomial order p while keeping ωh constant for increasing

frequency.

In the next section, we study the pollution error with numerical experiments for many

wavelengths and discuss the observations with regard to the suggested hp-strategy and its

applicability to the DPG method for the time-harmonic Maxwell problem.
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4.2.2 Numerical results

The propagation of an electromagnetic field in a waveguide is governed by the Maxwell

equations. We assume that the time-harmonic setting is justified and that the waveguide

medium is nonmagnetic, dielectric, and no free charges are present. While nonlinear effects

and anisotropic, inhomogeneous material properties play important roles in research on fiber

optics, for the purpose of this pollution study we assume the waveguide medium is linear,

isotropic and homogeneous. We prescribe inhomogeneous Dirichlet boundary conditions

(BCs) at the waveguide input, to excite the waveguide, and impedance BCs at the output,

to absorb the wave, but impose PEC BCs everywhere else. For this simplified setting,

the propagating field in a waveguide can be described as a superposition of guided modes.

Consider the following rectangular waveguide domain Ω, in Cartesian coordinates:

Ω = (0.0, 1.0)× (0.0, 0.5)× (0, L),

where L is the length of the waveguide. The fundamental mode in this waveguide is the

transverse electric TE10 mode, depicted in Figure 4.4. The fundamental mode is not very

oscillatory in the transverse direction. At the waveguide end, we employ an absorbing

impedance boundary condition that matches the wave impedance for the fundamental mode.

In the rectangular waveguide experiments, the cross-section is modeled with two hexahedral

elements, which is justified by the simple transverse mode profile (cf. Figure 4.4).

Uniform polynomial order p. In our first experiment, we analyze the relative field

error, measured in the L2 norm, for the propagating fundamental mode in waveguides of

different length L. The smallest waveguide has a length equivalent to one wavelength of

the fundamental mode, and the longest one has 8 192 wavelengths. As we increase the

length L, we keep the number of elements per wavelength (i.e., degrees of freedom (DOFs)

per wavelength) constant. In particular, we choose a discretization with four elements per
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Figure 4.4: TE10 transverse electric field in a rectangular waveguide in a plane normal to
the z-axis. The simple transverse profile of the fundamental mode justifies a geometry
discretization with few elements in the cross-section.

wavelength. Figure 4.5 shows the relative field error for these waveguides for uniform order

of approximation, ranging from p = 4 to p = 8. In all numerical experiments, we are using

the enrichment order ∆p = 1 for the test space to approximate optimal test functions.

We make several observations: 1) for a fixed number of wavelengths, higher polynomial

order yields significantly smaller (more than one order of magnitude) errors, as expected;

2) for every order of approximation, the field error starts to increase if the waveguide is

long enough despite keeping the DOFs per wavelength constant; and 3) for higher p, this

pollution effect is “kicking in” at a later point, i.e., more wavelengths can be computed

with higher order before the pollution error is measurable. Furthermore, to maintain some

desired accuracy, one needs to increase the polynomial order in nearly regular intervals.

For example, to achieve 1% accuracy for 4 wavelengths, it is sufficient to use p = 4; at 64

wavelengths, p = 5 is needed; with p = 6, computing up to 1 024 wavelengths is feasible

with this error margin; and p = 7 would most likely be sufficient for 16 384 wavelengths.

At a closer look, these intervals resemble a logarithmic dependency on the polynomial order

(4 ∗ 24 = 64, 64 ∗ 24 = 1 024, 1 024 ∗ 24 = 16 384). In other words, these results corroborate
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theoretical estimates by Melenk and Sauter predicting that control of the pollution error

would require increasing p logarithmically with the wavenumber.
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Figure 4.5: Relative field error with uniform order of approximation. As the number of
wavelengths is increased, we keep the ratio of elements per wavelength constant. To counter
the pollution error, the polynomial order of approximation must be increased logarithmically
with the number of wavelengths.

In our numerical experiments, the pollution manifests itself primarily as a diffusive

error causing wave attenuation. This is in agreement with previous observations for the DPG

method [39]. A practical way of measuring this diffusivity in waveguide applications is to

compute the power flux through the cross-section of the waveguide at different points in z. In

a linear, dielectric waveguide with PEC boundary conditions, the fundamental mode should

ideally be carried without loss of power. Figure 4.6 shows the measured power loss between

the waveguide input (z = 0) and output (z = L) for different polynomial orders. Note that

p = 8 has less than 0.005% loss of power in all tested waveguides. The pollution error is

clearly visible in terms of power loss. We also observe the same logarithmic dependency

for increasing polynomial order, illustrated by the near-equidistant parallel character of the

lines.

84



Po
w

er
 lo

ss
 in

 %

0.01

0.10

1.00

10.00

100.00

Number of wavelengths

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

p=4 p=5 p=6 p=7

Figure 4.6: Power loss with uniform order of approximation. In the DPG discretization, we
observe that the pollution error has primarily a diffusive effect. This implies that the power
flux, measured perpendicular to the waveguide cross-section, decreases along the waveguide.
The depicted quantity is the loss of power between the input and output for waveguides of
different lengths.

Anisotropic polynomial order (px, py, pz) and element size h. Moving on to addi-

tional experiments, we keep our focus on the same rectangular waveguide but with different

potential approaches of dealing with the pollution error. It may be reasonable to assume

that since the wave is propagating in one direction (along z), it will be sufficient to increase

the order of approximation anisotropically or to increase the number of elements through

anisotropic h-refinements in z. Exploring both of these options (cf. Figure 4.7), we find that

neither one of these approaches yields satisfactory results. First, in Figure 4.7a, we use fifth-

order polynomials in the radial discretization (px = py = 5) of the waveguide and increase

the anisotropic order from pz = 4 to pz = 7. While the error decreases initially, it begins

stagnating at pz = 6 (note that the pz = 7 error coincides almost exactly with pz = 6).

The same observation is made for uniform order p = 5 with varying number of elements per

wavelength (ranging from 2 elements to 16 elements). Our findings indicate that the pollu-

tion error depends on the interplay between the mode resolution (radial discretization) and
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the wave resolution in the direction of propagation. In other words, increasing the number

of DOFs anisotropically does not suffice asymptotically to control the pollution error.

Finally, we measure the loss of power for both anisotropic refinement cases, plotted in

Figure 4.8. As expected, we observe the same stagnation in the diffusive pollution, consistent

with the errors measured in the previous plot.

We have conducted these experiments on different waveguides (rectangular waveguides,

circular waveguides, and step-index fibers) with various propagating modes, and the observa-

tions are all consistent with the observations presented up to here; we therefore omit showing

additional numerical results for those cases.
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Figure 4.7: Relative field error with anisotropic refinements. Increasing the number of DOFs
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to control the pollution error in our experiments.
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Figure 4.8: Power loss with anisotropic refinements. The diffusive pollution effect is not
countered through anisotropic h- or p-refinements.
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4.3 Adaptivity for higher-order modes

In our adaptivity study, we focus on a different aspect of resolving the propagating wave. We

have shown that the interplay between resolving the wave along the direction of propagation

and resolving the transverse mode profile is important in controlling the pollution error. For

that reason, the finite element mesh should be sensitive to different mode profiles and adapt

to resolve them appropriately. This is especially important in waveguide applications where

significant transfer of power occurs between different guided modes. Our tool for adapting

the mesh “on-the-fly” is the DPG residual that serves as an error indicator in the energy

norm (2.20). Recall that the DPG method can be reformulated as a minimum residual

method (2.13) where the residual is minimized in the dual test norm. Therefore, the Riesz

representation of the residual, defined in (2.17), is the error measured in the energy norm.

We proceed with numerical experiments in multi-mode step-index fibers and also look at the

load imbalance that results from adapting the mesh to different propagating modes.

Multi-mode fiber. We consider a dielectric optical waveguide. More precisely, we assume

that the waveguide is a weakly-guiding, large-mode-area (LMA), step-index fiber made of

silica glass. See Table A.5 for a description of the model parameters for the fiber. For

weakly-guiding fibers, (ncore − nclad)/ncore � 1, and the guided modes are linearly polarized

(LP) modes. The V -number is a “normalized frequency” that determines how many guided

modes are supported by the particular fiber. For example, if V < 2.405, then the fiber is

single-mode. LMA fibers have a relatively large core radius and support multiple modes.

The fiber we consider has a normalized frequency of V ≈ 4.43; thus, it supports four guided

modes: {LP01,LP11,LP21,LP02}. The fiber axis is assumed to be aligned with the z-axis,

and the length of the fiber is L. Figure 4.9 illustrates the guided modes for this particular

fiber, showing the magnitude of the electric field in the center of the fiber cross-section. For

multi-mode propagation, we employ an absorbing PML at the fiber output (cf. Section 2.5.2).
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Figure 4.9: Guided modes in LMA fiber (magnitude of the electric field). Higher-order modes
are more oscillatory in the transverse direction and carry more energy outside the fiber core.
Therefore, they require additional refinements of the fiber cross-section discretization.

For this fiber, the mode confinement (amount of energy confined to the core region) of

each mode is (cf. (4.20))

{Γ01,Γ11,Γ21,Γ02} ≈ {96.11, 88.77, 74.79, 59.58}%. (4.36)

Clearly, the optimal discretization of the fiber cross-section is different for each of these

modes. That is, to capture the oscillations of the higher-order modes near the core-cladding

interface, a finer discretization is needed than for the fundamental mode LP01. In particular,

higher-order modes demand more refinements (or degrees of freedom) outside of the fiber

core, when compared to the fundamental mode that is mostly confined to the core region.

Therefore, a single geometry cannot be optimal for capturing any propagating mode.

Suppose we are interested in simulating the transverse mode instability (TMI) phe-

nomenon [44] in active gain fiber amplifiers. The TMI is characterized by the chaotic transfer

of energy between the fundamental mode and the higher-order modes. One challenge in com-

88



puting a numerical solution to the corresponding nonlinear Maxwell model (see Chapter 5)

is capturing modes accurately when they occur. With mode instabilities, it is not known

a-priori which modes will be propagating in which parts of the fiber. Refining the initial ge-

ometry globally to better resolve higher-order modes increases the computational complexity

dramatically and may render the computation infeasible for large problem instances. Adap-

tivity, on the other hand, can be used to refine the mesh where it is needed for capturing

these modes locally, keeping the overall computational cost significantly lower.

4.3.1 Adaptivity study

In the following experiments, we are aiming to establish the efficacy of adaptivity based on

the DPG residual for resolving higher-order modes.

Adaptive refinement strategy. In the broken DPG setting, the residual is computed

through element-wise contributions, i.e.,

‖ψ‖2
V =

n∑
j=1

‖ ψ|Kj
‖2
V(Kj) , (4.37)

where Kj, j = 1, . . . , n, denotes the j-th element. After each solve, elements are marked for

refinement if they satisfy a certain criterion. We use a strategy for marking elements that is

based on Dörfler’s marking [42]:

1. Sort the element residuals ‖ ψ|Kj
‖2
V(Kj) in descending order, i.e.,

‖ ψ|K1
‖2
V(K1) ≥ ‖ ψ|K2

‖2
V(K2) ≥ · · · ≥ ‖ ψ|Kn

‖2
V(Kn). (4.38)

2. Mark elements Kj, j = 1, . . . , J , where J ≤ n is the smallest integer for which the
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following is true:
J∑
j=1

‖ ψ|Kj
‖2
V(Kj) ≥ κ‖ψ‖2

V , (4.39)

where κ ∈ (0, 1).

At this point, with some choice of κ, elements have been marked for refinement. How-

ever, it is not clear how to optimally refine each marked element when the hp mesh supports

anisotropic adaptive refinements in both element size h and polynomial order p. The choice

will ultimately be problem-dependent.

Initial mesh. In our experiments, we choose an initial mesh with uniform polynomial

order p = 5, two elements per wavelength in z-direction (direction of propagation), and a

radial (transverse) hybrid discretization using curvilinear hexahedral and prismatic elements.

Figure 4.10 illustrates the initial geometry discretization in the fiber cross-section (not

drawn to scale): four prisms are used to model the center of the fiber core, and they are

surrounded by three layers of four hexahedra each. We refer to these different layers as “do-

mains” and enumerate them from 1 to 4 moving radially outward from the center of the fiber

to the cladding boundary. The choice of the initial discretization was informed by the fiber

geometry, the fact that all guided modes decay exponentially in the cladding region, and

by conducting numerical tests primarily with the fundamental mode. For a relatively short

fiber of 16 wavelengths, this initial geometry captures the fundamental mode very well with

regard to several physical quantities of interest (e.g., conservation of power, mode confine-

ment). Higher-order modes are not captured as well, and for fibers with many wavelengths

(i.e., several hundred or a few thousand wavelengths) we observe more significant pollution

errors in these modes. For example, the errors can be observed in small oscillations of the

mode powers along the fiber, diffusive pollution effects, or an unsteady power confinement

ratio.

We use DPG to perform multiple adaptive mesh refinements, each based on the re-
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Figure 4.10: Initial geometry discretization in the fiber cross-section (not drawn to scale).
This discretization works well for the fundamental mode, but it may not be sufficient to
capture higher-order modes.

spective previous solution and residual, to test the residual error indicator for capturing

different modes. As a test case, we look at the 16 wavelengths fiber. The goal is to observe

the sensitivity of the adaptive refinements toward specific propagating modes. We choose

the parameter κ = 0.5 in (4.39) and proceed with four adaptive refinement steps after the

initial solution. Note that enforcing mesh regularity may cause some additional refinements

to “close the mesh”, i.e., to obtain a mesh that is 1-irregular (cf. Section 3.1).

Isotropic refinements. First, we apply isotropic h-refinements for marked elements. Fig-

ure 4.11 shows the domains of refinement in the fiber. Each plot illustrates how the mesh

is successively refined for one particular guided mode propagating in the fiber. For the

fundamental mode, the error indicator is marking elements for refinement primarily in the

fiber core, where most of the energy is located. The first three refinement steps exclusively

refine in the outer and inner core region. None of the adaptive refinements for higher-order

modes refine inside the inner core region. It is notable how sensitive the error indicator is
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to these different modes. In the case of the LP02 mode, the code primarily refines in the

outer cladding region; this is likely to be the case because the initial cladding geometry

discretization is too coarse to capture the exponential decay of the remaining energy in the

transverse field.

Anisotropic refinements. Next, we repeat the experiment with anisotropic (radial) h-

refinements. Radial refinements are of interest because higher-order modes are only more

oscillatory in the transverse field, but they are not more oscillatory in the direction of prop-

agation. In other words, the guided modes have very similar propagation constants (in fact,

higher-order modes oscillate slightly slower than the fundamental mode). Therefore, if the

numerical pollution is low for the fundamental mode, we may assume that the resolution

in the direction of propagation is “good enough” for approximating any higher-order guided

modes. Then, radial refinements (in h or p) are the more economical way of capturing these

modes. For anisotropic h-adaptive refinements, depicted in Figure 4.12, a similar pattern

emerges for the higher-order modes but the picture is quite different for the LP01 mode. The

fundamental mode repeatedly refines elements in the same domain, because the anisotropic

refinements do not decrease the local residuals as well as the isotropic refinements. This

indicates that the fundamental mode is already well approximated in the transverse field

and the residual demands refinements in z-direction for better accuracy of the numerical so-

lution. This interplay between the resolution in different directions is critical when studying

the pollution error for guided modes.

Figure 4.13 shows how the total residual evolves in both scenarios: we observe that

the higher-order modes benefit much from anisotropic refinements, making this the pre-

ferred choice for improving the numerical solution with fewer degrees of freedom. For the

fundamental mode, we find that the residual does not further decrease through anisotropic

refinements, indicating the mode is captured quite well by the initial geometry discretization.
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LP01 mode, isotropic h-adaptive refinements
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LP11 mode, isotropic h-adaptive refinements
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LP21 mode, isotropic h-adaptive refinements
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LP02 mode, isotropic h-adaptive refinements
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Figure 4.11: Isotropic h-adaptive refinements. Depending on the propagating mode, the
DPG error indicator marks elements for refinement in different fiber domains.

93



LP01 mode, anisotropic h-adaptive refinements
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LP11 mode, anisotropic h-adaptive refinements
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LP21 mode, anisotropic h-adaptive refinements
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LP02 mode, anisotropic h-adaptive refinements
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Figure 4.12: Anisotropic h-adaptive refinements in the radial (transverse) direction. For
higher-order modes, anisotropic refinements are more computationally efficient to capture
the transverse mode profile.
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(a) Isotropic h-adaptive refinements
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(b) Anisotropic h-adaptive refinements

Figure 4.13: Evolution of the DPG residual in adaptive mesh refinements. With our choice of
initial geometry discretization, the anisotropic refinements decrease the residual for higher-
order modes but not for the fundamental mode. This illustrates that the interplay of the
resolution between the transverse direction and the direction of propagation is critical, and
the optimal refinement strategy depends on the propagating modes.

4.3.2 Load balancing

In the parallel computation of the fiber problem, we partition the geometry into subdomains,

each owned by one distinct MPI process. The rank of each MPI process is the ID of the

subdomain it owns (cf. Section 3.2.3).

Static partitioning. Initially, we partition the fiber directly based on geometric cuts

orthogonal to the fiber axis. Figure 4.14 illustrates what the partitioning looks like for four

subdomains. This initial static partitioning is a good choice because it keeps the interfaces

between subdomains small, making it possible to compute large fibers in parallel with a

nested dissection solve and obtain good weak scaling (cf. Section 6.1). As the adaptive

mesh refinements proceed, the domain is dynamically repartitioned to retain load balance.

A number of different repartitioners are available in third-party software libraries, such as

Zoltan [41]. In the fiber domain, graph partitioning that strives for minimum cuts is a good

choice because it keeps the subdomain interfaces relatively small. In the broken ultraweak

Maxwell formulation, the numbers of element interior DOFs (electromagnetic fields: L2) are

used as weights for graph vertices, and the numbers of trace DOFs on faces (electromagnetic
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fluxes: H(curl) trace) serve as weights for the graph’s edges. Connectivities from edge degrees

of freedom are omitted to provide a sparser graph and accelerate partitioning. ParMETIS or

PT-Scotch can be used for approximating the partitioning problem. As an alternative, we use

a custom dynamic fiber repartitioner that forces orthogonal cuts through the domain while

trying to maximize load balance and minimize data migration, similar to recursive coordinate

bisection partitioners. This custom repartitioner can perform orders of magnitude faster than

graph partitioning because it relies primarily on geometry information.

Figure 4.14: Initial (static) load distribution in the step-index fiber. An efficient and balanced
distribution is achieved by defining subdomains through orthogonal cuts to the fiber axis.

We study how the workload in different subdomains changes without repartitioning.

Figure 4.15 and Figure 4.16 show the workload per MPI rank in a fiber of 16 wavelengths,

partitioned into eight subdomains, with h-adaptive isotropic and anisotropic refinements,

respectively. Both plots depict results for the higher-order mode LP21. Here, the workload

is simply shown as the number of subdomain interior DOFs, i.e., all solution DOFs that are

part of a subdomain excluding the trace DOFs on the subdomain interfaces.

Isotropic refinements lead expectedly to higher load imbalance because each isotropic

h-refinement increases the local DOFs by another factor of two compared to the anisotropic

(radial) h-refinement. Two observations stand out: firstly, the subdomains closer to the fiber

input appear to exhibit higher residuals, hence more refinements are observed in that region;

secondly, towards the fiber output, many refinements are picked up in the second-to-last

subdomain, and almost none in the very last one. The latter observation is an effect from
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LP21 mode, isotropic h-adaptive refinements, without load balancing
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Figure 4.15: Isotropic h-adaptive refinements. The load imbalance increases with every
adaptive refinement step. The most refinements are happening at the fiber input (subdomain
0) and within the first few wavelengths of the PML region (subdomain 6).

LP21 mode, anisotropic h-adaptive refinements, without load balancing
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Figure 4.16: Radial (anisotropic) h-adaptive refinements. Load imbalance also occurs with
the anisotropic adaptivity but it is less pronounced than in the isotropic case.

the PML region at the fiber end. In this short fiber, the PML is active in the last two

subdomains (i.e., the layer encompasses about four wavelengths). When the wave enters

the PML region, it exhibits exponential decay due to the coordinate stretching. This initial

decay must be captured accurately by the numerical solution. The DPG residual recognizes

the need for additional refinements in this region and marks elements in the corresponding

subdomain. By the time the wave enters the last subdomain, it has decayed so far that the

residual remains fairly small and almost none of the elements are marked in the adaptive

procedure.

Dynamic repartitioning. It is evident that dynamic load balancing is necessary for com-

putational efficiency in the simulation of the TMI phenomenon or other applications with
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energy transfer between guided modes. By repartitioning the fiber domain, we obtain sig-

nificant speedup in the total computation time. Figure 4.17 shows the workload per MPI

process when the mesh is repartitioned after every isotropic h-adaptive refinement step. Both

repartitioners, the graph partitioner based on ParMETIS as well as the custom fiber parti-

tioner, distribute the workload evenly among the processors. The distribution is not exactly

even in either case because both also aim to minimize the size of the interface problem that

separates the subdomains. That is, the graph partitioner approximates minimum cuts while

the custom fiber partitioner keeps all cuts orthogonal to the fiber axis.

LP21 mode, isotropic h-adaptive refinements, with graph partitioning
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LP21 mode, isotropic h-adaptive refinements, with fiber partitioning
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Figure 4.17: Load balancing for isotropic h-adaptive refinements. Both the graph partition-
ing and the custom fiber partitioning distribute the workload evenly among the processors
in every refinement step.

Figure 4.18a displays the computation time for the distributed finite element assembly

for each of the isotropic h-adaptive meshes. The assembly time includes the time for element

integration and the assembly of every sparse subdomain stiffness matrix and load vector. In

DPG methods, the assembly time can account for a substantial part of the entire time to

solution because of the computation of optimal test functions in the enriched test space (cf.
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Section 3.4.1). On the other hand, the assembly computation is conveniently parallel and

exhibits good parallel scaling as long as the workload is balanced. With load balancing,

the increase in computation time corresponds to the total increase in the number of DOFs,

as expected; in the imbalanced case, where some processes finish early and remain idle

until the MPI process with the maximal workload is done, the assembly time increases

unproportionally.

The parallel solve time is depicted in Figure 4.18b; the plot shows the total time for

analysis, factorization, and linear solve (forward and backward elimination) performed by the

distributed MUMPS solver [4]. Both load balancing strategies result in a modest reduction

of the solve time and perform equally well. Of course, the time spent on load balancing,

i.e., partitioning and data migration, should be taken into account, as well. However, for

the problem size considered here, we have found that the computation time for these tasks

is almost negligibly small (less than one second per mesh).
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Figure 4.18: Computation time with isotropic h-adaptive refinements for the guided LP21

mode. a) The finite element assembly time (including time for element integration) is pro-
portional to the (maximal) workload per subdomain. With load balancing, the assembly
time scales corresponding to the increase in the total number of degrees of freedom. b) The
solve time, including the time for analysis, factorization, and linear solve performed by the
distributed MUMPS solver, exhibits a modest reduction when load balancing is performed.
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Chapter 5

Optical Fiber Amplifier Model

In this chapter, we present our three-dimensional DPG finite element model for the simu-

lation of laser amplification in a fiber amplifier. Our model is based on the time-harmonic

Maxwell equations, and it incorporates both amplification via an active dopant and thermal

effects via coupling with the heat equation. As a full vectorial finite element simulation,

this model distinguishes itself from other fiber amplifier models that are typically posed

as an initial value problem and make significantly more approximations. Our model sup-

ports co-, counter-, and bi-directional pumping configurations, as well as inhomogeneous

and anisotropic material properties. The long-term goal of this modeling effort is to study

nonlinear phenomena that prohibit achieving unprecedented power levels in fiber amplifiers,

along with validating typical approximations used in lower-fidelity models. The high-fidelity

simulation comes at the cost of a high-order finite element discretization with many degrees

of freedom per wavelength. This is necessary to counter the effect of numerical pollution due

to the high-frequency nature of the wave simulation (cf. Section 4.2). To make the compu-

tation more feasible, we have developed a novel longitudinal model rescaling, using artificial

material parameters with the goal of preserving certain quantities of interest. Numerical

tests demonstrate the applicability and utility of this scaled model in the simulation of an

ytterbium-doped, step-index fiber amplifier that experiences laser amplification and heating.

We begin with an overview of a typical fiber amplifier setup in Section 5.1 and state
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some of the generally applicable modeling assumptions for silica fibers in Section 5.2. In Sec-

tion 5.3, we discuss our nonlinear gain amplification model for the time-harmonic Maxwell

equations, which involves two weakly-coupled systems. The non-dimensionalization is shown

in detail, because the disparate length scales in the fiber pose a modeling and computational

challenge. Section 5.4 describes the modeling of the thermal response via coupling with

the heat equation. This includes both the heat deposition in the fiber, based on the laser

amplification, as well as the induced thermal polarization. The longitudinal scaling of the

fiber model is discussed in Section 5.5, where we present new arguments on how to rescale

the coupled Maxwell/heat model while preserving several quantities of interest. In partic-

ular, we can obtain an accurate heat distribution along the fiber amplifier for an arbitrary

scaling factor. Section 5.6 presents numerical results for an ytterbium-doped active gain

fiber amplifier with the full vectorial model: first, we introduce the DPG formulation of

the coupled Maxwell/heat problem; then, we show the power distribution along the fiber,

the amplifier efficiency, and convergence of the DPG residual in the nonlinear solve. The

scaling arguments from the preceding section are numerically corroborated by qualitatively

and quantitatively comparing the results for fibers of different lengths. Lastly, we show sim-

ulation results that illustrate the effect of the heating on the fiber material refractive index.

The chapter concludes with a summary of our work and gives a brief outlook on the wide

applicability of this unique 3D model.1

Remark: In Section 4.1, we established the well-known linear waveguide theory (see also

[64, 74] and references therein). This chapter proceeds presuming that the reader is familiar

with the relevant concepts (e.g., the modes in a weakly-guiding step-index fiber derived from

the linear time-harmonic Maxwell equations).
1The contents of this chapter are partially taken from a previous publication: S. Henneking, J. Grosek,

and L. Demkowicz. “Model and computational advancements to full vectorial Maxwell model for studying
fiber amplifiers”. In: Comput. Math. Appl. 85 (2021), pp. 30–41.
The author contributed to model development, numerical implementation, and analysis of the results.
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5.1 Ytterbium-doped fiber amplifier

Figure 5.1 is a schematic of a final-stage large-mode-area step-index fiber amplifier (not

drawn to scale). The typical configuration includes a highly coherent laser signal, injected

into the fiber core region, and a less coherent pump field launched into the inner cladding

and core regions simultaneously (as depicted in Figure 5.1), usually by means of the pump

combiner that is spliced onto the beginning of the amplifier. However, it is also possible to

core-pump the amplifier by launching the pump field into only the fiber core region as is

done with the signal. The fact that the core region has a slightly higher refractive index

than the inner cladding region, both made primarily of fused silica, allows for the signal

to be guided along the fiber length in the core by total internal reflection. Thus, the fiber

amplifier is a waveguide. Likewise, the polymer coating, which has a much lower refractive

index than the glass, helps guide the pump light (cladding-pumped configuration) in the

inner cladding region by total internal reflection. The light naturally falls into a discrete set

of guided modes, where the fundamental mode has a Gaussian-like profile (see Figure 4.1),

leading to the best beam quality that the fiber waveguide can output. These core-guided

modes are derived from the linear waveguide theory for weakly-guiding step-index fibers (see

Section 4.1).

Figure 5.1: Schematic of a weakly-guiding, continuous-wave, double-clad, large-mode-area,
step-index fiber amplifier (not drawn to scale) [65].
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Active gain fiber amplifiers have doped core regions (e.g., ytterbium dopant). The

pump and signal wavelengths are chosen such that the pump field experiences very high ab-

sorption by the active dopant, while the signal field is in a regime of high emission probability

of the active dopant. Given that sufficiently high pump and signal powers are launched into

the amplifier, a large percentage of the pump light can be converted into highly coherent laser

signal light by the stimulated emission process. This mechanism is also referred to as active

gain. Since the pump photons have a higher frequency than the signal photons, some energy

is lost in this process, ultimately leading to heat deposition along the fiber via this quantum

defect. The fiber amplifier is usually 5–20 meters long, chosen so as to absorb a large portion

of the launched pump light (e.g., ∼ 95%) and/or to limit the onset of detrimental optical

nonlinearities (e.g., SBS).

5.2 Maxwell’s equations in a fiber amplifier

The propagation of optical fields in fibers is governed by Maxwell’s equations. We assume

that the free current density and charge density vanish in the silica fiber. And, to a good

approximation, optical fibers are nonmagnetic, hence we may neglect induced magnetic po-

larization in the material [1]. The signal field and the pump field are assumed to each

independently satisfy the time-harmonic Maxwell equations, but they are weakly coupled

through nonlinear polarization terms. The time-harmonic ansatz is justified by the fact that

the signal and pump fields are near-monochromatic, and that the time-dependent phenom-

ena of interest, most notably thermal effects, happen at a much slower time scale. The

time-harmonic Maxwell equations in the silica fiber are:

∇×E = −iωµ0H , (5.1)

∇×H = iω(ε0E + P ), (5.2)
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where E and H are the electric and magnetic field vectors, respectively, P is the induced

electric polarization, ω is the angular frequency, and ε0, µ0 are the electric permittivity in

vacuum and the magnetic permeability in vacuum, respectively. Recall that the complex-

valued time-harmonic fields E,H are related to the real-valued time-dependent fields E ,H

through the following ansatz:

E(x, y, z, t) = Re
{
E(x, y, z)eiωt

}
, (5.3)

H(x, y, z, t) = Re
{
H(x, y, z)eiωt

}
. (5.4)

We assume that the fiber is aligned with its longitudinal axis centered along the z-axis, and

the transverse coordinates are x, y. The core and cladding radii are denoted by rcore and

rclad, respectively, with the corresponding material refractive indices ncore and nclad.

The generally nonlinear polarization term P may be modeled as [1]:

P = ε0

(
χ(1) ·E + χ(2) : E ⊗E + χ(3) ... E ⊗E ⊗E + · · ·

)
, (5.5)

where χ(k) is the kth-order electric susceptibility, given by a (k+ 1)-rank tensor. A medium

with an inversion symmetry at the molecular level (e.g., silica glass: SiO2) exhibits only

negligible second-order susceptibilities [1]. Therefore, in the optical fiber, χ(2) ≈ 0.

In the context of fiber optics, we are interested in modeling certain nonlinear physical

effects; thus it is common to write

P = Pbackground + Pactive gain + Pthermal + Popt. nonlin. + · · · . (5.6)

The background polarization is a first-order susceptibility term and describes the real part

of the refractive index. Active gain in the fiber may be modeled as a first-order susceptibility

term as well, but in terms of a complex perturbation to the refractive index. The thermal

polarization perturbs the real part of the refractive index and may thus, too, be modeled
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as a first-order susceptibility. Optical nonlinearities such as SBS or SRS are third-order

susceptibility terms.

5.3 Active gain fiber model

In the proposed model, we consider two electric polarization terms: the linear background

polarization Pbackground and the polarization due to active gain Pactive gain. Thermal polariza-

tion will be discussed in the next section. Since there is no term inducing anisotropy in the

material refractive index tensor n at this point, we may write the background polarization

as:

P background
k = ε0(n2 − 1)Ek, k ∈ {s, p}, (5.7)

where index k denotes the appropriate field, s for signal or p for pump. The active gain is

modeled as a first-order term or complex perturbation to the refractive index [98, 65],

P active gain
k = iε0

nc

ωk
gk(E{s,p})Ek, (5.8)

where the gain gk is a function of both electric fields Es and Ep, and c is the speed of light in

vacuum. The gain function carries units of m−1, sometimes expressed in dB/m. A positive

gain amplifies the field while a negative one causes decay. Considering these first-order

susceptibilities only, the time-harmonic Maxwell equations in the fiber are

∇×Ek = −iωkµ0Hk, (5.9)

∇×Hk = iωk(ε0n
2Ek + P active gain

k ). (5.10)

With the gain polarization term (5.8), the Ampère–Maxwell equation (5.10) becomes

∇×Hk = iωkε0n
2Ek − ε0ncgk(E{s,p})Ek. (5.11)
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Ion population dynamics. In this effort, the gain function is expressed in terms of rate

equations for a simplified version of the ion population dynamics for an ytterbium-doped

fiber, as described in [101]. It is assumed that the ytterbium (Yb) dopant is uniformly

distributed throughout the fiber core. The electrons of Yb atoms absorb and emit photons

at a mean rate that is determined by experimentally measured absorption and emission

cross-sections (see Table A.6), denoted as σabs
k , σems

k where k ∈ {s, p} (units of m2/ion). This

simplified two-manifold model only considers a single excited state and ground state for the

electrons in the outer most shell of the Yb atom. The amplifier works by primarily absorbing

pump photons, sending the electron into the excited state, and then having the majority of

those excited electrons stimulated to emit a photon at the signal wavelength, coherent with

the signal field, allowing the electron to return to its ground state. This leads to a frequency

dependent gain function as follows:

gk(r, z, t) = σems
k NYb

excited(r, z, t)− σabs
k NYb

ground(r, z, t), |r| < rcore, (5.12)

where r represents the coordinate directions, (x, y) – Cartesian, or (r, θ) – polar, such that

r ∈ [0, rclad] and θ ∈ [0, 2π); andNYb
ground,NYb

excited are the ground-state and excited-state popu-

lation concentrations of Yb ions expressed in ion/m3. The total ion population concentration

is assumed to be known and must remain constant such that

NYb
total = NYb

ground +NYb
excited. (5.13)

Therefore,
∂NYb

excited

∂t
= −

∂NYb
ground

∂t
. (5.14)

The transient equation for the excited ion population is given by:

∂NYb
excited

∂t
=
∑

k∈{s,p}

Ik
~ωk

(σabs
k NYb

ground − σems
k NYb

excited)− N
Yb
total

τ
, (5.15)
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where Ik = |Re{Ek ×H∗k}| is the irradiance, τ is the measured Yb ion upper level radiative

lifetime (see Table A.6), ~ is the reduced Planck constant (see Table A.2), and Ik/(~ωk)

represents the photon flux.

This model, as has been done in other fiber amplifier models [96, 124, 113], will neglect

the time dynamics of the transit time of the light along the length of the fiber (∼10 ns), and

the population dynamics of the active gain process, only considering the temporal evolution

of the heat deposition and dissipation in the fiber. The characteristic time to steady-state

gain is on the order of 10 µs, whereas the characteristic heat diffusion time is on the order of

1 ms, both depending on the fiber configuration.2 Thus, this effort will use the steady-state

solution of the ion population model:

N̄Yb
excited =

∑
k∈{s,p}

Ik
~ωk

σabs
k

1
τ

+
∑

k∈{s,p}
Ik
~ωk

(σabs
k + σems

k )
NYb

total, (5.16)

which leads to a concise expression for the gain function,

gk ≈ −σabs
k NYb

total + (σabs
k + σems

k )N̄Yb
excited. (5.17)

Non-dimensional Maxwell equations. Non-dimensionalization is essential in the nu-

merical computation of the solution to the Maxwell equations, particularly when the scales

involved are very disparate as in the case of optical fiber amplifiers. The non-dimensional

Maxwell system (see derivation in Appendix B.1) is given by:

∇̂ × Êk = −iω̂kĤk, (5.18)

∇̂ × Ĥk = in2ω̂kÊk − nl0g0ĝk(Ê{s,p})Êk, (5.19)

where the “hat” symbol indicates non-dimensional variables; note that l0g0 is a (positive)

dimensionless quantity. See Table A.3 for an overview of the selected dimensional scales
2Generally, higher pump and signal irradiances correspond to faster times to steady-state gain.
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in our model. The non-dimensional Ampère–Maxwell equation (5.19) reflects that for a

positive gain function, the gain term can be interpreted as negative conductivity, causing

amplification of the propagating field. Conversely, negative gain can be seen as positive

conductivity or linear loss.

5.4 Thermal coupling

Thermal polarization. First, we address how the heating affects the solution to the

Maxwell system. The effect of the heating is modeled as an isotropic temperature dependence

of the refractive index. Let the ambient temperature be denoted by T̄ ≡ Tambient, and the

refractive index at ambient temperature as n̄ ≡ n(T̄ ). Then, let the temperature T and

refractive index n at any point (r, z) in the fiber at time t be given by:

T (r, z, t) = T̄ + δT (r, z, t), (5.20)

n(r, z, t) = n̄+ δn(r, z, t), (5.21)

where δT is the change in temperature, and δn the thermally induced perturbation to the

material refractive index. Next, we linearize the refractive index perturbation,

n(T ) = n̄+
dn

dT
(T̄ )δT +

d2n

dT 2
(T̄ )

δT 2

2
+ · · · , (5.22)

δn ≈ dn

dT
(T̄ )δT, (5.23)

where dn/dT is the thermo-optic coefficient for silica glass, an experimentally measured value

(see Table A.7). In the fiber, we expect temperature changes of up to ca. 100 K from ambient

(room) temperature, a regime in which the material refractive index change can be modeled

with reasonable accuracy as a linear response to the temperature change. The thermo-optic

coefficient is on the order of 10−5 K−1 for SiO2, hence one can expect induced refractive

index perturbations of about three orders of magnitude smaller than the refractive index n
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of the medium: δn ∼ O(10−3).

In the active gain model, the perturbed refractive index will affect the Maxwell solution

through a change in the background and gain polarization:

P background
k = ε0(n(T )2 − 1)Ek, (5.24)

P active gain
k = iε0

n(T )c

ωk
gkEk. (5.25)

Therefore, we can express thermal polarization explicitly as:

P thermal
k (T ) = (P background

k (T )− P background
k (T̄ ))

+ (P active gain
k (T )− P active gain

k (T̄ )).

(5.26)

Heat coupling model. The thermal response in the fiber amplifier is modeled by the heat

equation,

ρ0Cp
∂T

∂t
−∇ · (κ∇T ) = Q, (5.27)

where ρ0, Cp, and κ are the mean density, specific heat, and thermal conductivity of silica

glass, respectively (see Table A.7). Appropriate boundary and initial conditions are dis-

cussed later. We assume that the material is isotropic and homogeneous, so its thermal

conductivity is uniform, i.e., κ(r, z) = κI, and all of the thermal parameters are assumed to

be temperature independent. The right-hand side has the source term Q = Q(r, z, t) that

couples the electromagnetic fields to the heat deposition in the fiber.

Heat deposition. The heat source of a stimulated emission dominated amplifier can be

modeled by [115, 65]:

Q(I{s,p}) = −
(
gp(I{s,p})Ip + gs(I{s,p})Is

)
, (5.28)
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where gs and gp are the gain functions for signal and pump fields, respectively, and I{s,p}

denotes the respective field irradiances. Therefore, Q is explicitly dependent on the solution

to the Maxwell equations, and thus is implicitly dependent on the temperature itself. Because

gain occurs only inside the fiber core, the heat deposition will, too, only occur in the core.

Non-dimensional heat equation. As discussed previously, we are interested in comput-

ing the temperature difference δT = T − T̄ to obtain the perturbation to the refractive index

δn ≈ (dn/dT )δT . The heat equation for the temperature difference is given by:

ρ0Cp
∂(δT )

∂t
− κ∆(δT ) = Q(I{s,p}), (5.29)

with appropriate boundary and initial conditions. The non-dimensional heat equation (see

derivation in Appendix B.1) is

∂(δT̂ )

∂t̂
− α0∆̂(δT̂ ) = Q0Q̂(Î{s,p}), (5.30)

where α0 denotes a non-dimensional diffusivity scale, and Q0 a non-dimensional heat depo-

sition scale.

Boundary and initial conditions. We assume that the initial temperature in the fiber

is the ambient temperature. In other words, the temperature difference δT is initially zero.

At the radial inner cladding boundary with the polymer jacket, we impose zero Dirichlet

boundary conditions (ambient temperature), implying efficient cooling at the glass-polymer

interface. In future work, it ought to be relatively straightforward to account for the poly-

mer coating and more realistic heat dissipation into the ambient air and/or into the metal

spool that fibers are usually coiled around. However, for the primary reason of keeping the

computational domain smaller, this effort neglects the more realistic scenario. At the fiber

ends, we also impose homogeneous Dirichlet boundary conditions for simplicity because of

110



the large aspect ratio between the length of the fiber and its radial width, which strongly

suggests that most of the heat dissipation occurs through the radial direction rather than in

the longitudinal direction. To summarize,

Initial condition: δT̂ (r, z, 0) = 0; (5.31)

Boundary conditions: δT̂ (r, z, t) = 0, if


|r| = rclad,

z = 0,

z = L.

(5.32)

Time-stepping scheme. We use implicit Euler time-stepping to advance the heat solution

with a (dimensionless) time step δt̂. The total time is denoted by t̂max. For n uniform time

intervals, δt̂ = t̂max/n. The implicit Euler scheme yields

δT̂n+1 − δt̂α0∆̂(δT̂n+1) = δT̂n + δt̂Q0Q̂(Î{s,p},n), (5.33)

where the argument for the heat deposition (Maxwell fields) is taken from the previous time

step; it would not be feasible to implicitly compute the nonlinear source term which itself

requires solving a nonlinear Maxwell system. Because of that, the scheme is not fully implicit

hence unconditional stability is not given. Instead, a suitable small time step providing

stability and sufficient accuracy in time is needed. The scheme can be seen as a fully implicit

Euler method with one Picard iteration. Similar time-stepping schemes have been studied

in the context of DPG methods for linear problems in [52, 109].

5.5 Short fiber scaling

The equivalent short fiber. A real fiber amplifier is about 5–20 meters long. The num-

ber of wavelengths in longitudinal direction is on the order of millions or tens of millions. A

3D vectorial finite element discretization with high order of approximation is computation-
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ally expensive: many degrees of freedom are required per wavelength to resolve the fields

accurately. A state-of-the-art compute node is currently capable of solving the proposed

model for O(102) wavelengths. Due to numerical pollution (cf. Section 4.2), the simula-

tion of a full-length fiber is not feasible at this moment, even with a scalable parallel code.

Consequently, the proposed high-fidelity model may either be viewed in the context of a

multi-fidelity approach together with simplified models, or we must find a scaling argument

that enables us to compute on a short fiber that preserves the physical quantities of interest

from a full-length fiber with sufficient accuracy. The latter approach has been proposed for a

scaled CMT model [43], since even with much simpler models, simulation of fiber amplifiers

remain computationally challenging today. Scaling only in the longitudinal direction makes

physical sense for the fiber amplifier problem since the fiber waveguide performance is pri-

marily derived from the transverse distribution of the index of refraction, and the refractive

index remains relatively uniform along the fiber length. We corroborate a short fiber scaling

argument through numerical results for gain polarization, and we are able to show a more

rigorous mathematical argument for the scaling of thermal coupling in the fiber.

Gain scaling. First, we aim to make an argument that gain can be simulated in a short

fiber of a length L̃ much smaller than the real fiber length L. It seems natural to introduce

an artificial gain scaling term proportional to L/L̃ to amplify the gain proportionally to the

shortening in fiber length. Indeed, for a CMT model, it is possible to show a more rigorous

gain scaling argument in that way [43]. In the nonlinear Maxwell problem, a convincing

mathematical scaling argument may be hard to show, if possible at all, and at this point

we restrict ourselves to numerical experiments. We introduce a non-dimensional short fiber

gain amplifier g̃a in the Maxwell system:

∇̂ × Êk = −iω̂kĤk,

∇̂ × Ĥk = in2ω̂kÊk − n`0g0g̃aĝk(Ê{s,p})Êk.

(5.34)
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Purely in the context of nonlinear gain, this scaling term could be viewed as an increase of

the dopant population concentration NYb
total proportional to g̃a.

Heat scaling. The goal of the gain scaling is to obtain a field intensity (power distribution)

in the short fiber that simulates the laser gain in a real-length fiber. The heat deposition

depends only on the field intensity (cf. (5.28)). To simulate the heating in a fiber of length

L, given a Maxwell solution on the short fiber of length L̃, a change of coordinates can

be used to pull back the heat problem of the real-length fiber to a short domain. Suppose

L = 10 m = 106l0, and L̃ = 100 µm = 10l0 (recall that l0 denotes the characteristic length

scale—see Table A.3). Let

ẑ =
L

L̃
z̃, (5.35)

so that

0 < ẑ < 106 ⇔ 0 < z̃ < 10. (5.36)

Denote α̃z := L̃/L; here, α̃z = 10−5. Then,

∂

∂ẑ
=

∂

∂z̃

∂z̃

∂ẑ
= α̃z

∂

∂z̃
, (5.37)

∆̂ =
∂2

∂x̂2
+

∂2

∂ŷ2
+

∂2

∂ẑ2
=

∂2

∂x̂2
+

∂2

∂ŷ2
+ α̃2

z

∂2

∂z̃2
. (5.38)

That is, the scaling yields an anisotropic diffusion operator. Equivalently, we may write

∆̂ = ∇̃ ·
(

Λ̃z∇̃
)
, (5.39)

where

Λ̃z =


1 0 0

0 1 0

0 0 α̃2
z

 and ∇̃ =


∂/∂x̂

∂/∂ŷ

∂/∂z̃

 . (5.40)
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We obtain the non-dimensional short fiber heat equation:

∂(δT̂ )

∂t̂
− α0∇̃ ·

(
Λ̃z∇̃(δT̂ )

)
= Q0Q̂(Î{s,p}). (5.41)

Intuitively, this makes sense because discrete heat solution points from a full-length

fiber are “compressed” by a factor of α̃z in z. Consequently, these points should experience

very little diffusion in z. Another way to view this rescaling is to say that each element in z

is now solving the heat equation for a much longer distance in z, which is justified by the fact

that the solution to the heat equation is very smooth. Oscillations in the temperature along

z may occur due to wave propagation phenomena such as transverse mode beating. But such

phenomena are expected to occur at a scale linked to a certain number of wavelengths in the

Maxwell solution (and thus smooth enough within each element). Therefore, the proposed

short fiber heat equation is able to capture any physical heating phenomena in the real fiber

due to active gain as long as enough wavelengths are computed in the Maxwell problem to

exhibit the relevant wave phenomena. While the scaling argument in the Maxwell system

was artificial and cannot be guaranteed to reproduce the correct physics without further

investigation, the scaled heat equation does reproduce the physical results from a real-length

fiber.

5.6 Numerical scheme and results

In this section, we omit the “hat” symbol for non-dimensional quantities; instead, every

symbol is now understood to be non-dimensional and the “hat” symbol is overloaded to

indicate trace unknowns on the mesh skeleton in the broken DPG formulation. Let Ω

denote the bounded, computational fiber domain given by Ω := Ωt × (0, L) ⊂ R3, where

Ωt := {(x, y) : x2 +y2 < r2
clad} is the (cross-sectional) transverse domain, and L is the length

of the (fiber) domain; the boundary is denoted by Γ ≡ ∂Ω; and Ωh is a suitable finite element
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mesh with mesh skeleton Γh. The operator form of the active gain Maxwell problem is:


∇×Ek + iωkHk = 0 in Ω,

∇×Hk − in2ωkEk + n`0g0g̃agkEk = 0 in Ω,

n×Ek = n×E0,k on Γ,

(5.42)

where k ∈ {s, p}, n is the outward unit normal, and with appropriate boundary data E0,k.

The corresponding broken ultraweak formulation is:



Ek,Hk ∈ (L2(Ω))3, Êk ∈ Ûk, Ĥk ∈ H−1/2(curl,Γh),

(Ek,∇h × F ) + 〈n× Êk,F 〉Γh
+ iωk(Hk,F ) = 0, F ∈ H(curl,Ωh),

(Hk,∇h ×G) + 〈n× Ĥk,G〉Γh

−iωk(n2Ek,G) + `0g0g̃a(ngkEk,G) = 0, G ∈ H(curl,Ωh),

(5.43)

where Ûk := {q̂ ∈ H−1/2(curl,Γh) : n× q̂ = n×E0,k on Γ}.

The fiber parameters used in the numerical simulations for the proposed model are

given in Table A.5. Results are shown for a core-pumped, co-pumped, fiber amplifier where

the pump and signal fields are both excited with their respective (x-polarized) fundamental

mode at the fiber input. That is, E0,k := (Ex
0,k, 0, 0), and

Ex
0,k(r, θ, z) =

 Ψ01,k(r, θ), if z = 0,

0, otherwise on Γ,
(5.44)

where Ψ01,k is the transverse electric field of the LP01 mode (see (4.15)). At the fiber

output, a perfectly matched layer is used to avoid (artificial) reflection of the wave (see

Section 2.5.2). At the radial cladding boundary, we prescribe idealized perfect electrical

conductor boundary conditions (i.e., vanishing tangential electric field) which is justified

by the exponential decay of the core-guided modes in the cladding. The fiber geometry is

discretized with isoparametric prismatic and hexahedral elements, as shown in Figure 4.10.
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The (uniform) order of approximation is at least p = 5 for all numerical simulations. The

weakly-coupled Maxwell systems are solved via Picard iteration.

Active gain amplification. First, we investigate the cross-sectional power flux inside

the fiber amplifier along the longitudinal (z-)axis. Recall that the power flux through a

surface orthogonal to the fiber axis can be computed directly from the trace unknowns in

the DPG broken ultraweak formulation (cf. Section 4.1.2). Figure 5.2 illustrates the effect

of the artificial gain amplification term g̃a: it shows the distribution of the signal and pump

optical powers along the length of the fiber. For a fiber of about 120 wavelengths, a small

(relative to the ratio L/L̃) value of g̃a = 102 causes almost no exchange of power between

pump and signal fields. For g̃a = 4 · 103, the gain term suffices to transfer the power of the

pump into the signal within the short fiber.

Algorithm 1: Nonlinear gain problem: Picard iteration

E
(0)
s ← 0

E
(0)
p ← 0

for i = 1 to imax do
E

(i)
s ← solve with gs := gs

(
E

(i−1)
s ,E

(i−1)
p

)
E

(i)
p ← solve with gp := gp

(
E

(i−1)
s ,E

(i−1)
p

)
if ‖E(i)

s −E(i−1)
s ‖/‖E(i)

s ‖ < ε then
break

end if
end for

The stopping criterion for the nonlinear solver is based on the relative change of the

signal field measured in the L2 norm. Note that the pump field could also be used in the stop-

ping criterion. However, the amplified laser is the primary field of interest in our simulations,

hence we have chosen to solely base convergence on the signal field. The implementation of

the Picard iteration is given in Algorithm 1. Alternatively, one could use the DPG residual

directly as a stopping criterion, but this would add significant computational cost in every

iteration. Preferably, the residual should only be computed at the very end of each non-

linear solve in order to determine which elements to refine in an adaptive mesh refinement
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Figure 5.2: Active gain Maxwell simulation for 120 wavelengths: power distribution along
the fiber amplifier in the signal and the pump fields for different gain scaling terms g̃a. Even
within a short fiber, the entire pump energy can be transferred into the signal if the gain
amplification is scaled artificially.

(see Section 4.3). The convergence of the residual for each field is plotted alongside the

convergence of the relative change in L2 and its stopping criterion (ε = 10−4) in Figure 5.3a.

One validation of the model itself is presented in Figure 5.3b, showing the obtained pump

efficiency at different points along the fiber, compared to the ideal efficiency λp/λs ≈ 91.7%.

As expected, the optical-to-optical efficiency in the fiber is slightly below this ideal efficiency

since the light guided in the core falls into transverse modes which do not uniformly overlap
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the core region, which means that the gain is not perfectly/maximally saturated.
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Figure 5.3: Active gain Maxwell simulation for 120 wavelengths: (a) the DPG residual,
measured in the adjoint graph norm, converges in the Picard iterations; and (b) the efficiency
of the power transfer from the pump into the signal field is near the ideal amplifier efficiency.

Gain scaling experiment. The goal of introducing the artificial gain scaling term g̃a was

to preserve certain quantities of interest in the scaled model. A numerical verification for the

preservation of the power distribution in fibers of different lengths is shown in Figure 5.4.

We compare a fiber of 240 wavelengths with g̃a = 2.5 ·103 to a shorter fiber of 15 wavelengths

and g̃a = 4 · 104 (appropriately scaled by a factor of 16). At least qualitatively, the same

power distribution is obtained for both fibers.

Table 5.1 summarizes the number of iterations needed in the nonlinear solver until the

stopping criterion is reached. As g̃a is increased for a fiber of fixed length, the number of

iterations increases, indicating the stronger nonlinearity of the system—previously illustrated

by Figure 5.2. On the diagonals of the table (starting from top right towards the bottom

left) the number of iterations remains constant. These diagonals represent the “gain scaling”

of a fiber: moving along them means increasing the fiber length and decreasing g̃a by the

same factor.
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Figure 5.4: Active gain Maxwell simulation: scaling experiment. Approximately the same
power distribution (for both signal and pump field) is obtained for two fibers of different
length by scaling the gain term g̃a appropriately.

Fiber length (λ) Gain scaling coefficient g̃a
1.25 · 103 2.5 · 103 5 · 103 104 2 · 104 4 · 104

15 3 4 4 4 8 15
30 4 4 5 9 16 -
60 4 5 10 16 - -
120 5 10 15 - - -

Table 5.1: Active gain Maxwell simulation: number of iterations until the convergence crite-
rion is satisfied for different fiber lengths and gain scaling coefficients. More Picard iterations
are needed for stronger gain amplification and/or longer fibers.

While these numerical verifications do not rigorously prove that scaled short fibers

reproduce accurate power distributions for real-length fibers where the scaling factor is much

larger, they do indicate that the fiber may at least be scaled to some extent in our model

while preserving the signal and pump power curves with sufficient accuracy.

DPG primal heat. After solving the initial Maxwell problem at ambient temperature,

time is advanced via the time-stepping of the heat equation. The operator form of the heat
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problem is:


∂(δT )
∂t − α0∇ · (Λ̃z∇(δT )) = Q0Q(I{s,p}) in Ω× (0, tmax],

δT = 0 on Γ× [0, tmax],

δT = 0 in Ω× {0}.

(5.45)

To discretize the heat problem, we use the primal DPG formulation which is based

on the classic variational formulation and provides a conforming (continuous) discretization

of the field variable. The breaking of the test space, however, incurs additional degrees of

freedom on the mesh skeleton describing the heat flux. The method is thus more expensive

than the weak Galerkin formulation. We have made this choice in anticipation of exploiting

adaptivity in our model via the DPG residual in future studies of the thermal perturbations

linked to instability phenomena in fiber amplifiers. The DPG broken primal formulation

with implicit Euler time-stepping is:


δTn+1 ∈ H1

0 (Ω), σ̂n+1 ∈ H−1/2(Γh),

(δTn+1, v) + δtα0(Λ̃z∇(δTn+1),∇hv)− δtα0〈σ̂n+1, v〉Γh
=

(δTn, v) + δtQ0(Q(I{s,p}), v), v ∈ H1(Ωh),

(5.46)

where n = 0, 1, . . . , N −1, and δt = tmax/N . The additional (trace) unknown σ̂n+1 describes

the normal heat flux across element boundaries on the mesh skeleton Γh; it is discretized

as the normal trace of H(div)-conforming elements (cf. (2.35)–(2.36) and Section 3.4.2).

We equip the test space with the standard energy norm. With this setup, the coupled

Maxwell/heat problem now requires the use of elements of the entire H1–H(curl)–H(div)–

L2 exact sequence.

Figure 5.5 displays the overall numerical scheme for the coupled problem. The weakly-

coupled Maxwell systems are solved via Picard iteration, where the gain polarization is

updated once per iteration (as shown in Algorithm 1), and the simulation’s time step is ad-
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vanced via implicit Euler time-stepping in the heat equation. The fiber material parameters

(thermally induced refractive index perturbation) and heat source (heat deposition in the

fiber) are updated once per time step.

Linear solve:  
primal DPG Heat 

(advance time step  
via implicit Euler)

converged?

Linear solve: 
ultraweak DPG Maxwell 

(signal laser field)

no

yes

Linear solve: 
ultraweak DPG Maxwell 

(pump field)

update heat source

update material parameters

update gain 
polarization

Figure 5.5: Coupled Maxwell/heat simulation: overview of the numerical scheme. Picard
iterations are used for linearizing the weakly-coupled Maxwell systems, and implicit Euler
time-stepping for the heat equation advances the time step of the simulation. Material
parameters and heat deposition in the fiber are updated once per time step.

Heat scaling experiment and induced thermal perturbations. In the numerical

experiments, δt = 0.1 ms has proven to be sufficiently small to provide stability in the heat

solve. For a given solution to the nonlinear Maxwell problem, the transient heat equation

attains steady-state after circa 15 ms. Figure 5.6 shows the temperature distribution along

the fiber amplifier after 20 ms for two different fibers: one with 15 wavelengths (Figure 5.6a)

and one with 240 wavelengths (Figure 5.6b). The results indicate that the heat distribution in

the fiber can be computed accurately on a short fiber, as expected by the anisotropic diffusion

operator scaling argument (cf. Section 5.5). In other words, to obtain an accurate heat curve

in the scaled model, one only requires the accurate power distribution (or intensity) of the

signal and pump field along the fiber.
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Figure 5.6: Coupled Maxwell/heat simulation: scaling experiment. Approximately the same
temperature distribution is obtained after 200 time steps (δt = 0.1 ms) for two fibers of
different length by scaling the anisotropic heat diffusion coefficient α̃z appropriately.

To investigate the nonlinear effects induced by thermal perturbations in the fiber am-

plifier, we compute the solution to the weakly-coupled Maxwell systems in every time step

of the heat equation with updated material parameters. The thermally induced perturba-

tions are represented by the change of the material refractive index inside the fiber core

and cladding. Figure 5.7 shows the refractive index plotted along x across a slice of the

fiber orthogonal to the longitudinal axis (i.e., a fiber cross-section) close to where the peak

temperature occurs. The plot demonstrates that the refractive index profile is perturbed

significantly compared to the step-index profile at ambient temperature. Consequently, the

guided propagating fields may be perturbed in a significant way as the temperature develops

inside the fiber amplifier. The implications of this refractive index perturbation are discussed

further and analyzed in Section 6.4.

Conclusion. Our nonlinear fiber amplifier model supports both active gain and an inte-

grated thermal response. The simulation incorporates two weakly-coupled time-harmonic

3D vectorial Maxwell systems for the propagating electromagnetic signal and pump fields.

This coupling between the fields occurs both through the active gain mechanism in the fiber
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Figure 5.7: Coupled Maxwell/heat simulation: refractive index profile inside the fiber am-
plifier, plotted along the x-axis in a slice orthogonal to the longitudinal fiber axis. Near
the regions with peak temperature, we observe a significant thermally induced perturbation
compared to the step-index profile at ambient temperature.

core region and through the thermally induced refractive index perturbations that result

from the heat deposition caused by the lasing (see Figure 5.7). The steady-state ytterbium

ion population concentrations are updated according to how the irradiances of the pump and

signal fields evolve along the length of the fiber. As expected, the pump field experiences

loss (negative gain), and the laser signal experiences amplification (positive gain) such that

the ideal optical-to-optical efficiency is never surpassed (see Figure 5.3b). Furthermore, this

gain via stimulated emission is ultimately what drives the heating in the fiber, resulting in a

peak heat load in the region of greatest transfer of energy from the pump field to the signal

field (see Figure 5.6).

The proposed model differs from the more common BPM or CMT approaches for

numerical simulation of fiber lasers in many ways. Most importantly, our model makes very

few assumptions on the propagating fields in order to provide a high-fidelity simulation tool.

This approach leads to high computational cost when solving the fiber for many wavelengths

in a high-order finite element discretization. The DPG method is used for discretizing both

the Maxwell systems and the heat equation, yielding a stable discretization with a built-

in error indicator suitable for hp-adaptivity. The data from the numerical solution of the
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coupled Maxwell/heat 3D fiber amplifier model enables the analysis of the interplay between

thermal perturbations of the material and the propagating electromagnetic fields with great

accuracy. Therefore, we believe the proposed model is capable of capturing the onset of

modal instabilities and eventually providing new insight into the TMI. Additionally, the

generality of the model makes it possible to add further relevant nonlinearities, compute

counter- or bi-directional pumping configurations, or study birefringent (anisotropic) fibers,

all of which are difficult to realize in simpler fiber models due to their inherent assumptions.

The high accuracy of our model can also be exploited to validate typical approximations

made in lower-fidelity models.

In order to make the computation feasible for a full-length fiber, we introduced a longi-

tudinal scaling for the Maxwell and heat problem. This was accomplished with an artificial

material parameter that effectively enhances the gain per unit length, which was shown

to preserve certain quantities of interest, e.g., fiber efficiency, within the tested parameter

regime. Of particular importance, we were able to scale the heat equation naturally through

an anisotropic diffusion operator obtained by a change of coordinates such that the only

source of artificial error introduced into the amplifier model by this scaling is through the

gain along the fiber.
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Chapter 6

Large-Scale Fiber Simulations

In this chapter, we conduct simulations of our 3D fiber amplifier model at large scale. This

effort combines the software capabilities developed in Chapter 3 with the mathematical fiber

model presented in Chapter 5. All simulations shown in this chapter were computed on

TACC’s Stampede2 supercomputer on Skylake (SKX) compute nodes.

First, we investigate the computational performance of the fiber amplifier simulation.

We discuss optimal configurations for hybrid MPI/OpenMP computation and the speedup

obtained from intra-node, shared-memory OpenMP acceleration. Then, we analyze inter-

node, distributed-memory MPI weak and strong scaling. A comparison of the nested dissec-

tion solver of Section 3.3 to the parallel MUMPS solver is also shown. Weak-scaling results

are reported for up to 512 compute nodes with more than 24k cores on Stampede2. These

computational aspects of the model are discussed in Section 6.1.

In Section 6.2, we present numerical results of nonlinear active gain amplification in an

ytterbium-doped fiber amplifier, both for co-pumped and counter-pumped fiber configura-

tions. Section 6.3 expands upon the results by Nagaraj et al. (2018) for a passive Raman gain

amplifier with significantly longer fibers and larger gain amounts. We conclude in Section 6.4

with a discussion on mode coupling in fibers with grated refractive index perturbations and

cross-validate our results with a coupled mode theory model simulation.
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6.1 Computational performance

Tuning the computational performance of the fiber amplifier model at extreme scale re-

quires careful optimization on both the intra-node, shared-memory level and inter-node,

distributed-memory level. We begin by studying the shared-memory parallelism obtained

via OpenMP threading.

Remark: All runtime results displayed in this section are based on solving one iteration

of the linearized Maxwell problem for the signal laser (the pump solve is equally expensive).

In the coupled Maxwell/heat model, the computational complexity is dominated by assembling

and solving the Maxwell systems since the heat equation is discretized with much fewer DOFs

and only solved once per time step. Therefore, the scaling results presented in this section

are representative for the overall scaling of fiber amplifier model computation.

6.1.1 OpenMP acceleration

Stampede2’s SKX compute nodes feature 48 distinct compute cores, all of which have shared

access to the on-board main memory.1 Our fiber amplifier FE simulation uses OpenMP

threading for various tasks to exploit the available parallelism. Most importantly, whenever

a loop over elements is computed, a multi-threaded OpenMP environment enables parallel

processing of the elements. For instance, the element assembly, including determination

of locally optimal test functions, and the element residual computation are parallelized via

OpenMP threading. Other examples include post-processing steps such as computation of

the optical power along the fiber, which can be independently processed for each cross-

section of the fiber, or compilation of output data for visualization. In all of these tasks,

we employ dynamic scheduling of OpenMP threads: each thread computes one element at

a time; once it finishes computing the element, the thread is assigned the next element.
1Stampede2’s SKX compute nodes are two-socket NUMA architectures: each socket has its own main

memory attached; all of the main memory can be accessed from cores on either socket, although memory
access times differ depending on the memory location.
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This is contrary to static scheduling where the workload is distributed among threads a-

priori. Dynamic scheduling—despite its scheduling overhead—performs better than static

scheduling because the workload per element is variable, depending on the element type

(the geometry is discretized with both prisms and hexahedra) and order of approximation.

Some tasks, e.g., computation of the residual, additionally require a parallel reduction to

calculate the global value from the sum of element contributions. And, in a few cases,

critical sections are used to force sequential computation where necessary: for example, we

assemble the right-hand side vector from pre-computed element contributions sequentially

which is more memory-efficient than performing a reduction over thread-private vectors. The

shared-memory parallelization of the linear solve itself is limited to threading inside math

kernel libraries called by the solver.
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Figure 6.1: Acceleration with intra-node, shared-memory OpenMP parallelism for the fiber
amplifier model with uniform polynomial order p = 5 for a fixed problem size of 16 wave-
lengths. The finite element simulation scales near-optimally (except linear solve) up to 12
OpenMP threads. It achieves a total maximum 12x speedup with 24 threads on a 48-core
SKX compute node.

Figure 6.1 shows the (strong-scaling) speedup obtained by OpenMP parallelization on
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a single compute node for a fiber of 16 wavelengths and uniform fifth-order discretization.

Depicted are the speedup for the computationally most expensive steps and the total simu-

lation time. The element assembly and computation of the residual are scaling near-linear

initially, achieving a 10x speedup for 12 OpenMP threads. The linear solve via Intel’s MKL

Pardiso solver achieves a 4x speedup for 12 threads. The overall scaling noticeably dete-

riorates beyond 12 threads. The maximal speedup for the total simulation time is ca. 12x

when using 24 threads (i.e., 50% efficiency). While each SKX compute node has 48 distinct

compute cores, fast memory (cache) is generally shared among a few or many cores. Run-

ning additional concurrent threads therefore puts more pressure on the memory. By causing

more frequent cache misses, this may lead to a deterioration of performance. The additional

OpenMP scheduling overhead can also be significant.

6.1.2 Hybrid MPI/OpenMP configuration

In our fiber simulation, the shared-memory parallelism and its practical scaling limitations

are an important consideration for optimizing the hybrid MPI/OpenMP performance of the

code. This hybrid model combines the distributed-memory MPI parallelism with shared-

memory OpenMP parallelism; a configuration can be chosen flexibly with one or multiple

MPI processes per compute node. To coordinate inter-node, distributed-memory communi-

cation, at least one MPI process must run per compute node. As explained in Section 3.2,

hp3D distributes degrees of freedom based on a grid partitioning where each MPI process

owns one distinct subdomain. OpenMP thread parallelism is exploited within each subdo-

main by parallelizing the workload over its elements. While using multiple MPI processes

per compute node increases the overall memory footprint, it can potentially improve the

computational performance significantly. For example, the thread scheduling cost is reduced

by using fewer threads per process, and the memory synchronization time is lower when

working on distributed data rather than shared data. Regarding the latter point, note that

if several MPI processes are used per compute node, the memory associated with one pro-
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cess is not shared with the other despite using shared on-board memory. Therefore, memory

operations on the logically distributed data can happen concurrently without the need for

synchronization (e.g., to keep cache entries valid).

We now investigate the performance of various MPI/OpenMP configurations for the

fiber model. These are specified as MPI x OpenMP configurations, e.g., 4 x 12 implying that

4 MPI processes are used per compute node with 12 OpenMP threads each. We only consider

configurations that have a power-of-two number of MPI processes (for best efficiency in the

nested dissection solver) and use exactly one thread per compute core (for optimal intra-node

performance), i.e., MPI x OpenMP = #cores. With 48 cores per compute node, the following

configurations are considered:

MPI x OpenMP ∈ {1 x 48, 2 x 24, 4 x 12, 8 x 6, 16 x 3}.

1 x 48 2 x 24 4 x 12 8 x 6 16 x 3
MPI ranks x OpenMP threads (per compute node)
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Figure 6.2: Runtime comparison of various hybrid MPI/OpenMP configurations for the
fiber amplifier model with uniform polynomial order p = 5 for a fixed problem size (128
wavelengths) and number of compute nodes (4 SKX nodes with 48 cores/node). The finite
element simulation performs best for 4 MPI processes with 12 OpenMP threads each (per
compute node).
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MPI x OpenMP Subdomain
size (DOFs)

Subdomain
solve (s)

Coupled
size (DOFs)

Nested
levels

Coupled
solve (s)

1 x 48 321 380 401.83 5 460 2 2.30
2 x 24 159 780 171.47 12 740 3 7.64
4 x 12 78 980 91.51 27 300 4 17.99
8 x 6 38 580 68.69 56 420 5 45.14

16 x 3 17 470 47.04 114 660 6 127.28

Table 6.1: Solver performance with various hybrid MPI/OpenMP configurations for the fiber
amplifier model with uniform polynomial order p = 5 for a fixed problem size (128 wave-
lengths, 4 825 620 DOFs) and number of compute nodes (4 SKX nodes with 48 cores/node).
The size of the subdomain and coupled interface problems depends on the choice of MPI
processes per compute node.

Figure 6.2 shows the performance for each one of these configurations for the fiber

amplifier model with 128 wavelengths and uniform fifth-order discretization, performed on

four compute nodes (192 cores total). The plot displays the total runtime in seconds for

each configuration, broken down into partial runtimes for the computationally most expen-

sive parts. The runtimes for both assembly and residual computation are nearly identical

for all configurations except for 1 x 48 being slightly slower. In the nested dissection solver,

however, we observe large differences depending on the configuration. The solver runtime

is split into the “subdomain solve” (static condensation of the subdomain interior onto sub-

domain interfaces—preliminary step in Section 3.3) and the “coupled solve” (nested solve of

the global coupled interface problem—steps 1–5 in Section 3.3). The important point to

consider is how the choice of MPI x OpenMP configuration affects the solver algorithm since

each configuration builds a unique nested dissection tree. For a fixed fiber length, using

more MPI processes implies having more subdomains but each subdomain becomes smaller,

hence the local problem can be solved faster; on the other hand, using more subdomains im-

plies having additional interfaces that are coupled and must be solved with a deeper nested

dissection tree. The effect is illustrated by the varying runtimes of the respective solves in

Figure 6.2, and it is quantified in terms of degrees of freedom in Table 6.1. Depending on the

hybrid configuration, the subdomain interior size varies between 17 470 and 321 380 DOFs
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per MPI process while the coupled interface problem has between 5 460 and 114 660 DOFs.

Note that these numbers exclude element interior and residual DOFs previously eliminated

from the system. Assuming a binary tree structure, the nested dissection solver has between

two and six levels depending on the number of subdomains. Other tree configurations (i.e.,

not binary) are possible as well, and we discuss some options shortly.

To sum up, we generally prefer using as much shared-memory parallelism as possible

in our hybrid MPI/OpenMP approach, since every additional MPI process incurs an addi-

tional memory footprint. In other words, if two configurations perform the same overall it is

preferable to use the one with less MPI processes and more OpenMP threading. However,

the OpenMP parallelism does not scale well in our model beyond a certain number of cores

(as demonstrated in Figure 6.1). Therefore, we have evaluated different hybrid configura-

tions with more than one MPI process per compute node (see Figure 6.2) and found that

performance can be significantly improved this way. In most cases, we have observed that

the MPI x OpenMP = 4 x 12 configuration is optimal and thus report numerical results for

this choice, including for the MPI weak- and strong-scaling results presented later in this

section.

6.1.3 Nested dissection tree

As pointed out in Section 3.3, there are different parameters for tuning the performance

of the nested dissection solver. In particular, we can choose the subproblem size which

determines the structure of the separator tree. Recall that mSUB_PROCS is the number of

MPI processes participating in a single subproblem solve; mSUB_PROCS = 2 results in a

binary tree, mSUB_PROCS = 4 in a quadtree, and so on. A subproblem has to be at least of

size mSUB_PROCS = 2 in which case it involves two (neighboring) MPI processes solving a

single interface problem.

Figure 6.3 depicts the runtime of the coupled solve via nested dissection for three
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Figure 6.3: Runtime comparison of various tree configurations for the nested dissection solver.
Runtimes are for the coupled linear solve of the fiber amplifier model with uniform polynomial
order p = 5. The nested dissection solver performs best for an octree configuration, where
the subproblem size is defined by eight neighboring subdomains (across seven interfaces).

different choices: binary tree, quadtree, and octree. For three different fiber lengths (32, 256,

and 2 048 wavelengths), we observe that the runtime tends to decrease for larger subproblem

sizes.

Nested tree
type

Subproblem
size (DOFs)

Nested levels (tree depth)

32 λ, 8 ranks 256 λ, 64 ranks 2 048 λ, 512 ranks

Binary tree 1 820 3 6 9
Quadtree 5 460 1.5 3 4.5
Octree 12 740 1 2 3

Table 6.2: Comparison of tree configurations in the nested dissection algorithm. The amount
of work per subproblem and the number of subproblems depend on the user choice. For
example, computing larger subproblems reduces the depth of the nested dissection tree.

Table 6.2 outlines the tree structure for these solver configurations. The number of

“nested levels” represents the depth d of the corresponding tree, defined by mSUB_PROCSd =

NUM_PROCS. Thus, in some cases the depth is a decimal number. This notation expresses

the fact that the root of the tree may consist of a smaller subproblem than the tree’s re-
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maining subproblems. For example, using eight MPI ranks (NUM_PROCS = 8) with quadtree

configuration (mSUB_PROCS = 4) results in one level with two subproblems (each of size 5 460

DOFs constructed from four neighboring subdomains) and one additional smaller subprob-

lem consisting of the remaining interface of size 1 820 DOFs and constructed by only two

MPI processes, hence d = 1.5. By this convention, doubling the number of subdomains

increases the depth of the binary tree by 1, the quadtree by 0.5, and the octree by 0.33.

From these experiments, we conclude that the fiber model computation with the dis-

tributed nested dissection solver can be somewhat accelerated by increasing the subproblem

size, and thereby reducing the number of tree levels, as long as the subproblems can be

efficiently solved with a parallel direct solver (e.g., MUMPS).

6.1.4 MPI weak scaling

In the effort to compute the fiber model with more wavelengths, weak scaling is the most

important performance metric. Generally, we solve as many wavelengths as possible on a

single compute node, given memory and time constraints, and then increase the compute

resources (and MPI processes) while also increasing the fiber length (to keep the workload

per processor approximately constant). The memory requirement per MPI process increases

somewhat in this approach due to the redundant storage of the NODES data structure (cf.

Section 3.2.1), which is quantified later. Otherwise, we primarily focus on the computational

time of the fiber simulation in our weak-scaling analysis.

Weak-scaling analysis. Many parts of the fiber model FE simulation scale near-linearly,

assuming a well-balanced workload across subdomains. This includes the computation of

locally optimal test functions, the residual computation per subdomain, and computation

of geometry and Dirichlet degrees of freedom, among others. The efficiency estimate of the

linear solve relies on different estimates for different components of the solver: 1) The static

condensation of the subdomain interior DOFs is linearly scalable—presuming a perfectly
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balanced workload—since the work is independent for every MPI process (or subdomain);

2) The parallel scaling of the coupled interface solve via nested dissection corresponds to a

typical divide-and-conquer algorithm, where the parallel efficiency declines as the recursive

process proceeds with additional levels (i.e., larger tree depth in nested dissection); and 3)

Retrieving the subdomain interior solution (both trace and field variable DOFs) is again an

independent task for each subdomain that scales near-linearly when the workload is balanced.

Making a few assumptions about the fiber model discretization, we can estimate the

nested dissection solver efficiency more precisely. Let P denote the number of processors (or

subdomains) and suppose that we use a nested binary tree configuration (mSUB_PROCS = 2).

Assuming constant workload on each interface between subdomains, (i.e., the same dis-

cretization on all fiber cross-sections), we denote the number of unknowns per interface as

ni. Then, solving the (dense) linear system corresponding to a single interface problem

via LU factorization requires O(n3
i ) work. Overall, the computational work of the nested

dissection solver increases only linearly with fiber length since the number of interfaces in-

creases linearly and each interface DOF interacts only with neighboring interface DOFs (cf.

Figure 3.10). The total amount of computational work for solving the coupled interface prob-

lem is O(Pn3
i ). The computational time, however, does not scale linearly since the interface

problems cannot be solved independently in parallel but are coupled. Due to its hierarchical

structure, the sequential path of the computation increases with the depth of the nested

dissection tree, each level taking O(n3
i ) time; consequently, the overall time complexity is

O(logP n3
i ).

Weak-scaling results. Before discussing the numerical scaling results, we mention a few

points about the weak-scaling test setup. Firstly, we only test inter-node (true distributed-

memory) scaling, where the computational performance on one compute node serves as the

“baseline”. In the hybrid MPI/OpenMP code, this means the baseline uses 4 MPI processes

with 12 OpenMP threads each. This way, the effects of faster intra-node communication
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between MPI processes running on the same compute node are removed from the scaling

results. Secondly, due to numerical pollution (cf. Section 4.2), increasing the fiber length

requires increasing the order of discretization to maintain the same level of accuracy. In our

weak-scaling test, however, we must keep the workload per processor constant to obtain valid

results, thus the polynomial order used for all fiber lengths is the same. The discretization

has uniform order p = 6 with 20 elements in the fiber cross-section (4 prisms, 16 hexahedra)

and two elements per wavelength in the longitudinal direction. This suffices to yield accurate

results for several thousand wavelengths. The baseline on one compute node is a fiber model

with 32 wavelengths, whereas the largest instance, computed on 512 nodes, is a fiber of

16 384 wavelengths.

Number of
wavelengths

Compute
nodes

MPI
ranks

Cores DOFs per
Maxwell
solution

NODES
memory

(MB)

32 1 4 48 1 994 520 0.5
64 2 8 96 3 989 016 1.0
128 4 16 192 7 978 008 2.0
256 8 32 384 15 955 992 4.0
512 16 64 768 31 911 960 8.0

1 024 32 128 1 536 63 823 896 16.0
2 048 64 256 3 072 127 647 768 32.0
4 096 128 512 6 144 255 295 512 64.0
8 192 256 1 024 12 288 510 591 000 128.0
16 384 512 2 048 24 576 1 021 181 976 256.0

Table 6.3: Setup of weak-scaling tests for the fiber amplifier model with uniform polynomial
order p = 6. The memory per MPI process increases due to the NODES data structure; this
amount of storage for global data is modest, however, compared to the memory needed for
storing the (distributed) solution DOFs of just one electromagnetic field.

Table 6.3 shows an overview of the weak-scaling setup. In addition to the fiber lengths

and compute resources, it also displays the memory required (per MPI process) to store

the global NODES array. As detailed in Section 3.2, the redundant storage imposes certain

scalability constraints. However, as can be seen in Table 6.3, given the large amount of main

memory (192 GB per compute node), these constraints are not currently a practical concern
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for the fiber amplifier simulation. In the largest instance for a fiber of 16 384 wavelengths,

each MPI process has to store only 256 MB of global mesh data. As suggested in the analysis

in Section 3.2, this global data is significantly less than the distributed degree-of-freedom

data which amounts to more than 16 GB for the electromagnetic field of the signal laser. We

note that this number, and the DOFs shown in Table 6.3, do not include distributed geometry

DOFs, residual DOFs, or solution DOFs for the electromagnetic field of the pump light and

the temperature field of the heat solution. Additionally, two copies of all solution DOFs

must be stored in order to enable the iterative solution process of the fixed point iteration

for nonlinear laser gain computation and the time-stepping scheme used to discretize the

transient heat problem.
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Figure 6.4: Stampede2 weak-scaling results for the fiber amplifier model with uniform poly-
nomial order p = 6. The nested dissection solver scales near-optimally up to 512 compute
nodes (24 576 cores) and 2 048 MPI processes.

Figure 6.4 shows weak scaling of the fiber amplifier simulation with up to 512 compute

nodes (24 756 cores) on Stampede2. The presented runtimes are averaged over at least ten

samples in each case, and the nested dissection solver is built with a binary tree for all cases.

Figure 6.4a depicts the parallel efficiency for the computationally most expensive steps of

the simulation and overall efficiency. The obtained total efficiency declines gradually, at

80 percent for 8 compute nodes, 70 percent for 64 compute nodes, and 60 percent for 512
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compute nodes. In other words, the total simulation time for a fiber of 16 384 wavelengths on

512 compute nodes is a bit less than double the simulation time for a fiber of 32 wavelengths

on one compute node.

While the element matrix assembly, residual computation, and subdomain solve should

in principle obtain near-linear scaling, we observe that in practice computing on many pro-

cessors yields a (reproducible) variation in the computation time across all processors despite

the equally distributed workload. Since all processors must wait for the slowest one to finish

its computation, this leads to a slow but gradual efficiency decline: the simulation achieves

ca. 90–95 percent efficiency for assembly and residual computation, and ca. 75–85 percent

efficiency in the subdomain interior solve with the sparse direct MUMPS solver. The parallel

efficiency of the coupled interface solve via nested dissection is expectedly poor because of

the logarithmic increase in computation time, but this modest logarithmic increase enables

good weak scaling overall. Figure 6.4b illustrates that the parallel algorithm performs close

to the expected optimal estimate, with the runtime being proportional to n log2 P , where

n = 20 seconds is the approximate computation time per level in the nested dissection tree.

Comparison with MUMPS solver. Before moving on to strong-scaling results, we

compare the weak-scaling performance of the nested dissection solver with the distributed

MUMPS solver. The test setup is similar to the previous one shown in Table 6.3, starting

with 32 wavelengths on one compute node but using a lower polynomial order p = 5 to

accommodate MUMPS’s larger memory requirements. Figure 6.5 is a comparison of the lin-

ear solver performance: Figure 6.5a shows the parallel efficiency and Figure 6.5b the solver

runtime in seconds. While neither of the parallel direct solvers can obtain linear scaling, the

observed efficiency of the nested dissection solver is superior to MUMPS’s parallel efficiency.

When comparing the runtime, however, we can see that the MUMPS solver performs very

well for small instances of the fiber model and has in fact a lower runtime for up to 256 wave-

lengths (on 8 compute nodes). The nested binary tree construction appears to add more
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complexity to the solve than is necessary for these small problem instances. This is consistent

with our findings in Section 6.1.3 where we observed a better performance when computing

larger subproblems (e.g., an octree configuration). Nonetheless, Figure 6.5b clearly depicts

the strongly differing asymptotic trendline for the two solvers: while the nested dissection

solver runtime increases by a constant amount with each larger fiber instance (consistent with

the logarithmic runtime complexity estimate), the MUMPS solver time appears to increase

exponentially and is much higher for a fiber of 512 wavelengths computed on 16 nodes. We

note that the MUMPS solver fails for very large fiber instances due to memory constraints.
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Figure 6.5: Stampede2 weak-scaling results for the fiber amplifier model with uniform poly-
nomial order p = 5. Comparison of the nested dissection solver with the MUMPS solver.

6.1.5 MPI strong scaling

As a metric for the fiber amplifier model performance, strong scaling is somewhat less im-

portant than the previously discussed performance metrics since we are primarily aiming to

increase the maximum fiber length of the simulation. However, in some cases, good strong

scaling can be helpful in accelerating a fiber amplifier simulation for a fixed fiber length (e.g.,

to run many different configurations). Therefore, we investigate how much the simulation

can be accelerated in such a case and how the strong-scaling performance compares to the
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ideal (linear) speedup.

The nested dissection algorithm is, by construction, not well-suited for strong scaling.

While the subdomain-local computation time decreases linearly with additional processors,

we obtain more subdomain interfaces that are coupled and must be solved with a deeper

nested dissection tree. The runtime of the coupled portion of the solve therefore increases

logarithmically with the number of processors. However, in the fiber simulation, this may

still allow for a moderate speedup overall as long as the coupled solve time does not dominate

the total runtime.

In our strong-scaling test, the fiber length is fixed to 32 wavelengths with the same

uniform sixth-order discretization that was used in the weak-scaling test. As the number of

processors grows, the subdomains in the fiber grow smaller each time, i.e., the slabs defined

by cross-sectional cuts along the fiber axis become narrower and include fewer elements

to compute. The number of compute nodes is increased gradually from one node (four

subdomains) to 16 nodes (64 subdomains) at which point each subdomain resolves only half

a wavelength along the fiber axis.
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Figure 6.6: Stampede2 strong-scaling results for the fiber amplifier model with uniform
polynomial order p = 6 and fixed fiber length (32 wavelengths). Parallel speedup of the main
subroutines is near-optimal except for the linear solve, leading to a maximum 4x speedup
with 16 compute nodes.
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Figure 6.6 shows the strong-scaling results for the fiber amplifier model. In Figure 6.6a,

the parallel speedup is plotted. As expected, the speedup for the element matrix assembly

and residual computation are almost linear, whereas the solver fails to gain any speedup

beyond 32 MPI processes and in fact becomes slower when increasing parallelism further.

The solver dilemma is clearly depicted in Figure 6.6b which shows the total runtime of the

simulation broken down into the main subroutines. As can be seen, the local “subdomain

solve” scales very well whereas the “coupled solve” of the subdomain interfaces increases with

additional MPI processes. At 16 compute nodes (64 MPI processes), the coupled solve time

dominates the total runtime, thus eliminating any chance of further speedup by increasing

the amount of parallelism. Ultimately, however, the observed overall speedup of 1.8 and 2.9

with two and four compute nodes, respectively, may be good enough to justify additional

compute resources for accelerating simulation of the fiber model with fixed length.

6.2 Active gain simulations

We now utilize the distributed, parallel code to simulate various large instances of the non-

linear 3D fiber amplifier model. In these simulations, we look at the signal and pump power

distribution along the fiber, the amplifier efficiency, and the convergence of the nonlinear

solver. The simulations are conducted for an ytterbium-doped, core-pumped, large-mode-

area, step-index fiber amplifier such as the one described in Chapter 5 (see model parameters

in Tables A.5 and A.6). We employ a high-order discretization to obtain accurate results for

nonlinear gain in long fibers. To minimize numerical pollution errors, we use an anisotropic

discretization with sixth-order polynomials in the radial direction and seventh-order polyno-

mials in the longitudinal direction (i.e., (px, py, pz) = (6, 6, 7)), yielding even more degrees of

freedom (per wavelength) than were shown in Table 6.3. These are the first results for our

nonlinear gain model with more than one thousand wavelengths. We also show simulations

of counter-pumped configurations of our model.
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6.2.1 Co-pumped configurations

In the co-pumped fiber amplifier model, both the signal and the pump light are injected

at the same fiber end. For a core-pumped amplifier, we inject the respective (core-guided)

fundamental mode of each light source but provide significantly more power for the pump; the

signal laser input is ca. 48 W and the pump input is approximately 216 W, yielding a maximal

amplified signal output of about 246 W if the entire pump light is transferred into the signal

at optimal efficiency (91.73%). Figure 6.7 displays the optical power in each field for fibers

of 128 and 2 048 wavelengths. The artificial gain coefficient g̃a is again selected such that

sufficient amplification is possible within an unrealistically short fiber. The results indicate

that the gain scaling, previously shown for fibers from 15 to 240 wavelengths (see Figure 5.4),

extends to several thousand wavelengths—i.e., short fibers appear to (qualitatively) preserve

the power distribution of longer, more realistic fibers if their shorter size is accounted for by

a larger gain coefficient g̃a. We can also observe from Figure 6.7 that, based on our previous

estimate for the maximal signal output, the optimal efficiency is nearly attained (precise

values of the attained efficiencies are shown in the subsequent section—see Table 6.4).
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Figure 6.7: Active gain simulation of a co-pumped amplifier configuration for fibers of dif-
ferent lengths. In both cases, 128 and 2 048 wavelengths, the pump power is almost entirely
transferred into the signal laser, provided that the artificial gain amplification g̃a is large
enough.
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Figure 6.8: Convergence of co-pumped, active gain amplifier simulation for fibers of different
lengths. The nonlinear solver converges within 12–15 iterations in all cases, but the number
of iterations tends to increase slowly with increasing fiber length.

The convergence of the nonlinear solver for fibers from 32 wavelengths to 2 048 wave-

lengths is shown in Figure 6.8. In all cases, convergence is attained within 12–15 iterations;

however, the number tends to increase slowly with increasing fiber length. Except for some

oscillations initially (≤ 4 iterations), the relative change in the L2 norm of the signal field

decreases monotonically for all fibers.

6.2.2 Counter-pumped configurations

So far, we only considered co-pumped fiber configurations for which the signal and pump

lights are injected at the same fiber end. Another possible configuration is the counter-

pumped amplifier, where signal and pump lights are injected at opposing fiber ends. These

counter-pumped configurations are of practical interest because they tend to have a higher
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threshold for nonlinear mode instability than the co-pumped configurations [76]. As previ-

ously mentioned, a counter-pumped configuration can be difficult to realize in simpler fiber

amplifiers models (e.g., scalar BPM models) due to their inherent assumptions. In our model,

counter-pumping is natively supported and requires only minor adjustments of the boundary

conditions. The computational complexity is the same as for a co-pumped fiber amplifier.

In this section, we show the first numerical results for a counter-pumped configuration of

our active gain fiber amplifier model. In principle, the model can also handle a bi-directional

pump configuration, where pump light is injected at both fiber ends. This configuration

will, however, incur additional computational cost if the second pump source is modeled by

a separate field requiring one additional linear solve per iteration.
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(a) Co-pumped configuration
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Figure 6.9: Active gain simulation for a fiber of 64 wavelengths, g̃a = 8.0 · 103. In the
counter-pumped configuration, the pump light is injected at the fiber exit and the absorbing
boundary layer acts at the fiber input where the signal light is injected.

PML in counter-pumped amplifier. In the counter-pumped configuration, the pump

light is injected at the fiber exit; we account for this by changing the boundary conditions for

the pump field appropriately. In the pump solve, the inhomogeneous tangential electric field

boundary condition is now prescribed at the fiber exit, while the PML is implemented at

the fiber input where the signal light is injected. In a way, the amplified laser light “sees” an

infinitely extending fiber in +z-direction whereas the pump light “sees” an infinitely extending
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fiber in the −z-direction. Nagaraj et al. [98] used this idea for a counter-pumped Raman

gain amplifier model and demonstrated its feasibility in a short fiber simulation with low

amount of energy transfer. Figure 6.9 shows that it extends to the case of counter-pumping

in the active gain fiber amplifier model with full energy transfer from pump to signal. In

Figures 6.9a and 6.9b, the dotted lines each mark the beginning of a PML; in Figure 6.9b—

the counter-pumped case—the “right” layer only acts on the signal field, and the “left” layer

only acts on the pump field.

Gain scaling and amplifier efficiency. In the counter-pumped case, a similar gain scal-

ing coefficient g̃a needs to be applied as for the co-pumped configuration in order to fully

transfer the pump power to the signal field within a fiber of the same length. For example,

this is shown for two fibers with 128 and 2 048 wavelengths in Figure 6.10, where in each case

the same g̃a is used as in the previous co-pumped configuration (cf. Figure 6.7). Further-

more, the power distribution along the fiber is nearly the same for these two fibers of different

lengths, indicating that the gain may be scaled—at least to some extent—via an artificial

coefficient to account for shorter fiber lengths also in the counter-pumped configuration.

To measure the total optical-to-optical efficiency in the counter-pumped amplifier

model, we compute the gain in signal power (output minus input) divided by the loss of

pump power (input minus output). We can do the same for the co-pumped configuration.

In both cases, the efficiencies obtained for fibers of 32 to 2 048 wavelengths are very close to

the ideal efficiency (see Table 6.4). The amplified laser output, also shown in Table 6.4, is

similar for all configurations, with nearly the entire pump power transferred to the signal.

This is only possible because we are considering a core-pumped model in which essentially all

pump light is injected in the fiber core where it can be converted via the stimulated emission

process (see Section 5.1). For a cladding-pumped configuration, any pump light that does

not enter the fiber core within a certain fiber length cannot amplify the signal through this

process.
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Figure 6.10: Active gain simulation of a counter-pumped amplifier configuration for fibers
of different lengths. The counter-pumped fiber amplifier model achieves full power transfer
from the pump into the signal field on both short and long fibers, where the amount of gain
can be adjusted to account for a shorter fiber length.

Model parameters Co-pumped amplifier Counter-pumped amplifier

Number of
wavelengths

Gain scaling
coefficient g̃a

Efficiency (%) Output (W) Efficiency (%) Output (W)

32 1.6 · 104 91.47 240.3 91.53 239.1
64 8.0 · 103 91.41 240.7 91.43 242.1
128 4.0 · 103 91.39 241.4 91.36 242.0
256 2.0 · 103 91.40 242.2 91.44 242.7
512 1.0 · 103 91.43 243.3 91.34 243.7

1 024 5.0 · 102 91.43 244.3 91.29 244.6
2 048 2.5 · 102 91.39 244.2 91.28 244.8

Table 6.4: Fiber amplifier efficiency in active gain simulations for co-pumped and counter-
pumped fibers of different lengths. The observed optical-to-optical efficiency is close to the
optimal efficiency of 91.73% in all cases. The output powers are 239–245 W for an input of
approximately 48 W (signal) and 216 W (pump).

The convergence of the nonlinear scheme is slower for the counter-pumped configura-

tion (see Figure 6.11) than for the co-pumped case (cf. Figure 6.8). We observe that 21–24

iterations are required to reach the same stopping criterion (ε = 10−4). However, there is

no clear tendency toward an increasing number of iterations with increasing fiber length.
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The generally larger number of iterations needed for convergence appears to come from a

more oscillatory nature of the temporary solutions obtained during the Picard iterations;

this results in a slower, non-monotonic decay of the corresponding L2 norm measuring the

relative difference between the iterates.
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Figure 6.11: Convergence of counter-pumped, active gain amplifier simulation for fibers of
different lengths. The nonlinear solver converges within 21–24 iterations in all cases, more
than for the co-pumped case, but there is no tendency of increasing number of iterations
with increasing fiber length.

6.3 Raman gain simulations

In this section, we conduct simulations of a three-dimensional Raman gain fiber amplifier

model that was first introduced by Nagaraj et al. (2018). The model is also based on the

solution of two weakly-coupled time-harmonic Maxwell systems but with a coupling term

modeling passive Raman gain rather than gain via an active dopant. We have made minor

changes to the original model, including the use of a different non-dimensionalization and
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gain amplification term in our derivation (see details in Appendix B.4), as well as significant

computational advancements enabling simulation of much longer fiber models.

Contrary to the stimulated emission process in the active gain fiber amplifier, the

passive Raman gain amplifier relies on a different mechanism to amplify a laser. We cite the

paper from Nagaraj et al. [98]:

Raman scattering is an inelastic optical nonlinearity that occurs as incident

light (the pump), at a sufficiently high intensity, vibrates the molecules of the

medium, resulting in optical phonons and scattered photons (the Stokes field),

usually of a lower frequency than the incident photons. This process can start

from noise, but in this model the Raman scattering is stimulated by having a

seeded signal field offset in frequency from the pump field so as to achieve peak

Raman gain and coinciding perfectly with the Stokes field frequency.
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Figure 6.12: Raman gain simulation of a co-pumped amplifier for fibers of different lengths.
The Raman gain model delivers nearly full power transfer from the pump into the signal
(Stokes field) for both short and long fibers if the artificial gain amplification g̃R is large
enough.

In other words, we consider two fields with a different frequency: the incident light

(pump field) with 1 064 nm wavelength and the Stokes field (signal) with 1 116 nm wave-

length. We emphasize that while the underlying principle of nonlinear Raman scattering
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with this model was demonstrated in [98], the numerical simulations were limited to fewer

than one hundred wavelengths and a relatively low amplification of the Stokes field with no

validation of the efficiency or other quantities. The finite element simulations also exhibited

significant numerical pollution in the form of a power decay of the propagating field. All of

these points have been addressed, and our new simulations extend to the regime of several

thousand wavelengths for the nonlinear Raman gain amplification model with high accu-

racy. As before, we employ an anisotropic high-order discretization, (px, py, pz) = (6, 6, 7),

to minimize the pollution errors.

Figure 6.12 shows the power distribution of a core-pumped, co-pumped Raman gain

amplifier simulation for two fibers of 125 and 2 000 wavelengths. By using a gain scaling

term g̃R for the Raman model, we are able to simulate the amplification of the Stokes field

to maximal power within very short fibers. However, we note that the gain scaling does

not perfectly account for the length scaling; for example, in the 125 wavelength fiber, some

pump power remains at the output whereas in the 2 000 wavelength fiber, all pump power is

transferred into the signal. It appears the longer fiber experiences somewhat stronger Raman

scattering than the short fiber which is not (fully) accounted for by the linearly scaled gain

coefficient g̃R.

Model parameters Raman gain amplifier

Number of
wavelengths

Gain scaling
coefficient g̃R

Efficiency (%) Output (W)

31 6.4 · 106 95.36 211.7
62 3.2 · 106 95.35 213.2
125 1.6 · 106 95.35 214.3
250 8.0 · 105 95.36 216.1
500 4.0 · 105 95.36 219.6

1 000 2.0 · 105 95.38 223.2
2 000 1.0 · 105 95.42 226.2

Table 6.5: Fiber amplifier efficiency in Raman gain simulations for fibers of different lengths.
The observed optical-to-optical efficiency is near the optimal efficiency of 95.34% in all cases.
The output powers are 212–226 W for an input of approximately 45 W (signal/Stokes field)
and 191 W (pump).
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Table 6.5 shows the optical-to-optical efficiency of the Raman amplifier simulation.

Similar to the active gain amplifier model, the Raman gain model delivers near-optimal

efficiencies for all tested fibers.
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Figure 6.13: Convergence of co-pumped, Raman gain amplifier simulation for fibers of dif-
ferent lengths. The nonlinear solver converges within 7–9 iterations in all cases, less than for
the active gain amplifier model.

The Raman gain model converges quicker than the active gain model. As illustrated

in Figure 6.13, convergence is attained within 7–9 iterations and the relative change in the

iterates decays monotonically after the first few iterations.

Lastly, we remark that the Raman gain fiber amplifier model also supports counter-

and bi-directional pumping configurations in the same way as the active gain model. Analo-

gous to the counter-pumped active gain model, the counter-pumped Raman gain simulation

converges slower than the co-pumped configuration.
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6.4 Refractive index grating

In this section, we use our model to study aspects of the thermal effects occurring in high-

power fiber amplifiers. Increasing the power of the fiber amplifier usually causes a higher

thermal load. The resulting thermal effects are a significant factor to consider in designing

and operating fiber amplifiers. Mainly, there are two effects in active gain fibers due to the

thermal load [76]: 1) mode shrinking, and 2) the transverse mode instability (TMI). Mode

shrinking refers to the shrinking of the mode field diameter—the characteristic width of the

Gaussian profile of the guided fundamental mode (FM) (see Figure 4.1)—due to a thermally

induced change of the refractive index in the fiber core (see Figure 5.7). This effect has several

consequences: it increases the intensity of the light in the fiber core and thus contributes

to the onset of nonlinear effects, and it also increases the effective core numerical aperture,

thereby allowing for additional higher-order modes (HOMs) to propagate. Because of this

thermally induced mode shrinking, even fibers that were designed to operate single-mode

may effectively become multimode waveguides which can lead to degradation of the output

beam quality if significant energy is transferred into the HOMs [68].

The nonlinear TMI is characterized by a chaotic fluctuation of the output beam at high

power [44]. This fluctuation comes from an energy transfer between guided transverse modes

of the fiber, i.e., a coupling of the FM and the HOMs. While TMI mitigation strategies are

still actively researched, there is already a wide scientific consensus explaining the origin

of this thermally induced nonlinear effect [76]. In short, there are two requirements for

the TMI to occur. First, two simultaneously propagating guided transverse modes in the

fiber amplifier create a periodic modal interference pattern (MIP) with a period—the mode

beat length—that depends on the modes’ propagation constants (see Figure 6.14). Due to

this MIP, the intensity of the light also fluctuates periodically along the fiber longitudinal

direction (see Figure 6.15). This in turn leads to a periodic fluctuation of the excited ion

population density in the active fiber core, hence to a fluctuation in the conversion of pump
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to signal photons that causes the heat deposition via the quantum defect. In other words,

the MIP is imprinted on the heat load in the fiber. Through the fluctuating heat load, the

thermo-optical effect then causes a periodic refractive index grating (RIG) along the fiber

longitudinal direction [77]. This thermally induced RIG may lead to a mode coupling that

allows guided transverse modes to exchange energy. The second condition that needs to be

fulfilled for such a mode coupling is a phase shift between the MIP and the RIG [114]. The

exact origins of this phase shift are still debated but may be due to noise in the fiber laser

system at high power [76].

Figure 6.14: Mode beating in R{Ex} component between the LP01 and LP02 modes plotted
along the longitudinal axis of the fiber. The mode beat length is ca. 1.23 mm (approximately
1 677 wavelengths). Note that the waves in the plot originate from a small sample of points
representing full 2 090 wavelengths over that distance.

As mentioned above, the thermally-induced RIG has a period equal to the length

of the mode beat between the FM and the HOMs. For weakly-guiding large-mode-area

fiber amplifiers, the mode beat length between the FM and a guided HOM is typically

several thousand wavelengths. Capturing a RIG over multiple mode beat lengths with our

nonlinear full vectorial Maxwell model is therefore challenging due to the computational cost
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of simulating a fiber of that length. To test and validate mode coupling in the Maxwell model

without computing the full nonlinear coupled model (i.e., without laser gain and heating),

we prescribe an artificial grating of the refractive index that has some of the characteristics

of the RIG induced by heating.

(a) Asymmetric LP01/LP11 mode beating with a period of ca. 4 221 wavelengths (3.10 mm)

(b) Symmetric LP01/LP02 mode beating with a period of ca. 1 677 wavelengths (1.23 mm)

Figure 6.15: Mode beating of the FM and the HOMs in a 6.1 mm long fiber (approximately
8 320 wavelengths). The mode beating is illustrated by the periodic irradiance beating
plotted in a slice orthogonal to the transverse (y) axis in the fiber center. In each case, the
propagating light has an optical power of 50 W and is composed of 80% FM and 20% HOM.

Experimental setup. We consider a large-mode-area step-index fiber (see parameters in

Table A.5) that supports four guided modes: {LP01,LP11,LP21,LP02}.2 Let ∆klp denote

the difference between the propagation constants of the FM (LP01) and a guided LPlp HOM.

2The two possible rotations of the radially asymmetric modes LP11 and LP21 are denoted by LP11a,LP11b

and LP21a,LP21b, respectively. See Appendix B.2 for a definition of each mode.

152



For this particular fiber, the (normalized) propagation constants of the modes are:

{k01, k11, k21, k02} ≈ {85.6833, 85.6630, 85.6380, 85.6322}. (6.1)

Then,

{∆k11,∆k21,∆k02} ≈ {0.0203, 0.0453, 0.0511}. (6.2)

The corresponding (normalized) mode beat lengths are (cf. Figure 6.15),

2π/{∆k11,∆k21,∆k02} ≈ {309.517, 138.702, 122.959}, (6.3)

with a length scale of 10−5 m (see Table A.3). The number of wavelengths of the FM per

beat length is:

k01/{∆k11,∆k21,∆k02} ≈ {4220.85, 1891.46, 1676.78}. (6.4)

We introduce an artificial long-period grating of the refractive index in the following way:

ñ(x, y, z) = n(x, y) + φ(x, y)δn sin(∆klpz + ϕ0), (6.5)

where n(x, y) is the unperturbed refractive index, δn is the perturbation amplitude, and

φ : Ωt 3 (x, y) → [0, 1] determines the perturbation profile in the fiber transverse domain

Ωt := {(x, y) : x2 + y2 < r2
clad}; the period of the grating is the beat length 2π/∆klp between

the FM and a guided LPlp HOM, (l, p) ∈ {(1, 1), (2, 1), (0, 2)}, with initial phase ϕ0. The

perturbation profile φ(x, y) determines the region in which the perturbation is active in the

fiber cross-section. We consider an indicator-function φ(x, y) that defines a perturbation

profile where the material refractive index is perturbed inside the perturbation region, and
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outside of which it is not perturbed. Let

B((x̃, ỹ), r̃) :=
{

(x, y) :
√

(x− x̃)2 + (y − ỹ)2 < r̃
}

(6.6)

for any cross-section (transverse domain) of the fiber; then,

φ(x, y) :=

 1, (x, y) ∈ B((x̃, ỹ), r̃),

0, otherwise,
(6.7)

defines a circular perturbation region of radius r̃, centered at (x̃, ỹ), within the cross-section

of the fiber.

Phase shift. The phase shift between the MIP and the RIG determines whether an energy

transfer between the modes can occur and in which direction energy can be transferred (i.e.,

either from FM to HOM or from HOM to FM) [114, 119, 76]. More precisely, if a negative

phase shift occurs (MIP right-shifted of the RIG, i.e., shifted toward fiber output), then the

FM can transfer energy to the HOM, whereas if a positive phase shift occurs (MIP left-

shifted of the RIG, i.e., shifted toward fiber input), then the HOM can transfer energy to

the FM [114]. To test the mode coupling dependency on the MIP–RIG phase shift in the

Maxwell model, we consider a radially symmetric perturbation to induce coupling between

the LP01 and LP02 modes. The perturbation profile of the long-period grating is given by

(6.7) with (x̃, ỹ) = (0, 0) and r̃ = 0.5rcore. The perturbation amplitude is δn = 2.5 · 10−4,

and the grating period is the mode beat length 2π/∆k02. The total input power is 25 W.

In a realistic fiber amplifier, a small percentage of the input power is usually in HOMs. In

order to better illustrate the mode coupling, we simulate a seed ratio with a somewhat larger

relative higher-order modal content of 90% LP01 and 10% LP02.
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(a) MIP–RIG negative phase shift
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Figure 6.16: Coupling of the LP01 and LP02 modes via a radially symmetric refractive index
grating for a 1.5 mm long fiber (approximately 2 048 wavelengths). (a) A negative phase
shift between the MIP and the RIG causes (b) an energy transfer from FM to HOM.
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(a) MIP–RIG positive phase shift
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Figure 6.17: Coupling of the LP01 and LP02 modes via a radially symmetric refractive index
grating for a 1.5 mm long fiber (approximately 2 048 wavelengths). (a) A positive phase shift
between the MIP and the RIG causes (b) an energy transfer from HOM to FM.

First, the mode coupling is tested for a negative phase shift in a 1.5 mm long fiber

(ca. 2048 wavelengths). Figure 6.16a illustrates this phase shift by plotting the prescribed

refractive index in the perturbed region and the mean irradiance in the fiber core along the

longitudinal fiber axis. The fluctuation of the mean irradiance corresponds to the periodic

MIP of the LP01 and LP02 modes (cf. Figure 6.15b). In Figure 6.16b, the approximate modal
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content in the fiber is displayed.3 As expected, an energy transfer occurs from the FM to

the HOM. Conversely, a positive phase shift (Figure 6.17a) induces an energy transfer from

the HOM to the FM (Figure 6.17b).

Cross-validation with CMT model. As previously discussed, there exist fiber ampli-

fiers models that are much more computationally efficient than our 3D vectorial Maxwell

simulation. One particularly efficient and widely used category of models is based on coupled

mode theory (CMT). In the CMT approach, the transverse electric field that is assumed to

be strictly polarized in one direction is decomposed into a discrete set of propagating guided

modes. These modes are then explicitly coupled to one another via coupling coefficients. We

cross-validate our 3D Maxwell simulation with a CMT model developed by T. Goswami et

al. (Portland State University) in collaboration with J. Grosek (Air Force Research Labora-

tory). For this validation, large-mode-area fibers with similar properties are used, and the

same RIG is prescribed in both fiber models. The fibers are then seeded with a similar input

(total power and modal content). Whereas the 3D Maxwell model solves a computationally

expensive full vectorial boundary value problem, the CMT model very efficiently computes

the modal content along a fiber of the same length. In the 3D Maxwell simulation, the modal

content is computed by projecting the transverse electric field onto guided transverse modes

for different fiber cross-sections (see Section 4.1.3). The optical power carried in each mode

along the fiber can then be compared for these independent and entirely different models.

First, we use a radially symmetric long-period grating that couples the LP01 and LP02

modes similar to the previous example with a negative phase shift (MIP right-shifted of

RIG by π/2). This coupling causes significant energy transfer from the FM to the HOM.

Figure 6.18 depicts the modal content of the propagating field in a 1.5 mm long fiber (ca.

2 048 wavelengths). Along the entire length of the fiber, the simulations yield qualitatively

comparable results for the Maxwell model (Figure 6.18a) and the CMT model (Figure 6.18b).

3Recall that in the 3D Maxwell model, the modal content is computed via L2 projection of the transverse
electric field onto transverse modes for different fiber cross-sections (cf. Section 4.1.3).
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Figure 6.18: Coupling of the LP01 and LP02 modes via a radially symmetric refractive index
grating for a 1.5 mm long fiber (approximately 2 048 wavelengths). The Maxwell model and
the CMT model yield similar modal content along the entire length of the fiber.
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Figure 6.19: Coupling of the LP01 and LP11 modes via a radially asymmetric refractive index
grating for a 0.75 mm long fiber (approximately 1 024 wavelengths). The Maxwell model
and the CMT model yield similar modal content along the entire length of the fiber.

Next, we prescribe an asymmetric perturbation to induce coupling between the LP01

and LP11 modes. The perturbation region is given by (6.7) with (x̃, ỹ) = (−0.4rcore, 0) and

r̃ = 0.6rcore, and the perturbation amplitude is δn = 2.5 · 10−4. The fiber is seeded with

90% FM and 10% LP11 mode. Figure 6.19 shows the modal content along the fiber length
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(ca. 0.75 mm) for the Maxwell model (Figure 6.19a) and the CMT model (Figure 6.19b). In

both simulations, significant energy is transferred from the FM to the HOM. Qualitatively,

both models yield the same results for the modal content. This result is remarkable consid-

ering the fact that each model relies on a completely different set of assumptions (or more

precisely, the CMT model makes significantly more assumptions than the Maxwell model).

Therefore, this cross-validation gives confidence to the quality of the approximations made

by the CMT model, which accurately reproduces the results of the higher-fidelity Maxwell

model for the modal energy transfer due to the grated refractive index in the fiber.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

Contributions. The first accomplishment of this dissertation is the development of a par-

allel MPI/OpenMP implementation of the three-dimensional FE software hp3D. This effort

focused on efficiently distributing the workload in the stiffness and load assembly process

based on a (mesh) distribution for DOFs, including dynamic load balancing to accommodate

adaptive refinements. The solve of the linear system was parallelized through interfacing

with third-party libraries (MUMPS, PETSc), and we also developed a distributed nested

dissection solver that is particularly suitable to solving waveguide problems. Of particular

importance, the parallel software supports all of the advanced FE technologies implemented

in hp3D, including: 1) isotropic and anisotropic hp-adaptive mesh refinements; 2) hybrid

meshes with tetrahedral, hexahedral, prismatic, and pyramidal elements; 3) conforming

discretizations of the H1–H(curl)–H(div)–L2 energy spaces; and 4) coupled multiphysics

variables. The support of these FE technologies makes the scalable parallel hp3D software

a unique analysis tool applicable to complex multiphysics problems. For this reason, the

developed software capabilities advance the state of the art in hp-adaptive FE computation.

Using robustly stable DPG FE discretizations for the time-harmonic Maxwell equa-

tions, we studied the pollution effect in optical waveguides. Our study corroborates theo-
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retical results [89, 39, 90] and provides guidance on how to mitigate pollution in waveguide

problems. We also showed that the built-in error indicator of the DPG method can be effec-

tively used to guide hp-adaptivity for capturing high-order modes in waveguide simulations.

Additionally, this dissertation presented a high-fidelity 3D fiber amplifier model based

on a conforming DPG FE discretization for the time-harmonic Maxwell equations. We

were able to make significant modeling advancements, demonstrating how to incorporate

nonlinear laser amplification and thermal effects into the full vectorial Maxwell model for

an ytterbium-doped fiber amplifier, while maintaining the computational feasibility. The

model natively supports co-, counter-, and bi-directional pumping configurations, as well as

anisotropic materials. Our parallelization effort has enabled large-scale numerical simulations

of the fiber amplifier model with several thousand wavelengths. The parallel hp3D code was

shown to scale efficiently in these simulations for up to 512 compute nodes (24 576 cores)

and more than one billion DOFs.

Limitations. The computational advancements of this effort enabled us to scale the size of

the full 3D fiber model simulation from computing less than 100 wavelengths to solving circa

10 000 wavelengths. Even though this represents a significant advancement, it is far short

of simulating a full-length fiber of 5–20 meters that would require resolving several million

wavelengths. A simulation of this size remains currently infeasible with our model mainly

due to the numerical pollution effect that drives the need for higher-order discretization as

the fiber length is increased. To simulate laser gain in a short fiber, we introduced an artificial

longitudinal scaling for our model. While this approach may have limitations, we showed

that it qualitatively preserves certain quantities of interest (power distribution, amplifier

efficiency, and thermal load); a similar approach was used in [43].

Another limitation of the 3D model is the accurate propagation of cladding fields for

many wavelengths. In the same way that the fiber core guides light, the silica-glass cladding

is itself also a waveguide; this is exploited in cladding-pumped amplifiers. Since the fiber
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cladding is much larger than the fiber core, it is difficult to find an efficient discretization

that captures propagating modes in both the fiber core and cladding geometry. Increasing

the mesh resolution in the fiber cladding with additional high-order elements mitigates this

issue but increases the computational complexity of the simulation. We note that other fiber

amplifier models typically do not model cladding modes explicitly. Instead, many models

simply approximate the pump field as a guided plane wave [114, 96, 43].

Implications for fiber amplifier modeling. The state of the art in numerical simula-

tion of fiber amplifiers mostly consists of BPM and CMT approaches. These models are

much more computationally efficient than the 3D vectorial Maxwell model developed in this

dissertation. However, to achieve computational efficiency, BPM and CMT models make

a variety of assumptions that may limit their ability to accurately capture some of the

nonlinear optical phenomena in fiber amplifiers. While our 3D Maxwell model is computa-

tionally expensive, it provides unique opportunities to simulate those nonlinearities because

the model makes as few assumptions as possible. As a high-fidelity model, it also effectively

complements other, typically lower-fidelity, fiber amplifier models. It does so, for instance,

by providing a validation tool for lower-fidelity models. Therefore, we believe that our model

and implementation will contribute to finding mitigation strategies for undesired nonlinear

effects in optical fiber amplifiers.

7.2 Future work

Fiber amplifier simulation. In future work, our 3D Maxwell model could be extended

to the full problem domain (e.g., the polymer coating), more complex fiber geometries (e.g.,

microstructure fibers), and/or to include other realistic effects (e.g., SBS). One additional

feature of interest is the effect of coiling the fiber around a (cooling) spool. This bending of

the fiber is in principle already supported by the model but has not been studied extensively.

As the complexity of the model increases, a more sophisticated nonlinear solver may be
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required. Future numerical tests of this model will also attempt to show the onset TMI

power threshold in the scaled short fiber, as well as the correct relative changes to this

threshold for known TMI mitigation techniques (e.g., reducing the core numerical aperture).

To investigate mode instabilities, it may be necessary that the artificially scaled fiber is long

enough to capture the interference patterns between the guided modes, meaning at least

multiple mode beat lengths.

Adaptive multilevel solver. Because of its elongated geometry, the fiber amplifier model

can be efficiently computed with our parallel nested dissection solver. In general though,

fast and robust iterative solution schemes for high-frequency wave problems are still needed

despite much progress in the last decade [48, 56]. A recently proposed DPG-based adaptive

multilevel solver [103, 104] was shown to efficiently and reliably solve difficult problems

with localized wave solutions. This multilevel solver was developed in hp3D and builds on

the hp-adaptive FE technology of the code. However, the current implementation does not

support distributed-memory computation. An MPI implementation of this solver is under

development in hp3D and will enable solution of currently intractable problems in 3D wave

simulation.

Open-source code and hp FE book volume III. Both the hp3D library and indi-

vidual application codes are currently maintained in a private GitHub repository. We plan

to publish the hp3D software under a permissive, open-source BSD-3 license. To make the

software more accessible to users, we aim to extend its documentation, including code doc-

umentation, descriptions of model problems, and an extensive user manual. Building on the

existing books [26, 37], we are working towards publishing the third volume of the hp FE

book series, describing new features [57, 83, 50, 102] and parallelization of the hp3D code,

in particular, as well as giving in-depth descriptions of multiphysics applications that have

been implemented in hp3D.
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Appendix A

Tabulated Values

A.1 SI units

Symbol Description

m Meter
kg Kilogram
s Second
rad Radian
A Ampere
C Coulomb
F Farad
H Henry
J Joule
K Kelvin
N Newton
T Tesla
V Volt
W Watt
Wb Weber

Table A.1: SI units
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A.2 Physical constants

Symbol Description Value Unit

ε0 Vacuum permittivity 8.854 · 10−12 F/m
µ0 Vacuum permeability 4π · 10−7 H/m
c Speed of light in vacuum 2.998 · 108 m/s
~ Reduced Planck’s constant 1.055 · 10−34 J·s

Table A.2: Physical constants

A.3 Fiber amplifier model parameters

Symbol Description Value Unit

l0 Length 10−5 m
I0 Irradiance 1010 W/m2

σ0 Absorption/Emission cross-section 10−26 m2/ion
ν0 Ion population concentration 1025 ion/m3

T0 Temperature 1 K
t0 Time 10−3 s

Table A.3: Selected dimensional scales

Symbol Description Derivation Value Unit

ω0 Angular frequency c/l0 2.998 · 1013 rad/s
E0 Electric field

√
I0/(cε0) 1.941 · 106 V/m

H0 Magnetic field
√
cε0I0 5.152 · 103 A/m

P0 Power I0l
2
0 1 W

g0 Active gain σ0ν0 10−1 1/m
g0,R Raman gain gRI0 10−3 1/m

Table A.4: Derived dimensional scales
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Symbol Description Value Unit

rcore Core radius 12.7 µm
rclad Cladding radius 127 µm
ncore Refractive index in fiber core 1.4512 -
nclad Refractive index in fiber cladding 1.4500 -
NA Core numerical aperture 0.059 -
λs Signal wavelength 1 064 nm
λp Pump wavelength 976 nm
V (ωs) Normalized signal frequency 4.43 -

Table A.5: Step-index fiber parameters

Parameter Description Value Unit

σabs
s Absorption cross-section (signal light) 6 · 10−27 m2/ion
σems
s Emission cross-section (signal light) 3.58 · 10−25 m2/ion
σabs
p Absorption cross-section (pump light) 1.429 · 10−24 m2/ion
σems
p Emission cross-section (pump light) 1.776 · 10−24 m2/ion
NYb

total Total ion population concentration 6 · 1025 ion/m3

τ Upper level radiative lifetime 8 · 10−4 s

Table A.6: Active gain model parameters (ytterbium-doped fiber)

Parameter Description Value Unit

Cp Specific heat capacity 703 J/(kg·K)
ρ0 Mean density 2 201 kg/m3

κ Thermal conductivity 1.38 W/(m·K)
dn/dT Thermo-optic coefficient 1.285 · 10−5 1/K

Table A.7: Heat coupling model parameters (silica glass)

Parameter Description Value Unit

gR Bulk Raman gain coefficient 10−13 m/W
λs Stokes field wavelength 1 116 nm

Table A.8: Raman gain model parameters
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A.4 Bessel functions

n m

0 1 2 3 4 5

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

Table A.9: n-th roots of m-th order Bessel functions Jm

n m

0 1 2 3 4 5

1 3.8317 1.8412 3.0542 4.2012 5.3175 6.4156
2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199
3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872
4 13.3237 11.7060 13.1704 14.5858 15.9641 17.3128

Table A.10: n-th roots of m-th order Bessel functions derivatives J ′m
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Appendix B

Fiber Amplifier Model Computation

B.1 Non-dimensionalization of the governing equations

As in many other applications, non-dimensionalization is essential in the numerical computa-

tion of the solution to the Maxwell equations. In particular, when the scales involved are very

disparate as in the case of optical fiber amplifiers. We proceed by first non-dimensionalizing

the linear time-harmonic Maxwell equations (1.16)–(1.17), then consider the active gain

model (5.9)–(5.10).

Non-dimensional Maxwell equations. First, we define the non-dimensional variables

x̂, ŷ, ẑ, ω̂k, Êk, Ĥk by

x = l0x̂, y = l0ŷ, z = l0ẑ, (B.1)

ωk = ω0ω̂k, (B.2)

Ek = E0Êk, (B.3)

Hk = H0Ĥk, (B.4)

where l0, ω0, E0, and H0 are appropriate dimensional scales, and the index k ∈ {s, p} refers

to the signal or pump field, respectively. See Table A.3 for an overview of the selected
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dimensional scales in the fiber amplifier model. Then,

∂

∂xi
=

∂

∂x̂i

∂x̂i
∂xi

= l0
∂

∂x̂i
, i = 1, 2, 3, (B.5)

where {x1, x2, x3} ≡ {x, y, z}; consequently,

∇× =
1

l0
∇̂ × . (B.6)

Plugging these relations into (1.16)–(1.17) yields

∇̂ × Êk = −iH0l0ω0µ0

E0
µr,kω̂kĤk, (B.7)

∇̂ × Ĥk = i
E0l0ω0ε0

H0
εr,kω̂kÊk, (B.8)

where µr,k = µk/µ0, εr,k = εk/ε0 are the (dimensionless) relative permeability and permit-

tivity, respectively. By definition, µr,k = εr,k = 1 in vacuum. Let

H0l0ω0µ0

E0
= 1, (B.9)

E0l0ω0ε0

H0
= 1; (B.10)

then,

ω0 = c/l0, H0 = ε0cE0. (B.11)

We can choose two problem-dependent dimensional scales. In the fiber amplifier model,

we select an intensity scale I0 that determines the field magnitudes through I0 = E0H0, as

well as a length scale l0; these also define the power scale P0 = I0l
2
0. Now, we can write down
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the non-dimensional version of the equations:

∇̂ × Êk = −iµr,kω̂kĤk, (B.12)

∇̂ × Ĥk = iεr,kω̂kÊk. (B.13)

Next, consider the active gain model (5.9)–(5.10). Let ĝk denote the non-dimensional

gain function with scale g0. The dimensional scale g0 can be calculated from appropriate

scalings for absorption and emission cross-sections and the ion population concentration,

σ
{abs,ems}
k = σ0σ̂

{abs,ems}
k , NYb

{total,ex,gr} = ν0N̂Yb
{total,ex,gr}, (B.14)

so that g0 = σ0ν0, yielding the non-dimensional active gain Maxwell system:

∇̂ × Êk = −iω̂kĤk, (B.15)

∇̂ × Ĥk = in2ω̂kÊk − nl0g0ĝk(Ê{s,p})Êk. (B.16)

Non-dimensional wavelength. To calculate the number of wavelengths for a given fiber

domain, we must take the non-dimensionalization of the spatial component and the frequency

component into account. By definition, the wavelength λ0,k (in vacuum) is

λ0,k =
2πc

ωk
=

2πc

ω0ω̂k
=

2π

ω̂k
l0, (B.17)

thus the non-dimensional wavelength is λ̂0,k = λ0,k/l0 = 2π/ω̂k.

Inside a medium with uniform refractive index n,

λ̂k =
λ̂0,k

n
=

2π

ω̂kn
, (B.18)
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so the number of wavelengths per unit length l0 is

1

λ̂k
=
ω̂kn

2π
, (B.19)

where 2π/λ̂k can be identified as the non-dimensional wavenumber.

Non-dimensional heat equation. We must also non-dimensionalize the heat equation

for the coupled problem. Let

δT = T0δT̂ , (B.20)

t = t0t̂, (B.21)

with an appropriate temperature scale T0 and time scale t0. Then, the heat equation (5.29)

becomes
ρ0CpT0

t0

∂(δT̂ )

∂t̂
− κT0

l20
∆̂(δT̂ ) = g0I0Q̂(Î{s,p}). (B.22)

Rearranging the coefficients yields

∂(δT̂ )

∂t̂
− κt0
l20ρ0Cp︸ ︷︷ ︸
≡α0

∆̂(δT̂ ) =
g0I0t0
ρ0CpT0︸ ︷︷ ︸
≡Q0

Q̂(Î{s,p}), (B.23)

where α0 denotes a non-dimensional diffusivity scale, and Q0 denotes a non-dimensional heat

deposition scale. Choosing T0 = 1 K, t0 = 1 ms, l0 = 10 µm, I0 = 1010 W/m2, g0 = 0.1 m−1

(cf. Table A.3), we obtain α0 ≈ 8.92 and Q0 ≈ 0.646 for the silica glass material (see

parameters in Table A.7).
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B.2 Definition of guided LP modes

This section summarizes the linearly polarized guided modes for the step-index fiber with

parameters given by Table A.5. This particular fiber supports four core-guided LP modes:

LP01,LP11,LP21, and LP02. Two of the modes, LP01 and LP02, are radially symmetric. The

LP11 and LP21 modes are asymmetric and consist of two (L2-orthogonal) fields each, rotated

by 90 degrees and 45 degrees, respectively; these rotated fields are denoted by {LP11a,LP11b}

and {LP21a,LP21b}. Six additional corresponding y-polarized LP modes exist. The plots in

Figure B.1 show the magnitude of the electric fields (colors) as well as the orientation (glyphs)

of the x-polarized light for the asymmetric modes.

The x-polarized electric fields (Ex-components) of the (unnormalized) guided modes

are denoted by {ψ01, ψ11a, ψ11b, ψ21a, ψ21b, ψ02}, respectively. Let x = r cos θ, y = r sin θ,

where θ ∈ [0, 2π); then,

ψ01(r, θ) =

 J0(γ01r)/J0(γ01rcore), r ≤ rcore,

K0(β01r)/K0(β01rcore), r > rcore,
(B.24)

ψ11a(r, θ) = cos(θ)

 J1(γ11r)/J1(γ11rcore), r ≤ rcore,

K1(β11r)/K1(β11rcore), r > rcore,
(B.25)

ψ11b(r, θ) = sin(θ)

 J1(γ11r)/J1(γ11rcore), r ≤ rcore,

K1(β11r)/K1(β11rcore), r > rcore,
(B.26)

ψ21a(r, θ) = cos(2θ)

 J2(γ21r)/J2(γ21rcore), r ≤ rcore,

K2(β21r)/K2(β21rcore), r > rcore,
(B.27)

ψ21b(r, θ) = sin(2θ)

 J2(γ21r)/J2(γ21rcore), r ≤ rcore,

K2(β21r)/K2(β21rcore), r > rcore,
(B.28)

ψ02(r, θ) =

 J0(γ02r)/J0(γ02rcore), r ≤ rcore,

K0(β02r)/K0(β02rcore), r > rcore,
(B.29)
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Figure B.1: Electric field magnitude and orientation of x-polarized asymmetric guided LP
modes. The step-index fiber with parameters given in Table A.5 supports four guided modes:
LP01,LP11,LP21, and LP02. The radially asymmetric LP11 and LP21 modes have two possible
rotations each.

with the (normalized) coefficients,

{γ01, β01} ≈ {1.53131, 3.12978} , (B.30)

{γ11, β11} ≈ {2.41319, 2.51336} , (B.31)

{γ21, β21} ≈ {1.81660, 1.42726} , (B.32)

{γ02, β02} ≈ {3.33123, 1.02145} . (B.33)

The ratio of the power that is confined to the core region, denoted Γ and previously
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defined in (4.20), varies significantly between these modes. The respective confinement ratios

for the core-guided LP modes are

{Γ01,Γ11,Γ21,Γ02} ≈ {96.11, 88.77, 74.79, 59.58}%. (B.34)

B.3 Perfectly matched layer: implementation

Section 2.5.2 gave a brief introduction to the idea of using absorbing boundary layers in wave

propagation problems posed in unbounded domains. While optical fibers have in principle

finite length, the computation of the Maxwell model is too expensive to model an entire fiber.

Therefore, we consider an artificially bounded fiber domain that can be thought of as a small

section of an optical fiber. At the end of this bounded domain, we want to avoid artificial

reflections of the wave caused by imposing (artificial) boundary conditions. Following [6],

we summarize the key points behind complex coordinate stretching in PMLs for the DPG

method and apply this technique to the Maxwell problem in the fiber domain.

L

PML

Laser

r

Figure B.2: Illustration of the PML region in the fiber amplifier model. A small layer with
complex coordinate stretching at the fiber end is sufficient to absorb the outgoing wave.

Complex coordinate stretching in a fiber waveguide. Consider a bounded fiber

domain Ω := Ωt×(0, L) ⊂ R3, where Ωt := {(x, y) : x2+y2 < r2} is the transverse domain for

a fiber of radius r, and L is the length of the (fiber) domain. Then, we define a computational

fiber domain Ωc := Ωt× (0, l) ⊂ Ω, where l < L is the length of the (computational) domain

of interest. The PML region is given by ΩPML := Ω\Ωc. An illustration of the setup is shown
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in Figure B.2. We define the following (uniaxial) complex stretching map:

R3 3 (x, y, z) −→ (x, y, z̃) ∈ C3, (B.35)

where

z̃ =

 z , if 0 < z < l,

z − if(z, ω) , if l ≤ z < L,
(B.36)

and f(z, ω) > 0 is the stretching function. Since the coordinate stretching is only done inside

the PML region, the solution in the domain of interest Ωc coincides with its unstretched

counterpart. Meanwhile, inside the PML region, the positive stretching function causes

(outgoing) guided waves of the form E(x, y)e−ikz to decay exponentially.

In our numerical experiments, we have used the stretching function

f(z, ω) =
C

ω

(
z − l
L− l

)n
, (B.37)

where C = 25, n = 3, and the length of the PML region, L− l, is usually on the order of a

few wavelengths of the fundamental mode.

Ultraweak DPG Maxwell formulation with PML. Let J denote the (diagonal) Ja-

cobian corresponding to the (uniaxial) stretching defined in (B.35)–(B.36); J is given by:

J =


1 0 0

0 1 0

0 0 ∂z̃/∂z

 . (B.38)

In our implementation of the PML, we follow [6]; that is, we first use Piola transfor-

mations for the exact sequence spaces to pull-back the Maxwell equations from the stretched

coordinate system into the regular Cartesian coordinates, then develop the variational for-
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mulation. The strong form of the pulled-back equations is:

 J−1J∇×E + iωµJ−TH = 0,

J−1J∇×H − iωεJ−TE = 0,
(B.39)

where J = detJ . We consider anisotropic, heterogeneous material parameters (i.e., µ and ε

are non-uniform second-rank tensors) which are needed to model birefringent fibers, for ex-

ample. The pulled-back equations can now be used to derive the broken ultraweak variational

formulation:
E,H ∈ (L2(Ω))3, Ê ∈ Û , Ĥ ∈ H−1/2(curl,Γh),

(E,∇h × F ) + 〈n× Ê,F 〉Γh
+ (iωJJ−1µJ−TH ,F ) = 0, F ∈ H(curl,Ωh),

(H ,∇h ×G) + 〈n× Ĥ ,G〉Γh
− (iωJJ−1εJ−TE,G) = 0, G ∈ H(curl,Ωh),

(B.40)

where Û :=
{
q̂ ∈ H−1/2(curl,Γh) : n× q̂ = n×E0 on Γ

}
. In the fiber problem, we impose

PEC boundary conditions (n×E0 = 0) at the fiber exit (z = L), assuming that the (forward

traveling) wave has decayed to zero (numerically) in the PML region (l ≤ z < L).

The stretching also translates into a modified computation for the adjoint graph norm

in the test space (cf. Section 2.5.1). Denoting v = (F ,G) ∈ V(Ωh) ≡ (H(curl,Ωh))2, the

(quasi-optimal) test norm is given by:

‖v‖2V(Ωh) = ‖∇h × F + iω(JJ−1εJ−T )∗G‖2

+ ‖∇h ×G− iω(JJ−1µJ−T )∗F ‖2 + α(‖F ‖2 + ‖G‖2).

(B.41)

Numerical example. To show the effectiveness of the PML in the fiber simulation, we

consider the nonlinear gain problem (Chapter 5). In a short fiber (L = 1.2) with moderate

active gain, the signal laser is amplified along the length of the computational domain of

interest (0 < z < l, l = 0.9) as shown in Figure B.3 (ca. 12 wavelengths). As the wave enters

the artificial PML region (l ≤ z < L), it decays exponentially and vanishes completely within
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just a few wavelengths, justifying the PEC boundary conditions at z = 1.2. The pump field,

not shown in Figure B.3, exhibits a similar decay in the PML region but uses a stretching

function corresponding to the pump frequency ωp.

Figure B.3: Electric and magnetic field components plotted over the longitudinal fiber axis
in the nonlinear active gain problem. The amplified signal field is decaying exponentially in
the PML region.

B.4 Raman gain amplification

In this section, we state the Raman gain model proposed in [98] and our modifications that

include a different non-dimensionalization and adjusted gain scaling for computing on short

fibers. This modified model is the one used in the Raman gain simulations in Section 6.3.

Similar to the active gain model, the Raman gain model couples the two propagating fields

(signal/Stokes field and pump field) via a gain function g. Although Raman scattering is

an optical nonlinearity typically modeled as a third-order susceptibility, the Raman gain

polarization can be approximated by the following first-order complex-valued perturbation

to the refractive index [98]:

PRaman gain
k = iε0

nc

ωk
gkEk, (B.42)

where gk is the Raman gain function (with unit m−1). This gain function is given by:

gk = gk(Il) := Υk
RgRIl, k, l ∈ {s, p}, l 6= k, (B.43)
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where

Υk
R =

 −ωp/ωs , k = p,

1 , k = s,
(B.44)

and gR is the bulk Raman gain coefficient (an experimentally determined value). For exam-

ple, in a real silica fiber we may assume gR ≈ 10−13 m/W [118]. It is helpful to assume a

realistic value which can be embedded into our model non-dimensionalization. A-posteriori

we introduce a (non-dimensional) artificial gain scaling coefficient g̃R that enhances the Ra-

man gain per unit length. By using g̃R, we can then more clearly see by how much the gain

in the short fiber needs to be artificially scaled compared to a realistic fiber. This is a similar

approach as we took for the active gain model (cf. (5.34)) and differs from the approach taken

in [98]. Let ĝk = ĝk(Îl) denote the non-dimensional Raman gain function with a dimensional

scale g0,R := gRI0. Proceeding analogous to the derivation of the non-dimensional active

gain Maxwell system (B.15)–(B.16), we obtain:

∇̂ × Êk = −iω̂kĤk, (B.45)

∇̂ × Ĥk = in2ω̂kÊk − nl0g0,Rg̃Rĝk(Îl)Êk, (B.46)

where ĝk(Îl) = Υk
RÎl, and g̃R is the artificial scaling of the Raman gain coefficient used for a

short fiber.
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