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Abstract 

The IEC 61511 standard requires a verification calculation that a proposed design for a safety 

instrumented function (SIF) achieves the desired safety integrity level (SIL). The evaluation of 

the safety integrity level of a new or existing safety instrumented system requires detailed 

calculations based on the failure rates of the device and the planned maintenance/testing cycle 

for the system.  The failure rates of the devices are often taken from standard failure rate 

tabulations of equipment.  The maintenance and testing plans are developed based on plant 

experience.  All of the data used in the SIL calculations are uncertain.  This paper develops a 

general method for uncertainty analysis of the SIL calculations.  The general method is based on 

the application of probability theory - variance contribution analysis (VCA) – to the equations 

presented in ISA TR 84.00.02-2115.    An example is worked to demonstrate the methodology.  

 

Background 

The calculation of the probability of failure on demand (PFD) is a common engineering task 

when designing an interlock or safety system that is to be in compliance with IEC 61511  

[Ref. 1].  The calculation of the PFD is often done using approximate equations defined in the 

ISA TR84.00.02 technical report [Ref. 2].  The simplified equation method in the ISA report is 

commonly used and is based on the use of reliability block diagrams where the field sensors, 

Safety Instrumented System (SIS) logic solver and final control elements are considered 

independent of each other in the sense of not sharing common devices or systems.  The PFD is 

then calculated using the failure rates of the devices, planned test intervals, vendor supplied 



  

estimates on diagnostic coverage of the devices and an allowance for the potential for common 

cause failures.  Almost all of these parameters are uncertain.  The failure rate data is often taken 

from generic data sources which show wide ranges in the observed values.   

 

Because of the uncertainty in the parameters, the design engineer makes allowances in the design 

by the use of safety factors or rules of thumb to improve the chances that the final interlock 

installation will work as intended.  Since each engineer has a different set of safety factors and 

rules of thumb, two designs may differ significantly in the way a hazard is controlled. 

 

A more formal method for handling the underlying uncertainty in the calculation of the PFD of 

an interlock is needed.  Previously, Freeman and Summers [Ref. 3] published an uncertainity 

analysis of the PFD of an interlock.  Two different methods were used in this analysis: 

 Monte Carlo Simulation 

 Variance Contribution Analysis (VCA) 

 

Monte Carlo Simulation requires that the engineer build a model of the interlock using 

specialized computer software.  The use of  VCA requires that the sensitivity of the interlock 

model be determined either by numerical methods or by direct analytical calculations.  The 

Freeman paper demonstrates that VCA can be used for the uncertainty analysis.  However, the 

paper does not present a complete analysis method that can be applied to any system defined in 

the ISA technical report TR84.00.02.  The goal of this paper is to develop a general set of 

analytical equations that will allow VCA to be used in uncertainty analysis of any interlock 

developed per the IEC 61511 standard. 

 

Review of Interlock Design 

The IEC standard looks at an interlock as a series of three major components (see Figure 1).  

First is the sensor set which sends an indication of an abnormal event to a logic solver.  The logic 

solver determines is the signal from the sensor meets the conditions required to activate (trip) the 

interlock.  If the interlock is to be activated, a signal is sent to the final control elements to take 

action (stop flow, close valve, etc) to prevent a process safety event from occurring.   

Based on the devices selected the design engineer then evaluates whether the proposed interlock 

design meets the design criterion for probability of failure on demand.  Typically, the design 

engineer is given the target PFD as a statement such as “provide a SIL-2 interlock to stop flow 

on high level in a vessel.”  A SIL-2 interlock requires a PFD of at most 0.01 or a risk reduction 

factor of at least 100.  The needed risk reduction is often determined in a Layer of Protection 

Analysis (LOPA) [ Ref. 4] and represents the managements decision on how risk is to be 

managed in a system.  The resulting SIL-2 interlock design must have a high likelihood of 

achieving the target risk reduction as the LOPA team may be relying on it to be part of an overall 

risk reduction plan to prevent a process safety incident. 

 

  



  

The ISA technical report (TR 84.00.02) [Ref. 2] provides shortcut methods for the evaluation of 

the PFD of an interlock design.  Tables 1 and 2 are taken from the ISA technical report [Ref. 2].  

Typical parameters need to compute the PFD include: 

 DC is the diagnostic coverage;  

 DI is the diagnostic interval;  

 TI is the proof test interval,  

 λD is the dangerous failure rate;  

 MTTR is the mean time to restore the system to operation 

   is the common cause failure parameter that is always is between 0 and 1 

In practice most if not all of these parameters are uncertain.  Using parameter values obtained 

from plant records, vendor data or generic data bases the design engineer proceeds to develop the 

model for the interlock.   

 

What is needed is a means to rapidly evaluate the impact of parameter uncertainty on the 

interlock PFD. The remainder of this paper applies the methods of variance contribution analysis 

(VCA) to determine the mean (expected value) and the standard deviation of the interlock PFD 

for a given design. 

 

  



  

 

 
Table 1. Simplified PFDavgformulas for Non-Repairable System  

without considering CCF, Diagnostics or MTTR. 

Configuration Function 
PFD based on "Average before" 
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Where TI is the proof test interval, λD is the dangerous failure rate. 

 

  



  

 

Table 2. Simplified PFDavg Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuration Function PFD based on "Average before" failure rate 
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Table 2. Simplified PFDavg Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuration Function PFD based on "Average before" failure rate 
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Review of Variance Contribution Analysis (VCA) Methodology 

The mean and variance of a function of random variables can be approximated using the method 

described by Haugen [Ref. 5] and applied by Freeman [Ref. 3, 6, 7].  Define an arbitrary function 

of a set of random variables, xi, as: 

 

Let 

 

Y = F(xi)  (Eq 1) 

 

The mean of Y can be estimated using the following approximation:  

 

 

E(Y) = F[ E(xi)] (Eq 2) 

 
Where:  

E(Y) = expected value of random variable Y = mean of Y 

E(xi) = expected value of random variable xi = mean of xi 

 

The variance of Y can likewise be estimated as: 

 

V(Y) =  (Eq 3) 

 
Where: 

V(Y) = variance of random variable Y as defined above in Equation 1 

V(xi) = variance of random variable xi  as defined above in Equation 1 

 

Note that the variance is simply the square of the standard deviation.  Using the variance will 

simplify the mathematics that is described below.  The contribution of each independent random 

variable to the overall variance in the function is: 

 

V(Y from xi) =  (Eq 4) 

 
The relative contribution of each term to the overall variance V(Y) is a measure of the 

importance in the uncertainty in the particular random variable, xi.  In effect, this is a sensitivity 

analysis combined with a uncertainty evaluation.  The variance contribution combines the 
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sensitivity in the answer to changes in the uncertain random variable, xi, with a measure of the 

uncertainty in the random variable, xi. The overall variance in Y is found by summing the 

sensitivity weighted variances from each random variable. 

 

Recommended Interlock PFD Uncertainty Analysis Method 

Previously, Freeman and Summers [Ref. 3] suggested a framework for the inclusion of 

uncertainty analysis in the calculations completed for a new interlock per the ISA TR [Ref. 2].  

The following uncertainty analysis method has been expanded to incorporate critical decisions 

that the process management must make in the design process. 

 

1. Complete the interlock design using the methods outlined in IEC 61511 [Ref. 1].  

 

2. Review with the process system management and determine if the proposed interlock 

should be considered repairable or non-repairable.  A simple flow chart for this decision 

making is presented in Figure 2.  The basic question is: “can the interlock be repaired 

safely while the process operates.”  This is a management question and management 

should be the one that decides the answer to this important question. 

 

3. Create interlock performance equation as the mathematical model for the combination of 

sensor, logic solver and final control elements using the methods outlined in ISA 

technical report (TR84.00.02) [Ref. 2].  For non-repairable systems, Table 3 can be used. 

For more complex systems such as non-repairable redundant systems with the potential 

for common cause failures, use the repairable equations of Table 4 and set DI, DC, and 

MTTR all equal to zero.  For systems where common cause failures (DCF), Diagnostics 

and repair are to be considered, use the recommendations of Table 4. 

 

  



  

 

 

Table 3.  Roadmap for Mean and Variance of Non-Repairable System  

Without Considering CCF, Diagnostics and MTTR 

Configuratio

n 
Function 

Mean PFD Using  

Appendix A Equation 

PFD Variance Using  

Appendix A Equation 

1oo1 F1 = A-9 A-18 

1oo2 F2 = A- 10 A- 19 

1oo3 F3 = A-11 A-20 

2oo2 F4 = A-12 A-21 

2oo3 F5 = A-13 A-22 

3oo3 F6 = A-14 A-23 

  

 

 

Table 4.  Roadmap for Mean and Variance of Repairable System  

Considering CCF, Diagnostics and MTTR 

Configuratio

n 
Function 

Mean PFD Using  

Appendix A Equation 

PFD Variance Using  

Appendix A Equation 

1oo1 F7 = A-30 A-44 

1oo2 F8 = A- 31 A- 86 

1oo3 F9 = A-32 A-94 

2oo2 F10 = A-33 A-48 

2oo3 F11 = A-34 A-102 

3oo3 F12 = A-35 A-50 

  

Note that in all of the calculations indicated by the equations referenced in Table 4, the expected 

value of any the random variables is used to complete the calculations. 



  

 

 

4. Define the uncertainty in the parameters and variables of the interlock model specified in 

step 2.  The uncertainty can be given as the upper and lower range of the possible values 

(uniform probability distribution), as the upper, lower and recommended values 

(triangular distribution), or as a mean and standard deviation (normal distribution).  See 

the example above for guidance in the evaluation of safety instrumented system 

interlocks. 

 

5. Compute the expected value of each variable in the interlock performance equation.  The 

equations for the mean and variance for the uniform, triangular and normal probability 

distributions are presented for various probability distributions in Vose [Ref. 8].  The 

example interlock calculations used a triangular distribution to represent the uncertainty 

in the parameters. 

 

6. Compute the expected value or mean of the interlock PFD using the mean value of each 

of the variables in Step 5.  See Tables 4 and 5 for recommended equations. 

 

7. Compute the sensitivity of the result from the interlock performance equation by use of 

the partial derivative of the basic interlock performance equation with respect to each of 

the variables as presented in Appendix A. 

 

8. Compute the variance of the interlock performance equation PFD by use of the variance 

contribution using equations from Tables 3 or 4.  This entails multiplying the variance of 

each of the uncertain variables in the basic interlock performance equation by the square 

of its sensitivity (obtained in step 7), as evaluated at the variable mean.  Sum the resulting 

terms to obtain the overall variance of the PFD in the interlock performance equation.  

See Tables 4 and 5 for recommended equations. 

 

9. Determine the level of risk that the owner/operator wishes to take that the final interlock 

will not work.  Note that this is a management decision not an instrument engineer 

decision!  In this paper, the 95% level of risk reduction has been used: 

 5% chance of failure or a 95% chance of the interlock achieving the desired risk 

reduction 

 

10. Assuming that the interlock owner operator wishes to take a low risk (5%) of the 

interlock failing to achieve its design target PFD, compute the 95% upper confidence 

limit on the computed PFD by use of the standard normal factor, Z, [Ref. 9] as: 

 



  

Z =  [
𝑥𝑖−𝐸(𝑥)

𝜎
]             (Eq 5) 

 

Where: 

σ     =  standard deviation of the PFD of the interlock of interest from the interlock 

performance equation obtained from step 7.  Note that the variance of a random 

variable is the square of the standard deviation of the random variable. 

E(x) = the expected value of the PFD of the interlock of interest from the interlock 

performance equation obtained from step 5 

 

 For the 95% upper limit, Z = 1.645.  Rearranging Eq. 5 allows for the direct 

calculation of the corresponding value of the 95% upper confidence limit on the 

PFD as: 

 

X95% = 1.645 σ + E(x)  (Eq 6) 

 

 Where:   

 X95% = the upper 95% limit on the computed PFD of the interlock of interest 

from the interlock performance equation. 

 

Compare the 95% upper confidence limit on the PFD of the interlock of concern with that 

established as the desired PFD for risk reduction.  If the 95% confidence of the RRF is greater 

than the desired RRF, the design is complete.  If not, revise the design or change inspection test 

intervals to achieve the desired RRF.  If it is not possible to achieve the desired target RRF 

economically, revisit the LOPA study accordingly to incorporate better information obtained in 

the uncertainty analysis.  Improve the integrity of the LOPA IPLs or identify additional IPLs to 

drive the risk to a tolerable level.  Continue this process until the computed RRFs are greater 

than the desired RRFs for risk reduction and risk management. 

  

Example Interlock Problem 

Previously, Freeman and Summers [Ref. 3] published an example in the use of VCA to 

determine the likelihood that the interlock would provide the risk reduction desired by the 

management and the LOPA team.  The process system is shown in Figure 3.  The process uses a 

compressor to increase the pressure of a process stream prior to additional processing.  The gas 

being compressed is toxic and flammable.  Of concern is a slug of liquid being sent to the 

compressor.  If a liquid slug is sent to the compressor, significant damage to the compressor is 

expected with probable seal damage and a subsequent release of flammable and toxic material 

into the work area.  A large fire and/or explosion could result if the release were to be ignited.  If 

the release is not ignited, the nearby workers could be exposed to the toxic gas resulting in death 

or injury.  A Layer of Protection Analysis (LOPA) review of this system has been completed.  



  

Among several recommendations, the LOPA team recommended the installation of a SIL-2 high 

level interlock in the Compressor Knock Out Drum to stop the compressor prior to liquids 

entering the system. 

Figure 1 shows a simplified diagram for the interlock.  Three level sensors are provided in the 

Compressor Knock Out Drum.  The SIS logic solver will use 2oo3 voting to detect high level in 

the Compressor Knock Out Drum.  The SIS logic solver will also monitor the difference in level 

signal from each of the three level sensors and will activate an alarm if the deviation is excessive.  

Two independent methods of stopping the compressor are provided.  The SIS will directly signal 

the motor controller on the compressor to stop.  In addition, the SIS logic solver will also signal 

two additional relays to open the power supply to the compressor motor.  These two different 

shutdown will both be activated in the event of high level in the Compressor Knock Out Drum.  

Either one of the two shutdowns is capable of stopping the compressor by turning off the electric 

power supply to the motor. 

  

Models 

The first step in the calculation of the “goodness” of an interlock is to establish the model to be 

used in the calculations.  Note that the sensors are 2oo3 voting and the final control elements are 

each 1oo1.  Appendix A presents the equations for various models that can be used for 

describing this system. 

 

The overall probability of failure on demand (PFD) of the interlock is given as: 

 

PFD = PFDs + PFDsis + PFDfce (Eq 7) 

 

Where: 

PFD = Probability of failure on demand of the interlock as a whole 

PFDs =  Probability of failure on demand of the sensors (voting as 2oo3) 

PFDsis =  Probability of failure on demand of the SIS logic solver 

PFDfce =  Probability of failure on demand of the final control elements.   

 

Since there are two final control elements arranged in series, the PFDfce = sum of the PFDs of 

the final control elements (Relay PFD and MCC PFD).  

 

PFDce = PFDr + PFDmcc (Eq 8) 

 

Where: 



  

PFDr  = Probability of failure on demand of the two relays voting as 1oo2 to shutdown gas 

compressor.  

PFDmcc = Probability of failure on demand of the MCC to shutdown the gas compressor 

 

 

For this example, the following selections are made to model the performance of the interlock. 

 

Model for Sensors (2oo3) 

The sensors are considered repairable as one sensor can be replaced while the other two function 

and provide continuous functionality of the interlock.  There are three sensors that will be used in 

a 2oo3 voting system.  From Appendix A, using Equation A-7, the model for the sensors 

becomes: 
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Where: 

PFDsavg is the average probability of failure on demand of the sensors 

DCs is the diagnostic coverage for sensor failure  

DIs is the diagnostic interval for the sensors 

MTTRs is the mean time to restore the sensors to functionality given a sensor failure 

TIs is the test interval for the sensors 

βs is the common cause failure parameter 

λDs is the failure rate to a dangerous condition for the sensors 

MTTR is the mean time to restore the system from the time that failure occurs 

 

Model for SIS Logic Solver 

Use a fixed probability of failure on demand as specified by the vendor.  Unless detailed design 

information is provided by the SIS logic solver vendor, this will be the normal default condition 

for most studies.  For this problem a typical PFD of 1.30 x 10-4 was selected to represent the SIS 

Logic Solver. 



  

 

Model for Final Control Elements 

There are two separate paths to shutdown the gas compressor.  First is by the SIS logic solver 

commanding the MCC to shutdown power to the the gas compressor motor.  The second is for 

the SIS logic solver to issue a shutdown command to two interposing relays (R1 and R2) which 

will cause the power to the gas compressor motor to stop.  Two different models are needed to 

the final control elements.  These two subsystems are considered non-repairable in this analysis, 

 

Model for Interposing Relays (1oo2)  

There are two interposing relays (R1 and R2 in the interlock).  From Appendix A, use Equation 

A-25 setting parameters DC=DI=MTTR=0 for the non-repairable interposing relays, the model 

becomes: 
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Where: 

PFDravg is the average probability of failure on demand of the relays voting 1oo2 to shutoff the 

gas compressor. 

TIr is the test interval for the relays 

βr  is the common cause failure parameter 

λDr is the failure rate to a dangerous condition for the relays 

 

 

  



  

Model for MCC (1oo1)  

From Appendix A and using equation A-1 for the non-repairable MCC, the model becomes: 

 

𝑷𝑭𝑫𝒎𝒄𝒄𝒂𝒗𝒈 =
𝝀𝑫𝒎𝒄𝒄∗𝐓𝐈𝐦𝐜𝐜

𝟐
   (Eq 11) 

 

Where: 

PFDmccavg is the average probability of failure on demand of the MCC to shutoff the gas 

compressor. 

TImcc is the test interval for the MCC 

λDmccis the failure rate to a dangerous condition for the MCC 

 

Data 

The calculation of the PFD of the interlock requires a set of data to be used to represent the 

system.  Tables 5, 6, and 7 are taken from the Freeman-Summers paper [Ref. 3] and presents the 

data used to represent the interlock system.  Note that these data were originally taken from 

generic data sources and do not represent any particular device or system. 

 

Table 5.  Uncertainty Data for Level Sensors Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDs- Fail Dangerous 

Rate 
2.84x10-3 Yr-1 5x10-3 Yr-1 8.5x10-3 Yr-1 5.45x10-3 Yr-1 1.36x10-6 Yr-1 

DCs – Diagnostic 

Coverage * 
0.8 0.9 0.99 0.897 1.51x10-3 

DIs – Diagnostic 

Interval ** 
5.71x10-5 5.71x10-5 5.71x10-5 5.71x10-5 0 

TIs – Test Interval 4 Yr 5 Yr 6 Yr 5 Yr 5.56x10-2 Yr2 

βs- Common Cause 

Failure Fraction * 
0 0.02 0.1 0.04 4.67x10-4 

MTTRs - Mean Time to 

Restore *** 
1.37x10-3 Yr 8.22x10-3 Yr 1.92x10-2 Yr 9.59x10-3 Yr 1.34x10-5 Yr2 

* Unit less 

** 0.5 hours, assumed to be deterministic 

***Min of 12 hr, Mode of 72 hours, Max of 168 hrs 

  



  

 

Table 6.  Uncertainty Data for Relays Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDr- Fail Dangerous Rate 8.76x10-9 Yr-1 2.00x10-3 Yr-1 4.73x10-2 Yr-1 1.64x10-2 Yr-1 1.19x10-4 Yr-2 

DCr – Diagnostic 

Coverage * 
NA NA NA NA NA 

DIr – Diagnostic 

Interval* 
NA NA NA NA NA 

TIr – Test Interval 1 Yr 1 Yr 2 Yr 1.33 Yr 0.056 Yr2 

βr- Common Cause 

Failure Fraction 
0 0.02 0.1 0.04 4.67x10-4 

MTTRr - Mean Time to 

Restore* 
NA NA NA NA NA 

* Not used in relay model 

 

 

Table 7.  Uncertainty Data for MCC Used in Example Interlock 

(All variable probability distributions assumed to be triangularly distributed) 

Variable Min Mode Max Mean Variance 

λDr- Fail Dangerous Rate 1.74x10-4 Yr-1 1.31x10-3 Yr-1 3.00x10-2 Yr-1 1.05x10-2 Yr-1 4.76x10-5 Yr-2 

DCr – Diagnostic 

Coverage* 
NA NA NA NA NA 

DIr – Diagnostic 

Interval* 
NA NA NA NA NA 

TIr – Test Interval 1 Yr 1 Yr 2 Yr 1.33 Yr 5.6x10-2 Yr2 

βr- Common Cause 

Failure Fraction* 
NA NA NA NA NA 

MTTRr - Mean Time to 

Restore* 
NA NA NA NA NA 

* Not used in MCC model 

 

  



  

 

Uncertainty Analysis Results 

Using the VCA method to estimate the PFD of the interlock design yields the results shown in 

Table 8. 

 

Table 8.  Results of VCA on Example Interlock Design 

Subsystem Mean PFD Variance of PFD 

Sensors 6.41E-5 1.7657E-9 

Logic Solver 1.34E-4 0 

Relays 5.46E-4 2.0333E-7 

MCC 6.98E-3 4.52E-5 

Totals 7.73E-3 4.54E-5 

Note:  Calculations are carried to an adequate number of places to allow for the resulting PFD to 

be determined.  Rounding to significant number of figures is done at the end. 

 

The mean PFD of 0.00773 implies a mean risk reduction factor of: 

RRF = 1/PFD = 1/0.00773 = 129 (Eq 11) 

 

The variance of 4.54E-5 implies a standard deviation in the PFD of  

Std Dev = (Variance)1/2  = 0.006737 (Eq 12) 

 

The corresponding 95% level of confidence in the PFD: 

X95% = 1.645 std Dev + Mean PFD  (Eq 13) 

 

X95% = 1.645 (0.006737) + 0.00773= 0.01881 (Eq 14) 

 

The RRF for 95% certain PFD is  

RRF95% = 1/0.01881 => 53 (Eq 15) 

 

This is essentially the same result previously reported by Freeman and Summers [Ref. 3] using 

either Monte Carlo Simulation or numerical approximation methods for the VCA sensitivities.  

The calculated  PFD at the 95% level of 0.01881 indicates that there is only a 5% chance that the 

interlock will provide an RRF worse that 53.  Since this level is only SIL-1 capable and not  



  

SIL-2 capable as desired by management, a revised design will be needed to achieve the desired 

risk reduction or a different protective measure will be needed to control risk. 
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Figure 3. P&ID Sketch for Example Interlock 
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APPENDIX A -- DEVELOPMENT OF UNCERTAINTY EQUATIONS 

 

 

NON-REPAIRABLE SYSTEMS 

For systems that are considered non-repairable, the simplified equations of Table A.1 

(taken from the ISA Technical Report [Ref. 2]) are used for the analysis. 

 
Table A.1 Simplified PFDavgformulas for Non-Repairable System  

without considering CCF, Diagnostics or MTTR. 

Configuration Function 
PFD based on "Average before" 

failure rate 

Equation 

Number 

1oo1 F1 = 









2

TID  A-1 

1oo2 F2 = 









4

TI
)(

2
2D  A- 2 

1oo3 F3 = 









8

TI
)(

3
3D  A-3 

2oo2 F4 = 







TID  A-4 

2oo3 F5 = 







 22 TI)(

4

3 D  A-5 

3oo3 F6 = 









2

TI
3 D  A-6 

 
Where TI is the proof test interval, λD is the dangerous failure rate. 
 

  



  

The expected value of the probability of failure on demand is found by calculating the 

PFD using the expected value (mean) of the random variables.   

Let y a function of some random variables, xi, as: 

y = F(xi)  (Eq A-7) 

The mean of y can be estimated using the following approximation:  

E(y) = F[E(xi)] (Eq A-8) 

Where:  

E(y) = expected value of random variable y = mean of y 

E(xi) = expected value of random variable xi = mean of xi 

For the configurations defined in Table A.1, the corresponding expected PFD are presented 

in Table A.2. 

Table A.2 Expected Value of PFDavgformulas for Non-Repairable System  

without considering CCF, Diagnostics or MTTR. 

Configuration Function 
Expected PFD based on "Average 

before" failure rate 

Equation 

Number 

1oo1 E(F1) = 









2

E(TI)
)( DE   A-9 

1oo2 E(F2) = 









4

E(TI)
))((

2
2DE   A- 10 

1oo3 E(F3) = 









8

E(TI)
))((

3
3DE   A-11 

2oo2 E(F4) = 







 TI)()( EE D  A-12 

2oo3 E(F5) = 







 22 TI)())((

4

3
EE D  A-13 

3oo3 E(F6) = 









2

E(TI)
)(3 DE   A-14 

Where E(x) is the expected value of random variable x. 



  

 
The variance of the PFD is found by taking the weighted sum of the variance of the random 

variables.  The weighting function is the sensitivity of the PFD with respect to random variable.  

In mathematical terms the variance of a function may be found in terms of the variance of the 

random variables as: 

Once again let 

y = F(xi)   (Eq A-15) 

The variance of Y can likewise be estimated as: 

 

𝑉(𝑦) = ∑𝑖=1
𝑛 [

𝜕𝑦

𝜕𝑥𝑖
]
2
𝑉(𝑥𝑖)   (Eq A-16) 

 

Where: 

V(y) = variance of random variable y as defined above 

V(xi) = variance of random variable xi  as defined above 

The sensitivity of y with respect to a random variable 𝑥𝑖 is:  

Sensitivity of y with respect to 𝑥𝑖 = [
𝜕𝑦

𝜕𝑥𝑖
]  (Eq A-17) 

 

For the configurations defined in Table A.1, the corresponding variance of the PFD are 

presented in Table A.3. 

 

  

  



  

Table A.3 Variance of PFDavgformulas for Non-Repairable System  

without considering CCF, Diagnostics or MTTR. 

Configuration Function 
Variance in Function F i based on 

"Average before" failure rate 

Equation 

Number 
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
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Note that for the calculation of the variance functions, V(Fi), the random variables are evaluated 

at the expected value (mean). 

 

  



  

REPAIRABLE SYSTEMS 

For systems that are considered repairable, the simplified equations of Table A.4 are used 

for the analysis.  The expected value of the probability of failure on demand (PFD) is found 

by substituting the expected value of each of the random variables into the corresponding 

equation.  The expected value of the PFD for each of the system configurations is presented 

in Table A.5 

  



  

Table A.4 Simplified PFDavg Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuratio

n 
Function PFD based on "Average before" failure rate 

Equation 

Number 
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
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Table A.4 Simplified PFDavg Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuratio

n 
Function PFD based on "Average before" failure rate 

Equation 

Number 
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Where: 

DC is the diagnostic coverage;  

DI is the diagnostic interval;  

TI is the proof test interval,  

λD is the dangerous failure rate;  

MTTR is the mean time to restore the system to operation 

  is the common cause failure parameter that is always is between 0 and 1 

 

  



  

Table A.5 Expected PFD Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuratio
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Function PFD based on "Average before" failure rate 

Equation 
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Table A.5 Expected PFD Formulas for Repairable System  

considering CCF, Diagnostics and MTTR 

Configuratio

n 
Function PFD based on "Average before" failure rate 

Equation 

Number 
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The variance of the PFD of the repairable systems is found in the same manner as that in the 

non-repairable cases.  Once again let: 

y = F(xi)   (Eq A-36) 

The variance of Y can likewise be estimated as: 

 

𝑉(𝑦) = ∑𝑖=1
𝑛 [

𝜕𝑦

𝜕𝑥𝑖
]
2
𝑉(𝑥𝑖)   (Eq A-37) 

 

Where: 

V(y) = variance of random variable y as defined above 

V(xi) = variance of random variable xi  as defined above 

The sensitivity of y with respect to a random variable 𝑥𝑖 is:  

In the case of the repairable systems, there are several more potentially uncertain or random 

variables: 

 DC is the diagnostic coverage;  

 DI is the diagnostic interval;  

 TI is the proof test interval,  

 λD is the dangerous failure rate;  

 MTTR is the mean time to restore the system to operation 

   is the common cause failure parameter that is always is between 0 and 1 

We must evaluate the partial derivative of the PFD function with respect to each and then 

combine them using equation A-37.  The partial derivatives of function F7 with respect to each 

random variable are found as follows 
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We can now compute the variance of function F7 as: 
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Equation 44 represents the variance of the probability of failure on demand of the 1001 

configuration when the system is repairable.  We note the following relationships between the 

1001, 2oo2 and 3oo3 configurations: 

F10 = 2 F7  (Eq A-45) 

F12 = 3 F7  (Eq A-46) 

 

We can directly determine the variance of functions F10 and F12 from the properties of the 

variance operator, V(X). 

V(F10 )= V( 2 F7)  (Eq A-47) 

V(F10 )= 4 V(F7)  (Eq A-48) 

V(F12) = V(3 F7)  (Eq A-49) 

V(F12) = 9 V(F7)  (Eq A-50) 

 

The determination of the variance of functions F8, F10, and F11 is done in a similar manner.  To 

simplify the presentation of the derivation of variance of functions F8, F10, and F11, we introduce 

two functions H and Q as: 
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We note the following relationships: 

F8 = H2 + Q (Eq A-53) 

F9 = H3 + Q (Eq A-54) 

F11 = 3 H2 + Q (Eq A-55) 

The variance of F8, F9 and F11 are found as: 

V(F8 ) = V(H2 + Q)  (Eq A-56) 

V(F9 ) = V(H3 + Q)  (Eq A-57) 

V(F11)= V(3 H2 + Q)  (Eq A-58) 

We will need the sensitivity of F8, F9 and F11 to each of the potential random variables. 
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Using the chain rule for partial derivatives, we now write: 
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We now evaluate the derivatives of function H with respect to each potential random variables: 

 DC is the diagnostic coverage;  

 DI is the diagnostic interval;  

 TI is the proof test interval,  

 λD is the dangerous failure rate;  

 MTTR is the mean time to restore the system to operation 

   is the common cause failure parameter that is always is between 0 and 1 
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In a similar manner we evaluate the partial derivatives of function Q with respect to each 

potential random variables. 
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 DC is the diagnostic coverage;  

 DI is the diagnostic interval;  

 TI is the proof test interval,  

 λD is the dangerous failure rate;  

 MTTR is the mean time to restore the system to operation 

   is the common cause failure parameter that is always is between 0 and 1 
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We can now determine the sensitivity of the functions F8, F9 , F11 to the random variables of 

interest.  Restating equation A-62 for sensitivity of F8 with respect to the random variables. 
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For F8 we find 
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Using the sensitivities for F8 calculated above, the variance in F8 due to uncertain or random 

variables is found as: 
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Using the equation A-63, we now determine the variance of F9. 
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Using the sensitivities for 9F  calculated above, the variance in 9F due to uncertain or random 

variables is found as: 
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Finally, in a similar manner the variance in F11 is computed as: 
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Using the sensitivities for 11F  calculated above, the variance in 11F  due to uncertain or random 

variables is found as: 
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PROCEDURE FOR DETERMINATION OF VARIANCE FOR REPAIRABLE  

1oo2, 1oo3 AND 2oo3 SYSTEMS 

Based on the above derivations we may now write the formulas for the variance of various 

configurations of repairable equipment. 

Step 1. Determine the configuration of equipment to be studied. 

Step 2. Evaluate Function H using the expected value of all random or uncertain variables, 

equation A-51 

Step 3. Evaluate Function Q using the expected value of all random or uncertain variables, 

equation A-52 

Step 4. Evaluate the sensitivity of function H with respect to the random variables using 

equations A-65 thru A-70. 

Step 5. Evaluate the sensitivity of function Q with respect to the random variables using 

equations A-72 thru A-77. 

Step 6. Evaluate the variance as: 

a. For 1oo2 systems use equation A-86 for V(F8) 

b. For 1oo3 systems use equation A-94 for V(F9) 

c. For 2oo3 systems use equation A-102 for V(F11) 

 

 

The end result of the above calculations is the determination of the mean and variance of the 

configuration used in the sensor, logic solver or final control element systems.  Table A.6 

presents a cross reference roadmap for the determination of the mean and variance of various of 

the probability of failure on demand (PFD) of various hardware configurations. The mean and 

variance for the particular configuration is then returned to the overall calculations of the PFD of 

the interlock. 

 


