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Main memory is organized as a hierarchy of banks, rows, and columns.

Only data from a single row can be accessed from each bank at any given time.

Switching between different rows of the same bank requires serializing long

latency operations to the bank. Consequently, memory performance suffers

on bank conflicts when concurrent requests access different rows of the same

bank.

Many prior solutions to the bank conflict problem required modifica-

tions to the memory device and/or the memory access protocol. Such mod-

ifications create hurdles for adoption due to the commodity nature of the

memory business. Instead, I propose two new runtime solutions that work

with unmodified memory devices and access protocols. The first, Duplicon

Cache, duplicates select data to multiple banks, allowing duplicated data to

be sourced from either the original bank or the alternate bank, whichever is
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more lightly loaded. The second, Continuous Row Compaction, identifies data

that are frequently accessed together, then migrates them to non-conflicting

rows across different banks.

To limit the data transfer overhead from data duplication and migra-

tion, only select data are duplicated/migrated. The key is to identify large

working sets of the running applications that remain stable over very long

time intervals, and slowly duplicate/migrate them over time, amortizing the

cost of duplication/migration. In effect, the set of duplicated/migrated data

form a cache within main memory that captures large stable working sets of

the application.
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Chapter 1

Introduction

1.1 The Problem

Main memory performance remains the principal bottleneck for many

important applications. Main memory is organized as a hierarchy of banks,

rows, and columns. Only data from a single row can be accessed from each

bank at any given time. Switching between different rows of the same bank re-

quires serializing long latency operations to that bank. Consequently, memory

performance suffers on bank conflicts when concurrent requests access different

rows of the same bank.

1.2 What Has Been Done

Prior work addressed the bank conflict problem in four ways:

• by changing the memory device itself to reduce the latencies associated

with switching rows of a bank. However, such modifications create hur-

dles for adoption because they increase the cost of the device, and/or

require changes to the memory access protocol that need to be agreed

upon by all memory and processor manufacturers.
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• by increasing the effective number of banks. Straight up increasing the

number of banks gives the most benefit, but is also the most expensive

option. Other techniques subdivide existing channels and banks into

smaller independent modules (e.g., subranks and subarrays) to mimic the

effect of having more banks. However, such techniques still require mod-

ifications to the memory device and/or memory access protocol, making

adoption more difficult.

• by partitioning memory banks among different co-running applications

to reduce bank conflicts caused by interference between different appli-

cations. However, scarcity in memory banks fundamentally limits the

effectiveness of such partitioning.

• by optimizing the scheduling of memory requests to maximize utility

from rows currently active in each bank. Such techniques need to strike

a balance prioritizing memory requests to currently active rows in each

bank while ensuring requests that conflict with the currently active rows

still get serviced in a timely manner.

1.3 Contribution

The contribution of this thesis is two new runtime microarchitecture-

only solutions to the bank conflict problem that are fully compatible with

unmodified:

• Software (including OS, runtime, applications)

2



• Memory devices

• Memory access protocols

The first solution, Duplicon Cache, identifies frequently accessed and

latency critical data that suffer from bank conflicts, then duplicates them

to an alternate bank. Duplicated data can later be sourced early from its

alternate bank when the original bank is currently busy, and vice versa. This

substantially cuts down on memory request latency for requests that previously

needed to wait for conflicts to resolve at the original bank.

The second, Continuous Row Compaction, identifies temporally corre-

lated data that are frequently accessed together, then migrates them to a set

of non-conflicting rows across different channels/ranks/banks. The migrated

data can then later be accessed without bank conflicts.

All data duplications and migrations are managed at the memory con-

troller, completely transparent to software, and performed with unmodified

memory devices via existing memory access protocols.

In effect, the set of duplicated/migrated data form a cache within main

memory. As this cache is resident in main memory itself, it can have consider-

ably higher capacity than the conventional on-chip SRAM caches. Many of the

challenges associated with Duplicon Cache and Continuous Row Compaction

are in essence challenges associated with managing a large capacity cache in

main memory. The two biggest challenges are:

3



(1): How do we minimize the data duplication/migration overhead associated

with filling this cache?

(2): How do we efficiently track what has been cached (i.e., duplicated/migrated),

given the large size of the cache? That is, how do we maintain an efficient

tag store?

To minimize the data duplication/migration overhead, we take advan-

tage of the enlarged capacity of this main memory cache to capture large

working sets that are stable over very long time intervals, enabling one to

achieve good reuse while replacing cache content very infrequently.

Efficient tag stores are maintained by using large line sizes and cache

sectoring when appropriate. For Duplicon Cache, the tag store tracks what

has been duplicated at 8KB granularity, but uses sectoring to allow individual

64B pieces within each 8KB line to be duplicated independently. For Contin-

uous Row Compaction, the tag store tracks what has been migrated at 4KB

granularity.

Both Duplicon Cache and Continuous Row Compaction have been eval-

uated on DDR4 SDRAM. They can be applied equally to other main memory

technologies organized into banks and rows, such as non-volatile random-access

memory (NVRAM), as well as other future memory technologies. I leave this

as future work.
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1.4 Thesis Statement

Memory bank conflicts can be mitigated without modifying the mem-

ory device or access protocol by transparently duplicating frequently accessed

and latency critical data to multiple banks, and/or migrating temporally corre-

lated data that are frequently accessed together to non-conflicting rows across

multiple banks.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 goes over

background information on DRAM and motivates how data duplication and

migration help mitigate bank conflicts. It also describes how prior work, in

contrast, needs to modify the DRAM device itself in order to mitigate bank

conflicts, and why this is undesirable. Chapter 3 discusses managing the over-

head of extra data movement associated with data duplication/migration and

tracking what has been duplicated/migrated. Chapter 4 presents and evalu-

ates the Duplicon Cache. Chapter 5 presents and evaluates Continuous Row

Compaction. Chapter 6 discusses related work. Chapter 7 presents conclusions

and future work.
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Chapter 2

Background and Motivation

This chapter goes over basic DRAM organization and operations, ex-

plains what bank conflicts are, why they are detrimental to performance, and

motivates how data duplication across different banks (Duplicon Cache) and

data migration to non-conflicting rows across different banks (Continuous Row

Compaction) help mitigate bank conflicts without requiring any modifications

to the DRAM device or access protocol. This chapter also describes how

prior work, in contrast, modified the DRAM device in order to mitigate bank

conflicts, and why this is undesirable.

The discussion is specific to DDR4 SDRAM memory, as it is the cur-

rent predominant main memory technology on which the thesis evaluations are

based. However, bank conflicts are also problematic for other memory tech-

nologies like non-volatile random-access memory (NVRAM), and in general

the proposed solutions are sufficiently generic that they can be applied to any

memory technology where bank conflicts are problematic.
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2.1 DRAM Organization and Operations

DDR4 SDRAM is organized as a hierarchy of channels, ranks, bank

groups, banks, and columns. Figure 2.1 shows an example of this hierarchy

with two channels and two ranks per channel.
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Row 262143

Row Buffer:
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column
1023:1016 ... column
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Processor
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15:8
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7:0

Precharged

Figure 2.1: DRAM hierarchical organization.

2.1.1 Channel Bandwidth

The top level entity in the hierarchy is the channel. Each channel en-

compasses a subset of memory, along with the physical connections (pins,wires)

that connect the subset of memory to the processor. Figure 2.1 shows two

channels, labelled channels 0 and 1. Each channel is 64 bit wide. In this exam-

ple, we assume each channel can transfer data at a rate of 3200 megatransfers
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per second (MT/s), which gives a maximum bandwidth of 23.8 GB/s.1 The

maximum aggregate bandwidth across both channels is thus 47.7 GB/s. This

aggregate bandwidth is an upper limit on the maximum memory bandwidth

available to the processor.

This upper limit can be increased by increasing:

• the number of channels

• the width of each channel

• the data rate of each channel

However, doing so comes at a cost. Increasing the data rate of each

channel, as is done for graphics GDDR memory, increases the power con-

sumption. Increasing the number of channels or the width of each channel

increases the total number of physical connections between the processor and

the memory, increasing the manufacturing cost. This is the most common

differentiator between cost-optimized memory technology such as DDR4 that

have fewer connections to the processor, and performance-optimized memory

technology such as High Bandwidth Memory (HBM) that have much more

connections to the processor. To support the higher number of connections

between memory and processor, performance-optimized memory like HBM

need to be connected to the processor using more expensive technology like

13200000000 transfers/s * 8B/transfer = 23.8 GB/s
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silicon interposers, while cost-optimized memory can use cheaper technology

like printed circuit boards [2].

The aggregate channel bandwidth is an upper bound on the maximum

memory bandwidth available to the processor. Yet oftentimes, due to bot-

tlenecks in other levels of the DRAM hierarchical organization, the available

channel bandwidth is underutilized, even for cost-optimized memory that have

lower available channel bandwidth to begin with. The biggest of these bottle-

necks are bank conflicts, described in the following sections.

2.1.2 Rank, Bank Group, and Bank Level Parallelism

After the channel, the next levels in the hierarchical organization are

ranks, bank groups, and banks.

Banks are individual sub-modules of memory that can each indepen-

dently process memory requests. Every memory request is ultimately pro-

cessed by a particular bank. However, the latency for accessing data at each

bank varies depending on the state of the bank, and can be quite long. In

general, the rate at which requests can be processed at a single bank is much

lower than the rate needed to saturate the available channel bandwidth. Thus

it is necessary to interleave requests to different banks and overlap latencies

from multiple requests in order to achieve good utilization of the channel.

Consequently, it is advantageous to have as many banks as possible in

order to maximize the level of interleaving. However, additional banks incur

additional hardware costs. Bank groups were introduced with DDR4 to allow
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for additional banks while keeping hardware costs low. In essence, a bank

group is a group of banks that share some hardware resources. The shared

resources then only need to be replicated once per bank group, rather than

once per bank. With bank groups, DDR4 was able to double the number of

banks per device from 8 to 16 from DDR3, organized into four bank groups

of four banks each. However, because banks of the same bank group share

certain hardware resources, memory requests to the same bank group now

incur additional delay, even if they are to different banks.

Finally, a rank is a group of memory devices that operate in lockstep in

response to the same memory commands. Ranks are usually added to increase

the memory capacity per channel, although additional ranks also increase the

total number of bank groups/banks, improving performance. Figure 2.1 shows

each channel is attached to two ranks, labelled ranks 0 and 1, for a total of

four ranks in the system. Each rank is in turn made up of four bank groups,

and each bank group made up of four banks. In total, there are 16 banks per

rank, and 32 banks per channel in the example in Figure 2.1.

Each of the 32 banks belonging to the same channel share the same

channel data pins. At any given time, only data from one of the 32 banks

can be transferred over the channel, and interleaving is required to overlap

the latencies from different requests in order to achieve good utilization of the

channel. In particular, it is most advantageous to interleave requests across

different bank groups. In fact, it is impossible to fully saturate the channel

bandwidth without interleaving requests across different bank groups.
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My first proposal, Duplicon Cache, leverages this property of memory

by duplicating select data across bank groups, increasing the probability that

interleaving can occur, thereby increasing performance.

2.1.3 Row Buffer Locality and Bank Conflicts

Data in each bank is organized into rows and columns. In Figure 2.1

there are 256K rows per bank, and 1K columns per row.

Although there are 1K columns per row, the DDR4 protocol specifies

that columns must be accessed in aligned units of 8 or 4, with 8 being the

most common configuration. On a read or write, the 8 columns in the aligned

unit are read/written in 8 consecutive data bursts. Consequently, there are

only 1K/8 = 128 addressable aligned units of data in each row.

Only data from a single row can be accessed at any given time from a

bank. This is because data in DRAM is encoded via the presence of electric

charge on capacitors, and before such data can be accessed, it first needs to

be read out and amplified via a process called sense amplification. This in-

volves two steps. The first is Precharge, which prepares the bank for sense

amplification. The second is Activate, which reads out and amplifies an entire

row’s worth of data.2 Once a row has been activated at a bank, it stays ac-

tivated until the next Precharge operation, and subsequent reads and writes

to columns in that row can be processed with low latency. The row currently

2the Activate operation is also interchangeably referred to as sensing the row, activating
the row, or opening the row
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activated in the bank forms the row buffer (also called the DRAM page). Ad-

ditional accesses to the row buffer are called row buffer hits, and the tendency

for future accesses to hit in the row buffer is called row buffer locality.

Figure 2.1 shows that row 1 has already been activated in rank 1, bank

group 2, bank 3, indicated by row 1 being shown again in the area below all

the others rows. In contrast, rank 1, bank group 2, bank 0 is in the precharged

state, where no rows are currently activated. In general, each bank either has

a particular row activated, or is in the precharged state.

The Precharge the Activate operations themselves incur long latencies

and are subject to various timing constraints, resulting from physical limita-

tions of the memory device. From a performance point of view, the worst case

scenario is a row or bank conflict when data being requested belong to different

rows of the same bank.3 In this case the accesses are serialized, as only data

from a single row of the bank can be accessed at a time. Switching between

the two rows requires a long latency Precharge operation, followed by another

long latency Activate operation; the Precharge and Activate operations are

completely serialized with no parallelism.

Duplicon Cache mitigates the effects of bank conflicts by duplicating

the data to another bank group, allowing the Precharge and Activate latencies

to be overlapped to different bank groups.

3I use the terms row conflict, row buffer conflict, and bank conflict interchangeably in
the rest of the thesis
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Continuous Row Compaction reduces the number of Precharge and

Activate operations needed by migrating data frequently accessed together to

the same row address across different channels, ranks, bank groups, and banks.

For example, if data items A, B, C,. . . , Z were frequently accessed together,

Continuous Row Compaction would migrate (i.e., compact) them to regions in

memory that share the same row address (e.g. row 262143) across all channels,

ranks, bank groups, and banks. Future accesses to A, B, C,. . . , Z are then

guaranteed to not cause row/bank conflicts, and will be interleaved across all

channels, ranks, bank groups, and banks.

2.1.4 Memory Timing

Long serialized Precharge and Activate latencies during bank conflicts

substantially hurt memory performance. The exact latencies required for

Precharge and Activate operations depends on the type, order, and location

of preceding memory operations.

There are four main DRAM operations: Precharge, Activate, Read, and

Write. The Precharge operation prepares the bank for sense amplification, and

the Activate operation activates (i.e., perform sense implication) on the desired

row. Once the row with the data has been activated, Read/Write operations

read/write the data at the column specified. Timing constraints, imposed due

to physical limitations of the memory device, limit when Precharge, Activate,

Read, or Write operations can be issued. Table 2.1 shows some relevant timing

constraints that affect memory performance.
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Table 2.1: DRAM timing constraints for DDR4-3200 22-22-22 memory.

Constraint Description Delay (cycles)

tCCD S delay between consecutive reads (or consecutive writes) 4
to different bank groups of the same rank

tCCD L delay between consecutive reads (or consecutive writes) 8
to the same bank group of the same rank

tRTP delay between read and subsequent 12
precharge to the bank

tRAS delay between activate and subsequent 56
precharge to the bank

tRP delay between precharge and subsequent 22
activate to the bank

tRCD delay between activate and subsequent 22
read or write to the bank

We now consider how the timing for two back-to-back reads to the

same device (i.e., rank) changes under various conditions. We consider reads

for simplicity, but the analysis is equally applicable for back-to-back writes.

However, mixing of reads and writes involves other timing constraints that I

have omitted for brevity.

If the reads are not conflicting (i.e., they are to different banks, or

they access the same row in the same bank), then tCCD is the limiting timing

constraint. tCCD specifies the minimum delay required between back-to-back

reads to the same rank, and comes in two variants. If the reads are to different

bank groups, then the short variant, tCCD S, which is 4 cycles, applies. As the

actual data transfer over the channel takes 4 cycles itself, being able to issue a

read every 4 cycles is sufficient to saturate the channel bandwidth. The timing

for this scenario is shown in Figure 2.2(a).

If the back-to-back reads are not conflicting but to the same bank group,
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Figure 2.2: Back-to-back read latency for row hits and conflicts.

then long variant of tCCD, tCCD L, which is 8 cycles, applies.4 This means that

even if all accesses are row buffer hits, if they all access the same bank group

(i.e., no bank group interleaving), then one can at most achieve 50% channel

utilization (4 cycles to transfer data for each request, but only able to issue

read operations once every 8 cycles). This shows the importance of having

high levels of bank group interleaving. The timing for back-to-back reads to

the same bank group is shown in Figure 2.2(b).

Note that it is not necessary, in the two scenario described above, for

both reads to be row buffer hits at their respective banks. The reads may in-

stead themselves require Precharge and/or Activate at their respective banks,

4the longer delay is required because, as explained in section 2.1.2, banks of the same
bank group share certain hardware resources
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but because the Precharges/Activates are to different banks, their latencies

can be overlapped.

In contrast, for back-to-back conflicting reads (i.e., reads that access

different rows of the same bank), the Precharge and Activate latencies become

serialized and exposed. After the first read is issued, a Precharge is required to

prepare the bank for sense amplification, followed by an Activate to activate

the row for the second read, followed by the second read itself. The timing

for the Precharge depends on how long ago the previous Activate (i.e., the

Activate that activated the row for the first read) was issued. If the previous

Activate was issued sufficiently long ago, then tRTP , which specifies the min-

imum delay required between a read and subsequent Precharge to the same

bank (12 cycles), determines how soon the Precharge can be issued. This case

is shown in Figure 2.2(c). On the other hand, if the previous Activate was

issued recently, then tRAS, which specifies the minimum delay between an Ac-

tivate and subsequent Precharge to the same bank (56 cycles), determines how

soon the Precharge can be issued. This second case is shown in Figure 2.2(d).

After the Precharge, the remaining timing are the same for both cases

(c) and (d). The Activate for the row of the second read can be issued tRP

(22) cycles after the Precharge, and then the second read can be issued tRCD

(22) cycles after the Activate.

For the case in Figure 2.2(c), the latency between two reads ends up

being 12 + 22 + 22 = 56 cycles. If all memory accesses were like this, then we

could only achieve 4/56 = 7.1% channel utilization, as we would only be able to
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issue read requests once every 56 cycles, which would occupy the channel for 4

cycles, while the other 52 cycles remain idle. For the case in Figure 2.2(d), the

performance limiter would be the latency between the two Activates, which is

56 + 22 = 78 cycles. If all memory accesses were like this, then we could only

achieve 4/78 = 5.1% channel utilization.

The takeaway from this example is that conflicting accesses to different

rows of the same bank is particularly harmful to memory performance, as

Precharge and Activate latencies, which are significant, become fully exposed.

Memory controllers try to minimize such conflicting accesses through better

memory scheduling and physical-to-DRAM addressing mapping. I discuss

these mechanisms below, and motivate how my proposals, Duplicon Cache

and Continuous Row Compaction, enhance these two existing mechanisms.

2.1.5 Memory Scheduling and
Duplicon Cache Motivating Example

Memory controllers buffer multiple memory requests and reorders them

to better exploit bank level parallelism and row buffer locality. First Ready -

First Come First Serve (FR-FCFS) [52] is a common strategy for reordering

memory requests. FR-FCFS prioritizes ready memory requests (i.e., requests

whose timing constraints have been satisfied) over non-ready requests, and

then prioritizes older requests over younger requests. Since row buffer hits

have timing constraints that are much more easily satisfied than row buffer

conflicts, FR-FCFS essentially prioritizes row buffer hits over other requests.
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FR-FCFS tends to maximize the overall memory request throughput, but

introduces unfairness into the system because row conflict requests end up

waiting a long time while other row buffer hits are getting processed.
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(a) baseline FR-FCFS schedule
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(b) improved Duplicon schedule
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Figure 2.3: Baseline FR-FCFS vs. improved Duplicon Schedule.

Figure 2.3(a) shows how this can happen. We have six requests, 1○

- 6○, from oldest to youngest. Requests 1○, 3○, 4○, 5○, and 6○ are queued

in bank A, while request 2○ is queued in bank B. Requests 1○, 4○, 5○, and

6○ access row 0 of bank A, while request 3○ accesses row 1 of bank A. Since

FR-FCFS favors row buffer hits over row conflicts, it will schedule 1○, 4○, 5○,

and 6○ first, as all four can be serviced from (bank A, row 0). Request 3○,

which accesses (bank A, row 1), creates a bank conflict at bank A that requires

a separate Precharge and Activate, and gets scheduled last, after 6○.

Meanwhile, bank B happens to be lightly loaded. Request 2○ gets
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scheduled (due to its age) between 1○ and 4○. After request 2○ is serviced,

bank B becomes idle, and remains idle even while bank A is servicing requests

4○, 5○, 6○, and 3○.

One of the main insights behind Duplicon Cache is that these moments

of load imbalance between banks can be exploited if data was duplicated to

both banks. In Figure 2.3(b), we assume the data for request 3○, in (bank

A, row 1), was previously duplicated to (bank B, row 262143). This allows

us to service request 3○ from either bank A or B. Since bank B becomes

idle in our example after servicing servicing request 2○, we can now begin

servicing of request 3○ earlier from bank B, shortly after request 2○ has been

serviced. Consequently, request 3○ gets serviced earlier compared to the FR-

FCFS baseline.

In this example bank B happened to be less loaded than bank A; in

another instance, bank A may be less loaded than bank B. In either case, the

duplicated data can be sourced earlier from the less loaded bank.

Duplicon Cache complements FR-FCFS nicely, because it alleviates the

unfairness introduced by FR-FCFS. Normally, FR-FCFS introduces unfairness

into the system because row conflict requests end up waiting a long time

while other row buffer hits are getting processed. With Duplicon Cache, FR-

FCFS can continue to prioritize row buffer hits to maximize overall request

throughput, while Duplicon Cache identifies data that are suffering the most

from row conflicts and enable them to be serviced earlier via duplication, thus

reducing unfairness.
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Note that Duplicon Cache does not actually reduce the number of row

conflicts. In fact, it can increase the number row conflicts, since requests

that were previously concentrated in the same row of the same bank now get

diffused across multiple banks. But Duplicon Cache allows conflicting requests

to be initiated earlier in another less loaded bank.

2.1.6 Physical-to-DRAM Address Mapping and
Continuous Row Compaction Motivating Example

Bank conflicts arise when two concurrent requests share the same chan-

nel, rank, bank group, and bank address, while differing in the row address.

The channel, rank, bank group, bank, row, and column addresses collectively

form the DRAM address, and are determined from the physical address. In

general, they are either taken directly from a subset of the physical address

bits, or are computed as hashes (usually XOR) of various physical address

bits. This mapping from physical address to DRAM address directly affects

the frequency of row conflicts and memory performance.

In general, the lower order physical address bits toggle the most, while

the higher order bits toggle the least. Thus taking the column address directly

from the lowest order physical address bits produces the highest level of row

buffer locality, as this maximizes the probability for DRAM addresses of con-

current accesses to only differ in the column address, resulting in row buffer

hits to the same row of the same bank. Similarly, it is advantageous to place

the row address bits as high as possible to minimize row address toggling, as
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two accesses with the same row address cannot conflict - they will either access

the same row in the same bank, or access different banks.

Figure 2.4(a) shows such a mapping. As the DDR4 channel data width

is 8 bytes, the lowest 3 bits of the physical address specify the byte on the

channel. Next come the column address bits, which are taken from bits[12:3]

of the physical address, followed by the bank group (denoted as BG), bank

(BA), rank (Ra), channel (Ch), and Row bits.

This mapping maximizes the row buffer locality in each bank, but can

actually be harmful to performance. To see this, suppose an application makes

sequential accesses to two arrays, A and B, which are aligned to 512KB bound-

aries (i.e., the low 19 address bits are 0) at addresses 0x0 and 0x80000, re-

spectively, as shown in Figure 2.4(b). The first problem with the mapping in

Figure 2.4(a) is that, if A and B are sequentially accessed concurrently with

the same incrementing index i and stride (for example, A and B are both ac-

cessed in a for loop with the same incrementing loop variable i), then every

pair of accesses will be row conflicts, because the channel, rank, bank, and

bank group address of A[i] and B[i], taken from bits [18:13] of the physical

address, will always be the same for all indices i, while their row addresses

(taken from bits 19 and above) will always be different.

The second problem with the mapping is that it provides poor channel

interleaving and parallelism. Each pair of accesses to A[i] and B[i] will always

go to the same channel, and as i increments, the accesses will stay in the same

channel until the channel bit (bit 18) toggles. Assuming a stride of 64 bytes,
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Figure 2.4: Physical-to-DRAM address mappings
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this will only happen once every 4096 loop iterations.

The third problem is the mapping provides poor bank group interleav-

ing, as A[i] and B[i] will always go to the same bank group, and the bank

group bits (14 and 13) only toggle infrequently. Recall from Section 2.1.4 that

bank group interleaving is advantageous because many DRAM timing con-

straints have more favorable (i.e., shorter delay) variants when the accesses

are to different bank groups.

Figure 2.4(c) shows an improved state-of-the-art address mapping that

fixes these issues [48]. The new mapping, in order to maximize row buffer

locality, still takes the column address from the lowest order address bits, and

the row address from the highest order address bits. However, the channel,

rank, bank group, and bank addresses are now computed as XORs of several

address bits, as opposed to being taken directly from the address [80]. For

the channel address, the XOR-ed bits come from throughout the physical

address, including one that is placed in the middle of the column bits (bit 8)

[20], resulting in the channel bit toggling very frequently for both sequential

and random accesses. This addresses the issue of poor channel interleaving.

Likewise, one of the XOR-ed bits for the bank group comes from the low

address bits (bit 7), ensuring the bank group address will also toggle frequently,

providing bank group interleaving. The low 4 bits of the row address (bits

[22:19]) are also now incorporated in the channel, rank, bank group, and bank

computations via XORing. This fixes the problem of A[i] and B[i] always being

row conflicts - since A and B differ in bit 19, and since bit 19 is now XORed as
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part of the channel and bank group computation, A[i] and B[i] will now access

different bank groups in different channels.

However, the improved mapping does not fundamentally solve the prob-

lem of concurrent accesses with the same index and stride to aligned arrays

resulting in row conflicts. If we replace A and B with arrays C and D, which

are now aligned to 8MB boundaries at addresses 0x800000 and 0x1000000 re-

spectively (shown in Figure 2.4(d), where the low 23 address bits all 0 for

both C and D), then we still have the exact same issue as before, as the chan-

nel/rank/bank group/bank computations of the new mapping only consider

bits 22 and below of the physical address, which would be the same between

C[i] and D[i] for all indices i.

My second proposal, Continuous Row Compaction, does in fact fun-

damentally resolve this problem of concurrent accesses with the same index

and stride to aligned arrays resulting in row conflicts. The fundamental idea

behind Continuous Row Compaction is to migrate (i.e., compact) concurrently

accessed data to regions in memory with the same row address. For example,

suppose we reserved the row address 0x3FFFF, the largest row address pos-

sible, for exclusive use of the hardware, as shown in Figure 2.4(e). Since the

row address comes from the highest order bits of the physical address, this es-

sentially reserves the highest 512KB of the physical address space, comprised

of addresses 0x1FFFF80000 through 0x1FFFFFFFFF, for the hardware (i.e.,

the software is made to think 0x1FFFF7FFFF is the last byte of the physi-

cal address space). The memory controller can then use this reserved region
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however it sees fit.
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Figure 2.5: Compacting Arrays C and D into the Compacted Region

Continuous Row Compaction records the order in which 4KB memory

regions are accessed by the application, and then migrates (i.e., compacts)

those regions in the order they were accessed to a reserved row address. I show

this in Figure 2.5. Suppose the application sequentially accesses the arrays C

and D in the order C[0], D[0], C[1], D[1], C[2], D[2], and so on. Continuous

Row Compaction would detect that the first 4KB region of array C (labelled C0

in Figure 2.5, 0x800000 to 0x800FFF) was accessed first, followed by the first

4KB region of array D (D0, 0x1000000 to 0x1000FFF), followed by the second

4KB region of array C (C1, 0x801000 to 0x801FFF), then the second 4KB

region of array D (D1, 0x1001000 to 0x1001FFF), and so on. Once enough

4KB memory regions have been recorded to fill a reserved row address, then

the recorded 4KB regions can be migrated, in the order they were recorded

in, to the reserved row. In our example, since the reserved row 0x3FFFF

spans 512KB between the addresses 0x1FFFF80000 and 0x1FFFFFFFFF, we

would require 512KB/4KB = 128 different 4KB regions to fill the reserved row

address. Consequently, we would migrate the first 64 4KB regions of array

C, along with the first 64 4KB regions of array D, into the 512KB reserved
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region between 0x1FFFF80000 and 0x1FFFFFFFFF, with the individual 4KB

regions of C and D interleaved in the order in which they were accessed. Thus,

C0, the first 4KB of array C, would be migrated to the first 4KB of the reserved

region, 0x1FFFF80000 to 0x1FFFF80FFF; D0, the first 4KB of array D, would

be migrated to the second 4KB of the reserved region, 0x1FFFF81000 to

0x1FFFF81FFF; C1, the second 4KB of array C, would be migrated to the

third 4KB of the reserved region, 0x1FFFF82000 to 0x1FFFF82FFF; . . . .

Essentially, Continuous Row Compaction divides the arrays C and D

into 4KB segments, then interleave the segments, in the order they were ac-

cessed, to the reserved region. Future accesses to the same 4KB segments can

later be serviced from the reserved region without any row conflicts, as the

interleaved 4KB segments all share the same row address and cannot conflict

with one another.

In our example, the arrays being accessed shared the same alignment

and were accessed with the same index and stride. This was chosen deliber-

ately to emphasize the negative impact from row conflicts. However, in general

any concurrent streaming accesses to arrays with different row addresses (i.e.,

different high order address bits) can result in row conflicts, even if they do

not necessarily share the exact same alignment, index, or stride. In particular,

multiple concurrent streaming accesses are very common in stencil compu-

tations (section 5.2). In these cases, Continuous Row Compaction is able to

splice together 4KB segments from different streams into the same row address,

removing row conflicts.
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In addition, note that Continuous Row Compaction can give benefit

even if the order in which 4KB segments were recorded and migrated differs

from the exact order in which the segments are later accessed, as long as there

is enough overlap between the set of 4KB segments that were migrated, and

the set of 4KB segments that were later concurrently accessed.

2.1.7 The Alternative: Tweaking the DRAM Device

I have so far motivated how memory bank/row conflicts can be miti-

gated via data duplication (Duplicon Cache) and data migration (Continuous

Row Compaction), all without changing the memory device or memory access

protocol. In contrast, prior work advocated for tweaking the design of the

DRAM device in order to reduce the latency of switching rows at a bank.

In particular, they focused on reducing the latency of DRAM Precharge and

Activate operations by reducing the effective capacitance of the shared piece

of wire, called the bitline, which connects to individual DRAM storage cells.

(a) Cell (b) Bitline &
Sense-Amplifier

(d) Latency
Optimized

(c) Cost
Optimized

(e) Tiered-Latency
DRAM

Figure 2.6: Tweaking the DRAM device to shorten the bitlines. (from [29])

The latencies for Precharge and Activate depend on the capacitance
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of the bitlines, which can be reduced in certain regions of the DRAM device

via device level tweaks. This is shown in Figure 2.6. Figure 2.6(a) shows

a DRAM cell, consisting of a capacitor connected to a bitline via an access

transistor. A single bit is stored in the cell, via the presence (or lack) of charge

on the capacitor. To access the bit, the bitline first needs to be brought (via

the Precharge operation) to a reference voltage. Then the access transistor

for the cell is turned on by raising the associated wordline (via the Activate

operation), which connects the cell capacitor to the bitline. The presence (or

lack) of charge on the capacitor will then slightly raise (or lower) the voltage

on the bitline, producing a signal. However, this signal is very weak, and needs

to be amplified by a sense-amplifier.

To increase the cell density, several cells share a single bitline and sense-

amplifier. At any time, at most only one of the cells can connect to the

shared bitline. Figure 2.6(b) shows 512 cells sharing a single bitline and sense-

amplifier. This forms a single column of a two-dimensional matrix of storage

cells, called a mat, which is shown in Figure 2.6(c).

Increasing the number of cells sharing a bitline increases the cell den-

sity and lowers the cost of the memory device. However, this also increases

the bitline capacitance, which increases both the Precharge latency (latency

to bring bitlines to the reference voltage, tRP in Table 2.1) and Activate la-

tency (latency to sense-amplify, tRCD and tRAS in Table 2.1). Cost-optimized

DRAMs opt for more cells sharing the same bitline (e.g. 512 cells per bitline),

like in the mat shown in Figure 2.6(c), while performance-optimized DRAM
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like Reduced Latency DRAM (RLDRAM) opt for fewer cells sharing the same

bitline (Figure 2.6(d)).

Prior work proposed reducing the number of cells sharing a bitline

in certain regions of the DRAM device. For example, Center High-Aspect-

Ratio Mats (CHARM) [60] proposed replacing normal cost-optimized mats

at the center of the chip with latency-optimized mats that have fewer cells

per bitline, like those of Figure 2.6(d). Tier-Latency DRAM proposed adding

isolation transistors that break the bitline into near and far segments (Figure

2.6(e)). When the isolation transistors are turned off, there are effectively

fewer cells sharing the bitline in the near segment.

2.1.7.1 Drawbacks of Modifying DRAM

The main drawback with these proposals is that they require modifica-

tions to the DRAM device, which can increase the manufacturing cost and/or

reduce the yield. For example, adding the isolation transistors for Tiered-

Latency DRAM can be challenging because the process technology used for

DRAM is specifically optimized to allow for greater cell density, and build-

ing isolation transistors with the necessary characteristics (e.g., good isolation

when off, very low resistance when on) in this process may be challenging.

Cost-optimized DRAM is a commodity business with very low margins and

very large volumes. Thus DRAM manufacturers have thus far not adopted

these proposals.

Additionally, since these proposals also require changes to the DRAM
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access protocol, consensus from different DRAM and processor manufacturers

are required before these proposals can be adopted. Such consensus is often

slow and difficult to reach among companies with different competing interests.

In contrast, my proposals, Duplicon Cache and Continuous Row Com-

paction, avoids these issues entirely, as I do not require modifications to the

DRAM device or access protocol. Instead, I am able mitigate the effects of

bank conflicts via transparent data duplication and migration.
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Chapter 3

Main Memory Caches

As data are duplicated/migrated, the set of duplicated/migrated data

essentially form a cache within main memory. Many of the issues that arise

with data duplication/migration are in essence issues that arise when managing

a large capacity cache in unmodified main memory. This chapter examines

these issues.

3.1 Tag and Data Store

A cache needs to store both tag and data. In the context of Duplicon

Cache and Continuous Row Compaction, the data is the actual data being

duplicated/migrated, while the tag encompasses all the information needed to

track:

• which data have been duplicated/migrated

• where the data have been duplicated/migrated to

• other information needed for the maintenance of the cache (e.g. replace-

ment info, dirty status)
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Conventional SRAM caches store tag and data in two separate struc-

tures, tag store and data store. This is shown in Figure 3.1(a).

For larger capacity caches, storing the data entirely in SRAM becomes

prohibitively expensive. Instead, data is stored in less expensive technology,

such as DRAM. This is shown in Figure 3.1(b).

Tag Store
(SRAM)

Data Store
(SRAM)

(a) on-chip SRAM cache: SRAM tag and data stores

Tag Store
(SRAM)

Data Store
(DRAM)

(b) DRAM cache: SRAM tag and DRAM data stores

Data
(DRAM)

Tag
(DRAM)

Data
(DRAM)

Tag
(DRAM)

Data
(DRAM)

Tag
(DRAM)...Hit

Predictor

(c) DRAM cache: integrated DRAM tag and data with Hit Predictor

Figure 3.1: Tag and Data Store.

The tags, on the other hand, only require a fraction of the storage

capacity of data, and can still fit in SRAM up to a point. However, for

even larger capacity caches, new techniques are needed to reduce the size

requirement of the tag store. One can, for example, increase the granularity

at which tag information is tracked (i.e., increase the line/block size). We

discuss this more in Section 3.3.2.

For the largest capacity caches, even the tags become too big to fit in
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SRAM, and are instead kept in DRAM. This is shown in Figure 3.1(c). Rather

than continuing to store tag and data in two separate structures, now both tag

and data are integrated in the same DRAM memory, where the corresponding

tag for each line/block is placed contiguous to the data. This allows both the

data and tag to be accessed in a single DRAM access [51, 59]. Such caches

need to be direct mapped so that one can know exactly where in DRAM to

look for a particular piece of data [51]. Note that one cannot for sure know

whether the data exists until one has read both the data and tag from DRAM.

A hit predictor is employed to decide whether or not to parallelize the access

to the DRAM cache with the access to the uncached copy of the data.

The two main memory caches I propose in this thesis, Duplicon Cache

and Continuous Row Compaction, both employ SRAM tag stores and DRAM

data stores. The SRAM tag store is maintained at the memory controller, giv-

ing the memory controller knowledge of which data have been duplicated/migrated,

and to where. I leave adoption of DRAM tag stores as future work (Section

7.2.1).

3.2 Data Store

3.2.1 Reserving Physical Memory for Cache Data Store

Both Duplicon Cache and Continuous Row Compaction reserve mem-

ory at the top of the physical address space as the cache data store to store

duplicated/migrated data. This is shown in Figure 3.2. Suppose the total

physical address space is 2m bytes, and we wish to reserve the top 2k bytes
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for the data store. This reservation is done by under-reporting the amount

of physical memory available to the software at boot time; that is, rather

than reporting there are 2m bytes of physical memory available, the hardware

would report that there are only 2m − 2k bytes of physical memory available.

This prevents the software from using physical memory between the addresses

2m − 2k and 2m − 1, . This is shown in Figure 3.2(a).

Reserved for
Main Memory Cache

Data Store

0

2m-2k

2m-1

Normal Memory

1....1

0rm-12m-2k

(a) Partitioning of physical address space

X....X
2m-1

X....X

k k-1 r-1

Row Address Non-row Address

(b) Physical addresses corresponding to reserved data store

Figure 3.2: Reserving the top 2k bytes of an 2m physical address space.

Figure 3.2(b) shows this reserved data store maps to physical addresses

where the high bits m − 1 to k are 1s. Since the row address bits are always

placed at the highest order end of the physical address (see Figure 2.4(a) and

(c)), we are essentially reserving the highest 2k−r row addresses in each DRAM

device for the main memory cache data store, where r is the position of the

lowest row address bit. Our example in Figure 2.4(e), where we reserved the

top 29 = 512KB at the top of the physical address space for row compaction,

was an example of reserving memory for the main memory cache data store

where m = 36, k = 19, and r = 19.
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3.3 Tag Store

We now consider issues relating to the design of a main memory cache

tag store.

3.3.1 Serial vs. Parallel Tag and Data Accesses

The first consideration is whether to access the tag and data stores

serially or in parallel. Accessing them serially is more efficient, as one will

definitively know after accessing the tag store whether the data is in the data

store, and where in the data store it is. Thus the data store access only

happens if the data exists, and only the location with the data needs to be

accessed. In contrast, accessing tag and data in parallel allows the two access

latencies to be overlapped, but results in wasteful accesses to the data store.

For Duplicon Cache and Continuous Row Compaction, I assume the

SRAM tag store and DRAM data store are accessed serially. In general, as

DRAM is more expensive to access compared to SRAM, both in terms of

performance and energy, one should minimize wasteful speculative accesses

to DRAM. Since there is usually some queuing delay between the memory

request arriving at the memory controller and when the request can actually

be serviced, accessing the SRAM tag store can be overlapped with this delay.

3.3.2 Line Size and Sectoring

Another fundamental design parameter is the line size, also known as

the block size. In general, the trade-offs associated with larger line sizes are:

35



• Advantages:

– Smaller tag stores, as there becomes fewer lines to track

– Increased spatial locality within each line

• Disadvantages:

– Increased memory traffic from filling and writing back large lines

– Potentially poorer utilization of cache capacity if the intra-line ac-

cess pattern is sparse

Main memory caches have very large capacities and the tag store needs

to track a lot of data. Adopting larger line sizes will reduce the tag store size,

but increase the memory traffic and potentially result in poorer utilization

of the cache capacity. Cache sectoring is a technique that allows for large

line sizes without increasing the memory traffic. With sectoring, each line

is divided into smaller, aligned sectors. Data is then filled and written back

to/from the cache at the finer granularity of sectors, rather than the entire line.

Separate coherence (e.g. valid, dirty) bits need to be maintained per sector,

but only a single tag needs to be maintained per line. Figure 3.3 illustrates

the distinction between small line size, large line size, and large line size with

sectoring.

Sectoring eliminates the memory traffic overhead incurred by large line

sizes, as only accessed sectors need to be transferred, rather than the entire

line. However, sectoring does not eliminate the other drawback of large line
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(c) large line size with sectoring
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Tag V

Tag V V V V

Line

Figure 3.3: Sectored Caches

sizes, which is poor utilization of the cache when access patterns are sparse

(i.e., when there is poor spatial locality). This is because all sectors of a line

share the same tag, as shown in Figure 3.3(c). Thus different sectors from

different lines cannot be mixed together.

Moreover, the additional coherence bit(s) per sector do increase the size

of the tag store. At the very least, a single valid bit is required per sector.

While still substantially cheaper than requiring a full tag, the additional bits

per sector do add up for very large capacity caches.

Both Duplicon Cache and Continuous Row Compaction make use of

sectoring to some degree. Duplicon Cache is organized as a sectored cache in its

entirety, with duplication performed at 64B sector granularity and individual

valid bits per sector tracking whether the sector has been duplicated, while

tags are maintained at the 8KB line granularity. In contrast, the Continuous

Row Compaction tag store is organized as a conventional non-sectored cache
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with 4KB line sizes (i.e., one tag per 4KB line, no sectoring). However, when

4KB lines are being filled or written back, they are migrated from/to their

original locations in main memory at the granularity of 64B sectors. Thus I

maintain valid and dirty bits for individual 64B sectors for 4KB lines currently

being filled or written back.

Incidentally, there appears to be disagreement on the meaning of the

terms sector and line/block. For example, André Seznec in 1994 reverses the

terminology, calling the larger unit associated with the tag the sector, while

calling the smaller sub-units within lines [54]. However, the oldest reference

I could find on the matter, the PowerPC™ 601 RISC Microprocessor User’s

Manual [39] (which Seznec cites), calls the larger unit the line, and the smaller

sub-units sectors. This is the terminology used in the rest of the thesis.

3.4 Mitigating Cache Data Transfer Overhead

Main memory caches also need to figure out how to move data to and

from the cache without the additional memory traffic crippling performance.

Normally, in the absence of a main memory cache, regular data would

be transferred to and from main memory via the memory channel, as shown

in Figure 3.4(a). The yellow circled R○s in the channel in the figure represent

regular Read or Write requests (R stands for Regular) that are transferred

over the channel.

With the addition of a main memory cache, additional data transfers
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Figure 3.4: Handling extra data traffic from main memory cache fills and
writebacks.

are needed to fill the cache and write back from the cache. I denote these

additional cache maintenance data transfers with blue circled circled C○s in

the figure (C stands for Cache).
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In the absence of any modifications to the memory device, the addi-

tional cache maintenance fills and writebacks are transferred over the existing

channel. This is shown in Figure 3.4(b). This increases the contention for

the memory channel and other memory resources, such as banks. Granted,

the cache itself is supposed to help with the contention. However, too much

cache induced traffic will negate the benefits of the cache. This is one of the

main challenges of building a main memory cache out of unmodified memory

devices.

3.4.1 Device Modifications to Support
High Bandwidth Internal Copying

Prior work, again, modify the DRAM device to get around this problem.

The DRAM device/protocol is modified to create internal copy mechanisms

that allows high bandwidth copying of data entirely within the DRAM device,

rather than over the regular memory channel. RowClone [53] modifies the

Activate operation to allow an entire row to be copied to another row during

sense-amplification. Low-Cost Inter-Linked Subarrays (LISA) [5] and Dynamic

Asymmetric Subarray DRAM (DAS-DRAM)[34] proposed device and protocol

modifications to allow bulk copying of data between adjacent subarrays (i.e.,

mats) within the DRAM device . FIGARO [74] proposed modifications to the

DRAM device and protocol to allow for fine-grained and unaligned copying of

data within the DRAM device using existing connections within the device.

These high bandwidth internal copying mechanisms allows main mem-
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ory cache fills and writebacks to be transferred without creating contention on

the regular channel. This is shown in Figure 3.4(c). Consequently, a lot more

main memory cache fills and writebacks can be performed without hurting

performance. The downside, of course, is the need for modifying the DRAM

device and protocol.

3.4.2 Infrequent Replacements and Resulting Challenges

Since Duplicon Cache and Continuous Row Compaction do not modify

the DRAM device and protocol, they do not have access to the large internal

copy bandwidth that prior work assumed. Thus they do not have the ability

to quickly fill and replace data in the cache. Instead, once data have been

duplicated or migrated, they remain in the cache for a very long time.

For example, assume we have two DDR4-3200 channels. This provides

a maximum aggregate channel bandwidth of 47.7 GB/s. Suppose we wish

to limit overhead from main memory cache fills and writebacks to 2% of the

maximum total bandwidth. This means only 47.7 * 0.02 = 0.954 GB/s of

bandwidth can be used for fills and writebacks. Furthermore, each fill and

writeback request requires two transfers over the channel: the first to read out

the data to be filled/written back, followed by the actual write that performs

the fill/writeback. If we further assume that every cache replacement results

in a writeback (i.e., the replaced data is always dirty, and we have a writeback

cache), then every unit of data replaced in the cache results in 4 units of data

being transferred over the channel:
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• 1 transfer to read the victim data from the cache location

• 1 transfer to write the victim data back to its original location

• 1 transfer to read the new data from its original location

• 1 transfer to write the new data to the cached location

Having so little memory bandwidth available for cache replacements

creates three major challenges:

(A) How do we minimize the bandwidth requirement for each cache replace-

ment? (Section 3.4.3)

(B) How do we enforce limits on aggregate cache replacement bandwidth

utilization in order to limit the cache replacement bandwidth overhead?

(Section 3.4.4)

(C) Given that cache replacement will occur very infrequently, how do we

select which data to cache in order to maximize performance? (Section

3.4.5)

3.4.3 Using Less Bandwidth Per Replacement

3.4.3.1 Lazy vs. Eager Copying

So far we have assumed that replacing an unit of data in the cache

results in 4 units of data being transferred over the channel: 1 to read out

the old (i.e., victim) data from the cached location, 1 to write the old data
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back to its original location, 1 to read the new data from its original location,

and 1 to write the new data to the cached location. I call this eager copying

where explicit read and write requests are issued for the cache writeback/fill.

However, this is not the only way to perform writebacks and fills. Instead,

one can perform writebacks and fills lazily, by waiting until the application

naturally, through running, reads or writes the data to be written back or

filled. If application reads the data naturally, then the explicit read transfer

for the writeback/fill can be omitted, as the data is already available at the

memory controller. If the application is about to write the data naturally,

then the writeback/fill can happen for free, as the writeback/fill simply entails

redirecting the application write to the original/cached location in memory.

This is shown in Figure 3.5. Figure 3.5(a) shows the previously assumed

eager writeback/fill case, where both the writeback/fill read (Figure 3.5(a)(1))

and write (Figure 3.5(a)(2)) are explicit memory requests created in addition to

the regular application requests. This creates extra contention for the memory

channel. Figure 3.5(b) shows a lazy writeback/fill on a natural application

read. Now the explicit read can be omitted, because the data has already been

read naturally; however, the explicit write is still required. Figure 3.5(c) shows

a lazy writeback/fill on a natural application write. Now both the explicit read

and write can be omitted, and the natural application write simply needs to

be redirected to the original(writeback)/cached(fill) memory location.

While technically possible, lazy writebacks are somewhat silly, because

if the victim data being written back was accessed by the application, then it
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Figure 3.5: Eager vs. Lazy writebacks/fills.

probably should remain in the cache. Hence I primarily focus on lazy fills.

While lazy fills can help reduce the channel overhead for main memory

caches, they have two main limitations:

Limitation 1: Need for Fine-Grained Tracking (Sectoring) The gran-

ularity of access with DDR4 SDRAM is 64B.1 However, as stated in Section

1assuming burst length of 8
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3.3.2, main memory caches employ larger line sizes (e.g., KBs) in order to re-

duce the size of the tag store. For example, Duplicon Cache adopts a line size

of 8KB. As the application naturally accesses data at 64B granularity, lazy fill-

ing can only be done at 64B granularity. Hence some sort of fine-grained 64B

tracking mechanism (e.g., cache sectoring) must be employed to keep track

of which 64B pieces have been lazily filled. This increases the size of the tag

store.

Limitation 2: Lack of Control The other limitation for lazy fills is that

one has no control over when and what data the application will access next.

This is problematic because frequently, one would monitor the application

access pattern for a while to determine the most profitable piece of data to

cache next (see Section 3.4.5). Yet once this piece of data is identified, there

is no knowing when it will be accessed again.

This is especially true for lazy fills on application writes. While such

fills have the least overhead (no explicit read nor write required), they are also

the rarest and most unreliable. While the application will eventually read its

entire working set, it will not necessarily write to its entire working set.

Table 3.1 summarizes the trade-offs for eager writebacks/fills, lazy

writebacks/fills on application reads, and lazy writebacks/fills on application

writes.
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Table 3.1: Eager vs. lazy writeback/fill characteristics.
Type Explicit Explicit Sectoring Degree of

Read Write Control

Eager Writeback/Fill Required Required Not Required High
Lazy Writeback/Fill on Omitted Required Required Medium

Application Read
Lazy Writeback/Fill on Omitted Omitted Required Low

Application Write

3.4.3.2 Write-Through vs. Writeback Cache

So far we have also assumed that every cache replacement results in

a writeback. However, in general writebacks are only required when evicting

dirty lines from writeback caches.

It is instead possible to have a write-through main memory cache that,

upon every write to cached data, also updates the data in the original uncached

memory location. Such a write-through main memory cache has the same

trade-offs as a conventional write-through SRAM cache: writeback traffic is

eliminated, but additional write-through traffic is added.

The Duplicon Cache is a write-through cache. In fact, it has to be

a write-through cache as a consequence of it being a data duplication based

cache. This is shown in Figure 3.6. Recall with Duplicon Cache, data is cached

by virtue of it being duplicated to multiple banks. In Figure 3.6(a), the data

item y, originally in (Bank A, Row 1), has also been duplicated to (Bank B,

Row 262143). This allows y to be accessed with lower latency, because it can

be sourced from either Bank A or B, depending on which bank is less heavily

loaded.
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Figure 3.6: Duplicon Cache as a Write-Through Cache.

Now suppose y is written to. If we only update one of the copies of y,

then y ceases to be in the Duplicon Cache, because it is no longer duplicated.

Hence, if we want to keep y in the cache after it is written to, we need to

update the duplicated copy of y in Bank B, and also update the original copy

of y in Bank A, as shown in Figure 3.6(a). This is exactly what would happen

in a write-through cache, as each write to cached data results in an additional

write to the original uncached data. Therefore Duplicon Cache is a write-

through cache, and suffers from write-through traffic overhead. On the plus
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side, it means writebacks are not required during cache replacement. This

is shown in Figure 3.6(b), where we replace y in the Duplicon Cache with a

new piece of data, z. As Duplicon Cache is a write-through cache, y does not

need to be written back before it is replaced. Furthermore, if we assume we

are performing a lazy fill on a read to z (i.e., the application naturally read

z while running), then only a single additional memory request, an explicit

write of z to (Bank B, Row 262143), needs to be performed. In contrast, a

regular write-back cache with eager writebacks and fills would have required

four explicit memory requests to perform the same replacement.

3.4.3.3 Tracking Dirty Bits

Unlike Duplicon Cache, Continuous Row Compaction is organized as

a writeback cache. Writeback caches in theory only need to write back dirty

data, assuming one can track the dirty status of every 64B piece of data in

the cache.2 However, tracking a dirty bit for every 64B of migrated data

substantially increases the size of the Continuous Row Compaction tag store.

I thus do not track dirty status, and instead always write back the entire line

(size 4KB) upon eviction.

One possible optimization is to track dirty status at some larger gran-

ularity between 64B and 4KB. I leave this as future work.

2DDR4 granularity of access is 64B, assuming burst length of 8
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3.4.4 Limiting Replacement Frequency

Besides limiting the channel bandwidth utilization per replacement, we

also need a mechanism that regulates the frequency of cache replacements in

order to limit the total replacement bandwidth overhead. I present two such

schemes. The first, Explicit Copying Throttling, explicitly limits the frequency

of cache replacements by specifying a minimum time interval between cache

replacements. The second, Implicit Usefulness Tracking, implicitly limits cache

replacements by locking lines in the cache that have been deemed “useful” in

some way (e.g., mitigated a bank conflict). Lines that are marked as useful

are then protected from replacement and locked in the cache. The useful

designation is sticky, so over time most of the cache will be marked useful,

making replacements less likely.

3.4.4.1 Explicit Copying Throttling

The most straightforward way to limit the cache fill/writeback channel

overhead is to explicitly limit how often fill and writebacks can occur. This is

shown in Figure 3.7.

Suppose we wish to explicitly limit the channel overhead of cache fills

and writebacks to 1/8 = 12.5%. One can proceed as follows. First, compute

the total number of channel transfer cycles needed to replace one unit of data

in the main memory cache. Suppose this is X cycles. Then, if one explicitly

limited cache replacements to once every 8X cycles, then the channel overhead

of fills and writebacks is bounded at 1/8 = 12.5%. This is shown in Figure
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Figure 3.7: Explicit throttling of cache fills and writebacks.

3.7 (b). Every 8X cycle interval we perform one single cache replacement,

occupying the channel for X cycles, while the other 7X cycles of the interval

are used for regular memory accesses.

Continuous Row Compaction adopts this form of explicit copying throt-

tling. Recall that Continuous Row Compaction identifies and migrates data
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that are accessed sequentially in time to regions of memory that share the

same row address. The unit of cache replacement in this case is the size of

each region that shares the same row address. In our example in Chapter 2,

this size is 512KB (see Figure 2.1(e)). Hence the unit of cache replacement

is 512KB. Recall that, to replace 1 unit of data, 4 units of data transfers are

required: 1 to read out the old data being replaced, 1 to write back the old

data being replaced, 1 to read the new data being filled, and 1 to write the

new data being filled. Hence every replacement of a 512KB region requires

4 × 512KB = 2MB to be transferred. Each DDR4 channel is 8 bytes wide,

and can transfer 16 bytes every DRAM cycle (i.e., double data rate). Over

two channels, the aggregate bandwidth is 32 bytes/DRAM cycle. Thus trans-

ferring 2MB would take 2M/32 = 64K DRAM cycles. This is the parameter

X described at the start of the section, the total number of channel transfer

cycles needed to replace one unit of data in the main memory cache. To limit

the cache fill/writeback channel overhead to 2%, we would then need to limit

cache replacement to once every 50X = 50(64K) = 3200K DRAM cycles.

Hence every 3200K DRAM cycles a 512KB region is replaced. I main-

tain a circular pointer that points to the next 512KB region to be replaced in

the cache. Assuming a 512MB cache, then there are 512MB/512KB = 1K to-

tal such regions in the cache. Thus it would take 3200K * 1K = 3200M DRAM

cycles for the circular pointer to completely cycle through the cache. This is

the significance of the word “Continuous” in Continuous Row Compaction,

as we continuously cycle through the cache and replace stale data with new
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data. While the rate of replacement is kept low to minimize the overhead of

replacement, over time all stale data eventually gets replaced from the cache.

Increasing Replacement Frequency during Low Utilization Intervals

In the example of Figure 3.7, suppose the channel is only 50% utilized. This

is shown in Figure 3.7 (c). In this case, our explicit throttling would still limit

cache replacements to 1 every 8X cycles. However, since the channel is only

50% utilized, we could potentially make use of some of the idle channel cycles

to perform additional cache fills and writebacks. This can be advantageous

because newly accessed data can then be brought into the cache sooner.

Suppose a scheme existed that can dynamically vary the number of

cache replacements performed. For example, we can have a scheme where

we are limited to a single cache replacement for the interval if the channel

utilization within the interval is greater than 75%, while additional cache re-

placements are allowed if the interval channel utilization is less than 75%. This

dynamic scheme is shown in Figure 3.7 (d). Since the intensities of regular

memory requests are relatively sparse in intervals #0, #1, and #3, the dy-

namic scheme is able to squeeze in extra cache replacements in these three

intervals while keeping the interval channel utilization ≤ 75%. In interval #2,

which has a long burst of regular memory requests, the dynamic scheme still

limits the cache replacement channel overhead to 12.5%.

Such a dynamic scheme requires the ability to monitor and predict the

regular request intensity for the current interval. I believe this is possible via
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a history based predictor that predicts the regular request intensity for the

current interval based on observed intensity in the previous interval. However,

I leave this as future work, and in my evaluations I only perform one cache

replacement per interval, regardless of channel utilization.

Analogy to DRAM Refresh This concept of periodically cycling through

and replacing small portions of the cache was inspired by the DRAM refresh

mechanism.

DRAM cells store information in the form of charge on capacitors. Over

time the capacitors leak, and periodically the charges on the capacitors need

to be restored via an operation called Refresh. Refreshing essentially entails

precharging the bank, then activating the row with the cell to be refreshed.

The act of sense-amplification during activation restores the charge on the

capacitor.

Each Refresh operation refreshes several rows at a time. Internally, each

DRAM device maintains a circular pointer which tracks which rows need to

be refreshed next. This is exactly analogous to the circular pointer maintained

by Continuous Row Compaction which points to the next region of the cache

to be replaced.

All banks in the device (i.e., in the rank) become unavailable during

refresh for a number of cycles defined by the Refresh Cycle timing parameter,

tRFC . For the DRAM device evaluated (DDR4-3200 16Gb), tRFC = 350 ns.

This is analogous to the parameter X discussed earlier, which represented the
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total number of channel transfer cycles needed to replace one unit of data in

the main memory cache. In our Continuous Row Compaction example, this

is the number of channel cycles needed to replace a 512KB region, which was

64K DRAM cycles. In both the refresh example (tRFC = 350 ns) and the

Continuous Row Compaction example (X = 64K DRAM cycles), the quan-

tity represents the length of time during which the memory is unavailable for

regular application requests.

The Refresh Interval timing parameter, tREFI , defines the time interval

between Refresh operations. This is analogous to the chosen length of the

interval between cache replacements, which was 8X in the example in Figure

3.7, and 3200K DRAM cycles in our Continuous Row Compaction example.

For the DRAM device evaluated, tREFI = 7.8125 us = 7812.5 ns. One

can then compute the performance overhead of refresh by computing the ratio

between tRFC (the amount of time the device is unavailable during each refresh

operation) and tREFI (the amount of time between refresh operations). In this

case, the overhead is 350 ns/ 7812.5 ns = 4.48%. This is analogous to the

channel overhead ratio X/8X = 1/8 = 12.5% in Figure 3.7(b), or the channel

overhead ratio 64K/3200K = 2% in our Continuous Row Compaction example.

Additionally, if we know that there are 256K rows in the DRAM device,

and that 32 rows are refreshed at a time during each Refresh operation, then

we can compute the retention time, which is the amount of time each cell can

retain charge for before requiring refresh. We know the retention time should

equal the amount of time it takes for refreshes to wrap around all the rows
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once. Since there are 256K rows total, and 32 rows refreshed at a time, it

would take 256K/32 = 8K = 8192 Refresh operations to completely refresh

every row in the device. As the time interval between each Refresh operation is

tREFI = 7.8125 us, the cell retention time is 8192 * 7.8125 us = 64000 us, or 64

ms. Similarly, in our Continuous Row compaction example, the entire cache

is 512MB, made up of 1K × 512KB regions. Thus 1K cache replacements

are needed to completely renew the cache contents. Since the time interval

between each cache replacement is 3200K DRAM cycles, the retention time

for each 512KB region in the cache is 1K * 3200K = 3200M DRAM cycles.

(a) Postponing 8 Refreshes

(b) Pulling in 8 Refreshes

Figure 3.8: Postponing and pulling in Refreshes(from [38])

There is one last similarity between DRAM refresh and Continuous

Row Compaction. On average, one Refresh operation should be performed
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every tREFI , but the device allows for some flexibility and permits Refresh

operations to be postponed or pulled in as necessary. This is shown in Figure

3.8. The horizontal axis denotes time. Normally, Refresh operations, denoted

by vertical bars, occur at regular tREFI intervals. However, during stretches

where the device is busy with many requests queued up, it becomes advanta-

geous to postpone Refresh operations until later, preventing the device from

being unavailable while requests are waiting to be serviced. This is shown in

Figure 3.8(a). 8 Refreshes are postponed, indicated by the large 9 × tREFI gap

in time with no vertical bars. However, the eight postponed Refreshes need to

be made up later. This is shown by the subsequent dense tREFI interval with

ten Refreshes - the two that normally bound a tREFI interval, plus the eight

postponed Refreshes that are now being made up.

Similarly, Refreshes can be pulled in during stretches when the device

is idle. This is shown in 3.8(b). This allows future Refreshes to be skipped

when the device is heavily loaded.

This flexibility of being able to postpone or pull in Refreshes based

on the load is analogous to the dynamic throttling mechanism I proposed in

Figure 3.7 (d). Again, I leave this as future work.

3.4.4.2 Implicit Usefulness Tracking

The alternative to an explicit scheme which specifies the minimum time

interval between replacements is an implicit scheme which regulates the fre-

quency of replacements by probabilistically making replacements less likely.
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This is a scheme borrowed from the TAGE branch predictor [56], which uses

it to determine which branch predictor table entries should be replaced. The

idea is to associate a sticky Useful Bit with every line in the cache. Once the

line has been deemed useful in some sense, then the Useful Bit is set, and the

line is locked in the cache and protected from future replacement. Over time,

most of the lines in the cache will be marked useful, making replacements less

likely. Periodically, all the Useful Bits are cleared, which allows stale data to

be eventually replaced.

Duplicon Cache adopts this implicit Usefulness Tracking scheme. There

are two main design considerations for such a scheme. First, how exactly does

one determine when a line should be marked as useful and be locked in the

cache? Second, how often should one clear the Useful Bits? I address these

issues in Section 4.5.

3.4.5 Choosing the Right Data To Cache

The last remaining challenge with infrequent cache replacement is that,

unlike conventional SRAM caches, we cannot afford to cache every single piece

of data that is accessed. Thus we cannot react to changes in the application

working set over short time intervals, as a conventional SRAM cache would.

Instead, our goal is to capture the larger long term working set of the appli-

cation over very long time intervals.

This is shown in Figure 3.9. The application accesses data a through

j in cyclic order in subsets of three: a, b, c are accessed repeatedly first, then
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d, e, f , then g, h, and i, and then back to a, b, c, and so on.
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Figure 3.9: Caching for very long time intervals with infrequent fills.

A conventional SRAM cache, or a modified main memory cache with

a high bandwidth internal copying mechanism, will be able to cache each new

data item as it is accessed. Hence they can track the hot working set within

the shorter time interval: {abc}, {def}, or {ghi}. In contrast, Duplicon Cache

and Continuous Row Compaction have very low fill bandwidth and caches new

data slowly. The goal is to instead try to eventually capture the working set

within the longer time interval {abcdefghi} over time, and exploit reuses over

much longer time intervals.

The following sections describe the access characteristics considered

when deciding what to duplicate/migrate for Duplicon Cache and Continuous

Row Compaction.
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3.4.5.1 Access Frequency

The foremost consideration is access frequency. Because cache replace-

ment is so infrequent, we can monitor memory accesses over long time inter-

vals before deciding on which piece of data to cache. Duplicon Cache only

caches (i.e., duplicates) data after the number of monitored accesses exceeds a

threshold. Continuous Row Compaction only migrates the data with the most

accesses during the monitoring interval.

3.4.5.2 Access Cost/Benefit

The other consideration is what the cost of an uncached access would

be, compared to that of a cached access. For example, Duplicon Cache derives

benefit from being able to mitigate bank conflicts via duplication of data to

another bank. Hence data that frequently suffer from bank conflicts would

benefit most from duplication. Conversely, data that rarely suffer from bank

conflicts, such as streaming accesses with good row buffer locality, would not

benefit from duplication.

Note that for prior work that modified the DRAM device to create fast

and slow regions within the device (e.g., TL-DRAM[29], FIGARO[74]), since

they know the precise DRAM timing characteristics of both the fast and slow

regions, they can precisely compute how many cycles a cached access would

save compared to an uncached access. On the other hand, the cost/benefit

computation for Duplicon Cache is a lot less exact, because whether or not

a bank conflict occurs, and how much duplication can help, all depend on
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dynamic access patterns.

3.4.5.3 Criticality

For Duplicon Cache, I also consider whether the data is mostly accessed

via demand accesses, or prefetch accesses. Because Duplicon Cache mostly

helps with reducing individual request latency, but does not significantly in-

crease the overall request throughput (since it in fact slightly lowers row buffer

hit rates), it makes most sense to target demand accesses that are very likely to

be on the application critical path. Prefetch accesses, on the other hand, can

have some latency slack if they have been issued early enough. Admittedly,

late prefetches can also end up on the application critical path, but as a first

cut Duplicon Cache prioritizes data frequently accessed via demand accesses

for duplication.

Continuous Row Compaction, on the other hand, does increase the

overall request throughput by significantly increasing the row buffer hit rate.

Hence Continuous Row Compaction does not distinguish between demand and

prefetch accesses, as both can benefit from increased overall request through-

put.

3.4.5.4 Temporal Correlation

For Continuous Row Compaction, the whole point is to identify data

that are frequently accessed together in time (i.e., temporally correlated), then

migrate them to non-conflicting row buffers. Thus the algorithm for identify-
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ing which data to migrate specifically tries to identify temporally correlated

data. Duplicon Cache, in contrast, does not target nor rely on data temporal

correlation, and does not consider temporal correlation when selecting which

data to duplicate.

3.5 Coherence

Lastly, caches need to maintain coherence. This is actually relatively

straightforward with both Duplicon Cache and Continuous Row Compaction

because the memory controller has a centralized and authoritative view of all

cached data via the SRAM tag store. In cases where there are multiple inde-

pendent memory controllers, data duplication/migration can be managed sep-

arately at each of the controllers, since data belonging to different controllers

are disjoint. Special care needs to be taken when data that is currently being

duplicated/migrated gets modified by the application. This is addressed in

more detail in sections 4.6 and 5.6 for Duplicon Cache and Continuous Row

compaction, respectively.

3.6 Summary

Table 3.2 summarizes the differences between Duplicon Cache and Con-

tinuous Row compaction.
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Table 3.2: Duplicon Cache vs. Continuous Row Compaction.
Duplicon Cache Continuous Row Compaction

Tag Store Line size 4KB 8KB
Sector size 64B n/a (not sectored)

Replacement Fills Lazy on natural read/write Eager
Writebacks n/a (write-through cache) Eager
Mechanism Implicit Explicit
for reducing Usefulness Tracking Copying Throttling
replacement
frequency

Criteria Access Favors frequently accessed Favors frequently accessed
for Frequency data data

caching
Row conflict Favors data experiencing Don’t care

vs. hits frequent row conflicts
Demand vs. Favors data accessed Don’t care

Prefetch via demand requests
Temporal Don’t care Specifically tries to identify

Correlation temporally correlated data
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Chapter 4

Duplicon Cache

This chapter presents the Duplicon Cache[31]. Many of the high level

motivations, insights, and trade-offs for the Duplicon Cache have been steadily

introduced throughout the thesis up to this point. This chapter summarizes

these motivations, insights, and trade-offs, and provides additional implemen-

tation details and evaluation results.

4.1 Overview

DRAM devices are hierarchically organized into bank groups, banks,

rows, and columns. Section 2.1 made the case that the key to achieving good

performance with modern DRAM devices is to interleave accesses to different

banks and, if possible, to different bank groups, while avoiding row conflicts

that access data from different rows of the same bank. Duplicon Cache accom-

plishes this by duplicating select data to an alternate bank in another bank

group, allowing duplicated data to always be interleaved to a different bank

group. In cases of row conflicts, duplication allows the data to be serviced

earlier by allowing the option to source data from the alternate bank if the

original bank is heavily loaded, and vice versa.
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This chapter begins with a potential study in section 4.2 that shows

the potential performance benefit from removing bank and/or bank group

conflicts, and motivates how data duplication across bank groups can achieve

most of this benefit. The four subsequent sections then address the four main

challenges to making Duplicon Cache work:

(I) How do we efficiently track what has been duplicated, and to where?

(II) How do we identify the most suitable data for duplication?

(III) How do we minimize the extra data movement overhead from data du-

plication?

(IV) How do we ensure coherence and correctness of data?

For challenge (I), efficiently tracking what has been duplicated (and to

where), Duplicon Cache is organized as 4-way set-associative sectored cache

with 8KB lines and 64B sectors. The detailed design of the Duplicon Cache

tag store is presented in section 4.3.

To identify the most suitable data for duplication (challenge (II)), Du-

plicon Cache employs a mechanism called Demand Activates Filtering, which

examines the data access frequency (section 3.4.5.1), whether or not the data

suffers from row conflicts (section 3.4.5.2), and whether the data is accessed

via demand or prefetch accesses (section 3.4.5.3). This is section 4.4.

To minimize the extra data movement overhead from data duplication

(challenge (III)), Duplicon Cache employs techniques both to reduce the data
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movement overhead from each cache replacement (section 3.4.3), and to reduce

the frequency of cache replacements (section 3.4.4). This is section 4.5.

Section 4.6 goes over how Duplicon Cache ensures coherence and cor-

rectness of data (challenge (IV)) while performing data duplication.

Section 4.7 explains the evaluation methodology and presents the eval-

uation result.

4.2 Motivation

Recall Figure 2.2 of chapter 2 described four different possible cases for

back-to-back reads:

Case (a): back-to-back reads to different bank groups (no conflict)

Case (b): back-to-back reads to the same bank group, but to different banks, or to

the same row of the same bank (bank group conflict, no bank conflict)

Case (c): back-to-back reads to different rows of the same bank, tRAS already sat-

isfied (bank conflict)

Case (d): back-to-back reads to different rows of the same bank, tRAS not yet

satisfied (bank conflict)

Case (a) resulted in the best performance with a 4 cycle latency between

the back-to-back reads. Case (b) resulted in the next best performance with
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an 8 cycle latency between the reads. Case (c) latency is 56 cycles, and Case

(d) latency is 78 cycles.

I devised a series of idealized experiments to measure the impact of

such bank and bank group conflicts on real workloads. The first idealized

experiment (i) approximates converting all bank conflicts into bank group

conflicts by relaxing the bank mapping within a bank group, allowing requests

to be serviced by any bank in the same bank group. Any request mapped

to bank n of bank group m, which I denote as (m,n) can now alternatively

be serviced by banks (m,0), (m,1), (m,2), or (m,3).1 In essence, the first

experiment (i) converts all case (c) and (d) accesses to case (b) accesses.

The second experiment (ii) approximates removing all bank group con-

flicts, but keeping bank conflicts. Recall that many DRAM timing constraints

have long and short variants, where the long (i.e., worse performance) variant

applies when the back-to-back operations are to the same bank group, while

the short variant applies when the operations are to different bank groups.

Experiment (ii) sets long variant of each timing constraint to the same value

as the short variant, in essence converting all (b) accesses to (a) accesses. (c)

and (d) accesses, however, remain row conflicts and still suffer from serialized

Precharges/Activates to the same bank.

The third experiment (iii) approximates removing both bank and bank

group conflicts by relaxing all bank mapping constraints, allowing any request

1the request still accesses the same row and columns at the new bank
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to be alternatively serviced by any other bank/bank group1, essentially con-

verting (b), (c), and (d) accesses into (a) accesses.
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(v) allowing requests to be served a single bank in an alternative bank group

Figure 4.1: Performance improvement when bank and/or bank group conflicts
are removed or mitigated.

Figure 4.1 shows the results of the three experiments across a set of

eleven 4-core multi-programmed workloads formed from the memory intensive

SPEC 2006 benchmarks and Graph 500. The workloads are listed in Table 4.2.

Removing bank conflicts in (i) improved performance by 7.2% - 25.9% across

the workloads, and by 14.8% on average; removing bank group conflicts in (ii)

improved performance by 5.7% to 25.2% across the workloads, and by 11.6%

on average; removing both bank and bank group conflicts in (iii) improved

performance by 12.6% to 37.5% across the workloads, and by 22.5% on aver-

age. The results show removing bank and bank groups significantly improve
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performance in real workloads, and removing both improved performance far

more than removing either one in isolation.

Experiment (iii) approximated removing all bank and bank conflicts

by allowing any request to be serviced by any other bank/bank group. Such

relaxation is possible if all data are fully duplicated to all bank/bank groups;

unfortunately, full duplication has unacceptable storage and coherence over-

heads.

While full duplication is infeasible, we find limited duplication is suffi-

cient to remove most bank/bank group conflict penalties. In experiment (iv),

only the bank mapping to the next bank group is relaxed, so requests to banks

in bank group m can only be alternatively serviced by banks in bank group

m+1 (mod 4).2 Figure 4.1 shows that (iv) retains most of the benefit of (iii),

improving performance by 12.4% - 35.5% across workloads, and by 20.2% on

average. Experiment (v) further restricts duplication such that requests to

bank (m,n) can only alternatively be serviced by bank (m+1 (mod 4), n).

This improves performance by 10.7% - 29.7% across workloads, and by 17.2%

on average, which is worse than (iii) and (iv), but still substantial.

(iv) and (v) only require duplication of data between pairs of bank

groups, as opposed to all-to-all duplication. We can further reduce the level

of duplication required by applying the caching principle and only duplicate

a select subset of data from each bank group to the next bank group. To this

2there are 4 bank groups in a rank in DDR4
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end we propose the Duplicon Cache, a technique that mitigates the penalties

of bank and bank group conflicts by duplicating select lines of data to an

alternate bank group.

There are four main challenges to making Duplicon Cache work:

4.3 Challenge (I):
Minimizing Tag Store Overhead

The first challenge is coming up with an efficient tag store design that

can effectively track what data has been duplicated, and to where.

4.3.1 Set-Associativity

I first describe the set-associative architecture of Duplicon Cache. The

Duplicon Cache data store is created by reserving space in different bank

groups for storing duplicated data. This is done by reserving a small region at

the end of the physical memory address space at boot time, as shown in Figure

4.2(a). I call this reserved physical address space the Reserved Storage. With

2m bytes of total physical memory capacity, we reserve 2k bytes of space at

the end of the address space to store duplicate data. The software is then led

to believe there are only 2m − 2k bytes of physical memory available, and will

not allocate memory in the Reserved Storage. In our evaluated configuration

m = 34 and k = 27; that is, we reserve 227B = 128MB of storage out of

234B = 16GB of total physical memory, for a storage overhead of 1/128.

We assume a 16GB DDR4 configuration with 2 channels, 1 rank, 4
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Figure 4.2: (a) reserving a region in physical memory for duplicates, (b) the
original physical address, (c) single duplication destination way in a direct-
mapped Duplicon Cache (d) set of possible duplication destination ways in a
4-way set-associative Duplicon Cache.

bank groups, 4 banks per bank group, 64K rows per bank, and 1K columns

per row. Furthermore, I assume a plain Physical-to-DRAM address mapping

with no XOR-ing, as shown in Figure 4.2(b).

All data in memory can be found in its original location, pointed to

by its original address (Figure 4.2(b)). Data may then be duplicated from its

original location to a Reserved Storage. To access the Reserved Storage, the
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high bits[m−1:k] of the address are set to 1, while the low k bits dictate where

in the Reserved Storage we are accessing. Where we duplicate data to in the

Reserved Storage is a design decision that has implications for how we design

the tag store. Recall the whole point of Duplicon Cache is to duplicate data

to a different bank group. A direct-mapped scheme, shown in Figure 4.2(c), is

one where the low k bits of the duplication destination address are identical to

the low k bits of the original address, except that the bank groups bits (bits 14

and 13) BG1BG0 are replaced by BG+
1 BG

+
0 , where BG+ = BG+ 1 (mod 4).

In this scheme each piece of data can only be duplicated to a single location

in bank group BG+. Alternatively, Duplicon can be organized as a 4-way

set-associative cache, shown in Figure 4.2(d). Here, in addition to the bank

group bits BG1BG0 being replaced by BG+
1 BG

+
0 , the bank bits (16 and 15)

are now completely free in the duplication destination address, meaning data

can be duplicated to any of 4 banks in bank group BG+. Note the analogy

to traditional caches: with traditional caches, a direct-mapped scheme is one

in which the data can only be cached in a single location, while an j-way set-

associative scheme is one in which the data may be cached in any one of j ways

in a given set, and all of them need to be searched for a cache hit. In our case,

the 4 banks of bank group BG+ form the 4 ways of our 4-way set-associative

Duplicon Cache. As with traditional caches, the original address bits can be

divided into (i) offset bits that dictate the byte offset within a line, (ii) index

bits that dictate the set of locations to which the data may be cached, and (iii)

tag bits that need to be tracked in order to differentiate between different data
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that map to the same set (i.e., have the same index bits). The breakdown of

offset, index, and tag bits for both the direct mapped and 4-way set-associative

schemes are shown in Figure 4.2.

The direct-mapped cache corresponds to experiment (v) in Figure 4.1,

where data in bank (m,n) can only be alternatively serviced by bank (m+1

(mod 4), n); the 4-way set-associative cache corresponds to experiment (iv),

where requests to bank group m can be alternatively serviced by any bank in

bank group m+1 (mod 4). Figure 4.1 shows the 4-way set-associative cache

performs better, so the 4-way set-associative configuration is assumed in the

rest of the chapter.

4.3.2 The Tag Store

Duplicon maintains a tag store in a dedicated SRAM table at the mem-

ory controller to track which data have been duplicated. The tag store is

searched upon each memory request to check if a duplicated copy exists.

Duplicon reduces the storage cost of tags via a sectored cache design

(section 3.3.2) where the cache lines are 8KB DRAM rows, while the sectors are

formed from aligned units of 8 columns each within the DRAM row, with each

sector totalling 64B. All sectors in a line share a single Address Tag, reducing

the size of the tag store. The tag store additionally maintains one valid bit per

sector to mark which columns have been duplicated. As the Duplicon sector

size is 8 columns (64B), one valid bit is needed for every 8 columns; 128 valid

bits are needed for the 1K columns of each line. Collectively the valid bits
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form the Valid Columns Mask.

Since different channels may have different memory controllers, a sep-

arate tag store is maintained for each channel to track duplicated data within

that channel. At each channel, we use the non-column (because all columns of

the same row belong to the same line and share the same Address Tag) index

bits from the original address to index into a set in the tag store. Each way

in the set requires:

1. an Address Tag to identify the line (i.e., which DRAM row the line

contains)

2. a Valid Columns Mask to identify which columns have valid data

3. a Demand Activates Counter (DAC), saturating counter used for the

Duplicon Cache insertion policy (Section 4.4)

4. an Useful Bit, used for the Duplicon Cache replacement policy (Section

4.5.1)
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Figure 4.3 shows the tag store for a particular channel. For an access to hit

in the Duplicon cache, the Address Tag for the line needs to match, and the

corresponding bit in the Valid Columns Mask needs to be set. On a hit, the

memory controller then has the option to service the request from the alternate

bank if it will be available sooner.

Section 4.7.3 addresses the tag store area cost. The Tag Store requires

142KB/channel in our evaluated configuration, for a total of 284KB with two

channels. In section 4.7.2.3 we also evaluate whether this extra area cost is

justified by comparing Duplicon performance against that of the baseline with

additional on-chip SRAM cache added, and show that Duplicon substantially

outperform the baseline with additional on-chip SRAM cache.

4.4 Challenge (II):
Identifying the Most Suitable Data for Duplication

Duplication incurs non-trivial costs in terms of storage and extra mem-

ory write traffic. Thus it is important to only duplicate data that are likely

to impact program performance. Duplicon uses three criteria to determine

whether data should be duplicated. First, Duplicon looks at the overall access

frequency (section 3.4.5.1). Second, Duplicon tracks how often the data suffers

from DRAM row misses/conflicts, as such accesses incur longer latencies and

are more likely to benefit from duplication (section 3.4.5.2). Third, Duplicon

tracks how often the data is accessed via demand (as opposed to prefetch)

read requests, as such requests are likely to be on the program critical path
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(section 3.4.5.3).

4.4.1 Demand Activates Filtering

We can measure all three criteria with a single metric, the number of

Demand Activates to the data. A Demand Activate is an Activate to a row

for a demand read request. The number of Demand Activates identifies the

number of demand non-row buffer hit accesses to the data, as row buffer hits

do not require an Activate.

Duplicon tracks the number of Demand Activates in the tag store,

maintaining a saturating Demand Activates Counter(DAC) for each cache line.

We allocate a line in one of the ways of the tag store on the first Demand

Activate to the row, and increment the DAC for each subsequent Demand

Activate. Duplication of individual sectors(i.e., 64B columns) in the row only

proceed after the DAC surpasses a threshold (Thrsh), but once the threshold

is reached we duplicate on all accesses, not just Demand Activates. We swept

over a large range of Thrsh values and found 15 to be a sweet spot for our

evaluated configuration.

4.5 Challenge (III):
Minimizing Data Movement Overhead

To reduce the overall data movement overhead, we need to both reduce

the amount of data movement per cache replacement, and reduce the frequency

of cache replacements.
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To reduce the data movement overhead from each cache replacement,

Duplicon Cache employs lazy fills on natural application reads and writes

(section 3.4.3.1). This means cache fills (i.e. duplications) only occur in the

aftermath of a normal application read or write to the data to be duplicated.

While the data is available at the memory controller from the normal applica-

tion read/write, an explicit duplication write request for the data is created to

the appropriate location in the Reserved Storage. This explicit write request is

then buffered and serviced by the memory controller like an ordinary memory

write request.

In addition, Duplicon Cache is organized as a write-through cache (sec-

tion 3.4.3.2), which removes the need for cache writebacks upon replacement.

To reduce the frequency of cache replacement, Duplicon Cache implic-

itly controls the rate of cache replacement via two mechanisms, Usefulness

Tracking and Probabilistic Replacement.

4.5.1 Usefulness Tracking

Duplicon tracks the usefulness of each duplicated cache line (i.e., DRAM

row) via the Useful Bit in the tag store (Section 4.3.2). Lines are initially

marked not useful, but become useful when a duplicated sector in the line gets

used (i.e., when the duplicated sector gets sourced by a read request because

of a conflict at the original bank/bank group). Lines that are marked as useful

cannot be replaced. Periodically, all the Useful Bits are cleared. We swept

over a range of Useful Bit reset periods and found resetting the Useful Bits
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every million memory requests worked well, although the sensitivity to the

reset period is quite low provided the period is large enough.

Based on the values of the Useful Bit and the Demand Activates Counter(DAC),

each cache line in Duplicon Cache is in one of four states:

1. Invalid (DAC = 0): no DRAM row has been allocated to the cache line

yet

2. Monitoring (1 ≤ DAC < Thrsh): a DRAM row has been allocated to

the cache line, and we are tracking Demand Activates to increment the

DAC, but not yet duplicating

3. Duplicating-not useful (DAC ≥ Thrsh, Useful=0): a DRAM row has

been allocated to the cache line and we are duplicating on all accesses

(even writes and prefetches), but no duplicated data has been used; the

line may be replaced

4. Duplicating-useful (DAC ≥ Thrsh, Useful=1): a DRAM row has been

allocated to the cache line and we are duplicating on all accesses (even

writes and prefetches), and duplicated data has been used; the line may

not be replaced

4.5.2 Probabilistic Replacement

The Useful Bit protects lines in the Duplicating-useful state from being

overwritten, but does not protect lines in other states. To give lines in the
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Monitoring and Duplicating-not useful states time to reach the Duplicating,

useful state, we introduce a parameter ε which controls the probability that a

line in states Monitoring or Duplicating-not useful can be replaced. A properly

chosen ε parameter should give time for beneficial lines in Monitoring and

Duplicating-not useful to become useful, while still eventually replacing the

lines that never do. We performed a sweep of the ε parameter and used ε =

1/256 in our experiments.

Duplicating−
not usefulMonitoring

1 ThrshDAC

Activate
Demand

DAC Thrsh

Duplicating−
useful

Useful = 1

First Use

ResetReplace

Invalid

DAC = 0

Activate
Demand

First

Replace

Activate
Demand

(

( = Thrsh)

DAC Thrsh

Useful = 0

Thrsh)

Figure 4.4: Cache line state diagram.

The state machine for each cache line is shown in Figure 4.4. All cache

lines start in the Invalid state, and transition to the Monitoring state on the

first Demand Activate, at which point the line is allocated to the DRAM row.

Lines in the Monitoring state have their DAC incremented on each subsequent

Demand Activate to the row. When the DAC reaches Thrsh, the line transi-

tions to the Duplicating-not useful state. From this state data is duplicated

on each subsequent access (including prefetches and writes). If all the lines in

the set are allocated, then lines in the Monitoring and Duplicating-not useful

states may be replaced with probability ε each time another row wishes to
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allocate into the set. If a replacement occurs, then the Address Tag is up-

dated to the new row, the Valid Columns Mask and Useful Bit are cleared,

and the Demand Activates Counter is set to 1, putting the new row/line in the

Monitoring state. Lines in Duplicating-not useful are promoted to Duplicating,

useful when a duplicated sector is used (i.e., the memory controller decided

to source the duplicated data). Lines in Duplicating-useful are protected from

replacement. On an Useful Bit reset all lines in the Duplicating-useful state

are demoted to the Duplicating-not useful state.

Figure 4.5 is a flowchart that summarizes this sequence of events on read

requests. Actions (allocate cache line, replace cache line, increment DAC, etc.)

in the flowchart are enclosed in boldface boxes.

4.6 Challenge (IV):
Ensuring Data Coherence and Correctness

To ensure coherent and correct data in light of data duplication, two

things need to happen upon a write to duplicated data. First, the existing du-

plicate cache sector corresponding to the data must be invalidated by clearing

the appropriate bit of the Valid Columns Mask in the tag store entry. Second,

the memory controller write buffer must be searched to remove any pending

duplication write requests to the sector. Figure 4.6 summarizes the sequence

of events on write requests. Again, actions in the flowchart are enclosed in

boldface boxes.

These requirements does not increase hardware complexity of the write
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Figure 4.5: Flowchart for read.

buffer, as it already needs to support searches for a particular line to allow data

from ordinary pending write requests to be forwarded to subsequent matching

read requests.
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4.7 Evaluation

4.7.1 Methodology

We evaluated our mechanism on an execution-driven, cycle-accurate

simulator for a 4-core out-of-order x86 processor. The frontend of the simula-

tor is based on Multi2Sim [71]. The simulator models port contention, queuing

effects, and bank conflicts throughout the cache hierarchy and includes a de-

tailed DDR4 SDRAM model which models tCL, tCWL, tRP , tRCD, tRAS, tRTP ,

tCCD(L/S), tRRD(L/S), tFAW , tWTR(L/S), and tWR. Table 4.1 describes our base-

line configuration. Chip power and energy are modeled using McPAT [30],
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and DRAM power and energy are modeled using CACTI [41].

To mimic the effects of virtual-to-physical address translation in our

simulation, we pass the Virtual Page Number (VPN) concatenated with the

processor ID through a hash function (Paul Hsieh’s SuperFastHash[15]) to gen-

erate the Physical Frame Number, which is then combined with the page offset

to form the physical address. The DRAM channel/bank group/bank/row/column

addresses are then computed using the mapping function in Fig. 4.2(b) from

this generated physical address. This virtual-to-physical hashing in our simu-

lation maximizes the entropy in the channel/bank group/bank addresses.

The ten most memory-intensive SPEC 2006 benchmarks with the high-

est single-threaded Last-Level-Cache (LLC) misses per kilo instructions (MPKI)

without prefetching, along with the Graph 500 benchmark, were used to form

11 randomized 4-core multi-programmed workloads such that each benchmark

appears in four workloads. Table 4.2 shows the workloads. We represent each

application with the highest weight representative SimPoint. Each workload

is simulated until every application in the workload has completed at least

800 million instructions from the representative SimPoint [46]. Static power

of shared structures is dissipated until the completion of the entire workload.

Dynamic counters stop updating upon each benchmark’s completion.

We report the Harmonic Mean of Weighted-IPCs [35] for Chip-Multiprocessor

(CMP) performance. The Harmonic Mean of Weighted-IPCs is the recipro-

cal of the Average Normalized Turnaround Time(ANTT)[9], and is a measure

of both fairness and system throughput [9, 8]. All performance graphs re-
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Table 4.1: Baseline Configuration.
Core 4-Wide Issue, 128 Entry ROB, RS size 48,

Hybrid Branch Predictor, 3.2 GHz Clock
L1 Caches 32KB I-Cache, 32KB D-Cache,

64 Byte Cache Lines, 2 Reads Ports,
1 Write Port, 3 Cycle Latency,
4-way Set-Associative, Write-back

Last Shared 4MB, 64 Byte
Level Cache Lines, 12 Cycle Latency, 8-way
Cache Set-Associative, Write-back, Inclusive
Memory 128 Entry Memory Queue, FR-FCFS[52]
Controller Open-Page Policy, precharge oldest idle bank

when memory controller is idle
Prefetcher Stream Prefetcher [70]: Streams 64,

Distance 64, Queue 128, Degree 4 with
Feedback Directed Prefetching(FDP) [62]
to throttle prefetcher

DRAM 2 Channels, 1 Rank/Channel,
16 Banks/Rank, 8Gb DDR4-3200 x8 chips
Bus Frequency 1.6GHz (DDR 3.2GHz)
tRCD-tRP -tCL: 22-22-22
8KB Row Buffer (1KB x8)

Table 4.2: Evaluated multi-programmed workloads.
Name Workloads
WL-1 bwaves + Graph500 + lbm + mcf
WL-2 bwaves + lbm + mcf + sphinx3
WL-3 bwaves + lbm + omnetpp + milc
WL-4 GemsFDTD + bwaves + Graph500 + leslie3d
WL-5 GemsFDTD + Graph500 + milc + soplex
WL-6 GemsFDTD + lbm + mcf + libquantum
WL-7 GemsFDTD + leslie3d + omnetpp + soplex
WL-8 Graph500 + leslie3d + libquantum + omnetpp
WL-9 leslie3d + libquantum + soplex + sphinx3
WL-10 libquantum + mcf + milc + sphinx3
WL-11 milc + omnetpp + soplex + sphinx3

port Harmonic Mean of Weighted-IPCs unless otherwise stated. We addition-

ally report the Weighted Speedup [58] and Unfairness[8, 11, 44] for our best

performing configuration. Weighted Speedup differs from Harmonic Mean of
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Weighted-IPCs in that Weighted Speedup is only a measure of system through-

put. The equations for Harmonic Mean of Weighted-IPCs(HMWI), Weighted

Speedup (WS), and Unfairness are given below:

HMWI =
N

N−1∑
i=0

IPCalone
i

IPCshared
i

,WS =
N−1∑
i=0

IPCshared
i

IPCalone
i

Unfairness =
MAX(

T shared
0

Talone
0

,
T shared
1

Talone
1

, . . . ,
T shared
N−1

Talone
N−1

)

MIN(
T shared
0

Talone
0

,
T shared
1

Talone
1

, . . . ,
T shared
N−1

Talone
N−1

)

Where N is the number of cores, IPCalone
i is the IPC of application

i running alone on one core in the CMP system while other cores are idle,

IPCshared
i is the IPC of application i running on one core while other applica-

tions are concurrently running on other cores, T alone
i is the number of cycles

it takes application i to run alone, and T shared
i is the number of cycles it takes

application i to run with other applications.

4.7.2 Performance

4.7.2.1 Ideal vs. Realized Performance

Fig. 4.7 compares the idealized performance potential of the Duplicon

Cache against actual realized performance. We start with the idealized exper-

iment (iv) in Fig. 4.1. Recall experiment (iv) allowed any requests to bank

group m to be alternatively serviced by banks in bank group m+1 (mod 4).

Effectively this represents an idealized Duplicon Cache where:

1. there are no cold misses (i.e., everything is already duplicated)
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Figure 4.7: Ideal vs. realized performance improvement.

2. data are duplicated to all banks in the alternate bank group (i.e., four

duplicate copies are available)

3. all rows can be duplicated (i.e., no Demand Activates Filtering)

4. the tag store and reserved storage are infinitely sized

5. duplication write requests are free and do not cause interference

These idealized assumption are removed one by one until we end up

with a realistic Duplicon Cache implementation.

Cold misses are added in experiment (1); now only data that have been

encountered before can be serviced by the alternate bank group. Introduc-

ing cold misses removes some of the potential, reducing the average potential

performance gain from 20.2% to 17.6%.

Experiment (2) limits the maximum number of duplicates to 1; now

each piece of data is assigned to a single bank in the alternate bank group
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the first time it is encountered, and subsequent accesses can only alternatively

source the data from that bank (previously the request can be serviced by any

bank in the alternate bank group). Adding this constraint had little effect,

changing the potential performance gain from 17.6% to 17.1%, showing that

allowing further duplication of the same data yields little benefit, In fact, in

some cases (WL-1 and WL-2) limiting the maximum number of duplicates to

1 actually improved performance. This is because sourcing from an alternate

bank can actually reduce row buffer locality in the alternate bank. In general

row buffer locality improves as we limit duplication, because requests are more

likely to stay in their original bank and less likely to interfere with rows in other

banks. However when bank conflicts do occur the penalty is lower if the data

has been duplicated to another bank.

Experiment (3) considers the effects of Demand Activates Filtering

(Section 4.5.1). Demand Activates Filtering reduces the number of useless

duplications, but also limits which rows can be duplicated, decreasing the per-

formance gain potential. We modeled an infinite sized tag store and tracked

Demand Activates for each DRAM row encountered. Recall duplication is

only allowed after the row reaches the Demand Activates threshold (Thrsh),

so data has to be seen one more time after the row reaches the threshold

before we allow it to be sourced from the alternate bank group. On average

Demand Activates Filtering reduces the potential from 17.1% to 15.4%. Again

on select workloads (WL-1, WL-2, WL-3) adding Demand Activates Filtering,

which limits duplication, results in better row buffer locality and can improve
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the performance.

Experiments (4a), (4b), (4c), and (4d) consider the effect of sizing the

Duplicon Cache from infinite sized to 8GB, 2GB , 512MB, and 128MB. The av-

erage performance gain drops from 15.4% to 15.1%, 14.8%, 14.0%, and 12.0%,

respectively, showing bigger Duplicon Cache sizes can provide additional gains,

but at the cost of both additional main memory and tag store storage.

So far we have assumed duplication to be free. Experiment (5) considers

the cost of actually performing duplication write requests. This drops the

performance gain from 12.0% to 8.3%. 8.3% is the final performance gain

realized after considering all costs and constraints. This shows the overhead

from duplication writes is considerable, and can negate all performance gains

if left unchecked. This demonstrates the importance of techniques like lazy

fills on reads/writes, usefulness tracking, and probabilistic replacement that

reduce the overall overhead from duplication. In the next section we consider

what happens when these techniques are removed.

4.7.2.2 Effectiveness of Demand Activates Filtering and
Usefulness Tracking

Duplicon employs Demand Activates Filtering (Section 4.4) to reduce

the number of useless duplications, and Usefulness Tracking (Section 4.5.1) to

protect useful duplicated lines. Fig. 4.8 shows the importance of both mecha-

nisms. (0) is the performance gain with both mechanisms; (1) is when Demand

Activates Filtering is removed (i.e., the Monitoring state is removed from the
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Figure 4.8: Performance without Demand Activates Filtering/Usefulness
Tracking.

state diagram in Fig. 4.4); (2) is when Usefulness Tracking is removed (i.e.,

the Duplicating-useful state is removed); (3) is when both Demand Activates

Filtering and Usefulness Tracking are removed. The results clearly show both

mechanisms are required: removing Demand Activates Filtering drops the

average performance gain from 8.3% to 2.1%; removing Usefulness Filtering

drops the average performance gain to -0.9%; removing both drops the average

performance gain to -30.7%. There is synergy between the two mechanisms:

Usefulness Tracking is based on actual duplication outcome (i.e., something

duplicated in this row was actually later used), whereas Demand Activates

Filtering is heuristics based. We use the heuristics based Demand Activates

Filtering to first determine what might be suitable for duplication, then use

Usefulness Tracking to more rigorously evaluate if the row should have been
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duplicated.

4.7.2.3 Comparison to Area-Equivalent Baseline

The Duplicon Cache tag store takes up a non-trivial amount of storage

- 284KB in total for our evaluated configuration (see Section 4.7.3 for details).

This additional storage alternatively could have been used elsewhere on chip to

improve performance - by increasing the on-chip Last-Level-Cache (LLC), for

example. Since we evaluated with a 4MB 8-way set-associative LLC, the small-

est increment at which the LLC can be increased is by an extra way, or 512KB,

which is nearly double the amount of storage we added. Nonetheless we con-

servatively compare the Duplicon Cache with a 4MB LLC (config 0) against

the baseline with a 4.5MB LLC (config 1). We in addition compare against

the baseline with an 8MB LLC (i.e., doubling the LLC) (config 2). In addition

to reporting performance in terms of the Harmonic Mean of Weighted-IPCs as

in the rest of the paper, we also report the Weighted Speedup and Unfairness.

For the Unfairness metric, lower is better. Fig. 4.9 shows the comparison.

Duplicon outperforms the baseline with 4.5MB LLC in all workloads

and by all metrics. Duplicon also outperforms or matches the baseline with

8MB LLC in most cases, so while Duplicon requires additional on-chip area

for the tag store, the extra area cost is well justified.

We also note that Duplicon Cache substantially improves fairness in the

system, by 16.2% on average. This is because in the baseline, FR-FCFS mem-

ory scheduling introduces unfairness in the system by penalizing row conflict
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Figure 4.9: Performance comparison to baseline with added LLC using differ-
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accesses behind row buffer hits. Duplicon reduces this unfairness by allowing

the conflicting request to be serviced sooner from the alternate bank.

4.7.2.4 Effect on Request Latency
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Figure 4.10: Breakdown of average request latency.

Figure 4.10 shows the average memory request latency breakdown for

each of our eleven benchmarks. For each benchmark, the average memory

request latency is computed across all the 4-core multi-programmed workloads

that the benchmark appears in.
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There are three stacked bar for each benchmark, representing the av-

erage memory request latency of that benchmark in:

1) the baseline configuration,

2) the idealized experiment (iii) from Figure 4.1 that removed all bank and

bank group conflicts by allowing any request to be serviced by any bank

in the rank, and

3) our final Duplicon Cache configuration.

Each stacked bar is made up of a bottom component, representing the

queuing delay, and a top component, representing the access delay. The queu-

ing delay is the delay between the request arriving at the memory controller,

and the first DRAM operation for the request being issued. In the case of

a row hit, this first DRAM operation would be a read or a write; for a row

miss (i.e., the bank was precharged), the first operation is an Activate; for a

row conflict (i.e., the bank had the wrong row activated), the first operation

is a Precharge. The access delay is the delay between the issuing of the first

DRAM operation and when data is actually transferred over the channel.

We first note that, for the idealized experiment with minimal bank/bank

group conflicts, represented by the middle stacked bar corresponding to each

benchmark, the overall request latency is reduced for all benchmarks compared

to the baseline. In particular, the queuing delay (bottom component of each

stacked bar) is substantially reduced, while the access delay (top component)
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is increased. This makes sense, because the idealized experiment allowed any

request to be serviced by any available bank, reducing the time each request

needed to wait before issuing its first operation to a bank. But allowing re-

quests to be serviced by any bank also diluted the row buffer locality at the

original bank, resulting in more row conflicts and an increased access delay.

The average request latency with Duplicon Cache is represented by the

rightmost stacked bar of each benchmark. For the benchmarks graph500, mcf,

omnetpp, sphinx3, soplex, and leslie3d, the Duplicon request latency follows

the same general trend as the idealized experiment, but to a lesser degree,

reducing the overall request latency by substantially reducing the queuing

delay, while increasing the access delay. The benchmarks milc, GemsFDTD,

libquantum, lbm, and bwaves see slightly worse or only marginally better

average latencies with Duplicon, because these benchmarks have very large

working sets that exceed the Duplicon Cache capacity.

4.7.2.5 8-Core Performance

Duplicon Cache was also evaluated on 8 cores, keeping the number of

channels the same (2 channels), while doubling the overall on-chip LLC and

Duplicon Cache to keep the amount of LLC and Duplicon Cache capacity

per core the same (8MB LLC total, 256MB Duplicon Cache storage total,

1MB/core LLC, 32MB/core Duplicon Cache). Table 4.3 shows the evaluated

8-core multi-programmed workloads. As before, I took the ten most memory-

intensive SPEC 2006 benchmarks, plus the Graph 500 benchmark, then formed
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22 randomized 8-core multi-programmed workloads such that each benchmark

appears 16 times across all 22 8-core workloads.

Table 4.3: 8-core mixes.
WL-1 bwaves + graph500 + lbm + leslie3d + libquantum + mcf + milc + soplex
WL-2 GemsFDTD + omnetpp + sphinx3 + GemsFDTD + libquantum + mcf + soplex +

sphinx3
WL-3 leslie3d + bwaves + milc + omnetpp + lbm + graph500 + graph500 + libquantum
WL-4 GemsFDTD + bwaves + lbm + leslie3d + mcf + milc + omnetpp + sphinx3
WL-5 soplex + bwaves + graph500 + lbm + leslie3d + milc + soplex + sphinx3
WL-6 GemsFDTD + mcf + omnetpp + libquantum + graph500 + leslie3d + mcf +

sphinx3
WL-7 GemsFDTD + bwaves + milc + omnetpp + lbm + libquantum + soplex + sphinx3
WL-8 GemsFDTD + bwaves + lbm + leslie3d + mcf + milc + omnetpp + soplex
WL-9 libquantum + graph500 + GemsFDTD + lbm + mcf + milc + omnetpp + soplex
WL-10 leslie3d + bwaves + libquantum + graph500 + sphinx3 + graph500 + leslie3d +

milc
WL-11 GemsFDTD + bwaves + lbm + libquantum + mcf + omnetpp + soplex + sphinx3
WL-12 bwaves + graph500 + lbm + leslie3d + libquantum + milc + omnetpp + sphinx3
WL-13 GemsFDTD + mcf + soplex + bwaves + graph500 + leslie3d + milc + soplex
WL-14 GemsFDTD + mcf + omnetpp + lbm + libquantum + sphinx3 + bwaves + milc
WL-15 GemsFDTD + graph500 + lbm + leslie3d + libquantum + mcf + omnetpp +

sphinx3
WL-16 soplex + GemsFDTD + bwaves + graph500 + leslie3d + mcf + omnetpp + soplex
WL-17 milc + lbm + libquantum + sphinx3 + GemsFDTD + bwaves + libquantum +

sphinx3
WL-18 leslie3d + mcf + milc + omnetpp + lbm + graph500 + soplex + milc
WL-19 GemsFDTD + graph500 + leslie3d + libquantum + mcf + omnetpp + soplex +

sphinx3
WL-20 bwaves + lbm + bwaves + graph500 + leslie3d + mcf + omnetpp + soplex
WL-21 GemsFDTD + milc + lbm + libquantum + sphinx3 + bwaves + lbm + soplex
WL-22 GemsFDTD + graph500 + leslie3d + libquantum + mcf + milc + omnetpp +

sphinx3

Figure 4.11 shows the performance improvement from baseline for Du-

plicon Cache for 8 cores. We see that Duplicon Cache scales very well to 8

cores. In fact, Duplicon Cache gives even more benefit with 8 cores than with

4 cores (13.3% gmean performance improvement for 8 cores, versus 8.3% for 4
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Figure 4.11: Performance improvement on 8 cores.

cores). This is because bank conflicts become even more prominent with extra

contention from 8 cores.

4.7.3 Area

The tag store is in dedicated SRAM tables at the memory controller.

Each tag store entry is made up of four fields: Address Tag, Valid Columns

Mask, Demand Activates Counter, and the Useful bit. The width of each field

is computed below:

1. Address Tag (9 bits) : Figure 4.2 shows that there are 9 tag bits in

the 4-way set-associative scheme (d). The 9 bits are: bits 33 to 27 of the

physical address (row bits 15 to 9), and bits 16 and 15 of the physical

address (bank bits 1 and 0)

2. Valid Columns Mask (128 bits): as the Duplicon Cache sector size

is 8 columns (64B), one valid bit is needed for every 8 columns; there
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are 1K columns in each line, so 128 total valid bits are required

3. Demand Activates Counter (4 bits): we empirically found 15 to be

a good value for the Demand Activates Counter threshold; thus we use

a 4-bit saturating counter

4. Useful Bit (1 bit)

Each tag store entry has 9 + 128 + 4 + 1 = 142 bits. Each tag store set has 4

ways, so there are 4 × 142 = 568 bits per set. Recall we index into a tag store

set using the non-channel, non-column index bits. Figure 4.2 shows that are

11 such bits: bits 26 to 18 of the physical address (row bits 8 to 0), and bits

14 and 13 of the physical address (bank group bits 14 and 13). Thus there are

211 = 2048 sets in each tag store, and 2048 × 568 = 1163264 bits = 142KB

per tag store table - i.e., 142 KB/channel (recall we maintain a tag store table

per channel). Our configuration has two channels, so the total storage cost is

2 × 142KB = 284 KB.

4.7.4 Power/Energy

Duplicon introduces extra power in two ways:

(a) Extra leakage from the tag store, and extra dynamic power due to tag

store accesses

(b) Extra DRAM power from duplication write requests
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Figure 4.12: Duplicon Cache energy evaluation.

For (a), we model the tag store as a cache in McPAT, model read and

write accesses to the tag store as read and write accesses to the cache, and

add the power/energy contribution from the cache to the total power/energy.

For (b), we account for the duplication write requests in our CACTI DRAM

power and energy model.

Fig. 4.12 shows the energy results. Duplicon reduces the total energy

on 9 out of 11 workloads, reducing the total energy by 5.6% on average. The

energy savings come from reducing the workload execution time.
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Chapter 5

Continuous Row Compaction

This chapter presents Continuous Row Compaction. Many of the high

level motivations, insights, and trade-offs for Continuous Row Compaction

have been steadily introduced in chapters 1, 2, and 3. This chapter sum-

marizes these motivations, insights, and trade-offs, and provides additional

implementation details and evaluation results.

5.1 Overview

Section 2.1 made the case that the key to achieving good performance

with modern DRAM devices is to interleave accesses to different banks and,

if possible, to different bank groups, while avoiding row conflicts that access

data from different rows of the same bank. Duplicon Cache dealt with in-

creasing interleaving across different banks and bank groups. Continuous Row

Compaction now deals with avoiding row conflicts.

This chapter begins with a motivational example in section 5.2 show-

ing how a class of computations, called stencil computations, creates multiple

concurrent memory access streams that can conflict with one another, espe-

cially when crossing virtual-to-physical address translation boundaries. I then
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motivate how Continuous Row Compaction helps eliminate such conflicts by

migrating data accessed together to non-conflicting row buffers.

The subsequent four sections then address the four main challenges to

making Continuous Row Compaction work:

(I) How do we minimize the extra data movement overhead from data mi-

gration?

(II) How do we identify the most suitable data for migration? In particu-

lar, how do we identify temporally correlated data that should be mi-

grated/compacted together?

(III) How do we efficiently track what has been migrated/compacted, and to

where?

(IV) How do we ensure coherence and correctness of data in light of migration?

To minimize the extra data movement overhead from data migration,

Continuous Row Compaction explicitly controls the rate at which migrations

can occur. This mechanism, Explicit Copying Throttling, was extensively

discussed in section 3.4.4.1, and briefly summarized again in section 5.3.

To identify temporally correlated and frequently accessed data most

suitable for migration, Continuous Row Compaction records sequences of data

accesses at 4KB granularity, monitors the sequences to see which one is most

frequently accessed, then selects the most frequently accessed sequence for
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migration. This process, Candidate Sequence Identification, is explained in

section 5.4.

To efficiently tracking what has been migrated/compacted (and to

where), the Continuous Row Compaction tag store, called the Remap Ta-

ble, is organized as a set-associative non-sectored tag store with 4KB line size.

By removing the need for sectoring bits, the Continuous Row Compaction tag

store is significantly more storage efficient than the Duplicon Cache tag store,

even while employing a smaller line size. This is shown in section 5.5.

Section 5.6 goes over details on how Continuous Row Compaction en-

sures coherence and correctness of data while performing data migrations.

Section 5.7 explains the evaluation methodology and presents the eval-

uation results.

5.2 Motivation

I motivate Continuous Row Compaction with a stencil computation

example that shows how Continuous Row Compaction can substantially reduce

the number of memory row conflicts in the presence of multiple concurrent

memory access streams.

Stencil computations are frequently found in scientific workloads. For

example, Lattice Boltzmann Method (lbm) [50] is a stencil based fluid dynam-

ics simulation algorithm that is part of SPEC 2017.

Lbm performs an iterative stencil computation on a 3-D array. The
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array, with dimensions 128 x 128 x 64 for our example, is shown in Figure

5.1(a). In physical memory the 3-D array is stored as a flat 1-D array, which I

label A in Figure 5.1(b). Elements of the 3-D array are stored in the flat array

first sorted by their z index, then by y, then by x, as shown in Figure 5.1(b).

The stencil computation iterates through each element in the 3-D array,

examining the neighboring elements of the current element in each iteration

to perform a computation. The shape of the stencil specifies which neighbors

are examined during each iteration. In our example we have a 3x3x3 stencil,

shown in Figure 5.1(c). Thus for each element in the 3-D array, we examine

its 26 neighboring elements: 9 neighbors above, 9 neighbors below, and then

8 additional neighbors on the same plane. Figure 5.1(d) shows the stencil

computation, which is a triple-nested for loop that iterates through the x, y,

and z dimensions. The innermost loop body examines the 26 neighbors plus

the current element, and then performs some computation. Visually, the 3x3x3

stencil sweeps across the 3-D array in the x dimension first, and then in the y

dimension, then in the z dimension, as shown in Figure 5.1(d).

As the stencil moves across the 3-D array, it creates many concurrent

memory access streams that potentially access different rows of the same bank,

creating row conflicts. To see this, assume virtual-to-physical translation oc-

curs at 4KB granularity. Assuming the array is 4KB aligned, and assuming

each array element is 64B, then the array can be divided into 4KB pages, each

with 64 elements. In the 3-D array, every aligned 64x1x1 block of data, shown

in Figure 5.1(e), represents an unique 4KB page. Accesses from within the
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Figure 5.1: Motivating stencil computation.
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same 4KB page are guaranteed to not cause row conflicts, because such ac-

cesses share the same high order physical address bits that correspond to the

DRAM row address, assuming physical-to-DRAM mappings like those in Fig-

ure 2.4. Accesses with the same DRAM row access cannot cause row conflicts

- they either access the same row of a bank, or go to different banks.

However, accesses from different 4KB pages are not guaranteed to share

the same DRAM row address, and as the 3x3x3 stencil sweeps across the 3-

D array, it will touch data from many different 4KB pages. For example,

Figure 5.1(f) shows that, in the course of performing a full sweep in the x

direction (i.e., performing a full execution of the innermost for loop), the stencil

touches data from 18 different unique 4KB pages. Even a single iteration in

the x-direction (i.e. each execution of the function compute(A[x-1,y-1,z-1],...,

A[x+1, y+1, y+1]) in Figure 5.1(d)) accesses data from at least 9 different 4KB

pages, shown by the cross section of the stencil in Figure 5.1(g). The more

streams concurrently accessing different 4KB pages, the more likely accesses

with different row addresses will end up colliding at the same bank.

In contrast, with Continuous Row Compaction, as different 4KB re-

gions are encountered, they get grouped together and migrated/compacted to

reserved compacted regions of physical memory under the same row address.

This is shown in Figure 5.1(h). As the stencil sweeps across the x-direction in

the 3-D array, different 4KB regions encountered get migrated to a compacted

region with the same row address. This results in a 128x21x3 compacted region

formed by migrating the 126 encountered 4KB regions to the same reserved
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DRAM row address. Array accesses generated when the stencil is within this

compacted region are then guaranteed to not conflict with one another. This

is shown in Figure 5.1(i), which shows that as the stencil performs a full sweep

in the x-direction within the compacted region, it will access data from only

a single row address, in contrast with 9 in Figure 5.1(g).

In essence, Continuous Row Compaction, based on the dynamic mem-

ory access order, rearranges the data layout in physical memory to try and

fit data that is frequently accessed together into non-conflicting row buffers

across different channels/ranks/banks under the same row address. It is essen-

tially, at runtime, performing data blocking for row buffers distributed across

different channels/ranks/banks.

While smaller virtual-to-physical translation granularities (e.g. 4KB)

exacerbate the problem of concurrent memory accesses to different memory

regions with different row addresses, the problem still exists with larger trans-

lation granularities, or even if there was no translation. This is because fun-

damentally, assuming a physical-to-DRAM mapping like that of Figure 2.4, at

most 512KB can fit under the same row address. Thus a 2MB page will still

straddle four row addresses, each spanning 512KB. We show this in Figure

5.1(j). Due to the ordering in which the 3-D array is stored into flat mem-

ory, a 2MB page, assuming the array is 2MB aligned, represents a 128x128x2

block in the 3-D array (i.e., two complete x-y planes stacked on top of another

in the z dimension). Each 2MB page spans 4 row addresses, with each row

address occupying a 512KB 128x64x1 block. Figure 5.1(k) shows two 2MB
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pages stacked on top of one another. As the stencil sweeps across these two

2MB pages in the x dimension, it will concurrently access data from, in the

best case, 3 different row addresses, shown in Figure 5.1(l). Hence the problem

with concurrent memory accesses to regions with different row addresses still

exists.

We note that on-chip SRAM caching can reduce the actual number of

concurrent DRAM access streams to different row addresses, since part of the

array might already be cached in the on-chip SRAM caches, removing the need

for DRAM accesses. Nonetheless, on-chip SRAM caching will not eliminate

all concurrent DRAM access streams to different row addresses, so Continuous

Row Compaction can still provide benefit. We also note that the compacted

regions created by Continuous Row Compaction are not necessarily ideal, and

one can still end up with concurrent streams to different row addresses even

with after row compaction. However, the number of such cases will be reduced

compared to the baseline.

There are four main challenges to making Continuous Row Compaction

work:

5.3 Challenge (I):
Minimizing Data Movement Overhead

5.3.1 Explicit Copying Throttling

Migrating and compacting data to reserved compacted regions intro-

duces additional memory traffic overhead. By carefully choosing the granu-
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larity and frequency of compaction, we can keep this overhead in check. This

process, which I call Explicit Copying Throttling, was explained in detail in

section 3.4.4.1, and briefly summarized here again.

The natural choice for compaction granularity is the amount of data

that can be compacted under a single DRAM row address. If we assume the

memory setup from Figure 2.4, since the row address starts at bit 19 of the

physical address, this means 219B = 512KB of data can be compacted under

the same row address.

Compacted data can become stale over time. We periodically examine

previously compacted data and, when appropriate, replace them with newly

identified temporally correlated data. This is the continuous aspect of Con-

tinuous Row Compaction. We propose a simple scheme where a Replacement

Pointer points to the next set of compacted data to be potentially replaced.

Once the data has been examined, it will either be replaced with newly iden-

tified temporally correlated data, or it will remain. In either case, the pointer

then advances to the next set of compacted data. Over time, the pointer wraps

around. In this manner, any stale compacted data will eventually be replaced.

Each 512KB row compaction requires transferring up to 2MB (4 ×

512KB) of data:

1. reading previously compacted data from the reserved compacted region

(512KB)

2. writing previously compacted data back to their original frames (512KB)
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3. reading newly identified temporally correlated data from their original

frames (512KB)

4. writing newly identified temporally correlated data to the reserved com-

pacted region (512KB)

Transferring 2MB of data over two DDR4 channels requires 64K bus

cycles. We can cap this overhead by choosing an appropriate compaction

frequency. For example, if we perform one compaction every 3200K bus cycles,

then the bandwidth overhead from compaction will be capped at 64K / 3200K

= 2%. Increasing the interval between compactions reduces the compaction

bandwidth overhead, but also increases the time which stale compacted data

remains in the compacted region.

5.4 Challenge (II):
Identifying the Most Suitable Data for Duplication

5.4.1 Candidate Sequence Identification

To identify temporally correlated data for compaction, we record the

sequences in which uncompacted 4KB frames are accessed in time. Each cap-

tured sequence, which we call a Candidate Sequence, contains up to 128 unique

uncompacted 4KB frames. The number 128 comes from the granularity of

row compaction, which is 128× 4KB = 512KB, the amount of data that can

fit under a single row address, assuming the memory setup in Figure 2.4.

Multiple Candidate Sequences are captured during the interval between row

107



compactions (i.e., cache replacements). At the end of the interval, we pick

the Candidate Sequence with the most recorded accesses, and compact its

constituent 128 4KB frames.
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Figure 5.2: Candidate Sequence Identification.

Figure 5.2 illustrates the Candidate Sequence Identification process.

To simplify the example, the figure assumes a row compaction granularity of

2 × 4KB frames, rather than 128 × 4KB frames. Three data structures are

needed during Candidate Sequence Identification:

1. The Sequence Table, which records the actual Candidate Sequences,

along with how many times each Candidate Sequence has been accessed.

2. The Sequence Locator, which records, for each uncompacted 4KB frame

encountered, which Candidate Sequence it has been included in.

3. The Replacement Pointer, which points to the reserved row address to

be replaced next. Previously compacted frames under that reserved row

108



address will then be overwritten if replacement occurs.

In this example we assume the 4KB frames D and E have previously

been compacted, and that our Replacement Pointer is pointing to D and E.

Our goal is to identify two new 4KB frames to replace D and E with.

Initially, both the Sequence Table and Sequence Locator are empty.

Figure 5.2(i) shows the initial state of all relevant data structures. Over the

course of this example, the processor issues requests to 4KB frames in the

order A, B, C, A, D, E, F, G, where each upper case letter denotes an unique

4KB frame. Note that the actual offset within each accessed 4KB frame is

unimportant for Candidate Sequence Identification.

Upon receiving the first request to frame A, we see that A has not been

previously compacted,1 and has not been included in any Candidate Sequence

thus far - i.e., the Sequence Locator has no entry for A. Furthermore, the

Sequence Table is empty, so we start a new sequence with A in entry 0 of

the Sequence Table, set the access counter to 1, and update the Sequence

Locator to show that A is now part of Candidate Sequence 0. This is shown

in Figure 5.2(ii).

Next, we receive a request to frame B. We again see that B has not been

previously compacted, and is not part of any existing Candidate Sequence.

We then append B to Candidate Sequence 0, increment its access count, and

1we can know A has not been previously compacted by looking it up in the Remap Table,
which we discuss in section 5.5.1
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update the Sequence Locator. This is shown in Figure 5.2(iii).

Next, we receive a request to frame C. C has not been previously com-

pacted and is not part of any existing Candidate Sequence. However, in this

case Candidate Sequence 0 is already full (recall the granularity of compaction

is 2×4KB frames in this example, so each Candidate Sequence only tracks up

to 2 unique 4KB frames), so the request to C starts a new sequence, Candi-

date Sequence 1, and we increment its access count and update the Sequence

Locator accordingly, shown in Figure 5.2(iv).

The next request is to frame A. We can detect that A already belongs to

Candidate Sequence 0 by checking the Sequence Locator table and finding an

entry for frame A. Thus we simply increment the access count for Candidate

Sequence 0 from 2 to 3. No other updates are necessary. This is shown in

Figure 5.2(v).

The next two requests, D and E, are to previously compacted frames

pointed to by the Replacement Pointer. We increment the corresponding ac-

cess count for these previously compacted frames, and perform no other up-

dates. This is shown in Figure 5.2(vi). At the end of each Candidate Sequence

Identification phase, we will compare the highest access count among all the

identified Candidate Sequences against the access count of the previously com-

pacted frames pointed to by the Replacement Pointer, and only replace the

previously compacted frames if the access count is greater.

Next, we receive a request to frame F. It is uncompacted and not part
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of an existing Candidate Sequence, so we append it to Candidate Sequence 1,

increment its access count, and update the Sequence Locator. This is shown

in Figure 5.2(vii).

At this point, both the Sequence Table and Sequence Locator are full,

and have no more space for new Candidate Sequences. When we receive the

next request to frame G, we do nothing, as shown in Figure 5.2(viii). However,

additional accesses to previously compacted frames pointed to by the Replace-

ment Pointer (e.g., D and E), or frames that are part of an existing Candidate

Sequence (e.g., A, B, C, and F), will continue to increment the appropriate

access counter. In Section 5.7.8 we discuss sizing the Sequence Table and Se-

quence Locator appropriately to capture the best Candidate Sequence while

maintaining reasonable hardware costs.

At the conclusion of the Candidate Sequence Identification phase, we

take the Candidate Sequence with the most accesses (in this case, Candidate

Sequence 0 with 3 accesses), and compare it to the previously compacted

sequence pointed to by the Replacement Pointer (D and E, with 2 accesses). If

this Candidate Sequence has more accesses, as is the case in this example, then

we will replace the previously compacted sequence with the new Candidate

Sequence.

In a multi-core environment, in the absence of data sharing, all true

temporal correlation exists solely within individual processes each running

on its own core. Conversely, many false temporal correlations will show up

between accesses from completely unrelated processes running on different
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cores. Hence we partition the Candidate Sequence Identification process by

core. The Sequence Table and Sequence Locator are replicated, with one

copy per core, and DRAM requests are processed by the appropriate Sequence

Table/Sequence Locator based on the request’s core of origin. Candidate Se-

quences are formed and tracked independently for each core. At the conclusion

of Candidate Sequence Identification, the Candidate Sequence with the most

accesses across all the cores is compared against the previously compacted

data pointed to by the Replacement Pointer, and replacement occurs if the

candidate access count is greater.

While per-core Candidate Sequence Identification is optimized for cases

where there is minimal data sharing between cores, it will not break in the

presence of data sharing. For example, if a frame is shared and accessed by

multiple cores, it will potentially be included in multiple Candidate Sequences

across multiple cores, but ultimately only one of those Candidate Sequences

will be chosen for compaction. Thus per-core Candidate Sequence Identifica-

tion will function correctly and still provide benefit in the presence of data

sharing across cores (e.g., with multi-threaded applications). We leave the

optimization of Candidate Sequence Identification for multi-threaded applica-

tions as future work.

An OS context switch may occur in the middle of Candidate Sequence

Identification. In this case, we may end up capturing Candidate Sequences

with accesses from the original running process, the context switch handler,

and the new running process. This is functionally allowed and will not cause
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any errors. Furthermore, such Candidate Sequences will likely have low access

counts compared to others, because they capture data accesses from processes

that only ran for a fraction of the Candidate Sequence Identification phase.

As such, they are unlikely to be selected for compaction.

Finally, with SMT, the access stream from each individual core may

itself be composed of accesses from multiple unrelated processes. We leave the

optimization of Candidate Sequence Identification in the presence of SMT as

future work.

5.5 Challenge (III):
Minimizing Tag Store Overhead

5.5.1 Remap Table Organization

After a frame has been compacted (i.e., migrated), we require an ad-

ditional layer of address translation to map the compacted frame from its

original location to its compacted location. This is done via the Remap Table.

Logically, the Remap Table is a lookup table accessed with the original frame

address, and outputs the address of the corresponding compacted frame, if it

exists. This is shown in Figure 5.3(a). Here, frame 0x800 has been remapped

(i.e., migrated) to reserved frame 0x1FFFF80.

The Remap Table can be physically implemented as a set-associative

structure. This is shown in Figure 5.3(b), as a structure with 8K sets and 22

ways.

To access the Remap Table structure, the tag, index, and offset are
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(b) Remap Table as a set-associative structure

offset = 12 bitsindex = 13 bitstag = 12 bits
01236 2425 11

(c) Tag, Index, and Offset for Remap Table lookup from original address

offset = 12 bitsremaining compacted frame bits = 17 bits1...1
01236 2829 11

(d) Remapped address
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1 0x0 0x1FF80 v tag
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v tag v tag
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compacted
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...set 2048
remaining
compacted
frame bits

...

Figure 5.3: Remap Table.

taken from the original memory address, as shown in Figure 5.3(c). The low

12 bits are the offset into the frame, which remain unchanged even after the

frame has been compacted/migrated. The next 13 bits are used to index into

one of the 8K sets of the Remap Table structure. The remaining 12 bits are

tag. For example, if the original memory address was 0x800140, then the tag

would be 0x0, the index 0x800, and the offset x140. With this address, we

find a hit in set 2048, way 0.

Inside way 0, the value 0x1FF80 is stored. This is the corresponding

compacted frame address, but with the high order 1s removed. Recall that

Continuous Row Compaction, like Duplicon Cache, reserves physical memory
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from the top of the physical address (section 3.2.1), and all compacted frames

come from this top end of the physical address space. If the top 2k bytes of

physical memory is reserved out of 2m bytes of total memory, then the address

bits [m−1:k] of the reserved region will always be 1. Hence it is unnecessary to

store those bits of the compacted frame address. In this example, I assume k =

29 and 229 = 512MB of memory are reserved for Continuous Row Compaction.

Figure 5.3(d) shows the final remapped address after the Remap Table

has been consulted. The high 8 bits are set to 1, then concatenated with the

remaining compacted frame bits read out from the Remap Table (0x1FF80

in our example), then concatenated with the original offset (0x140). The end

result is that the original address 0x800140 is remapped to 0x1FFFF80140.

Each way in the set-associative Remap Table structure requires:

• 1 valid bit

• 12 bits of tag

• 17 bits for the remaining compacted frame bits

for a total of 30 bits. Hence each compacted/migrated 4KB frame only requires

30 bits of storage to track. In contrast, if we had gone for a sectored approach

like with Duplicon Cache, then, assuming 64B sectors, we would require at

least 64 sector valid bits to track a 4KB frame. This is more than double the

storage requirement.
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Since we reserved 512MB of memory for compaction, there are a total

of 512MB/4KB = 128K possible 4KB compacted frames. Hence, the Remap

Table needs to be sized to at least be able to hold 128K entries. With 8K

sets, this can be achieved with an associativity of 16. However, in practice the

structure should have a little higher associativity than necessary to prevent set

conflicts. I empirically found that 22 ways virtually removed all set conflicts

in my evaluation.

Hence the total Remap Table storage cost is: 8K sets × 22 ways/set ×

30 bits/way = 660KB. In section 5.7.8 I compare against the baseline with an

equivalent amount of cache added.

5.6 Challenge (IV):
Ensuring Data Coherence and Correctness

5.6.1 Tracking partially written back/filled frames

The main challenge for ensuring data coherence and correctness with

Continuous Row Compaction arises when frames are replaced, as frames may

be partially written back or filled. To address this, we track fine grained valid

and dirty status for 64B sectors of frames in the midst of being written back

or filled. 64B is the granularity of tracking, as this is the default transaction

size for DDR4.

This is done via two new structures, the Current Writeback Tracker

and the Current Fill Tracker. Each Tracker has four components:

• orig frame: the original frame address
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• compacted frame: the compacted frame address

• status: an array that tracks the status of each 64B sector within the

frame. Each sector is in one of three states:

– Uninitialized (U): the 64B sector has not been read.

– Read (R): the 64B sector has been read, but not written to its final

destination yet.

– Written (W): the 64B sector has been read, and written to its final

destination.

• data buffer: an array that holds the current value of 64B sectors that

have been read, but not yet written to its final destination.

The two Trackers are shown in Figure 5.4. For brevity, we only show

eight status and data buffer entries per Tracker, when in reality there will be

4KB / 64B = 64 such entries.

Remap Table
orig 

frame
compacted

frame

Pending Writebacks Queue

D'D
E'E
......
......

Current Writeback Tracker
orig 

frame
compacted

frame
writeback

status
U U U UU U U U

data buffer

Pending Fills Queue

Current Fill Tracker
orig 

frame
compacted

frame
fill

status
U U U UU U U U

data buffer
......

Figure 5.4: Initial state of tracking structures, before replacement.
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Two additional structures are needed. The Pending Writebacks Queue

is a queue that identifies pending frames that need to be written back to their

original locations. Similarly, the Pending Fills Queue identifies pending frames

that need to be migrated from their original locations to compacted locations.

Initially, the Pending Writebacks Queue, Current Writeback Tracker,

Pending Fills Queue, and Current Fill Tracker are all empty. The Remap

Table holds two entries, remapping frames D to D’, and E to E’, respectively.

This is shown in Figure 5.4.

At the end of the Candidate Sequence Identification example (section

5.4), we identified that frames D and E should be replaced with A and B. This

requires writing the contents of frames D and E back from their compacted

locations to their original locations, and then copying the contents of A and B

from their original locations to their compacted locations. We now show how

these writeback and fill operations are performed.

The first step in replacing D and E with A and B is to add D and E

to the Pending Writebacks Queue, and A and B to the Pending Fills Queue.

This is shown in Figure 5.5. Note at this point, nothing has yet been moved

in memory, so requests to D and E will still be remapped to D’ and E’, and

requests to A and B will still go to A and B.

Next, we dequeue D from the Pending Writebacks Queue, and begin

writing back D to its original location. The Current Writeback Tracker is

updated to reflect that we are in the midst of writing D back. Initially, all of
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Figure 5.5: After enqueuing into the Pending Writebacks Queue and Pending
Fills Queue

the 64B sectors of D are in the Uninitialized state, as denoted by U. At this

point we remove the entry for D from the Remap Table. From this point on,

how requests to D are serviced depends on the status of the individual 64B

sector being requested. If the requested sector is in Uninitialized state, then it

is serviced from the compacted location (i.e., D’). If the sector is in the Read

(R) state, it is serviced from the corresponding data buffer in the Current

Writeback Tracker. If the sector is in the Written state (W), it is serviced

from its original location (i.e., D). The state of the tracking structures as we

begin writeback of D is shown in Figure 5.6.
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Figure 5.6: Beginning the writeback of D.
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We go ahead and issue fetch requests for all the constituent 64B sectors

of D from their compacted locations (i.e., from D’). As we do so, we update the

status of the sectors to Read (R). As individual fetch requests complete, the

data read is placed in the corresponding data buffer. Each sector data buffer

is guarded by a valid bit, which is initially cleared to denote that the buffer

is empty. As the fetch requests for different sectors complete, they set the

valid bit of the corresponding data buffer. Fetch requests are processed by the

memory controller no differently than from ordinary read requests, with the

only distinction being that fetch requests originate at the memory controller

instead of the cores.

While a 64B sector is in the Read state, other ordinary (i.e., non-fetch)

requests to the sector must be serviced through the data buffer. For read

requests, the data can be immediately serviced from the data buffer if it is

valid. If the data buffer is not valid, the read request must wait until the

pending fetch request completes.2 Write requests to sectors in Read state

write directly into the corresponding data buffer, and set the valid bit. If

a fetch request completes after another write request has already filled the

corresponding data buffer, then the fetch request is dropped, as the data read

is already stale.

Figure 5.7 shows the state of the Current Writeback Tracker after all

fetch requests have been issued. Some fetch requests have completed, as ev-

2If the sector is in Read state but the data buffer is not valid, there must be a pending
fetch request

120



Remap Table
orig 

frame
compacted

frame

Pending Writebacks Queue

E'E
......
......

Current Writeback Tracker
orig 

frame
compacted

frame
D'D

writeback
status

R R R RR R R R
data buffer

Pending Fills Queue
A

Current Fill Tracker
orig 

frame
compacted

frame
fill

status
U U U UU U U U

data buffer

B

......

E

Figure 5.7: All fetch requests issued, and some have returned.

idenced by the corresponding data buffers being valid, shown in the figure

with the corresponding data buffer box being filled in (alternatively, write re-

quests could have made the data buffers valid). 64B sectors in Read state with

a ready data buffer are ready to be written back to their original locations.

We go ahead and issue writeback requests for these 64B sectors. Writeback

requests are no different from ordinary write requests, except that they are

generated at the memory controller for writing back previously compacted

data. Upon issuing a writeback request, the sector immediately changes state

to Written (W). Once the sector is in Written state, any future access to the

sector will be directed to the original location (i.e., D). Note it is possible for a

writeback request to still be pending when another read request for the same

64B sector arrives. However, this sequence of events, where we issue a write

request to a location, and later receive a read request to the same location

before the write request completes, can just as easily happen during normal

DRAM operations, and we assume the baseline memory controller is able to

handle it. Figure 5.8 shows the state where some sectors have updated to
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Written state. Note as a sector gets updated to Written state, its correspond-

ing data buffer becomes invalid, because now the data will be served by the

sector’s original location in DRAM.
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Figure 5.8: Some writeback have completed.

Once all the 64B sectors reach the Written state, the writeback of D is

complete. At this point, two things happen:

1. The compacted frame D’ is now available for another frame (A) to be

compacted into. At this point, A is dequeued from the Pending Fills

Queue, and populates the Current Fill Tracker.

2. We can start writeback of the next frame (E). E is dequeued from

the Pending Writebacks Queue, and populates the Current Writeback

Tracker. The entry for E, previously mapping E to E’, is removed from

the Remap Table.

These changes are reflected in Figure 5.9. At this point, we are ready

to start issuing fetch requests both for the writeback of E, and the filling (i.e.,

copying into a compacted frame) of A. While fetch requests for a frame being
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Figure 5.9: Beginning to fill A into compacted frame D’, and writing back of
E from compacted frame E’.

written back fetch from the compacted frame (E’ in this case), fetch requests

for a frame being filled fetch from the frame’s original location (A in this case).

Similarly, the location from/to which requests to a frame in the midst of being

filled gets serviced depends on the status of the 64B sector being requested.

If the sector is in Uninitiated (U) state, then the sector is served from the

original location (A in this case). If the sector is in Read (R) state, it is

serviced from the corresponding data buffer in the Current Fill Tracker. As

before, read requests to 64B sectors in Read state can only be serviced once

the data buffer is valid. A sector transitions to the Read state as soon as a

fetch request is issued, but the corresponding data buffer remains invalid until

either (i) the fetch request completes reading the data, or (ii) another write

request to the sector writes the data. In the latter case, if a write request

populates the data buffer before the fetch request completes, the data read by

the fetch request is dropped, since it is already stale.

The writeback of E and filling of A proceed concurrently. When the
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filling of A completes, the entry mapping A to D’ is added to the Remap Table.

When the writeback of E completes, the filling of B into E’ can begin. This

is shown in Figure 5.10. When the filling of B into E’ completes, the Remap

Table is updated with a new B to E’ mapping, and the process is complete.

This is shown in Figure 5.11.
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Figure 5.10: A is remapped to D’ in the Remap Table, and the filling of B into
E’ begins.
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Figure 5.11: Replacement complete.

We note that the time interval between row replacements is on the order

of millions of DRAM cycles (e.g., 3200K DRAM cycles), so the writeback and

filling of frames can happen gradually in concurrence with other regular DRAM

requests.
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We also note the initial step of populating the Pending Writebacks

Queue (with D and E) requires knowing which frames are pointed to by the

Replacement Pointer. One way to obtain this information is to have an addi-

tional data structure that maps reserved row addresses to the original frame

addresses of compacted frames. However, such a structure would be quite

expensive. Instead, since the time interval between row replacements is very

long, we can slowly examine every Remap Table entry over the course of many

cycles, and insert frames whose compacted location row address match the

Replacement Pointer into the Pending Writebacks Queue.

5.7 Evaluation

We implemented and evaluated Continuous Row Compaction on the

execution-driven, cycle-level core simulator Scarab[36] and modelled DRAM

via Ramulator[25]. We warmup for 1 billion (4/8 core evaluations) or 8 billion

(single core evaluations) instructions, then perform detailed simulation for 200

million instructions on representative SimPoints.

5.7.1 Benchmarks

We evaluated on the SPECrate 2017 benchmark suite. For each bench-

mark, we used SimPoint[46] to generate representative regions. We included

all representative regions with a weight greater than 5%.

We then selected the eleven most memory intensive benchmarks from

the SPECrate 2017 suite. These eleven benchmarks, along with their single
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core DRAM accesses per kilo instructions on the baseline configuration,3 are

shown in Table 5.1.

Table 5.1: Eleven most memory intensive SPECrate 2017 benchmarks.
benchmark DRAM accesses per kilo instruction

roms 102.37
bwaves 56.50

lbm 48.98
parest 31.92

wrf 24.57
cam4 23.76
mcf 23.26

omnetpp 18.69
gcc 14.93

xalancbmk 12.68
cactuBSSN 7.27

5.7.2 Baseline Configuration

Table 5.2 details the baseline configuration.

5.7.3 Warmup Methodology

A key challenge in accurately modeling Continuous Row Compaction

is the long time period required to completely fill the reserved memory with

compacted data. Assuming that we only perform 1 compaction every 3.2

million DRAM cycles , then with 1K reserved row addresses, it would take

1K × 3.2 million = 3.28 billion DRAM cycles to completely fill the reserved

memory. Since the DRAM runs at half the frequency as the CPU in our

evaluation,4 this is equivalent to 6.55 billion CPU cycles. Assuming an IPC of

3computed as a weighted average across all the SimPoints of the benchmark
43200MT/s DRAM runs at 1.6GHz, and we have a 3.2GHz CPU
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Table 5.2: Evaluated configuration.
Core 1/4/8 Cores, 6-Wide, 224 Entry ROB, 97 Entry Unified RS,

TAGE-SC-L Branch Predictor [56], 3.2 GHz Clock
L1 32KB Icache, 32KB Dcache, 64B Line,

2 Read Ports, 1 Write Port, 2 Cycle Latency, 4-way
L2 Private, 1MB/core, 64B Line,

1 Read Port, 1 Write Port, 14 Cycle Latency, 16-way
Writeback, Non-Inclusive

Prefetcher Stream Prefetcher [69], 16 Streams per core, Distance 64
Queue 128, Degree 4,

with Feedback Directed Prefetching (FDP) [62]
Memory 32 MSHRs per core
System 32 read queue, 32 write queue per channel

FR-FCFS [52] with cap of max 16 row hits
precharge oldest idle bank when memory controller is idle

DRAM 2 Channels, 2 Ranks/Channel, DDR4-3200, 22-22-22,
16Gb device, 256K rows, 128 GB total capacity

1, then this means it would require 6.55 billion instructions to completely fill

the reserved memory. In our single core evaluations, we warmup for 8 billion

instructions to completely fill the reserved memory before starting detailed

simulation. During warmup, we filter right-path memory requests through

the L1 and L2 cache, perform Candidate Sequence Identification based on the

L2 misses, then perform compaction every 10 million instructions. 10 million

instructions was chosen as the interval between compactions during warmup,

as this equals the 3.2 million DRAM cycles compaction interval, assuming 1.56

IPC.

For 4-core and 8-core evaluations, we only warm up for 1 billion in-

structions due to simulation time constraints. In this case, since there are only

100 compaction intervals over a billion instruction warmup period (1 billion

instructions/10 million instructions), but 4K(4 core)/8K(8 core) compactions
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required to completely fill the reserved memory, we need to perform 41/82 com-

pactions every compaction interval to completely fill the reserved memory by

the end of warmup. Thus during warmup Candidate Sequence Identification,

we compact the top 41/82 Candidate Sequences every 10 million instructions,

rather than just the one, as is normally done.

In section 5.7.5.8, we compare our 8 billion instructions warmup single

core results with our 1 billion instructions warmup single core results. In

general, we find the results between 8 billion warmup and 1 billion warmup

are similar. This confirms our intuition that, given a large enough cache

capacity, we can identify working sets that are stable over very long time

intervals (section 3.4.5).

In addition, we always start the warmup early enough so that the de-

tailed simulation is over the instruction interval specified by the SimPoint.

For example, if the representative SimPoint is supposed to begin at 10 billion

instructions into the execution, and we are performing 8 billion instruction

warmup, then we will begin the warmup at 2 billion instructions into execu-

tion.

5.7.4 Modelling Virtual-to-Physical Address Translation

Unless otherwise stated, our evaluation assumes 4KB page size, and

mimics virtual-to-physical address translation by computing the physical frame

number as a hash of the virtual page number. This effectively models a ran-

domized virtual-to-physical address mapping.
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In section 5.7.5.4, we examine the effect when we have larger page sizes.

In general, the benefit from Continuous Row Compaction diminishes with

larger page sizes, because much of our benefit comes from compacting together

adjacent 4KB frames that differ in DRAM row address. With larger page sizes,

accesses within the larger frames are much less likely to cross DRAM row

address boundaries, making row conflicts less likely. Nonetheless, Continuous

Row Compaction does continue to provide benefit with larger pages on stencil

based benchmarks like lbm and cactuBSSN.

We assume no virtual pages share the same frame. We assume memory

requests from different cores in the same multi-programmed workload access

completely disjoint sets of frames in physical memory.

5.7.5 Single Core Performance

We now present our single core performance results. In this section, the

system has 2 ranks per channel, 2 channels, and Continuous Row Compaction

is configured with 512MB of reserved memory (1K reserved rows) and 3.2

million DRAM cycles between compactions.

Figure 5.12 shows the single core IPC improvement of Continuous Row

Compaction over the baseline. In general we improve performance for most

benchmarks. Lbm is our best performing benchmark by far, and as we showed

in our motivational example in section 5.2, this is due to Continuous Row

Compaction being able to create regions within the 3-D array that share the

same row address, allowing the stencil to sweep through the region without
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Figure 5.12: Single core IPC improvement.

mixing together accesses with different row addresses. CactuBSSN is another

similar stencil based computation.

We lose performance on mcf (0.3% IPC loss) and parest (0.7% IPC loss).

This is because in performing Continuous Row Compaction, we also change

the order in which data is accessed by the core, and this resulted in a slight

increase in the on-chip L2(which is our last level cache) eviction frequency.

We discuss this in more detail in section 5.7.5.2.

5.7.5.1 Row Buffer Hit Rate

Figure 5.13 shows the DRAM Activates per kilo instructions for both

the baseline and Continuous Row Compaction. We see that Continuous Row

Compaction is able to improve row buffer locality and reduce the number

of Activate operations required across the board. However, in some cases

other bottlenecks kick in once row buffer locality is improved, limiting the
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performance gain. For example, both bwaves and roms were already close

to saturating the channel bandwidth in the baseline; hence the performance

gains from improved row buffer locality were limited. For mcf, parest, and

wrf (plus cactusBSSN and cam4 to a lesser extent) the improved row buffer

locality changed the order in which data was filled into the on-chip L2 (LLC)

in such a way that the L2 eviction rate actually increased, leading to worse

performance. We discuss this more in the next section.
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Figure 5.13: Single core DRAM Activates per kilo instructions.

5.7.5.2 Effect on On-Chip L2 Evictions

Despite improved row buffer locality (i.e., decreased frequency of DRAM

Activates), two benchmarks, mcf and parest, still lose performance. I narrowed

the cause to a higher eviction rate from the on-chip L2 (LLC) cache for these

two benchmarks after Continuous Row Compaction. Continuous Row Com-

paction changes the order in which DRAM requests are serviced (by producing
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more row buffer hits), which can change the cache replacement behavior in the

on-chip caches.
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Figure 5.14: Change in L2(LLC) evictions per kilo instructions from baseline.

Figure 5.14 plots the change in L2 (LLC) evictions per kilo instructions

between Continuous Row Compaction and the baseline. The L2 evictions per

kilo instructions increased slightly by 0.7% and 1.8% for mcf and parest, re-

spectively, and this was enough to negate the performance gains from better

row buffer locality. The L2 eviction rate also increased for wrf (0.5%), cactuB-

SSN (0.3%), and cam4 (0.1%), but for these three benchmarks the improve-

ment in performance from better row buffer locality was enough to offset the

higher L2 eviction rate.

5.7.5.3 Compaction Overhead

Our Explicit Copying Throttling mechanism (sections 3.4.4.1 and 5.3),

which only allows one row compaction every 3.2 million DRAM cycles, is
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suppose to limit the channel overhead from writebacks and fills. Figure 5.15

demonstrates its effectiveness, by examining what would happen if we made

all compaction writebacks/fills free.
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Figure 5.15: Effect on performance when writebacks and fills are made free.

We see that the performance attained with our Explicit Copying Throt-

tling mechanism while modelling all writeback and fill overhead comes very

close to the performance when we make all writebacks and fills free (i.e., do

not require any DRAM operations). Thus the Explicit Copying Throttling

mechanism is able to effectively limit the writeback and fill overhead, at least

in the single core case. However, in section 5.7.6.2, we see that with increased

channel contention in multi-core environments, writeback and fill overheads

become more significant, even with Explicit Copying Throttling.

133



5.7.5.4 Huge Pages and Consecutive Frames

As explained in the motivational example of section 5.2 and in section

5.7.4, Continuous Row Compaction derives most of its benefit from compact-

ing concurrently accessed 4KB frames with different row addresses into the

same row address. Concurrently accessed 4KB frames are very likely to differ

in row address in our simulation methodology because we model virtual-to-

physical address translation by computing the physical frame address as a

hash of the virtual page address (section 5.7.4), meaning contiguous virtual

pages are likely to be mapped to non-contiguous physical frames that differ

in the row address. However, prior work like CoLT[49] observed that on real

systems contiguous virtual pages also exhibit some contiguity in physical ad-

dress space, due to the effects of OS memory allocations mechanisms such as

buddy allocators and memory compaction. In addition, the use of huge pages

(e.g., 2MB and 1GB) would also make concurrent accesses to regions with dif-

ferent row addresses less likely. I thus ran additional experiments evaluating

Continuous Row Compaction with 8KB, 16KB, and 2MB page sizes. In these

experiments, I still migrate data at 4KB granularity, but the virtual-to-physical

address hashing is done at 8KB, 16KB and 2MB granularity, respectively, for

both the baseline and Continuously Row Compaction.

The results are shown in Figure 5.16. In the cases of bwaves, cam4,

gcc, omnetpp, roms, and xalancbmk, the benefit from Continuous Row Com-

paction diminishes with each doubling of the page size from 4KB to 8KB to

16KB, and is further reduced with 2MB pages. As the benefit from Continu-
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Figure 5.16: Effect of page size on benefit.

ous Row Compaction diminishes with bigger page sizes, the cost of performing

data migrations remains the same, and in some cases, we end up with a per-

formance loss with bigger page sizes (cam4 with 2MB pages, gcc with 2MB

pages, omnetpp with 16KB and 2MB pages, roms with 2MB pages).

lbm and cactuBSSN continue to benefit from Continuous Row Com-

paction, even with larger page sizes. Both these benchmarks perform stencil

based computations like the motivational example of section 5.2. As was ex-

plained in that example, concurrent accesses to memory regions with different

row addresses remain a problem even with huge pages, because the stencil

is multi-dimensional and is likely to span multiple regions with different row

addresses. Continuous Row Compaction can still help in these cases by rear-

ranging and migrating data in the array to minimize the number of regions

with different row addresses encountered by the stencil as it traverses across

the array.
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5.7.5.5 Prefetching

One might wonder why Continuous Row Compaction gave such sub-

stantial benefit on highly prefetchable streaming benchmarks such as lbm. If

all memory requests can be prefetched far enough in advance, then request

latency improvements from increased row buffer hit rate should not matter.

Furthermore, with enough outstanding prefetch requests buffered, high channel

bandwidth utilization can be maintained by exploiting bank level parallelism,

even if row buffer hit rate is low.

Additional experiments show this is indeed the case, provided that:

• there are enough Miss Status Holding Registers (MSHRs) and memory

controller queue capacity to hold enough outstanding requests to achieve

high bank level parallelism, and

• the prefetcher is able to track enough concurrent streams to issue enough

prefetches

The original baseline configuration (Table 5.2) had 32 MSHRs per core,

and was able to track 16 concurrent prefetching streams per core. However,

this turned out to be insufficient for allowing lbm to prefetch well enough

to become insensitive to row buffer hit rate. I thus performed additional

experiments that:

• double the number of MSHRs per core to 64
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• increase the number of tracked prefetch streams from 16 to 32, then 64

This is shown in Figure 5.17. Each bar in Figure 5.17 represents the

single core IPC improvement of Continuous Row Compaction over the baseline

with the specified number of MSHRs and tracked prefetcher streams. The left

three bars for each benchmark are with the original MSHR capacity of 32,

while the right three are with 64 MSHRs. Within each set of three bars, the

individual bars represent, from left to right, 16 prefetch streams, 32 prefetch

streams, and 64 prefetch streams.
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Figure 5.17: Effect of increasing the number of MSHRs and prefetcher stream
buffers.

We see that for bwaves, lbm, parest, roms, and wrf, the benefit from

Continuous Row Compaction decreases as the number of MSHRs is doubled

from 32 to 64 because more requests can be concurrently held in the memory

controller queues, exposing additional bank level parallelism and making row

buffer hit rates less important.
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For CactuBSSN and lbm, the default 16 prefetch streams was insuffi-

cient to fully maximize the number of prefetches. As the number of tracked

streams is increased to 32 and 64, prefetching improves substantially for these

two benchmarks, making them less sensitive to row buffer hit rates and reduc-

ing the benefit from Continuous Row Compaction.

For lbm, the IPC improvement from Continuous Row Compaction de-

creased from 18.4% to 1.6% when both the number of MSHRs and tracked

prefetch streams are increased to 64. However, both needed to be increased to

make lbm insensitive to row buffer hit rate. Simply increasing the MSHRs or

number of prefetch streams alone decreases the benefit from Continuous Row

Compaction, but does not eliminate it. When both the number of MSHRs

and tracked streams are increased to 64, only xalancbkmk continues to give

substantial benefit (8.5%), since it is not stream prefetchable.

5.7.5.6 Different Candidate Sequence Identification and Selection
Algorithms

The Candidate Sequence identification and selection algorithm outlined

in section 5.4 records multiple Candidate Sequences during a compaction in-

terval, then picks the Candidate Sequence with the most accesses to compact.

In my evaluation I allowed for up to 14 Candidate Sequences to be recorded

per core (Table 5.4). 14 was chosen because this was the most number of Can-

didates Sequences on average encountered per compaction interval among all

benchmarks. However, since the storage for tracking Candidate Sequences is
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relatively cheap, one can easily track more Candidate Sequences if necessary.
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Figure 5.18: Selecting most frequently accessed vs. oldest candidate sequence
for compaction.

I in addition examined a simpler algorithm that always picks the old-

est Candidate Sequence for compaction. Figure 5.18 shows that we do lose

some performance with this simpler algorithm. In particular, the stencil based

benchmarks lbm and cactuBSSN perform worse with simply choosing the old-

est Candidate Sequence. This makes sense, as each Candidate Sequence es-

sentially defines the shape of a region within the 3-D array to compact to

the same row address. By recording multiple Candidate Sequences and then

choosing the one with the most accesses, we are essentially trying out different

possible shapes of regions to compact, and then picking the best one.

One might wonder whether the sequential Candidate Sequence identifi-

cation algorithm was over-simplistic and can result in sub-optimal candidates

for compaction. For example, assume 4 frames can fit in a compacted row
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address. If the very first access was to frame A, but the remaining accesses

were repeatedly to frames B, C, D, and E, then the sequential algorithm would

identify the two Candidate Sequences:

• A,B,C,D

• E

This is clearly sub-optimal, as the algorithm fails to identify the best com-

paction candidate B, C, D, E.

To quantify how much of a problem this is, I developed an alternative

Most Frequently Seen Together algorithm that always tracks the last N (where

N is the number of frames that can fit in a compacted row address) unique

frames that were accessed. A counter is associated with each set of N unique

frames that has been encountered. On every DRAM access, the counter for

the set containing the N most recently accessed unique frames is incremented.

This is done during an entire compaction interval. At the end of the interval,

the set of frames with the highest counter value, denoting the set of frames that

were most frequently accessed together, is chosen for compaction for the next

interval. Not that unlike the simple sequential algorithm, the Most Frequently

Seen Together algorithm can always identify the set of most frequently accessed

together frames regardless of where they appear in the sequence of accesses.

Figure 5.19 shows the IPC improvement of Continuous Row Com-

paction with both the original sequential Candidate Sequence identification
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Figure 5.19: IPC improvement over baseline with sequential vs. Most Fre-
quently Seen Together compaction candidate identification
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Figure 5.20: Row buffer hit rate improvement over baseline with sequential
vs. Most Frequently Seen Together compaction candidate identification

algorithm, and the new Most Frequently Seen Together algorithm. Surpris-

ingly, the Most Frequently Seen Together algorithm actually performs worse on

all benchmarks except parest and wrf (and even then, only with very modest

performance improvements). The reduced IPC improvement is due to reduced

row buffer hit rate improvement, as shown in Figure 5.20.

It is not entirely clear what an optimal algorithm for compaction candi-
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date identification is, as the more sophisticated Most Frequently Seen Together

algorithm actually performs worse than the sequential algorithm. However,

since Continuous Row Compaction mainly benefits workloads with repeating

access patterns, it seems the simple sequential algorithm is able to capture

good enough candidates for compaction.

5.7.5.7 Unified vs. Distributed Compaction Across Channels

We have thus far assumed a single unified Remap Table, capable of

maintaining all frame remappings across all channels. In practice, this may

not be feasible on large chips, because different channels may be controlled

by separate memory controllers that are physically apart. Functionally, it is

possible to duplicate all necessary structures (Remap Table, Current Write-

back/Fill Tracker, Pending Writebacks/Fills Queue, Sequence Table, Sequence

Locator) and perform distributed row compaction independently per channel,

or on any arbitrary division of channels, as long as one ensures that each

frame is always remapped to a compacted frame with the same XOR output

among the frame index bits during channel computation. For example, in the

physical-to-DRAM address mapping of Figure 2.4(e), the channel is computed

as the XOR of bits 19, 18, 13, 12, 9, and 8 of the physical address. Among

these, bits 9 and 8 are part of the page offset (i.e., not part of the frame index),

and will remain unchanged under frame remappings. However, bits 19, 18, 13,

and 12 will potentially change during frame remapping. If row compaction is

performed independently per channel, or on some arbitrary division of chan-
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nels, then we need to make sure the new compacted frame that we remap to

has the same XOR value across address bits 19, 18, 13, and 12. This way,

we are guaranteed that the original frame and the compacted frame will be

interleaved to different channels in the same manner.

Distributed row compaction creates two issues. First, concurrently ac-

cessed regions with different row addresses might be compacted in one channel,

but not the other. This can lead to worse performance. Figure 5.21 shows that,

indeed, separate compaction across two channels performs worse than unified

compaction.

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

bwaves cactuBSSN cam4 gcc lbm mcf omnetpp parest roms wrf xalancbmk ameanIP
C

 im
p

ro
ve

m
en

t 
o

ve
r 

b
as

el
in

e

Unified compaction across channels Separate compaction in each channel

Figure 5.21: Unified vs. Separate compaction with two channels.

Second, duplication of the Remap Table increases the hardware storage

cost of Continuous Row Compaction. For these reasons, it is preferred to have

as many channels share the same row compaction data structures as possible.
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5.7.5.8 Warmup Length

In section 5.7.3, I explained that it takes billions of instructions to com-

pletely fill up the Continuous Row Compaction reserved storage. For single

core simulations, we are able to warmup for the necessary number of instruc-

tions (8 billion) to completely fill the reserved storage. However, for 4-core

and 8-core simulations, it would be very slow to warmup for 8 billion instruc-

tions. I instead only warmup for 1 billion instructions, but allow data to be

filled into the Continuous Row Compaction reserved storage at a greater rate

during warmup, so that by the end of the 1 billion warmup the entire reserved

storage has potentially been filled. Once warmup ends and detailed simulation

starts, we replace data in the reserved storage at the normal rate (e.g., once

every 3.2 million DRAM cycles).

To verify whether this methodology is sound, I compared the single core

results between running the full 8 billion warmup and running the 1 billion

abbreviate warmup.

The results are shown in Figure in 5.22. We see that, in general, the

results between 8 billion and 1 billion instructions warmup are very close. The

only notable exception is cactuBSSN, where 1 billion instructions warmup

performs worse compared to 8 billion instructions. Thus I believe using 1

billion warmup for 4-core and 8-core evaluations is a reasonable methodology.
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Figure 5.22: 8 billion vs. 1 billion instructions warmup.

5.7.5.9 DRAM Reserved Storage Overhead

This section discusses what the reserved DRAM storage overhead was

as a fraction of the working set of the application, and how the benefit from

compaction changes as this fraction is varied.

For all SimPoints with ≥ 5% IPC improvement from row compaction

in the default single core configuration, I performed additional sweeps on the

amount of DRAM storage reserved for compaction. I then plotted the IPC

improvement against the amount of DRAM reserved as a fraction of the ap-

plication working set, which I define as the total amount of memory that was

accessed during the 8 billion instructions warmup (see section 5.7.3) and 200

million instructions detailed simulation.

Figure 5.23 shows the result of the sweeps. Each curve represents a

different SimPoint. For each point on a curve:
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• the x-axis value represents the amount of DRAM reserved for row com-

paction, as a fraction of the amount of total memory accessed during

the 8 billion instructions warmup and 200 million instructions detailed

simulation. For example, if 200 MB of DRAM was reserved for row

compaction, and the SimPoint accessed 400 MB worth of data during

warmup and detailed simulation, then the corresponding x-value would

be 50%

• the y-axis value represents the fraction of the maximum IPC improve-

ment attained. For example, in sweeping the amount of DRAM storage

reserved for row compaction, if the maximum IPC improvement attained

across the entire sweep was 10%, while the IPC improvement for this

particular data point in the sweep is 2%, then the y-value would be 20%
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Figure 5.23: Fraction of max IPC improvement achieved as a function of
fraction of DRAM reserved for row compaction.
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We see that the benchmarks (i.e., SimPoints) can be roughly divided

into two groups. The first group, comprising of cam4 0 4, roms 0 4, xalancbmk 0 2,

and to a lesser extent, gcc 2 3, is able to achieve most of the maximum IPC

improvement with only around 20% to 40% of its working set compacted. The

second group, made up of all the remaining benchmarks, require the entire

working set to be compacted in order to achieve the maximum IPC improve-

ment. This gives us some indication on what will happen with future workloads

with even larger working sets - some will be able to get most of the benefit of

compaction with about 20% to 40% of its working set compacted, while others

will require the entire working set to be compacted in order to see full benefit.
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Figure 5.24: Fraction of DRAM accesses from compacted rows as a function
of fraction of DRAM reserved for row compaction.

Figure 5.24 is similar to Figure 5.23, but instead plots the fraction of

DRAM accesses serviced from compacted rows on the y-axis. We see the same
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trend where the first group, comprising of cam4 0 4, roms 0 4, xalancbmk 0 2,

and to a lesser extent, gcc 2 3, is able to have most of its DRAM requests

serviced from compacted rows with only around 20% to 40% of its working set

compacted. With the second group, made up of all the remaining benchmarks,

the fraction of accesses serviced from compacted rows scales roughly linearly

with the fraction of the working set compacted.

5.7.5.10 Remap Table Latency

Another consideration is the latency through the Remap Table, which

must be accessed on every DRAM access to determine if the location has been

compacted.
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Figure 5.25: Effect of Remap Table latency (in DRAM cycles) on performance.

Figure 5.25 shows the effect of Remap Table latency on Continuous

Row Compaction performance benefit as the latency is varied from 0 to 8
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DRAM cycles.5 Continuous Row Compaction is configured as before with 1K

reserved row addresses, allowing 512 MB of memory to be compacted. Given

this configuration, the Remap Table would be 660 KB (see section 5.7.8).

Unsurprisingly, the benefit degrades as the Remap Table latency in-

creases. Hence Remap Table latency is one of the biggest challenges to realiz-

ing Continuous Row Compaction.

5.7.6 4-core Performance

We now present our 4-core performance results. We report weighted

speedup [58] (section 4.7) as a measure of multi-core performance. Each work-

load in the 4-core mix is simulated until every benchmark in the 4-core mix has

retired at least 200 million instructions. Benchmarks that exceed 200 million

instructions continue to execute to provide interference for the other unfinished

benchmarks, but the IPC is recorded from the first 200 million instructions

corresponding to the representative SimPoint region.

For our 4-core evaluations, we increased the amount of reserved storage

for compaction by 4x from 512MB to 2GB.

5.7.6.1 Benchmark Selection

We formed 22 randomized 4-core multi-programmed workloads from

our set of eleven memory intensive SPECrate 2017 benchmarks, such that

each benchmark appears 8 times across all 22 multi-programmed mixes. For

5each DRAM cycle is two CPU cycles in our configuration; see Table 5.2
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each benchmark, the composition of the 8 included SimPoints depends on the

SimPoint weights. For example, the benchmark lbm has only one representa-

tive SimPoint of weight 100% that is included 8 times across all 22 randomized

4-core mixes. On the other hand, cactuBSSN, with three representative Sim-

Points of weights 59%, 29%, and 12%, has the first SimPoint included 5 times,

the second SimPoint included 2 times, and the third SimPoint included 1 time

across all 22 4-core mixes. Table 5.3 shows the 22 4-core mixes.

Table 5.3: 4-core mixes.
Mix-1 cac0 2 lbm0 5 mcf0 4 wrf0 4
Mix-2 bwa0 3 lbm0 5 mcf0 4 rom0 4
Mix-3 cac0 2 omn0 2 rom0 4 xal0 3
Mix-4 bwa3 5 gcc2 1 rom0 3 rom0 5
Mix-5 omn0 2 par0 4 par0 4 wrf0 4
Mix-6 bwa3 4 omn0 2 rom0 5 wrf0 1
Mix-7 lbm0 5 omn0 2 xal0 3 xal0 3
Mix-8 cac0 4 lbm0 5 par0 4 wrf0 2
Mix-9 bwa1 2 par0 4 rom0 4 xal0 3
Mix-10 gcc1 1 mcf0 1 mcf0 4 wrf0 2
Mix-11 cam0 2 cam0 4 cam0 4 gcc4 2
Mix-12 cac0 5 omn0 2 xal0 2 xal0 3
Mix-13 cac0 2 cam0 4 gcc0 1 lbm0 5
Mix-14 cac0 4 cam0 2 lbm0 5 mcf0 1
Mix-15 cam0 4 gcc3 3 rom0 4 xal0 4
Mix-16 bwa2 1 bwa3 5 cam0 1 par0 2
Mix-17 omn0 2 omn0 2 par0 1 wrf0 1
Mix-18 cac0 2 gcc4 1 lbm0 5 xal0 2
Mix-19 cam0 4 gcc1 1 lbm0 5 wrf0 3
Mix-20 mcf0 4 mcf0 5 par0 4 rom0 3
Mix-21 bwa1 2 bwa2 1 cac0 2 wrf0 3
Mix-22 gcc4 1 mcf0 4 omn0 2 par0 4

5.7.6.2 Compaction Overhead

With 4 cores, there is now more contention for the two memory chan-

nels. We again perform the experiment in section 5.7.5.3, where we make

writebacks and fills free, and see whether or not our Explicit Copying Throt-
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tling mechanism is still able to minimize writeback and fill overhead in the

multi-core case.
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Figure 5.26: Effect on performance when writebacks and fills are made free for
4-cores.

We see that with 4-cores, the performance gap between fully modelling

writebacks/fills vs. making writebacks/fills free is larger. This is expected,

as there is more contention with 4-cores, and writebacks and fills become

relatively more expensive.

We note that in mixes 5, 10, 20, and 22, we have almost zero benefit,

or end up with performance losses, even when writebacks and fills are free.

This can be explained by the benchmark composition of those three mixes.

As we saw in section 5.7.5, mcf and parest are our two worse performing

benchmarks, due to memory access reorderings that end up producing more

L2 (LLC) evictions. Mix-5 has two copies of parest, mix-10 has two copies of

mcf, mix-20 has two copies of mcf and 1 copy of parest, and mix-22 has a copy
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of mcf and a copy of parest. No other mixes have more than 1 copy of mcf or

parest (Table 5.3).

We also note that the performance detriments from increased L2 (LLC)

evictions will be more pronounced in a multi-core environment compared to

the single core case, because with multi-core, not only do we lose performance

because we are getting fewer L2 hits, but we are also creating more memory

traffic to an already contended DRAM system. Hence the performance losses

suffered by mcf and parest are more drastic in the 4-core case than in the

single core case.

5.7.6.3 Row Buffer Hit Rate

Figure 5.27 shows that, like in the single core case, Continuous Row

Compaction is able to improve row buffer locality and reduce the number of

DRAM Activate operations required across the board.
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Figure 5.27: Change in number of DRAM Activates for 4-core mixes
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5.7.7 Effect of Varying Bank and Core Counts

In this section we examine the effect of varying bank (i.e., rank) and

core count on Continuous Row Compaction.

Our starting point is a single core evaluation on a system with 2 chan-

nels and 1 rank per channel (16 DDR4 banks per rank). We take the Sim-

Points on which Continuous Row Compaction performed the best (≥ 5% IPC

improvement) in this single core setup, then vary the bank and/or core count.

Bank count is varied by doubling the number of ranks to 2 per channel. Core

count is varied by taking each SimPoint and creating 2-core, 4-core, and 8-

core multi-programmed workloads with 2, 4, or 8 copies of the same Sim-

Point. For the multi-programmed workloads, the amount of DRAM reserved

for compaction is scaled with the number of cores. For example, if X units of

DRAM was reserved for compaction in the single core case, then 2X, 4X, and

8X DRAM are reserved for the 2-core, 4-core, and 8-core multi-programmed

workloads, respectively.

This is shown in Figure 5.28. For each benchmark (i.e., SimPoint), the

left four bars are with 1 rank per channel, while the right four are with 2 ranks

per channel. Within each set of four bars, each individual bar represents, from

left to right, the performance benefit of Continuous Row Compaction over

the baseline with 1, 2, 4, and 8 cores, respectively.6 The number of channels

6IPC improvement in the 1-core case, Weighted Speedup improvement in the 2,4, and 8
core cases
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Figure 5.28: Performance improvement with varying rank and core counts.

remains at 2 regardless of the number of ranks per channel and the number of

cores.

In general, the benefit from Continuous Row Compaction diminishes

with more ranks(i.e., banks), as more bank level parallelism becomes available

and the importance of row buffer hit rate decreases. Similarly, the benefit from

Continuous Row Compaction diminishes with more cores, because it becomes

easier to saturate the channel bandwidth with traffic from multiple cores, even

at low row hit rates.

However, there are two cases, cactuBSSN 0 5 and cam4 0 4, where the

benefit of Continuous Row Compaction continues to scale with increasing core

counts at low bank counts (i.e., 1 rank per channel). While in both cases the

performance benefit initially decreased from 1-core to 2-core, it then improved
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with each additional core count doubling afterwards.

This is further supported in Figure 5.29, which shows the improvement

in DRAM channel utilization from baseline with varying rank and core counts.

We see that for cactuBSSN 0 5 and cam4 0 4, channel utilization improvement

scales with increasing core count at 1 rank per channel.
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Figure 5.29: DRAM channel utilization improvement with varying rank and
core counts.

5.7.8 Area

We now examine the on-chip storage budget required for Continuous

Row Compaction. We assume the configurations listed in Table 5.4 for our

storage budget calculations.

Table 5.5 shows the sizes of data structures required for Continuous
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Table 5.4: Memory and Continuous Row Compaction configuration for area
calculation.

DRAM 2 Channels, 2 Rank/Channel, DDR4-3200, 22-22-22,
16Gb x4 device, 256K rows, 128GB total capacity

Reserved 1K reserved row addresses (out of 256K)
Memory = 512MB out of 128GB reserved
Sequence 14 Candidate Sequences per core,
Table 128 tracked frames and 13 bit saturating Access Counter

per Candidate Sequence
Sequence 1K sets, 3-way set-associative table per core
Locator
Remap 8K sets, 22-way set-associative
Table

Row Compaction. Overall, the storage cost is dominated by the Remap Table.

Total storage required is 681.4KB.

Table 5.5: Required data structures and cost
Structure Cost

Remap Table 660 KB
Pending Writebacks+Fills Queues 800 B
Current Writebacks+Fill Trackers 8.0 KB
Replacement Pointer 10 bits
Access Counter for
frames to be replaced 13 bits
Sequence Table 5.5 KB
Sequence Locator 7.1 KB
Total 681.4 KB

We compare the single core performance of Continuous Row Com-

paction in this configuration against the performance of the baseline with

512KB and 1MB of added L2 (LLC). This is shown in Figure 5.30. Con-

tinuous Row Compaction outperforms the baseline with additional cache in

bwaves, cactuBSSN, lbm, and xzlancbmk, while the baseline with additional

cache is better in the other benchmarks. Overall, Continuous Row Compaction

improves performance by 3.9%, compared to 3.3% and 1.9% for the baseline

with 1MB and 512KB of additional cache added.
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Figure 5.30: Performance comparison to baseline with additional cache.
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Chapter 6

Related Work

6.1 Caching using Performance-Optimized DRAM

Caching using performance-optimized DRAM such as eDRAM, HBM,

MCDRAM, RLDRAM, and GDDR DRAM can significantly increase per-

formance, but comes with high cost. eDRAM requires special fabrication

technology to integrate DRAM to the same die as the processor. HBM and

MCDRAM require special packaging to connect to the processor. RLDRAM

has reduced density and is much more expensive than cost-optimized DRAM.

GDDR DRAM transfers data at very high data rates and consumes consider-

able power and energy. In contrast, my work seeks to improve performance

while employing only cheap, widely available commodity DRAM memory.

6.2 Caching using Tweaked Cost-Optimized DRAM

Prior work like TL-DRAM[29] and CHARM[60] attempted to make

small tweaks to commodity cost-optimized DRAM to create fast and slow

regions within the same device, then use the fast region as a cache. However,

there are two main problems with this approach. First, some of the changes

proposed, like breaking the bitline with isolation transistor, are not trivial in
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density-optimized DRAM technology. Second, due to the commodity nature

of the DRAM industry, adoption of device level optimizations is often slow

and difficult. In contrast, my work does not require any modifications to the

DRAM device or access protocol, is completely transparent to software, and

can be unilaterally adopted by the processor vendor.

Multiple Clone Row DRAM (MCR-DRAM) [6] sacrifices memory ca-

pacity for latency by using multiple DRAM rows (called a Multiple Clone Row,

MCR) to represent a single logical row of data. Latency is reduced for data

represented with MCRs due to:

• increased sensing strength from the increased number of sensed cells,

effectively reducing tRCD, the latency between a row Activate and a

subsequent Read/Write

• more frequent refreshes to the data without increasing the frequency of

Refresh commands. This allows:

– tRAS to be reduced without compromising data integrity, meaning

Precharges can be issued earlier, and

– tRFC to be reduced, reducing the overhead from Refreshes

MCR-DRAM still requires changes to the DRAM device, but changes

are limited to the peripherals outside of mat cell-arrays. This is desirable

because the mat cell-arrays are highly optimized for cell density, and DRAM

vendors are often hesitant to muddle with this part of the design. By contrast,
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Continuous Row Compaction requires no modifications to the DRAM device

at all.

A row of compacted data in Continuous Row Compaction requires the

same amount of memory storage as a 2x MCR that uses two DRAM rows to

represent a single logical row. One can have a mix of MCRs and normal rows.

The MCRs can be used as a cache of data in the normal rows. If this were the

case, the two main challenges discussed in this thesis:

1. minimizing the data movement overhead associated with filling the cache

2. efficiently tracking what has been cached

apply equally to a MCR-DRAM based cache, and many of the same solutions

discussed in chapter 3 can be employed.

6.3 Caching using Unmodified Cost-Optimized DRAM

Micro-pages [66] tries to leverage intra-page access non-uniformity within

individual 4KB OS page by identifying and combining the most frequently ac-

cessed 1KB regions (micro-pages) from different 4KB OS pages into the same

row buffer. However, our experiments show that first, meaningful intra-page

access non-uniformity only exists for a small handful of benchmarks (omnetpp,

xz), while for most other benchmarks, different 1KB micro-pages within a 4KB

OS page all get accessed frequently enough that there are no clear discernible

hot vs. cold 1KB micro-pages. Second, it is insufficient to use access fre-

quency as the sole criterion for determining which micro-pages to combine
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into the same row buffer, as this leads to frequently accessed micro-pages with

little to no temporal correlation being placed in the same row buffer, which

does not provide benefit. In contrast, Continuous Row Compaction records the

order in which unique 4KB regions are accessed in during Candidate Sequence

Identification, thereby capturing temporal correlation between different OS

pages.

6.3.1 Reducing DRAM Latency using
Unmodified Cost-Optimized DRAM

Non-Uniform Access Time memory controller (NUAT) [57], ChargeCache[13],

and Charge-Level-Aware Look-Ahead Partial Restoration (CAL)[73] track which

rows of data have been recently activated or refreshed, or are likely to be ac-

tivated/refreshed in the future, and loosen the Activate timing constraints for

these rows. This is possible because the DRAM cell capacitors in these rows

have charge levels that have either been recently restored from a recent Ac-

tivate/Refresh, or will soon be restored by another future Activate/Refresh.

However, these techniques only reduce the Activate latency, not the Precharge

latency. In contrast, Duplicon Cache can potentially hide both the Precharge

and Activate latencies by allowing requests to be serviced earlier at a less

loaded bank, while Continuous Row Compaction can eliminate Precharges

and Activates altogether.
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6.4 Fast In-Memory Copying

One of the main challenges in making Duplicon Cache and Continuous

Row Compaction work is the limited channel bandwidth of cheap commodity

memory, as additional data traffic from data duplication/migration worsen

contention for this limited channel bandwidth (section 3.4). Prior work [53,

5, 74] again modify the DRAM device to create connections that allow bulk

copying of data entirely within the DRAM device (setion 3.4.1). In contrast,

I developed techniques in this thesis that identify and capture stable working

sets of the application over very long time intervals, enabling the benefits

of caching while minimizing data movement overhead by performing cache

writebacks and fills very infrequently.

6.5 Partitioning Memory Resources

Duplicon Cache derives benefit from mitigating bank conflicts that

arise under contention in multicore systems. There have been proposals to

limit memory contention in multicore systems by partitioning memory chan-

nels [40, 32] or banks[32, 14, 16, 33, 79, 37, 19] among different co-running

applications/threads. However, scarcity in memory channels and banks fun-

damentally limit the effectiveness of partitioning techniques.

For example, as of January 2021, the processor with the most cores from

Intel supports 112 threads and 12 DDR4 channels. This scarcity of channels

to threads creates a fundamental pigeonhole problem for channel partitioning.

Furthermore, if we assume 4 DDR4 ranks per channel, then there are 768

162



total banks in the system, and on average 6.9 banks per thread. However,

Bank-level Partitioning Mechanism (BPM [32]) showed that the vast majority

of SPEC 2006 applications benefited when the number of banks allocated was

doubled from 8 to 16. Hence there is a fundamental scarcity of banks that

cannot be solved through partitioning.

In addition, Continuous Row Compaction is able to mitigate bank con-

flicts even in single core scenarios without interference from other cores.

6.6 Subrank and Subarray Parallelism

A straightforward way to decrease memory contention is to increase the

number of channels and/or banks; however, this is expensive. Alternatively,

researchers have proposed subdividing existing channels and banks into smaller

independent modules.

A DRAM bank is implemented as a collection of subarrays that are

largely independent but share certain global structures. Subarray-level paral-

lelism (SALP) [24] proposes DRAM circuitry and protocol changes that allow

subarray-level parallelism to be exposed to memory scheduling. However, the

need for DRAM circuitry and/or DRAM protocol changes is problematic. In

contrast, Duplicon works with mainstream commodity memory and does not

require any protocol changes.

Other proposals partition the devices of a rank into smaller and nar-

rower subranks that can be controlled independently, increasing the memory-
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level-parallelism[75, 3, 81, 4]. Subranking has two main drawbacks compared

to Duplicon. First, subranking requires adding additional chip select (CS) pins

to control individual devices within a rank, requiring additional pins, wires,

and decoders. Second, the same amount of data now takes longer to transfer

across the narrower data interface of a subrank. Duplicon, in contrast, has

none of these drawbacks.

6.7 Memory Scheduling and Throttling

FR-FCFS memory scheduling introduces unfairness in the system be-

cause row buffer misses/conflicts get unfairly penalized behind row buffer hits

(section 2.1.5). To address this problem, numerous algorithms have been pro-

posed to identify which requests should be prioritized because they are being

unfairly penalized [21, 42, 22, 43, 23, 64, 63, 45, 65, 65, 8]. However such

algorithms usually trade off some memory throughput (by de-prioritizing row

buffer hits) to improve fairness. Duplicon gives these algorithms a better

throughput/fairness tradeoff by giving the system additional leeway for han-

dling bank conflicts.

BLP-Preserving Multi-core Request Issue (BPMRI) [28] tries to pre-

serve the bank-level-parallelism of requests from individual cores by loading

the memory controller request buffers in batches from each individual core.

However, if the request scheduling window is large enough, then BPMRI will

provide minimal benefit.
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6.8 Data Blocking

Blocking [27, 77, 7, 12, 17] is a well known technique to improve data

locality across the memory hierarchy. Blocking entails modifying the data

layout and/or the order in which data is accessed in order to maximize locality.

Continuous Row Compaction essentially performs blocking for DRAM, but at

runtime, and in a way that is completely transparent to the application. In

fact, from the application’s point of view, both the data layout, in virtual

address space, and the memory access order, specified by the program order,

remain unchanged. Instead, Continuous Row Compaction modifies the data

layout in physical memory via an added layer of indirection, the Remap Table,

which leads to a more optimized reordering of physical memory accesses.

6.9 Memory Compaction

Continuous Row Compaction also shares similarities to memory com-

paction performed by the operating system. With OS memory compaction,

fragmented pages are migrated to create contiguous aligned free regions that

can later be allocated for future huge pages. With Continuous Row Com-

paction, contiguous regions are reserved in physical memory, and the hardware

migrates pages that are frequently accessed together to reserved contiguous re-

gions. In both cases page migration is made possible via a layer of indirection

in address translation that the system controls - the page table in the case

of OS memory compactions, and the Remap Table in the case of hardware

Continuous Row Compaction.
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6.10 Temporal Prefetching

Continuous Row Compaction also shares similarities to temporal prefetch-

ing (e.g., [78, 76, 18]), as both rely on memory being accessed repeatedly in

roughly the same order. The Candidate Sequence Identification process is

similar to processes in other temporal prefetchers that record and learn cor-

relation between data addresses. However, Candidate Sequence Identification

is far more lightweight, as we only need to detect sets of 4KB pages that are

roughly accessed at around the same time, while temporal prefetchers need to

learn far more precise correlation between finer granularity (e.g., 64B) blocks.

166



Chapter 7

Conclusion

7.1 Summary

In this thesis I showed, through Duplicon Cache and Continuous Row

Compaction, that one can mitigate the effects of memory bank/row conflicts

via duplication of data across banks and migration of data to non-conflicting

row buffers. I also showed we can perform the necessary data duplications and

migrations entirely with unmodified DRAM using unmodified DRAM access

protocols, without the additional memory traffic eroding away the performance

gains. The key was to identify large working sets that remain stable over 100s

of millions to billions of instructions and duplicate/migrate those working sets

at low intensity over long time intervals.

The main drawback of the work is that the size of the required SRAM

tag store becomes prohibitively large for larger working sets. This is particu-

larly problematic because the SRAM tag store needs to be accessed on every

DRAM access (to determine if the data has been duplicated/compacted), and

this access latency cannot be hidden. With Duplicon Cache, which employs

sectoring, the tag store overhead is at least 1 bit per 64B of duplicated data.

Continuous Row Compaction halved this overhead to 0.47 bit per 64B of com-
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pacted data.1 For duplication/migration of up to 100s of MBs of data, the cor-

responding SRAM tag store can be kept to within 100s of KB, and I showed

for both Duplicon Cache and Continuous Row Compaction that using this

SRAM storage budget as tag store for Duplicon Cache and Continuous Row

Compaction gives more benefit than simply adding the same area to the on-

chip SRAM cache. Thus for applications whose working sets are on the order

of 100s of MBs, both Duplicon Cache and Continuous Row Compaction are

feasible solutions. However, to extend my work to even larger larger working

sets - 10s/100s of GBs, even TBs, a couple of things need to happen:

7.2 Future Work

7.2.1 Integrated DRAM Tag and Data

First, we need a way to remove the need for expensive SRAM tag stores

and directly store the tag in DRAM itself. For example, the Intel Xeon Phi

processors employ a 16GB MCDRAM cache in which the tag is stored in the

memory error-correcting code (ECC) bits, eliminating the need for SRAM tag

stores [59]. Upon accesses to data in MCDRAM, the tags are also read out

and transferred to the memory controller, via the same mechanism through

which the ECC bits are read out and transferred. The tag can then be checked

at the memory controller to determine is the data is correct or not.

However, such schemes only work for direct mapped caches, because

130 bits per 4KB frame; see section 5.5 for details
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one needs to exactly know where in DRAM the data and tag would be before

making the access. Duplicon Cache was configured as a 4-way set associative

cache, but it can also be configured as a direct mapped cache (section 4.3.1).

I believe it is possible to implement Duplicon Cache with commodity ECC

DRAM and store the Duplicon tags in the ECC bits, eliminating the need for

a SRAM tag store. All data in memory would thus have a single direct mapped

alternate location in which the duplicate data copy would reside, if it exists. In

this configuration, there would no longer be a need for cache sectoring. Instead,

we can maintain fine-grained line sizes (e.g., 64B, or whatever the minimum

granularity of memory access is), and store the tag for each fine-grained line in

the ECC bits. On a read access, a hit predictor would predict whether or not

the data has been duplicated, and if the predictor predicts a hit, the data in

the alternate location can be fetched in lieu of the original location, with the

tag from the alternate location ECC bits needing to be checked after fetching

the data. Additional care is required to ensure coherence of duplicated data

on writes. For example, on a write to location A, one cannot for sure know

whether or not location A has been previously duplicated without making a

DRAM access. To ensure coherence, one could, if the hit predictor predicts a

hit, always overwrite the alternate location of A with the new value of A, and

update the tag in the ECC bits for the alternate location to A.

Continuous Row Compaction, on the other hand, is not a direct mapped

cache where one knows exactly where in DRAM the cached data is; in fact, it

is the opposite of a direct mapped cache, because cached data could have been
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migrated to anywhere within the reserved memory. I do not yet have a good

solution on how the SRAM tag store (i.e., Remap Table) can be eliminated.

7.2.2 Non-Volatile Memory

If we want to enable Duplicon Cache and Continuous Row Compaction

on the order of 100s of GBs or TBs (or even greater), then we need to move

to an even cheaper memory technology, such as non-volatile memory. Funda-

mentally, non-volatile memory is also organized with banks and row buffers,

so Duplicon Cache and Continuous Row Compaction can in theory be applied

to them.
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