
EXTENSIBLE DIGITAL FABRICATION LANGUAGE FOR DIGITAL

FABRICATION PROCESSES

Jeffrey I Lipton
1
, Karl Gluck

2
, Hod Lipson

1,2

Cornell Computational Synthesis Lab
1
Department of Mechanical Engineering

2
Department of Computer Science

Cornell University, Ithaca NY 14850

Abstract

While additive manufacturing objects are described by the STL and AMF

standards, the protocol controlling the fabricator is typically machine-specific. In

this paper, we explore a system architecture that converts geometric data into

control processes for equipment. We propose a new Extensible Digital

Fabrication Language (XDFL) and an interpreted ToolScript language that

describes how a geometry is translated into machine commands. An initial

implementation of this system architecture was created and deployed as part of

the Fab@Home project. The introduction of a standard process control language

will decouple process planning from the equipment manufacturer, thereby

catalyzing the introduction of new equipment and development of better process

planners.

Introduction

Additive manufacturing has the potential to transform into a horizontal industry. Prior to

the personal computer revolution, many companies were vertically integrated, designing all

aspects of their technology, from processor to programs. The current state of the computer

industry is horizontal, with different companies specializing in parts of the system. Currently in

Solid Freeform Fabrication, most devices are vertically integrated, with a single company

designing the materials through planning software. With defined standards for geometric and

material interchange formats, SFF could become a horizontally integrated industry.

Currently the field of SFF lacks standards for machine commands, and for material and

geometric processing. Any standard must address the needs of various communities. SFF is a

rapidly growing and changing field with a variety of different techniques and technologies. In

order for standards to be successful for a wide variety of current and future SFF techniques and

technologies, it must address the following concerns:

(1) Technology Independence: Given the huge depth and breadth of additive manufacturing

techniques, any machine command, and geometric processing standard must easily be

able to be adapted to a wide variety of SFF technologies.

(2) Simplicity: Any machine command standard must be easy to implement and understand.

Commands should be able to be read and debugged in a simple text editor. While this

would limit compatibility with low power microprocessors, many SFF systems are

computer controlled.

(3) Future compatibility: SFF is a rapidly evolving industry, and any command medium and

processing standard must be easily extensible. New features must be easily added as

rosalief
Typewritten Text
Reviewed, accepted September 23, 2010

rosalief
Typewritten Text
693

warranted by advances in technology, while maintaining compatibility with previous

versions.

Definitions:

In this paper, we will use the following definitions of terms:

Process – a technique used for SFF such as FDM, Stereo-lithography, Electron Beam

Freeform Fabrication (EBF3), etc

Machine – a digital fabricator using a specific tool, eg Fab@Home with syringe tool,

Fab@Home with valve based tool, Fab@Home with FDM tool, EBF3

machine, Makerbot, RepRap, etc

Material distribution – a geometry associated with a particular material

Background

For the past three decades manufacturing industries have used G-code for computer

numerical controlled processes. G-code was designed for repeated subtractive manufacturing

tasks. The language defines tool paths and common machine interactions. Many SFF systems

have used this language to contain information about their vectorized paths. Industrial and

commercial machines such as EBF3 machines and LENS machines use G-code only for pathing

information. (1) (2) Low cost kits such as Makerbot and RepRap use G-code to contain

information about material deposition, environmental parameters and machine parameters in

addition to path information. (3)

G-Code has severe limitations on its ability to be a useful command medium in the

future. G-code itself has no widely adopted standards or governing body. This has lead to many

different companies developing unique standards for their particular machines. In the field of

SFF some machines, though using the same technology, have used different G-code language

dialects. A Makerbot machine uses M-codes to start and stop an extruder while with RepRap

machines the extrusion is treated like an axis of motion in the movement commands. It is

difficult to extend G-code. Since each command is distinct and numbered, modifying the

function of a command would require generating a new numbered command, or breaking

backwards compatibility. G-code is designed explicitly for vectorized interaction and could not

easily be used for other types of existing technologies. Additionally it is inherently mono-

material, limiting its future usefulness of additive manufacturing.

 Fab@Home robo-casting systems use a customized XML language called “fab” files in

order to contain vectorized path information. (4) It is an multi-mateiral language, capable of

describing a build process of n-number of materials. The language itself is flexible but is

designed explicitly for vectorized printing using a syringe system. While it is possible to adapt

the format for various other deposition heads, it is not a natural process. (5)

The SFF industry has used STL as a standard geometry format, and is adopting the new

AMF format for geometric and material distribution information. (6) However, for the majority

of SFF systems, the processing of material and geometric information is hard coded into print

planning programs. This makes specifying unique printing requirements for a given material or

geometry difficult. The ability to script the print planning process could provide an easy way to

extend the functionality of SFF systems.

rosalief
Typewritten Text
694

In finding a solution to the standards model, the web-browser was examined. Two

standards are the core of a modern web browser are HTML and JavaScript. HTML is human and

machine readable, and platform independent. It uses tags to clearly separate data and meta-data.

JavaScript is the standard scripting language of web interactions. A variety of engines can

securely execute embedded JavaScript code. (7)

Specifications: Overview

The architecture of the proposed system depends on two critical components, the

Extensible Digital Fabrication Language (XDFL), and the ToolScript standards. XDFL is an

XML-compliant command medium. ToolScript is an extension of the EMCAScript (JavaScript)

language. It allows users to script the processing of geometric and material information.

ToolScript processes a material distribution, such as an AMF file, along with materials settings,

into XDFL. ToolScript is process-specific, and XDFL is process-specific and materials-specific.

AMF File

Figure 1: ToolScript processes the materials distribution information from an AMF into XDFL commands

Specification: ToolScript

The ToolScript for a given process has three primary functions. Firstly, it must slice and

object into slices of given thicknesses. The height of these slices may be constant or vary based

on a given geometry. Secondly, it must process the slices into deposition commands. A

vectorized process requires the processing of slices into paths. A serial voxelized a process

requires the processing of slices into voxels sorted in the order of deposition. A parallel

voxelized process requires the processing of slices into bitmaps of regions inside of each slice.

Finally, the ToolScript must generate the XDFL and write it to a file. In order to accomplish this,

a variety of objects are required by a ToolScript.

Any given ToolScript file may only need a subset of the objects described here. A

ToolScript needs to have an AMF file representation object, which contains AMF region objects.

The AMF regions contain the geometric information for a given material. A slicer object must

be able to take AMF regions and slice heights, and convert them into a slice object. A slice

object must contain a single outer boundary and zero or more inner boundaries. Each slice has a

single material and z height associated with them. Vectorized processes require a pather object,

which can convert a slice and information about the process into paths. Each path is a list of

AMF

Geometric

Information

Material

mappings

Material Settings

ToolScript

XDFL

rosalief
Typewritten Text
695

special coordinates with an associated material. Voxelized processes require a voxelizer object

similar to a pather, which outputs voxel information. Finally, an XDFL writer object is required

which can convert representations of voxels, paths, and slices into XDFL code.

Using ToolScript it is possible to write custom implementations of the various objects.

For example, if one needs a unique path planner for a specific application, it could be written as

part of a ToolScript, provided it interacts with the rest of the tool chain as described. It is also

possible to use multiple types of pathers for the same object. This would allow one to make an

object with a solid top and bottom, and a hollow core, making it air-tight. (8)

Object Inputs Outputs Properties Purpose

AMF File AMF regions Contains AMF regions

AMF region Material, (slices), (paths),
(voxels), (bitmaps)

Contains material specific
geometry

Slicer AMF region, slice
heights

Slices Converts an AMF region into
slices

Slice Material, Z value, (Paths),
(voxels), (bitmaps)

Contains outer and inner
boundaries

Pather Slice, path
information

paths Converts slices into paths for
vector processes

Path Material, points, (Speed),
(Cross section)

A representation of a path to
be taken

Voxelizer Slice, voxelization
information

Voxels
bitmaps

 Converts slices into voxels or
bitmaps

Voxel Material, Point, (Shape) A representation of a voxel to
be deposited

Bitmap Material key, Location A representation of a voxel
region to be deposited in
parallel

Material
Calibration

 Material properties An array of material properties
and corresponding values

XDFL writer Material
calibrations,
SFF Process
information
(paths), (voxels),
(slices),(bitmaps),
(AMF regions)

XDFL
file

 An object which converts the
information generated from
the pathers, slicers, and
voxelizers into XDFL commands

Figure 2: Objects required by ToolScript. A single ToolScript file may only need a subset. Optional items are in
parenthesis.

Specification: XDFL

XDFL has two top-level tags, which denote the different types of information it contains.

The palette tag contains information about the materials used in the printing process. The

information contained within the palette tag must be globally accessible when using the XDFL

file to execute a print. It contains the abstract information about the different materials to be used

in the print process. The commands tag contains a sequential list of commands for the digital

rosalief
Typewritten Text
696

fabricator. The commands listed under the command tag may refer to the global information in

the palette tag and may locally overwrite them. A value specified in the commands section is

valid for any of its parent tag’s children. Unlike the command medium discussed above, XDFL

has a built-in knowledge and description of the print’s volume. It is designed to be useful for

vectorized, voxelized, and stratified processes. A list of all of the XDFL tags and their

relationships is in appendix A.

XDFL: Vectorized

A material in a XDFL file for a vector process has five required tags: path height, width,

area constant, speed, and compression volume. These allow the XDFL to be created without

having explicit knowledge of how the machine works; rather, it only requires knowledge of how

it will deposit material. The flow rate of a path is defined below. For any vectorized process,

either the flow rate or the path speed can be fixed for a given resolution (width/height values).

The compression volume defines how much material is deposited at the beginning and end of a

path. A positive value denotes a process over-depositing initially. A negative value denotes a

process under-depositing initially.

(a) (b)

 Figure 3: The equations governing XDFL path flow rates (a), and a diagram of a given path (b)

Paths contain a list of points defining line segments. Each point can contain between two

and six coordinates. If paths are contained in a layer tag, then they could have a default value for

“x”, “y”, or “z” provided by the layer. Coordinates “u”, “v”, and “w” define rotations around the

“x”, “y”, and “z” axis respectively. If a machine has less than the provided number of axes,

information contained in the tags is ignored. Appendix B contains an example G-Code file and

its XDFL equivalent.

XDFL: Stratified

XDFL can be used to define purely stratified SFF processes such as laminated object

manufacturing. In order to describe a stratified print, the materials would contain process specific

properties and values, and the commands section would contain exclusively layer tags. These

layer tags link to image files of the current layer. The properties of the materials could be used to

map between the materials and the image files. The XDFL files and image files could be placed

in a zip archive with a unique extension for laminated processes. This would ensure that the file

completely described the process. An example XDFL file for stratified processes is in Appendix

C.

Path Width

Path Height

rosalief
Typewritten Text
697

XDFL: Voxelized

XDFL files work slightly differently for serial and parallel voxel machines. A serial

voxelized XDFL file would be similar to the stratified and vectorized files, but would contain a

sequential series of voxel tags. Each voxel tag would define its location in space. It optionally

would contain a geometry attribute, which references, and STL or AMF file for visualizations

purposes. A vectorized XDFL file may use the voxel tag to deposit a given volume at a given

location. A parallel voxel machine would use path tags to move to a location, and then use the

bitmap tag to define where space of voxels will be deposited. An example file is in Appendix D.

Implementation and Performance

 In order to test the performance of ToolScript a processing library and environment were

necessary. A digital fabrication application library was created, called libFabApp. LibFabApp

contains all of the code needed to run ToolScript and process AMF and STL files. The library

processes tool files that have the process specific material settings and ToolScript embedded

within. Using libFabApp, FabStudio version one was created to provide a GUI interface for

interacting with the library. The first iteration of the library and studio is designed to work with

vectorized print processes. Later versions will allow for voxelized and stratified prints.

(a) (b)

(c) (d)

Figure 4: In order to use the new framework in FabStudio a user must load an object (a), position and

scale it (b) assign a material to STL files or unmatched AMF files (c), and send to printer (d)

rosalief
Typewritten Text
698

We used FabStudio to generate XDFL files for robo-casting processes. By combining the

XDFL with a digital fabricator’s configuration information, it is possible to generate the G-Code

needed to operate the machine. A custom python script converted the XDFL file into G-code for

a Makerbot and RepRap. The G-code from the script was compared to the XDFLs size in a

zipped and unzipped form. Figure six shows that the XDFL is larger than G-code files when

uncompressed, but can be reliably compressed compared to the un-standardized G-Code.

Figure 6: A comparison of XDFL verses two standard G-Code encodings for FDM

Future Work:

Non-vectorized ToolScript objects need to be added to libFabApp. Implementations of

the non-vectorized XDFL should be tested on various platforms. There are several useful

features which should be built on top of the XDFL-ToolScript framework. The simplest one to

implement is the embedding of JavaScript into XDFL files. This would allow material data to be

calculated dynamically. Complex curves could be approximated at machine resolution at

runtime. Based on the history of websites embedding JavaScript in HTML this could have a

variety of benefits. Following embedded JavaScript in XDFL, a hybrid DOM/SAX model with

printing related events would allow a system to perform closed loop SFF.

Conclusions:

 XDFL is a unique command medium, since it is applicable to a wide variety of SFF

technologies. ToolScript provides a uniform means of programming geometric processing for

SFF technologies. ToolScript and XDFL represent a powerful platform. Its full potential can

only be realized if it is refined and adopted across systems and user groups. By standardizing the

processing of geometries and the command mediums of SFF systems, SFF technology could

rapidly develop by allowing effort to specialize and the industry to become more horizontal.

0 50 100 150 200

XDFL

Makerbot G-Code

RepRap G-Code

compressed XDFL

Compressed Makerbot

Compressed RepRap

Size in KB

Size of Various Command Formats

Cube

rosalief
Typewritten Text
699

Acknowledgements:

The authors of this paper would like to thank the members of the Cornel University

Fab@Home Student project team.

Bibliography
1. A Design of Experiments Approach Defining the Relationships Betwen Processing and Microstructure

for Ti-6Al-4V. Wallave, T A, et al. Austin Tx : 15th Solid Freeform FAbrication Symposium, 2004.

2. Free Form Fabrication ofMetallic Components using Laser Engineered Net Shaping (LENS). Griffith, M

L, et al. Austin TX : Proceedings of the Solid Freeform Fabrication Symposium, 1996.

3. RepRap Project. Mendel User Manual: RepRap GCodes. reprap.org. [Online] reprap research

foundation, June 28, 2010. [Cited: June 29th, 2010.]

reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes.

4. Fab@Home Model 2: Towards Ubiquitous Personal Fabrication Devices. Lipton, Jeffrey I, et al. Austin

TX : s.n., 2009. Solid Freeform Fabrciation Symposium.

5. Fab@Home Project. Fab@Home:Deposition Tools. Fab@Home Wiki. [Online] Fab@Home Project,

March 17, 2010. [Cited: June 20, 2010.] fabathome.org/wiki/index.php/Fab%40Home:Deposition_Tools.

6. STL 2.0: A Proposal for a Universal Multi-Material Additive Manufactuing File Format. Hiller, Jonathan

D and Lipson, Hod. Austin Tx : 20th Annual Solid Freeform Fabrication Symposium, 2009.

7. ECMA International. ECMAScript for XML(E4X) specification. Geneva : Ecma International, 2005.

ECMA-357.

8. Additive Manufacturing of Pneumatic Actuators and Mechanisms. Lipton, Jeffrey I, Hiller, Johnathan

and Lipson, Hod. Austin Tx : 21st Annual Solid Freeform Fabrication Symposium, 2010.

rosalief
Typewritten Text
700

Appendix A: List of XDFL tags

Tag Descriptor attributes parents Comment
Xdfl Top level tag for the file process,

version(#)

palette Header for holding material

information

 xdfl

material Opens material palette

name Name Material,

property

 Not unique locally

id Locally unique ID of a material Material Integer value.

pathWidth Width of vector path units Material Required for vectorized

pathHeight Height of vector path units Material Required for vectorized

pathSpeed Speed of vector path units Material

areaConstant Area constant of vector path units Material Required for vectorized

compression Compression volume of

material

units Material Required for vectorized

property Dynamically defined property

of material

id Material Optional

value Value of a property units Property

commands Body of file which holds

commands

 Xdfl

layer Defines a single layer image Commands,

div

Optional, but recommended. Image

= URL of an image of the layer slice

Div Lable for sections Id, title Commands,

Layers,

Used organize into outlines infill or

any other organizational structure

Path Opens a vector path crossSectionc

oordinates

(abs/rel),

units, objectId

Commands,

Layer

div

For machine movements or

vectorized

materialID Locally unique id of material to

be deposited over path

 Path,

voxel

Presence denotes if a path is

deposition or movement

speed Overwriting speed for a path Units path Optional

point Opens a point path

x x coordinate Layer, Point,

voxel

y Y coordinate Layer, Point,

voxel

z Z coordinate Layer, Point.

voxel

Optional if in layer

u Rotation about x Units(r/d) Point,voxel Optional

v Rotation about y Units(r/d Point,voxel Optional

w Rotation about z Units(r/d) Point.voxel Optional

 voxel Defines a volume to be

deposited

Geometry

coordinates

objectId

Commands,

layer,

div

For voxel deposition or extruding a

volume at a fixed location

volume Defines volume of a voxel units Voxel

script Opens a script to be run type All Can be embedded anywhere to

provide scripting for a given tag

noscript Provides default values if a

script cannot be run

 All

bitmap Contains link to bitmap for

parallel voxel deposition

Src

objectId

Layer,

commands

Links to a bitmap representing a

parallel voxel field

dwell units commands Pauses for a given amount of time

pause Pauses till a user responds commands

rosalief
Typewritten Text
701

Appendix B: Vectorized XDFL file Example

rosalief
Typewritten Text
702

Appendix C: Stratified XDFL File

rosalief
Typewritten Text
703

Appendix D: Voxelized XDFL file

rosalief
Typewritten Text
704

