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Abstract

The visual brain is optimally designed to process images from the nat-

ural environment that we perceive. Describing the natural environment statis-

tically helps in understanding how the brain encodes those images efficiently.

The Natural Scene Statistics (NSS) of the luminance component of images is

the basis of several univariate statistical models. Such models were the funda-

mental building blocks of multiple visual applications, ranging from the design

of faithful image and video quality models to the development of perceptually

optimized image enhancing techniques. Towards advancing this area, I stud-

ied the bivariate statistical properties of images and developed the first of its

kind closed-form model that describes the correlation of spatially separated

bandpass image samples. I found that the model was useful in tackling differ-

ent problems such as blindly assessing the quality of images and assessing 3D

visual discomfort of stereo images.
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Provided the success of NSS in tackling image processing problems,

I decided to use them as a tool to tackle the blind video quality assessment

(VQA) problem. First, I constructed a video quality database, the LIVE Video

Quality Challenge Database (LIVE-VQC). This database is the largest across

several key dimensions: number of unique contents, distortions, devices, reso-

lutions, and videographers. For collecting the subjective scores, I constructed

a new framework in Amazon Mechanical Turk. A massive number of subjects

from across the globe participated in my study. Those efforts resulted in a

VQA database that serves as a great benchmark for real-world videos. Next,

I studied the spatio-temporal statistics of a wide variety of natural videos and

created a space-time completely blind VQA model that deploys a directional

temporal NSS model to predict quality. My newly created model outperforms

all previous completely blind VQA models on the LIVE-VQC.
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Chapter 1

Introduction

Natural Scene Statistics (NSS) models are useful probes of the visual

brain, and of how it has evolved to efficiently process gigantic amounts of visual

data [1]. Previous work on NSS based image models has focused primarily on

characterizing the univariate bandpass statistics of single pixels. The param-

eters of univariate NSS models samples of bandpass images have been used as

fundamental low-level picture descriptors to successfully solve image and video

processing and analysis tasks such as image interpolation [2], texture model-

ing [3, 4], full reference and blind image quality prediction [5–9], and color

depth modeling [10]. Extending NSS models to characterize the bivariate be-

havior of images could help advance improved solutions to a wide variety of

applications. However to date, little effort has been applied towards modeling

the bivariate NSS of bandpass image samples. Towards addressing this prob-

lem, I developed a closed form bivariate spatial correlation model of bandpass

and normalized image samples that completes an existing two-dimensional

joint generalized gaussian distribution model [11] of adjacent bandpass pixels.

I also studied the behavior of the model in presence of distortions and I was

able to demonstrate that the parameters of my model vary systematically as

a function of the type and the amount of distortions introduced to an image.

1



This observation was the ground for building a distortion classification tool,

and a no-reference image quality predictor that outperformed the performance

of other state-of-the-art models. I took this model one step further by study-

ing the statistics of 3D images, and I was able to see that my model holds

in this case too. Then, I created a no-reference 3D visual discomfort pre-

dictor based on the parameters of my model that outperformed all the other

perception-based and deep neural network-based predictors.

Given the success of NSS to tackle multiple image quality related prob-

lems, I decided to NSS as a tool to tackle the blind video quality assesment

(VQA) problem. Digital video has become ubiquitous and now accounts for

the largest portion of Internet traffic. By 2021, it is expected that 82% of all

transmitted bits will contain video content [12]. The number of videos that are

being streamed is skyrocketing, with much of the traffic being driven by “cord-

cutter” streaming video services, such as Netflix, Hulu, and Amazon Prime

Video. However, the number of videos that are being captured and shared by

casual users is also dramatically growing. The significantly improved quality of

cameras that are found in smartphones is one of the important factors driving

this popularity, along with a wide range of camera-related apps that facilitate

the sharing, editing or aesthetic modification of images and videos. Sharing

“in-the-moment” experiences in the form of video has become quite popu-

lar using applications such as Instagram, Facebook, Twitter via Periscope,

Snapchat, and so on. Online videos have also revolutionized modern journal-

ism as they enable online news stories to unfold live, and allow the viewing
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audience to comment on or otherwise interact with it. Over the past year,

Facebook alone generated more than 100 million of video watch hours each

day [13]. On YouTube, the overall durations of the videos that are uploaded

daily exceeds 65 years, and more than 1 billion hours of their video content is

watched each day [14]. These numbers are continuing to rise and to reshape

digital marketing, entertainment, journalism, and amateur videography. The

volume of streaming video viewed online has become so large that more than

139 million people are now Netflix subscribers [15]. Streaming videos now

comprise the majority of Internet traffic today. It is no surprise that videos

account for the largest portion of Internet traffic, which is expected to eclipse

82% of all transmitted bits by 2021 [12]. These videos are captured using a

very wide variety of camera devices by users having very diverse goals and ex-

pertise, sometimes under difficult lighting conditions. This, coupled with the

many currently available camera devices built with different characteristics

leads to complex and often commingled distortions that degrade the quality

of the videos. These videos are captured and often uploaded to cloud services

such as iCloud and Google Photos and might be shared on platforms such as

YouTube, Instagram, and Facebook. Being able to predict the quality of these

videos is an important goal for a variety of invested practitioners, such as cam-

era designers, cloud engineers, and users who could be directed to recapture

videos of poor quality. In nearly every instance, a high-quality reference video

is not available, hence no-reference video quality predictors are of the greatest

interest. Current no-reference video quality models are unable to handle the
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diversity of distortions. This is true in part because available VQA databases

which are benchmarks containing videos and associated quality scores present

very limited content of fixed resolutions, captured using a small number of

camera devices by only a few videographers. This content is then subjected to

only a modest number of synthetic distortions. As such, these databases fail

to adequately represent real world videos, which contain very different kinds of

content obtained under various imaging conditions and are subject to authen-

tic, complex and often commingled distortions that are difficult or impossible

to simulate.

Towards advancing this area, I constructed a real-world, “in the wild”,

VQA database which consists of 585 videos, sourced from 80 different inexpert

videographers, and captured using 101 unique devices. The new database rep-

resents unprecedented degrees of realism, data authenticity, and relevance. To

collect the quality scores, I constructed a new framework in Amazon Mechan-

ical Turk to crowdsource the data from participants from across the world.

About 5000 participants, from 45 different countries took part of the subjec-

tive study resulting in over 200000 opinion scores. The significant diversity

of the subject pool raised many technical challenges owing to widely differing

viewing conditions and resources. However, I demonstrated that the frame-

work I built is robust against the many variables affecting the video rating

process. This effort resulted in a VQA database that is the largest along

several key dimensions: number of unique contents, capture devices, distor-

tion types and combinations of distortions, study participants, and recorded
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subjective scores.

Next, I studied the spatio-temporal statistics of a wide variety of natu-

ral videos and I created a space-time blind VQA model that deploys directional

temporal statistic models. The constituent statistical features of the new pre-

dictor show excellent consistency between its perceived quality. It also utilizes

a different temporal pooling strategy. Instead of creating a trained model,

I devised a completely blind video quality predictor that outperforms other

existing completely blind video quality models on the largest available subject

quality dataset of authentically distorted videos. The new model is simple and

computationally efficient as compared to other models.

The remainder of the dissertation is organized as follows; in Chapter

2, in the background section, I review relevant work in the literature to my

bivariate natural scene statistics model as well as to the blind VQA problem.

In Chapter 3, I summarize the contributions of my dissertation. In Chapter

4, I present the details of the closed-form bivariate NSS model and study

the model in the context of image distortions. Then, in Chapter 5, I breifly

summarize two applications of the bivariate NSS model: blind image quality

assesment and 3D visual discomfort prediction. In Chapter 6, I present a

new database that I built for tackling the blind VQA problem, the LIVE-

VQC database as well as a new framework for scaling up the collection of

video quality scores. And in Chapter 7, a new completely blind VQA model

based on spatio-temporal naturalness of videos is presented. The dissertation

concludes with future thoughts about the VQA problem in Chapter 8.
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Chapter 2

Background

I begin this chapter by describing relevant background to the second or-

der statistics modeling of natural scenes. Then, I overview relevant background

for the blind VQA problem related to the construction of VQA databases and

models that can predict quality closely to humans’ judgment.

2.1 Background Related to Second Order Natural Scene
Statistics Modeling

In this section, I describe existing previous relevant models of the sec-

ond order statistics of natural scenes, followed by a few concepts necessary to

understand my closed-form model.

2.1.1 Second Order Natural Scene Statistics Models

Early on, Simoncelli [16] and Liu et al. [17] observed that the coeffi-

cients of orthonormal wavelet (i.e; bandpass) decompositions of natural images

tend to be much less spatially correlated than the source images, yet they ex-

hibit strong intra and inter scale dependencies between bands [18]. These

observations formed the basis of an image texture model [3], where a set of

parametric constraints imposed on pairs of complex wavelet coefficients occu-
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pying adjacent spatial locations, orientations and scales are used to represent

and synthesize textures. Po et al. [19] developed a natural image model using a

hidden Markov tree, a Gaussian mixture model and two dimensional contourlet

features that capture interlocation, interscale and interdirection dependencies.

Mumford et al. [20] proposed an infinitely divisible statistical bandpass image

model that assumes natural segmentations of images into high-information ob-

jects, cast against an ergodic field of low-information regions. However, their

model does not capture the two-dimensional dependencies that occur within

bandpass images. Lee et al. [21] found that the power law dominates the

short spatial covariance function of pairs of bandpass image samples obeying

a reciprocal power law over short distances.

Prior efforts on the bivariate NSS have not produced closed form rep-

resentations. The first attempt to do so was reported in Su et al. [11]; but

their model was incomplete. The authors found it to be useful for tasks such

as color depth and range modeling [22] and stereopair quality evaluation [23].

In [24] and [25], I extended their work by studying the bivariate distributions

of the responses of horizontally related, oriented bandpass image samples sep-

arated by distance of up to 10 pixels. In this dissertation, I generalize my

findings even further by diversifying the model across spatial orientations and

by extending the studied distances to 25 pixels and more (up to to 35 pixels

for some of the spatial orientations). I demonstrate that for any image, the

bivariate NSS model correlation can be expressed using 6 parameters, per spa-

tial orientation. I also study the bivariate NSS of distorted images and I find

7



that my model is capable of representing the correlations between distorted

image samples. The observed changes in the bivariate NSS model parameters

when distortions are introduced are found to be systematic, suggesting their

usefulness in image distortion analysis and future image quality models.

2.1.2 1/f Processes

In order to understand better my model, it is necessary to also review

the concept of 1/f processes. It is well known that the power spectra of natural

photographic images tend to follow a reciprocal power law [26]:

S(f) ∝ k

fα
, (2.1)

where α > 0 determines the rate of spectral fall-off of the process.

Other phenomena that can be described by this law include the ex-

treme case of white processes (α = 0) which exhibit no correlation over time

or space, and random walks (e.g., Brownian motion where α = 2, which is

the integral of white noise). Johnson [27] first observed a so called “1/f ” phe-

nomenon while studying shot noise in vacuum tubes. Processes that can be

accurately described as “1/f ” arise in such widely-varying disciplines as bio-

logical evolution [28], animal population studies [29], economics [30], personal

growth and development [31], and musical loudness and pitch [32], among

many others. The wide range of occurrences of the 1/f phenomenon may be

attributed to deep natural laws that reflect the self-similarities of certain sig-

nal measurements over scales and the behavior of equilibrium systems. Formal
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mathematical frameworks such as fractional Brownian motion models [33,34],

fractals [35], and iterated function systems [36] have been deeply developed,

yet the physical origins of 1/f phenomena are often poorly understood. For ex-

ample, although images of natural scenes are enormously diverse, their power

spectra can be reliably described as 1/f [1, 26, 37], reflecting statistical regu-

larities underlying their correlation structure, yet the origin of this behavior

is not known.

Here I am primarily interested in the 1/f image model in regards to its

implications regarding the correlation structure of bandpass natural images.

My interest in this topic is motivated by the successes that have been obtained

on perception-driven image analysis problems using spatial NSS models, and

which might be furthered by expanding these models. This may also lead

to insights on how natural correlations may drive spatial interactions between

visual cortical neurons [1,38–40]. Keshner [41] derived models of the stationary

autocorrelation functions of one-dimensional 1/f processes, arriving at a power

law of reciprocal separation. In the following, I develop a similar expression

for the peak correlation between bandpass image samples, using a stabilized

reciprocal power law.

2.2 Background Related to VQA Databases

It is necessary that VQA algorithms be trained and/or tested on ex-

tensive subjective video quality data sets so that it maybe asserted that they

reflect or are capable of closely replicating human judgments. As a result, over
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the past decade numerous researchers have designed and built VQA databases.

2.2.1 Conventional Laboratory VQA Databases

The LIVE VQA Database [42] contains 10 pristine high-quality videos

subjected to 4 distortion types: MPEG-2 compression, H.264 compression,

H.264 bitstreams suffering from IP, and wireless packet losses. The resource

in [43] offers 156 video streams suffering from H.264/AVC artifacts and wire-

less packet losses. The LIVE QoE Database for HTTP-based Video Stream-

ing [44], studies the quality of experience of users under simulated varying

channel induced distortions, and the LIVE Mobile Video Quality Database

[45] includes channel induced distortions and dynamically varying distortions,

such as varying compression rates. More recent databases include the TUM

databases [46, 47], which target H.264/AVC distortions on a few contents (4

and 8); and the MCL-V [48] database consists of 12 video source clips and 96

distorted videos, targeting distortions related to streaming (compression, and

compression followed by scaling). The MCL video quality database contains

200 raw sequences targeting compression artifacts [49]. Most available video

quality databases were conducted under highly-controlled laboratory condi-

tions by introducing sets of graded simulated impairments onto high-quality

videos. Given questions that arise regarding the realism and accuracy of rep-

resentation of synthetic distortions, researchers have also conducted studies on

the quality perception of authentic, real-world distortions such as distortions

that occur during video capture [50,51].
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2.2.2 Crowdsourced VQA Databases

Crowdsourcing is a portmanteau of the words crowd and outsourcing.

The term was first used in 2006 to describe the transfer of certain kinds of

tasks from professionals to the public via the Internet. Crowdsourcing has

recently proved to be an efficient and successful method of obtaining anno-

tations on images regarding content [52], image aesthetic [53] and picture

quality [54]. An early effort to crowdsource video quality scores was reported

in [55]. The authors proposed a crowdsourced framework, whereby pairwise

subjective comparisons of the Quality of Experience of multimedia content

(audio, images and videos) could be recorded.

The authors of [54] conducted a large-scale, comprehensive study of

real-world picture quality and showed that their results were quite consistent

with the results of subjective studies conducted in a laboratory.

This success of latter study [54] has inspired my work here, with a goal

to build a large, diverse and representative video database on which I crowd-

sourced a large-scale subjective video quality study. I encountered many diffi-

culties along the way, many of which were significantly more challenging than

in the previous picture quality study [54]. The issues encountered from simple

participant problems (distraction, reliability and a imperfect training [56]), to

more serious issues such as variations in display quality, size and resolution, to

very difficult problems involving display hardware speed and bandwidth con-

ditions on the participant’s side. I carefully designed a framework in Amazon

Mechanical Turk (AMT) to crowdsource the quality scores while accounting
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for these numerous factors, including low bandwidth issues which could result

in video stalls, which are very annoying during viewing and can heavily impact

the experienced video quality.

Previous crowdsourced video quality studies have not addressed the

latter very important concern. For example, in the study in [57], the partic-

ipants were allowed to use either Adobe Flash Player or HTML5 to display

videos, depending on the compatibility of their browser. However, in their

methodology, no assurance could be made that the videos would fully preload

before viewing, hence there was no control over occurrences of frame freezes

or stalls, or even to record such instances on the participants’ end, as Flash

Player does not have this option, and some browsers disable this option for

HTML5 video element. When the videos are not preloaded and are streamed

instead, interruptions and stalls are often introduced, whereas the study in [57]

did not report any effort to record whether such events took place. The early

QoE crowdsource framework [55] also did not report any accounting of this

important factor.

A significant and recent crowdsourced VQA database was reported in

[58], providing an important new resource to the video quality community. In

this study, a subject was asked to rate any number of videos within the range

10 to 550 videos. I would like to note that viewing as many as videos as the

upper end of this range is likely to produce fatigue, which affects performance.

Generally, it is advisable to restrict the number of watched videos per session so

that the session time does not exceed 30-40 mins including training, to reduce
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fatigue or loss of focus [59]. Also, I observed that the study participants in [58]

were allowed to zoom in or out while viewing, which can introduce artifacts on

the videos, and can lead to interruptions and stalls. Scaling a video up or down

is computationally expensive. Under these conditions, stalls could occur even

if a video was fully preloaded into memory before being played. Downscaling

and upscaling artifacts, and video stalls are factors that significantly impact

the perceived video quality. Detecting whether stalls occurred is also critical.

It appears that the authors of the study did not account in any way for stalls,

which is highly questionable, since stalls can deeply impact reported subjective

quality. These types of issues underline the difficulty of online video quality

studies, and the need for careful design of the user interface, monitoring of

the subjects, and the overall supporting pipeline used to execute a large-scale

study.

A few other video crowdsourcing methods have been reported, at much

smaller scales without addressing the difficult technical issues [60–64] described

in the preceding.

2.3 Background Related to Video Quality Prediction

Once VQA databases are available, the next important problem is to

design models and algorithms that can be used to automatically assess the

quality of videos in high agreement with human opinions. I review here rele-

vant background relared to video quality prediction.
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2.3.1 Review of the VQA Algorithms

VQA algorithms are classified based on the amount of information that

the algorithm has access to:

• Full reference (FR) VQA algorithms, which compare a distorted version

of a source to its pristine reference. Notable commercially deployed FR

VQA models include SSIM [65], MS-SSIM [66], VMAF [67], VIF [68],

and MOVIE [69].

• Reduced reference (RR) VQA algorithms which do not have access to

an entire reference video, such as ST-RRED [70] and VQM [71].

• Blind or no-reference (NR) VQA algorithms do not utilize any informa-

tion to predict quality beyond the distorted videos. A notable NR VQA

model that supplies good general performance is the Video-Blind Image

Integrity Notator using DCT-Statistics (V-BLIINDS) [72]. The predic-

tor that I describe in this dissertation also falls within this category of

models, hence I discuss these in greater detail in the following.

The oldest VQA model is the FR PSNR/MSE, which is easy to imple-

ment and to compute, and is applied on a frame basis. Unfortunately, PSNR

fails to account for perception, and cannot be used alone to analyze degrada-

tions that develop even over time intervals, or moving artifacts, or distortions

that might be revealed by analyzing temporal change. As a result, they do not

correlate well with human perceptions of video quality. There are a variety of
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more successful FR models that embed models of how humans perceive visual

distortions, and or the statistics of visible distortions in digital videos. Early

models include the Visual Differences Predictor (VDP) [73], the classical Man-

nos and Sakrisons model [74], the Sarnoff JND Model [75], and the Moving Pic-

ture Quality Metric (MPQM) [76]. Subsequent models include the Structural

Similarity (SSIM) [6], Multiscale- SSIM (MS-SSIM) [66], Visual Information

Fidelity (VIF) [68], and the Visual Signal-to-Noise Ratio (VSNR) [77]. An-

other group of FR models makes use of more sophisticated temporal measure-

ments such as TetraVQM [69], MOVIE [69], SpatioTemporal-Most Apparent

Distortion (ST-MAD) [78], and Spatio-Temporal Reduced Reference Entropic

Differences (STRRED) [70].

2.3.2 NR VQA Models

The “blind” or NR VQA problem is useful in any scenario where pris-

tine no reference signal is unavailable , as when a consumer captures a video of

a scene with a digital camera or smart phone. Several NR VQA models have

been proposed. One of the most commonly used, and commercialized mod-

els is NIQE [8], which is a simple, quick and “completely” blind VQA model

that relies only on assessing the naturalness of video frames using a classi-

cal natural scene statistic (NSS) model. It is notable for not requiring any

training on any distorted signals, or on human opinions on them. When used

to conduct VQA, NIQE is applied on a frame basis, on which the mean sub-

tracted contrast normalized (MSCN) coefficients are computed. The MSCN
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coefficients of high-quality of images or video frames strongly tend to follow a

generalized Gaussian distribution (GGD). However, the presence of distortions

usually causes this property to break down. However, the MSCN coefficients

of distorted images and video frames are often effectively modeled as following

a generalized Gaussian distribution whose variance and shape parameters vary

systematically according to the nature of the distortions. When the MSCN

features are computed on a set of distorted images annotated with human la-

bels, and these are used to train a regressor, then a model called BRISQUE [7]

is arrived at.

More sophisticated predictors that incorporate temporal information

also exist. Notable examples include V-BLIINDS [72], which makes use of a

measure of motion coherency, a simple estimate of egomotion, as well as NSS

model features (spatial and temporal DCT features, sub-band features, DC

coefficients and spatial naturalness) to predict quality. This blind algorithm

also requires training. Another model called VIIDEO [79] measures losses

of statistical regularity observed on natural videos when they are disturbed

by distortions. VIIDEO models inter sub-band correlations over local and

global time spans. The model described in [80] extends the ideas behind V-

BLIINDS [72], by creating quality-aware 3D-DCT features which are used to

predict video quality. The NR model FC [81] uses a variety of spatial and

temporal information indices to predict quality. The NR model in [82] relies

on statistical artifact measurement, while [83] describes a deep convolutional

network trained to blindly predict video quality.
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Chapter 3

Contributions

In this dissertation, I tackled two important main problems: explor-

ing the bivariate NSS of images and tackling the blind VQA problem. The

contributions in my dissertation are summarized as follows:

1. Modeling the bivariate NSS model of images in closed-form .

2. Using the bivariate NSS as tool to tackle a couple of quality assessment

related problems (blindly prediction of image quality and 3D visual dis-

comfort prediction of stereo images).

3. Scaling up subjective video quality studies by building a new robust

framework for conducting crowdsourced VQA studies.

4. Building the largest VQA database across several key aspects such as the

size of the database, the number of unique contents, distortions, com-

bination of distortions, capture devices, resolutions, orientations, and

subjects who provided quality labels.

5. Creating a “completely blind” video quality model that relies on a unique

set of directional spatio-temporal NSS features, and which does not re-

quire any kind of training.
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Chapter 4

Modeling the Bivariate NSS of Images in

Closed-Form

In this chapter, I present the details of the model I built to capture

the NSS of images in closed-form beginning with the preprocessing steps of

bandpass decomposition and divisive normalization. Along the way, I demon-

strate the various processing steps used in the model using high quality images

from the pristine subset of LIVE Image Quality Assessment database [84]. I

also study the model properties on white noise and the way the model fits are

affected when the images are modified by common distortions. 1

4.1 Processing Steps of my Model

A flow diagram of the involved processing in my model is shown in Fig.

4.1. Each step is presented in details next.

1This chapter appears in the following paper: Zeina Sinno, Constantine Caramanis, Alan
C. Bovik: “Towards a Closed Form Second-Order Natural Scene Statistics Model” in the
IEEE Transactions on Image Processing 27(7): 3194-3209 (2018). Zeina Sinno has studied
the model and performed the full experimental analysis of the works described therein.
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Figure 4.1: Image pre-processing used in the NSS correlation model.

4.1.1 Steerable Filters

The NSS model that I use and develop is based on luminance images

that have been subjected to bandpass processing. While the model appears

to hold over a wide range of bandpass operations (Gabor, wavelet, etc.), I use

steerable filters [85] in my simulations, owing to their simple, easily manip-

ulated form, their invariance to content translations, and their good fit as a

frequently used model of bandpass simple cells in primary visual cortex. A

steerable filter at a given frequency tuning orientation θ1 is defined by:

Fθ1(x) = cos(θ1)Fx(x) + sin(θ1)Fy(x), (4.1)
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where xxx = (x, y), and Fx and Fy are the gradient components of the two-

dimensional unit-energy bivariate isotropic gaussian function:

G(x) =
1

2πσ2
e

−(x2+y2)

2σ2 , (4.2)

having scale parameter σ. Steerable filter based decompositions, such as steer-

able pyramids [86] yield substantially spatially decorrelated responses when

applied to high-quality photographic images.

Modifying the scale parameters σ of the bivariate gaussian derivative

functions (Fx and Fy) enables the construction of a multi-scale bandpass image

decomposition broadly resembling the responses of populations of simple cells

in cortical area V1. Other filter models could be used equally well to obtain

bandpass orientation and radial frequency responses, such as Gabor filters,

but the steerable filters present advantages of simple definition and efficient

computation. The radial frequency bandwidth of the steerable filter (1) is

fairly narrow (about 2.6 octaves). In the following development and testing

of the bivariate correlation model, each analyzed image is passed through

steerable filters of scales σ ∈ {1, 2, 3, ..., 15} and over 15 frequency tuning

orientations θ1 ∈ [0, π/15, 2π/15, ..., π], yielding 225 bandpass responses. The

bandpass images were computed on all 29 pristine images from the LIVE Image

Quality Assessment database, yielding a total of 6525 bandpass filtered image

responses.
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4.1.2 Divisive Normalization

Divisive normalization was then applied on all of the steerable filter

responses. When applied to naturalistic photographic images that have been

bandpass filtered, normalization by the energy of the local signal has been

observed to gaussianize and further decorrelate the image data [16, 87]. The

divisive normalization model used here is:

uj(x) =
wj(x)√

t+
∑

y g(j(y), wj(y))2
, (4.3)

where wj are the steerable filter responses for filters indexed by j, u are the

coefficients obtained after divisive normalization, and t = 10−4 is a stabilizing

saturation constant. The weighted sum in the denominator is computed over

a spatial neighborhood of pixels from the same sub-band, where g(xi, yi) is

a circularly symmetric Gaussian function having unit volume. To match the

increase in scale applied at the steerable filtering step (translated by increas-

ing σ), the variance of g(xi, yi) is also increased linearly as a function of σ.

Furthermore, I note that this step is also a good functional model of the non-

linear adaptive gain control of V1 neuronal responses in the visual cortex [38].

Divisive normalization causes the subband statistics of good quality natural

images to become strongly Gaussianized. If the images are distorted, then the

bandpass distribution tends away from Gaussian [9].
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4.1.3 Bivariate Density Model

Following Su et al. [22], I used a multivariate generalized Gaussian

distribution (MGGD) to model the joint histogram of a pair of divisively

normalized bandpass image samples located at different spatial (pixel) loca-

tions. Methods for estimating the parameters of MGGD model fits to multi-

dimensional image histograms are studied by Pascal et al. [88]. The probability

density function of the MGGD is:

p(x;M , η, s) =
1

|M |12
gη,s(x

TM−1x), (4.4)

where x ∈ RN , M is an N × N scatter matrix, η and s are scale and shape

parameters respectively, and gη,s(.) is the density generator:

gη,s(y) =
sΓ(N

2
)

(2
1
sπη)

N
2 Γ(N

2s
)
e−

1
2

( y
η

)s , (4.5)

where Γ is the digamma function and y ∈ R
+. Note that when s = 0.5,

(4.5) becomes a multivariate Laplacian density function, and when s = 1, it

becomes multivariate Gaussian density. Here I fix s = 1, where η controls the

spread of the density function.

While pairs of Gaussian random variables are not necessarily jointly

Gaussian, pairs of image samples that have been subjected to bandpass pro-

cessing followed by divisive normalization are observed to be reliably jointly

Gaussian. The reason for the Gaussianity of images processed in this perceptu-

ally relevant manner remains elusive. It cannot be explained as a consequence
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of the Central Limit Theorem (CLT), since the only additive process (linear

filtering) is on strongly correlated, raw image samples rather-than on uncor-

related or weakly correlated variances, as required by the CLT. Moreover, the

outcome of the linear filtering is decidedly non-Gaussian, and instead is dis-

tributed with much heavier tails, typically described as leptokurtic generalized

Gaussian [87]. The shape of these empirical non-Gaussian “sparsity” densi-

ties is typically attributed to the imaging projection of a world that is smooth

nearly everywhere (yielding heavily massed bandpass samples near or at zero),

except where (blurred) singularities occur (resulting in large responses defining

the heavy tails). Gaussianity finally arises as a consequence of a process of local

divisive normalization by neighboring bandpass image energy [87, 89]. While

this ultimate Gaussianity remains unexplained, there may be connections with

theoretical processes defined as quotients of highly correlated quantities, such

as the Fisz transform [90,91].

The bivariate empirical histograms of the sub-band coefficients of natu-

ral images are thus modeled here as following a bivariate generalized Gaussian

distribution (BGGD), by setting N = 2. This also presumes that the images

have not been distorted, which may change their statistics. In all of the follow-

ing, the parameters of the BGDD were estimated using the efficient maximum

likelihood estimation method of [88]. I systematically applied this modeling

process to all of the bandpass normalized images.

To remove any undesirable border filter effects, I cropped 10 pixels

from each image’s four borders, defined a window at a fixed position within the
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Figure 4.2: An illustration of an image after the divisive normalization and
steerable filtering (of fixed σ and θ1 values) are applied, with the two sliding
windows, and how θ2 is computed.

cropped image (Window 1) and another sliding window of the same dimensions

(Window 2). Denote the distance between the center of the two windows of

bandpass, normalized image samples of interest by d, and the angle between

them by θ2, as illustrated in Figure 4.2. Next, define the relative angle θ2−θ1,

where θ1 is the sub-band tuning of the bandpass filter orientation relative

to the horizontal axis. The bivariate histogram takes predictable shapes. For

example, when the relative angle θ2−θ1 = 0, the bivariate joint histogram takes

a highly eccentric elliptical shape indicating a strong degree of a correlation,

whereas when the relative angle is increased, the bivariate histogram becomes

more circular. Figure 4.3 plots bivariate histograms as intensity for the case

of d = 1 and θ2 = π/2. As I discuss further, I observe similar histogram shape

trends for longer separations d and for all other spatial angles θ2.

The bivariate model (4.4) is a closed form, except for the elements of
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(a) θ1 = 0, and θ2 − θ1 = −1.57 (b) θ1 = 3
15π , and θ2 − θ1 = −0.94

(c) θ1 = 6
15π , and θ2 − θ1 = −0.31 (d) θ1 = 9

15π , and θ2 − θ1 = 0.31

(e) θ1 = 11
15π , and θ2 − θ1 = 0.73 (f) θ1 = 14

15π , and θ2 − θ1 = 1.36

Figure 4.3: Bivariate joint histograms of a steerable filter response at distance
d = 1, scale σ = 2, tuned to spatial orientation θ2 = π/2 for various spatial
angular differences θ1. Each plot presents the probability of the values that
two pixels separated by d and θ2 will take.
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the scatter matrix M . The scatter matrix defines the covariance matrix of the

bivariate model. To complete the closed form model, I studied the Pearson

correlation function between the two windows. I obtain the correlation as the

gradient of the covariance of the two entities and the product of their stan-

dard deviations. The two windows were separated by horizontal and vertical

separations δx and δy which I varied over the integer range from 1 and 25, i.e.

distances of
√
δ2
x + δ2

y at spatial orientations θ2 = arctan( δy
δx

) (relative to the

horizontal axis). I limited the range of θ2 to [0, π[ since the quantities being

measured are symmetrically defined and are π periodic.

The tuning orientation θ1 is the frequency tuning orientation of the

steerable filter. I used a discrete set of 15 sub-band orientations {0, π
15
, 2π

15
, ..., , 14π

15
}

to build my model.

The correlation function model expresses a periodic behavior in the

relative angle θ2 − θ1, which can be well modeled as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1)) + c(d, σ, θ2) (4.6)

where A(d, σ, θ2) is the amplitude, c(d, σ, θ2) is an offset, d is the spatial sep-

aration between the target pixels, σ is the steerable filter spread parameter,

and θ2 is as before. Generally, the shapes of ρ, A, and c vary in a consistent

way with d, σ and θ2, as we shall see.

Figure 4.4 plots the average correlation function of several processed

images from the set of LIVE reference images, as a function of θ2 − θ1, over

4 scales for θ2 = π/2 rad and d = 1. From this plot, it may be observed
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that the maximum correlation value P =max(ρ) that is attained, occurs (as

expected) when θ2 − θ1 = 0, falling monotonically from this maximum value

as the absolute relative angle is increased to π/2. Figure 4.4 also shows that

the correlation increases with the scale factor σ, which I have observed over

all studied spatial orientations θ2 and spatial separations d. This is to be

expected, since as σ is increased, the filter bandwidths decrease, which tends

to increase in-band correlations.

Figure 4.4: Average correlation function of the luminance components of nat-
ural images plotted against relative angle θ2− θ1, for θ2 = π/2 rad, d = 1, and
σ = 3, 6, 9, and 12.

As the spatial separation d is increased, the correlation also drops, as

shown in Fig. 4.5, where the empirical correlations are plotted for a fixed scale

σ and spatial orientations θ2, over several values of the spatial separation d .

As a further illustration of the correlation function’s behavior, Figure

4.6 plots the correlations of adjacent samples measured at the same scale (σ =

2) and spatial separations but different spatial orientations θ2 ∈ {0, π4 ,
π
2
, 3π

4
}.

27



Figure 4.5: Average correlation function of the luminance components of nat-
ural images plotted against relative angle θ2 − θ1, for θ2 = π/2 rad, σ = 10
and d = 1, 5, 10, and 15.

Note that the sample separation takes two values: d = 1 for θ2 ∈ {0, π2} and

d =
√

2 for θ2 ∈ {π4 ,
3π
4
}. From the plot, it may be seen that horizontally and

vertically related pixels (θ2 = π/2 rad and θ2 = 0 rad) are more correlated

than diagonally related pixels (θ2 = π/4 rad and θ2 = 3π/4 rad), which is also

expected owing to the different spatial separations. However, the correlation

also likely increases along the cardinal directions because of the preponderance

of horizontal and vertical structures in real-world images [92].

In order to better understand and to complete my model of the corre-

lation function ρ in (4.6), I also model the amplitude and offset functions A

and c. To do so, I define the peak correlation function:

P = max(ρ) = A+ c. (4.7)

wherein I may rewrite (4.6) as:
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Figure 4.6: Average correlation function of the luminance components of band-
pass, divisively normalized natural images for the case of adjacent pixels (hor-
izontal, vertical, diagonal) plotted against relative angle, for σ = 2 for θ2 − θ1

for θ2 = 0, π/4, π/2, and 3π/4.

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1)) + [P (d, σ, θ2) − A(d, σ, θ2)] (4.8)

I did not impose any constraints on the values of A and P when fitting ρ. I

have observed the values of A to be positive except in a few instances where

the correlation is very small (at large spatial separations) or large and flat (at

small separations and large scales). In those cases, A took slightly negative

values (10−3).

As mentioned earlier in the background section, Lee, Mumford and

Huang [21] systematically observed that the sample covariances of bandpass

image pixels follow an approximate reciprocal power law, of the form 1
|d|b ,

which, like white processes, cannot be realized. Similarly, Keshner [41] remarks

on the fact that the nonstationary autocorrelation function of 1/f processes

take a reciprocal form, and that a practical stationary model might be obtained
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by modifying the autocorrelation model near the origin. Here, I take a different

approach, whereby I model the peak correlation function as having a general

version of the form 1
|d|β+1

.

Figure 4.7 plots the empirical peak correlation function P against the

sample separation d for a few values of σ and θ2. As expected, the measured

correlations decrease rapidly from a peak value of 1 as the spatial separation

d increases; which is natural since one should expect reduced correlations

between pixels as the spatial separation increases. There is a slight observed

undershoot, especially for small σ values, which is likely a consequence of

unsmoothness of the applied filter, but this is small and difficult to model,

hence I neglect this minor behavior.

(a) (b)

Figure 4.7: Peak function P (d, σ, θ2) plotted against pixel separation d for
σ = 2, 5, and 10 for (a) θ2 = 0 and (b) θ2 = π

4
(rad).

The general form of my stabilized peak correlation model is as follows:
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given a fixed spatial orientation θ2 and a scale σ, define

P̂ (d, σ, θ2) =
1

( d
α0(θ2)∗σ )β0 + 1

(4.9)

where {α0, β0} are parameters that control the shape and fall-off of the peak

correlation function, and which depend on the spatial orientation θ2.

I discuss the validation and application of my model (4.9) further along,

but first I will look at the other function comprising the correlation model (4.8).

Figure 4.8 plots the amplitude function A(d, σ, θ2) against d for few

scales σ and spatial orientations θ2. The graph of A rises from the value 0 at

d = 0, then decreases with increasing separation. Given the similarity of the

graph of A to the difference of two functions of the same form but different

scales, and the close relationship between A and P , I model A as the difference

of two functions of the form (4.9):

Â(d, σ, θ2) =
1

( d
α1(θ2)∗σ )β1(θ2) + 1

− 1

( d
α2(θ2)∗σ )β2(θ2) + 1

(4.10)

where {α1, β1,α2, β2} are parameters that are functions of θ2 that control the

shape of A.

My goal next is then to find, for a fixed spatial orientation θ2, the

values of the parameters {α0, β0} that produce the best fit to (4.9), and the

parameters {α1, β1, α2, β2}, that yield the best fit to (4.10), in the least mean

squared error sense. I form two optimization systems for P and A that account

for scale to find those optimal values. The optimization systems minimize the
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(a) (b)

Figure 4.8: Amplitude function A(d, σ, θ2) plotted against pixel separation d
for σ = 2, 5, and 10 for (a) θ2 = 0 and (b) θ2 = π

4
(rad).

summed squared errors of the peak and amplitude. To accomplish this, I

apply unconstrained nonlinear regression using the quasi newton method [93].

I restrict my modeling of the correlation to a span of dimensions 25 × 25

so that d ∈ [0,
√

1250], since the peak correlation becomes negligible if d is

increased further. The four functions P (d, σ, θ2), A(d, σ, θ2), P̂ (d, σ, θ2), and

Â(d, σ, θ2) form vectors of size m × 1, where m is the number of occurrences

of θ2 inside the span of interest. Denote by D the set of distances for a given

spatial orientation θ2. For the case θ2 = 0 or π/2, D = {0, 1, 2, 3, ..., 24, 25}.

For the case θ2 = π/4 or 3π/4, D = {0,
√

2,
√

8,
√

18, ...,
√

1152,
√

1250}. My

optimization systems are then expressed as:
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min
α0,b0

∑
d∈D

15∑
σ=2

(P (d, σ, θ2)− P̂ (d, σ, θ2))2

(4.11)

and

min
α1,b1,α2,β2,b2

∑
d∈D

15∑
σ=2

(A(d, σ, θ2)− Â(d, σ, θ2))2

(4.12)

Table 4.1 gives the optimal parameters yielding the best average corre-

lation fit to (4.11) and (4.12) over all of the (luminance) images in the LIVE

reference image set over the 8 most frequently occurring spatial orientations

θ2. It may be observed that the fitting parameters fall within narrow ranges,

the exceptions being the peak correlation parameters (α0, β0) which deviate a

little more along the cardinal orientations, and to a lesser degree, along the

diagonal orientations. This is not unexpected given the well-known prevalence

of horizontal, diagonal, and vertical oriented structures in the visual environ-

ment [92]. What is perhaps surprising is the high degree of uniformity of the

other parameters against orientation, particularly those of the amplitude func-

tion (4.10). I also computed these parameters over the larger set of values θ2 =

{0.000, 0.785, 1.571, 2.356, 0.464, 1.107, 2.034, 2.678, 0.322, 0.588, 0.983,

1.249, 1.893, 2.159, 2.554, 2.820, 0.245, 0.644, 0.927, 1.326, 1.816, 2.214,

2.498, 2.897}. These values occur at least 5 times in the area of interest.

Values of θ2 where there was insufficient data (viz., pairs of pixels at those
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orientations) are left out to conduct the optimization. I computed the op-

timal parameters α0, β0, α1, β1, α2, and β2 for this set of θ2 values for each

σ ∈ {1, 2, 3, ..., 15}. Since this is a sizeable amount of tabulated data, I make

it available at the following link:

http://live.ece.utexas.edu/research/bivariateNSS/index.html.

Table 4.1: Optimal values of α0, β0, b0, α1, β1, b1, α2, β2, and b2 for the 8 most
frequently occurring values of θ2 on the LIVE IQA reference luminance images.

θ2 α0 β0 α1 β1 α2 β2

0.000 1.623 2.628 3.197 3.336 2.092 2.274
0.464 1.519 3.325 3.307 3.501 2.383 2.204
0.785 1.528 3.771 3.302 3.450 2.456 2.252
1.107 1.724 3.175 3.357 3.542 2.370 2.173
1.571 2.210 2.181 3.267 3.171 1.978 2.313
2.034 1.718 3.207 3.358 3.545 2.371 2.161
2.356 1.522 3.767 3.293 3.456 2.448 2.253
2.678 1.506 3.351 3.288 3.471 2.382 2.203

4.1.4 Model Validation

Next, I validate my model by examining the closeness of fit of the

models P̂ , Â and ρ̂ to the empirical functions P , A and ρ.

4.1.4.1 Validation of A and P

I computed the mean squared error (MSE) between the reconstructed

peak and amplitude correlation functions P̂ and Â, relative to the empirical

average functions P and A that were computed and measured, respectively, on

the LIVE Image Quality Assessment Database [84] luminance images across

34



integer scales σ ∈ {2, 3, ..., 15}. The MSE between P and P̂ for a fixed scale

σ and orientation θ2 is defined as:

MSEP =
∑
d∈D

(P (d, σ, θ2)− P̂ (d, σ, θ2))2

|D|
, (4.13)

where |D| is the cardinality of D. Similarly, for a fixed scale σ and orientation

θ2, the MSE of between A and Â is defined as:

MSEA =
∑
d∈D

(A(d, σ, θ2)− Â(d, σ, θ2))2

|D|
. (4.14)

The largest errors between P and P̂ and A and Â over all pairs (σ, θ2)

were on the order of 10−3. The results for the considered (σ, θ2) pairs can

be found at the same link as above. Examples of the empirical functions P

and A are shown in Fig. 4.9 and Fig. 4.10, which visually illustrate the

goodness of my model in capturing P and A. It is worth remarking that the

results obtained by finding the best-fitting P̂ and Â on the average empirical

correlation data, were as good as those obtained by finding the best fits on the

empirical correlations from each of the naturalistic images in the LIVE Image

Quality Assessment [84] database and their corresponding best fits P̂ and Â.

Furthermore, for each fixed scale σ and spatial orientation θ2, I com-

puted the χ2 test statistic:

χ2
A =

∑
d∈D

29∑
i=1

(Ai(d, σ, θ2)− Â(d, σ, θ2))2

Â(d, σ, θ2)
(4.15)

where Ai(d, σ, θ2) is the empirical amplitude function of the ith naturalistic

image from the LIVE Image Quality Assessment [84] for fixed σ and θ2 values,
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(a) σ = 2, θ2 = 0 (b) σ = 5, θ2 = 0

(c) σ = 10, θ2 = 0 (d) σ = 2, θ2 = π/4

(e) σ = 5, θ2 = π/4 (f) σ = 10, θ2 = π/4

Figure 4.9: Examples of best-fitting peak correlation model P̂ to the peak
correlation P of the average empirical correlation P .
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(a) σ = 2, θ2 = 0 (b) σ = 5, θ2 = 0

(c) σ = 10, θ2 = 0 (d) σ = 2, θ2 = π/4

(e) σ = 5, θ2 = π/4 (f) σ = 10, θ2 = π/4

Figure 4.10: Examples of best-fitting amplitude correlation model Â to the
peak correlation A of the average empirical correlation A.
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and Â(d, σ, θ2) was obtained by finding the best fit to the amplitude function

of the average empirical correlation. Likewise the χ2 statistic for the peak

correlation was also computed:

χ2
P =

∑
d∈D

29∑
i=1

(Pi(d, σ, θ2)− P̂ (d, σ, θ2))2

P̂ (d, σ, θ2)
, (4.16)

where Pi(d, σ, θ2) is the empirical peak correlation function of the ith natural-

istic image from the LIVE Image Quality Assessment [84] for σ and θ2 fixed,

and P̂ (d, σ, θ2) was obtained by finding the best fit to the peak of the average

correlation.

The results of the χ2
P and χ2

A tests for the 8 most frequently occurring

values of θ2 are presented in Tables 4.2 and 4.3 respectively. The values are

in general small (on the order of 10) except at the smallest scales of σ. This

is not unexpected, as highly localized (less smoothed) measurements of the

correlation will be less certain. However, I have observed the functional fits

to be reasonably good, even when σ = 1. The somewhat less consistent be-

havior of the results when σ = 1 is likely due to two reasons: first, the spatial

implementation of the steerable filters begins to become degenerate at that

scale, leading to poorer localization properties than afforded by larger Gaus-

sian envelopes, and second, the presence of high frequency noise, including

quantization, present even in high-quality pictures, may affect the steerable

responses as well.
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Table 4.2: χ2
P results for the 8 most frequently occurring θ2 on the LIVE Image

Quality Assessment reference luminance images.
θ2 = 0 θ2 = 0.464 θ2 = 0.785 θ2 = 1.107 θ2 = 1.571 θ2 = 2.034 θ2 = 2.356 θ2 = 2.678

σ =1 667.17 177.88 2063.83 166.83 321.36 141.25 2051.45 157.31
σ =2 309.70 126.07 670.77 105.02 162.62 112.74 657.30 115.90
σ =3 170.18 125.16 455.59 124.99 101.75 123.38 382.69 116.03
σ =4 106.40 108.16 476.94 93.09 73.82 92.76 465.55 116.56
σ =5 79.20 86.79 521.75 57.49 60.19 59.49 549.10 102.24
σ =6 65.15 64.17 490.16 33.70 50.72 35.21 503.69 78.63
σ =7 54.00 45.57 394.72 20.73 41.62 21.76 378.95 54.75
σ =8 43.89 31.92 277.88 13.49 32.88 14.37 247.53 35.99
σ =9 35.02 23.14 180.06 9.62 25.59 10.24 149.55 23.99
σ =10 27.54 17.45 110.65 7.09 19.50 7.69 85.80 16.64
σ =11 21.50 13.56 69.57 5.30 14.71 5.92 51.05 12.16
σ =12 16.71 10.59 45.95 4.06 11.13 4.63 32.55 9.22
σ =13 12.91 8.23 32.28 3.18 8.45 3.69 22.91 7.18
σ =14 10.05 6.31 24.16 2.50 6.54 2.93 17.54 5.61
σ =15 7.83 4.79 18.67 2.00 5.15 2.36 13.98 4.39

Table 4.3: χ2
A results for the 8 most frequently occurring θ2 on the LIVE Image

Quality Assessment reference luminance images.
θ2 = 0 θ2 = 0.464 θ2 = 0.785 θ2 = 1.107 θ2 = 1.571 θ2 = 2.034 θ2 = 2.356 θ2 = 2.678

σ =1 -81.17 -2.93 0.05 -3.52 -206.53 -2.73 0.42 -2.45
σ =2 -89.16 1.90 1.28 0.64 522.65 1.74 2.28 0.93
σ =3 -51.07 -3.27 3.41 -6.45 20.09 -2.54 4.56 -2.85
σ =4 12.66 5.20 7.90 2.21 8.68 3.16 6.69 4.58
σ =5 8.24 5.05 9.25 5.57 6.34 4.02 8.42 5.95
σ =6 6.40 2.72 13.13 2.68 5.21 2.33 13.18 2.97
σ =7 5.48 2.33 9.17 1.99 4.60 2.17 8.20 2.38
σ =8 4.91 2.23 7.33 1.71 4.16 2.23 7.03 2.22
σ =9 4.44 2.20 6.59 1.54 3.80 2.29 6.76 2.15
σ =10 3.81 2.17 6.22 1.40 3.42 2.31 6.72 2.07
σ =11 3.28 2.11 5.85 1.28 3.13 2.26 6.58 1.97
σ =12 2.99 2.06 5.48 1.18 2.90 2.15 6.40 1.91
σ =13 2.83 1.98 5.11 1.10 2.64 2.00 6.21 1.88
σ =14 2.93 1.90 4.77 1.05 2.55 1.88 5.95 1.89
σ =15 3.17 1.84 4.48 1.06 2.56 1.79 5.69 1.91
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4.1.4.2 Validation of ρ

To validate the correlation model, ρ, I followed a similar approach. The

MSE for a fixed scale σ, distance d, and orientation θ2, is defined as:

MSEρ =

14π
15∑

θ1=0, π
15

(ρ(θ2 − θ1)− ρ̂(θ2 − θ1))2

15
. (4.17)

I computed the MSE values between the model correlation function ρ̂

and the average empirical correlation function ρ on the luminance components

of the LIVE IQA dataset. Again, the largest error was on the order of 10−3

for θ2 = 0. I observed similar results across other θ2 values, which are not

included here for lack of space, but could be found on

http://live.ece.utexas.edu/research/bivariateNSS/index.html.

Figure 4.11 plots the best-fitting model correlation ρ̂ along with the

empirical correlation function for a variety of randomly selected values of d,

θ2 and σ.

I also performed the χ2 test for θ2 and d fixed. The statistic is computed

as:

χ2
ρ =

14π
15∑

θ1=0, π
15

29∑
i=1

(ρi(d, σ, θ2)− ρ̂(d, σ, θ2))2

ρ̂(d, σ, θ2)
, (4.18)

where ρi(d, σ, θ2) is the correlation of the ith naturalistic image from the LIVE

Image Quality Assessment reference set for given values of d, σ and θ2, and

ρ̂(d, σ, θ2) is the best fit of the average correlation. Due to the lack of space,

I only present the median results for ρi(d, σ, θ2) as a function of σ and d for
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(a) d = 20.13, σ = 14, θ2 = 2.678 (b) d = 2, σ = 5, θ2 = 0

(c) d = 10, σ = 7, θ2 = 2.214 (d) d = 12, σ = 10, θ2 = 1.571

(e) d = 29.70, σ = 12, θ2 = 0.7854 (f) d = 4.24, σ = 3, θ2 = 2.356

Figure 4.11: Graphs of the model and empirical correlation functions ρ and ρ̂
plotted against θ2 − θ1 for various values d, θ2 and σ values.
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the case of θ2 = 0, in Tables 4.4 and 4.5 respectively. Results for other angles

(occurring less frequently) can be found at the same web link given earlier.

Table 4.4: Median χ2
ρ with respect to the average luminance correlation for

θ2 = 0 on the LIVE IQA reference images as a function of the scale parameter
σ.

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 6 σ = 7 σ = 8 σ = 9 σ = 10 σ = 11 σ = 12 σ = 13 σ = 14 σ = 15
159.19 116.48 10.69 0.39 0.62 0.15 0.96 2.90 2.26 2.90 2.41 2.74 2.19 3.20 1.54

Table 4.5: Median χ2
ρ with respect to the average luminance correlation for

θ2 = 0 on the LIVE IQA reference images as a function of the spatial separation
d.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 11 d = 12 d = 13 d = 14 d = 15 d = 16 d = 17 d = 18 d = 19 d = 20 d = 21 d = 22 d = 23 d = 24 d = 25
0.01 0.06 0.15 0.31 0.53 0.81 0.97 1.41 1.68 3.18 2.74 7.39 5.35 17.61 7.52 10.69 9.91 34.62 17.71 37.60 27.36 27.42 86.23 18.57 44.70

The very low MSE values, the low values of χ2
ρ, and the apparent good

functional fits shown in the plots validates the accuracy of my model. In a

few instances, the values of χ2
ρ took larger values, as a byproduct of numeri-

cal instability when computing (4.18): the appearance of small values in the

denominator of (4.18) resulted in larger values of χ2
ρ. However, even in those

cases, I still observed excellent alignment between the empirical data and the

functional fits. I also found that the model correlations computed on the indi-

vidual pristine LIVE reference luminance images yielded similar measurements

of goodness of fit.
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(a) ρ(d = 1, σ = 1, θ2 = π/2) vs θ2 − θ1 (b) P (d, σ = 1, θ2 = π/2) vs d

(c) A(d, σ = 1, θ2 = π/2) vs d

Figure 4.12: Comparison of the behavior of the model over LIVE IQA, Toyama
and CSIQ.
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4.1.5 Validation on other databases

As an additional way to validate my model, I studied its behavior of

on other databases; first on the CSIQ database [94] which contains 30 pristine

images and second on the Toyama Database [95] which contains 14 pristine

images. As depicted by the example in Fig. 4.12 I obtained a great overlap

between the average correlation, amplitude in peak of the different databases.

Also I observed small χ2
ρ, χ

2
P and χ2

A values between the mean case from the

LIVE IQA database and the images from the other databases.

4.1.6 Scale Invariance

Several aspects in the environment are statistically self-similar, meaning

that their structure is invariant over multiple scales. An observed property of

natural images is the invariance of their statistics with respect to the scale at

which the image is observed. For example, the power spectrum of images is

invariant to scaling [96], which implies a similar correlation scale-invariance

property. Also, many natural structures are scale-invariant [35]. Figure 4.13

plots P and A against the scaled spatial separation for several values of the

scale, for the case θ2 = 0. Excellent alignment of the plots across scales is

observed, in agreement with the scale-invariance property, over all θ2 values.

To conserve space, I present the results for only a few scales in Fig. 4.13,

however I have observed invariance to also hold over all the other considered

scales [2, 15].
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(a) (b)

Figure 4.13: Plots of (a) peak function and (b) amplitude correlation function
for θ2 = 0 rad, for several values of scale σ, illustrating the scale invariance of
these functions.

4.1.7 White Noise Images

Next I study how my correlation model applies to composed images of

simulated white noise (i.e, random matrices). I conduct this analysis both as

an experimental control and as a way to better understand the properties of my

model. The relative correlation structure of bandpass filtered and normalized

white noise against that of natural images is of interest. For example, while

the perceptually relevant processing used in my model is known to decorrelate

natural images, which are otherwise strongly correlated, instead it introduces

correlation on white noise images.

However, the processed white noise images still exhibit less correlation

than processed natural images, as may be observed in Fig. 4.15 (a). Note that

both the correlation and peak correlation functions of the (bandpass, normal-
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ized) processed natural images are everywhere higher than for the processed

white noise. Overall, I have found the parametric fits (and associated param-

eters) to natural images and white noise to be quite different and to obey the

ordering observed in Fig. 4.15 (b). This serves not only to validate the unique

characteristics of high-quality natural images processed in this manner (like

those in the LIVE reference dataset), but also raises the question of how the

model applies to distorted images, and how it might be exploited to analyze

them. For example, they might be exploited to augment or improve upon

existing image quality prediction models and algorithms [5].

4.2 Behavior of the model in the presence of distortions

Distortions lead to consistent changes in the behavior of bandpass image

fits to univariate NSS models [9]. Next, I examine how my correlative model

behaves in the presence of image distortion. To study this, I applied the model

to both reference and distorted images taken from the LIVE IQA database [84].

The database contains images impaired by gaussian blur, JPEG compression,

JPEG 2000 compression, fast fading channel noise and additive white noise.

I begin by using a simple example image from the LIVE IQA database to

demonstrate my observations along the way; image “Woman Hat” is shown in

Fig. 4.16(a). While I restrict ourselves to commenting on “Woman Hat,” I

have observed very similar results on distorted versions of all the other LIVE

IQA images.
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(a) (b)

(c) (d)

Figure 4.14: A sample natural image (a) before and (b) after bandpass filtering
and normalization. Similar for white noise image (c) and processed version of
it (d).

4.2.1 Impact of Distortions on Correlation, Amplitude and Peak

I begin by visualizing the correlation, peak and amplitude functions as

they are modified by distortion. Figures 4.17-4.19 show plots of ρ, P , and A,

respectively, on the images modified by the distortions. The observations that

will be drawn from the presented examples are generalized across other scales,
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(a) (b)

Figure 4.15: Graphs of (a) correlation function ρ plotted against θ2 − θ1 for
σ = 2, d = 1, and θ2 = 0 (b) peak correlation function P plotted against d for
σ = 2 and θ2 = 0. Each plot shows the result of processing natural images (in
blue) and white noise (in red).

σ, and spatial orientation θ2.

4.2.1.1 Blur

Increases in blur were produced by increasing the space constant of the

applied gaussian filter σ, which generally leads to worsening degradation of

the perceptual image quality, which are reflected in drops in the Structural

Similarity Index (SSIM) [65] between the blurred images and the undistorted

original values. As expected, blur leads to an increase in the correlation func-

tions of the bandpass normalized images, as can be seen in Fig. 4.17(a).

The reductions of detail and diversity as a consequence of low-pass smoothing

(Fig. 4.16(b)) progressively increases the correlation as the filter bandwidth
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(a) Distortion Free (b) Blur (c) JPEG

(d) JPEG 2000 (e) Fast Fading (f) White Noise

Figure 4.16: Image “Woman Hat” and several distorted versions of it.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Plots of the correlation function of image “Woman Hat” subject
to (a) blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.
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(a) (b)

(c) (d)

(e)

Figure 4.18: Plots of the peak function of image “Woman Hat” subject to (a)
blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.
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(a) (b)

(c) (d)

(e)

Figure 4.19: Plots of the amplitude function of image “Woman Hat” subject
to (a) blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.
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is decreased. The increase in the correlation is monotonic with the level of

blur. Furthermore, at small spatial separations, the values of the peak and

amplitude functions increase, as can be seen in Fig. 4.18(a) and Fig. 4.19(a),

respectively.

4.2.1.2 JPEG

Increases in JPEG compression is controlled by decreases in the JPEG

coefficient quantization q, which in turn leads to reduction of the SSIM values

between compressed and original images. JPEG distortion also leads to an in-

crease in the computed correlation function since it causes both over-smoothing

and blocking artifacts, and hence greater degrees of local homogeneity, as may

be observed in Fig. 4.16(c). The increase in the correlation is monotonic, as

may be seen by comparing the plots in Fig. 4.17(b). As a result, the peak

and amplitude functions also increase in value, as in Fig. 4.18(b) and in Fig.

4.19(b) respectively. This increase is not limited to small spatial separations,

unlike the case with blur. The values of A and P remain high even for larger

separations when measured on heavily compressed images.

4.2.1.3 JPEG 2000

Ringing and blur are two common artifacts that afflict JPEG 2000 com-

pressed images as may be observed in Fig. 4.16(c). Generally, the correlation

is increased as shown in Fig. 4.17(c). However this increase is not monotonic

with increased compression. This may be partially explained by the fact that
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multiple parameters control JPEG 2000, such as the assigned weighting. The

LIVE IQA database [84] does not indicate the weighting used on each image.

P and A are impacted in ways similar to JPEG, as may seen in Fig. 4.18(c)

and Fig. 4.19(c), respectively. The peak and amplitude functions in these

cases exhibit bumps that are possibly caused by the ringing distortions.

4.2.1.4 Fast Fading

The fast fading category in LIVE IQA [84] is a complex, difficult dis-

tortion that is modeled as JPEG-2000 compression followed by fast fading bit

errors. It also leads to increases in the correlation functions shown in Fig.

4.17(d). The behavior is not entirely monotonic owing to the complexity of

the distortion. Generally, however, there is a resemblance in the correlation

plots of JPEG 2000 and fast fading channel noise, since both contain JPEG

2000 compression artifacts (Fig. 4.16(d)). However, the increases in the peak

and amplitude values are less subtle as compared to JPEG 2000, as depicted

in Fig. 4.18(d) and in Fig. 4.19(d). This is because low compression (2.5 bits

per pixel) was used to generate the JPEG 2000 distortion on all of the fast

fading data, leading to less harsh ringing or blur artifacts as compared to the

pure JPEG 2000 distortions.

4.2.1.5 White Noise

White noise of standard deviation σ was added to the R, G and B

components. This leads to a decrease in the SSIM values. As a general trend,
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white noise leads to a decrease in the correlation functions, as expected. The

peak correlation function is not impacted, as shown in Fig. 4.18(e). The

amplitude functions appears to absorb most of the variation, as seen in Fig.

4.19(e), where the amplitude at small distances is higher. The exception to

this general observation occurs at small standard deviations. In this case, the

correlation slightly increased.

4.2.2 Impact of Distortions on Model Parameters α0, β0, α1, β1, α2,
and β2

Understanding how the values of α0, β0, α1, β1, α2, and β2 are im-

pacted as function of the distortions is less straightforward. It is not clear yet

how changing trends in the different parameters impact A, P , and ρ. Figure

4.20 shows these parameters against the various considered distortions. In the

presence of distortions, the distributions of the values of these different pa-

rameters are modified. Some parameters seem to respond to distortions better

than others; by comparing the boxplots of α2 and β1, for example, it may be

observed that the distribution of values of α2 changes more drastically than

does the distribution of values of β1. In the near future, I will describe ways to

use the parameters α0, β0, α1, β1, α2, and β2 as features to build correlation-

based models that are able to automatically assess the perceptual quality of

images.

Towards exploring the utility of correlation features for a wide array

of possible distortion-sensitive applications (quality assessment, denoising, de-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Boxplots of the different parameters (a) α0; (b) β0; (c) α1; (d) β1;
(e) α2; and (f) β2 for the various applied controlled distortions; (1) Undistorted;
(2) Blur; (3) JPEG; (4) JPEG 2000; (5) Fast Fading; (6) White Noise.
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blurring, deblocking, etc), I built a system to classify images by distortions. To

do this, I focused on the set of distortions that are common to the LIVE IQA

database [84] and the TID database [97]: JPEG 2000, JPEG, White Noise

and Gaussian Blur. I partitioned the data into random 80%-20% training-

testing splits, on which I trained a Support Vector Machine (SVM) [98] to

classify images by distortions. I used {α0, β0, α1, β1} at θ2 = 0 and θ2 = π
2

as training features (8 features). The experiment was repeated over 100 iter-

ations, yielding a median correct classification rate of 70% on the LIVE IQA

database [84] and 71% on the TID database [97]. These are good results using

only a sparse set of second-order features. Including simple first-order (uni-

variate) NSS features such as the shape and the variance parameters of the

Mean Subtracted Contrast Normalized (MSCN) coefficients [7] improves the

classification accuracy. Using the shape and variance parameters at scale 1

and the shape parameter at scales 2 (as defined in [7]) increased the correct

classification rate to 85% on the LIVE IQA database [84] and to 86% on the

TID database [97], using a total of 11 features. Details regarding the indi-

vidual distortion classification performance and the inter-class accuracies are

given in Table 4.6.

4.3 Concluding Remarks

In this chapter I built a simply, parametric bivariate natural scene

statistic model of images and demonstrated its validity on a well-known set of

high quality images. My new model is global and is able to accurately capture
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Table 4.6: Distortion Classification Performance

JPEG2000 JPEG White Noise Gaussian Blur Overall
Bivariate Model

(LIVE IQA)
69% 67% 71% 75% 70%

Univariate + Bivariate Model
(LIVE IQA)

85% 78% 94% 88% 85%

Bivariate Model
(TID)

75% 50% 90% 74% 71%

Univariate + Bivariate Model
(TID)

77% 80% 100% 90% 86%

the correlation behavior of natural images as well distorted images. Moving

forward, I will be presenting in the next chapter a new blind image quality

prediction model and 3D visual discomfort predictor that makes use of the

bivariate NSS features presented above.
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Chapter 5

The Bivariate NSS Model as a Tool to Tackle

Image Quality Problems

In this chapter, I use the bivariate NSS model I built to tackle the blind

image quality (IQA) and 3D visual discomfort for stereo images. 1

5.1 Blind IQA Predictor

Digital images have witnessed tremendous growth as a medium for

representation and communication. Since human observers are the ultimate

receivers of the visual information in images, subjective experiments using

human observers remains the most reliable way to assess the quality of an

image. Given that 1.3 trillion images were captured in 2017 [99], relying on

human observers to assess picture quality is unrealistic. Building models that

predict the quality of images in accordance with human observers is a more

1This chapter appears in the following papers:
1) Zeina Sinno, Constantine Caramanis, Alan C. Bovik: “Second Order Natural Scene

Statistics Model of Blind Image Quality Assessment” in the IEEE International Conference
on Acoustics, Speech, and Signal Processing: 1238-1242 (2018).

2) Zeina Sinno, Alan C. Bovik: “Predicting 3D visual discomfort using natural scene
statistics and a binocular model” in the International Society for Optics and Photonics -
Applications of Digital Image Processing XLI Vol. 10752, p. 107520G, (2018).

Zeina Sinno has designed the two described models and performed their full experimental
analysis.
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feasible solution to this problem. The study of blind (no-reference) IQA models

involves building learned predictors that deploy low-level image descriptors as

inputs. Many models have been developed that extract distortion specific

features [100, 101], and [102], while others train learning machines on NSS

features computed from distorted images. Examples of this approach include

[7], and [103]. Other notable models, such as Ye et al. [104] learn visual code

words predictive of image quality, and the completely blind model [8], which

measures a distance between distorted and pristine NSS features, without

requiring any training on either distorted images or on human opinion scores.

Saha et al. [105] used visibility measured over multiple scales to predict picture

quality.

The univariate statistics of bandpass-filtered images provide powerful

features that drive many successful IQA algorithms [7,8,106]. Motivated by the

observation that distortions lead to systematic and predictable perturbations

of my correlation models’ features, it is natural to consider whether they can

be used to predict the perceptual quality of images.

I combined univariate and bivariate NSS features to build a no-reference

IQA model that strongly competes with existing models.

5.1.1 Model Features

I begin this section by presenting the considered bivariate features.
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5.1.1.1 Bivariate Features

I studied the quality-predictive efficacies of the parameters {α0, β0, α1,

β1, α2, β2} as defined in (4.9) and (4.10) over multiple spatial angles θ2. I

found α0, β0 α1, and α2 to be the most responsive to distortion, and hence

the most useful for quality prediction. I also found that only using parameters

computed along the horizontal, vertical, and diagonal was sufficient; adding

more angles did not further boost performance.

I noticed that applying non-linear operations to these raw features

boosts performance. Denote by {F1,F2,...,F8} the quality predictive features

derived from my correlation model. Noting that αi(θ2), βi(θ2); i = 1, 2, 3 are

all functions of θ2, then define F1 = β0
−1(0); F2 = β0

−1(π
4
); F3 = β0

−1(π
2
); F4 =

β0
−1(3π

4
) where β−1 = 1

β
; and also F5 = α0

−1(0)α0
−1(π

2
); F6 = β0

−1(0)β0
−1(π

2
);

F7 = α1
−1(0)α1

−1(π
2
); and F8 = α2

−1(0)α2
−1(π

2
).

As a first test, I trained a Support Vector Regression (SVR) model using

a radial basis function and 80-20 split on the LIVE Challenge images using 8

features as input, obtaining Pearsons linear correlation coefficient (PLCC) and

Spearmans rank ordered correlation coefficient (SROCC) both in the range

of 0.3. Clearly, taken alone the bivariate features are insufficient predictors

of picture quality. However, I find that they are usefully complementary to

existing univariate features for the IQA task.
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5.1.1.2 Mean Subtracted Contrast Normalized Features

Rather than using my model features in isolation, I combine them with

univariate NSS that have been used successfully for blind picture quality pre-

diction. The motivation behind this reasoning is that the bivariate correlation

model is not standalone, rather it extends existing univariate NSS models

and completes a bivariate density model. I computed the mean subtracted,

contrast normalized (MSCN) coefficients as used in the BRISQUE model [7].

Given an image I, process luminances via local mean subtraction and divisive

normalization, similarly to (4.3). Mittal et al. [7] showed that those MSCN co-

efficients are disturbed by the presence of distortion. I extracted the arithmetic

mean µ̇, sample kurtosis κ, and skewness γ, from the luminance image to ob-

tain (µ̇L, κL, γL), and form the chrominance component a* from the CIELAB

space (µ̇a, κa, γa), and used them as additional features in my predictor.

Furthermore, [7] showed that the histogram of the MSCN coefficients

of both pristine and distorted images are modeled as fitting a zero-mean gen-

eralized gaussian density (GGD):

f(x;φ; γ2) =
φ

2ηΓ(1/φ)
exp[−(

|x|
η

)φ] (5.1)

where

η = γ

√√√√Γ( 1
φ
)

Γ( 3
φ
)

(5.2)

and Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (5.3)
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The shape parameter φ controls the shape of the distribution, while

η controls its variance. I used the moment matching approach to estimate

these two parameters from the histograms of each considered image’s MSCN

coefficients [107].

Denote by φL and ιL the shape and the variance features at scale 1 of

the luminance component, and by φY and ιY the scale and shape parameters

of scale 1 from the yellow color channel component. The yellow color channel

component is computed on an RGB image I as:

Y =
R +G

2
− |R−G|

2
−B (5.4)

Sinno [108] et al. observed that the height of the peak at zero of the

histogram of the MSCN coefficients is highly correlated with how well exposed

the image is. A small peak indicates that the image is well-exposed, whereas a

high peak means that the image is poorly-exposed (under exposed or over ex-

posed). Furthermore, they used this information to correct for underexposed

and overexposed regions in an image using Laplacian pyramid fusion of multi-

ple shots of the same scene, but varying in exposure. I used the peak at zero

of the histogram of MSCN coefficients as a feature in my model, and denote

it by δ.

I also considered the pairwise products of neighboring MSCN coef-

ficients along four orientations (H), vertical (V ), main-diagonal (D1) and

secondary-diagonal (D2), similarly to [7]. As shown in [7], the histograms
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of the pairwise MSCN coefficients are well modeled as asymmetrical general-

ized gaussian distributed (AGGD):

f(x; ν, η2
l , η

2
r) =


ν

(ηl + ηr)
exp[−(

−x
ηl

)] x < 0

ν

(ηl + ηr)
exp[−(

−x
ηr

)] x ≥ 0
(5.5)

where

ηl = ιl

√
Γ( 1

ν
)

Γ( 3
ν
)

(5.6)

ηr = ιr

√
Γ( 1

ν
)

Γ( 3
ν
)
. (5.7)

The shape parameter ν controls the ‘shape’ of the distribution while η2
l

and η2
r are scale parameters that control the spread on each side of the mode,

respectively. The parameters (ν, η2
l , η

2
r) are also estimated using moment-

matching [109]. Next, I also created a reduced resolution version of the lu-

minance image by low pass filtering followed by downsampling by a factor of

two, then followed the same procedure as above to obtain (ν, η2
l , η

2
r) at the

new scale. In my predictor, I used (ν, η2
l ) as features over the four orientations

H, V , D1, and D2, which I denote by (νH , η
2
l H), (νV , η

2
l V ), (νD1, η

2
l D1) and

(νD2, η
2
l D2). This yields 8 additional features.

Combining the correlation features F1 − F2 with the MSCN features

yields a total of 27 features, as summarized in Table 5.1.

5.1.2 Quality Evaluation

As a resource to learn a blind IQA model using my model, I used the

recent LIVE in the Wild Image Quality Challenge Database (“LIVE Chal-
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Table 5.1: Features used in the bivariate image quality prediction model.

Feature ID Feature Description

F1 - F4 β0
−1(0), β0

−1(π
4
), β0

−1(π
2
), β0

−1(3π
4

)
F5 α0

−1(0)α0
−1(π

2
)

F6 β0
−1(0)β0

−1(π
2
)

F7 α1
−1(0)α1

−1(π
2
)

F8 α2
−1(0)α2

−1(π
2
)

F9 - F11 µ̇L, κL, γL
F12 - F14 µ̇a, κa, γa
F15 δ

F16 - F17 φL, ιL
F18 - F19 φY , ιY
F20 - F21 νH , η2

l H

F22 - F23 νV , η2
l V

F24 - F25 νD1, η2
l D1

F26 - F27 νD2, η2
l D2

lenge”) [54]. This database contains 1162 images captured using mobile de-

vices. This database is a unique and difficult test of blind IQA predictors.

Using a regression module, I constructed a mapping from the feature space

(Table 5.1) to human ratings, resulting in a measure of image quality. I used

a support vector regressor (SVR) [98] that has been successfully deployed in

many prior image quality models [7, 9]. I used the LIBSVM package [110] to

implement the SVR with a radial basis function (RBF) kernel and to predict

the MOS scores. I split the images randomly and used 80% of it for training

and the rest for testing, then I normalized my features, and fed them into the

SVR module to predict the MOS score. I repeated the process 50 times. I

obtained a median Pearsons linear correlation coefficient (PLCC) of 0.73 and a

Spearmans rank ordered correlation coefficient (SROCC) of 0.69 against MOS.
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Table 5.2 compares the performances of various reported algorithms.

With 27 features only, my correlation-enhanced model was able to outperform

the other leading models, demonstrating the power of the bivariate features.

The performance of my model was only approached by FRIQUEE, which uses

a large number of features (more than 20× as many). Notably, the correlation

features substantially boosted the performance of simple BRISQUE [7]. An

interesting extension will be to apply the model to temporal pictures, such as

video frame differences which present highly regular statistical structures [68].

Table 5.2: Comparison of Image Quality Models on the LIVE Challenge
Database.

Number of Features PLCC SROCC
Bivariate Model 27 0.73 0.69
FRIQUEE [111] 584 0.72 0.72
BRISQUE [7] 36 0.61 0.60

C-DIVIINE [112] 82 0.66 0.63
DIVIINE [9] 88 0.56 0.51

BLIINDS-II [106] 24 0.45 0.48
NIQE [8] 36 0.48 0.42

I also tested the performance of my model on the LIVE IQA database

[6]. The results are summarized in Table 5.3. My predictor also outperformed

on this database too.

I also performed the p statistical significance test on the different groups

of features used by my predictor and I was able to verify that the features

deliver statistically significant superior performance. As an additional test, I
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Table 5.3: Comparison of Image Quality Models on the LIVE IQA Database.
Number of Features PLCC SROCC

Bivariate Model 27 0.96 0.96
FRIQUEE [111] 584 0.93 0.95
BRISQUE [7] 36 0.94 0.94

C-DIVIINE [112] 82 0.94 0.95
DIVIINE [9] 88 0.93 0.92

BLIINDS-II [106] 24 0.92 0.91
NIQE [8] 36 0.92 0.91

removed each group of features in my predictor to understand their individual

contributions. Removing the BRISQUE derived luminance based features had

the greatest impact on performance, followed by my bivariate NSS features.

This is not unexpected, because the univariate NSS model in BRISQUE is

complemented by my bivariate NSS correlation model.

5.2 3D Visual Discomfort Predictor

For the case of 2D images, NSS models allowed us to understand how

the HVS can efficiently process gigantic amounts of visual data [1]. Recent

efforts has been directed towards understanding the joint statistics of multiple

pixels [24, 25]. It has been established previously in the previous chapter and

in [113] that such statistics can be captured in closed-form for luminance 2D

images, as well as for the case of chromatic images [114]. I also just demon-

strated that such features can be used to derive new methods for predicting

the quality of images [115].

Here I describe how the bivariate NSS model [113] can be applied to
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3D images. But before doing so, I will start with an overview of the 3D visual

discomfort problem to provide the necessary background.

5.2.1 Overview of the 3D Visual Discomfort Problem

The positioning of the two eyes in the front of the head, horizontally

aligned but separated, allows them to obtain slightly different retinal images.

The brain combines the left and the right images to obtain a fused, ‘cyclopean’

image. Based on the distance between corresponding points in the left and

right images, disparity information is extracted and depths are computed.

This ability facilitates a variety of exteroceptive and visuomotor tasks [116],

especially in the comprehension of complex visual presentations and those

requiring hand-eye coordination [117].

The binocular processing centers of the brain capture differences be-

tween the left and the right images obtained from the eyes. For humans to

perceive depth correctly, the two images need to align closely. If for some

reason they do not, then visual discomfort may be experienced [118]. 3D

visual discomfort can take several different symptoms, including eye strain,

nausea, fatigue and headaches [119]. There are several explanations of expe-

rienced visual discomfort when viewing stereo displays, including the eyewear

required to present images to the two eyes, ghosting or cross-talk between the

images, misalignment of the images, inappropriate head orientation, vergence-

accommodation conflicts, visibility of flicker or motion artifacts, and visual-

vestibular conflicts [118]. The vergence-accommodation conflict has often been
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identified as the primary culprit causing visual fatigue [120,121].

Vergence describes the mechanism of binocular eye-movement that di-

rects the eyes towards an object. When fixation on an object moves closer

or farther, the eyes converge or diverge, respectively. Accommodation de-

scribes the mechanism of adjusting the focal power of the crystalline eye lens

to acquire a clear and sharp retinal image of an object. As the object moves

closer or farther, the focal power increases or decreases respectively [122]. In

a natural environment, both mechanisms are coupled and occur in parallel.

More importantly, the amount of accommodation required to put an object

into focus is proportional to the amount of of vergence needed to fixate on the

object [123]. The human visual system (HVS) has evolved towards associating

these processes neurologically; triggering vergence stimulates accommodation,

and vice versa. Stereoscopic displays stimulate accommodation and vergence

in an unnatural way, resulting in vergence-accommodation conflicts.

Over the past decade, safety and health issues related to stereo images

and videos have been well studied. A significant aim for 3D camera acquisition

makers and display manufacturers is to characterize the visual discomfort of

stereo images accurately in an attempt to reduce it or eliminate it. Several ef-

forts have been made in the literature to create such models. Early on, Nojiri

et al. [124, 125] found a close correlation between the range of parallax dis-

tribution and the degree of visual discomfort. In particular, they found that

the reconstructed scene should be positioned behind the screen to deliver a

more comfortable viewing experience. Yano et al. [126] measured the degree
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of visual fatigue from the change of accommodation response before and after

viewing stereoscopic images. Choi et al. [127] used a Principal Component

Analysis (PCA) approach to understand factors contributing to visual fatigue

in stereoscopic videos including spatial complexity, depth position, temporal

complexity, scene movement, depth gradient, crosstalk, and brightness. Kim

et al.’s model [128] characterized horizontal and vertical disparities. In [129],

Park et al. described a predictor which combines features from a neural pop-

ulation coding model with the statistics of horizontal disparity maps. Kim

et al. in [130] described a more advanced second-order system model that

forms a transfer functions integrating information about the optical nerve, the

accommodation and vergence neural pathways, the oculomotor plant, and vi-

sual area MT. In [131], Oh et al. constructed different maps and extracted

their features to create their model. The considered maps are the degree of

out-of-focus map starting from the focal distance, the Panum’s fusional area

map representing how well the 3D object is fused, the stereoscopic map rep-

resenting the output responses induced by processes of accommodation and

vergence, and the conflict response map which accounts for the disagreement

between the response when viewing stereo images on a flat screen vs in a nat-

ural environment. In [132], Park et al. proposed a model which accounts for

both accommodation and vergence to predict quality, by making use of the

physiological optics of binocular vision and foveation.

The models described above are all perception based. Deep convolu-

tional neural networks (CNN) have also recently been applied to the problem.
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Very recently the authors in [133] used a CNN which is fed a disparity map to

predict visual discomfort. Using NSS as a tool to assess visual discomfort has

not been exploited yet. NSS has proved to be a powerful strategy for gaining

insight into the HVS by measuring and analyzing the physical regularities of

the natural environment, as the HVS has evolved based on the natural environ-

ment that we perceive. The power of this approach is that by characterizing

the physical regularities in the visual environment, then we can gain insight

into how those regularities could be exploited to perform visual tasks.

To be able to exploit the bivariate NSS model to tackle the 3D visual

discomfort problem, I first look at the bivariate NSS of disparity maps, in

attempt to first observe whether the model still holds in that case and to un-

derstand how those statistics correlate with visual discomfort. My hypothesis

is that the statistics of natural disparity maps would likely not cause visual

discomfort. I extract NSS features of disparity maps, and combine them with

a subset of the features of the binocular model in [132] to create a new 3D

visual discomfort predictor.

5.2.2 Bivariate NSS Modeling of Disparity Maps

The IEEE-SA database [134] was used as a basis for developing my

model. The database contains 160 scenes, captured with different disparity

ranges, resulting in 800 S3D images pairs, each associated with a Mean Opinion

Score (MOS). The resolution of all the images is 1920×1080. The content of

this database is diverse, containing a wide variety of objects. The scenes were
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captured indoors and outdoors. A flow chart of the model is presented in Fig.

5.1.

5.2.2.1 Applying the Bivariate NSS Model on Stereo Images

The input to my model are left and right stereo pairs. The HVS infers

depth information from the observed left and right images. To extract this

information, I computed disparity maps. I used a classical technique described

in [135, 136] to obtain a single disparity map for every image pair. Moving

forward, the processing steps were similar to the case of the visible light images

but with slight modifications in the parameters.

I applied steerable filtering on the disparity maps while varying σ ∈

{2, 3, ..., 7} instead of σ ∈ {1, 2, 3, ..., 15}, as it was the case for visible light

images. This is because I observed that adding more scales did not improve the

results, hence this allowed me to save on the computation time. The frequency

tuning orientations of the steerable filters θ1 ∈ [0, π/15, 2π/15, ..., π], remained

the same as previously. At the end of this step, I obtained 90 bandpass re-

sponses for every disparity map. Next, divisive normalization was applied

similarly to the case of visible light images. I performed the correlation mod-

eling similarly to the case of visible light images but I limited the values of δx

and δy over the integer range from 0 and 19 instead of 0 and 25. This is justified

by the fact that disparity maps contain less structure as compared to visible

light images, so limiting the value of d , which represents the spatial separation

between the two windows getting correlated to a smaller value is more ade-
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Figure 5.1: Flow chart of the 3D Visual Discomfort Predictor.
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quate. As a result, d took values between 0 and
√

192 + 192 =
√

722 = 26.87.

I considered the 8 most frequent values of θ2 : [0, 0.785, 1.570, 2.356] occurring

19 times in the considered window and [0.436, 1.107, 2.034, 2.677] occurring 9

times there. I excluded the less frequent values of θ2, because including those

does not add too much value. The computations of the correlation ρ, peak P

and amplitude A were performed as before, as well as the optimization opera-

tions to obtain the values of {α0, β0} to reconstruct P and the values of {α1,

β1,α2, β2} to reconstruct A. Fig. 5.2, Fig. 5.3 and Fig. 5.4 present sample

correlation, peak and amplitude plots respectively obtained from the data and

their corresponding fits, from the stereo pair ISS1-0-L.png and ISS1-0-R.png

from the IEEE-SA database.

The great overlap between the empirical correlation data, its fit and its

reconstruction demonstrates the validity of my model for the case of disparity

maps as well. Similar observations can be made across all the images of the

IEEE-SA database [134], and across different d, θ2 and σ values. This claim

is also validated by computing the Mean Squared Error between the empirical

data and its reconstruction.

5.2.3 Discomfort Prediction

Motivated by the observation that stereoscopic displays stimulate ac-

commodation and vergence in an unnatural way resulting in the vergence-

accommodation conflict, I combined binocular vergence and accommodation

features computed based on the disparity maps along with the NSS features
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(a) d = 7, θ2 = 0 and σ = 2. (b) d = 4.24, θ2 = 0.785 and σ = 3.

(c) d = 12, θ2 = 1.507 and σ = 5. (d) d = 12.72, θ2 = 2.352 and σ = 7.

Figure 5.2: Sample correlation plots obtained from the data and their corre-
sponding fits, obtained from the stereo pair ISS1-0-L.png and ISS1-0-R.png
from the IEEE-SA database. The sample correlation plots span various d, θ2

and σ values.
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(a) θ2 = 0 and σ = 2. (b) θ2 = 0.785 and σ = 4.

(c) θ2 = 1.507 and σ = 3. (d) θ2 = 2.352 and σ = 7.

Figure 5.3: Sample empirical P and their fits, obtained from the stereo pair
ISS1-0-L.png and ISS1-0-R.png from the IEEE-SA database. The sample P
plots span various θ2 and σ values.
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(a) θ2 = 0 and σ = 2. (b) θ2 = 0.785 and σ = 4.

(c) θ2 = 1.507 and σ = 3. (d) θ2 = 2.352 and σ = 7.

Figure 5.4: Sample empirical A and their fits, obtained from the stereo pair
ISS1-0-L.png and ISS1-0-R.png from the IEEE-SA database. The sample A
plots span various θ2 and σ values.
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(α0, β0, α1, β1, α2, β2) along different spatial orientations θ2 values to create a

regression module that would map all those features to human ratings in the

IEEE-SA [134] database.

5.2.3.1 Bivariate Natural Scene Statistics Depth Features

I studied the correlation between the bivariate NSS depth features {α0,

β0, α1, β1, α2, β2} at the 8 most frequently occurring spatial orientations

θ2 ∈ [0, 0.436, 0.785, 1.107, 1.570, 2.034, 2.356, 2.677]. As a first test, I trained

a Support Vector Regression (SVR) model [98] using a radial basis function

and 80-20 split on the IEEE-SA database [134] using 46 features as input,

obtaining Pearson’s linear correlation coefficient (PLCC) and Spearmans rank

ordered correlation coefficient (SROCC) both in the range of 0.71 and 0.63

respectively, when the experiment was repeated over multiple iterations. I

found that taking a subset of those features and complementing them with

other binocular model features helped improve performance. In particular, I

observed that a combination of the bivariate features at θ2 = 0 and θ2 = 2.677

correlated the most with the MOS. I denote these features by F1 - F12

5.2.3.2 Binocular Model Features

I complemented my model with four other statistical based binocular

model features. The authors in [132] proposed perceptual features to evaluate

visual discomfort. I considered a subset of their proposed features, in particu-

lar the ones related to disparity maps which were reported to have a PLCC of
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0.83 and an SROCC of 0.76 over multiple iterations [132]. I used the method

described in [135,136] to extract the disparity maps. The main motivation be-

hind the use of the considered features relates to the close correlation between

visual discomfort and the parallax distribution [124,125]. If the reconstructed

scene is positioned behind the screen then the viewing experience is comfort-

able. In that case, the eyes diverge, and the disparity is positive. Otherwise,

the eyes converge, as the disparity is negative, leading to visual discomfort.

Thus the correlation between the sign of disparity and visual discomfort. The

features that I included capture the sign of the disparity. The first feature

represents the mean of positive disparities defined by:

F13 =

{
1

NPos

∑
D(n)>0D(n), if NPos > 0

0, otherwise
(5.8)

where D(n) is the nth smallest value in the disparity map and NPos is the

number of positive elements in the map.

In a similar fashion, I let the mean of negative disparities be another

feature defined by:

F14 =

{
1

NNeg

∑
D(n)≤0D(n), if NNeg > 0

0, otherwise
(5.9)

where NNeg is the number of negative elements in the map.

I also include the mean of the lowest 5th and highest 95th percentiles as

additional features, defined as:
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F15 =
1

NP
5th

∑
D(n)≤D(P

5th
)

D(n)
(5.10)

where NP
5th

is the number of elements smaller than or equal to the 5th per-

centiles in D(n). And:

F16 =
1

NP
95th

∑
D(n)≥D(P

95th
)

D(n)
(5.11)

where NP
5th

is the number of elements greater than or equal to the 95th per-

centiles in D(n).

Taking the combination of all the 16 features results in a predictor that

is summarized in Table 5.4.

5.2.4 Results

Using a regression module, I constructed a mapping from the feature

space, (Table 5.4) to the MOS, resulting in a measure of 3D visual discomfort. I

used a support vector regressor (SVR) [98], in particular the LIBSVM package

[110] to implement the SVR with a radial basis function (RBF) kernel and to

predict the MOS scores. I split the images randomly and used 80% of it for

training and the rest for testing, then I normalized my features, and fed them

into the SVR module to predict the MOS score. I repeated the process 50

times. I obtained a median Pearsons linear correlation coefficient (PLCC) of

about 0.89 and a Spearmans rank ordered correlation coefficient (SROCC) of
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Table 5.4: Summary of the features used in the predictor.

Feature Description

F1 α0 at θ2 = 0 rad

F2 β0 at θ2 = 0 rad

F3 α1 at θ2 = 0 rad

F4 β1 at θ2 = 0 rad

F5 α2 at θ2 = 0 rad

F6 β2 at θ2 = 0 rad

F7 α0 at θ2 = 2.677 rad

F8 β0 at θ2 = 2.677 rad

F9 α1 at θ2 = 2.677 rad

F10 β1 at θ2 = 2.677 rad

F11 α2 at θ2 = 2.677 rad

F12 β2 at θ2 = 2.677 rad

F13 mean of positive disparities

F14 mean of negative disparities

F15 mean of the smallest 5% of the values in the disparity map

F16 mean of the largest 95% of the values in the disparity map

about 0.83 against MOS. Table 5.5 compares the performances of other various

reported algorithms. The performance of my model was only approached by

DeepVDP [133], which uses a complex convolutional neural network.

5.3 Concluding Remarks

In this chapter, I first built a new predictor for the IQA problem by com-

bining quality-predictive features from a new bivariate NSS correlation model
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Table 5.5: Mean PLCC and SROCC and their standard deviations over the
IEEE-SA database, with 80-20% splits, over 50 iterations.

Model PLCC SROCC

Nojiri et al. [124] 0.6854 ± 0.0788 0.6108 ± 0.0732

Yano et al. [126] 0.3988 ± 0.0748 0.3363 ± 0.0798

Choi et al. [127] 0.6509 ± 0.0783 0.5851 ± 0.0798

Park et al. [129] 0.8310 ± 0.0526 0.7534 ± 0.0498

Kim et al. [130] 0.7018 ± 0.0771 0.6151 ± 0.0700

Oh et al. [131] 0.8590 ± 0.0452 0.7887 ± 0.0405

Park et al. [132] 0.8524 ± 0.0482 0.7785 ± 0.0451

Oh et al. [133] 0.8849 ± 0.0283 0.8164 ± 0.0254

Proposed Model 0.8884 ± 0.0197 0.8264 ± 0.0292

with known BRISQUE univariate NSS features. The resulting new IQA model

was shown to outperform top performing blind image quality assessment mod-

els. I also studied the bivariate NSS of disparity maps, and modeled them in

closed form. I showed that using 6 features per spatial orientation allows us

to capture those statistics with very small error. I demonstrated a close rela-

tionship between those statistics and 3D visual discomfort. I combined those

features along with other simple statistics of disparity maps related to positive

and negative disparities to create a powerful 3D visual discomfort predictor

that outperforms state of the predictors, which are perceptually based and/or

use deep convolutional networks.

Provided the success of bivariate NSS in image quality related tasks, I

decided to expand this for video. Moving forward, I will be tackling the blind
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VQA problem. I will be demonstrating in a few chapters that studying the

NSS of the shifted frame difference of the frames is indeed a powerful tool

for building models that can blindly predict the quality of videos. The next

chapter discusses how I built a representative benchmark that would allow me

to assess the performance of such models.

83



Chapter 6

Scaling Up Subjective Studies: The LIVE

Video Quality Challenge Database

In this chapter, I present the construction of the LIVE-VQC database

[137,138] and the design of an adequate framework for scaling up the collection

of the subjective scores [139]. I also discuss the results of the large-scale

crowdsourced video study that I conducted, resulting in more than 205000

opinion scores on 585 diverse videos containing complex authentic distortions.

I also evaluate the performances of prominent blind VQA algorithms on the

new database. 1

6.1 Construction of the LIVE-VQC Database

While considerable effort has been applied to the VQA problem for

high-end streaming video (e.g., Internet television), much less work has been

done on videos captured by mobile and digital cameras by casual users. My

1This chapter appears in the following papers:
1) Zeina Sinno, Alan C. Bovik: “Large-Scale Study of Perceptual Video Quality” in the

IEEE Transactions on Image Processing 28(2): 612-627 (2019).
2) Zeina Sinno, Alan C. Bovik: “Large Scale Subjective Video Quality Study” in the

IEEE International Conference on Image Processing: 276-280 (2018).
Zeina Sinno has designed and constructed the framework, collected the data and per-

formed full experimental analysis of the works described therein.
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objective was to create a resource to support research on this very large-scale,

consequential topic. My specific aim is to offer a large, high-quality dataset

of authentically captured and distorted videos, and a large corpus of science-

quality psychometric video quality scores.

6.1.1 Content Collection

My data was collected with the assistance of 80 largely näıve mobile

camera users from highly diverse age groups, gender, and social, cultural and

geographic diversity. I requested the collaborators to upload their videos just

as captured, without any processing (for example by video processing ‘apps’

like Instagram or Snapchat). Only videos having durations of at least 10

seconds were accepted. No instructions regarding the content or capture style

was provided, other than it reflect their normal use.

Most of the video contributors were volunteers, including acquaintances

of LIVE members; i.e, from family, friends, friends of friends, and so on, from

around the world, while the rest (∼18%) were students solicited from the un-

dergraduate and graduate population at The University of Texas at Austin.

The number of videos provided by each contributing videographer varied but

none contributed by more than 9% of the video set, to ensure diversity of

method, content and style. The contributors spanned a wide age range (11 to

65 years old), and were divided about evenly by gender. The content was shot

on all the populated continents and in many countries, including Australia,

U.S.A., Mexico, Peru, Panama, Colombia, Bolivia, India, Malaysia, Vietnam,
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China, South Korea, Germany, Norway, Switzerland, Poland, Sweden, U.K.,

Portugal, Turkey, Lebanon, the United Arab Emirates, Oman, Tunisia, Egypt

and more. More than 1000 videos were gathered, cropped to 10 seconds while

seeking to preserve ‘story’ continuity, culled to remove redundant content cap-

tured by a same user and videos with disturbing content (e.g. a scene of

surgery). After this cleaning, I was left with 585 videos.

As exemplified in Fig. 6.1, the obtained video content is quite diverse,

and includes scenes of sports games, music concerts, nature, various human

activities (parades, dancers, street artists, cowboys etc.), and much more. The

scenes were captured under different lighting conditions (different times of day

and night), and include both indoor and outdoor scenes. Widely diverse lev-

els of motion (camera motion and in-frame motion) are present and often

contibute to complex, space variant distortions. While it is very difficult to

categorize real-world picture and video distortions with any precision, owing to

their intrinsic mutability, their tendency to commingle, many distortions have

been observed including, for example, poor exposures, and a variety of mo-

tion blurs, haziness, various imperfect color representations, low-light effects

including blur and graininess, resolution and compression artifacts, diverse de-

focus blurs, complicated combinations of all of these, and much more. The

interactions of multiple artifacts also give rise to very complex, difficult to de-

scribe composite impairments. Often visible distortions appear, disappear, or

otherwise morph during a video, as for example, temporary autofocus blurs,

exposure adjustments, and changes in lighting. As such, I made no attempt
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to supply distortion labels to the videos.

Figure 6.1: Screenshots of frames from some of those presented during the
study.

6.1.2 Capture Devices

A taxonomy of the mobile devices used to capture the videos is given

in Table 6.1. Unsurprisingly, the majority of these were smartphones. A total
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Figure 6.2: Distribution of viewed videos grouped by device brand.

of 101 different devices were deployed (some users provided videos captured

by multiple devices), including 43 different models. The commercial releases

of the devices varied between 2009 and 2017, although most of the videos were

captured using devices that were released after 2015 and beyond.

Figure 6.2 depicts the distribution of the viewed videos grouped by

brand. As expected [140] the majority of these videos (∼ 74%) were captured

using commercially dominant Apple and Samsung devices.

6.1.3 Video Orientations and Resolutions

I imposed no restrictions on the orientation of the camera device dur-

ing capture (or after), and 23.2% of the videos in the database were taken in

portrait mode and the other 76.2% in landscape mode. The majority of the

videos shot in portrait and are of high resolutions (1080×1920 and 3840×2160)

which cannot be fully displayed by most available displays without down-
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Table 6.1: Number of videos captured by each type of camera devices.

Make Model Number of Videos
Amazon Fire HDX 1
Apple Ipad Pro 2
Apple Iphone 3GS 1
Apple Iphone 4 14
Apple Iphone 4S 2
Apple Iphone 5 25
Apple Iphone 5s 49
Apple Iphone 6 48
Apple Iphone 6s 107
Apple Iphone 6s plus 5
Apple Iphone 7 17
Apple Iphone 7 plus 3
Apple Ipod touch 8
Asus Zenfone Max 1

Google Pixel 7
Google Pixel XL 20
Hisense S1 1
HTC 10 13
HTC M8 5

Huawei Nexus 6P 10
LG G3 3
LG G4 2
LG Nexus 5 50

Motorola E4 1
Motorola Moto G 4G 3
Motorola Moto G4+ 1
Motorola Moto Z Force 12

Nokia Lumia 635 5
Nokia Lumia 720 3

OnePlus 2 4
OnePlus 3 4
Samsung Core Prime 5
Samsung Galaxy Mega 1
Samsung Galaxy Note 2 21
Samsung Galaxy Note 3 5
Samsung Galaxy Note 5 72
Samsung Galaxy S3 4
Samsung Galaxy S5 25
Samsung Galaxy S6 14
Samsung Galaxy S8 6
Xiaomi MI3 1
Xperia 3 Compact 3
ZTE Axon 7 1
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scaling them. The median display configuration in use today appears to be

1280×720 [141]. To ensure compatibility, all portrait videos of resolutions

1080×1920, 2160×3840, and 720×1080 were downscaled using bicubic inter-

polation to 404×720, so that they could be displayed at the native display

resolutions of all subjects accepted to participate in the study.

Among the videos in landscape mode, many were of resolutions that

cannot be displayed by viewers (those that were 1920×1080 and 3840×2160).

At the time the study was conducted, it was estimated that only between

10-20% of global web viewers possessed high resolution displays equal to or

exceeding 1920×1080 [141]. As a way of accessing both high and low resolution

display groups, I decided to downscale a portion of the large resolution videos

to 1280×720 to better distribute the scoring tasks, since I expected relatively

few participants to be capable of viewing high resolutions. Thus, 110 videos

randomly selected videos were maintained at resolution of 1920×1080, while

the remaining 1920×1080 and higher resolution videos were downsampled to

1280×720 using bicubic interpolation. I ended up with 18 different resolutions

in my database, as summarized in Table 6.2.

Table 6.2: Video resolutions in the database
1920×1080 1280×720 960×540 800×450 480×640 640×480
404×720 360×640 640×360 352×640 640×352 320×568
568×320 360×480 480×360 272×480 240×320 320×240

The predominant resolutions were 1920×1080, 1280×720 and 404×720,

which together accounted for 93.2% of the total, as shown in Fig. 6.3. The
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other resolutions combined accounted for 6.8% of the database.

Figure 6.3: Distribution of the resolutions viewed by the AMT workers.

I managed the videos shown to each worker by first detecting their

display resolution by executing code in the background. If their display reso-

lution was at least 1920×1080, then half of the videos they evaluated would

have this resolution, whilst the rest were randomly selected from the rest of

the database. All of the other participants viewed randomly selected videos

having resolutions less than 1920×1080.

6.2 Crowdsourcing the Subjective Scores

Given that real users nearly always view single videos, rather than

side-by-side pairs, and since, in every case I have only a single, authentically

distorted version of each content, I deployed a single stimulus presentation

protocol. Since the study is crowdsourced and conducted in the wild, I could
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not apply many ITU standard recommendations (e.g. [59]) when conducting

the subjective studies [139]. I did, however abide by agreed-on principles

regarding timing, stimulus presentation, and subject training, as detailed in

the following.

6.2.1 Participation Requirements

I first list the participation requirements, then explain each in detail.

To be eligible to participate, the worker should:

1) Have an AMT reliability score above 90% (reliability constraint).

2) Have not participated previously in the study (unique worker constraint).

3) Use a non-mobile display device, viz. desktop and laptops are allowed,

while mobile phones and tablets are not (display constraint).

4) Use a display having a minimum resolution of 1280×720 (resolution con-

straint).

5) Use a recently updated supported browser. The study supports Google

Chrome, Safari, Mozilla Firefox, and Opera. Internet Explorer, Microsoft

Edge and other browsers were not allowed (browser constraint).

6) Have a good Internet capacity (connectivity constraint).

7) Use a device with adequate computational power (hardware constraint).

Explanations supporting these choices are as follows:
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6.2.1.1 Reliability constraint

AMT records how many jobs each worker has completed, and how many

jobs were accepted, to determine the acceptance ratio, known as the reliability

score. Because of the subtlety of many distortions and to better ensure subject

assiduity, I only allowed workers having an acceptance rates exceeding 90% to

participate.

6.2.1.2 Unique worker constraint

I imposed this condition to avoid any judgment biases that might arise

if workers rated videos more than once.

6.2.1.3 Device constraint

I enforced this condition for two reasons. First, mobile browsers do not

support preloading videos, which is a major concern. Second, it is not possible

to control the resolutions of videos displayed on mobile browsers, since they

must be played using a native player on the device where are upscaled or

downscaled, then played in full screen mode, whereby additional, unknown

artifacts are introduced.

6.2.1.4 Resolution constraint

I required the worker display resolutions to be at least 1280×720 (720p)

as discussed earlier.
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6.2.1.5 Browser constraint

As of early 2018, Internet Explorer and Microsoft Edge do not sup-

port video preloading in HTML5. For this reason, I did not allow users of

those browsers to take part of the study. Google Chrome, Safari, Mozilla

Firefox, and Opera support this option starting at a certain version. I ver-

ified that the browser (and the version) used by each worker was compati-

ble with the HTML5 video preloading attribute. I verified that each session

could proceed with smooth preloading, thereby eliminating the possibility of

bandwidth-induced stalling (rebuffering) events.

6.2.1.6 Connectivity constraint

Poor Internet connectivity or slow bandwidths can cause annoying de-

lays as the videos are loading leading to possible frustration and loss of focus on

the part of the subjects. Under extremely poor bandwidth conditions, it can

also lead to timeouts in the connection established between the server where

the videos are stored and the worker’s side. Internet bandwidth is stochas-

tic and unpredictable as it changes over time. In rare cases, a timeout can

be emerge at the users’ side, with good bandwidth conditions. For example,

a new device may join the network and initiate a large download. In such

a case, a sudden drop in the bandwidth could be experienced. To minimize

these problems, I tracked the loading progress of each video and acted ac-

cordingly. Each video was requested at least 30 seconds before it was needed

by the subject. If the connection was not successfully established the first
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time, a second attempt was made 10 seconds later, and a third 10 seconds

after that. If the connection again failed, the session was terminated and the

worker was informed. Once a connection was successfully established and the

loading commenced, if it was detected that the loading progress halted for a

certain interval of time, the connection with the server was terminated and

a new one established. This was allowed to occur only once. As a global

constraint, the duration of each study session was not allowed to exceed 30

minutes. This helped to filter out corner cases where connections were success-

fully established but the loading progress was very slow. I also implemented

two temporal checkpoints to track the progress of each worker. After a third

of the session videos were viewed, if it was detected that more than 10 min-

utes (one third of the allowed time) had elapsed, then a warning message was

displayed informing the worker that they might not be able to complete the

test on time. The second checkpoint occurred after two thirds of the content

had been viewed, warning them if 20 minutes had passed. I encouraged the

workers (as part of the training process) to close any other windows or tabs

open in the background before commencing the study to avoid draining their

bandwidth. They were reminded of this again if their progress was slow or if

they were experiencing large delays. Before launching the study, I extensively

tested the framework under highly diverse bandwidth conditions and scenarios

to ensure its efficacy.
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6.2.1.7 Hardware constraint

Slow hardware or poor computational power can lead to “frame freeze”

stalls while a video is played. To minimize the frequency of these occurrences,

I encouraged each worker (via the training instructions) to close any programs

running in the background, and if they were using a laptop, to ensure that it

was plugged into an outlet to further promote better performance.

6.2.2 Viewed Content

During a single session, each subject viewed a total of 50 videos: 7

training and the remaining 43 during the rating process (Fig. 6.4).

Figure 6.4: Chart showing the categories of videos seen by a subject viewing
session.
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The videos displayed during the training process were selected to broadly

span the ranges of video quality containing within the database, and were of

mixed resolutions, to prepare the subjects for their later viewing. The training

varied slightly with the detected sizes of the workers’ displays. Those viewers

using displays of resolution of 1920×1080 or higher were presented with two

videos matching their display, along with a mixture of videos of smaller reso-

lutions (1280×720 and less). Those subjects having display resolutions lower

than 1920×1080 were presented with videos of mixed resolutions no higher

than 1280×720.

The 43 videos viewed during the judgment (test) phase included:

• 4 distorted videos drawn from the LIVE Video Quality Assessment Database

[42], which I will refer to as the “golden videos.” These videos were pre-

viously rated by human viewers in the tightly controlled study [42], and

are used, along with the prior subjective scores from [42], as a control to

validate the subjects’ ratings.

• 31 videos randomly selected from the new distorted video database.

If the worker had a display resolution no less than 1920×1080, then

18 videos were drawn from the pool of videos having a resolution of

1920×1080, and the remaining 13 videos selected from the other, lower

resolution videos.

• 4 videos randomly selected from the same pool of 31 videos as above,

but repeated at relatively displayed moments as a control.
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• 4 videos selected from the database were viewed and rated by all of the

workers.

The 43 videos were placed in re-randomized order for each subject.

6.2.3 Experimental Flow

Each subjective study session followed the workflow depicted in Fig.

6.5. I now describe each step in detail.

Figure 6.5: Subjective study workflow.

Step 1: Overview

Once a worker with a reliability score exceeding 90% selected my study

to preview it, s/he was prompted to an overview page describing the task, the

requirements to participate (conditions 2-7), the instructions on how to rate a

video, and a few example videos to give them a clearer sense of the task. The

worker was instructed to rate the videos based on how well s/he believes the

presented video quality compares to an ideal, or best possible video of the same

content. Several example videos were then played to demonstrate exemplars
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of some of the video distortions such as under exposure, stalls, shakes, blur

and poor color representation. The worker was informed that other types of

distortions exist and would be seen, so the worker would not supply ratings

based only on the exemplar types of distortions, but would instead rate all

distortions.

Step 2: Eligibility check

If the user accepted to work on the ‘hit’, and it was determined whether

s/he did not previously participate in the study, and that s/he met conditions

2)-5) above. If the worker did not meet any of those conditions, a message

was displayed indicating which condition was unmet, and that s/he was kindly

requested to return the hit. If it was the case that any of conditions 3)-5) was

unmet, then the displayed message invited the worker to try working on the hit

again, but using another device/ browser etc., depending on which condition

was not met. During this step, the browser zoom level was adjusted to 100%

to prevent any downscaling or upscaling artifacts from occurring when the

videos are played.

Step 3: Timed Instructions

If the worker was able to proceed, the instruction page was displayed

again, with a countdown timer of one minute. Once the countdown timer

reached zero, a proceed button would appear at the bottom of the page,

thereby allowing the worker to move forward. The instructions were repeated
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because while the study was in progress (at the end of 2017), AMT was in

the process of migrating towards a new user interface that allowed the users

to accept a ‘hit’ without first previewing it. Additionally, some workers used

scripts while working on AMT, such as Microworkers and Tampermonkey,

which would auto-accept hits on behalf of the workers when posted. Hence,

some of the workers would not have had the opportunity to read the instruc-

tions if they were not repeated. While the instructions were being repeated,

the first three videos began loading in the background, and the videos that

were to be displayed during the testing phase were determined.

Step 4: Training

Once a subject clicked on the Proceed button, a message was displayed

indicating that the training phase was about to start. This phase consisted of

7 videos. A screenshot of the interface featuring each video to be rated (during

both the training and test phase) is shown in Fig. 6.6. As shown, the video

controls were hidden and inaccessible, to prevent less dedicated workers from

pausing, replaying or skipping the videos. Before a video was fully loaded,

a message was displayed showing the loading progress. Once the video was

fully loaded, a message informed the user that “Video loaded and ready to be

played.” At this point, the zoom level was checked to determine whether it

was at 100%, and was then adjusted if need to be. The video was then played

in entirety (while being muted) if the page was displayed in full screen mode.

Otherwise, a message was displayed directing the worker to adjust it and to
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a) Step 1: viewing a video.

b) Step 2: rating the video

Figure 6.6: Screenshot of the interface used to rate the videos.

again press the play button afterwards. This had the additional benefit of

reducing worker multitasking, which could distract attention from the video

task.
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Once each video finished playing, it disappeared, revealing the rating

interface shown in Fig. 6.6(b). A continuous bar allowed the workers to rate

the quality of the videos, where a Likert-like scale with 5 marks; Bad, Poor,

Fair, Good, and Excellent was provided to generally guide their ratings. The

initial position of the cursor was randomized. This was mentioned in the

instructions and was also indicated in a note above the rating bar. Once each

video finished playing, the user moved the cursor to the appropriate position.

The user was not allowed to proceed to the next video unless s/he moved the

position of the cursor. Once a change in the cursor location was detected, the

Next Video button became clickeable. Once clicked, the worker moved to a

new page, with a new video to be rated and the process continued until the

last video had been rated.

A number of processes were ongoing as the user was viewing/rating rat-

ing each video. For example, the following videos to be rated next start would

begin loading in the background, as described in the previous section. During

the training process, the play duration of each video was measured to assess

the workers’ play capability. There are many ways that stalls could occur while

a video is playing. If a worker’s hardware CPU was slow, if other programs

were running in the background (CPU is busy) or if the Internet connection

was poor, then stalls or frame freezes could (and did) occur. Required back-

ground tasks (such as loading the videos to be played next) added processing

overhead, while slower Internet bandwidths required increased processing over-

head, further impacting foreground performance. During the training process,

102



7 videos of 10 seconds duration each were played. Importantly, the workers

were not able to proceed further if it took more than 15 seconds to play any of

the 7 videos or if any 3 of the 7 videos each required more than 12 seconds to

play. Adopting this strategy guaranteed that most of the training videos were

played smoothly, and also allowed us to eliminate workers who were unlikely

be able to successfully complete the ‘hit.’

Step 5: Testing

After the training phase was completed, a message was displayed indi-

cating that the video rating phase was about to begin. The testing phase was

very similar to the training phase; the videos were displayed, controlled and

rated in the same way. However, the testing phase required 43 videos to be

rated, instead of 7.

Once a third of the study was completed, (10 testing videos rated),

if the progress of the worker was sufficient, then the following message was

displayed: “You have completed one third of the overall study! Good Job :-)

Keep up the Good Work!” As shown in [142], providing workers with moti-

vational feedback can encourage them to provide work of better quality. If

the progress of the worker was slow (>10 minutes had passed), the following

message was displayed “You have completed one third of the overall study but

your progress is slow. Are the videos taking too long to load? If so, make

sure to close any programs running in the background.” A similar message

was displayed after two thirds of the study was completed.
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Step 6: Exit Survey

Once the worker finished rating all of the videos, s/he is directed to

the exit survey so that information regarding the following factors could be

collected:

• the display,

• viewing distance,

• gender and age of the worker,

• country where the task study was undertaken,

• whether the worker needs corrective lenses, and if so, if s/he wore them.

The subjects were also asked whether they had any additional comments or

questions. At the same time, information was automatically collected regard-

ing the display resolution.

6.2.4 Human Subjects

6.2.4.1 Demographic Information

The study participants were workers from AMT having approval rates

exceeding 90% on previous studies. A total of 4776 subjects took part in the

experiment. The participants were from 56 different countries as highlighted

in Fig. 6.7(a) with the majority being located in the United States and India

(together accounting for 91% of the participants). Figure 6.7(b) shows the age
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distribution of the participants. About half of the participants were of each

gender (46.4% male versus 53.6% female).

(a)

(b)

Figure 6.7: Participant demographics (a) Countries where participants were
located; (b) Age distribution of the participants.

6.2.4.2 Viewing Conditions

As with any crowdsourced study, the participants operated under di-

verse viewing conditions; including locations, visual correction, viewing dis-
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tances, browser, display device, resolution, ambient lighting, and so on. Figure

6.8 presents statistics that I collected regarding some of the aspects of subject

viewing. As shown in Fig. 6.8(a), the majority of the participants had normal

or corrected-to-normal vision (e.g., glasses or contacts). A tiny percentage

(2.5%) had abnormal, uncorrected vision, and I excluded their results. The

participants used mostly laptop and desktop monitors to view the videos (Fig.

6.8(b)), and were mostly positioned between 15 and 30 inches from the display

(Fig. 6.8(c)). The subjects used 83 different display resolutions which ranged

between 1280×720 and 3840×2160 pixels, as plotted in Fig. 6.8(d). Of these,

31.15% had display resolutions of at least 1920×1080, while the rest had lower

resolution displays.

6.2.4.3 Compensation

On average the subjects require 16.5 minutes each to complete the

study. The financial compensation given for completing the hit was one US

dollar. I wanted to attract high-quality workers, hence maintaining a good

AMT reputation was important. There exists a variety of forums, like Turk-

erNation.com, where AMT workers can share their experiences of AMT hits.

These forums build a valuable sense of community among Turk workers, and

helps to protect them from unfair or bad practices. I noticed that a small

number of workers were uneasy about being unable to complete the study

because of some of the eligibility requirements that I imposed. This was es-

pecially true when, because of hardware inadequacy, subjects were asked to
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(a) (b)

(c) (d)

Figure 6.8: Participant statistics: (a) Visual correction; (b) type of display
device; (c) approximate viewing distance; (d) display resolution.

return the hit during training. I notified a worker that s/he would be ineligible

to continue working on the hit as soon as a problem was detected (viz. when a

video stalled >5 seconds or when 3 videos stalled >2 seconds during training).

The training instructions did inform the subjects that they could be asked to

return the hit if any eligibility requirement was not met. I did not compen-

sate any “less dedicated” worker who skipped any video by re-enabling the
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controls of the video; either by using Javascript commands or by modifying

browser settings, since I wanted to discourage workers from attempting such

practices. Interestingly, about 2% of the workers were “skippers” and were

not compensated.

Adopting a strategy to reject subjects on the fly that were not provid-

ing consistent results was a more challenging issue. The previous large image

quality crowdsourced study in [54] repeated some of the images to determine

how consistent a subject would rate the same distorted content, and rejected

inconsistent subjects. I adopted a similar strategy, with important modifica-

tions, by repeating 4 of the videos (at random relative spacings) to measure

intra-subject consistency. However this measurement problem was more com-

plex in my study than in [54] since hardware-related stalls; although greatly

reduced in frequency, could still occur. Thus, a video and its time-displaced

repeat could each present with or without stalls (of different locations and du-

rations), thereby greatly affecting their perceived quality. I noticed that the

workers were generally providing very similar ratings on videos viewed twice,

when no stalls occurred, which I attribute at least in part to only including

participants having high reliability scores. When stalls occurred, the results

were harder to interpret. I did not want to reject the workers unfairly, hence

I decided to adopt a strategy similar to that used in the crowdsourced video

annotation study [142], where the authors compensated the workers regard-

less of the consistency of their results, arguing that keeping a good reputation

among workers was worth the overhead cost, and helped motivate the workers
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to produce high quality work. While I informed the workers that I reserved

the right to reject poor work, I also adopted this method.

A summary of those participants that were not compensated is given

in Table 6.3.

Table 6.3: Summary of the participants that were not compensated.
Participants Group Filtering Action(s)

Ineligible Participants
Device, display, resolution and browser

information captured after the study overview.
Bandwidth and hardware tests during training.

Asked to return the hit.
Not compensated.

Video scores not collected.

Video Skippers Measure of the viewing duration.
Not compensated.

Video scores excluded.

6.2.4.4 Subject Feedback

I provided the workers with space to give comments in the exit survey.

The feedback that I received was generally very positive, which suggests that

the workers successfully engaged in the visual task.

Among the 4776 workers who completed the study, 32% completed

the additional comments’ box. Among those, 55% wrote that they did not

have any additional comments (e.g. no comment, none, not applicable), 31%

described the test as good, nice, awesome, great, cool, enjoyable or fun. Some

(13%) of the workers provided miscellaneous comments, e.g, that they noticed

that some videos repeated, or provided additional information about their

display, or wondered how the results would be used, or just thanked us for the

opportunity to participate.
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6.3 Subjective Data Processing and Results

Here I discuss handling of stalled videos, subject rejection, and the

effects of the various experimental parameters on the study outcomes.

6.3.1 Video Stalls

As mentioned earlier, I adopted a strategy to identify, during the train-

ing phase, those subjects that were the most susceptible to experiencing video

stalls. While I was able to substantially mitigate the video stall problem, I was

not able to eliminate it entirely. Although I was able to eliminate network-

induced video stalls by requiring that all videos pre-loaded before display, the

computational power that was available to each participants’ device to play

and display the videos was a stochastic resource that was a function of other

processes executing in the background. While I asked the workers to close

any other windows, tabs or programs, there was no way to verify whether

these instructions were followed. Moreover, other necessary foreground, and

background processes related to high-priority operating system tasks could

affect performance. Since network connectivity can be time-varying and un-

predictable, further overhead may also have weighed on processor performance

during poor connections.

Figure 6.9 plots the distribution of the video stall durations. It can be

observed 92% of the videos had no stalls at all or had stalls that lasted for less

than 1 sec. In fact, 77% of the videos played with no stalls at all.
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Figure 6.9: Distribution of the video stall durations.

6.3.2 Outlier Rejection

I first rejected the ratings of those users who indicated that they wore

corrective lenses, but did not wear them during the course of the experiment.

This accounted for 2.5% of all subjects. As mentioned earlier, 2% of subjects

attempted to circumvent the experiment and did not watch the videos fully;

their results were also excluded.

I also excluded the ratings of users whose computation/display prob-

lems were so severe that at least 75% of their viewed videos stalled, which

eliminated ratings of 11.5% of the subject population. The remaining sub-

jects viewed at least 11 out of the 43 test videos (usually many more) without

experiencing any stalls. For the remaining video ratings, I applied the stan-

dard BT-500-13 (Annex 2, section 2.3) [59] rejection portion on the ratings

of videos, played without any stalls. I found that only 23 subjects were out-

liers (0.5%) from among the entire population. This number seemed low that
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I also studied the intra-subject consistency. By design, each subject viewed

4 repeated videos during the test phase; I examined the differences in these

pairs of scores, as follows. The average standard deviation of all non-stalled

videos was about 18. I used this value as a threshold for consistency: given a

non-stalled video that was viewed twice, the absolute difference in MOS of the

two videos was computed. If it was below the threshold, then the rating for

the video was regarded as consistent. Otherwise, it was not. I repeated this

analysis across all the 4 videos across all subjects, and found that the majority

(∼99%) of the subjects were self-consistent at least half of the time. It is im-

portant to emphasize that I excluded the stalled videos from the consistency

analysis and when applying the subject rejection [59], because the presence of

any stalls rendered the corresponding subject ratings non-comparable.

After rejecting the outliers, I was left with about 205 opinion scores

for each video, without stalls, which is a substantial number. I computed the

MOS of each video; Fig. 6.10 plots the histogram of these obtained MOS

following all of the above-described data cleansing. It may be observed that

the MOS distribution substantially spans the quality spectrum with a greater

density of videos in the range 60-80.

6.3.3 Validation of Results

6.3.3.1 Golden Videos

During the testing phase of each subject’s session, 4 distorted videos

taken from the LIVE VQA Database [42] - the aforementioned “Golden Videos”
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Figure 6.10: Distribution of MOS of the final set of video ratings.

- were displayed at random placements to each worker to serve as a control.

The mean Spearman rank ordered correlation (SROCC) values computed be-

tween the workers’ MOS on the gold standard images and the corresponding

ground truth MOS values from the LIVE VQA was found to be 0.99. The

mean absolute difference between the MOS values obtained from my study

and the ground truth MOS values of the “Golden Videos” was 8.5. I also

conducted a paired-sampled Wilcoxon t-test, and found that the differences

between these to be insignificant at p < 0.05. A recent experiment [143]

showed that the MOS collected in subjective studies tends to vary with the

overall quality of the presented videos. The videos in LIVE-VQC database

span a wider range of quality than the LIVE VQA Database [42], which only

contains videos contaminated by only a few synthetic distortion types each

at a few levels of severity. I believe that this explains the consistent shift in

MOS across the 4 golden videos, when the outcomes from both experiments

are compared.
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The excellent agreement between the crowdsourced scores and the lab-

oratory MOS significantly validates my experimental protocol.

6.3.3.2 Overall inter-subject consistency

To study overall subject consistency, I divided the opinion scores ob-

tained on each video into two disjoint equal sets, then I computed MOS values

on each set. I conducted on all the videos, then computed the SROCC be-

tween the two sets of MOS. This experiment was repeated 100 times, and the

average SROCC between the halves was found to be 0.984.

6.3.4 Impact of Experimental Parameters

6.3.4.1 Number of subjects.

To understand the impact of the number of subjects on the obtained

MOS, I considered the set of videos that were viewed by all subjects, and

plotted the error bar plots of the associated MOS along with the standard

deviation as a function of the number of ratings (up to 2000), as shown in Fig.

6.11.

I found that increasing the sample size behind beyond 200 did not

improve or otherwise affect the figures. I collected slightly more than 200

opinion scores for each video (without stalls). I observed similar behaviors

across the rest of the videos.
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(a)

(b)

Figure 6.11: Plots of (a) error bars of MOS; (b) standard deviation of MOS,
for the set of videos viewed by all of the subjects.

6.3.4.2 Stalls.

I computed the differential mean opinion scores (DMOS) between the

non-stalled videos and the stalled videos:

DMOS = MOS without stalls −MOS with stalls (6.1)

The DMOS is plotted against the video index in Fig. 6.12.

115



Figure 6.12: DMOS between the videos that played normally and the stalled
videos.

Stalls nearly always resulted in a drop of MOS (for> 95% of the videos).

Since it is difficult to assert a reason for a rare small increase in MOS on a

given content when stalled, I simply regard those events as noise in the data.

While I have not included an analysis of the stalled video ratings here,

I still regard the data as valuable, even though I was only able to collect the

per-video total stall durations (but not the number or locations of the stalls).

In future work, I plan to analyze stalled video ratings as well, with an eye

towards helping guide the development of models that can account for stall

occurrences when predicting the video quality.

6.3.5 Worker Parameters

6.3.5.1 High vs low resolution pools

The low resolution group (subjects with display resolutions less than

1920×1080) rated 475 of the 585 videos in my database. Whereas, the high
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resolution pool (resolutions of at least 1920×1080) rated all 585 videos. I

studied the inter-subject agreement between the two groups over the common

set of videos. I computed the SROCC over the MOS obtained from both

groups and obtained a value of 0.97. The mean difference in MOS between

the two sets was close to 1, which might be attributed to statistical noise.

The high inter-subject agreement between the two groups is important, as it

shows that the subjects from the high resolution pool (accounting for 31.15%

of the total population), who had seen videos of higher resolutions, did not

rate the low resolution videos differently than did the low resolution pool of

participants.

6.3.5.2 Participants’ Resolution

As can be observed in Fig. 6.8(d), the two dominant resolution groups

were 1366x768 and 1920×1080. The other resolutions occurred less frequently

(less than 10% of the time). I studied the influence of resolution on the distri-

bution of MOS for the two most dominant resolutions. The SROCC between

the two classes was 0.95, while the mean difference in MOS between the two

sets was close to zero. This result further supports the belief that the partici-

pants’ display resolutions did not significantly impact the video quality ratings

they supplied.
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6.3.5.3 Participants’ Display Devices

Laptops and computer monitors most often used as display devices

(Fig. 6.8(b)). I also studied the influence of the display device, and found

that it did not noticeably impact the MOS either (the SROCC between the

two groups was 0.97 and the mean difference in the MOS was close to 1).

6.3.5.4 Viewing Distances

Another parameter that I studied was the reported viewing distance.

There were three categories: small (<15 inches), medium (15-30 inches) and

large (>30 inches) viewing distances as shown in Fig. 6.8(c). I found that

the viewing distance had only a small effect on the distribution of MOS. The

SROCC between the three categories ranged between 0.91 and 0.97, while the

average difference in the MOS was less than 1.

6.3.5.5 Other demographic information

I also analyzed the impact of subjects’ demographics on the distribution

of MOS. First, I did not find noticeable differences between the MOS distri-

butions across the male and female populations. The SROCC between the

two gender classes was 0.97, and the average difference between the MOS was

about 2; female participants tended to give slightly lower scores as compared

to male participants. It is possible that this might be attributed to biological

differences in the perceptual systems between of the two genders; for example,

it has been reported that females are more adept at distinguishing shades of
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color [144].

Age did impact the MOS distribution. I compared the distributions of

MOS for the four age ranges, and found that younger participants as a group

delivered lower opinion scores than did older participants. These differences

might be attributed to young participants having better vision [145], or it

might related to differing expectations of younger and older viewers. As it

can be observed in Table 6.4, the larger the difference between the age groups,

the lower the SROCC. The difference between the MOS distributions becomes

more subtle as the difference in the age gap increases; participants younger

than 20 tended to assign lower quality scores than did participants older than

40.

Table 6.4: Spearman Correlation of the MOS distributions obtained between
the different age groups.

<20 20-30 30-40 >40
<20 1 0.84 0.82 0.79

20-30 0.84 1 0.97 0.94
30-40 0.82 0.97 1 0.96
>40 0.79 0.94 0.96 1

6.4 Performance of Video Quality Predictors

As mentioned earlier in the background section, I conducted this study

with the aim to advance VQA research efforts, by providing a database that

closely represents distorted videos encountered in the real world, along with

a large number of accurate human opinions of them. In recent years, there
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has been numerous efforts to develop blind VQA models. Noteworthy exam-

ples include simple frame-based Natural Scene Statistics (NSS) based mod-

els, NIQE [8] and BRISQUE [7], as well as more sophisticated predictors

that incorporate more complex information such as motion. These include

V-BLIINDS [72], VIIDEO [79], the 3D-DCT based NR-VQA predictor de-

scribed in [80], the FC model [81], the statistical analysis model in [82], and

the convolutional neural network model in [83].

To demonstrate the usefulness of my database, I evaluated the quality

prediction performance of a number of leading blind VQA algorithms (whose

code was publicly available). NIQE [8] and VIIDEO [79] are training-free

models capable of outputting quality scores on video. V-BLIINDS [72] and

BRISQUE [7], require training hence I learned mappings from their feature

spaces to the ground truth MOS, using a support vector regressor (SVR) [98]

that has been successfully deployed in many prior image and video quality

models. I used the LIBSVM package [110] to implement the SVR with a ra-

dial basis function (RBF) kernel and to predict the MOS. I applied a 5-fold

cross validation technique as described in [146]. To predict quality scores over

the entire database, I aggregated the predicted values obtained from each fold.

The NIQE [8] features were computed on non-overlapping blocks of size 96×96,

then the computed NIQE distance is computed over frames and averaged

over time, similar to how it was originally implemented in V-BLIINDS [72].

BRISQUE [7] was calculated over frames and averaged in time.

Figure 6.13 presents scatter plots, of NIQE [8] and VIIDEO [79] qual-
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(a) (b)

(c) (d)

Figure 6.13: Scatter plots of the predicted quality scores versus MOS for four
NR VQA models; (a) VIIDEO; (b) NIQE; (c) BRISQUE; (d) V-BLIINDS.

ity predictions, and V-BLIINDS [72] and BRISQUE [7] predictions obtained

after the 5-fold cross validation. Since NIQE provides a distance measure

that increases as the video becomes more distorted, I will instead analyze the

quantity -NIQE for simpler visual comparison with other models. As may
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be observed in Fig. 6.13(a), the predicted VIIIDEO scores correlated poorly

with the ground truth MOS, while for the other models followed regular trends

against the MOS, as shown in Fig. 6.13(b), 6.13(c) and 6.13(d).

I used three performance metrics to quantify the performance of the

different VQA models. First, I computed the Pearson Linear Correlation Co-

efficient (PLCC) between the predicted quality values and MOS distributions,

after applying a non-linear mapping as prescribed in [147] to the predicted

quality values. Second, I computed the Root Mean Squared Error (RMSE)

between the two distributions. Finally, I computed the SROCC values be-

tween the predicted quality values and MOS values. When evaluating V-

BLIINDS [72] and BRISQUE [7], I randomly divided the videos into two dis-

joint sets (80%-20%). I used the larger set for training and the other one for

testing, then I normalized my features, and fed them into the SVR module [98]

to predict the MOS. I repeated this process 100 times, and computed the me-

dian PLCC, SROCC and RMSE values. A summary of the results obtained

over all the models is given in Table 7.4. I could not run V-BLIINDS [72]

successfully on all the videos, especially at lower resolutions. Unable to trace

the source of this problem in the span of the current report, or resolve it,

the results are reported on a subset of 553 out of the 585 videos. Note that

computing the results on this subset led to a slim increase in the performance

of NIQE [8] and BRISQUE [7]. VIIDEO’s code [79]’s would not run success-

fully on 3 videos so I report the results for it on the remaining 582 videos.

The results reported for NIQE [8] and BRISQUE [7] are on the full database,
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since these algorithms could run successfully on all the videos. As may be

observed, V-BLIINDS supplied the best performance in terms of the three

performance metrics. However, there remain ample room for improvement,

suggesting the need for developing better NR VQA models, capable of better

assessing authentic, real-world video distortions.

Table 6.5: Performance Metrics Measured on the Compared VQA Models.
PLCC SROCC RMSE

VIIDEO [79] 0.1366 -0.0293 16.851
NIQE [8] 0.5832 0.5635 13.857

BRISQUE [7] 0.6456 0.6072 12.908
V-BLIINDS [72] 0.7196 0.7083 11.478

6.5 Concluding Remarks

I have described the construction of a new “in the wild” video quality

database, LIVE-VQC, containing 585 videos of unique contents, and impaired

by authentic distortion combinations, captured by 80 users around the globe

using 43 different device models. I also designed and built a crowdsourced

framework to collect more than 205000 online opinion scores of the quality of

these videos. The AMT subjects who participated were located in 56 differ-

ent countries, represented genders about equally, and spanned a wide range

of ages. The significant diversity of the subject pool raised many technical

challenges owing to widely differing viewing conditions and resources. How-

ever, the framework I built proved to be robust against the many variables

affecting the video rating process. While the VQA models that I tested did
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not perform particularly well on the new database, this was not unexpected

as existing NR VQA models were not been adequately engineered to deal with

so many real-world distortions. To address this problem, in the next chapter,

I will be presenting a completely blind NR VQA model.
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Chapter 7

A Completely Blind Video Quality Predictor

In this chapter, I present a highly efficient, “completely blind” video

quality model that relies on a unique set of directional spatio-temporal NSS

features, and which does not require any kind of training. I call this model

VIdeo Naturalness Assessor, or VINA. I begin this chapter by describing the

features that define this model. 1

7.1 VINA’s features

Evolution has left a significant trace on the neurological resources of

visual perception in response to the statistical properties of the physical nat-

ural environment [148], and images of it. Hence, the study of natural image

and video statistics is highly relevant to understanding visual perception, in-

cluding the perception of visual distortions [7, 8, 68, 72, 149, 150]. Following

this philosophy, the VQA model I develop here utilizes measurements of the

physical statistics of spatial frames as well as directional bandpass statistical

1A part of this chapter has been submitted in the following paper:
Zeina Sinno, Alan C. Bovik: “Spatio-temporal Measures of Naturalness” in the IEEE

International Conference on Image Processing, 2019.
Zeina Sinno has constructed the model and collected the data and performed full experi-

mental analysis of the works described therein.
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space-time features to predict quality. An overview of the VINA model is

shown in Fig. 7.1. I begin by describing the spatial features.

Figure 7.1: VINA’s overview.

7.1.1 Spatial Features

It is difficult to assert whether certain attributes of image and videos

relate more closely to aesthetics or to quality. For example, if an image is too

dim or has limited color content, than it might be deemed as both lower in aes-

thetic quality, as well as of poor quality, even if it is not distorted in the usual

sense. Towards capturing some of the attributes in this gray area that are not

traditional distortions but still contribute to the percept of quality, I attempt

to account for some of these properties. Subjects’ ratings of image appeal
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can be influenced by low-level image attributes [151]. For example, Savakis

et al. [152] reported that human viewers found images that are colorful, well-

lit, and of high contrast are considered appealing, while darker low-contrast

images were considered less appealing. Studies on the perception of image

naturalness [153,154] have also revealed the importance of such attributes.

VINA incorporates kinds of low-level images non-traditional distortion

properties that may also be viewed as aesthetic attributes: colorfulness, lu-

minance and contrast. This choice of attributes agrees with the observations

made in the subjective study [152].

7.1.1.1 Colorfulness

I used the popular index introduced in [155] to capture colorfulness

information. This computationally approach is defined as the weighted sum

of the mean and standard deviation of the cloud of pixel values along direc-

tion rgyb. Specifically, the colorfulness c of an image, or video frame by c is

measured as follow.

First, define the rg and yb plane directions rg = R − G and yb =

1
2
(R +G)− B, then compute the means µrg and µyb and standard deviations

as and σrg and σyb along the rg and yb directions, respectively. Then, define the

mean and standard deviation along the rgyb direction as µrgyb =
√
µrg2 + µyb2

and σrgyb =
√
σrg2 + σyb2, respectively.

Then finally

c = σrgyb + 0.3µrgyb. (7.1)
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When processing videos, c is computed on a frame per frame basis so,

hence denote the colorfulness of the nth frame by c(n), and the obtained se-

quence of colorfulness values for a video by {c}. Following the well-established

strategy that the worst distortions, when localized in space, or in the case time,

may contribute the most to perceived quality degradation, I deploy ranking

methods on each of the basic low-level “aesthetic quality” features. Thus, let

Cp be the mean of the lowest pth percentile of colorfulness across all the frames

of a video:

Cp =
1

Np

∑
c(n)≤c(p)

c(n) (7.2)

where Np is the cardinality of values of c(n) in the lowest pth percentiles in

{c}.

I fixed the lower percentile to be the nominal value p = 5 for each low-

level aesthetic feature to avoid any tuning bias. Hence, C5 is the first feature

in my model.

7.1.1.2 Luminance

The study in [152] also suggested that brighter images, e.g. of well lit

scenes,are also more appealing to human viewers than dim images of poorly lit

scenes. Hence I also compute average luminance l(n) the average luminance on

each frame indexed by n and use {l} to denote the sequence of frame luminance

values of a video.

Similarly to colorfulness, compute Lp, the mean of the lowest pth per-
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centile of the average frame luminances:

Lp =
1

Np

∑
l(n)≤l(p)

l(n). (7.3)

This feature is motivated by the observation that the lower the average lumi-

nance of an image, the less desirable it often is. As mentioned above, I again

fix p = 5, L5 is the second feature of my model.

7.1.1.3 Contrast

Contrast is also a generic predictive feature of quality, as demonstrated

in [152]. While there are several definitions of contrast available e.g., Michelson

contrast [156], Weber-Fechner contrast [157] and the RMS contrast σrms [158],

I utilize the more widely used σrms as defined in [158] as it is a basic statistics

that is not captured by the natural scene models I will also be using. It also

yields better quality prediction results.

The RMS contrast measure that I use is computed as:

σrms =

√√√√ 1

wh

w∑
i=1

h∑
j=1

(I − I)
2
, (7.4)

where I is the luminance image, i ∈ {1, 2, ...w} and j ∈ {1, 2, ...h} are spatial

indices, w and h are the frame height and width respectively and I is a local

weighted average of the luminance:

I(i, j) =
M∑

m=−M

N∑
n=−N

gm,nIm,n(i, j) (7.5)
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where gm,n, m = −M, ...,M, n = −N, ..., N is a 2D circularly-symmetric Gaus-

sian weighting function sampled out to 3 standard deviations and rescaled to

unit volume. I set M and N to 3. Note that (7.4) ha the interpretation of

the average local contrast of I, which could be much less sensitive to contrast

flattening local distortions. Let σrms(n) denote (7.4) computed on frame n,

and {σrms} be the sequence of frame contrast values of a video.

Further, define the mean of the lowest pth percentile of the {σrms} values

over all the frames of a video to be:

Sp =
1

Np

∑
σrms(n)≤σrms(p)

σrms(n) (7.6)

where Np is as defined before. As mentioned earlier, I take p = 5, S5 becomes

the third feature in my model.

7.1.2 Temporal Features

The main design of VINA is based on the premise that pristine, undis-

torted videos reliably present statistical regularities that are systematically and

predictably degraded by distortions. Indeed, this has been demonstrated in

highly successful FR [68,159], RR [70,160] and blind (NR) [8,72,106]. Recog-

nizing that distortions of videos are intrinsically spatio-temporal phenomena,

here I define first-of-a-kind space-time distortion-aware video NSS features.

Of course, videos are deeply affected by object motion, and various dis-

tortions are associated with motion, such as jitter, ghosting, motion compen-

sation mismatches, all of which can render the perception of moving pixels un-
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natural. Unfortunately, as has been previously observed [161] and commented

on [72], the statistics of motion (optical flow) does not generally follow ob-

served regularities on videos containing moving objects, whereas the statistics

of changes over time, e.g., as captured by frame differences, are nicely regu-

lar [70]. My unique concept is to capture and analyze the natural statistics of

frame differences that are oriented in space-time. It turns out that these are

more reliable video predictions than temporal-only differences. Specifically, I

devise a space-time directional natural video statistics (NVS) model based on

the effects of distortions on the statistics of displaced frame differences along

the four cardinal directions horizontal, vertical, and both diagonals.

7.1.2.1 Space-Time Directional Models

For a given video containing T luminance frames {I1, I2, I3..., IT}

of width and height dimensions w and h, define four directional temporal

differences between each pair of adjacent frames as depicted in Fig. 7.2. At

each frame index t and spatial coordinate (i, j), define the set of oriented

spatial differences:

DH(i, j)t = It(i, j)− It+1(i, j − 1) (7.7)

DV (i, j)t = It(i, j)− It+1(i− 1, j) (7.8)

DD1(i, j)t = It(i, j)− It+1(i− 1, j − 1) (7.9)

DD2(i, j)t = It(i, j)− It+1(i− 1, j + 1). (7.10)
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Figure 7.2: Depiction of pixels in frame t and the four pixels in frame t+ 1 it
is differenced with.

Then define the local 4 directional average values DH(i, j)t, DV (i, j)t,

DD1(i, j)t and DD2(i, j)t in the same way as (7.5), using the same weighting

function g, as well as four variance fields:

σ2
(·)(i, j) =

w∑
i=1

h∑
j=1

(D(·) −D(·))
2

(7.11)

where (·) denotes any of the four cardinal directions (horizontal, vertical or

one of the diagonals).

These are used to obtain the mean subtracted contrast normalized co-

efficients (MSCN):

D̂(·)(i, j) =
D(·)(i, j)−D(·)(i, j)

σ(·)(i, j) + 1
. (7.12)

MSCN coefficients of images have been used to devise highly efficient

NR IQA models [7, 8] and the MSCN of simple frame differences have been
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used to conduct NR VQA of H264 compressed and rescaled videos [162]. In

these algorithms, parametric fits of the feature distributions to generalized

gaussian density (GGD) model are used to construct the NR IQA engines.

Following [8], each frame is partitioned into patches of size 96 × 96,

within the MSCN coefficients and the distribution of those coefficients in each

patch are then fitted using a generalized Gaussian distribution (GGD) function

of zero mean using the moment matching function described in (7.12) are

computed along each direction. The MSCN histograms are then each fit with

a GGD of the form:

f(x;α; β) =
α

2βΓ(1/α)
exp[−(

|x|
β

)α] (7.13)

where Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0, (7.14)

using the moment matching function described in [107]. The shape parameter

α controls the shape of the distribution, while β controls its variance. For

each directional MSCN patch histogram, the best-fitting α and β parameters

are thus computed, and then aggregated across all patches and all frames, by

aggregating the pair of features (α,β) from each patch, in each frame of a video,

yielding four directional NVS models of any given input video, which I denote

by MH , MV , MD1 , and MD2 . Each vector NVS model is of size p× 2, where p

is the total number of 96× 96 patches in a certain video: p = b w
96
c× b h

96
c×T ,

provided that the patches partition the frames without any overlap. Each

directional model is thus obtained on all of the luminance frames of a video.

133



7.1.2.2 Construction of the Pristine Directional Models

As I will describe shortly, VINA predicts the quality of a video by

making a statistical comparison to a pristine video model. To construct the

pristine model, I collected about 600 high quality videos from sets of videos in

established VQA databases, such as the LIVE Mobile Video Quality Database

[45] and the MCL-V [48] database, along with other high resolution, high

quality content obtained from across the web from sources such as Shutterstock

[163], Videezy [164], Pixabay [165], and Videvo [166]. The pristine videos that

I obtained from open source websites were mostly of resolution of 1920× 1080

and above. Provided that consumer devices provide a wide range of resolutions

as reflected by the LIVE-VQC database [137] in Table 6.2. As a check, I

conducted a small scale subjective study involving 3 human subjects who each

gave a binary evaluation of each of the set of collected videos as either visually

distorted or not. I only retained those videos that were agreed to be non-

distorted by all the subjects. Random sets of the resulting pristine videos were

then downscaled using bicubic interpolation [167], yielding four collections of

pristine videos of resolutions: 1280 × 720, 960 × 640, and 640 × 360, each

containing about 50 videos. This was done to allow for resolution-specific

prediction models.

Similar MSCN processing steps were applied to each of the pristine

videos. In fact, the processing was identical to the one above, with one differ-

ence: following the approach in [8], the MSCN coefficients were only computed

on the sharpest patches. Specifically, the sharpest 5% of the patches in each
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frame were processed on videos of resolutions 1280 × 720, while the sharpest

25% of frame patches were processed on the videos of resolutions 960 × 640

and 640×360. A larger percentage was used on the lower resolution videos, in

order to ensure that an adequate, representative quantity of lower-resolution

patches were included. The best-fitting parameters (α,β) were collected and

horizontally aggregated over space and time across all videos for each of the

four orientations, yielding 4 pristine models PH , PV , PD1 , and PD2 . Each

model was contained in a matrix of size 400000× 2, since the total number of

sharp patches across all pristine videos was 400000.

7.1.2.3 Measure of the Directional Naturalness

Similar to the approach described in NIQE [8], I computed a modified

Mahalanobis distance [168] ∆(·) between each directional pristine model and

the corresponding directional input video models:

∆(·)(γM(·) , γP(·) ,ΣM(·) ,ΣP(·)) =

√
(γM(·) − γP(·))

T (
ΣM(·) + ΣP(·)

2
)
−1

(γM(·) − γP(·)),

(7.15)

where γM(·) and γP(·) are the means of the models M(·) and P(·) respectively, and

ΣM(·) and ΣP(·) are their respective covariance matrices. The resulting distances

∆H , ∆V , ∆D1 , and ∆D2 each capture the degree of directional naturalness

(or lack thereof) relative to the pristine video behavior. A simple way to

understand these quantities is that the higher their values, then the less natural

the directional space-time changes are, which often arise from distorted object

and/or distortion motion.
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7.2 Pooling Mechanism

The method of feature pooling I use here of the temporal features was

inspired by the completely blind NR IQA model NIQE [8], which considers a

natural model of images in the form of an NSS feature dictionary, and computes

the distance between an image to this model to obtain a measure of how natural

or undistorted the image is. A lower distance is desirable, indicating that the

image is less distorted, while a higher distance indicates that the image is more

distorted. Unlike NIQE, my features are more diverse, hence I pool them into

groups. My method of pooling is designed in a product form, so that a severe

loss of quality affecting any single, or group of features can adequately reduce

the overall quality prediction. As a way of normalizing each of the feature

contributions to the product, I exponentiate each feature after scaling it by

a normalization factor representative of the typical order of magnitude that

feature value takes. Thus, C5 and L5 are each scaled by 100, while every other

feature is scaled by 10. This avoids any single feature dominating the others.

The signs of the temporal features were also flipped, since they each measure

a naturalness distance, hence are negatively correlated. Finally, the overall

VINA score is computed as:

V INA = e0.1C5 × e0.1L5 × eS5 × e−∆H × e−∆V × e−∆D1 × e−∆D1 (7.16)

While VINA in this form performs well, visualization of VINA scores

when plotted is enhanced by the monotonic assignment V INA← (V INA)−0.1,

which I use in all the following comparisons.
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7.3 Results

To demonstrate the efficacy of my predictor, I first evaluated the quality

prediction performance of each feature used and then compared VINA’s overall

performance against other leading VQA models.

7.3.0.1 Performance of the Individual Features

I studied the performance of my model by first computing the Pear-

son Linear Correlation Coefficient (PLCC) between the values of the features

and MOS, after applying a non-linear mapping as prescribed in [147] to the

predicted quality values. Second, I computed the Root Mean Squared Error

(RMSE) between the two distributions. Finally, I computed the SROCC values

between the features and MOS values. As mentioned previously, I deployed a

ranking method on each of the basic low-level spatial features. I found that the

lower the percentile p is, the better the performance, so I fixed p = 5%. I also

studied the performance of VINA as a function of the percentile p. Table 7.1

tabulates the prediction performances of the colorfulness, luminance and con-

trast features when applied in isolation, clearly promoting the effectiveness of

lower values of p. I also report the performance of the overall VINA predictor

as a function of p in Table 7.2. My choice of p = 5 is slightly sub-optimal but

is likely more robust in practice given that it averages several feature values,

rather than relying on an extreme value.

I also plotted the scatter of C5, L5 and S5 against the ground truth

MOS in Fig. 7.3.
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Table 7.1: Performance of Cp, Lp, and Sp as a function of p.
C1 C5 C50 C100 L1 L5 L50 L100 S1 S5 S50 S100

PLCC 0.2607 0.1605 0.1166 0.1138 0.5311 0.5267 0.5012 0.4771 0.5913 0.5804 0.5360 0.5066
SROCC 0.2014 0.1830 0.1146 0.0651 0.4199 0.4119 0.3560 0.3121 0.5782 0.5621 0.5060 0.4608
RMSE 16.46 16.84 16.94 16.95 14.45 14.50 14.76 14.50 13.76 13.89 14.40 14.71

Table 7.2: VINA’s performance as a function of p.
p = 1 p = 5 p = 50 p = 100

PLCC 0.6863 0.6808 0.6585 0.6424
SROCC 0.6689 0.6619 0.6302 0.6050
RMSE 12.41 12.50 12.84 13.07

A degree of linearity may be observed in the trends of the features,

although there is a fair degree of spread. This is not unexpected, since these

“aesthetic quality” features do not capture the local distortion artifacts that

dominate quality perception. Instead, they contribute somewhat weaker, al-

beit complementary (and hence valuable) quality-aware information. Among

these, C5 the weakest quality predictor, while S5 is the strongest, which not

surprising given that it relates to image contrast.

I repeated the same analysis on the spatio-temporal features, using their

negative values −∆H , −∆V , −∆D1 and −∆D2 . Table 7.3 lists the SROCC,

PLCC and RMSE values computed between these features and MOS. I also

plotted those features as a function of MOS in Fig. 7.4. The spatio-temporal

features performed better than the spatial aesthetic ones that is more richly

sensitive to distortion along multiple spatial-temporal orientation, which could

arise from motion perturbations, moving artifacts, and local flickers. It is

interesting that each of the spatio-temporal features performed better than

NIQE [8] (see Table 7.4).
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Table 7.3: Performance of ∆H , ∆V , ∆D1 and ∆D2 vs MOS.
−∆H −∆D1 −∆V −∆D2

PLCC 0.6054 0.6062 0.6069 0.6048
SROCC 0.5968 0.5986 0.5994 0.5963
RMSE 13.58 13.57 13.56 13.58

a) C5 vs MOS b) L5 vs MOS

c) S5 vs MOS

Figure 7.3: Scatter plots of C5, L5, and S5 vs MOS.
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a) -∆H vs MOS b) -∆H vs MOS

c) -∆D1
vs MOS d) -∆D2

vs MOS

Figure 7.4: Scatter plots of the temporal distances ∆H , ∆V , ∆D1 and ∆D2 vs
MOS.

7.3.0.2 Performance of VINA

I plotted the distribution of the numerical quality predictions produced

by VINA against MOS in Fig. 7.5 and observed a general linear trend. Fur-

thermore, I evaluated the quality prediction performance of VINA against a

number of leading blind and completely blind VQA models (whose code is pub-
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licly available). I used three performance metrics to quantify the performance

of the different VQA models; PLCC, SROCC and RMSE. I applied non-linear

regression to the predicted scores when computing PLCC and RMSE. as rec-

ommended in [147].

Figure 7.5: Distribution of VINA’s scores vs MOS.

The models I considered are NIQE [8] model that the NR algorithms

V-BLIINDS [72] and BRISQUE [7], both of which require training. The lat-

ter two models learned mappings from their feature spaces to ground truth

MOS using a support vector regressor (SVR) [98], which has been successfully

deployed in many prior image and video quality models. I used the LIBSVM

package [110] to implement the SVR, to predict MOS using a radial basis

function (RBF) kernel. I randomly divided the videos into two disjoint sets

(80%-20%). I used the larger set for training and the other one for testing,

after normalizing the features [98] to predict the MOS. I repeated train-test

process 100 times, then computed the median PLCC, SROCC and RMSE
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values between the predictions and MOS. V-BLIINDS [72] could not be run

successfully on a few of the videos, especially at lower resolutions. Hence. the

results using V-BLIINDS are reported on a subset of 553 of the 585 videos.

I note that applying NIQE [8] and BRISQUE [7] on the same subset slightly

improved their performances. The results reported for VINA, NIQE [8] and

BRISQUE [7] were computed on the entire database. The NIQE [8] features

were computed on non-overlapping blocks of size 96×96, then the computed

NIQE distances were computed on each frame, then averaged over time, sim-

ilar to its implementation in V-BLIINDS [72], which incorporates NIQE [8].

BRISQUE [7] was calculated on each frame, then averaged over time. A sum-

mary of the results obtained for all the models is given in Table 7.4. It may

be observed that VINA outperformed the popular NIQE model which is also

completely blind, while its performance was only beaten by V-BLIINDS, which

requires the expensive computation of motion. It also requires training, which

costs its generalizibility into some doubt. VINA is much more computationally

efficient than V-BLIINDS, while nearly matching its prediction performance

without training.

Table 7.4: Performance Metrics Measured on the Compared VQA Models.
Training Videos Testing Videos PLCC SROCC RMSE

NIQE [8] 0 585 0.5832 0.5635 13.857
BRISQUE [7] 468 117 0.6456 0.6072 12.908

VINA 0 585 0.6808 0.6619 12.50
V-BLIINDS [72] 442 111 0.7196 0.7083 11.478
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7.4 Concluding Remarks

I presented a new, completely blind VQA model, called VINA. VINA

does not require any sort of training since it uses features that capture the

loss of spatial and temporal naturalness in video which is degraded by the

presence of distortions. Three basic aesthetic-related features that capture

colorfulness, luminance and contrast are used, along with a directional space-

time naturalness model. I exploited the idea that pristine or undistorted videos

obey statistical regularities that are violated by distortions. VINA is compu-

tationally efficient, while providing prediction results that outperform other

completely blind video quality predictors.
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Chapter 8

Conclusion and Future Directions

In this dissertation, I presented a new closed form bivariate spatial

correlation model of bandpass and normalized image samples. The model

was developed on high-quality naturalistic photographs, and was shown to

hold as well for the case of distorted images, however its parameters change

consistently based on the type and amount of distortion introduced. Provided

this important property, I exploited it in order to build a build IQA model

and a model for predicting 3D visual discomfort.

A second direction in this dissertation was to tackle to blind video qual-

ity prediction problem. To do so, I constructed a new video quality database

containing 585 videos of unique contents, impaired by authentic distortion

combinations, captured by 80 users around the globe using 43 different device

models. To gather quality labels, I built a framework to crowdsource more

than 205000 online opinion scores. The subjects who participated in my study

were working under widely differing viewing conditions and resources (band-

width, hardware...). So my design took into account all these factors which

can affect the quality ratings. I demonstrated that the design is robust against

the many variables affecting the video rating process.
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Provided the importance of the bivariate NSS in tackling several image

quality related applications, I studied the relationship between shifted frame

differences and developed a completely blind model VQA model, VINA. VINA

utilizes measurements of the physical statistics of spatial frames as well as

directional bandpass statistical space-time features to predict quality. I was

able to demonstrate that VINA is the best performing completely blind VQA

model although it is computationally efficient as it does not require any motion

related computations.

I believe that VINA can be extended further. An important avenue

for improving this predictor would be by extending directional naturalness to

include more motion directions, greater spatial and temporal displacements,

and multiple space-time scales. I also believe that even larger and more diverse

VQA databases targeting user generated content would be of significant im-

portance. Being able to predict the quality of videos without any training and

in the absence of additional information is an important endeavor for a variety

of invested practitioners, such as camera designers, cloud engineers, and users

who could be directed to recapture videos of poor quality. Videos provided

by users are very diverse in terms of content, style, encountered distortions,

resolution, capture devices, compression protocols, and so on, hence building

larger databases that better represent all these factors would enable the design

of better VQA models, and better model verification and algorithm compar-

isons. However, such databases are not yet available, since their creation would

require very substantial time and expense.
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Lastly, while I believe in the great potential of today’s deep neural

models which given adequate subjective data, could improve on current VQA

algorithms, there is also the need for effective lightweight models that can be

massively rolled out. VINA falls in this category. Light weight models can be

expected to dominate streaming VQA applications for several years (at least),

given the dearth of large datasets needed to create effective deep models, and

the substantial hardware requirements and hardware compatibility problems

needed to implement them at scale.
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