Exploring the role of interfacial cation in F ion channel using MD simulation: Application of computational chemistry

<u>Aru Chezhian</u>, <u>Zabin Momin</u>, Hedieh Torabifard* University of Texas at Dallas

Introduction:

- Fluoride ion channel, called Fluc is a selective towards F⁻ that has evolved in many microbes to combat F⁻ toxicity
- Fluc has a dual topology dimeric architecture
- Previous crystallography work has proposed that a Na⁺ ion is located at the interface of the dimer
 - Na⁺ usually coordinates with 5/6 ligands, but the Fluc interfacial cation is tetrahedrally coordinated
- We are modelling Fluc with alternate cations Mg²⁺ and Li⁺ to compare structural stability and conformational changes
- This work could have larger implications for future study of this channel and other cation-coupled transporters for antimicrobial drug design

Methods:

D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. Goetz, R Harris, S. Izadi, S.A. Iz- mailov, K. Kasavajhala, A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N.R. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, Y. Xiong, Y. Xue, D.M. York and P.A. Kollman (2020),

Results:

UD THE UNIVERSITY OF TEXAS AT DALLAS

UD THE UNIVERSITY OF TEXAS AT DALLAS

The significant difference in RMSF in the HIP system corresponds to the loop where HIS 60 is located.

Na⁺ HIE Coordination

System	# of intracellular F ⁻
Na ⁺ HIE	2

Bonded Residues	Fraction of Time Bonded
F260 – THR 80	0.9968
F260 – THR 207	0.9572

The H-bonding analysis shows that THR 207 and THR 81 form an H-bond network with F 260 and hold it in place

Na⁺ HIP Coordination

The H-bonding analysis shows that ARG 23 has interactions with GLY 78. ARG 23 is potential interest since this specific residue has not had prolonged hydrogen bonding in Na⁺ HIE system. Also, the fluoride ions have no H-bond interactions with the neighboring residues. Yet, 2 of them remained inside the pore.

System	# of intracellular F ⁻
Na ⁺ HIP	2

Bonded Residues	Fraction of Time Bonded
GLY 78 – ARG 23	0.9493
TRP 37- THR 41	0.9451

ID THE UNIVERSITY OF TEXAS AT DALLAS

Mg²⁺ HIE H-Bonding and Coordination

System	# of intracellular F-
Mg ²⁺ HIE	3

Bonded Residues	Fraction of Time Bonded
F 258 – THR 81	0.9988
F 258 – SER 83	0.9985
F 258 – THR 206	0.9948

The H-bonding analysis shows that THR 206 and THR 81, and SER 83 form an Hbond network with F 258 and hold it in place

Mg²⁺ HIP H-Bonding and Coordination

System	# of intracellular F-
Mg ²⁺ HIP	2
Bonded Residues	Fraction of Time Bonded
Bonded Residues F 260 – SER 209	Fraction of Time Bonded 1.0000

The H-bonding analysis shows that SER 209 and THR 209 form an H-bond network with F 260 and hold it in place Li⁺ RMSD/RMSF

UD THE UNIVERSITY OF TEXAS AT DALLAS

Li⁺ HIE H-bonding and Coordination

System	# of intracellular F ⁻
Li+ HIE	2

Bonded Residues	Fraction of Time Bonded
F 258 – SER 83	0.9996
F 258– THR 206	0.9993
F 258– THR 81	0.9992

The H-bonding analysis shows that THR 206 and THR 81, and SER 83 form an H-bond network with F 258 and hold it in place

Conclusion:

- The Mg²⁺ HIE system had the most stable backbone. However, the Na⁺ HIE system had the lowest residual movement. These two systems seem to be the most stable.
- The Mg²⁺ HIE and Li⁺ HIE systems had the most complex hydrogen bond networks involving fluoride ions. These hydrogen bond networks held those ions in place during the entire simulation.
- We plan to run these systems for a longer period and replace the anions with Cl-, nitrate, and guanidinium.

Thank You!

- **Texas Advanced Computing Center (TACC)** for the large computing services and allowing us to run and analyze simulations
- All members of the **Torabifard Lab**: Dineli, Kira, Tejas, Abiola, Andre, Sahar, and Dr. Torabifard, for their advice and guidance
- The University of Texas at Dallas for allowing us to conduct our research

