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Abstract 
 
Hybrid Plasma Deposition and Milling (HPDM), a five-axis manufacturing 

system integrated material additive and subtractive processes, can be used to create 
overhang metallic components directly without the usage of sacrificial support 
structure. Different from conventional slicing methods, a new slicing algorithm with 
changeable direction and thickness is proposed in this paper. Minimal overhang length 
is selected as the objective function to optimize the build direction. The thickness is 
adjusted to meet allowable overhang length and allowable cups height. The input 
mesh is first decomposed into non-uniform thickness segment meshes and then each 
segment is cut into uniform thickness slices. The output slices consist of split slices 
between two adjacent segment meshes and inner slices for each segment mesh. 
Examples and analyses confirm the feasibility and effectiveness. 
 

Introduction 
 
Additive manufacturing (AM) is a set of digital manufacturing technologies 

integrated CAD (Computer Aided Design), CAM (Computer Aided Manufacturing) 
and CNC (Computer Numerical Control). Different from the past, more work is now 
focused on metal than plastic and various kinds of direct fabrication processes such as 
SMD (Shaped Metal Deposition), LENS (Laser Engineered Net Shaping) and SLM 
(Selective Laser Sintering) have been sprung up. In recent years, metallic component 
direct fabrication without the usage of sacrificial support structure has been one of hot 
topics in the AM field. However, it is usually necessary to add extra support for 
building overhang component in the conventional 2.5-axis manufacturing platform. 
The support will result in the following problems: 
1. Design aspect. There is no uniform standard to guide the support design and it is 

hard to design support for components with high geometry complexity. 
2. Fabrication aspect. The material of support is usually different from the material 

of the component. The manufacturing efficiency will be reduced because of t the 
material transformation. In addition, it will waste the material and improve cost 
because the support is sacrificial. 

3. The remove of the support is a time-consuming process and the quality of the split 
surface is poor. 
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The emergence of multi-axis manufacturing system provides the chance for 
metallic component direct production without the usage of support. It always keeps 
the previous built piece as the support of the following building piece by changing the 
build direction. The component is first decomposed into several sub-volumes and then 
each sub-volume is created along a fixed direction. Another factor is the effect of 
surface tension. It makes it possible to fabricate the volume with micro-overhang 
without the usage of the support.  

Therefore, it is urgent to provide a new slicing method to meet the demands of 
multi-axis manufacturing system. Different the conventional slicing methods, the 
cruces of multi-axis slicing involve the build direction and the segmentation. Singh [1] 
and Sundaram [2] used isoclines to decompose the CAD model into two pieces. One 
is manufacturable and another is hard to make. However, it is necessary to specify the 
reference build direction and is hard to use for triangular mesh because of 
discretization error. Similar the visibility map, Singh and Dutta [1] proposed the 
concept of build map with respect to the overhang angle by using Gauss map. The 
build map is the set of all feasible build directions. On the basis of the build map, the 
component is decomposed and the optimal direction is computed in accordance with 
different targets such as minimal stair-stepping error, minimal volume error and 
maximal efficiency. However, it is difficult to compute the build map because it refers 
to complex intersection operations involving the intersection between the half-space 
and the sphere. Therefore, it is hard to implement. Zhang and Liou [3] defined the 
overhang angle by using the estimated tangent vector. The build direction is optimized 
to meet minimal spherical crown which encloses Gauss maps of all sampling tangent 
vector. The computation is incremental and complex. In addition, it will lead to 
unexpected results when the sampling tangent vector is few.  

Central axis, also known as skeleton, is the 1-dimesion abstract representation for 
a 1-dimesion object. It has been extensively used for image dissection and retrieval 
[4-5]. Similar the central axis, the concept of centroid axis [6-8] is proposed and used 
for overhang part decomposition. The centroid axis is the loci of the centers of all 
slices and guides the feasible build direction. The advantage is simple and easy to 
implement. However, the estimating precision is closely related to the slice thickness. 
It is hard to balance the efficiency and the precision. In addition, the estimating 
centroid axis will deviate from the actual skeleton when the surface has sharp corner. 
In this case, it will be failed. Literature [8] provided a improved version by comparing 
the areas between two adjacent slices and defined several potential slicing directions. 
It can only figure out the case of orthogonal sharp corner.   

HPDM (Hybrid Plasma Deposition Manufacturing) [9-11], a five-axis 
manufacturing system integrated material additive and subtractive processes, can be 
used to create overhang metallic components directly without the usage of sacrificial 
support structure. Fig.1 illustrates the fabrication course of an overhang component. 
The component is decomposed into five pieces each of which has micro-overhang and 
can be directly built. The previous piece will turn into the support for the following 
piece by rotating the A-axis. Therefore, a multi-axis adaptive slicing algorithm is 
studied to realize overhang component direct fabrication using multi-axis HPDM in 
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this paper  

 

Fig.1 Fabrication of overhang 
component using multi-axis HPDM 
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Fig.3 Structure of the segment data 
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Fig.2 Flow chart of mesh segmentation 

algorithm 

Algorithm overview 
  

The proposed slicing algorithm consists of multi-directional segmentation and 
single-directional slicing. The former is applied to the input mesh to generate a series 
of non-uniform segment meshes, each of which can be fabricated directly without the 
usage of support. The latter is served for each sub-mesh to generate a series of slices, 
each of which with the same thickness is uniform. Although both of them are 
implemented by a plane intersection with a mesh, the direction of the plane for the 
segmentation is changeable and that for the slicing is constant. It is well known that 
the result of the plane intersection with the mesh is a polygonal contour. To 
differentiate them, the plane and the contour for the segmentation are called segment 
plane and segment contour and they for the slicing are called slice plane and slice 
contour.  

As shown in Fig.2, given a triangular mesh M, the input arguments are listed in 
Table 1 and the output is a set of segment data (see Fig.3). Each segment data consists 
of a coordinate system, a segment mesh, a segment under contour and a group of slice 
contours. The first three items are generated from the segmentation and the last item 
is generated from the slicing.  

The segment plane is determined by the centroid of the trial segment contour and 
the optimum build direction. To segment the mesh in a unified way, coordinate 
transformation is first applied to the mesh and then a zero-height segment is carried 
out. The objective coordinate system takes the optimum build direction as the Z-axis 
and the centroid as the origin. Zero-height segment decomposes the mesh into two 
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pieces. One is called under mesh with segment plane as the top and another is called 
upper mesh with segment plane as the bottom. The segmentation includes initial 
segmentation and overhang segmentation. The former generates the initial build 
direction and the target mesh for overhang segmentation. The latter optimizes the 
build direction and segment thickness and generates segment plane and segment data. 
Each segment mesh is formed by two adjacent segmentations. The previous provides 
the under boundary and the next provides the upper boundary. The under boundary of 
the first segment mesh is determined by the initial segmentation and the upper 
boundary of the last segment mesh is determined by the input mesh. Suppose the 
input mesh is decomposed into ݊ segment meshes. If 0 ൑ ݅ ൏ ݊, the upper mesh ݑ௜  

for the ݅th segmentation is served as the source mesh for the ሺ݅ ൅ 1ሻth segmentation 
and the under mesh ܾ௜ାଵ for the ሺ݅ ൅ 1ሻth segmentation is served as the segment 
mesh for the ݅th segmentation. If ݅ ൌ ݊, the segment mesh, namely the last one, is 
the upper mesh for the ݊th segmentation. 
 

Table 1 Input arguments/mm 

Allowable cusp height cmax Allowable overhang length solmax 

Maximum segment thickness tmax Minimum segment thickness tmin 

Initial segment height sh Slice thickness st 

 
Overhang measurement between two adjacent layers 

 
Let ܥ௕ and ܥ௧ denote the projections of two adjacent segment contours ܮ௕ and 

 .௧ onto the segment plane, called the bottom contour and the top contour respectivelyܮ
Let ܣ௕ and ܣ௧ denote the closed regions bounded by ܥ௕ and ܥ௧. According to the 
containment relationship between ܣ and ܥ, we have: 
1. If ܥ௧ ك  .௧ܮ ௕ andܮ ௕, there is no overhang betweenܣ
2. If ܥ௧ م ௕ܣ ௕ andܣ ת ௧ܣ ൌ  .௧ܮ ௕ andܮ there is a large overhang between ,׎
3. If ܥ௧ م ௕ܣ ௕ andܣ ת ௧ܣ ്  .௧ܮ ௕ andܮ there is a small overhang between ,׎

The large overhang can be converted into the small overhang by the reduction of 
segment thickness, so the latter is our main research subject. As shown in Fig.4, let ܸ 
be a point on the top contour ܥ௧. If ܸ ב  ௕, it is called an overhang point and isܣ
denoted by ܸ א ܱ; otherwise, it is called a non-overhang point and is written by 
ܸ ב ܱ. If ܸ is an overhang point, the distance away from the bottom contour ܥ௕ is 
defined as point-based overhang length and is formulated by: 

,ሺܸ݈݋  ௕ሻܥ ൌ ,ሺܸݐݏ݅݀  ௕ሻ (1)ܥ
Similarly, the distance between ܥ௧ and ܥ௕ is defined as contour-based overhang 
length represented by the maximum point-based overhang length: 

,௧ܥሺ݈݋  ௕ሻܥ ൌ max ሼ݈݋ሺ ଵܸ, ,௕ሻܥ ሺ݈݋ ଶܸ, ,௕ሻܥ ڮ , ሺ݈݋ ௞ܸ,  ௕ሻሽ (2)ܥ
 The recognition of overhang point can be implemented by the intersection 

between the bottom contour ܥ௕ and the ray ݕܽݎ: ൫ܲ, ܸܲሬሬሬሬሬԦ൯ where ܲ is a point in the 

ܸ ௕. For a given pointܣ א  :௧, we haveܥ
1. If ݕܽݎ ת ௕ܥ ൌ ܸ ,׎ ב ܱ. 
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2. If ݕܽݎ ת ௕ܥ ് ܸ ,׎ א ܱ. 
For a triangular mesh, the segment contour is a polygon and represented by a set 

of ordered segments ܥ ൌ׷ ሼݏଵ, ,ଶݏ ڮ , ௡ሽݏ , the intersection and the point-based 
overhang length can be formulated as: 

ݕܽݎ  ת ௕ܥ ൌ ڂ ݕܽݎ ௡ת
௜ୀଵ ௕ݏ

௜  (3) 
,ሺܸ݈݋  ௕ሻܥ ൌ minሼ݀݅ݐݏሺܸ, ௕ݏ

ଵሻ, ,ሺܸݐݏ݅݀ ௕ݏ
ଶሻ, ڮ , ,ሺܸݐݏ݅݀ ௕ݏ

௡ሻሽ (4) 
 On the basis of the computation of the point-based overhang length, the 
contour-based overhang length ݈݋ሺܥ௧,  ௕ሻ can be easily got and served for theܥ
recognition of the overhang contour. Therefore, we have: 
1. If ݈݋ሺܥ௧, ௕ሻܥ ൐ 0, there is a overhang between ܮ௕ and ܮ௧. 
2. If ݈݋ሺܥ௧, ௕ሻܥ ൑ 0, there is no overhang between ܮ௕ and ܮ௧. 
 

Overhang measurement for a single layer 
 
If there is a overhang between ܮ௕ and ܮ௧, the overhang measurement for a 

single layer ܮ௧ now is discussed. As shown in Fig.5, for a given point ௜ܸ on the top 
contour ܥ௧, the overhang angle ߠ௜ is defined as the included angle between the 
optimum build direction ࢏࢈ and the actual build direction u and is formulated by: 
 cos ௜ߠ ൌ ,࢏࢈ۃ  (5) ۄ࢛
Let ݐ denote the segment thickness, there is a relationship between the overhang 
angle and the overhang length:  

௜݈݋  ൎ ݐ ڄ tan ሺߠ௜ሻ (6) 
For a segment contour ܥ, we define the summation of all point-based overhang 
lengths as the contour-based overhang length: 

ሻܥሺ݈݋  ൌ ∑ ௜݈݋
௞
௜ୀଵ  (7) 

Given a build direction, the optimum build direction with respect to the point ௜ܸ can 
be estimated by its tangent vector: 

࢏࢈  ൌ ࢏࢔ ൈ ࢛ ൈ  (8) ࢏࢔
where ࢏࢔ denotes the normal vector with respect to the point ௜ܸ.  
For a triangular mesh, the normal vector ࢏࢔ can be estimated by the mean of the 
facet normal vectors: 

 ݊ ൌ
∑ ࢏ࢌ

ೖ
೔సభ

|| ∑ ࢏ࢌ
ೖ
೔సభ ||

 (9) 

where ௜݂ denote an adjacent facet of ௜ܸ. If ௜ܸ is the vertex of a facet, ݇ is the 
valence of the vertex; otherwise, ௜ܸ must be the intersection between the segment 
plane and an edge and ݇ ؐ 2

 
Build direction optimization 

 
The build direction minimizing the overhang length ݈݋ሺܥሻ is the optimum 

direction for the upper mesh. If an overhang point ௜ܸ can be fabricated directly, its 
overhang angle must meet ߠ௜ א ሾ0,  2ሻ according to the concept of the visible map/ߨ
[12]. When ࢏࢈ and ࢈ are unit vectors, we first translate them onto a Gauss sphere 
(see Fig.6) and then have: 
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௜݈݋  ן ݈௜ ן 1 ݉௜
ൗ  (10) 

where ݈௜ is the length of the projection of ࢏࢈ onto the plane with ࢈ as the normal 
vector; ݉௜ is the length of the projection of  ࢏࢈ onto the vector ࢈. 
According to Eq.(10), we transform the objective function min  :ሻ and haveܥሺ݈݋

 min ሻܥሺ݈݋ ֞ max ∑ ݉௜
௞
௜ୀଵ ֞ max ∑ ,࢏࢈ۃ ௞ۄ࢈

௜ୀଵ  (11) 
max ∑ ,࢏࢈ۃ ௞ۄ࢈

௜ୀଵ ֞ min ∑ ሺԡ࢏࢈ԡଶ െ ࢏࢈2 ௞ڄ
௜ୀଵ ࢈ ൅ ԡ࢈ԡଶሻ ֞ min ∑ ԡ࢏࢈ െ ԡଶ௞࢈

௜ୀଵ
 (12) 
According to Eq.(11) and Eq.(12)，the objective function for the optimum build 
direction is: 

 min ∑ ԡ࢏࢈ െ ԡଶ௞࢈
௜ୀଵ  (13) 

The constraint condition is： 
 ԡ࢈ԡଶ ൌ 1 (14) 
 ԡ࢏࢈ԡଶ ൌ 1 (15) 

PCA [13] provides a solution for the problem of minimal 2-norm optimization. It 
converts the minimal optimization into the maximal optimization with max  as ࢋ்ܵࢋ
the objective function and ࢋ்ࢋ ൌ 1 as the constraint condition. By using Lagrange 
multiplier approach, we have ܵࢋ ൌ λࢋ . The eigenvector with the maximum 
eigenvalue for the sparse matrix ܵ is our target. The sparse matrix ܵ is estimated by 
the covariance matrix in the usage of PCA. When the number of points on the 
segment contour is few, there will be a greater estimation error between the sparse 
matrix and the covariance matrix. In this case, the confidence of the build direction 
will be reduced. Therefore, we must provide enough points to better estimate the 
sparse matrix. One efficient approach is the usage of high-precision input mesh.  
 

Fig.4 Overhang length 
between two adjacent 

layers 

Fig.5 Overhang length 
and overhang angle for a 

single layer 

Fig.6 Gauss map of build 
directions

Segment thickness optimization 
 
The segmentation consists of the initial segmentation and the overhang 

segmentation. For the former, the segment plane is parallel to the bottom of the 
AABB (Axis-aligned bounding box) of the input mesh and the segment thickness is 
the initial segment height. For the latter, the segment thickness is optimized to meet 
allowable overhang length and allowable cusp height. The concept of cusp height was 
proposed by Dolenc and Makela [14] and used to measure the stair-stepping error. For 
an overhang component, the cusp height also can be used to measure the missing 
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volume. As shown in Fig.5, there is a relationship between the cups height ܿ and the 
segment thickness ݐ, that is ݐ ൌ c/sin ሺߠሻ. If ߠ tends to zero, the segment direction 
will tend to be coincided with the optimum build direction and ݐ will tend to infinity. 
In this case, the segmentation will be failed. If ߠ approaches 2/ߨ, the segment 
direction will tend to be perpendicular to the optimum build direction and ݐ will 
approach ܿ. In this case, the segmentation will be also failed. To prevent the above 
exceptions, the segment thickness must be greater than or equal to the minimum 
segment thickness ݐ௠௜௡ and must be less than or equal to the maximum segment 
thickness ݐ௠௔௫. Therefore, the segment thickness under allowable cups height is 
formulated by: 

 ݄଴ ൌ minሼݐଵ, ,ଶݐ ڮ ௞ሽݐ   (16) 
 ݄଴ א ሾݐ௠௜௡,  ௠௔௫ሿ (17)ݐ

 Except for allowable cups height, the segment thickness must be constrained by 
allowable overhang length. Suppose that there is a linear relationship between the 
segment thickness and the overhang length. The actual overhang length can be 
calculated by Eq.(2), therefore the optimum segment thickness is: 

 ݄ ൌ ௢௟೘ೌೣ

௢௟೎ೌ೗೎
݄଴ (18) 

where ݈݋௠௔௫ is allowable overhang length corresponding to ݄0 which is determined 
by slice thickness ݐݏ and allowable overhang length ݈݋ݏ௠௔௫. The detail relationship 
is: 

௠௔௫݈݋  ൌ ௛బ

௦௧
 ௠௔௫ (19)݈݋ݏ

  
Examples and analyses 

 
Fig.7 illustrates the details and results of the proposed algorithm used for the 

bend mesh. The corresponding input arguments are listed in Table 2. Fig.7a is the 
input mesh which has 5767 facets and 8652 edges. The dimension is 10.00 ൈ 23.17 ൈ
38.89mm. Fig.7b illustrates the normal vector and the tangent vector for each point. 
Z-axis of each coordinate system is the optimal build direction for each segment mesh. 
Fig.7c illustrates the segment planes and the segment meshes. The bend is 
decomposed into eight segment meshes. Fig.7d illustrates the output slices. Except for 
the last segment mesh, each segment mesh has one segment contour and two slice 
contours. The last segment mesh only has one slice contour.  
 Fig.8 illustrates the overhang measurement comparison between the build 
direction unchanged and changed. The overhang measurement includes overhang 
length and overhang angle. The overhang angle and the overhang length for each 
point on the segment contour are calculated by Eq.(6) and Eq.(4). The allowable 
overhang length is 0.625mm which can be computed by Eq.(19). From Fig.8a, the 
overhang angle is significantly reduced and the maximum is reduced from 12.66° to 
3.85°. From Fig.8b, the overhang length is reduced from 0.71mm to 0.60mm which 
less than 0.625mm. Therefore, both confirm feasibility and effectiveness of the 
proposed algorithm. 
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Table 2 Input arguments for Fig.7/mm 

Allowable cusp height cmax - Allowable overhang length solmax .25

Maximum segment thickness tmax 5 Minimum segment thickness tmin 5 

Initial segment height sh 0 Slice thickness st 2 

 

 
(a)input mesh; (b)normal and tangent vector; (c)segmented meshes; (d)output slices; 

Fig.7 Adaptive slicing for the bend with uniform segment thickness 
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 (a)overhang angle comparison; (b)overhang length comparison; 

Fig.8 Overhang measurement comparison between build direction unchanged and 
changed 

 
 Different Fig.7, Fig.9 illustrates the segmentation with variable thickness. The 
corresponding input arguments are listed in Table 3. The bend is decomposed into six 
segment meshes. The segment thickness is small where the curvature is big and is big 
where the curvature is small. Fig.9c illustrates the adjustment of segment thickness. 
The pre-segment thickness, optimized thickness and actual thickness are computed by 
Eq.(16), (17) and (18) respectively. Build directions of the first segment mesh and the 
last segment mesh are parallel and their overhang lengths are less than the allowable 
value, therefore their segment thicknesses are the maximum allowable segment 
thickness. The thickness of the 2nd-4th segment meshes are less than the minimum 
allowable segment thickness. The thickness of the 5th segment mesh is 5.43 which is 
between the minimum segment thickness and the maximum segment thickness. Fig.10 
illustrates a more complex application example.  
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Table 3 Input arguments for Fig.9/mm 

Allowable cusp height cmax 1.2 Allowable overhang length solmax .15

Maximum segment thickness tmax 9 Minimum segment thickness tmin 5 

Initial segment height sh 0 Slice thickness st 1 
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 (a)segment meshes; (b)output slices; (c) adjustment of segment thickness 

Fig.9 Adaptive slicing for the bend with variable segment thicknesses 

    
 

Fig.10 Adaptive slicing for the helix 
 

Conclusions 
 
To realize overhang component direct fabrication using multi-axis HPDM, an 

adaptive slicing algorithm with variable direction and thickness is proposed in this 
paper. It consists of multi-directional segmentation and single-directional slicing. The 
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former is applied to the input mesh to generate a series of non-uniform segment 
meshes, each of which can be fabricated directly without the usage of support. The 
latter is served for each sub-mesh to generate a series of slices, each of which with the 
same thickness is uniform. The segment direction is optimized to meet minimal 
overhang length and the segment thickness is adjusted to meet allowable overhang 
length and allowable cups height. The output slices consist of split slices between two 
adjacent segment meshes and inner slices for each segment mesh. The algorithm has 
been implemented by using C++ and OpenGL in the platform of VS2010. Examples 
and analyses confirm its feasibility and effectiveness. 
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