
Copyright

by

Benjamin Youngjae Cho

2021

The Dissertation Committee for Benjamin Youngjae Cho
certifies that this is the approved version of the following dissertation:

Main-Memory Near-Data Acceleration

with Concurrent Host Access

Committee:

Mattan Erez, Supervisor

Michael Orshansky

Andreas Gerstlauer

Constantine Caramanis

Jonathan Beard

Main-Memory Near-Data Acceleration

with Concurrent Host Access

by

Benjamin Youngjae Cho,

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2021

Dedicated to my beloved wife Suyeon Au, son Ryan Cho,

my parents Hanjin Cho and Jinwook Shin.

Acknowledgments

First and foremost, I would like to thank my advisor Mattan Erez.

Without his warm advice and guidance, I would have not accomplished this

long journey to a Ph.D. When I just joined UT, I recall talking to him about

my goal throughout my Ph.D. As a passionate (naive) graduate student, I told

him that I want to build a whole new memory system that no one has thought

about. It probably did not happen but I remember his smile and encouraging

me that I can do it and he will help me. It was the moment that I felt that I

am not alone in this journey and I can achieve the goal if with him. Honestly,

we personally do not have much in common: I use a Macbook and he uses a

PC, I use vim and he uses emacs, I like flavored coffee and he doesn’t, I like

pizzas with barbecue sauce and he hates it, and so on. However, I like the way

he writes paper, the way he makes slides, the way he gives presentation, the

way he teaches, the way he directly tackles the problem instead of avoiding it,

the way he stays calm and quickly strikes out all the todos several hours before

the paper deadline, and the way he provides practical advices and helps based

on my current situation. As a professor, researcher, and advisor, he is always

going to be my wannabe. I am lucky to have him as my advisor and I would

like to thank him once again for being patient, inspiring, and supportive all

the time.

v

I thank my dissertation committee members, Jonathan Beard, Con-

stantine Caramanis, Andreas Gerstlauer, and Michale Orshansky, for provid-

ing valuable comments to improve my dissertation. I also would like to thank

my intern managers and mentors, Amin Farmahini-Farahani (AMD Research),

Nuwan Jayasena (AMD Research), Eiman Ebrahimi (Nvidia Research), David

Nellans (Nvidia Research), Jiangli Zhu (Micron 3DXP), and Lavanya Subra-

manian (Facebook AR/VR), for the opportunity to collaborate on interesting

projects with them. I learned how to work as a team and how to contribute

to the team as a member. I also want to thank John Kim and Minsoo Rhu for

encouraging me when I was having a hard time because of paper rejection.

I would like to thank all the former and current LPH members that I

had a chance to work with: Michael Sullivan, Ikhwan Lee, Nick Kelly, Jungrae

Kim, Dong Wan Kim, Seong-Lyong Gong, Cagri Eryilmaz, Jinsuk Chung,

Esha Choukse, Chun-Kai Chang, Majid Jalili, Yongkee Kwon, Sankug Lym,

Song Zhang, Haishan Zhu, Tianhao Zheng, Wenqi Yin, Anyesha Ghosh, and

Jeageun Jung. I will not forget the moment that we had lunch and coffee

together in the group meeting every Friday, spent all of ours times together

for numerous paper and project deadlines, and brain-stormed on my idea when

I was struggling with some tricky problems. It was my privilege to meet these

great people and work together.

Last but not least, I would like to express my deepest gratitude to my

family. I thank my wife Suyeon for her strong and warm support for any

decisions I made to build my career path, even though she had to quit her

vi

job at Korea and come to the U.S. with me, even though she had to move

to different states every summer for my internship, and even though she had

to take care of our son by herself because of all kinds of deadlines that I had

to meet. I appreciate all those time she had sacrificed for me. I also thank

my son Ryan for coming to us as our son after a long time of waiting. His

hug always filled me with positive energy and motivations to work harder.

I also thank my parents and in-laws for their financial and moral supports.

Though they had to be separated from their son, daughter, and grandson, they

always encouraged me to achieve my goals and gave full support. I especially

thank my dad for always providing great advices whenever I met problems,

sharing his experience as a Ph.D. student when he was in my age, and deeply

understanding all my concerns.

Benjamin Youngjae Cho

November 2020, Austin, TX

vii

Main-Memory Near-Data Acceleration

with Concurrent Host Access

Publication No.

Benjamin Youngjae Cho, Ph.D.

The University of Texas at Austin, 2021

Supervisor: Mattan Erez

Processing-in-memory is attractive for applications that exhibit low

temporal locality and low arithmetic intensity. By bringing computation close

to data, PIMs utilize proximity to overcome the bandwidth bottleneck of a

main memory bus. Unlike discrete accelerators, such as GPUs, PIMs can po-

tentially accelerate within main memory so that the overhead for loading data

from main memory to processor/accelerator memories can be saved. There are

a set of challenges for realizing processing in the main memory of conventional

CPUs, including: (1) mitigating contention/interference between the CPU and

PIM as both access the same shared memory devices, and (2) sharing the same

address space between the CPU and PIM for efficient in-place acceleration.

In this dissertation, I present solutions to these challenges that achieve high

PIM performance without significantly affecting CPU performance (up to 2.4%

viii

degradation). Another major contribution is that I identify killer applications

that cannot be effectively accelerated with discrete accelerators. I introduce

two compelling use cases in the AI domain for the main-memory accelerators

where the unique advantage of a PIM over other acceleration schemes can be

leveraged.

Thesis Statement: Processing-in-memory is increasingly important

because it can process rapidly-growing real-life data with high performance and

efficiency. However, with existing approaches, the host CPU and PIM units

(PIMs) cannot share and concurrently access the same memory with high per-

formance. My research, on the other hand, details that how the host CPU

and PIMs can efficiently share the same memory and both achieve high per-

formance, even when they collaboratively and concurrently process the same

data.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 High-performance CPU-PIM Concurrent Access 2

1.2 Use Cases for Main-Memory Accelerators 3

1.3 Thesis Statement . 5

1.4 Contributions . 5

1.5 Dissertation Organization . 7

Chapter 2. Background 8

2.1 DRAM Devices and Operation 8

2.2 Baseline DRAM Organization 11

2.3 Processing in Memory . 11

2.4 Address Translation and Physical-to-DRAM Address Mapping 13

Chapter 3. Limitations of Existing PIM Approaches for Main-
Memory Acceleration 16

3.1 Direct Host Control . 16

3.2 Coarse-Grain Spatial Partitioning
(PIM as Another Discrete Accelerator) 17

3.3 Coarse-Grain Mode Switching 19

3.4 Concurrent Access: Fine-Grain Access Interleaving to the Same
Memory Devices . 21

3.5 Processing-In-Memory in Compute-Centric vs. Memory-Centric
Systems . 24

x

Chapter 4. High-performance CPU-PIM Concurrent Memory
Access 26

4.1 Background . 32

4.2 Chopim . 36

4.2.1 Localizing PIM Operands while Distributing CPU Accesses 36

4.2.2 Mitigating Frequent Read/Write Penalties 39

4.2.3 Partitioning into CPU and Shared Banks 42

4.2.4 Tracking Global Memory Controller State 44

4.3 CPU-PIM Collaboration . 46

4.4 Runtime and API . 49

4.5 Methodology . 54

4.6 Evaluation . 56

4.7 Related Work . 64

4.8 Chapter Summary . 65

Chapter 5. Accelerating Bandwidth-Bound Deep Learning In-
ference with Main-Memory Accelerators 68

5.1 Motivation and Challenges . 72

5.2 StepStone PIM . 77

5.2.1 StepStone Architecture 78

5.2.2 StepStone GEMM Execution 79

5.2.3 Overall Execution Flow of StepStone GEMM 83

5.2.4 StepStone Address Generation 84

5.2.5 Optimizations . 86

5.3 Methodology . 89

5.4 Evaluation Results . 91

5.4.1 StepStone PIM Performance Benefits 91

5.4.2 End-to-End Performance 94

5.4.3 Impact of StepStone AGEN 97

5.4.4 Parallelism—Distribution Overhead Tradeoffs 98

5.4.5 Impact of Address Mapping 100

5.4.6 Impact of Scratchpad Memory Capacity 101

5.4.7 Impact of Concurrent CPU Access 103

xi

5.4.8 Power and Energy Analysis 104

5.5 Related Work . 105

5.6 Chapter Summary . 107

Chapter 6. Dissertation Summary and Future Work 109

Bibliography 113

Index 141

Vita 142

xii

List of Tables

3.1 Comparison of different PIM approaches 24

4.1 Example PIM operations used in my case-study application.
Chopim is not limited to these operations. 34

4.2 Evaluation parameters. 67

5.1 Common DL-inference GEMM dimensions. 73

5.2 Evaluation parameters. 92

xiii

List of Figures

2.1 Organization of baseline main memory system. 12

2.2 Bandwidth advantage of processing in memory. 13

3.1 A timeline view of coarse-grain spatial partitioning. 18

3.2 Existing mode switching mechanism with state reinitialization. 19

3.3 A timeline view of coarse-grain mode switching. 20

3.4 A timeline view of the proposed concurrent access mode. . . . 22

3.5 Rank idle-time breakdown vs. idleness granularity. 23

4.1 Exemplary PIM architecture. 28

4.2 Example data layout across ranks for concurrent access of the
COPY operation (B[i] = A[i]). With naive data layout (left),
elements with the same index are located in different ranks.
With my proposed mechanism (right), elements with the same
index are co-located. PIMs access contiguous columns starting
from the base of each vector. 39

4.3 Baseline and proposed CPU-side address mapping. 40

4.4 Global MC state tracking when the CPU (left) and PIMs (right)
issues memory commands. The replicated FSMs are synchro-
nized by using the DDR interface clock. 46

4.5 Collaboration between CPU and PIMs in SVRG. 47

4.6 Overview of PIM architecture. 49

4.7 Average gradient example code. This code corresponds to sum-
marization in SVRG (see Section 4.3). 51

4.8 PE architecture and execution flow of AXPY. 52

4.9 Impact of coarse-grain PIM operations. (X-axis: the number of
cache blocks accessed per PIM instruction.) 57

4.10 Concurrent access to different memory regions. 58

4.11 Stochastic issue and next-rank prediction impact. 59

4.12 Impact of PIM operations and operand size. 60

4.13 Scalability Chopim vs. rank partitioning. 61

xiv

4.14 Impact of PIM summarization in SVRG with and without de-
layed update (HO: CPU-Only, ACC: Accelerated with PIMs,
ACC Best: Best among all ACC options). 63

5.1 CPU (Intel Xeon Platinum 8280) and GPU (NVIDIA Titan XP)
roofline modeling when executing bandwidth-bound GEMM op-
erations of a memory-resident 1024 × 4096 weight matrix with
a 4096×N matrix; N is swept from 1 − 1024 in powers of 2
moving from left to right. 74

5.2 An example of bandwidth-bound GEMM operation with PIM
and a toy XOR-based address mapping: (a) toy XOR-based
physical-to-DRAM address mapping where addresses refer to
contiguous row-major matrix elements; (b) layout of an 8 × 16
matrix with colors indicating element→PIM unit mapping; (c)
example system with rank-level PIMs. 75

5.3 Overview of the StepStone PIM System. 80

5.4 Overview of GEMM execution with StepStone PIM. 81

5.5 Input-matrix Reorganization. 83

5.6 GEMM Latency comparison between different PIM options of
StepStone PIM and the CPU. The configurations with relaxed
area constraints are labeled with * (i.e. enough ALUs and large
enough scratchpad memory). 93

5.7 Roofline models for CPU, GPU, and StepStone PIMs; measured
results are for a 1K × 4K weight matrix for varying batch sizes
(the left most point of each system is for batch-1 and the batch
is 2× larger for each point moving to the right). 95

5.8 End-to-end performance results for various recommendation and
language models with the CPU and PIMs. 97

5.9 GEMM latency comparison between naive address generator
and the proposed StepStone AGEN. 98

5.10 Impact of trading off between PIM execution time and replica-
tion/reduction overhead. 99

5.11 Sensitivity to address mapping and aspect ratio of the weight
matrix (batch size = 4). 101

5.12 GEMM latencies for different matrices and buffer sizes (StepStone-
BG). 102

5.13 Speedup of StepStone PIM (STP) over Chopim enhanced with
StepStone block grouping (eCHO) when concurrent CPU access
exists. The size of matrices is fixed and its aspect ratio is varied.104

xv

5.14 Power dissipation per DRAM device (left) and energy consump-
tion per floating-point operation (right) of StepStone-BG and
StepStone-DV (weight matrix = [1024, 4096]). 105

xvi

Chapter 1

Introduction

Processing in memory is attractive for applications that exhibit low

temporal locality and low arithmetic intensity. By bringing computation close

to data, PIMs utilize proximity to overcome the bandwidth bottleneck of a

main memory bus. Despite decades of research, many challenges remain un-

resolved, and hinders deploying PIMs in conventional systems. PIM-enabled

memory devices (PIMs) are not only accelerators but also a part of the main

memory of the CPU. In fact, these two different roles of PIMs give both chal-

lenges and opportunities. The main challenge is how to effectively manage the

inference and contention between the CPU and PIMs when both try to access

the same memory at the same time. In an ideal case, by managing the inter-

ference and contention properly, both the low memory latency requirement of

the CPU and the high memory bandwidth requirement of the PIMs are satis-

fied together. The main opportunity comes from the fact that the CPU and

PIMs share the same memory and both can collaborate on processing the same

data with only one instance of the data. This gives performance and capacity

advantages over discrete accelerators because no bulk data copy/loading is re-

quired prior to the PIM acceleration. This advantage has not been carefully

examined by prior work. As a result, it is still unclear what the compelling use

1

cases for PIMs are, especially those where other types of accelerators cannot

replace PIMs. In summary, the main questions that my dissertation answers

are as follows: (1) how can a CPU and PIMs share the same memory and

both achieve high performance? (2) what are the unique advantages of PIMs

over other discrete accelerators and what are the compelling use cases that

can maximally exploit those advantages?

1.1 High-performance CPU-PIM Concurrent Access

In the first part of my dissertation, I focus on enabling high-performance

concurrent access between the CPU and PIMs to the same memory devices,

including to shared data. In conventional systems, PIM-enabled memory de-

vices can be accessed not only as a main memory but also as an accelerator.

However, applications that use such devices for different purposes simultane-

ously exhibit different performance requirements: low latency for CPU main

memory access and high bandwidth for acceleration. When the CPU and PIMs

concurrently access the same memory, meeting those two requirements at the

same time requires new mechanisms. Prior work solves this memory sharing

problem with coarse-grained (CG) temporal and spatial partitioning of mem-

ory between the CPU and PIMs. However, CG temporal partitioning requires

the CPU to wait too long if accessing the same device while PIMs access mem-

ory, which significantly degrades CPU performance. CG spatial partitioning

cannot enable concurrent access to the same data, reserving a large fraction

of memory capacity for PIMs. To address the above challenges, I observe that

2

two capabilities must be supported at the same time: (1) fine-grained access

interleaving to fully utilize internal DRAM bandwidth, and (2) coarse-grained

PIM operations, where each PIM operation processes many data elements

(vectors/matrices), to mitigate contention for channel command bandwidth

for sending both CPU memory requests and PIM command packets. I iden-

tify and solve new problems to overcome these two challenges: reduced per-

formance due to unnecessary bank conflicts, penalties for interleaving read

and write transactions, defining a common data layout, and synchronizing the

state of memory controllers. I develop mechanisms that address these chal-

lenges and enable the CPU and PIMs to concurrently access memory with low

overhead, whether they access the same data or not.

1.2 Use Cases for Main-Memory Accelerators

In the second part of my dissertation, I present two compelling use cases

for main-memory accelerators in the AI domain where the unique advantage

of a PIM over other acceleration schemes are leveraged. Unlike other discrete

accelerators, such as GPUs, PIMs already share the same memory device with

the CPU. Therefore, the CPU and PIMs can potentially share one instance of

large data and individually, or sometimes, collaboratively execute computa-

tion. On the other hand, to use discrete accelerators, the input data must be

first loaded from main memory to device memories, which incurs performance

overhead, and at least two instances of the same data are needed in the sys-

tem, which incurs a capacity overhead. I focus on this advantage of PIMs and

3

introduce two different use-case scenarios where PIMs cannot be replaced by

other discrete accelerators.

Case Study 1: CPU-PIM Concurrent Collaboration for Ma-

chine Learning Training In the first case study, I demonstrate the poten-

tial benefit of CPU-PIM collaboration with a machine learning application–

logistic regression with stochastic variance reduced gradient (SVRG). In this

collaboration scheme, the CPU executes the main training loop by maximally

exploiting locality captured by the large CPU caches while PIMs access the

entire training data with high memory bandwidth and provide the correction

term that helps the main training converge faster to the optimal solution.

Case Study 2: Accelerating Machine Learning Inference in

Datacenter Servers In the second case study, PIMs are used to acceler-

ate bandwidth-bound deep learning inference tasks within a warehouse-scale

server. In recent language and recommendation models, the execution time

for fully-connected (FC) layers dominate the overall inference latency. Eval-

uating FC layers requires a matrix-matrix multiplication (GEMM). Inference

queries have tight latency constraints and cannot form a large batch. As a

result, the GEMM operations in FC layers are bandwidth bound, which are

good target tasks for PIMs. On the other hand, some inference queries that

have somewhat relaxed latency goals and can be grouped into large batches

and can execute well on the CPU and GPU. In warehouse-scale servers, these

requests with different latency goals are colocated and processed together. My

4

work enables the CPU and PIMs to each concurrently process batches with

different sizes that best fit the performance characteristics of each processor

by sharing the large weight matrices of FC layers.

1.3 Thesis Statement

Processing-in-memory is increasingly important because it can process

rapidly-growing real-life data with high performance and efficiency. However,

with existing approaches, the host CPU and PIM units (PIMs) cannot share

and concurrently access the same memory with high performance. My research,

on the other hand, details that how the host CPU and PIMs can efficiently

share the same memory and both achieve high performance, even when they

collaboratively and concurrently process the same data.

1.4 Contributions

• I solve the following new challenges in concurrent access to memory from

the CPU and PIMs: bank conflicts from CPU accesses curb PIM per-

formance, read/write-turnaround penalties from PIM writes lower CPU

performance, and contention on the memory command bandwidth be-

tween CPU memory accesses and PIM packet launches either underuti-

lizes PIMs or degrade CPU performance. I reduce bank conflicts with a

new bank partitioning architecture that, for the first time, is compatible

with both huge pages and any XOR-based sophisticated memory inter-

leaving, which are modern memory management and address mapping

5

mechanisms. To decrease read/write-turnaround overheads, I throttle

PIM writes with two mechanisms: next-rank prediction that delays PIM

writes to the rank actively read by the CPU and stochastic issue that

throttles PIM writes at a configurable rate.

• I show the potential of collaboratively processing the same data between

the CPU and PIMs with a case study. I introduce an important ML

algorithm that leverages the fast CPU for its main training loop and the

high-BW PIMs for summarization steps that touch the entire dataset. I

develop a variant that executes on the PIMs and the CPU in parallel,

which provides speedup of 2x.

• I propose StepStone PIM, which enables independent GEMM execu-

tion with PIM under complex CPU DRAM address mapping using: (1)

address-mapping cognizant GEMM blocking and (2) PIM-side address

generation (AGEN) that matches this blocking. My unique AGEN logic

improves throughput by, up to 8× and 6.4× on average, compared to

naive or CPU-side address generation. I also identify the tradeoffs of

PIM designs in three different DRAM hierarchy levels (channel, chip, and

bank-group levels) and evaluate their performance with detailed simula-

tion. I show that activating more PIMs for GEMM improves the arith-

metic performance but adds overheads for data localization/replication

and reduction.

6

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2

provides background on DRAM devices and processing in memory; Chapter

3 discusses the limitation of existing PIM approaches for enabling PIM in the

main memory of conventional CPUs; Chapter 4 presents proposed mechanisms

to enable concurrent host access and one case study to leverage concurrent ac-

cess in machine learning training; Chapter 5 presents challenges and solutions

to use PIMs to accelerate bandwidth-bound deep-learning inference tasks. In

Chapter 6, I provide a list of limitations/future work to completely enable

processing-in-memory in main memory systems.

7

Chapter 2

Background

This chapter provides background knowledge about conventional DRAM

devices and the main memory systems of CPUs. I also explain the basic con-

cept of PIM and its advantage over processing with the CPU.

2.1 DRAM Devices and Operation

DRAM devices can be categorized into two categories based on their

interface types: classical and packetized DRAMs. I first explain how processors

interface with these devices and qualitatively analyze their advantages and

disadvantages.

Classical DRAM Devices, such as DDR3 and DDR4, are attached to a

printed circuit board (PCB) and form a dual-inline memory module (DIMM).

DIMMs are installed to the DIMM slots on a motherboard and connected to

the CPU. Multiple DIMMs can be attached to a single memory channel and

only one DIMM can be accessed through the channel. All the DIMMs sharing

the same memory channel can be accessed within a same fixed latency regard-

less of the distance to the CPU. This DIMM-type memory devices increases

memory capacity by: (1) mounting more chips to the PCB board, and (2)

8

installing more DIMMs. However, memory bandwidth does not scale with the

number of DRAM chips in the system. Bandwidth is determined only by the

number of pins per channel and the data rate of those pins.

Classical DRAM devices are directly controlled by the host CPU’s

memory controller with low-level DRAM commands. Each memory controller

manages the DRAMs that are connected through the connected memory chan-

nel. The low-level DRAM commands are issued by the memory controller

based on bank and timing states of DRAMs. To access data in DRAM banks,

the target row should be first activated with ACTIVATE command. Once

the row is activated, or opened, data can be read from and written to the

row with READ and WRITE commands, respectively. If another row is al-

ready open, the bank must first be closed with the PRECHARGE command.

Then, the target row can be activated with an ACTIVATE command. To

support DRAM operations, memory controllers track bank state and deter-

mine which command to issue next. Another important role of the memory

controller for classical DRAM devices is that it maintains timing parameters

defined by the DRAM specification. The timing parameters include the time

intervals between two DRAM commands, such as row-to-row delay (tRRD)

and column-to-column delay (tCCD), or the time window within which no

more that n DRAM commands can be issued, such as four activation win-

dow (tFAW) with n = 4. Unless these timing parameters are obeyed, normal

DRAM operations are not guaranteed. The timing state also determines when

to issue the next command so that the timing rules are not violated.

9

Packetized DRAM Devices, such as hybrid memory cube (HMC), are

connected to the CPU memory controller in a point-to-point manner to achieve

high link bandwidth. For the convenience of explanation, I use HMC as a

representative example of packetized DRAM devices. HMC is composed of

one logic die with multiple DRAM dice stacked on top of it. The logic die

and DRAM dice are connected with through-silicon vias (TSVs) and those

vertically connected banks form a vault. On the logic die, vault controllers

manage the timing and bank state of each vault, as the memory controllers of

classical DRAM devices do for each memory channel.

There are two ways of scaling capacity with packetized DRAM de-

vices: (1) stacking more dice, and (2) daisy-chaining the memory stacks. The

number of DRAM dice that can be stacked is limited by thermal and power

constraints. On the other hand, though daisy-chaining does not have those

physical constraints, the average memory latency increases with the number

of stacks connected serially.

To access data from the CPU memory controller, command packets are

assembled and passed to the directly-connected DRAM stack. The command

packets contain information about target address and transaction type (e.g.,

read or write). If the target address of a certain packet does not belong to

the current DRAM stack, then it will be forwarded to other stacks based on

some routing policy. Once it reaches the target vault of the target stack, the

packet will be transformed into low-level DRAM commands and issued by the

corresponding vault controller.

10

2.2 Baseline DRAM Organization

Figure 2.1 illustrates the organization of the baseline main memory

system. I focus on the classical DRAM interface due to its high memory

capacity and low memory latency, which are the required features for CPU

main memory. Memory controllers access data through a memory channel,

independently from other memory channels. Multiple DIMMs are connected

to each memory channel and each DIMM has multiple DRAM devices (or

DRAM chips) mounted. The chips on a DIMM operate together by sharing

the same address and command bus. This group of chips is called a rank.

Each chip is composed of multiple banks. The banks can operate in parallel

but only one bank at a time can be accessed through the internal DRAM bus.

Lastly, each bank has multiple rows and columns (which is memory transaction

unit). Since the memory controller can access one column at a time, all the

DIMMs, ranks, banks, rows, and columns are accessed through the bandwidth

reduction point, introduced in Section 2.3, and can be the memory units in

Figure 2.2.

2.3 Processing in Memory

Figure 2.2a shows the typical way of scaling memory capacity in con-

ventional CPU systems. Memory units (Mems in the figure) can be any of the

following: DIMMs, ranks, banks, rows, and columns in our baseline DRAM

organization (Figure 2.1). Multiple memory units are connected to a multi-

plexer and the output of the multiplexer is connected to the CPU. I refer to

11

Figure 2.1: Organization of baseline main memory system.

this multiplexer as a bandwidth reduction point. There are multiple bandwidth

reduction points in the DRAM hierarchy and they are discussed in Section 2.2.

The CPU can only access one memory unit at a time and this is mainly be-

cause of the pin count limit of the CPU. That is, adding pins to the CPU

package is physically limited and, therefore, not all the memory units in the

system can be directly connected to the CPU through those pins.

On the other hand, PIM brings computation close to data and this can

be done by adding processing elements (PEs) near the memory units. In this

way, potentially all the memory units can be accessed by locally located PEs

and the aggregated bandwidth can scale with the number of memory units

in the system. In addition, since the distance between computation and data

becomes shorter, PIMs can benefit from low-energy memory access.

12

(a) Conventional CPU system. (b) PIM-enabled CPU system.

Figure 2.2: Bandwidth advantage of processing in memory.

2.4 Address Translation and Physical-to-DRAM Ad-
dress Mapping

In conventional CPU systems, user programs access data in the virtual

address space, which is partitioned into pages. A typical minimum page size is

4 KiB but huge pages of 2 MiB and 1 GiB are supported and frequently used.

Each page in the virtual address space is mapped to a physical frame. The size

of physical address space is equal to the total physical memory capacity. This

mapping between virtual pages and physical frames is done by the operating

system (OS) at memory allocation time. When the CPU accesses memory with

a virtual address, the CPU walks through a page table structure to translate

the virtual address into its corresponding physical address. The page offset

field is translated to the frame offset field “as is” while the page ID is translated

into the frame ID based on the OS-managed page table. The frame ID is set

by the OS while the frame offset is not under system control. After address

translation, the physical address is passed to the memory controller and is

used to access data in memory (or caches).

13

The memory controller maps a physical address into a DRAM address.

A DRAM address is composed of indices to the DRAM organization units:

such as channel, rank, bank, row, and column. There are three things to

consider for address mapping to minimize memory latency: (1) bank-level

parallelism should be maximally exploited to have more outstanding mem-

ory requests processed in parallel, (2) locality captured by row buffer, which

stores the data of a currently accessing row, should be exploited to decrease

per-access memory latency, and (3) timing parameters should be considered to

decide the interleaving granularity for each DRAM hierarchy level. Consider-

ations (1) and (2) exhibit conflicting requirements, therefore, the interleaving

granularity should be optimized for general access patterns. For instance, if

banks are interleaved with fine granularity, bank-level parallelism can be max-

imized yet row-buffer locality cannot be easily exploited. On the other hand,

if the interleaving granularity is an entire row, then row-buffer locality can

be maximized but bank-level parallelism is lower. For Consideration (3), the

timing parameters, such as tRTR and tCCDL, should be considered. The first

parameter, tRTR, is the penalty for accessing one rank from another rank back

to back. Therefore, to avoid being penalized by this timing parameter, inter-

leaving across ranks should be with coarse granularity. The second parameter,

tCCDL, is the long column to column delay for accessing different banks in

the same bank group. Bank groups are a relatively recent addition to DRAM

architectures and trade off density and bus frequency with additional timing

constraints. Banks within the same group share some internal buses and thus

14

require an additional latency penalty when trying to access different banks in

the same group vs. different banks across bank groups. To avoid this long

delay, physical addresses should be interleaved across bank groups with fine

granularity but also interleaved across banks in the same bank group in coarse

granularity to maintain high row-buffer locality.

15

Chapter 3

Limitations of Existing PIM Approaches for

Main-Memory Acceleration

In this chapter, I describe existing approaches for processing in the

main memory of CPUs. Then, I explain their limitations by focusing on the

requirements for main memory and accelerators.

3.1 Direct Host Control

The first approach for processing in main memory is through direct

host control over PIMs [10, 80]. In this approach, the host CPU is responsible

for issuing DRAM commands for both the CPU and PIMs. For PIM memory

transactions, a new pair of read and write commands are required. Once PIM

read commands are issued by a CPU memory controller, the data read from

DRAM cells is forwarded to the local PIM unit. For PIM write commands, the

internal data path selects the data generated by PEs and write them to the

target DRAM cells. In this way, all the commands are issued by the host-side

memory controller but the actual data processing is done by the PIMs.

The performance benefits of this approach originate from the fact that

(1) CPU caches are not polluted by processing the data with low temporal

16

locality with PIMs and (2) write bandwidth can be saved for some reduc-

tion operations. Note that read bandwidth advantage with this approach is

not significant as all the PIM requests are sent by the CPU and read band-

width is bound by the command bandwidth of each channel. In addition,

this command-level PIM control enables CPU-PIM interoperatility because

the granularity for PIM and CPU memory accesses is matched. This sim-

plifies the required OS and hardware supports for coherence management,

virtual-to-physical address translation, and physical-to-DRAM address map-

ping. However, with this approach, PIM memory bandwidth cannot scale with

the number of PIM-enabled memory devices, which is the expected benefit of

PIMs. This is because memory bandwidth will be eventually bottlenecked by

the command bandwidth available to the memory controllers. The command

bandwidth bottleneck will result in low PIM utilization and the bandwidth

advantage of PIMs over the CPU cannot be fully exploited with this direct

host control approach.

3.2 Coarse-Grain Spatial Partitioning
(PIM as Another Discrete Accelerator)

The second approach for processing in main memory is with coarse-

grain spatial partitioning. Many existing PIM approaches follows this ap-

proach and, basically, the CPU and PIMs neither share the same memory

devices nor address space. As a result, to enable CPU-PIM collaboration on

the same data or to process the data generated by the CPU with PIMs, two

17

Figure 3.1: A timeline view of coarse-grain spatial partitioning.

instances of the same data are created, one for the CPU and the other for

PIMs. This is also true for discrete accelerators, such as GPUs.

As shown in Figure 3.1, the main drawback of this approach is that a

large fraction of memory capacity is reserved for the PIMs. Moreover, the CPU

and PIMs cannot share the same address space and data copying is always re-

quired between two different address spaces, it is unclear what the advantage

of this type of PIM is over other discrete accelerators. In fact, discrete acceler-

ators have more relaxed power and area constraints than PIMs, thereby arith-

metic performance and the size of on-chip memory can be superior to PIMs.

As a result, there is a chance that PIMs with partitioned/discrete memory will

remain energy-efficient, low-performance accelerators under heterogeneous sys-

tems with various accelerators, which is less attractive considering the much

greater potential benefits of the PIM concept.

18

Figure 3.2: Existing mode switching mechanism with state reinitialization.

3.3 Coarse-Grain Mode Switching

The third approach for processing in main memory is with coarse-grain

temporal mode switching. Unlike direct host control, the PIM units have their

own memory controller so that they can access memory independently from the

CPU. The ownership for memory is ping-ponged between the CPU and PIMs

and only one of them exclusively accesses memory once it temporarily acquires

ownership. Since there are two memory controllers managing the same mem-

ory (CPU-side and PIM-side), those two memory controllers must synchronize

their state (i.e., timing and bank state) before ownership is switched. As shown

in Figure 3.2, prior work [44] synchronizes the memory controllers by initializ-

ing all the memory banks. That is, the memory controller that currently has

the ownership pre-charges, or closes, all the banks and only then hands the

ownership to its counterpart. Then, the counterpart starts accessing memory.

This method is simple and effective since it does not require communication

between memory controllers for state synchronization. However, as shown in

Figure 3.3, this approach incurs two overheads hindering the fine-grain own-

19

100~ ns10 -100 us

Figure 3.3: A timeline view of coarse-grain mode switching.

ership switching which is necessary for CPU-PIM cooperation: initialization

and warmup overheads. Pre-charging the banks for state initialization itself

takes time and warmup overheads originating from extra row activations are

required. State initialization is especially wasteful when the CPU and PIMs

access different banks in between switching. This is because their target rows

could remain open and benefit from row-buffer hits if both memory controllers

can somehow synchronize their state without initializing. Also, the CPU can-

not access memory during the PIM execution mode, resulting in high memory

latency.

To amortize these overheads, ownership switching should happen in a

coarse-grained manner. As a result, the performance of CPU and PIMs will be

directly proportional to the time that they possess ownership. To achieve high

PIM performance, the CPU memory transactions are blocked during the PIM

access mode and, consequently, increases CPU memory latency, or requires

spatial partitioning. On the other hand, to achieve high CPU performance, all

the PIM memory transactions should be blocked even though their memory

20

units remain idle due to the CPU memory access pattern, i.e. accessing at

most one memory unit at a time. Therefore, to enable PIM in main memory,

we need a better approach to alleviate the strict tradeoff between the CPU

and PIM performances.

3.4 Concurrent Access: Fine-Grain Access Interleaving
to the Same Memory Devices

My approach is to share the same memory devices between the CPU

and PIMs and temporally interleave CPU and PIM memory accesses in a fine-

grained manner, which I call concurrent access (Figure 3.4). Concurrent access

should be enabled in a way that achieves low memory latency for the CPU

and high memory bandwidth for PIMs, as those are the required features for

each to achieve high performance. Concurrent access enables the CPU and

PIMs to share the same memory devices, and even the same data, and access

them in high performance. This is particularly useful when the size of shared

data is extremely large. However, as stated above, there is a set of challenges

to overcome for realizing concurrent access: (1) command bandwidth bottle-

neck caused by sending PIM commands to multiple PIMs connected to each

memory channel, (2) contention and interference between the CPU and PIMs,

(3) memory controller state synchronization, and (4) sharing address space

between the CPU and PIMs for fast in-place acceleration. Especially, for the

first two challenges, we need new approach for fine-grain CPU-PIM access in-

terleaving and coarse-grain PIM operations, respectively. I elaborate on each

21

1 - 50 ns10 - 250 ns

Figure 3.4: A timeline view of the proposed concurrent access mode.

approach below.

The need for fine-grain access interleaving with opportunistic PIM

issue. An ideal PIM opportunistically issues PIM memory requests whenever

a PIM memory is idle from the perspective of the CPU. This is simple to

do in a packetized interface where a memory-side controller schedules all ac-

cesses, but is a challenge in a traditional memory interface because the CPU-

and PIM-side memory controllers must be synchronized. Prior work proposed

dedicating some ranks to PIMs and some to the CPU or coarse-grain tempo-

ral interleaving [44, 15]. The former approach cannot enable concurrent access

as devices are not shared. The latter results in large performance overhead

because it cannot effectively utilize periods where a rank is naturally idle due

to the CPU access pattern. Figure 3.5 shows that for a range of multi-core

application mixes (methodology in Section 5.3), the majority of idle periods

are shorter than 100 cycles with the vast majority under 250 cycles. Fine-grain

access interleaving is therefore necessary.

22

0%
20%
40%
60%
80%
100%

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

1000- 500-1000 250-500 100-250 10-100 1-10 Busy

0%
20%
40%
60%
80%
100%

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

1000- 500-1000 250-500 100-250 10-100 1-10 Busy

Figure 3.5: Rank idle-time breakdown vs. idleness granularity.

The need for coarse-grain PIM vector/kernel operations. Fine-grain

access interleaving is simple if each PIM command only addresses a single cache

block region of memory. Such fine-grain PIM operations have indeed been dis-

cussed in prior work [10, 9, 93, 107]. One overhead of this fine-grain approach

is that of issuing numerous PIM commands, with each requiring a full memory

transaction that occupies both the command and data channels to memory.

Issuing PIM commands too frequently degrades CPU performance, while in-

frequent issue underutilizes the PIMs. Coarse-grain PIM vector operations

that operate on multiple cache blocks mitigate contention on the channel and

improve overall performance. The vector width, N , is specified for each PIM

instruction. As long as the operands are contiguous in the DRAM address

space, one PIM instruction can process numerous data elements without oc-

cupying the channel. Coarse-grain PIM operations are therefore desirable, but

introduce the data layout, memory contention, and CPU–PIM synchronization

challenges.

The advantages and disadvantages of existing and my PIM approaches

23

Table 3.1: Comparison of different PIM approaches

Scalable CMD BW Sharing data Concurrent exec.
Direct host control NO YES YES
CG spatial partitioning YES NO YES
CG mode switching YES YES NO
Concurrent access (proposed) YES YES YES

are summarized in Table 3.1.

3.5 Processing-In-Memory in Compute-Centric vs. Memory-
Centric Systems

Existing PIM research can also be categorized into: compute-centric vs.

memory-centric systems. Conventional systems based on the compute-centric

architecture are organized with CPUs at the center and memory devices at-

tached to them. In these systems, all the data movement and communication

go through the CPU and memory devices cannot directly communicate with

each other. On the other hand, there are proposals for memory-centric archi-

tectures [45, 63, 107, 65, 134], where memory devices are connected through a

memory network and only some of the memory devices are also connected to

the processors. Enabling processing-in-memory in each of these system types

has different challenges.

Conventional compute-centric systems have been proven to execute

diverse applications in high performance. However, in such systems, the

bandwidth of memory channels connecting the CPU and memory devices of-

ten becomes a performance limiter for some memory-intensive applications.

24

Processing-in-memory is one potential solution to mitigate this bandwidth

bottleneck. Therefore, the target PIM workloads should be ones for which the

CPU inherently cannot execute in higher speed than PIMs due to the memory

bandwidth bottleneck. In addition, since all the inter-PIM communication

is routed through the CPU, the target workloads must exhibit good spatial

locality so that inter-PIM communication is rare. If the PIMs cannot do bet-

ter than the CPU because of the reasons such as locality and communication

overhead, the workload can always be executed with the CPU, which adds

flexibility to the system. This dissertation focuses on enabling PIMs for this

compute-centric systems.

On the other hand, enabling PIM in memory-centric systems has similar

challenges to distributed systems in general. Data remains stationary in each

memory device and compute threads are offloaded via the memory network to

where the target data resides. In such systems, data should be laid out such

that spatial locality can be maximally exploited so that offloading overhead

can be amortized. To port programs to the memory-centric systems, a specific

programming model should be used to express data locality. However, the

main drawback is that this memory-centric computation can only be effective

for certain applications, such as large-scale linked-list traversal.

25

Chapter 4

High-performance CPU-PIM Concurrent

Memory Access

In this chapter 1, I address several outstanding issues in the context of

PIM-enabled main memory. My focus is on memory that can be concurrently

accessed both as a PIM and as a memory. Such memory offers the powerful

capability of the PIM and host processor collaboratively processing data with-

out costly data copies. Prior research in this context is limited to fine-grain

PIM operations of, at most, cache-line granularity. However, I develop tech-

niques for coarse-grain PIM operations that amortize CPU interactions across

processing entire DRAM rows. At the same time, my PIM unit does not block

CPU memory access, even when the memory devices are controlled directly

by the CPU memory controllers (e.g., a DDRx-like DIMM), which can reduce

access latency and ease adoption.

Figure 4.1 illustrates an exemplary PIM architecture, which presents

the challenges I address, and is similar to other recently-researched main-

memory PIMs [44, 15, 14]. I choose a DIMM-based memory system because

1Portions of this chapter have been previously published as [29]. Coauthors of the paper
contributed to DRAM power modeling (Yongkee Kwon) and bank-partitioning mechanism
(Sangkug Lym).

26

it offers the high capacity required for a high-end server’s main memory. Each

DIMM is composed of multiple chips, with one or more DRAM dice stacked on

top of a logic die in each chip, using a low-cost commodity 3DS-like approach.

Processing elements (PEs) and a memory controller are located on the logic die.

Each PE can access memory internally through the PIM memory controller.

These local PIM accesses must not conflict with external accesses from the

host (e.g., a CPU). A rank that is being accessed by the CPU cannot at the

same time serve PIM requests, though the bandwidth of all other ranks in the

channel can be used by the PIMs. There is no communication between PEs

other than through the CPU. While not identical, recent commercial PIM-

enabled memories exhibit similar overall characteristics [38, 104].

Surprisingly, no prior work on PIM-enabled main memory examines

the architectural challenges of simultaneous and concurrent access to mem-

ory devices from both the CPU and PIMs. I identify and address two key

challenges for enabling performance-efficient PIMs in a memory system that

supports concurrent access from both a high-performance CPU and the PIMs.

The first challenge is that interleaved accesses may hurt memory per-

formance because they can both decrease row-buffer locality and introduce

additional read/write turnaround penalties. The second challenge is that each

PIM can process kernels that consume entire arrays, though all the data that a

single operation processes must be local to a PE (e.g., a memory chip). There-

fore, enabling cooperative processing requires that CPU physical addresses are

mapped to memory locations (channel, rank, bank, etc.) in a way that both

27

achieves high CPU-access performance (through effective and complex inter-

leaving) and maintains PIM locality across all elements of all operands of a

kernel. Note that these challenges exist when using either a packetized in-

terface, where the memory-side controller interleaves accesses between PIMs

and the CPU, or a traditional CPU-side memory controller that sends explicit

low-level memory commands.

3D
Chip

3D
Chip

3D
Chip

…

DIMM
Logic Die

3D
Chip

3D
Chip

3D
Chip

…

DIMM

3D
Chip

3D
Chip

3D
Chip

…

DIMM

3D
DRAM
Chip

3D
DRAM
Chip

3D
DRAM
Chip

…

DIMM
CMD/
ADDR

DATA

FSM

PE
MC

DRAM Die

BU
FF

ER

Figure 4.1: Exemplary PIM architecture.

For the first challenge (managing concurrent access), I identify reduced

row-buffer locality because of interleaved CPU requests as interfering with PIM

performance. In contrast, it is the increased read/write turnaround frequency

resulting from PIM writes that mainly interfere with the CPU. I provide two

solutions in this context. First, I develop a new bank-partitioning scheme

that limits interference to just those memory regions that are shared by the

CPU and PIMs, thus enabling colocating CPU-only tasks with tasks that

use the PIMs. This new scheme is the first that is compatible with huge

pages and also with the advanced memory interleaving functions used in recent

processors. Partitioning mitigates interference from the CPU to the PIMs and

substantially boosts their performance (by 1.5− 2×).

28

Second, I control interference on shared ranks by opportunistically is-

suing PIM memory commands to those ranks that are even briefly not used by

the CPU and curb PIM to CPU interference with mechanisms that can throt-

tle PIM requests, either selectively when a conflict is predicted (next-rank

prediction) or stochastically.

For the second challenge (PIM operand locality), I enable fine-grain col-

laboration by architecting a new data layout that preserves locality of operands

within the distributed PIMs while simultaneously affording parallel accesses

by the high-performance CPU. This layout requires minor modifications to

the memory controller and utilizes coarse-grain allocations and physical-frame

coloring in OS memory allocation. This combination allows large arrays to be

shuffled across memory devices (and their associated PIMs) in a coordinated

manner such that they remain aligned in each PIM. This is crucial for coarse-

grain PIM operations that can achieve higher performance and efficiency than

cacheline-oriented fine-grain PIMs (e.g., [10, 80, 64]).

An additional and important challenge exists in systems where the CPU

maximizes its memory performance by directly controlling memory devices

rather than relying on a packetized interface [119, 57]. Adding PIM capabil-

ities requires providing local memory controllers near memory in addition to

the CPU ones, which introduces a coordination challenge. I coordinate mem-

ory controllers and ensure a consistent view of bank and timing state with

only minimal signaling that does not impact performance by replicating the

controller finite state machines (FSMs) at both the PIM and CPU sides of

29

the memory channels. Replicating the FSM requires all PIM accesses to be

determined only by the PIM operation (known to the CPU controller) and

any CPU memory operations. Thus, no explicit signaling is required from the

PIMs back to the CPU. I therefore require that for non-packetized PIMs, each

PIM operation has a deterministic access pattern for all its operands (which

may be arbitrarily fine-grained).

In this chapter, I introduce Chopim, a SW/HW holistic solution that

enables concurrent CPU and PIM access to main memory by addressing the

challenges above with fine temporal access interleaving to physically-shared

memory devices. I perform a detailed evaluation both when the CPU and PIM

tasks process different data and when they collaborate on a single application.

I demonstrate that Chopim enables high PIM memory throughput (up to 97%

of unutilized bandwidth) while maintaining CPU performance. Performance

and scalability are better than with prior approaches of partitioning ranks or

only allowing coarse-grain temporal interleaving, or with only fine-grain PIM

operations.

I demonstrate the potential of CPU and PIM collaboration by studying

a machine-learning application (logistic regression with stochastic variance-

reduced gradient descent [74]). I map this application to the CPU and PIMs

such that the CPU stochastically updates weights in a tight inner loop that

utilizes the speculation and locality mechanisms of the CPU while PIMs con-

currently compute a correction term across the entire input data that helps

the algorithm converge faster. Collaborative and parallel PIM and CPU exe-

30

cution can speed up this application by 2× compared to CPU-only execution

and 1.6× compared to non-concurrent CPU and PIM execution. I then eval-

uate the impact of colocating such an accelerated application with CPU-only

tasks.

In summary, I make the following main contributions:

• I identify new challenges in concurrent access to memory from the CPU

and PIMs: bank conflicts from CPU accesses curb PIM performance

and read/write-turnaround penalties from PIM writes lower CPU per-

formance.

• I reduce bank conflicts with a new bank partitioning architecture that,

for the first time, is compatible with both huge pages and sophisticated

memory interleaving.

• To decrease read/write-turnaround overheads, I throttle PIM writes with

two mechanisms: next-rank prediction delays PIM writes to the rank

actively read by the CPU; and stochastic issue throttles PIM writes

randomly at a configurable rate.

• I develop, also for the first time, a memory data layout that is compatible

with both the CPU and PIMs, enabling them to collaboratively process

the same data in parallel while maintaining high CPU performance with

sophisticated memory address interleaving.

31

• To show the potential of collaboratively processing the same data, I con-

duct a case study of an important ML algorithm that leverages the fast

CPU for its main training loop and the high-BW PIMs for summariza-

tion steps that touch the entire dataset. I develop a variant that executes

on the PIMs and CPU in parallel, which increases speedup to 2×.

4.1 Background

In this section, I summarize the background and assumptions that are

specific to this chapter. More basic and general background can be found in

Chapter 2.

Baseline PIM Architecture. My work targets PIMs that are integrated

within high-capacity memory modules such that their role as both main mem-

ory and as accelerators is balanced. Specifically, my baseline PIM devices

are 3D-integrated within DRAM chips on a module (DIMM), similar to 3DS

DDR4 [30] yet a logic die is added. DIMMs offer high capacity and pre-

dictable memory access. Designs with similar characteristics include on-DIMM

PEs [104, 14] and on-chip PEs within banks [38]. Alternatively, PIMs can uti-

lize high-bandwidth devices, such as the hybrid memory cube (HMC) [119]

or high bandwidth memory (HBM) [135]. These offer high internal band-

width but have limited capacity and high cost due to numerous point-to-point

connections to memory controllers [15]. HMC provides capacity scaling via

a network but this results in high access latency and cost. HBM does not

provide such solutions. As a result, HBM devices are better for standalone

32

accelerators than for main memory.

Write-to-Read Turnaround Time. In general, interleaving read and write

DRAM transactions incurs higher latency than issuing the same transaction

type back to back. Issuing a read transaction immediately following a write

suffers from particularly high penalty. The memory controller issues the write

command and loads data to the bus after tCWL cycles. Then, data is trans-

ferred for tBL cycles to the DRAM device and written to the cells. The next

read command can only be issued after tWTR cycles, which guarantees no

conflict on the IO circuits in DRAM. The high penalty stems from the fact

that the actual write happens at the end of the transaction whereas a read

happens right after it is issued. For this reason, the opposite order, read to

write, has lower penalty.

Coherence. Coherence mechanisms between the CPU and PIMs have been

studied in prior PIM work [10, 21, 22] and can be used as is with Chopim.

I therefore do not focus on coherence in this chapter. In my experiments, I

use the existing coherence approach of explicitly and infrequently copying the

small amount of data that is not read-only using cache bypassing and memory

fences.

Address Translation for PIM Execution. Application use of PIMs re-

quires virtual to physical address translation. Some prior work [65, 62, 45]

proposes address translation within PIMs to enable independent PIM execu-

tion without CPU assist. This increases both PIM and system complexity. As

33

Operations Description Operations Description

AXPBY !z = α!x+ β!y DOT c = !x · !y
AXPBYPCZ !w = α!x+ β!y + γ!z NRM2 c =

√
!x · !x

AXPY !y = α!y + !x SCAL !x = α!x

COPY !y = !x GEMV !y = A!x

XMY !z = !x⊙ !y

Table 4.1: Example PIM operations used in my case-study application.
Chopim is not limited to these operations.

an alternative, PIM operations can be constrained to only access data within a

physical memory region that is contiguous in the virtual address space. Hence,

translation is performed by the CPU when targeting a PIM command at a cer-

tain physical address. This has been proposed for both very fine-grain PIM

operations within single cache lines [10, 9, 93, 80, 107] and PIM operations

within a virtual memory page [114]. In this chapter, I use host-based trans-

lation because of its low complexity and only check bounds within the PIMs

for protection.

PIM Workloads. I focus on PIM workloads for which the CPU inher-

ently cannot outperform a PIM. These exhibit low temporal locality and low

arithmetic intensity and are bottlenecked by peak memory bandwidth. By

offloading such operations to the PIM, I mitigate the bandwidth bottleneck

by leveraging internal memory module bandwidth. Moreover, these workloads

typically require simple logic for computation and integrating such logic within

DRAM chips/modules is practical because of the low area and power overhead.

34

Fundamental linear algebra matrix and vector operations satisfy these

criteria. Dense vector and matrix-vector operations, which are prevalent in

machine learning primitives, are particularly good candidates because of their

deterministic and regular memory access patterns and low arithmetic-intensity.

For example, prior work off-loads matrix and vector operations of deep learn-

ing workloads to utilize high near-memory BW [79, 46]. Also, Kwon et al.

propose to perform element-wise vector reduction operations needed for a

deep-learning-based recommendation system to PIMs [89]. In this chapter,

I focus on accelerating the dense matrix and vector operations summarized in

Table 4.1. I demonstrate and evaluate their use in the SVRG application in

Section 4.3. Note that I use these as a concrete example, but my contributions

generalize to other PIM operations.

PIM execution of graph processing has also been proposed because

graph processing can be bottlenecked by peak memory bandwidth because of

low temporal and spatial locality [107, 148, 134, 9, 10]. Prior work either relies

on high inter-chip communication to support the irregular access patterns of

graph applications, or focuses on fine-grain cache-block oriented PIM oper-

ations rather than coarse-grain operations. The former is incompatible with

my economic main-memory context and my research offers nothing new if only

fine-grain PIM operations are used.

35

4.2 Chopim

I develop Chopim with four main connected goals that push the state of

the art: (1) enable fine-grain interleaving of CPU and PIM memory requests

to the same physical memory devices while mitigating the impact of their

contention; (2) permit the use of coarse-grain PIM operations that process long

vector instructions/kernels; (3) simultaneously support the locality needed for

PIMs and the sophisticated memory address interleaving required for high

CPU performance; and (4) integrate with both a packetized interface and

a traditional CPU-controlled DDRx interface. I detail my solutions in this

section.

4.2.1 Localizing PIM Operands while Distributing CPU Accesses

To execute the N-way PIM vector instructions, all the operands of

each PIM instruction must be fully contained in a single rank (single PE).

If necessary, data is first copied from other ranks prior to launching a PIM

instruction. If the reuse rate of the copied data is low, this copying overhead

will dominate the PIM execution time and contention on the memory channel

will increase due to the copy commands.

I solve this problem in Chopim by laying out data such that all the

operands are localized to each PIM at memory allocation time. Thus, copies

are not necessary. This is challenging, however, because the CPU memory con-

troller uses complex address interleaving functions to maximally exploit chan-

nel, rank, and bank parallelism for arbitrary CPU access patterns. Hence,

36

arrays that are contiguous in the CPU physical address space are not con-

tiguous in physical memory and are shuffled across ranks. This challenge is

illustrated in the left side of Figure 4.2, where two operands of PIM instruc-

tion are shuffled differently across ranks and banks. The layout resulting from

my approach is shown at the right of the figure, where arrays (operands) are

still shuffled, but both operands follow the same pattern and remain correctly

aligned to PIMs without copy operations. Note that alignment is to rank

because each rank has one PIM unit in my baseline PIM architecture.

Data layout across ranks. I rely on the PIM runtime and OS to use

a combination of coarse-grain memory allocation and coloring to ensure all

operands of a PIM instruction are interleaved across ranks the same way and

are thus local to a PE. First, the runtime allocate memory for PIM operands

such that they are aligned at the granularity of one DRAM row for each bank

in the system which I call a system row (e.g., 2MiB for a DDR4 1TiB system).

For all the address interleaving mechanisms described in the literature ([121,

98, 113, 83]), this ensures that PIM operands are locally aligned, as long as

ranks are also kept aligned. To maintain rank alignment, I rely on OS frame

coloring to effect rank alignment. I explain this feature below using the Intel

Skylake address mapping [121] as a concrete and representative interleaving

mapping (Figure 4.3a).

In this mapping, rank and channel addresses are determined partly

by the low-order bits that fall into the frame offset field and partly by the

high-order bits that fall into the physical frame number (PFN) field. Frame

37

offsets are kept the same because of the coarse-grain alignment. The OS colors

memory allocations such that the PFN bits that determine rank and channel

are aligned for a particular color; the specific physical address bits select ranks

and channels can be reverse engineered if necessary [121]. The Chopim runtime

indicates a shared color when it requests memory from the OS and specifies

the same color for all operands of an instruction. The runtime can use the

same color for many operands to minimize copies needed for alignment. In

my baseline system, there are 8 colors and each color corresponds to a 4GiB

memory space. Multiple regions can be allocated for the same process. Though

I focus on one address mapping here, my approach works with any XOR-based

address mapping described in prior work [121, 98] as well.

Note that coarse-grain allocation is simple with the common buddy al-

locator if allocation granularity is also a system row, and can use optimizations

that already exist for huge pages [145, 90, 52]. The fragmentation overheads

of coarse allocation are similar to those with huge pages and I find that they

are negligible because coarse-grain PIM execution works best when processing

long vectors.

Data layout across DRAM chips. In the baseline system, each 4-byte

word is striped across multiple chips, whereas in my approach each word is

located in a single chip so that PIMs can access words from their local memory.

Both the CPU and PIMs can access memory without copying or reformatting

data (as required by prior work [44]). Memory blocks still align with cache

lines, so this layout change is not visible to software. This layout precludes

38

Rank 0

Rank 1Ch
an

ne
l 0

0 1
3 2

4 5
7 6

…

…

…

…

Naive data layout Proposed data layout

Bank 0 B3B1 B2

Vector A

Rank 0

Rank 1Ch
an

ne
l 1

2 3
1 0

6 7
5 4

…

…

…

…

Bank 0 B3B1 B2

Vector B

Rank 0

Rank 1Ch
an

ne
l 0

0 1
1 0

4 5
5 4

…

…

…

…

Bank 0 B3B1 B2

Vector A

Rank 0

Rank 1Ch
an

ne
l 1

2 3
3 2

6 7
7 6

…

…

…

…

Bank 0 B3B1 B2

Vector B

PIM
Access

Figure 4.2: Example data layout across ranks for concurrent access of the
COPY operation (B[i] = A[i]). With naive data layout (left), elements with
the same index are located in different ranks. With my proposed mechanism
(right), elements with the same index are co-located. PIMs access contiguous
columns starting from the base of each vector.

the critical word first optimization from DRAM, but recent work concludes the

impact is minimal because the relative latency difference in current memory

systems is very small (e.g., [144]). Note that this data layout does not impact

the CPU memory controller’s ECC computation (e.g., Chip-kill [36]) because

ECC protects only bits and not how they are interpreted. For PIM accesses,

I rely on in-DRAM ECC with its limited coverage. I do not innovate in this

respect and leave this problem for future work.

4.2.2 Mitigating Frequent Read/Write Penalties

The basic memory access scheduling policy I use for Chopim is to al-

ways prioritize CPU memory requests, yet aggressively leverage unutilized

rank bandwidth by issuing PIM requests whenever possible. That is, PIMs

39

ROW RK BK BG COL OffsetCOL CH

Page Offset
Physical Address

DRAM Address

PFN
4KB page2MB page

BG

(a) Baseline (Skylake [121])

RK BK BG COL OffsetBGCOL CH

MSB

PIM bank?

Page Offset

1 0

Physical Address

DRAM Address
0 1

ROW

PFN

(b) Proposed (for bank partitioning)

Figure 4.3: Baseline and proposed CPU-side address mapping.

wait when incoming CPU requests are detected, but otherwise always issue

their memory requests to maximize their bandwidth utilization and perfor-

mance. One potential problem is that a PIM request issued in one cycle may

delay a CPU request that could have issued in one of the following cycles

otherwise.

I find that PIMs infrequently issue row commands (ACT and PRE)

due to the streaming nature of target PIM operations. I therefore prioritize

CPU memory commands over any PIM row command to the same bank. This

has negligible impact on PIM performance in my experiments.

I also find that read transactions of PIMs have only a small impact

40

on following CPU commands. PIM write transactions, however, can have

a large impact on CPU performance because of the read/write-turnaround

penalties that they frequently require. While the CPU mitigates turnaround

overhead by buffering operations with caches and write buffers [137, 8], the

CPU and PIMs may interleave different types of transactions when accessing

memory in parallel. I find that PIM writes interleaved with CPU reads degrade

performance the most. As a solution, I introduce two mechanisms to selectively

throttle PIM writes.

My first mechanism throttles the rate of PIM writes by issuing them

with a predefined probability. I call this mechanism stochastic PIM issue.

Before issuing a write transaction, the PIMs both detect if a rank is idle

and flip a coin to determine whether to issue the write. By adjusting the coin

weight, the performance of the CPU and PIMs can be traded off: higher write-

issue probability leads to more frequent turnarounds while a lower probability

throttles PIM progress. Deciding how much to throttle PIMs requires analysis

or profiling, and I therefore propose a second approach as well.

My second approach does not require tuning, and I empirically find that

it works well. In this next rank prediction approach, the memory controller

inhibits PIM write requests when more CPU read requests are expected; the

controller stalls the PIM in lieu of providing a PIM write queue. In a packe-

tized interface, the memory controller schedules both CPU and PIM requests

and is thus aware of potential required turnarounds. The traditional memory

interface, however, is more challenging as the CPU controller must explicitly

41

signal the PIM controller to inhibit its write request. This signal must be sent

ahead of the regular CPU transaction because of bus delays.

I use a very simple predictor that inhibits PIM write requests in a

particular rank when the oldest outstanding CPU memory request to that

channel is a read to that same rank. Specifically, the PIM controller examines

the target rank of the oldest request in the CPU memory controller transaction

queue. Then, it signals to the PIMs in that rank to stall their writes. For now,

I assume that this information is communicated over a dedicated pin. My

experiments with an FRFCFS [127] memory scheduler at the CPU shows that

this simple predictor works well and achieves performance that is comparable

to a tuned stochastic issue approach.

4.2.3 Partitioning into CPU and Shared Banks

In addition to read/write-turnaround overheads, concurrent access also

degrades performance by decreasing DRAM row access locality. When the

CPU and PIMs interleave accesses to different rows of the same bank, frequent

bank conflicts occur. To avoid this bank contention, I propose using bank

partitioning to limit bank interference to only those memory regions that must

concurrently share data between the PIMs and the CPU. This is particularly

useful in colocation scenarios when only a small subset of CPU tasks utilize

the PIMs. However, existing bank partitioning mechanisms [105, 71, 97] are

incompatible with both huge pages and with sophisticated DRAM address

interleaving schemes.

42

Bank partitioning relies on the OS to color pages where colors can be

assigned to different cores or threads, or in my case, for banks isolated for

the CPU and those that could be shared. The OS then maps pages of dif-

ferent color to frames that map to different banks. Unfortunately, advanced

physical-to-DRAM address mapping functions and the use of 2MB pages pre-

vent prior bank partitioning schemes from working because the physical frame

number (PFN) bits that the OS can control can no longer specify arbitrary

bank partitions. Figure 4.3a shows an example of a modern physical address

to DRAM address mapping [121]. One color bit in the baseline mapping be-

longs to the page offset field so prior bank partitioning schemes can, at best,

be done at two-bank granularity. More importantly, when huge pages are used

(e.g., 2MiB), this baseline mapping cannot be used to partition banks at all.

To overcome this limitation, I propose a new interface that partitions

banks into two groups—CPU-reserved and shared banks—with flexible DRAM

address mapping and any page size. Specifically, my mechanism only requires

that the most significant physical address bits are only used to determine

DRAM row address, as is common in recent hash mapping functions, as shown

in Figure 4.3b [121].

Without loss of generality, I assume that 2 banks out of 16 banks are

reserved for the shared data. First, the OS splits the physical address space for

CPU-only and shared memory regions with the CPU-only region occupying

the bottom of the address space: 0 − (14× (bank capacity)− 1). The rest of

the space (with capacity of 2 banks) is reserved for the shared data and the OS

43

does not use it for other purposes. This guarantees that the most significant

bits (MSBs) of the address of CPU-only region are never b’111. In contrast,

addresses in the shared space always have b’111 in their MSBs.

The OS informs the memory controller that it reserves 2 banks (the

top-most banks) for the shared memory region. CPU-only memory addresses

are mapped to DRAM locations using any hardware mapping function, which

is not exposed to software and the OS. The idea is then to remap addresses

that initially fall into shared banks into the reserved address space that the

CPU is not using. Additional simple logic checks whether the resulting DRAM

address bank ID of the initial mapping is reserved for the shared region. If

they are not, the DRAM address is used as is. If the DRAM address is initially

mapped to one of the reserved banks, the MSBs and the bank bits are swapped.

Because the MSBs of a CPU address are never b’1110 or b’1111, the final bank

ID will be one of the CPU-only bank IDs. Also, because the bank ID of the

initial mapping result is either 14 or 15, the final address is in a row the CPU

cannot access with the initial mapping and there is no aliasing. Note that the

partitioning decision can be adjusted, but only if all affected memory is first

cleared.

4.2.4 Tracking Global Memory Controller State

Unlike conventional systems, Chopim also enables an architecture that

has two memory controllers (MCs) managing the bank and timing state of each

rank. This is the case when the CPU continues to directly manage memory

44

even when the memory itself is enhanced with PIMs. This requires coordinat-

ing rank state information between controllers. Figure 4.4 shows how MCs on

both sides of a memory channel track global memory controller state. Informa-

tion about CPU transactions is easily obtained by the PIM MCs as they can

monitor incoming transactions and update the state tables accordingly (left).

However, the CPU MC cannot track all PIM transactions due to command

bandwidth limits.

To solve this problem, I replicate the finite-state machines (FSMs) of

PIMs and place them in the CPU-side PIM controller. When a PIM instruc-

tion is launched, the FSMs on both sides are synchronized. I rely on the

already-synchronized DDR interface clock for FSM synchronization. When-

ever a PIM memory transaction is issued, the CPU-side FSM also updates the

state table in the CPU MC without communicating with the PIMs (right). If

a CPU transaction blocks PIM transactions in one of the ranks, that trans-

action will be visible to both FSMs. Replicated FSMs track the PIM write

buffer occupancy and detect when the write-buffer draining starts and ends to

trigger write throttling. The area and power overhead of replicating FSMs are

negligible (40-byte microcode store and 20-byte state registers per rank (i.e.,

per PIM unit)). My evaluation uses this approach to enable a DDR4-based

PIM-enabled main memory and all my experiments rely on this.

45

RK0 State’

RK1 State

To Rank 0

RK1 State’

To Rank 1

PIM0 FSM

PIM1 FSM’

PIM1 FSM

PIM
Controller

Host
Memory

Controller

Update
Access

RK0 State

PIM0 FSM’

H
os

t
PI
M Sy

nc
. t

hr
ou

gh
DD

R
i/f

 c
lo

ck

Host Memory Scheduler

Figure 4.4: Global MC state tracking when the CPU (left) and PIMs (right)
issues memory commands. The replicated FSMs are synchronized by using
the DDR interface clock.

4.3 CPU-PIM Collaboration

In this section, I describe a case study to show the potential of con-

current CPU-PIM execution by collaboratively processing the same data. My

case study shows how to partition an ML training task between the CPU

and PIMs such that each processor leverages its strengths. As is common to

training and many data-processing tasks, the vast majority of shared data is

read-only, simplifying parallelism.

I use the machine-learning technique of logistic regression with stochas-

tic variance reduced gradient (SVRG) [74] as my case study. Figure 4.5 shows

a simplified version of SVRG and the opportunity for collaboration. The al-

gorithm consists of two main tasks within each outer-loop iteration. First,

the entire large input matrix A is summarized into a single vector g (see

46

for (outer_loop) {
 g = Summarize(s,A)
 for (inner_loop) {
 a = sample(A)
 w = f(w,s,g,a)
 }
 s = w
}

CPU

Mem Mem Mem
PIMPIM PIM

LLC
w s g s A1 s A2 s An

s
a,g

…

…

Figure 4.5: Collaboration between CPU and PIMs in SVRG.

Figure 4.7 for pseudocode). This vector is used as a correction term when

updating the model in the second task. This second task consists of multiple

inner-loop iterations. In each inner-loop iteration the learned model w based

on a randomly-sampled vector a from the large input matrix A, the correction

term g, and a stored model s, which is updated at the end of the outer-loop

iteration.

The first task is an excellent match for the PIMs. The summarization

operation is simple, exhibits little reuse, and traverses the entire large input

data. In contrast, the second task with its tight inner loop is well suited for

the CPU. The CPU can maximally exploit locality captured by its caches while

PIMs can leverage their high bandwidth for accessing the entire input data A.

Note that in SVRG, an epoch refers to the number of inner loop iterations.

The main tradeoff in SVRG is as follows. When summarization is done

more frequently, the quality of the correction term increases and, consequently,

the per-step convergence rate increases. On the other hand, the overhead of

summarization also increases when it is performed more frequently, which

47

offsets the improved convergence rate. Therefore, the epoch hyper-parameter,

which determines the frequency of summarization, should be carefully selected

to optimize this tradeoff.

Delayed-Update SVRG. As Chopim enables concurrent access from the

CPU and PIMs, I explore an algorithm change to leverage collaborative par-

allel processing. Instead of alternating between the summarization and model

update tasks, I run them in parallel on the CPU and PIMs. Whenever the

PIMs finish computing the correction term, the CPU and PIMs exchange the

correction term and the most up-to-date weights before continuing parallel

execution. While parallel execution is faster, it results in using stale s and

g values from one epoch behind. The main tradeoff in delayed-update SVRG

is that per-iteration time is improved by overlapping execution, whereas con-

vergence rate per iteration degrades due to the staleness. Similar tradeoffs

have been observed in prior work [18, 91, 126, 35]. I later show that delayed-

update SVRG can converge in 40% less time than when serializing the two

main SVRG tasks.

To avoid races for s and g in this delayed-update SVRG, I maintain

private copies of these small variables and use a memory fence that guarantees

completion of DRAM writes after the data-exchange step (which the runtime

coordinates with polling). Note that I bypass caches when accessing data

produced/consumed by PIMs during the data-exchange step. Since s and g

are small and copied infrequently, the overheads are small and amortized over

numerous PIM computations. Whether delayed updates are used or not, the

48

3D DRAM
Dies

Logic Die

3D DRAM
Dies

Logic Die

3D DRAM
Dies

Logic Die

3D DRAM
Dies

Logic Die

3D DRAM
Dies

Logic Die

3D DRAM
Dies

Logic Die

Host
CMD Info

Host
CMD

State
Update

PIM CTRL

Host MC

C
M

D/
AD

D

Da
ta

 B
us

Figure 4.6: Overview of PIM architecture.

CPU and PIMs share the large data, A, without copies.

4.4 Runtime and API

Chopim is general and helps whenever CPU/PIM concurrent access is

needed. To make the explanations and evaluation concrete, I use an exemplary

interface design as discussed below and summarized in Figure 4.6. Command

and address signals pass through the PIM memory controllers so that they

can track CPU rank state. Processing elements (PEs) in the logic die access

data by using their local PIM memory controller (Figure 4.1). I propose a

similar API as other C++ math libraries [128, 69, 66] for the example use case

of accelerating linear algebra operations. Figure 4.7 shows example usage of

my API for computing the average gradient used in the summarization task

of SVRG.

The Chopim runtime system manages memory allocations and launches

PIM operations. PIM operations are blocking by default, but can also execute

asynchronously. If the programmer calls a PIM operation with operands from

49

different shared regions (colors), the runtime system inserts appropriate data

copies. I envision a just-in-time compiler that can identify such cases and more

intelligently allocate memory and regions to minimize copies. For this chapter,

I do not implement such a compiler. Instead, programs are written to directly

interact with a runtime system that is implemented within the simulator.

PIMs operate directly on DRAM addresses and do not perform address

translation. To launch an operation, the runtime (with help from the OS)

translates the origin of each operand into a physical address, which is then

communicated along with a bound to the PIMs by the PIM controller. The

runtime is responsible for splitting a single API call into multiple primitive PIM

operations. The PIM operations themselves proceed through each operand

with a regular access pattern implemented as microcode in the hardware, which

also checks the bound for protection. DRAM addresses are computed by

following the same physical-to-DRAM mapping function used by the CPU

memory controller.

Optimizing Load-balance. Load imbalance occurs when the CPU does

not access ranks uniformly over short periods of time. The AXPY operation

(launched repeatedly within the loop shown in Figure 4.7) is short and non-

uniform access by the CPU leads to load imbalance among PIMs. A blocking

operation waits for all PIMs to complete before launching the next AXPY,

which reduces performance. My API provides asynchronous launches similar

to CUDA streams or OpenMP parallel for with a nowait clause [33]. Asyn-

chronous launches can overlap AXPY operations from multiple loop iterations.

50

void main () {
// Memory Allocation
float alpha, lambda;
pim::matrix<float> X(n, d, pim::SHARED);
pim::vector<float> w(d, pim::SHARED);
pim::vector<float> y(n, pim::SHARED);
pim::vector<float> v(n, pim::SHARED);
pim::vector<float> a(d, pim::SHARED);
pim::vector<float> a_pvt(d, pim::PRIVATE);
// a_pvt: allocates d elements per PIM rather than
// striping the allocation across PIMs

// Initialization
...

// Average Gradient
pim::gemv(y, X, w);
pim::xmy(v, v, y);
host::sigmoid(v, v);
pim::xmy(v, v, y);
pim::scal(v, 1/n);

// Target for Macro Operation
parallel_for (int i = 0; i < n; i++) {
alpha = v[i];
pim::axpy(a_pvt, alpha, X, i); // a_pvt += alpha *X[i]

}

host::reduce(a, a_pvt);
pim::axpy(a, lambda, w);

}

Figure 4.7: Average gradient example code. This code corresponds to sum-
marization in SVRG (see Section 4.3).

Any load imbalance is then only apparent when the loop ends. Over such a

long time period, load imbalance is much less likely. I implement asynchronous

launches using a macro PIM operation. An example of a macro operation is

shown in the loop of Figure 4.7 and is indicated by the parallel for anno-

tation.

Launching PIM Operations. PIM operations are launched similarly to

51

 Batch #2

 Batch #3

 Batch #4

 Batch #1

Reg Reg

…

FPFMA! FPFMA

Data I/O

+

(2) (1)

= " ⨉

1KB

Y XY’

(3)

Buffer (1KB) + SPM (1KB)

Figure 4.8: PE architecture and execution flow of AXPY.

the architecture of Farmahini et al. [44]. A memory region is reserved for

accessing control registers of PIMs. PIM packets access the control registers

and launch operations. Each packet is composed of the type of operation,

the base addresses of operands, the size of data blocks, and scalar values

required for scalar-vector operations. On the CPU side, the PIM controller

plays two main roles. First, it accepts acceleration requests, issues commands

to the PIMs in the different ranks (in a round-robin manner), and notifies

software when a request completes. Second, the PIM controller extends the

CPU memory controller to coordinate actions between the PIMs and CPU

memory controllers and enables concurrent access. It maintains the replicated

FSMs using its knowledge of issued PIM operations and the status of the

CPU memory controller. The PIM controller is also responsible for throttling

specific PIMs if necessary to maintain CPU performance. To specify all the

supported PIM operations, the minimum packet size is 32 bytes, requiring 4

write cycles per rank.

Execution Flow of a Processing Element. My exemplary PE is com-

52

posed of two floating-point fused multiply-add (FPFMA) units, 5 scalar reg-

isters (up to 3 operand inputs and 2 for temporary values), a 1KiB buffer

for accessing memory, and the 1KiB scratchpad memory. The memory access

granularity is 8B per chip and the performance of the two FPFMAs per chip

matches this data access rate. PEs may be further optimized to support lower-

precision operations or specialized for specific use cases, but I do not explore

these in this chapter as I focus on the new capabilities of Chopim rather than

PIM in general.

Figure 4.8 shows the execution flow of a PE when executing the AXPY

operation. Each vector is partitioned into 1KiB batches, which is the same size

as DRAM page size per chip. To maximize bandwidth utilization, the vector

X is streamed into the buffer. Then, the PE opens another row, reads two

elements (8 bytes) of vector Y , and stores them to FP registers. While the next

two elements of Y are read, a fused multiply-add (FMA) operation is executed.

The result is stored back into the buffer and execution continues such that the

read-execute-write operations are pipelined. After the result buffer is filled,

the PE either writes results back to memory or to the scratchpad. This flow

for one 1KiB batch is repeated over the rest of the batches. This entire process

is stored in PE microcode as the AXPY operation. Other operations (coarse

or fine grained) are similarly stored and processed from microcode.

Inter-PE Communication. PIMs are only effective when they use memory-

side bandwidth to amplify that of the CPU. In the DIMM- and chip-based

PIMs, which I target in this chapter, general inter-PE communication is there-

53

fore equivalent to communicating with the CPU. Communication in applica-

tions that match this PIM architecture are primarily needed for replicating

data to localize operands or for global reduction operations, which follow local

per-PE reductions. In both communication cases, a global view of the data

is needed and, therefore, I enable communication only through the CPU. For

instance, after the macro operation in Figure 4.7, a global reduction of the PE

private copies (a pvt) accumulates the data for the final result (a). The re-

duced result is used by the following PIM operation. Though communicating

through the CPU is expensive, my coarse-grained PIM operations amortize

infrequent communication overhead. Importantly, since this communication

can be done as normal DRAM accesses by the CPU, no change on the memory

interface is required.

4.5 Methodology

Table 5.2 summarizes my system configuration, DRAM timing param-

eters, energy components, benchmarks, and machine learning configurations.

For bank partitioning, I reserve one bank per rank for the PIMs and the rest

for the CPU. I use Ramulator [85] as my baseline DRAM simulator and add

the PIM memory controllers and PEs to execute the PIM operations. I mod-

ify the memory controller to support the Skylake address mapping [121] and

my bank partitioning and data layout schemes. To simulate concurrent CPU

accesses, I use gem5 [19] with Ramulator. I choose CPU applications that

have various memory intensity from the SPEC2006 [61] and SPEC2017 [115]

54

benchmark suites and form 9 different application mixes with different com-

binations (Table 5.2). Mix0 and mix8 represent two extreme cases with the

highest and lowest memory intensity, respectively. Only mix0 is run with 8

cores to simulate under-provisioned bandwidth while other mixes use 4 cores

to simulate a more realistic scenario. For the PIM workloads, I use the DOT

and COPY operations to show the impact of extremely low and high write in-

tensity. I use the average gradient kernel (Figure 4.7) to evaluate collaborative

execution. The performance impact of other PIM applications falls between

DOT and COPY and is well represented by SVRG [74], conjugate gradient

(CG) [69] and streamcluster (SC) [122].

For the CPU workloads, I use Simpoint [58] to find representative pro-

gram phases and run each simulation until the instruction count of the slowest

process reaches 200M instructions. If an PIM workload completes while the

simulation is still running, it is relaunched so that concurrent access occurs

throughout the simulation time. Since the number of instructions simulated

is different, I use instructions per cycle (IPC) for CPU performance. To show

how well the PIMs utilize bandwidth, I measure bandwidth utilization and

compare it with the idealized case where PIMs can utilize all the idle rank

bandwidth.

I estimate power with the parameters in Table 5.2. I use CACTI

6.5 [106] for the dynamic and leakage power of the PE buffer. A sensitiv-

ity study for PE parameters shows that their impact on power dissipation

is negligible. I use CACTI-3DD [26] to estimate the power and energy of

55

3D-stacked DRAM and CACTI-IO [75] to estimate DIMM power and energy.

4.6 Evaluation

I present evaluation results for the various Chopim mechanisms, analyz-

ing: (1) the benefit of coarse-grain PIM operations; (2) how bank partitioning

improves PIM performance; (3) how stochastic issue and next-rank prediction

mitigate read/write turnarounds; (4) the impact of PIM workload write in-

tensity and load imbalance; (5) how Chopim compares with rank partitioning;

(6) the benefits of collaborative and parallel CPU/PIM processing; and (7)

energy efficiency. All results rely on the replicated FSM with DDR4.

Coarse-Grain PIM Operation. Figure 4.9 demonstrates how overhead for

launching PIM instructions can degrade performance of the CPU and PIMs as

rank count increases. To prevent other factors, such as bank conflicts, bank-

level parallelism, and load imbalance from affecting performance, I use my BP

mechanism, the NRM2 operation (because I can precisely control its granular-

ity), and asynchronous launch. I run the most memory-intensive application

mix (mix1) on the CPU. When more cache blocks (CBs) are processed by each

PIM instruction, contention between CPU transactions and PIM instruction

launches decreases and performance of both improves. In addition, as the num-

ber of ranks grows, contention becomes severe because more PIM instructions

are necessary to keep all PIMs busy. These results show that my data layout

that enables coarse-grain PIM operation is beneficial, especially in concurrent

access situation.

56

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0
1
2
3
4
5
6
7

1 4 16 64 25
6

10
24

40
96 1 4 16 64 25

6
10

24
40

96 1 4 16 64 25
6

10
24

40
96

2 Ch. × 2 Ra. 2 × 4 2 × 8

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Host IPC NDA BW UtilizationPIM

Figure 4.9: Impact of coarse-grain PIM operations. (X-axis: the number of
cache blocks accessed per PIM instruction.)

Takeaway 1: Coarse-grain PIM operations are crucial for mitigating contention
on the CPU memory channel.

Impact of Bank Partitioning. Figure 4.10 shows performance when banks

are shared or partitioned between the CPU and PIMs. I emphasize the impact

of write intensity of PIM operations by running the extreme DOT (read inten-

sive) and COPY (write intensive) operations. While not shown, SVRG falls

roughly in the middle of this range. I compare each memory access mode with

an idealized case where I assume the CPU accesses memory without any con-

tention and PIMs can leverage all the idle rank bandwidth without considering

transaction types and other overheads.

Overall, accelerating the read-intensive DOT with concurrent CPU ac-

cess does not affect CPU performance significantly even with my aggressive

approach. However, contention with the shared access mode significantly de-

grades PIM performance. This is because of the extra bank conflicts caused by

interleaving CPU and PIM transactions. On the other hand, accelerating the

write-intensive COPY degrades CPU performance. This happens because, in

57

0
0.2
0.4
0.6
0.8
1

0

5

10

15

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Shared+COPY Shared+DOT Partitioned+DOT
Partitioned+COPY Idealized NDA BW Utilization

0
0.2
0.4
0.6
0.8
1

0

5

10

15

mix0 mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Shared+COPY Shared+DOT Partitioned+DOT
Partitioned+COPY Idealized NDA BW Utilization

PIM

Figure 4.10: Concurrent access to different memory regions.

the write phase of PIMs when the PIM write buffer drains, the CPU reads are

blocked while PIMs keep issuing write transactions due to long write-to-read

turnaround time. To mitigate this problem, I show the impact of my write

throttling mechanisms below. Note that CPU performance of mix0 is the low-

est, despite its doubled core count, because contention for LLC increases and

memory performance dominates overall performance.

Takeaway 2: Bank partitioning increases row-buffer locality and substantially
improves PIM performance, especially for read-intensive PIM operations.

Mitigating PIM Write Interference. Figure 4.11 shows the impact of

mechanisms for write-intensive PIM operations. In this experiment, the most

write-intensive operation, COPY, is executed by the PIMs and the mechanisms

are applied only during the write phase of PIM execution. Stochastic issue is

used with two probabilities, 1/4 and 1/16, which clearly shows the CPU-PIM

performance tradeoff compared to next-rank prediction.

For stochastic issue, the tradeoff between CPU and PIM performance

is clear. If PIMs issue with high probability, CPU performance degrades. The

appropriate issue probability can be chosen with heuristics based on CPU

58

0
0.2
0.4
0.6
0.8
1

0

5

10

15

mix0 mix1 mix2 mix3 mix4 mix6 mix7 mix7 mix8

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Stochastic_issue (1/16) Stochastic_issue (1/4) Predict_next_rank
Issue_if_idle Idealized NDA BW Utilization

0
0.2
0.4
0.6
0.8
1

0

5

10

15

mix0 mix1 mix2 mix3 mix4 mix6 mix7 mix7 mix8

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Stochastic_issue (1/16) Stochastic_issue (1/4) Predict_next_rank
Issue_if_idle Idealized NDA BW Utilization

PIM

Figure 4.11: Stochastic issue and next-rank prediction impact.

memory intensity though I do not explore this in this chapter. On the other

hand, the next-rank prediction mechanism shows slightly better behavior than

the stochastic approach. Compared to stochastic issue with probability 1/16,

both CPU and PIM performance are higher. Stochastic issue extends the

tradeoff range and does not require signaling. I use the robust next-rank

prediction approach for the rest of the chapter.

Takeaway 3: Throttling PIM writes mitigates the large impact of read/write
turnaround interference on CPU performance; next-rank prediction is robust
and effective while stochastic issue does not require additional signaling.

Impact of Write-Intensity and Input Size. Figure 4.12 shows CPU

and PIM performance when different types of PIM operations are executed

with different input sizes. The CPU application mix with the highest memory

intensity (mix1) and the next-rank prediction mechanism is used. In addition,

to identify the impact of input size, three different vector sizes are used: small

(8KB/rank), medium (128KB/rank), and large (8MB/rank). I evaluate asyn-

chronous launches with the small vector size. I evaluate GEMV with three

matrix sizes, where the number of columns is equal to each of the three vector

59

Small
Medium

Large
Small + Async

0
0.2
0.4
0.6
0.8
1

0

2

4

6

8

 axpby axpbypcz axpy copy dot gemv nrm2 scal

BW
 U

til
iza

tio
n

Ho
st

 IP
C

Host IPC NDA BW UtilizationPIM

Figure 4.12: Impact of PIM operations and operand size.

sizes and the number of rows fixed at 128.

Overall, performance is inversely related to write intensity, and short

execution time per launch results in low PIM performance. The NRM2 op-

eration with the small input has the shortest execution time. Because of its

short execution time, NRM2 is highly impacted by the launching overhead and

load imbalance caused by concurrent CPU access. On the other hand, GEMV

executes longer than other operations and it is impacted less by load imbal-

ance and launching overhead. With the asynchronous launch optimization,

the impact of load imbalance decreases and PIM bandwidth increases.

Takeaway 4: Asynchronous launch mitigates the load imbalance caused by
short-duration PIM operations.

Scalability Comparison. Figure 4.13 compares Chopim with the perfor-

mance of rank partitioning (RP). For RP, I assume that ranks are evenly

partitioned between the CPU and PIMs. Since read- and write-intensive PIM

operations show different trends, I separate those two cases. Other application

results (SVRG, CG, and SC) are shown to demonstrate that their performance

falls between these two extreme cases. I do not evaluate SVRG with RP be-

60

20

40

60

80

100

0
1
2
3
4
5
6
7

Dot/ Dot Copy SVRG CG SC Dot/ Dot Copy SVRG CG SC

2Channel x 2Rank 2Channel x 4Rank

Ba
nd

w
id

th
 (G

B/
s)

H
os

t I
PC

Host IPC NDA BW (dot) NDA BW (copy) NDA BW (app)

Copy

Rank Partitioning

Chopim

Copy

PIM PIM PIM

Figure 4.13: Scalability Chopim vs. rank partitioning.

cause it disallows sharing. I use the most memory-intensive mix1 as the CPU

workload. The first cluster shows performance when the baseline DRAM sys-

tem is used. For both the read- and write-intensive PIM workloads, Chopim

performs better than rank partitioning. This shows that opportunistically ex-

ploiting idle rank bandwidth can be a better option than dedicating ranks

for acceleration. The second cluster shows performance when the number of

ranks is doubled. Compared to rank partitioning, Chopim shows better per-

formance scalability. While PIM bandwidth with rank partitioning exactly

doubles, Chopim more than doubles due to the increased idle time per rank.

SVRG results fall between extreme DOT and COPY cases.

Takeaway 5: Chopim scales better than rank partitioning because short issue
opportunities grow with rank count.

SVRG Collaboration Benefits. Figure 4.14a shows the convergence re-

sults with and without PIM (8 PIMs). I use a shared memory region to enable

concurrent access to the same data and the next-rank prediction mechanism is

used. Compared to the CPU-only case, the optimal epoch size decreases from

61

N to N/4 when PIMs are used. This is because the overhead of summarization

decreases relative to the CPU-only case. Furthermore, SVRG with delayed up-

dates gains additional performance demonstrating the benefits made possible

by the concurrent CPU and PIM access when each processes the portion of

the workload it is best suited for. Though the delayed update approach up-

dates the correction term more frequently, the best performing learning rate

is lower than the CPU-PIM ping-ponging approach (denoted as ACC) with

epoch N/4, which shows the impact of staleness on the delayed update.

When PIM performance grows by adding PIMs (additional ranks),

delayed-update SVRG demonstrates better performance scalability. Figure 4.14b

compares the performance of the best-tuned serialized and delayed-update

SVRG with that of CPU-only with different number of PIMs. I measure per-

formance as the time it takes the training loss to converge (when it reaches

10−13 away from optimum). Because more PIMs can calculate the correction

term faster, its staleness decreases, consequently, a higher learning rate with

faster convergence is possible.

Takeaway 6: Collaborative CPU-PIM processing on shared data speeds up
SVRG logistic regression by 50%.

Memory Power. I estimate the power dissipation in the memory system

under concurrent access. The theoretical maximum possible power of the

memory system is 8W when only the CPU accesses memory. When the most

memory-intensive application mixes are executed, the average power is 3.6W.

The maximum power of PIMs is 3.7W and is dissipated when the scratchpad

62

1E-15

1E-13

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

0 50 100 150

Tr
ai

ni
ng

 lo
ss

 -
O

pt
im

um

Time (sec)

HO, Epoch (N), lr=4e-3
HO, Epoch (N/2), lr=4e-3
HO, Epoch (N/4), lr=5e-3
ACC, Epoch (N), lr=4e-3
ACC, Epoch (N/2), lr=4e-3
ACC, Epoch (N/4), lr=5e-3
DelayedUpdate, lr=4e-3

(a) Convergence over time with and without PIM.

0

1

2

3

4 NDAs 8 NDAs 16 NDAs

(2 Ch. × 2 Ra.) (2 × 4) (2 × 8)

Sp
ee

du
p

ACC_Best DelayedUpdate

0

1

2

3

4 NDAs 8 NDAs 16 NDAs

(2 Ch. × 2 Ra.) (2 × 4) (2 × 8)

Sp
ee

du
p

ACC_Best DelayedUpdate

PIMs PIMs PIMs

(b) PIM speedup scaling (normalized to CPU only).

Figure 4.14: Impact of PIM summarization in SVRG with and without de-
layed update (HO: CPU-Only, ACC: Accelerated with PIMs, ACC Best: Best
among all ACC options).

memory is maximally used in the average gradient computation. In total, up

to 7.3W of power is dissipated in the memory system, which is lower than the

maximum possible with CPU-only access. This power efficiency of PIMs comes

from the low-energy internal memory accesses and because Chopim minimizes

overheads.

Takeaway 7: Operating multiple ranks for concurrent access does not increase
memory power significantly.

63

4.7 Related Work

To the best of my knowledge, this is the first work that proposes solu-

tions for processing in memory while enabling the concurrent host and PIM

access without data reorganization and in a non-packetized DRAM context.

Packetized DRAM, while scalable, may suffer from 2–4x latency longer than

DDR-based protocol even under very low or no load [57]. To solve this unique

problem, many previous studies have influenced my work.

The study of processing in memory has been conducted in a wide range

as the relative cost of data access becomes more and more expensive com-

pared to the computation itself. The nearest place for computation is in

DRAM cells [130, 94, 129] or the crossbar cells with emerging technologies

[95, 28, 131, 133, 134, 138, 25, 100]. Since the benefit of PIM comes from

high bandwidth and low data transfer energy, the benefit becomes larger as

computation move closer to memory. However, area and power constraints

are significant, restricting adding complex logic. As a result, workloads with

simple ALU operations are the main target of these studies.

3D stacked memory devices enable more complex logic on the logic die

and still exploit high internal memory bandwidth. Many recent studies are

conducted based on this device to accelerate diverse applications [46, 79, 40,

9, 10, 54, 64, 65, 99, 118, 147, 45, 108, 62, 22, 96, 21]. Also, there are proposals

about custom memory chip designs that embed processing elements to enable

PIM [42, 49]. However, in these proposals, the main memory role of the

memory devices has gained less attention compared to the acceleration part.

64

Some prior work [12, 139, 11, 20] attempts to support the host and PIM access

to the same data but only with data reorganization and in a packetized DRAM

context. Parrnaik et al. [118] show the potential of concurrently running both

the host and PIMs on the same memory. However, they assume an idealized

memory system in which there is no contention between PIM and host memory

requests. We do not assume this ideal case. The main contributions of Chopim

are precisely to provide mechanisms for mitigating interference.

On the other hand, NDA [44], Chameleon [15], and MCN DIMM [14]

are based on conventional DIMM devices and changes the DRAM design to

practically add PEs. Unlike rank partitioning and coarse-grain mode switching

used in the prior work, we let host and PEs share ranks to maximize parallelism

and partition banks to decrease contention.

4.8 Chapter Summary

In this chapter, I introduced solutions to share ranks and enable con-

current access between the host and PIMs. Instead of partitioning memory

in coarse-grain manner, both temporally and spatially, I interleave accesses

in fine-grain manner to leverage the unutilized rank bandwidth. To maxi-

mize bandwidth utilization, Chopim enables coordinating state between the

memory controllers of the host and PIMs in low overhead, to reduce extra

bank conflicts with bank partitioning, to efficiently block PIM write transac-

tions with stochastic issue and next-rank prediction to mitigate the penalty

of read/write turnaround time, and to have one data layout that allows the

65

host and PIMs to access the same data and realize high performance. My case

study also shows that collaborative execution between the host and PIM can

provide better performance than using just one of them at a time. Chopim

offers insights to practically enable PIM while serving main memory requests

in real systems and enables more effective acceleration by eliminating data

copies and encouraging tighter host-PIM collaboration.

66

System configuration

Processor
4-core OoO x86 (8 cores for mix0), 4GHz, Fetch/Issue width (8),

LSQ (64), ROB (224)
PIM one PE per chip, 1.2GHz, fully pipelined, write buffer (128)
TLB I-TLB:64, D-TLB:64, Associativity (4)
L1 32KB, Associativity (L1I: 8, L1D: 8), LRU, 12 MSHRs

L2 256KB, Associativity (4), LRU, 12 MSHRs

LLC 8MB, Associativity (16), LRU, 48 MSHRs, Stride prefetcher

DRAM
DDR4, 1.2GHz, 8Gb, x8, 2channels × 2ranks,

FR-FCFS, 32-entry RD/WR queue, Open policy,
Intel Skylake address mapping [121]

DRAM timing parameters
tBL=4, tCCDS=4, tCCDL=6, tRTRS=2, tCL=16, tRCD=16,
tRP=16, tCWL=12, tRAS=39, tRC=55, tRTP=9, tWTRS=3,

tWTRL=9, tWR=18, tRRDS=4, tRRDL=6, tFAW=26

Energy Components
Activate energy: 1.0nJ, PE read/write energy: 11.3pJ/b,

CPU read/write energy: 25.7pJ/b, PE FMA: 20pJ/operation,
PE buffer dynamic: 20pJ/access, PE buffer leakage power: 11mW

(Energy/power of scratchpad memory is same as PE buffer)

Benchmarks MPKI

mix0
mcf r:lbm r:omnetpp r:gemsFDTD

bwaves:milc:soplex:leslie3d
H:H:H:H
H:M:M:M

mix1 mcf r:lbm r:omnetpp r:gemsFDTD H:H:H:H
mix2 mcf r:lbm r:gemsFDTD:soplex H:H:H:H
mix3 lbm r:omnetpp r:gemsFDTD:soplex H:H:H:H
mix4 omnetpp r:gemsFDTD:soplex:milc H:H:H:M
mix5 gemsFDTD:soplex:milc:bwaves r H:H:M:M
mix6 soplex:milc:bwaves r:leslie3d H:M:M:M
mix7 milc:bwaves r:astar:cactusBSSN r M:M:M:M
mix8 leslie3d:leela r:deepsjeng r:xchange2 r M:L:L:L

PIM Kernels
PIM basic operations (Table 4.1), SVRG (50K × 3072),

CG (16K × 16K), and SC (2M × 128)

Machine Learning Configurations
Logistic regression with ℓ2-regularization (10-class classification), λ=1e-3,
learning rate=best-tuned, momentum=0.9, dataset=cifar10 (50000 × 3072)

Table 4.2: Evaluation parameters.

67

Chapter 5

Accelerating Bandwidth-Bound Deep Learning

Inference with Main-Memory Accelerators

In this chapter 1, I introduce another compelling use case of main-

memory accelerators in the AI/ML domain. With the evolution of deep learn-

ing (DL), artificial intelligence is being widely used in many internet services.

I describe a new approach for reducing the latency of such DL inference tasks

by accelerating their fully-connected layers with a processing in/near memory

(PIM) approach. Park et al. [116] report that for important personalized rec-

ommendation and natural language DL inference workloads, a large fraction of

DL-related data-center cycles (42%) are spent executing fully-connected (FC)

layers in Facebook data centers.

FC layers are executed as matrix-matrix multiplication operations (com-

monly referred to as GEMM kernels) and these GEMMs dominate the overall

execution time of some workloads [116, 55]. GEMMs are commonly consid-

ered compute rather than bandwidth bound based on decades of scientific-

computing and DL training experience. However, I observe that DL inference

GEMMs exhibit two unique traits that leave them memory-bandwidth bound

1Portions of this chapter have been previously published as

68

in many cases, and thus amenable to PIM acceleration.

First, DL inference queries require small-batch execution to meet tight

latency constraints, leading to very tall/skinny or short/fat activation matri-

ces. Such matrices offer lower locality, increasing the importance of memory

bandwidth. Second, some recommender and language models have billions of

parameters (across numerous layers) and it is common for multiple models to

be colocated on a single node to improve system efficiency and reduce multi-

model query latency [56, 77, 151, 111]. As a result, it is common for the larger

weight matrices to reside only in main memory, stressing the memory chan-

nel when executing on a CPU and often requiring low-bandwidth host-device

transfers in systems with accelerators.

My experiments demonstrate that these GEMM operations are in fact

bandwidth-bound on both CPU and GPU systems, and describe how they can

be accelerated with processing in/near main memory (PIM).

I present StepStone PIM, which is integrated within the CPU main

memory system and solves the dual challenges of utilizing available GEMM

locality and sharing data with the CPU under its sophisticated XOR-based

DRAM address mapping scheme. Hence, StepStone is an appealing datacenter

solution because it: (1) better utilizes bandwidth within the memory system;

(2) utilizes locality, enabling high performance and efficiency for datacenter DL

inference GEMM operations; (3) does not require additional memory devices

or capacity, avoiding the exorbitant cost of additional memory and taking

advantage of the already-memory resident matrices; and (4) offloads a low-

69

performance workload from the CPU, freeing additional execution capacity

for colocated tasks.

This unique set of StepStone capabilities is, to the best of my knowl-

edge, not available in any prior PIM architecture and research, including in

recent work that targets datacenter DL inference or processing in main mem-

ory. While recent work explored PIM-acceleration for datacenter DL inference,

it focuses on the embedding layers of DL-inference [89, 77] rather than on the

MLP GEMM operations, which require a different approach for exploiting lo-

cality. Prior work that considers integrating PIM accelerators within main

memory either requires costly data replication to avoid the DRAM address

mapping challenge [44, 15, 14] or does not offer the mechanisms to exploit

GEMM locality [10, 80, 77, 29].

I choose a straight-forward PIM microarchitecture for StepStone that

follows recent research trends. My contributions instead lie with four key

innovations. The first is the StepStone PIM GEMM parallelization and exe-

cution flow that is cognizant of the XOR-based DRAM address mapping that

otherwise break GEMM locality. The second contribution accelerates the lo-

calization and reduction operations of the execution flow without consuming

CPU core resources. The third contribution enables long-running locality-

conserving PIM GEMM kernels with the new StepStone memory-side address

generation logic. Long-running kernels relieve PIM pressure on the memory

command channel, enabling high-performance colocated CPU tasks.

The fourth contribution is identifying and exploiting a new tradeoff op-

70

portunity in balancing the performance benefits of parallelization across fine-

grained PIM units (PIMs) within DRAM with the data-transfer overheads of

the localization/replication and reduction operations necessary for high par-

allelization. I explore this tradeoff by evaluating channel-, device-, and bank

group-level StepStone PIMs.

To summarize my contributions:

• I identify and demonstrate that small-batch GEMM operations of DL

datacenter inference workloads are bandwidth bound on CPUs and GPUs,

and can hence benefit from PIM-acceleration (Section 5.1).

• I develop the novel StepStone PIM GEMM execution flow that is cog-

nizant of the complex CPU address mapping, thus exploiting GEMM

locality and improving performance by 35−55% over a prior PIM archi-

tecture that supports complex address mappings [29].

• I accelerate the localization and reduction operations of my new GEMM

flow at the CPU memory controller to improve performance by up to an

additional 40%.

• I design the novel memory-side StepStone address generator that en-

ables long-running GEMM kernels to minimize command-channel us-

age, which improves PIM performance by 5.5× when the CPU executes

concurrent memory-intensive tasks.

71

• I identify a new tradeoff opportunity in determining whether to target

channel-, device-, or bank group-level PIMs and show benefits of up to

35% in exploiting it.

• I present a detailed StepStone PIM evaluation, including end-to-end per-

formance analysis and conclude that StepStone is an appealing datacen-

ter solution because of its low cost (no additional memory devices or

capacity), its potential for lower latency and higher throughput, and its

ability to dynamically support the execution of larger-batch and colo-

cated tasks on the CPU.

Combining all my innovative mechanisms, StepStone is able to sub-

stantially outperform a CPU when executing GEMM operations on matrices

with dimensions typical in datacenter DL inference workloads: (1) StepStone

offers 12× lower minimum GEMM latency for these matrices; (2) 77× higher

throughput under the strictest latency constraints that correspond to batch-1

on the CPU but if the CPU is allowed 20% additional latency for batch-32

execution, the performance benefit drops to 2.8×; and (3) up to 16× lower

end-to-end DL inference latency compared to measured CPU performance.

5.1 Motivation and Challenges

Bandwidth-bound GEMMs. Matrix-matrix multiplication (GEMM) is

commonly regarded as compute bound. However, I observe that GEMM be-

comes bandwidth-bound and exhibits low CPU/GPU utilization when both:

72

(1) one of the two input matrices is much larger than the other (e.g., A is

large while B is “tall and skinny”) and (2) the large input matrix is in main

memory. While rare in traditional linear algebra applications, DL inference

tasks in datacenters often meet both conditions.

First, DL inference queries have tight latency constraints that require

small batches [116]. The corresponding GEMM operations in fully-connected

layers therefore multiply a large weight matrix and a small input matrix. Sec-

ond, the MLP weights are often only found in main memory because either the

total size of the MLP parameters exceeds cache capacity (e.g., in recent lan-

guage models [23, 39, 124]) and/or multiple models are colocated on a single

node [56].

The resulting matrix sizes (Table 5.1) are executed inefficiently on

CPUs and GPUs as shown by the roofline analysis presented in Figure 5.1.

Each point in the figure corresponds to the performance measured on a 2.7

GHz 28-core Intel Cascade Lake Xeon CPU or an NVIDIA Titan Xp GPU

Table 5.1: Common DL-inference GEMM dimensions.

Model Description Weights Batch Size

LM

BERT
MLP 1024×4096

1-8 [116]

MLP 4096×1024
Projection 1024×1024

GPT2
MLP 1600×6400
MLP 6400×1600
Projection 1600×1600

RM
DLRM
(RM3)

Bottom MLP 2560×512

1-256 [116]
Bottom MLP 512×32
Top MLP 512×128
Top MLP 128×1

73

0.01

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000

Pe
rfo

rm
an

ce
 (G

flo
ps

/s
)

Operational intensity (Flops/byte)

CPU (weight in main memory)
GPU (weight in device memory)
GPU (weight in main memory)

CPU

PCIe

GPU

Data loading
overhead

Figure 5.1: CPU (Intel Xeon Platinum 8280) and GPU (NVIDIA Titan XP)
roofline modeling when executing bandwidth-bound GEMM operations of a
memory-resident 1024 × 4096 weight matrix with a 4096×N matrix; N is
swept from 1− 1024 in powers of 2 moving from left to right.

when multiplying a memory-resident 1024×4096 matrix by a cache-resident

4096×N matrix, where N represents the batch size. The left-most point for

each system is when N = 1 and each point moving right represents a doubling

of N . I observe that all three systems are bandwidth bound for inference-

appropriate batch sizes (N ≲ 32). Further, for such small batches, GPU

performance is lower than the CPU if matrix A is in host memory because of

the slow host-device bus.

I conclude that processing in/near memory (PIM) is appealing for these

GEMM operations of datacenter DL-inference workloads.

PIM GEMMs with XOR-based DRAM address mapping. I target

systems in which main memory is PIM enabled, implying a shared DRAM ad-

74

p
q

0

2122

3

24

5 6

27

8

292a

b

2c

d e

2f

50

7172

53

74

5556

77

58

7980

5b

8c

5d5e

8f
(b)

yx
✕

=

Batch size

Input dimension

O
utput dim

ension

Weights

Input tensor

6 5 4 3 2 1 0

PIM ID 0 (RK)

DRAM row ID DRAM column ID

(a) (c)

PIM ID 1 (CH)

PIM 0

PIM 1

PIM 2

PIM 3

CPU

CPU
Cores

M
em

 C
trl

M
em

 C
trl

O
utput

Tensor
Figure 5.2: An example of bandwidth-bound GEMM operation with PIM and
a toy XOR-based address mapping: (a) toy XOR-based physical-to-DRAM
address mapping where addresses refer to contiguous row-major matrix ele-
ments; (b) layout of an 8 × 16 matrix with colors indicating element→PIM
unit mapping; (c) example system with rank-level PIMs.

dress space with the CPU. The CPU relies on sophisticated XOR-based DRAM

address mappings to exploit bank and channel parallelism by distributing con-

secutive cache blocks in the physical address space (PA) across DRAM banks

and channels. As a result, matrices that are contiguous in the application

virtual space are distributed across PIM units (PIMs) in complex patterns.

Effective GEMM execution requires exploiting locality and reuse in matrix

blocks, which are challenging to identify.

Figure 5.2 illustrates this challenge for the toy address mapping of

Figure 5.2a targeting a system with 4 PIM units (one per rank). Addresses

refer to elements of the large matrix shown in Figure 5.2b, which is laid out row

major in contiguous memory addresses. Logical blocks of the matrix do not

form blocks within each PIM. For example, element 0e of the weight matrix

(marked in black) is mapped to PIM0 and is multiplied by elements p and q

from the input tensor to modify elements x and y of the output tensor. These

75

same elements of the input tensor are also needed when reading element 5e

of the weight matrix and the same two output-tensor elements when reading

weights 00, 03, 05, 06, 08, 0b, and 0d. Utilizing this locality requires the PIMs

to correctly map between contiguous DRAM addresses within each PIM and

the corresponding addresses of the input and output tensors.

Prior approaches to this challenge fall into one of three categories. The

first avoids the challenge altogether by maintaining a copy of the data that is

stored in a PIM-friendly layout and not accessed by the CPU [59, 79, 89]. This

either duplicates substantial data arrays (possibly > 100GiB) [23, 124, 109]

or prevents the CPU from assisting with requests that can tolerate higher

response latency [55]. Furthermore, a different layout is needed for channel-,

device-, and bank group-level PIMs. This either forces even more replicas or

prohibits optimizations that dynamically choose the PIM level based on input

characteristics (e.g., as in the XLM language model [31]).

The second approach requires the CPU to transfer this correspondence

information to the PIMs for each cache block the PIM processes [10, 80]. The

CPU sends special DRAM command packets that include operand and opcode

information to each PIM unit and all the transactions related to PIM execu-

tion are controlled by the host. PIMs are isolated from the address mapping

concerns, but performance scalability is poor because: (1) channel bandwidth

for sending PIM command packets saturates rapidly, (2) CPU resources are

required for address generation, and (3) the frequent PIM command packets

severely interfere with CPU memory traffic [29].

76

The third approach, proposed by Cho et al. [29], aligns long vector PIM

operands in memory such that all kernel operands follow the same interleaving

pattern after the XOR address mapping. In this way, both the CPU and the

vector-oriented PIM can process the same data. However, this vector-oriented

approach cannot exploit the GEMM kernel locality. Vector-oriented execution

splits the GEMM into multiple matrix-vector (GEMV) operations, requiring a

larger number of kernel invocations. The straightforward implementation also

requires copies across PIM units to ensure all data is local. The standalone

(non main-memory) Newton PIM accelerator [59] also follows this approach.

I observe that a different execution flow can be used to block both the input

and output matrices to reduce copy overhead. I explain my StepStone PIM

GEMM in the following section.

5.2 StepStone PIM

StepStone PIM enables independent GEMM execution with PIMs un-

der any XOR-based memory-system address mapping. In StepStone PIM, the

weight matrix is partitioned and assigned to PIMs based on the underlying ad-

dress mapping, maintaining internal contiguity and enabling temporal locality

when each PIM unit works on its GEMM blocks. From the CPU perspec-

tive, the PIMs appear to skip within the address space and only step on those

“stones” (i.e. cache blocks) that are physically local to them.

77

5.2.1 StepStone Architecture

The StepStone PIM architecture is, for the most part, a standard PIM.

The innovation lies in how I map GEMM operations and in my unique address-

generation algorithm, both discussed later in this section. StepStone is com-

prised of a host-side PIM controller that interfaces with PIM units (PIMs)

through the memory channel to control their operation using memory-mapped

PIM-side registers. As shown in Figure 5.3a, PIM units (PIMs) can be in-

tegrated with: (1) DRAM itself, e.g., at the bank-group level (StepStone-

BG); (2) with a memory module, e.g., associated with each DRAM device

or buffer chip (StepStone-DV);2 and/or (3) with a memory channel controller

(StepStone-CH). I consider all three integration levels. Note that StepStone-

BG accounts for device-level timing parameters such as tRCD and tFAW using

control logic at the I/O port of each device.

Each PIM unit (Figure 5.3b) includes SIMD/vector units, scratchpad

memory, interfaces, control logic to execute the GEMM kernel command (sub-

GEMM to be more precise), and a local-address generation unit. The pipeline

is sufficiently deep to hide address generation and access latencies (20 stages

in my case). When N (e.g., the batch dimension) is large, performance is

bound by the SIMD width. While wide SIMD units are desirable, arithmetic

performance must be balanced with area and power constraints.

Following prior work, I aim for 0.15mm2 for each StepStone-BG unit [53]

2This is a cheap rank-level PIM with no inter-device communication.

78

and 1.2mm2 for StepStone-DV [15]. I aim for a 2 : 1 ratio between SIMD

area and scratchpad area and assume additional logic is of comparable size to

the scratchpad. I estimate functional unit and scratchpad area and power at

the device-level with the values reported for iPIM [53] and at the device and

channel levels following the methodology of Lym et al. [102]. This analysis

yields nominal values of 8-wide SIMD with 8KB scratchpad capacity for each

StepStone-BG unit (4 PIMs per DRAM device), and 32-wide SIMD with 32KB

scratchpad capacity per StepStone-DV PIM unit. For StepStone-CH, I keep

the same bandwidth to arithmetic performance ratio as StepStone-DV: 256-

wide SIMD units and 256KB scratchpad capacity. I consider all three cases

and conclude that StepStone-CH offers the lowest performance and requires

the largest die area.

One other component is the replication/reduction unit within the PIM

controller, which is used to accelerate the distribution of matrix B and re-

duction of partial values of C, which are required for the GEMM execution

described below.

5.2.2 StepStone GEMM Execution

GEMM execution starts with the large weight matrix A stored contigu-

ously in the virtual and physical address spaces in row-major order.3 There-

fore, A is distributed across memory devices based on the DRAM address

3I assume that the matrix dimensions are powers of two; matrices with non-power-of-two
dimensions are either padded or execution is partitioned/serialized into smaller, power-of-
two matrices.

79

Host

Rank
0

Rank
1

Rank
2

Rank
3

Controller

CPU
Cores

CPU
Memory

Controller

PIM ctrl signal

Status update

DRAM
Interface

CPU interface Mem. Access

CPU-side PIM and memory controller

 ① StepStone-CH

Device
0

Device
1

Device
2

Device
7

…

②
 StepStone-D

V
PIM

Controller

Copy
Engine

…

Bank
Bank
Bank
Bank

Bank
Bank
Bank
Bank

I/O ports + PIM ctrl
③ SS-BG SS-BG

Bank
Bank
Bank
Bank

Bank
Bank
Bank
Bank

SS-BG

Bank groups
DRAM device

SS-BG

DIMM

(a) Baseline PIM system.

Control/Status
Reg.

Scratchpad

Vector
unit

DRAM Opnd.

Host interface

Memory interface

Host memory operations

Ctrl. logic
Addr.
Gen.…

(b) StepStone PIM architecture.

Figure 5.3: Overview of the StepStone PIM System.

mapping as shown in Figure 5.4 (for the Intel Skylake address mapping [121]

on StepStone-BG and depicting only the elements of A that map to PIM0,

which I refer to as partition A0). A0 must be multiplied with elements of B

and accumulated into elements of C. To maximize parallelism, I first localize

private copies of B and C into each PIM unit, also shown in the figure. Local-

izing data copies the data into a pre-allocated per PIM-unit memory region.

80

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 a b c d e f

8 9 a b c d e f
1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

8 9 a b c d e f

8 9 a b c d e f
1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

5 - 0

1

2

3

4

Iter. 1

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
CH

RK

BG0
BG1

PIM ID (0): 0 0 0 0 MROW MCOL

Group ID (0): 0 0 19 18 13 1214

GP1
GP0

(a) PIM and group IDs under Skylake address mapping. MCOL and MROW are the
row and column index values of matrix A.

Matrix A
(Shared)

Matrix C
(Locallized)

N

K

M

✕

=

Shared by 4 PIMs
(Replication)

Shared by 4 PIMs
(Reduction)

1

10 9 8 7 6

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 1 1 0 0

0 0 1 0 0

+1

+1

Instant
correction (1 → 0)

Instant
correction (01 → 11)

Carry

Ex
ec

ut
io

n
or

de
r

Iter. 2

No check

Check &
Complete

Instant & iterative correction

2 Carry forwarding (if M >= 128)

0 0 0 0 1
17 16 15 14 13

0 0 0
20 19 18

+1

1 0 0 0 00 0 0

Carry
forwarding

PIM ID[2]
PIM ID[1]
Group ID[1]

Matrix B (Localized)

(b) An example of ���
��	�����	�� grouping for PIM0 ([M, K, N] = [16, 512, 4]).
Each square represents 16 32-bit words (1 cache block).

(c) StepStone address generation mechanisms

N

Figure 5.4: Overview of GEMM execution with StepStone PIM.

Execution then proceeds with a partial dot product across rows of A0 with

columns of B (B is shown transposed in the figure).

However, recall the dual challenges of identifying the corresponding

indices in B and C as A0 is advanced while maximizing reuse during exe-

cution. I address these challenges grouping together cacheline-sized memory

blocks (“cache blocks”) into block groups that follow the same DRAM address

mapping distribution. I note that the grouping depends both on the address

mapping and the matrix dimension. Each block group is shaded a different

color in Figure 5.4b.

81

StepStone locality. To maximize reuse, each element of B should be multi-

plied with as many elements of A before overwritten in the buffer. I achieve

this by executing one block group at a time: cache blocks within each group

across rows reuse elements of C while those along columns reuse elements of

B. No reuse exists between groups.

The number of groups required to maximize locality is determined by

the number of PIM ID bits that are impacted by addresses within the matrix.

For example, the matrix in Figure 5.4 is 16×512 4B words and starts at physi-

cal address 0, thus locations within this matrix span the lower 15 address bits.

Within these bits, bits 7 and 14 determine one bank-group bit (BG0, which is

also PIM ID bit 0) and bits 8, 9, 12, and 13 affect the channel bit (PIM ID3).

The other PIM ID bits are fixed for all locations within this matrix. I further

note that a group spans entire rows to maximize locality. I therefore exclude

address bits associated with matrix columns (MCOL) from defining the group

ID bits (GP0 and GP1 in the figure).

Localizing matrices B and C. Matrix B is (partially) replicated and local-

ized to the different PIMs before execution begins, and the localized partial-

result C matrices are reduced after the GEMM. The replication and reduction,

along with data reorganization for spatial locality within each PIM unit are

handled by the host and accelerated with a simple DMA engine at the PIM

controller. The operation of this engine is illustrated in Figure 5.5 for localiz-

ing matrix B for a portion of matrix A that is distributed across PIMs 0, 1, 8,

and 9. Matrix B is again represented transposed in the figure and consecutive

82

a0
a1
a2
a3

b0
b1
b2
b3

0 0

c0
c1
c2
c3

d0
d1
d2
d3

1 1

8
8
8
0

8
8
8
0

9
9
9
1

9
9
9
1

0
0
8

0
0
8

1
1
9

1
1
9

Weights

M
id

dl
e

lo
op

In
ne

r l
oo

p a0 a1 a2 a3
b0 b1 b2 b3

a0 a1 a2 a3
b0 b1 b2 b3

c0 c1 c2 c3
d0 d1 d2 d3

✕

c0 c1 c2 c3
d0 d1 d2 d3

8 8 9 9

0
0
0
8

0
0
0
8

1
1
1
9

1
1
1
9

8
8
0

8
8
0

9
9
1

9
9
1

e0
e1
e2
e3

f0
f1
f2
f3

g0
g1
g2
g3

h0
h1
h2
h3

Group 0
e0 e1 e2 e3
f0 f1 f2 f3

Group 1

Group 0 Group 1
e0 e1 e2 e3
f0 f1 f2 f3

Group 0 Group 1

Group 0 Group 1

PIM 1

g0 g1 g2 g3
h0 h1 h2 h3

PIM 9

g0 g1 g2 g3
h0 h1 h2 h3

PIM 0

PIM 8

Outer loop

Reorganization table

Input tensor

Figure 5.5: Input-matrix Reorganization.

elements in each of its rows appear as columns (e.g., a0 - a3).

During localization, the engine reorganizes the input matrix for each

PIM unit such that accesses are sequential during its group-based execution.

The outer-most loop iterates over columns of A, localizing the rows of B (ap-

pear as columns in BT) needed for each column in the PIMs and block groups

it maps to. The PIM and group IDs are computed based on the mappings

illustrated in Figure 5.4a. Each cache block of B is read once and then copied

to all its relevant PIM-local addresses. Reductions follow a similar execution

flow.

5.2.3 Overall Execution Flow of StepStone GEMM

The execution flow of complete GEMM is shown in Algorithm 1. After

localization, the input matrices are all aligned in the DRAM accessible by each

PIM unit and execution proceeds in group order. A slight complication arises

when A is very large such that not all elements of B and C that correspond

83

to a group can be buffered within the scratchpad. In such cases, to still

utilize locality, I further block each group. This blocking can be across rows,

maximizing reuse of C, and/or across columns. I process blocks of rows first

because C offers greater reuse as it is both read and written.

The inner-most GEMM call is coarse-grained for the full StepStone PIM

with the mapping-aware AGEN unit, but is split into multiple dot product

operations without this innovative AGEN logic. In this way I can isolate the

contributions of my algorithm mapping and hardware mechanism when evalu-

ating StepStone PIM compared to prior PIM architectures, like Chopim [29] (I

denote my StepStone GEMM flow on Chopim as enhanced Chopim or eCHO).

Note that address generation with partitioning is slightly different than

as described for unpartitioned groups execution. When crossing different col-

umn partitions (groups of columns that partition a row into multiple blocks),

address generation must skip over those columns belonging to different parti-

tions. This is simple to do and only requires modifying the address-generation

rules to account for group and partition ID.

5.2.4 StepStone Address Generation

Within a single cache block, the address is a simple increment, but once

the value of a bit that determines the PIM ID is modified, that contiguous

physical address must be skipped until the next physical address that maps to

the same PIM unit and block group is reached. A simple iterative approach of

incrementing the address until the address is again within this same block and

84

PIM ID, the number of iterations required when the number of PIMs is large

introduces bubbles into the execution pipeline and degrades performance.4

I propose new increment-correct-and-check AGEN logic that skips to

the next closest address with the same PIM and group IDs (after the simple

increment falls outside the target IDs). I do this by ensuring that those address

bits that are XORed to determine each ID bit always maintain their parity.

I can thus skip incrementing bits that are lower than the lowest ID-affecting

address bit. The AGEN logic iterates over the ID-affecting bits (from LSB to

MSB), each time incrementing the next ID-affecting bit and checking whether

the PIM and group IDs match their target values.

The number of iterations is limited to the number of ID-affecting bits,

but can be further reduced with two additional rules. The first rule applies for

adjacent address bits that both affect the same ID bit. When the lower of the

two is incremented, the upper must be as well to maintain parity. This can

be done directly, saving one iteration. The second rule applies for chains of

contiguous address bits that each affect a different ID bit. In this case, when

the first is incremented, the carry it propagates will have to corrected in mul-

tiple iterations to maintain the parity corresponding to each bit in the chain.

Thus, the chain can be skipped with the carry simply directly propagated to

the next-higher address bit. These rules are shown in Figure 5.4c. The top

part of the figure illustrates the first rule of instantly correcting from 01 to 11,

4I assume that the CPU address mapping is available for PIMs either by reverse engineering,
by CPU vendors building the PIMs, or by agreement.

85

and the bottom part illustrates the second rule of forwarding the carry from

bit 13 to 17 since bit 14-16 affect different ID bits.

Algorithm 1: Group-based GEMM with partitioning.

localize(B);
localize(C);
for rpart in row partitions do

buffer fill(C);
for grp in block groups do

for cpart in col partitions do
buffer fill(B);
if StepStone then

StepStone GEMM;
end
else if eCHO then

for row in cpart do
DOT(row);

end

end

end

end
buffer drain(C);

end
reduce(C);

5.2.5 Optimizations

Multiple optimizations over the basic flow described above are pos-

sible, including fusing multiple kernel executions for matrices that are not

powers of two, balancing parallel execution with the overheads of localiza-

tion and reduction, and choosing a PIM level for execution (StepStone-BG vs.

StepStone-DV). For brevity, I only discuss the latter two.

86

Choosing the PIM level. Bank-group level StepStone-BG offers the highest

potential performance when the GEMM is severely bandwidth bound (very

small batches) because it accesses underutilized bandwidth within a DRAM

device. An interesting tradeoff emerges as bandwidth constraints decrease with

somewhat larger batches. The arithmetic intensity (data resuse per operation)

in StepStone scales with the batch size (N) up to the SIMD width of each PIM

unit. This results in comparable arithmetic execution times for 1 ≤ N ≤ 16

in StepStone-BG and for 1 ≤ N ≤ 32 in StepStone-DV (though obviously the

execution times differ between the two PIM levels). At the same time, the

overheads of localization and reduction increase with N and with the number

of PIMs (number of block groups).

An optimization opportunity emerges for choosing between bank-group

and device level PIMs as a result. The best PIM level depends on the matrix

dimensions and the address mapping as these determine the number of block

groups, and hence the localization and reduction overheads. I demonstrate

this tradeoff in Section 5.4 and generally find that StepStone-BG is best when

N ≤ 16. Note that I do not discuss the algorithm for choosing the PIM level,

but note that a simple heuristic that estimates execution times and overheads

based on available bandwidth and transferred data volumes works well.

Small weight matrices. A similar tradeoff between arithmetic performance

and localization and reduction overhead exists when the matrices are relatively

small. In such cases, it is preferable to only use a subset of the available PIMs,

trading off lower arithmetic performance for reduced overheads. I show that

87

this optimization can yield a ∼ 25% performance improvement in some cases

(Section 5.4.4). Another optimization for relatively small matrix A is that

CPU can directly write to and read from PIM’s scratchpad memory when the

matrix B and C fits in it. This reduces the time to move data between DRAM

and the scratchpad memory.

Optimizing execution to only utilize a subset of the PIMs comes with

additional considerations when allocating memory for the large distributed

input matrix A. Specifically, A must remain contiguous in virtual memory

yet be mapped to just a subset of the PEs. Because the address mapping

and size of the matrix is known, it is possible to allocated physical memory

frames to satisfy this mapping constraint as long as the PIM ID bits that are

ignored (for subsetting) are not affected by virtual-address offset bits. In other

words, this is possible with base pages only (e.g., 4KB pages). Enforcing the

mapping constraints to maintain alignment with the PIMs can be done using

the proposed coloring interface introduced by Cho et al. [29] and by modifying

the application’s memory allocator.

For example, if the goal is to execute on half the PIMs of StepStone-BG

with the Skylake mapping, I keep BG0 fixed for the entire physical allocation

of A. This is achieved by allocating virtual memory at 32KB granularity rather

than the minimum 4KB granularity. Additionally, I must ensure that contigu-

ous virtual addresses remain aligned in the DRAM space and therefore must

also ensure that the other PIM ID bits follow a consistent mapping. I do that

by coloring those bits in a way that the OS-level frame allocator maintains

88

alignment, as proposed for Chopim [29].

5.3 Methodology

System configuration. Table 5.2 summarizes my system configuration and

DRAM timing parameters. My DRAM model is based on the DDR4 model

of the Ramulator detailed DRAM simulator [85]. I implement StepStone-

CH, StepStone-DV, and StepStone-BG PIMs inside Ramulator with detailed

pipeline and timing models. I emulate my memory allocator and add an ad-

dress translation engine into the PIM controller on the CPU (5.2.1); address

translation is infrequent (once per coarse-grained PIM command) because con-

tiguous physical regions are allocated for PIM execution. To validate my ex-

ecution flow, I modify Ramulator to read from and write values to memory

and check the final output against pre-calculated results. I also compare all

addresses from the StepStone AGEN logic with a pre-generated address trace

for each PIM. For all the GEMM operations with StepStone PIM, I assume the

input activations reside in the CPU caches and are therefore localized to the

active PIMs. In the same way, I assume the final GEMM results are reduced

by the CPU.

I use the XOR-based address mappings described in DRAMA [121], ac-

quired by reverse-engineering Intel and Samsung CPUs. To show the impact of

address mapping on the same DDR4 model, I modify the address mapping of

Exynos, Dual-socket Haswell, Ivy Bridge, and Sandy Bridge based on the ran-

domized method (PAE) proposed by Liu et al. [98]. By default I use Skylake’s

89

address mapping. To measure GEMM performance on real machines, I use

an Intel Xeon Platinum 8280 (CPU) with Intel oneDNN [2] and an NVIDIA

TitanXP (GPU) with CUTLASS [4].

The area and power of the SIMD units are estimated based on Lym

et al. [102] for StepStone-DV and StepStone-CH and iPIM [53] for the SIMD

units of StepStone-BG. I use Cacti 6.5 [106] to estimate the area and power

of scratchpad memory.

Workloads. I choose matrix sizes and aspect ratios to clearly show their

impact on performance. By default, I use 1024 × 4096. For end-to-end per-

formance evaluation, I use the 4 different DL models summarized in Table 5.2.

Since my goal is to accelerate GEMMs with small batch sizes, I vary the batch

size from 1 to 32. I refer to input and output activations as matrix B and C,

respectively, and I refer to the largest matrix as weight matrix A.

I demonstrate the benefits of long-running kernels for concurrent CPU

and PIM execution in a colocation scenario of the default 1024 × 4096 GEMM

with a mix of the mcf, lbm, omnetpp, and gemsFDTD from SPEC CPU

2017 [115]. The CPU applications are modeled with gem5 [19] (4 OOO x86

4GHz cores with fetch/issue width of 8, a 64-deep LSQ, and a 224-entry ROB),

similarly to [29].

Comparisons. I compare my approach with two existing PIM approaches,

PEI [10] and Chopim [29], which are capable of accelerating GEMMs in main

memory and leveraging multi-level PIMs with one data layout. To make a fair

90

comparison, I use my baseline PIM system (Figure 5.3) for all approaches and

only vary localization/reduction mechanisms and PIM kernel granularity. For

PEI, each PIM instruction is used to process one cache block and all the other

operands needed for executing the PIM instruction is written to scratchpad

memory by the CPU. I evaluate two versions of Chopim. The baseline naive

Chopim (nCHO) follows the GEMV mapping approach (Section 5.1). I also

use my newly-developed StepStone flow with an “enahnced” Chopim (eCHO).

This eCHO configuration exploits locality as well as StepStone PIM, but re-

quires more frequent kernel calls (Algorithm 1) and does not use accelerated

localization and reduction operations.

5.4 Evaluation Results

In this section, I demonstrate the throughput and latency benefits of

StepStone over either a CPU or GPU, evaluate the impact of address mapping

and scratchpad capacity, and analyze the tradeoff between arithmetic perfor-

mance and overheads as the number of active PIM units (PIMs) is varied.

5.4.1 StepStone PIM Performance Benefits

I first compare the performance of StepStone PIM to a 2.7GHz 28-core

Intel Xeon Platinum 8280 Cascade Lake CPU with a representative 1024 ×

4096 weight matrix (Figure 5.6). StepStone PIM offers tremendous benefits

for latency and throughput targets. When considering the minimum latency

batch-1 execution, StepStone-BG with a PIM unit per bank group offers far

91

Table 5.2: Evaluation parameters.

PIM configurations

StepStone-BG 8-width SIMD, 8KB scratchpad (per DRAM device), 1.2GHz

StepStone-DV 32-width SIMD, 32KB scratchpad (per buffer chip), 1.2GHz

StepStone-CH 256-width SIMD, 256KB scratchpad (per channel), 1.2GHz

Address mappings

ID = 0 Exynos-like address mapping (modified)

1 Haswell-like address mapping (modified)

2 Ivy Bridge-like address mapping (modified)

3 Sandy Bridge-like address mapping (modified)

4 Skylake address mapping (baseline)

DRAM timing parameters (DDR4-2400R, 4GB, x8)

tBL=4, tCCDS=4, tCCDL=6, tRTRS=2, tCL=16, tRCD=16,
tRP=16, tCWL=12, tRAS=39, tRC=55, tRTP=9, tWTRS=3,

tWTRL=9, tWR=18, tRRDS=4, tRRDL=6, tFAW=26

Energy components

In-device RD/WR (11.3pJ/b), Off-chip RD/WR(25.7pJ/b)s,
CH/DV/BG SIMD (11.3,11.3,11.3nJ/op),

CH/DV/BG Scratchpad (0.03/0.1/0.3 nJ/access)

DL inference parameters

RM DLRM [109]
RM3, Bottom MLP (2560-512-32),

Top MLP (512-128-1), bsz=4

LM

BERT [39]
Text classification (WNLI), 24 transformer blocks,

MLP (1024-4096-1024), seq. length=8, bsz=4
#attention heads=16

GPT2 [124]
Text generation, 48 transformer blocks,

MLP (1600-6400-1600), seq. length=8, bsz=4

XLM [31]
Text generation, 12 transformer blocks,

MLP (2048-8192-2048), seq. length=8, bsz=4

superior latency: 2.8× better than the device-level StepStone-DV and 12×

better than the CPU.

92

0.0E+00
3.0E+05
6.0E+05
9.0E+05
1.2E+06
1.5E+06
1.8E+06
2.1E+06

1 4 16 32* 32 1 4 16 32* 32 1 4 16 32 1 4 16 32

BG-level PIM DV-level PIM CH-level PIM CPU

DR
AM

 C
yc

le
s

GEMM Buffer fill (B) Buffer fill (C) Buffer drain (C) Localization Reduction CPU time

Figure 5.6: GEMM Latency comparison between different PIM options of
StepStone PIM and the CPU. The configurations with relaxed area constraints
are labeled with * (i.e. enough ALUs and large enough scratchpad memory).

Alternatively, I consider maximum throughput under a latency con-

straint. When the latency constraint is set to the minimal latency of the

CPU (CPU with batch-1), StepStone-DV offers 77× higher throughput (32×

more samples at about 40% less time). If I allow a larger-area PIM with

larger scratchpads, performance is improved even further to 96×. If I relax

the latency constraint and allow the CPU 1.2× more time to complete an

inference task, which allows batch-32 on the CPU, the performance benefit

of StepStone-DV drops to 3× (3.5× with a larger scratchpad). While I use

the highly-optimized Intel OneDNN library on the CPU, the performance I

observe falls short of the channel-level StepStone-CH, which can fully utilize

the memory-system bandwidth. Still, the finer-grained StepStone-DV (which

can be implemented in buffer chips) offers substantially better performance

and StepStone-BG offers far lower minimum latency.

Throughput rooflines. The throughput benefits of StepStone are also ap-

93

parent on the roofline plot presented in Figure 5.7, also for a 1024 × 4096

weight matrix. The plot includes the CPU as above, StepStone-BG and -DV

(the maximum of the two represents the achieved performance with Step-

Stone), and the performance obtained with an NVIDIA Titan Xp (running

CUTLASS) when the model is already present in GPU device memory or

when it must first be read from CPU main memory.

In the realistic scenario where GPU memory capacity is too small to

accommodate the full recommender system and language models, StepStone

exhibits higher throughput (in addition to its latency benefits) at all reasonable

batch sizes. In fact, the CPU and GPU offer an advantage only once the

batch is 256 samples or greater. Even if the model fits in GPU memory,

StepStone offers higher performance for batches of 16 samples or less. The

gap between the rooflines and simulated performance of StepStone stems from

the localization and reduction overheads.

I emphasize that StepStone PIM achieves this high performance bene-

fits without utilizing CPU or GPU compute resource, such as cores or caches.

This implies that the overall system performance can increase even further by

colocating additional tasks on the same node.

5.4.2 End-to-End Performance

Figure 5.8 compares the inference performance of one recommenda-

tion system and three language models with different PIM approaches—PEI,

Chopim, and StepStone PIM—to that of a CPU. For the PIM approaches, I

94

0.01

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000

Pe
rfo

rm
an

ce
 (G

flo
ps

/s
)

Operational intensity (Flops/byte)

CPU (weight in main memory)
GPU (weight in device memory)
GPU (weight in main memory)
StepStone-BG (weight in main memory)
StepStone-DV (weight in main memory)

Figure 5.7: Roofline models for CPU, GPU, and StepStone PIMs; measured
results are for a 1K × 4K weight matrix for varying batch sizes (the left most
point of each system is for batch-1 and the batch is 2× larger for each point
moving to the right).

assume the same PIM system (Figure 5.3) and that GEMMs can be executed

by either the CPU, device-level (PIM DV), or BG-level PIMs (PIM BG); the

best performing option is chosen for each GEMM. GEMMs are used for FC

and projection layers. All other operations, including concatenation, GELU,

softmax, sorting, batched GEMM, and some data reorganization (e.g. stack)

operations are executed on the CPU (CPU Other).

I show the performance of two different CPU models: measured on

the real system (CPU) and idealized CPU performance (iCPU). I estimate

idealized performance with my StepStone-CH, which maximally utilizes mem-

ory channel bandwidth. Overall, the measured results show that the CPU

performs poorly on small-matrix GEMMs.

95

Naive Chopim (nCHO) executes GEMMs as multiple GEMV opera-

tions, which leads to missed locality opportunities. On the other hand, if

Chopim is enhanced with StepStone block grouping (eCHO) and divides each

GEMM into smaller dot-product operations, it benefits from better PIM buffer

locality and the overhead for buffer fill/drain significantly decreases. However,

compared to StepStone PIM, eCHO suffers from higher localization/reduction

overhead. I evaluate a low-power StepStone PIM mode (STP*), where only

StepStone-DV is used, and a high-performance mode (STP), which selects the

best-performing level per GEMM.

The execution time of DLRM is dominated by a single FC layer (92%)

and GEMM execution time is long enough to amortize the localization/reduction

overheads. This enables Chopim and StepStone PIM to use BG-level PIMs and

benefit from their high memory bandwidth. On the other hand, PEI cannot

fully utilize BG-level PIMs due to command bandwidth bottleneck and, con-

sequently, using more PIMs with PEI only increases overhead. GPT2 shows

a similar trend but the gaps between PEI and StepStone PIM/Chopim are

greater due to a larger weight matrix than DLRM. In BERT and XLM, the

N dimension is the batch size multiplied by the sequence length after tensor

reshaping, offering more efficient GEMM execution. For BERT, N becomes

32 in all FC layers whereas, for XLM, the sequence length starts at 1 and

increases by 1 up to the maximum length (8 in my configuration) after each

iteration. As a result, XLM utilizes BG-level PIMs when N is small and,

later, switches to DV-level PIMs once arithmetic performance saturates and

96

8.4 3.1 2.8 7.2

0
0.2
0.4
0.6
0.8

1
1.2

CP
U

iC
PU PE

I

nC
H

O

eC
H

O

ST
P* ST

P

CP
U

iC
PU PE

I

nC
H

O

eC
H

O

ST
P* ST

P

CP
U

iC
PU PE

I

nC
H

O

eC
H

O

ST
P* ST

P

CP
U

iC
PU PE

I

nC
H

O

eC
H

O

ST
P* ST

P

DLRM GPT2 XLM BERT

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

PIM_DV PIM_BG CPU_GEMM CPU_Other

Figure 5.8: End-to-end performance results for various recommendation and
language models with the CPU and PIMs.

overheads start to dominate.

Overall, when weight matrices are larger and the batch dimension is

smaller, StepStone PIM outperforms other CPU and PIM approaches. Even

with somewhat larger batches (e.g., up to N = 384 for BERT), StepStone

PIM outperforms the CPU by splitting a batch into several batch-32 GEMM

operations. For example, StepStone PIM achieves 12× higher performance

than the CPU for BERT. Thus, StepStone PIM outperforms the CPU until

N = 12× 32 = 384.

5.4.3 Impact of StepStone AGEN

Figure 5.9 shows the performance benefit of StepStone AGEN over

the naive approach (explained in Section 5.2.4). Overall, StepStone AGEN

outperforms the naive approach by up to 4×, in particular when the number

of active PIMs is larger. Intuitively, the naive approach can find the next

cache block in a probability of 1/n, where n is the number active PIMs. For

StepStone-BG (Figure 5.9a) there are 16 active PIMs and the performance

97

(a) m ✕ k = 1024 ✕ 4096 (b) m ✕ k = 2048 ✕ 8192

0.0E+00

5.0E+05

1.0E+06

1.5E+06

Na
ive

AG
EN

Na
ive

AG
EN

Na
ive

AG
EN

BG DV CH

DR
AM

 C
yc

le
s

0.0E+00

2.0E+06

4.0E+06

6.0E+06

Na
ive

AG
EN

Na
ive

AG
EN

Na
ive

AG
EN

BG DV CH

DR
AM

 C
yc

le
s

Figure 5.9: GEMM latency comparison between naive address generator and
the proposed StepStone AGEN.

difference between two approaches is 8×. This is mainly because pairs of

cache blocks are contiguous in my baseline address mapping, which equates

the naive approach with my optimized AGEN. However, when a large gap

in the mapping exists, the naive approach requires numerous iterations and

requires a large number of cycles to generate the next address. The DRAM

burst transfer latency is 4 DRAM cycles and bubbles are introduced any time

the next address cannot be generated within that time window. This does not

occur with my proposed AGEN and its latency can always be hidden within the

pipeline. The difference in performance between the two approaches for this

case is apparent for StepStone-DV with a large weight matrix (Figure 5.9b),

where the performance gap is 2.5×.

5.4.4 Parallelism—Distribution Overhead Tradeoffs

Figure 5.10 shows the GEMM latency comparison between two cases:

(1) when all bank group-level PIMs are used and (2) only half of the BG-

level PIMs are active. I present bank group-level PIMs tradeoff because I

98

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

16 32 16 32

512✕2048 2048✕512

DR
AM

 C
yc

le
s

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

16 32 16 32

1024✕4096 4096✕1024

DR
AM

 C
yc

le
s

All PIMs

1/2 PIMs

Batch size

0

200000

400000

600000

800000

1000000

1200000

16 32 16 32

1024✕4096 4096✕1024

DR
AM

 C
yc

le
s

GEMM Buffer fill (B) Buffer fill (C) Buffer drain (C) Localization Reduction

Figure 5.10: Impact of trading off between PIM execution time and replica-
tion/reduction overhead.

already discussed tradeoffs with respect to PIM level. When the weight ma-

trix size is small, the fraction of replication and reduction overhead dominates

the entire execution time. If I only activate half of the BG-level PIMs the

overheads decrease by at most half while arithmetic execution time doubles

because parallelism is cut in half. Still, the tradeoff proves beneficial when

the matrices are small (left). On the other hand, as the matrix size increases,

the fraction of PIM execution time increases as well (right). This is because

the PIM execution time quadruples as each dimension size is doubled, whereas

the localization/reduction overhead only doubles. Moreover, as the input and

output matrices (i.e. activations) grow, they exceed scratchpad capacity. As

a result, the fraction of execution time required for buffer fill/drain operations

also increases. Even though using fewer PIM units does offer better perfor-

mance for the larger matrix, it still provides a valid tradeoff option because

comparable performance is attainable in some cases while resource usage and

power consumption decreases.

99

5.4.5 Impact of Address Mapping

Figure 5.11 shows the execution time of GEMM operations when dif-

ferent address mappings and aspect ratios of the weight matrices are used.

To isolate impact to only DRAM address mapping, I set the batch size to

4 such that the input and output matrices fit in the scratchpad memory of

all three PIM options. In the bank-group level StepStone-BG, the fraction of

localization overhead differs significantly across address mappings when the

matrix is short and fat (i.e., 128 × 8192). This is because the number of PIMs

that share the same input matrix blocks in address mappings 1 and 2 are 2×

greater than those with address mappings 3 and 4 and 4× greater than those

with address mapping 0. The reason for the low localization overhead with

address mapping 0 is that the combination of the address mapping and matrix

size interleaves addresses such that matrix columns remain contiguous within

each PIM. In contrast, the tall and thin GEMM (i.e., 8192 × 128) suffers from

high reduction overhead for all address mappings. This is because the CPU

address mappings choose fairly fine-grain interleaving across bank groups and

channels to maximize bandwidth. StepStone-BG is more sensitive to address

mapping and aspect ratio compared to StepStone-DV and -CH, because it

distributes work across a larger number of units and the relative overhead of

localization and reduction is higher.

Note that address mappings 2 and 3 for StepStone-CH exhibit higher

GEMM execution times because these mappings interleave bank groups at a

coarser granularity. Hence, bandwidth cannot be maximized because consec-

100

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

BankGroup-level PIM Device-level PIM Channel-level PIM

DR
AM

 C
yc

le
s

GEMM Localizaton Reduction

Address
Mapping ID

512 ✕ 2048

128 ✕ 8192
8192 ✕ 128

Figure 5.11: Sensitivity to address mapping and aspect ratio of the weight
matrix (batch size = 4).

utive memory accesses are penalized by tCCDL (i.e., column-to-column delay

for back-to-back accesses within the same bank group is larger than across

bank groups). This demonstrates that timing parameter considerations are

also important when deciding the address mappings for PIM-enabled main

memory. In theory, the localization and reduction overheads are lower when

fewer PIMs share the input and output matrix blocks as common operands.

However, this goal of low sharing cannot be realized with a single fixed address

mapping because the sharing pattern changes with the matrix size and aspect

ratio.

5.4.6 Impact of Scratchpad Memory Capacity

Figure 5.12 shows the impact of scratchpad memory capacity on GEMM

latency. I analyze StepStone-BG as it has the most stringent area constraint.

I search for an optimal allocation across the scratchpad partitioning options

between input and output buffer allocations (there are only two buffers so the

search converges quickly). I find that interleaving buffer fill/drain operations

101

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

4 8 16 4 8 16

1024✕4096 4096✕1024

DR
AM

 C
yc

le
s

0.0E+00

4.0E+05

8.0E+05

1.2E+06

1.6E+06

2.0E+06

4 8 16 4 8 16

2048✕8192 8192✕2048

DR
AM

 C
yc

le
s

Batch size

16KB
32KB

64KB

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

4 8 16 4 8 16 4 8 16 4 8 16

1024✕4096 4096✕1024 2048✕8192 8192✕2048

DR
AM

 C
yc

le
s

GEMM Buffer fill (B) Buffer fill (C) Buffer drain (C) Localization Reduction

Figure 5.12: GEMM latencies for different matrices and buffer sizes
(StepStone-BG).

with arithmetic has negligible impact on GEMM performance. The ability

to execute entire kernels limits the benefits of overlapping data transfer with

arithmetic and interleaving increases the number of row buffer conflicts, though

row-buffer locality remains high.

Larger matrices (right) tends to amortize the buffer fill/drain overheads

better than smaller matrices (left). Generally, overhead increases with batch

size. Interestingly, the overhead with the 2048 × 8192 weight matrix increases

at half the rate of other matrix configurations. This is because the number of

block groups with this specific weight matrix dimension is half that of the other

matrix sizes I evaluate. Consequently, the working set of the input activation

(matrix B) per PIM unit is also half that of other matrix configurations. As

explained in Section 5.2.2, the number of groups is determined by both the

address mapping and matrix dimensions.

102

5.4.7 Impact of Concurrent CPU Access

I expect StepStone PIM to outperform prior PIM architectures, includ-

ing Chopim, by enabling longer-running GEMM operations that maintain PIM

locality. Long-running operations are important when the CPU also executes

a memory-intensive workload concurrently with the PIMs, as both the CPU

and PIMs contend for limited command channel bandwidth. I evaluate this

using the same colocation used by Cho et al. for evaluating Chopim [29], as

described in Section 5.3. While the colocated applications are not DL-related,

they run readily on gem5 and clearly demonstrate the impact of command

channel contention. I isolate the performance benefits to just the StepStone

AGEN unit that enables long-running kernels by running the same StepStone

GEMM flow on eCHO and StepStone PIM and reporting results corresponding

only to GEMM execution.

StepStone PIM outperforms Chopim when the CPU intensively accesses

memory concurrently with PIMs (Figure 5.13). As the matrix shape changes

from short-fat to tall-thin, each of eCHO kernels accesses fewer cache blocks,

resulting in more PIM kernel invocations and greater contention with the CPU

for the command channel. As a result, PIM kernel packets are delayed and

the PIMs are underutilized. With BG-level PIM, the relative performance of

Chopim to StepStone PIM is worse since even more PIMs are underutilized due

to the command bandwidth bottleneck. This performance gap will increase as

the number of PIMs in each channel increases, increasing the importance of

mechanisms that enable long-running kernels.

103

0
2
4
6

[2
K,

8K
]

[4
K,

4K
]

[8
K,

2K
]

[1
6K

,1
K]

[2
K,

8K
]

[4
K,

4K
]

[8
K,

2K
]

[1
6K

,1
K]

DV-level PIM BG-level PIM

Sp
ee

du
p

ov
er

 e
CH

O

Figure 5.13: Speedup of StepStone PIM (STP) over Chopim enhanced with
StepStone block grouping (eCHO) when concurrent CPU access exists. The
size of matrices is fixed and its aspect ratio is varied.

5.4.8 Power and Energy Analysis

Figure 5.14 shows the power and energy consumption per DRAM device

of StepStone-BG and StepStone-DV. As N increases, the relative contribution

of arithmetic also increases. However, overall, the power of DRAM access

(either within the PIMs or for localization and reduction) dominates the power

of the SIMD units. The right side of the figure shows that StepStone-BG is

more energy-efficient than StepStone-DV when N is small. The main source of

this energy savings is that IO energy is much smaller within a device. However,

as N increases, the energy for localization and reduction dominates the energy

consumption of arithmetic and StepStone-DV is more efficient. Note that, if

power exceeds the delivery/cooling budget for a chip or module, performance

can be throttled.

104

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

BG DV BG DV BG DV

N=1 N=4 N=16

Po
w

er
 p

er
 D

RA
M

 ch
ip

 (W
)

0
150
300
450
600
750
900

BG DV BG DV BG DV

N=1 N=4 N=16

pJ
/o

p

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

BG DV BG DV BG DV

N=1 N=4 N=16

SIMD Scratchpad DRAM Localization/Reduction

Figure 5.14: Power dissipation per DRAM device (left) and energy consump-
tion per floating-point operation (right) of StepStone-BG and StepStone-DV
(weight matrix = [1024, 4096]).

5.5 Related Work

To the best of my knowledge, this is the first work that enables high-

performance and CPU-compatible near-memory processing for accelerating

bandwidth-bound fully-connected (FC) layers. I describe prior related work

below and contrast my contributions for existing approaches.

Processing in main memory. Processing in main memory implies that

PIM should play along with the other parts of the system; otherwise, it will

have a system-wide impact. Considering this, some researches [10, 80] en-

able PIM in a fine granularity, such as PIM operations per cache block. This

approach can solve the complex address mapping problem. The CPU indi-

cates the next cache block to process with some command packets and PIM

processes the cache block. Though this approach can accommodate more ap-

plications due to its flexibility, PIM performance will be eventually limited by

the command bandwidth. RecNMP [77] mitigates this command bandwidth

105

bottleneck by sending compound of memory requests but this solution does

not scale when there are more than 4 PIMs per channel. Jeong et al. [72]

explore PIM-aware data layouts in a multi-channel PIM architecture but do

not consider complex address mappings that are commonly used in modern

CPUs. Chopim [29] enables coarse-grained PIM kernels under complex ad-

dress mapping. Though GEMM can be executed with Chopim by multiple

GEMV kernel calls, temporal locality cannot be exploited which is crucial for

high-performance GEMM operations. Also, Chopim does not provide efficient

localization and reduction mechanisms, which incur high overhead for exe-

cuting GEMMs on PIMs. NDA [44], Chameleon [15], and MCN DIMM [14]

are also based on conventional DIMM devices and proposes PIM designs to

practically add PEs to main memory.

GEMM acceleration with PIM. The Active Memory Cube (AMC) [139]

targets GEMM operations with in-memory processors. AMC considers ad-

dress interleaving but interleaving is only allowed within the same local PIM

memory. This essentially requires partitioning into CPU and PIM memory

spaces and data should be copied from one space to another if the processing

mode changes. This approach has the same data loading problem as discrete

accelerators and does not truly realize PIM potential of sharing the same mem-

ory between the CPU and PIM. On the other hand, my solution does not have

this limitations and works with any XOR-based address mapping and PIMs

in any DRAM hierarchy levels.

PIM for machine learning. PIM for machine learning workloads has

106

been widely studied. Much of this research targets convolutional neural net-

works [101, 67, 46, 28, 37, 73, 79, 131, 133], embedding table lookups in rec-

ommendation models [77, 89], recurrent neural networks [100], and GAN [103,

125]. In contrast, I target the tall-thin/fat-narrow GEMMs of fully-connected

layers in DL inference. Newton [59] also targets fully-connected layers, like

StepStone PIM. However, Newton operates as a discrete accelerator that can-

not benefit from the advantages of main-memory acceleration described in

Section 5.1. More importantly, Newton does not avoid weight copies, does not

exploit GEMM locality, cannot trade off parallelization degree overheads with

performance benefits, cannot selectively execute at different PIM levels or the

CPU to dynamically match changing workload characteristics, and does not

support the long-running kernels necessary for concurrent bandwidth-intensive

CPU tasks.

5.6 Chapter Summary

I identify that small-batch GEMM operations of DL inference work-

loads are bandwidth bound on CPUs and GPUs and can benefit from PIM

acceleration. I introduce StepStone PIM, which enables independent PIM

GEMM execution under complex CPU DRAM address mapping. The main in-

novation of StepStone PIM is the address-mapping cognizant GEMM blocking

with matching PIM-side address generation. My unique AGEN logic improves

throughput compared to naive or host-side address generation. I explore PIM

designs in three different DRAM hierarchy levels (channel, chip, and bank-

107

group levels) and show their tradeoffs with detailed simulation results. I show

that activating more PIMs for GEMM improves arithmetic performance but

adds overheads for data localization/replication and reduction. I show the

benefits of choosing an optimal parallelization with respect to both perfor-

mance and energy efficiency. I also provide sensitivity analysis for the impact

of different address mappings and PIM resource allocation (scratchpad capac-

ity and SIMD width). I conclude that StepStone is an appealing datacenter

solution because of: (1) its low cost; (2) its potential for lower latency and

higher throughput even when implemented at the buffer-chip level within a

DIMM without DRAM device modification; and (3) its locality-optimized high

efficiency GEMM execution that frees CPU resources for other tasks.

108

Chapter 6

Dissertation Summary and Future Work

In this dissertation, I solve challenges that hinder the integration of

PIM in CPU’s main memory and leverage the benefit of CPU-PIM concurrent

access to the same memory by introducing several compelling use cases. The

challenges include solving the address-space sharing, interference/contention

management, and low-overhead state synchronization mechanism. I proposed

mechanisms to solve these problems with runtime, OS, and hardware supports.

By solving these problems, I enable high-performance CPU-PIM concurrent

access, where the CPU and PIMs share the same memory and interleave mem-

ory access in a fine-grained manner. Thanks to these mechanisms, the CPU

and PIMs are able to collaborate on the same data without any performance

and/or capacity overheads. I introduce two compelling use cases in ML/AI do-

main to exploit the concurrent CPU-PIM collaboration to improve the training

and inference speeds, respectively.

I also clarify the limitations of my current work and offer suggestions

enabling high-performance PIM in conventional CPU systems.

Compilation. In Section 4.4, I introduced PIM APIs that can be used to

write programs for PIMs. However, the details about how the programs are

109

compiled and executed at runtime is excluded. Since concurrent access to

the same data is enabled by my research, each API call can be executed by

either the CPU or the PIMs. In the worst-case scenario, the program can

be run with only the CPU and performance can be improved as more CPU

execution can be replaced by PIM acceleration. As I mention in Chapter 5, to

achieve end-to-end performance improvement, it is important to consider both

expected speedup for the core execution and overheads for aligning operands

such that the locality needed for PIM execution is achieved. Therefore, to

achieve high end-to-end performance, it is crucial to maximize data reuse

opportunities in between PIM operations. If data replication and inter-PIM

communication cannot be avoided, they should be at least minimized. This

should be accomplished by some compiler and the runtime support, which I

leave it as future work.

Main-memory accelerators for sparse data structures. Applications

with sparse data structures are also potential candidates for PIM acceleration.

These applications typically have low data reuse and suffer from the memory

bandwidth bottleneck. The main challenge for using PIMs for sparse data

structures are twofold: (1) both the metadata and the actual data are required

for execution and they should be placed in the same PIM memory; and (2)

random access should be limited to within the PIM buffer. For the convenience

of explanation, I will use the compressed sparse row (CSR) format and sparse

matrix-vector multiplication as an example. In the CSR format, there are two

arrays of metadata, COL INDEX and ROW INDEX, and one data array. To process

110

one element in the data array, both metadata arrays are required to access

the corresponding operands in the input and output vector. Therefore, to

execute sparse matrix-vector multiplication (SpMV) with PIMs, the metadata

should be placed in the same PIM memory as its corresponding data. To

always guarantee the colocation of metadata and data regardless of the address

mapping being used in the system, this data should be packed into one cache

block, since it is the smallest interleaving unit. In addition, though PIMs

can stream the matrix data, the access to input and output vectors is quite

random. To maximize PIM performance with the PE design and execution

flow proposed in this dissertation, only one of the operands should be streamed

from DRAM while the other operands should be read from and written to the

PIM buffer. To accomplish this, a new matrix blocking based sparse data

structure will be required so as to limit the range of random access to the

PIM buffer size. In this way, the metadata and data is read from DRAM and

input/output operands can be accessed from the PIM buffer.

Light-weight memory allocation for in-place acceleration. PIMs can

be beneficial for basic operations, such as memory copy, which takes short

time per operation but are invoked many times within the system by diverse

applications. Since the memory copy is basically moving data from source

to destination, re-aligning the source and destination arrays negates any PIM

advantage. This means that the source and destination should be already

aligned prior to the memory copy operation. To enable this in conventional

systems, new interfaces between the user program and memory allocator, and

111

between the memory allocator and frame allocator should be defined. How-

ever, memory allocation is also another frequently executed workload in the

system. Therefore, PIM-aware memory allocation routine should not incur

high overhead since it affects the performance of other applications.

Cache coherence mechanism for PIMs. In Section 4.3, I suggested to

maintain coherence between the CPU and PIMs with the combination of data

copy, memory fence, and cache bypassing. However, this assumption breaks

the cache coherence model in conventional systems. This can be solved by

using the PIM controller located near the CPU memory controller. Since the

PIM controller knows all the memory transactions happening in the PIMs

thanks to the replicated FSMs, it can operate as another node in the coherent

system. This can be done by connecting the PIM controller to the coherent

bus. If there are any PIM write requests issued, the PIM controller can gener-

ate coherence packet and broadcast it through the coherent bus. On the other

hand, if there are any reads issued by PIMs to some stale data in DRAM, the

PIM controller should pause the PIM, revert back, send the up-to-date data

to the PIM, and continue the PIM execution. However, since this is expensive,

a better option is to use the existing approach of bulk cache invalidation prior

to the PIM execution based on the range of address that PIMs are going to

access.

112

Bibliography

[1] Jedec ddr4 sdram standard, 2012.

[2] Intel onednn (v1.6.1). In https://github.com/oneapi-src/oneDNN. Intel,

2020.

[3] Intel(r) advisor 2020 update 2 (build 606470). Intel, 2020.

[4] Nvidia cutlass (v2.2). In https://github.com/NVIDIA/cutlass. NVIDIA,

2020.

[5] nvprof release version 10.0.130 (21). In https://docs.nvidia.com/cuda/profiler-

users-guide/index.html. NVIDIA, 2020.

[6] Alekh Agarwal and John C Duchi. Distributed delayed stochastic opti-

mization. In Advances in Neural Information Processing Systems, pages

873–881, 2011.

[7] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos,

Venkatraman Govindaraju, Venkatanathan Varadarajan, Cagri Balke-

sen, Georgios Giannikis, Charlie Roth, Nipun Agarwal, et al. A many-

core architecture for in-memory data processing. In Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 245–258. ACM, 2017.

113

[8] Jung Ho Ahn, Mattan Erez, and William J Dally. The design space

of data-parallel memory systems. In SC06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, 2006.

[9] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung

Choi. A scalable processing-in-memory accelerator for parallel graph

processing. In 2015 ACM/IEEE 42nd Annual International Symposium

on Computer Architecture (ISCA), pages 105–117, June 2015.

[10] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-

enabled instructions: a low-overhead, locality-aware processing-in-memory

architecture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd

Annual International Symposium on, pages 336–348. IEEE, 2015.

[11] Berkin Akin, Franz Franchetti, and James C. Hoe. Data reorganization

in memory using 3d-stacked dram. In Proceedings of the 42Nd Annual

International Symposium on Computer Architecture, ISCA ’15, pages

131–143, New York, NY, USA, 2015. ACM.

[12] Berkin Akin, Franz Franchetti, and James C Hoe. Hamlet architecture

for parallel data reorganization in memory. IEEE Micro, 36(1):14–23,

Jan 2016.

[13] Mohammad Alian and Nam Sung Kim. Netdimm: Low-latency near-

memory network interface architecture. In Proceedings of the 52nd An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

699–711. ACM, 2019.

114

[14] Mohammad Alian, SeungWon Min, Hadi Asgharimoghaddam, Ashutosh

Dhar, Dong Wang, Adam Roewer, Thomas McPadden, Oliver OHallo-

ran, Deming Chen, Jinjun Xiong, Daehoon Kim, Wen-mei Hwu, and

Nam Sung Kim. Application-transparent near-memory processing archi-

tecture with memory channel network,. In The 51st Annual IEEE/ACM

International Symposium on Microarchitecture, 2018.

[15] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung

Kim. Chameleon: Versatile and practical near-dram acceleration ar-

chitecture for large memory systems. In Microarchitecture (MICRO),

2016 49th Annual IEEE/ACM International Symposium on, pages 1–13.

IEEE, 2016.

[16] JEDEC Solid State Technology Association et al. Jedec announces

support for nvdimm hybrid memory modules. [Online]. Available from:

https://www.jedec.org/news/pressreleases/jedec-announces-support-nvdimm-

hybrid-memory-modules, 1, 2016.

[17] Manu Awasthi. Rethinking design metrics for datacenter dram. In

Proceedings of the 2015 International Symposium on Memory Systems,

pages 162–163. ACM, 2015.

[18] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-

vin. A neural probabilistic language model. Journal of machine learn-

ing research, 3(Feb):1137–1155, 2003.

115

[19] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar

Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH

Computer Architecture News, 39(2):1–7, 2011.

[20] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarung-

nirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan

Knies, Parthasarathy Ranganathan, and Onur Mutlu. Google workloads

for consumer devices: Mitigating data movement bottlenecks. In Pro-

ceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

’18, pages 316–331, New York, NY, USA, 2018. ACM.

[21] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Bran-

don Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar,

Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu. Conda: Effi-

cient cache coherence support for near-data accelerators. In Proceedings

of the 46th International Symposium on Computer Architecture, ISCA

’19, pages 629–642, New York, NY, USA, 2019. ACM.

[22] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Bran-

don Lucia, Kevin Hsieh, Krishna T Malladi, Hongzhong Zheng, and

Onur Mutlu. Lazypim: An efficient cache coherence mechanism for

processing-in-memory. IEEE Computer Architecture Letters, 16(1):46–

50, 2016.

116

[23] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, et al. Language models are few-shot learners.

arXiv preprint arXiv:2005.14165, 2020.

[24] Niladrish Chatterjee, Mike OConnor, Donghyuk Lee, Daniel R Johnson,

Stephen W Keckler, Minsoo Rhu, and William J Dally. Architecting an

energy-efficient dram system for gpus. In High Performance Computer

Architecture (HPCA), 2017 IEEE International Symposium on, pages

73–84. IEEE, 2017.

[25] Fan Chen, Linghao Song, and Yiran Chen. Regan: A pipelined reram-

based accelerator for generative adversarial networks. In Design Au-

tomation Conference (ASP-DAC), 2018 23rd Asia and South Pacific,

pages 178–183. IEEE, 2018.

[26] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brock-

man, and Norman P Jouppi. Cacti-3dd: Architecture-level modeling for

3d die-stacked dram main memory. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2012, pages 33–38. IEEE,

2012.

[27] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar

Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,

Mustafa Ispir, et al. Wide & deep learning for recommender systems.

117

In Proceedings of the 1st workshop on deep learning for recommender

systems, pages 7–10, 2016.

[28] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan

Liu, Yu Wang, and Yuan Xie. Prime: A novel processing-in-memory

architecture for neural network computation in reram-based main mem-

ory. In Proceedings of the 43rd International Symposium on Computer

Architecture, pages 27–39. IEEE Press, 2016.

[29] Benjamin Y Cho, Jeageun Jung, and Mattan Erez. Accelerating bandwidth-

bound deep learning inference with main-memory accelerators. arXiv

preprint arXiv:2012.00158, 2020.

[30] Benjamin Y Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez. Near

data acceleration with concurrent host access. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages

818–831. IEEE, 2020.

[31] JS Choi. Next big thing: Ddr4 3ds.

[32] Alexis Conneau and Guillaume Lample. Cross-lingual language model

pretraining. In Advances in Neural Information Processing Systems,

pages 7059–7069, 2019.

[33] GenZ Consortium et al. Genz core specification. Technical report,

Technical Report. GenZ Consortium. http://genzconsortium. org/specifications ,

2017.

118

[34] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard

api for shared-memory programming. Computing in Science & Engi-

neering, 5(1):46–55, 1998.

[35] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. Cusp:

Generic parallel algorithms for sparse matrix and graph computations,

2014. Version 0.5.0.

[36] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.

Large scale distributed deep networks. In Advances in neural informa-

tion processing systems, pages 1223–1231, 2012.

[37] Timothy J Dell. A white paper on the benefits of chipkill-correct ecc for

pc server main memory. IBM Microelectronics Division, 11:1–23, 1997.

[38] Quan Deng, Youtao Zhang, Minxuan Zhang, and Jun Yang. Lacc:

Exploiting lookup table-based fast and accurate vector multiplication in

dram-based cnn accelerator. In Proceedings of the 56th Annual Design

Automation Conference 2019, pages 1–6, 2019.

[39] Fabrice Devaux. The true processing in memory accelerator. In 2019

IEEE Hot Chips 31 Symposium (HCS), pages 1–24. IEEE, 2019.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv preprint arXiv:1810.04805, 2018.

119

[41] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiu-

gov, Javier Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnev-

matikatos. The mondrian data engine. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, pages 639–

651. ACM, 2017.

[42] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Journal of

Machine Learning Research, 12(Jul):2121–2159, 2011.

[43] Duncan G Elliott, Michael Stumm, W Martin Snelgrove, Christian Co-

jocaru, and Robert McKenzie. Computational ram: Implementing pro-

cessors in memory. IEEE Design & Test of Computers, 16(1):32–41,

1999.

[44] Jason Evans. Scalable memory allocation using jemalloc, 2011.

[45] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung

Kim. Nda: Near-dram acceleration architecture leveraging commodity

dram devices and standard memory modules. In High Performance

Computer Architecture (HPCA), 2015 IEEE 21st International Sympo-

sium on, pages 283–295. IEEE, 2015.

[46] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. Practical near-data

processing for in-memory analytics frameworks. In Parallel Architecture

and Compilation (PACT), 2015 International Conference on, pages 113–

124. IEEE, 2015.

120

[47] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis.

Tetris: Scalable and efficient neural network acceleration with 3d mem-

ory. In Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems, pages 751–764. ACM, 2017.

[48] Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-caching malloc,

2009.

[49] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna,

and Onur Mutlu. A workload and programming ease driven perspective

of processing-in-memory. arXiv preprint arXiv:1907.12947, 2019.

[50] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The

terasys massively parallel pim array. Computer, 28(4):23–31, 1995.

[51] Antonio González, Mateo Valero, Nigel Topham, and Joan M Parcerisa.

Eliminating cache conflict misses through xor-based placement functions.

In Proceedings of the 11th international conference on Supercomputing,

pages 76–83. ACM, 1997.

[52] Google. A microbenchmark support library.

[53] Mel Gorman. Understanding the Linux virtual memory manager. Pren-

tice Hall Upper Saddle River, 2004.

[54] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang,

Dimin Niu, and Yuan Xie. ipim: Programmable in-memory image pro-

121

cessing accelerator using near-bank architecture. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA),

pages 804–817. IEEE, 2020.

[55] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu,

Tze Meng Low, Larry Pileggi, James C Hoe, and Franz Franchetti. 3d-

stacked memory-side acceleration: Accelerator and system design. In In

the Workshop on Near-Data Processing (WoNDP)(Held in conjunction

with MICRO-47.), 2014.

[56] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S. Lee,

D. Brooks, and C. Wu. Deeprecsys: A system for optimizing end-to-

end at-scale neural recommendation inference. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages

982–995, 2020.

[57] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Bran-

don Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Mark

Hempstead, Bill Jia, et al. The architectural implications of facebook’s

dnn-based personalized recommendation. In 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages

488–501. IEEE, 2020.

[58] Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudas-

sar, Kartikay Garg, Tushar Krishna, and Hyesoon Kim. Performance

implications of nocs on 3d-stacked memories: Insights from the hybrid

122

memory cube. In 2018 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 99–108. IEEE, 2018.

[59] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Sim-

point 3.0: Faster and more flexible program phase analysis. Journal of

Instruction Level Parallelism, 7(4):1–28, 2005.

[60] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim,

Il Park, Mithuna Thottethodi, and TN Vijaykumar. Newton: A dram-

makers accelerator-in-memory (aim) architecture for machine learning.

In 2020 53rd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 372–385. IEEE, 2020.

[61] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-

Seng Chua. Neural collaborative filtering. In Proceedings of the 26th

international conference on world wide web, pages 173–182, 2017.

[62] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News, 34(4):1–17, 2006.

[63] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik

Kim, and John Kim. Accelerating linked-list traversal through near-

data processing. In Parallel Architecture and Compilation Techniques

(PACT), 2016 International Conference on, 2016.

[64] Seokbin Hong, Won-Ok Kwon, and Myeong-Hoon Oh. Hardware imple-

mentation and analysis of gen-z protocol for memory-centric architec-

123

ture. IEEE Access, 8:127244–127253, 2020.

[65] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-

mar, O. Mutlu, and S. W. Keckler. Transparent offloading and mapping

(tom): Enabling programmer-transparent near-data processing in gpu

systems. In 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), pages 204–216, June 2016.

[66] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Ami-

rali Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating pointer

chasing in 3d-stacked memory: Challenges, mechanisms, evaluation. In

2016 IEEE 34th International Conference on Computer Design (ICCD),

pages 25–32. IEEE, 2016.

[67] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. High

performance smart expression template math libraries. In High Perfor-

mance Computing and Simulation (HPCS), 2012 International Confer-

ence on, pages 367–373. IEEE, 2012.

[68] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Float-

pim: In-memory acceleration of deep neural network training with high

precision. In 2019 ACM/IEEE 46th Annual International Symposium

on Computer Architecture (ISCA), pages 802–815. IEEE, 2019.

[69] Inphi. Introducing lrdimm - a new class of memory modules.

124

[70] B Jacob, G Guennebaud, et al. Eigen: C++ template library for linear

algebra, 2013.

[71] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architec-

ture increases density and performance. In VLSI Technology (VLSIT),

2012 Symposium on, pages 87–88. IEEE, 2012.

[72] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Mike Sullivan, Ikhwan

Lee, and Mattan Erez. Balancing dram locality and parallelism in

shared memory cmp systems. In High Performance Computer Architec-

ture (HPCA), 2012 IEEE 18th International Symposium on, pages 1–12.

IEEE, 2012.

[73] Taeyang Jeong, Duheon Choi, Sangwoo Han, and Eui-Young Chung. A

study of data layout in multi-channel processing-in-memory architecture.

In Proceedings of the 2018 7th International Conference on Software and

Computer Applications, pages 134–138, 2018.

[74] Biresh Kumar Joardar, Bing Li, Janardhan Rao Doppa, Hai Li, Partha Pra-

tim Pande, and Krishnendu Chakrabarty. Regent: A heterogeneous

reram/gpu-based architecture enabled by noc for training cnns. In 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 522–527. IEEE, 2019.

[75] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent

using predictive variance reduction. In Advances in neural information

processing systems, pages 315–323, 2013.

125

[76] Norman P Jouppi, Andrew B Kahng, Naveen Muralimanohar, and Vaish-

nav Srinivas. Cacti-io: Cacti with off-chip power-area-timing models.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

23(7):1254–1267, 2015.

[77] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge,

Vinh Lam, Pratap Pattnaik, and Josep Torrellas. Flexram: Toward

an advanced intelligent memory system. In Proceedings 1999 IEEE

International Conference on Computer Design: VLSI in Computers and

Processors (Cat. No. 99CB37040), pages 192–201. IEEE, 1999.

[78] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas

Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,

Hsien-Hsin S Lee, et al. Recnmp: Accelerating personalized recommen-

dation with near-memory processing. In 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pages 790–

803. IEEE, 2020.

[79] Dong Wan Kim and Mattan Erez. Relaxfault memory repair. In Com-

puter Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International

Symposium on, pages 645–657. IEEE, 2016.

[80] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and

Saibal Mukhopadhyay. Neurocube: A programmable digital neuromor-

phic architecture with high-density 3d memory. In Computer Architec-

126

ture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium

on, pages 380–392. IEEE, 2016.

[81] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh.

Toward standardized near-data processing with unrestricted data place-

ment for gpus. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, page 24.

ACM, 2017.

[82] Gwangsun Kim, John Kim, Jung Ho Ahn, and Jaeha Kim. Memory-

centric system interconnect design with hybrid memory cubes. In Pro-

ceedings of the 22nd international conference on Parallel architectures

and compilation techniques, pages 145–156. IEEE Press, 2013.

[83] Gwangsun Kim, John Kim, Jung Ho Ahn, and Yongkee Kwon. Memory

network: Enabling technology for scalable near-data computing. In 2nd

Workshop on Near-Data Processing, 2014.

[84] Moonsoo Kim, Jungwoo Choi, Hyun Kim, and Hyuk-Jae Lee. An effec-

tive dram address remapping for mitigating rowhammer errors. IEEE

Transactions on Computers, 68(10):1428–1441, 2019.

[85] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case for exploiting

subarray-level parallelism (salp) in dram. In 2012 39th Annual Inter-

national Symposium on Computer Architecture (ISCA), pages 368–379,

June 2012.

127

[86] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast

and extensible dram simulator. IEEE Computer architecture letters,

15(1):45–49, 2016.

[87] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[88] Peter M Kogge. Execube-a new architecture for scaleable mpps. In

1994 International Conference on Parallel Processing Vol. 1, volume 1,

pages 77–84. IEEE, 1994.

[89] Peter M Kogge, Jay B Brockman, Thomas Sterling, and Guang Gao.

Processing in memory: Chips to petaflops. InWorkshop on Mixing Logic

and DRAM: Chips that Compute and Remember at ISCA, volume 97.

Citeseer, 1997.

[90] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A practi-

cal near-memory processing architecture for embeddings and tensor oper-

ations in deep learning. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 740–753. ACM,

2019.

[91] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach,

and Emmett Witchel. Coordinated and efficient huge page management

with ingens. In OSDI, volume 16, pages 705–721, 2016.

128

[92] John Langford, Alexander Smola, and Martin Zinkevich. Slow learners

are fast. arXiv preprint arXiv:0911.0491, 2009.

[93] Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Samira Khan,

and Onur Mutlu. Simultaneous multi-layer access: Improving 3d-

stacked memory bandwidth at low cost. ACM Transactions on Ar-

chitecture and Code Optimization (TACO), 12(4):63, 2016.

[94] Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. Bssync: Processing

near memory for machine learning workloads with bounded staleness

consistency models. In 2015 International Conference on Parallel Ar-

chitecture and Compilation (PACT), pages 241–252, Oct 2015.

[95] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob

Brennan, and Yuan Xie. Drisa: A dram-based reconfigurable in-situ ac-

celerator. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 288–301. ACM, 2017.

[96] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan

Xie. Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories. In Design Automation

Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE,

2016.

[97] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen Zhao.

Processing-in-memory for energy-efficient neural network training: A

129

heterogeneous approach. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 655–668. IEEE, 2018.

[98] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and

Chengyong Wu. A software memory partition approach for eliminat-

ing bank-level interference in multicore systems. In Proceedings of the

21st international conference on Parallel architectures and compilation

techniques, pages 367–376. ACM, 2012.

[99] Yuxi Liu, Xia Zhao, Magnus Jahre, Zhenlin Wang, Xiaolin Wang, Ying-

wei Luo, and Lieven Eeckhout. Get out of the valley: power-efficient

address mapping for gpus. In 2018 ACM/IEEE 45th Annual Inter-

national Symposium on Computer Architecture (ISCA), pages 166–179.

IEEE, 2018.

[100] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent

data structures for near-memory computing. In Proceedings of the 29th

ACM Symposium on Parallelism in Algorithms and Architectures, pages

235–245. ACM, 2017.

[101] Yun Long, Taesik Na, and Saibal Mukhopadhyay. Reram-based processing-

in-memory architecture for recurrent neural network acceleration. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 26(12),

2018.

[102] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. Design of reliable

dnn accelerator with un-reliable reram. In 2019 Design, Automation

130

& Test in Europe Conference & Exhibition (DATE), pages 1769–1774.

IEEE, 2019.

[103] Sangkug Lym, Armand Behroozi, Wei Wen, Ge Li, Yongkee Kwon, and

Mattan Erez. Mini-batch serialization: Cnn training with inter-layer

data reuse. Proceedings of Machine Learning and Systems, 1:264–275,

2019.

[104] Haiyu Mao, Mingcong Song, Tao Li, Yuting Dai, and Jiwu Shu. Lergan:

A zero-free, low data movement and pim-based gan architecture. In 2018

51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 669–681. IEEE, 2018.

[105] Patrick J Meaney, Lawrence D Curley, Glenn D Gilda, Mark R Hodges,

Daniel J Buerkle, Robert D Siegl, and Roger K Dong. The ibm z13

memory subsystem for big data. IBM Journal of Research and Devel-

opment, 59(4/5):4–1, 2015.

[106] Wei Mi, Xiaobing Feng, Jingling Xue, and Yaocang Jia. Software-

hardware cooperative dram bank partitioning for chip multiprocessors.

In Proceedings the IFIP International Conference on Network and Par-

allel Computing, 2010.

[107] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi.

Cacti 6.0: A tool to model large caches. HP laboratories, pages 22–31,

2009.

131

[108] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Ku-

mar, and Hyesoon Kim. Graphpim: Enabling instruction-level pim

offloading in graph computing frameworks. In High Performance Com-

puter Architecture (HPCA), 2017 IEEE International Symposium on,

pages 457–468. IEEE, 2017.

[109] Ravi Nair, Samuel F Antao, Carlo Bertolli, Pradip Bose, Jose R Brun-

heroto, Tong Chen, C-Y Cher, Carlos HA Costa, Jun Doi, Constantinos

Evangelinos, et al. Active memory cube: A processing-in-memory ar-

chitecture for exascale systems. IBM Journal of Research and Develop-

ment, 59(2/3):17–1, 2015.

[110] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu

Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit

Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, An-

drey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoor-

thi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen,

Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.

Deep learning recommendation model for personalization and recom-

mendation systems. CoRR, abs/1906.00091, 2019.

[111] Yurii Nesterov. A method for unconstrained convex minimization prob-

lem with the rate of convergence o (1/kˆ 2). In Doklady AN USSR,

volume 269, pages 543–547, 1983.

132

[112] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Sjalan-

der. Twig: Multi-agent task management for colocated latency-critical

cloud services. In 2020 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 167–179. IEEE, 2020.

[113] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, JohnWilson, Aditya

Agrawal, Stephen W. Keckler, and William J. Dally. Fine-grained dram:

Energy-efficient dram for extreme bandwidth systems. In Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-50 ’17, pages 41–54, New York, NY, USA, 2017. ACM.

[114] Saeyoung Oh and Jong Kim. Reliable rowhammer attack and mitiga-

tion based on reverse engineering memory address mapping algorithms.

In International Workshop on Information Security Applications, pages

146–158. Springer, 2018.

[115] Mark Oskin, Frederic T Chong, and Timothy Sherwood. Active pages:

A computation model for intelligent memory. In Proceedings. 25th

Annual International Symposium on Computer Architecture, pages 192–

203, 1998.

[116] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. Wait of

a decade: Did spec cpu 2017 broaden the performance horizon? In

2018 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 271–282. IEEE, 2018.

133

[117] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,

Satish Nadathur, et al. Deep learning inference in facebook data centers:

Characterization, performance optimizations and hardware implications.

arXiv preprint arXiv:1811.09886, 2018.

[118] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,

Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-

ine Yelick. A case for intelligent ram. IEEE micro, 17(2):34–44, 1997.

[119] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K

Mishra, Mahmut T Kandemir, Onur Mutlu, and Chita R Das. Schedul-

ing techniques for gpu architectures with processing-in-memory capabil-

ities. In Proceedings of the 2016 International Conference on Parallel

Architectures and Compilation, pages 31–44. ACM, 2016.

[120] J Thomas Pawlowski. Hybrid memory cube (hmc). In 2011 IEEE Hot

Chips 23 Symposium (HCS), pages 1–24. IEEE, 2011.

[121] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and

Stefan Mangard. Reverse engineering intel dram addressing and ex-

ploitation. arXiv preprint arXiv:1511.08756, 2015.

[122] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and

Stefan Mangard. Drama: Exploiting dram addressing for cross-cpu

attacks. In USENIX Security Symposium, pages 565–581, 2016.

134

[123] Jayaprakash Pisharath, Ying Liu, Wei-keng Liao, Alok Choudhary, Gokhan

Memik, and Janaki Parhi. Nu-minebench 2.0. Technical report, Tech-

nical report, Northwestern University, 2005.

[124] Matthew Poremba, Itir Akgun, Jieming Yin, Onur Kayiran, Yuan Xie,

and Gabriel H Loh. There and back again: Optimizing the interconnect

in networks of memory cubes. In Computer Architecture (ISCA), 2017

ACM/IEEE 44th Annual International Symposium on, pages 678–690.

IEEE, 2017.

[125] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. Language models are unsupervised multitask learners.

[126] Adnan Siraj Rakin, Shaahin Angizi, Zhezhi He, and Deliang Fan. Pim-

tgan: A processing-in-memory accelerator for ternary generative adver-

sarial networks. In 2018 IEEE 36th International Conference on Com-

puter Design (ICCD), pages 266–273. IEEE, 2018.

[127] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent.

In Advances in neural information processing systems, pages 693–701,

2011.

[128] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and

John D. Owens. Memory access scheduling. In Proceedings of the 27th

Annual International Symposium on Computer Architecture, ISCA ’00,

pages 128–138, New York, NY, USA, 2000. ACM.

135

[129] Conrad Sanderson. Armadillo: An open source c++ linear algebra

library for fast prototyping and computationally intensive experiments.

Technical report, NICTA, 2010.

[130] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A

Kozuch, Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. Fast

bulk bitwise and and or in dram. IEEE Computer Architecture Letters,

14(2):127–131, 2015.

[131] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Ami-

rali Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B

Gibbons, and Todd C Mowry. Ambit: In-memory accelerator for bulk

bitwise operations using commodity dram technology. In Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 273–287. ACM, 2017.

[132] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-

monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek

Srikumar. Isaac: A convolutional neural network accelerator with in-

situ analog arithmetic in crossbars. In Proceedings of the 43rd Interna-

tional Symposium on Computer Architecture, pages 14–26. IEEE Press,

2016.

[133] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. Pageforge: a

near-memory content-aware page-merging architecture. In Proceedings

136

of the 50th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 302–314. ACM, 2017.

[134] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A

pipelined reram-based accelerator for deep learning. In High Perfor-

mance Computer Architecture (HPCA), 2017 IEEE International Sym-

posium on, pages 541–552. IEEE, 2017.

[135] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.

Graphr: Accelerating graph processing using reram. In High Perfor-

mance Computer Architecture (HPCA), 2018 IEEE International Sym-

posium on, pages 531–543. IEEE, 2018.

[136] JEDEC Standard. High bandwidth memory (hbm) dram. JESD235,

2013.

[137] Harold S Stone. A logic-in-memory computer. IEEE Transactions on

Computers, C-19(1):73–78, Jan 1970.

[138] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and

Lizy K. John. The virtual write queue: Coordinating dram and last-

level cache policies. In Proceedings of the 37th Annual International

Symposium on Computer Architecture, ISCA ’10, pages 72–82. ACM,

2010.

[139] Yuliang Sun, Yu Wang, and Huazhong Yang. Energy-efficient sql query

exploiting rram-based process-in-memory structure. In Non-Volatile

137

Memory Systems and Applications Symposium (NVMSA), 2017 IEEE

6th, pages 1–6. IEEE, 2017.

[140] Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier Sal-

lenave, Carlo Bertolli, Samuel Antao, Jose Brunheroto, Yoonho Park,

Kevin O’Brien, et al. Data access optimization in a processing-in-

memory system. In Proceedings of the 12th ACM International Con-

ference on Computing Frontiers, page 6. ACM, 2015.

[141] Thomas Vogelsang. Understanding the energy consumption of dynamic

random access memories. In Microarchitecture (MICRO), 2010 43rd

Annual IEEE/ACM International Symposium on, pages 363–374. IEEE,

2010.

[142] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:

an insightful visual performance model for multicore architectures. Com-

munications of the ACM, 52(4):65–76, 2009.

[143] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rmi Louf, Morgan

Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,

Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,

Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transform-

ers: State-of-the-art natural language processing. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing:

138

System Demonstrations, pages 38–45, Online, October 2020. Association

for Computational Linguistics.

[144] Mingli Xie, Dong Tong, Kan Huang, and Xu Cheng. Improving system

throughput and fairness simultaneously in shared memory cmp systems

via dynamic bank partitioning. In High Performance Computer Archi-

tecture (HPCA), 2014 IEEE 20th International Symposium on, pages

344–355. IEEE, 2014.

[145] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez.

The dynamic granularity memory system. In Proceedings of ISCA, 2012.

[146] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni.

Palloc: Dram bank-aware memory allocator for performance isolation on

multicore platforms. In Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE,

2014.

[147] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[148] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L

Greathouse, Lifan Xu, and Michael Ignatowski. Top-pim: throughput-

oriented programmable processing in memory. In Proceedings of the 23rd

international symposium on High-performance parallel and distributed

computing, pages 85–98. ACM, 2014.

139

[149] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu,

Kang Chen, Christos Kozyrakis, and Xuehai Qian. Graphp: Reducing

communication for pim-based graph processing with efficient data parti-

tion. In High Performance Computer Architecture (HPCA), 2018 IEEE

International Symposium on, pages 544–557. IEEE, 2018.

[150] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based

page interleaving scheme to reduce row-buffer conflicts and exploit data

locality. In Proceedings 33rd Annual IEEE/ACM International Sympo-

sium on Microarchitecture. MICRO-33 2000, pages 32–41. IEEE, 2000.

[151] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard

David, and Zhichun Zhu. Mini-rank: Adaptive dram architecture for im-

proving memory power efficiency. In Microarchitecture, 2008. MICRO-

41. 2008 41st IEEE/ACM International Symposium on, pages 210–221.

IEEE, 2008.

[152] Haishan Zhu, David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy

Ranganathan, and Mattan Erez. Kelp: Qos for accelerated machine

learning systems. In 2019 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA), pages 172–184. IEEE, 2019.

140

Index

Abstract, viii

Accelerating Bandwidth-Bound Deep

Learning Inference with Main-

Memory Accelerators, 68

Acknowledgments, v

Background, 8

Bibliography, 140

Contribution, 5

Dedication, iv

Dissertation Organization, 7

Dissertation Summary and Future

Work, 109

High-performance CPU-PIM Concur-

rent Memory Access, 26

Introduction, 1

Thesis Statement, 5

141

Vita

Benjamin Youngjae Cho was born in Wayne, New Jersey on Decem-

ber 17th 1985, the son of Dr. Hanjin Cho and Jinwook Shin. He received

his Bachelor of Science degree in Electrical and Electronics Engineering from

Yonsei University, Seoul, South Korea. From the same university, he received

his Master of Science degree under the guidance of Dr. Won Woo Ro. Then,

he joined the doctoral program at the University of Texas at Austin, in the

Electrical and Computer Engineering, specifically the Computer Architecture

track, under the guidance of Dr. Mattan Erez. During his doctoral study, his

research interests are focused on enabling processing in/near memory devices

in conventional CPU systems and leveraging computing resources of the CPU

and PIMs in parallel. During the course of his doctoral work, he has done in-

ternships at AMD research, Nvidia research, Micron, and Facebook AR/VR,

working on various challenges in high-performance CPU/GPU memory sys-

tems.

Permanent address: bjcho@utexas.edu

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version
of Donald Knuth’s TEX Program.

142

