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Service robots that can assist humans in performing day-to-day tasks will need to

be general-purpose robots that can perform a wide array of tasks without much supervi-

sion from end-users. As they will be operating in unstructured and ever-changing human

environments, they will need to be capable of adapting to their work environments quickly

and learning to perform novel tasks within a few trials. However, current robots fall short

of these requirements as they are generally highly specialized, can only perform fixed, pre-

defined tasks reliably, and need to operate in controlled environments. One of the main

reasons behind this big gap is that the current robots require complete and accurate infor-

mation about their surroundings to function effectively, whereas, in human environments,

robots will only have access to limited information about their tasks and environments. With

incomplete information about its surroundings, a robot using pre-programmed or pre-learned

motion policies will fail to adapt to the novel situations encountered during operation and fall
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short in completing its tasks. Online motion generation methods that do not reason about

the lack of information will not suffice either, as the developed policies may be unreliable

under incomplete information. Reasoning about the lack of information becomes critical for

manipulation tasks a service robot would have to perform. These tasks will often require

interacting with multiple objects that make or break contacts during the task. A contact be-

tween objects can significantly alter their subsequent motion and lead to sudden transitions

in their dynamics. Under these sudden transitions, even minor errors in estimating object

poses can cause drastic deviations from the robot’s initial motion plan for the task and lead

the robot to failure in completing the tasks. Hence, service robots need methods that gen-

erate motion policies for manipulation tasks efficiently while accounting for the uncertainty

due to incomplete or partial information.

Partially Observable Markov Decision Processes (POMDPs) is one such mathemati-

cal framework that can model and plan for tasks where the agent lacks complete information

about the task. However, POMDPs incur exponentially increasing computational costs with

planning time horizon, which restricts the current POMDP-based planning methods to prob-

lems having short time horizons. Another challenge for planning-based approaches is that

they require a state transition function for the world they are operating in to develop mo-

tion plans, which may not always be available to the robot. In control theory terms, a state

transition function for the world is analogous to its system plant. In this dissertation, we

propose to address these challenges by developing methods that can learn state transition

functions for robot manipulation tasks directly from observations and later use them to

generate long-horizon motion plans to complete the task under uncertainty.

We first model the world state transition functions for robot manipulation tasks
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involving sudden transitions, such as due to contacts, using hybrid models and develop a novel

hierarchical POMDP-planner that leverages the representational power of hybrid models

to develop motion plans for long-horizon tasks under uncertainty. Next, we address the

requirement of planning-based methods to have access to world state transition functions. We

introduce three novel methods for learning kinematic models for articulated objects directly

from observations and present an algorithm to construct the state transition functions from

the learned kinematics models for manipulating these objects. We focus on learning models

for articulated objects as they form one of the biggest sets of household objects that service

robots will frequently interact with. The first method, MICAH, focuses on learning kinematic

models for articulated objects that exhibit configuration-dependent articulation properties,

such as a refrigerator door that stays closed magnetically, from unsegmented sequences

of observations of object part poses. Next, we introduce ScrewNet, which removes the

requirement of object pose estimation of MICAH and learns articulation properties of objects

directly from raw sensory data available to the robot (depth images) without knowing their

articulation model category a priori. Extending it further, we introduce DUST-net, which

learns distributions over articulation model parameters for objects indicating the network’s

confidence over the estimated parameters directly from raw depth images. Combining these

methods, in this dissertation, we introduce a unified framework that can enable a robot to

learn state transition functions for manipulation tasks from observations and later use them

to develop long-horizon plans even under uncertainty.
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3.5 Screw Transformations and Plücker Coordinates . . . . . . . . . . . . . . . . 27

3.6 Stiefel Manifold and statistics over it . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 4. Robot Motion Planning Under Uncertainty and Hybrid Dynam-
ics 31

4.1 Hierarchical POMDP Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Belief Propagation under Hybrid Dynamics . . . . . . . . . . . . . . . 33

4.1.1.1 Belief Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1.2 Belief Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Direct Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Hierarchical Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.4 Trajectory Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Domain-I: Walled Domain . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Domain-II: Airplane assembly . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5. Learning Hybrid Object Kinematics for Efficient Hierarchical
Planning Under Uncertainty 46

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Changepoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 MICAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Action-conditional Model Inference . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Hybrid Automaton Construction . . . . . . . . . . . . . . . . . . . . . 56

5.3 Experiments and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Learning Kinematics Models for Objects . . . . . . . . . . . . . . . . . 59

5.3.2 Object Manipulation Using Learned Models . . . . . . . . . . . . . . . 61

5.3.3 Leveraging Learned Models for Novel Manipulations . . . . . . . . . . 63

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



Chapter 6. Category-Independent Articulation Model Estimation From Depth
Images Using Screw Theory 67

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 ScrewNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 Training data generation . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Same object class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.2 Same articulation model category . . . . . . . . . . . . . . . . . . . . . 80

6.3.3 Across articulation model category . . . . . . . . . . . . . . . . . . . . 80

6.3.4 Real world images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 7. Distributional Depth-Based Estimation of Object Articulation
Models 86

7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 DUST-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Distribution Parameter Matrix F . . . . . . . . . . . . . . . . . . . . . 93

7.2.2 Normalization Factor of Matrix von Mises-Fisher Distribution . . . . . 94

7.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.1 Accuracy of Point Estimates . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.2 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.3 Sim to Real Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 8. Future Work 104

8.1 Robot Motion Planning Under Uncertainty and Hybrid Dynamics . . . . . . 104

8.2 Learning Object Kinematics from Observations . . . . . . . . . . . . . . . . . 105

8.3 Combined Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4 POMDP-based Task and Motion Planning . . . . . . . . . . . . . . . . . . . 107

8.5 Learning Object Dynamics Models from Observations . . . . . . . . . . . . . 108

xiii



Chapter 9. Conclusion 109

Appendices 113

Appendix A. POMDP-HD Planer 114

A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1.1 Trajectory Optimization using Direct Transcription . . . . . . . . . . . 114

A.2 Further Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.1 Domain-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2.2 Domain-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix B. ScrewNet 117

B.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.2 Experiment 1: Same object class . . . . . . . . . . . . . . . . . . . . . 117

B.1.3 Experiment 2: Same articulation model category . . . . . . . . . . . . 119

B.1.4 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix C. DUST-net 123

C.1 Hypergeometric function pFq . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3.2 Baseline: vm-SoftOrtho . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.4 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.4.1 Accuracy of Point Estimates . . . . . . . . . . . . . . . . . . . . . . . 127

C.4.2 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.4.3 Real objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Index 134

Bibliography 135

xiv



List of Tables

4.1 Comparison of direct and hierarchical planning. Values are averaged over
5 runs. Planning horizon: 20 steps. Belief start: [5, 5]T . actual start:
[3.5, 2.0]T . Termination condition: Maximum likelihood estimate of belief
converged within a ball of 0.2 unit radius around the goal ([0, 0]T ) with max
covariance of 1 unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Model detection comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 Mean error values for joint axis orientation, joint axis position, and configu-
rations for 1000 test object instances for each object class from the simulated
articulated objects dataset [1]. Lowest error values for a particular test object
set are reported in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.2 Mean error values for joint axis orientation, joint axis position, and config-
urations for 1000 test cases for each object class from the PartNet-Mobility
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.3 Mean error values for joint axis orientation, joint axis position, and configura-
tions for 1000 test objects belonging to each object classes from the PartNet-
Mobility Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.4 Mean error values for joint axis orientation, joint axis position, and configura-
tions for 1000 test objects belonging to each object classes from the simulated
articulated objects dataset. Symbol ? denote that the baseline has a signif-
icant advantage over other methods as it uses a separate network for each
object class, while all ScrewNet and its ablations use a single network . . . . 121

B.5 [Experiment: Across articulation model category] Mean error values for joint
axis orientation, joint axis position, and configurations for 1000 test objects
belonging to each object classes from the PartNet-Mobility Dataset. Symbol
? denote that the baseline has a significant advantage over other methods as
it uses a separate network for each object class, while all ScrewNet and its
ablations use a single network . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1 Mean error values on the MAAD and Screw Loss(SL) metrics for the simulated
articulated objects dataset [1]. Point estimates for DUST-net correspond to
the modes of the distributions predicted by DUST-net . . . . . . . . . . . . 129

C.2 Mean error values on the MAAD and Screw Loss(SL) metrics for the PartNet-
Mobility dataset [20, 93, 149]. Point estimates for DUST-net correspond to
the modes of the distributions predicted by DUST-net . . . . . . . . . . . . 130

xv



C.3 Testing variation of DUST-net’s confidence over predicted articulation model
parameters with input noise. DUST-net’s confidence over its predicted pa-
rameters decreases monotonically as input noise is increased showing that
DUST-net’s predicted distribution captures the network’s confidence over the
predicted articulation parameters effectively. . . . . . . . . . . . . . . . . . . 131

C.4 Mean error values on the MAAD and Screw Loss metric for estimation of
articulation model parameters for real-world objects when network was trained
solely using simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xvi



List of Figures

3.1 An MDP models the interactions between agent and world. An MDP agent
aims to find an optimal policy π∗ that maximizes the expected discounted
sum of future rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 A POMDP extends the MDP framework to the case when the agent is unable
to observe the current state. A POMDP agent can be decomposed into a state
estimator and a policy π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Kinematic graph for microwave which considers the kinematic model as only
revolute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Extended kinematic graph for microwave which considers a hybrid model that
can be revolute or rigid, depending on the configuration. . . . . . . . . . . . 27

3.5 Matrix von Mises-Fisher distribution over V3,2, X, Y, Z axes are shown in
red, blue and green colors, respectively. Magenta and cyan colors denote
vectors corresponding to the first and second column of the matrix M ∈ V3,2

representing the mode of the distribution . . . . . . . . . . . . . . . . . . . . 30

4.1 A comparison of planned and actual trajectories using the direct planning and
hierarchical planning approaches on the walled domain. For both cases, Initial
belief mean µ = {5, 5}, cov = diag(11.5, 11.5) , True start position:={3.5,
2.0}. Gray circles represent belief covariance. . . . . . . . . . . . . . . . . . . 41

4.2 Left Panel : Toy Airplane from YCB Dateset. Right Panel :Planned and Actual
trajectories for the airplane assembly task in a plane parallel to wing plane.
Bold black lines represents the edges of the airplane wing. 1 unit = 10 cm. . 44

4.3 Snapshots of the robot assembling the toy airplane . . . . . . . . . . . . . . 45

5.1 Extended kinematic graph for microwave which considers a hybrid model that
can be revolute or rigid, depending on the configuration. . . . . . . . . . . . 56

5.2 Inferred motion models for the microwave and the drawer using Act-CHAMP.
Points denote the recorded relative poses of object parts from one demonstra-
tion. The green circle represents the detected rigid model, the circular arc
represents the detected revolute model, and the line represents the detected
prismatic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Act-CHAMP correctly infers the drawer motion model, while CHAMP (base-
line) falsely detects a changepoint under noisy demonstrations. . . . . . . . . 60

xvii



5.4 Plots showing belief space [blue] and actual trajectories [orange] for microwave
and drawer manipulation tasks using learned models. Error bars represent
belief uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Planned trajectories for the stapler placement experiment. (Left) in {x, y, z}
(Right) Relative angle of the stapler arms over time. . . . . . . . . . . . . . 64

5.6 Snapshots showing the executed trajectory for the stapler placement task.
The red region denotes the unreachable workspace for the robot’s end-effector. 64

6.1 ScrewNet estimates the articulation model for objects directly from depth
images and can generalize to novel objects within and across articulation
model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Taking a sequence of depth images as input, ScrewNet first extracts features
from the depth images using ResNet, passes them through an LSTM layer to
encode their sequential information, and then uses MLP to predict a sequence
of screw displacements having a shared screw axis . . . . . . . . . . . . . . . 72

6.3 The training labels are generated by calculating the screw displacements be-
tween the temporally displaced poses of the object oj, and expressing them in
a frame of reference attached to the base object oi . . . . . . . . . . . . . . . 76

6.4 [Same object class] Mean error values for the joint axis orientations, posi-
tions, and joint configurations for 1000 test objects for each object class from
(top) the simulated articulated objects dataset [1] and (bottom) PartNet-
Mobility Dataset [20, 93, 149]. Configuration errors for all drawers are in cm
the remaining configuration errors are in degrees. . . . . . . . . . . . . . . . 77

6.5 [Same articulation model category] Mean errors for the joint axis ori-
entations, positions, and joint configurations for 1000 test objects for each
object class from the PartNet-Mobility Dataset. . . . . . . . . . . . . . . . . 78

6.6 [Across articulation model category] Mean error values for the joint
axis orientations, positions, and joint configurations for 1000 test objects for
each object class from (top) the simulated articulated objects dataset [1] and
(bottom) PartNet-Mobility Dataset [20, 93, 149]. Symbol ? denote that the
baseline has a significant advantage over other methods as it uses a separate
network for each object class . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.7 [Real-world images] Images with overlayed ground-truth joint axis (blue)
and predicted axis (red) for different poses of the microwave . . . . . . . . . 83

7.1 DUST-net uses a sequence of images I1:n to compute the parameters, Φ, of
the conditional distribution over the joint parameters S and configurations
{θ, d}1:n−1. This distribution allows for inference and reasoning, such as un-
certainty and confidence, over both the parameters and the configurations.
Using a von Mises-Fisher distribution on a Stiefel manifold allows for an effi-
cient reparameterization that inherently obeys multiple constraints that define
rigid body transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xviii



7.2 Mean error values on the MAAD (top) and Screw Loss (bottom) metrics for
the simulated articulated objects dataset [1] (lower values are better). Point
estimates for DUST-net (violet) correspond to the modes of the distributions
predicted by DUST-net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Mean error values on the MAAD (top) and Screw Loss (bottom) metrics for
the PartNet-Mobility dataset [20, 93, 149] (lower values are better). Point
estimates for DUST-net (violet) correspond to the modes of the distributions
predicted by DUST-net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Variation of the mean of the singular values of predicted distribution concen-
tration matrices over screw axes by DUST-net with artificially injected noise.
Predicted singular values decrease monotonically with input noise, showing
that the network’s confidence over the predicted parameters decreases with
input noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5 (a) Mean error values on MAAD (top) and Screw Loss (Bottom) metrics
for real-world objects when the network was trained solely using simulated
data [1] (b) Predicted concentrations over articulation model parameters.
DUST-net estimation performance on simulated data [1] (hatched green) in-
cluded for comparison. DUST-net reported lower confidence in its predictions
for real-world objects than simulated data (b), analogous to its degraded es-
timation accuracy(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1 A schematic of the combined framework. Given a sequence of depth images
depicting the motion of different parts of an articulated object, will directly
generate an uncertainty robust motion plan for novel long-horizon manipula-
tion tasks involving the object . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.1 Object classes used from the simulated articulated object dataset [1]. Object
classes: cabinet, drawer, microwave, and toaster (left to right) . . . . . . . . 117

B.2 Object classes used from the PartNet-Mobility dataset [20, 93, 149]. Object
classes: dishwasher, oven, microwave, drawer- 1 column, and drawer- multiple
columns (left to right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.1 DUST-net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.2 Object classes used from the simulated articulated object dataset [1]. Object
classes: cabinet, drawer, microwave, and toaster (left to right) . . . . . . . . 125

C.3 Object classes used from the PartNet-Mobility dataset [20, 93, 149]. Object
classes: dishwasher, oven, microwave, drawer- 1 column, and drawer- multiple
columns (left to right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.4 Real world objects used to evaluate DUST-net’s performance. Object classes:
microwave, drawer, and toaster (left to right) . . . . . . . . . . . . . . . . . . 127

C.5 von Mises-Fisher distribution in R3. X, Y, Z axes are shown in red, blue
and green colors, respectively. Black color represents the mean direction of
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xix



Chapter 1

Introduction

One of the longstanding goals of robotics is to build service robots that can assist

humans in performing day-to-day tasks. Service robots aim to be general-purpose robots

that can perform a wide array of tasks without needing much supervision from the end-users.

As service robots will be helping humans in homes, schools, hospitals, and workplaces, they

will be required to adapt to their work environments quickly and learn to perform novel

tasks within a few trials. However, current robots fall short of these requirements. They

are generally highly specialized, can only perform fixed, predefined tasks reliably, and need

to operate in controlled environments. One of the main reasons behind this big gap is that

the current robots require complete and accurate information about their surroundings to

function effectively, whereas, in unstructured human environments, robots will only have

access to limited information about their tasks and work environments [46, 121]. Moreover,

they will be required to perform their tasks with high reliability and safety guarantees, as

safety is of utmost importance in human environments.

With the limited available information, a robot using pre-programmed or pre-learned

motion policies might fail to adapt to the novel situations encountered during operation and

fall short in completing its tasks. Online motion generation methods that do not reason about

the lack of information will not suffice either, as the developed policies may be unreliable
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under incomplete information. Accounting for the lack of information becomes critical for

the manipulation tasks service robots would have to perform. These tasks will often require

interacting with multiple objects that make or break contacts during the task. Changes

in the contact state of an object can significantly alter its subsequent motion and lead to

sudden transitions in its dynamics. Under these sudden transitions, even minor errors in

estimating the object pose can cause substantial deviations from the robot’s initial motion

plan for the task and lead the robot to failure in completing the task. For example, consider

the robot manipulation task of placing a glass vase on a table. As soon as the vase and the

tabletop make contact, a previously optimal downward force on the vase will suddenly result

in a large reactive normal force with no downward displacement. If the robot overestimates

the distance between the vase and the table even slightly, the chances are that the robot

will fail to reduce its force on the vase in time and may end up breaking the vase instead.

Hence, service robots need methods that generate motion policies for manipulation tasks

efficiently while accounting for the uncertainty due to incomplete or partial information to

operate safely in human environments.

Partially Observable Markov Decision Processes (POMDPs) [62] is a mathematical

framework to model and plan for tasks in which the decision-making agent does not have

complete information about its task or the environment. Using POMDP-based planning

methods, a robot can develop motion plans to take information gathering actions while com-

pleting the task objectives. However, obtaining an exact solution of a POMDP is intractable

as it results in solving a decision problem that is PSPACE-complete [62, 80, 97, 103, 145]

and intractable to solve. Numerous methods have been presented in the literature to solve

POMDPs approximately [2, 3, 48, 51, 68, 69, 94, 119, 122, 144]. However, the majority
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of existing approximate methods incur exponentially increasing computational costs with

planning horizons, which restrict them to problems having short time horizons.

Another challenge that arises while using planning-based methods is that they need

state transition functions for the world they are operating in to develop motion plans. The

world state transition functions are analogous to the system plants from the control theory.

While such models can be provided to the robot by an expert, it is challenging to pre-program

models of all tasks that a service robot will need to perform in uncontrolled human envi-

ronments. Hence, a service robot needs methods for learning such functions directly from

observations. Household appliances constitute one of the biggest sets of objects that service

robots will need to interact with frequently. Predominantly, household appliances, such as

refrigerators, microwaves, and drawers, are articulated objects and consist of multiple func-

tional parts connected by mechanical joints such as hinges and sliding joints. For articulated

objects, the state transition functions are governed primarily by the articulation properties

(or joint properties) of the objects, including the location of the joint, its axis of motion,

type (hinge or sliding), and the available range of motion. A robot capable of learning the

articulation properties for objects directly from observations can construct state transition

functions for them without requiring expert supervision [56, 58], which it can later use to

manipulate these objects. Hence, service robots need methods that can learn articulation

properties for objects directly from observations.

Addressing these challenges, in this dissertation, we present methods for learning state

transition functions for manipulation tasks from observations and performing POMDP-based

motion planning for long-horizon robot manipulation tasks. Specifically, in this thesis, we

wish to answer the question:
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How can a robot learn state transition functions for complex manipulation
tasks directly from observations and use them to perform long-horizon plan-
ning under uncertainty?

This dissertation addresses this question in four stages:

1. We first introduce a hierarchical POMDP planner, that under incomplete information

about the world, can leverage object kinematics and interactions to perform long-

horizon manipulation tasks robustly. However, the POMDP planner needs the state

transition functions for tasks to generate such motion plans, which may not be available

for a service robot performing novel tasks.

2. To address this requirement, we next provide a noise-robust method for learning

planning-compatible state transition functions for articulated objects that exhibit con-

figuration dependent articulation properties from observations. However, it requires

6D object poses as input, which may not be readily available for all scenarios.

3. Addressing this challenge, we next introduce a method for learning articulation prop-

erties for objects directly from raw sensory data available to the robot, such as depth

images. Combining it with the previous methods, we obtain a framework that learns

state transition functions for manipulating household (articulated) objects directly

from raw observations.

4. Finally, we extend the framework to predict both the articulation model parameters for

objects and the network’s confidence over them directly from raw depth images. This

results in a complete framework that given raw sensory information about the objects
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that the robot is interacting with, first learns state-transition functions for them with

model uncertainty estimates, and later uses them to generate uncertainty-aware motion

plans to manipulate them.

In the remainder of this chapter, we will discuss these stages in more detail and

highlight the specific contributions of this dissertation.

We first focus on investigating the question that if the world state transition func-

tion for a task is known, can a hierarchical POMDP-based planning approach leverage it

to develop long-horizon motion plans for the task under incomplete information? In par-

ticular, we focus on the problem of finding motion policies for manipulation tasks involving

contacts in the presence of partial or noisy feedback. Current methods to calculate manipu-

lation policies for tasks involving contacts between objects either avoid them altogether by

working in isolation or assume perfect knowledge about the world and plan explicitly for

contacts [28, 96, 113, 114]. Alternatively, they choose to ignore these nonlinearities while

planning motion policies and rely on impedance/admittance controllers to handle them dur-

ing execution [43, 47, 52]. While these methods work well in controlled industrial environ-

ments with near-perfect sensors, they can fail in the presence of noisy feedback that plagues

service robots [46]. Under changing dynamics, even minor state estimation errors can lead

to significant deviations from the plan and cause the robot to fail in completing the task.

Recently, data-driven methods have garnered much attention as they can learn manipula-

tion policies that handle contacts implicitly [4, 11, 41, 67, 88, 99, 110, 116]. However, these

methods often require a large amount of data to learn such policies, which may be difficult

to obtain for real-world robot manipulation tasks.
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In this work, we model the nonlinear dynamics of robot motion planning tasks in-

volving contacts using hybrid models composed of a discrete set of simpler local dynamics

models of which only one is active at any given time (e.g., a change in dynamics due to con-

tact) [33, 79]. We introduce a novel hierarchical POMDP-based planner, the POMDP-HD

planner [54, 55] that can leverage the representational power of hybrid models to reduce its

uncertainty over states. The proposed planner solves the POMDP problem by dividing it

into two levels: at the higher level, discrete state plans are generated to find a sequence of

local models that should be visited during the task, and at the lower level, these discrete

state plans are converted into cost-optimized continuous state belief-space plans.

The hierarchical structure of the POMDP-HD planner garners crucial advantages

over direct planning-based approaches. The hierarchical structure helps the planner to de-

compose long-horizon POMDP planning problems into multiple smaller segments that can

be sequenced to find a complete solution with significantly less effort. This decomposition

alleviates the constraint that POMDP-based planners can find tractable solutions only when

the planning problems have short time horizons. This approach is similar to how humans

leverage contacts and transitions in dynamics to improvise and complete tasks under im-

perfect information. For example, while assembling an Ikea table, if direct visual feedback

is not available for inserting a table leg on the underside of the table, a human can try to

wiggle the leg around to locate the hole in order to complete the task.

Another significant benefit the POMDP-HD planner offers that it can choose to lever-

age a specific local dynamics model to enhance the effectiveness of the generated plans. For

example, if the k-th local dynamics model restricts the allowed motion to be within a sub-

space of the robot’s configuration space, visiting the states governed by the model can help
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the robot to reduce its uncertainty over system state along the dimensions orthogonal to

the allowed motion vector. E.g., due to the presence of a wall, the k-th local model allows

displacements only in directions that point either away or along the wall. If the robot delib-

erately plans to make contact with the wall and move along it, the robot can localize itself

better in the direction orthogonal to the wall plane by observing its subsequent motion.

This indirect feedback for uncertainty reduction is critical for tasks in which observations

are highly noisy or even entirely unavailable (for example, due to occlusions).

Next, we address learning state transition functions for tasks that can be used to

perform long-horizon planning under uncertainty. We focus on learning state transition

functions for tasks involving sudden changes in the dynamics, such as those involving mak-

ing/breaking contacts with objects and manipulating objects exhibiting conditional dynam-

ics, such as a stapler that intrinsically changes its articulation state (e.g. rigid vs. ro-

tational) based on the relative angle between its arms. Such transitions in the dynamics

are often viewed as inconvenient discontinuities that make manipulation difficult. How-

ever, when these transitions are well understood, they can be leveraged to reduce uncer-

tainty or aid manipulation, as noted above. Current model-free reinforcement learning ap-

proaches [4, 11, 41, 67, 88, 99, 110, 116] can learn to cope with hybrid dynamics implicitly

but require large amounts of data to do so and may still face representational issues near

discontinuities. They scale poorly as the problem complexity grows and do not transfer well

to significantly different problems. On the other hand, hierarchical POMDP planning-based

methods [13, 55, 67, 142] can represent and reason about hybrid dynamics and uncertainty

directly. They scale well by decomposing the planning problems into smaller subproblems

and work well on novel tasks. However, they typically rely on precise hand-specified mod-
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els and task decompositions. To bridge this gap, we introduce Model Inference Condi-

tioned on Actions for Hierarchical Planning (MICAH), which enables hierarchical POMDP

planning-based methods, such as the POMDP-HD planner, to perform novel manipulation

tasks given noisy observations. MICAH infers hybrid automata for articulated objects with

configuration-dependent dynamics from unsegmented sequences of observed poses of object

parts. These automata can then be used for developing state transition functions for novel

manipulation tasks involving these objects, which, in turn, can be used to perform motion

planning under uncertainty for the tasks.

MICAH consists of two parts: (1) a novel action-conditional inference algorithm called

Act-CHAMP for kinematic model estimation and changepoint detection from unsegmented

data, and (2) an algorithm to construct hybrid automata for objects using the detected

changepoints and estimated local models from Act-CHAMP. Due to action-conditional in-

ference, MICAH is more robust to noise and less vulnerable to several modes of failure than

prior model inference approaches [63, 64, 85–87, 100, 111, 130, 131]. These prior approaches

assume that the visual pose observations alone provide sufficient information for model es-

timation, which does not hold for many scenarios and can lead to poor performance. For

example, an observation-only approach cannot distinguish between observations obtained by

applying force against a rigid object and taking no action at all on a free body, estimating

that the model is rigid in both cases.

MICAH provides a noise-robust method for constructing state transition functions for

manipulating articulated objects from visual observations with high accuracy. However, it

requires time series of observations of relative poses between the object parts as input, which

is often difficult to obtain in unstructured human environments. Recent work on learning
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articulation parameters for objects from visual observations has explored estimating these

parameters directly from raw data, such as depth images [1, 72, 75] or PointClouds [147, 153],

using deep neural networks. However, current methods [1, 72, 147, 153] require knowing the

object articulation model type a priori, which may not be available to a service robot in-

teracting with novel objects. Alleviating this requirement, we introduce ScrewNet [58], a

method that estimates an object’s articulation model directly from depth images without

requiring a priori knowledge of the object articulation model category. It uses screw theory

to unify the representation of different articulation types and perform category-independent

articulation model estimation. A unified representation also helps it to be more data-efficient

than prior methods [1, 72]. Compared to other approaches, ScrewNet can successfully esti-

mate the articulation models and their parameters for novel objects across articulation model

categories with better-on-average accuracy using only half the training data. The estimated

articulation model for an object can later be used with the hybrid automata construction

algorithm of MICAH to develop a hybrid automaton representing the state transition fuction

for manipulating the object.

One limitation of ScrewNet [58] and related methods [1, 72, 75, 147, 153] is that

they can only predict point estimates for the articulation model parameters for objects. For

constructing POMDP planning-compatible state transition functions for articulated objects,

uncertainty over the estimated articulation model parameters also needs to be accounted

for. Reasoning about the uncertainty in the estimated model parameters offers additional

benefits such as using active learning methods for improving model parameter estimates [23]

and directly learning behavior policies that provide safety assurances [137]. Motivated by

these advantages, we introduce a method, DUST-net [57], that efficiently learns distributions
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over articulation models directly from depth images without requiring to know articulation

model categories a priori.

We first introduce a novel representation for distributions over rigid body transfor-

mations and articulation model parameters based on screw theory [121], von Mises-Fisher

distributions [84] and Stiefel manifolds [22]. Combining these concepts allows for an efficient,

mathematically sound representation that inherently satisfies several constraints that rigid

body transformations and articulations must adhere to. This distributional representation

helps DUST-net [57] to perform articulation model estimation for novel objects across articu-

lation model categories with better accuracy than state-of-the-art methods [1, 58] while also

providing model uncertainties. The representation also helps DUST-net to be more compu-

tationally and data-efficient than other state-of-the-art methods [1, 72], as it uses a single

network to estimate model parameters for all common articulation models, unlike other meth-

ods that require a separate network for each articulation model category [1, 72, 147, 153].

Empirically, DUST-net outperforms other methods even when trained using only half the

training data in comparison. Additionally, the distributional learning setting also yields

DUST-net more robustness to outliers and noise, making it an ideal candidate for learning

articulation models for objects directly from raw depth images. The learned distributions

using DUST-net can later be combined with the hybrid automata construction algorithm

of MICAH to construct a state transition function with model uncertainty estimates for

manipulating the object.

With the presented methods in this dissertation, namely the POMDP-HD plan-

ner [55], MICAH [56], ScrewNet [58], and DUST-net [57], we introduce a unified frame-

work that addresses the research question initially posed in this dissertation. Using the
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presented framework, a robot can learn state transition functions for complex articulated

objects involved in a manipulation task directly from raw observations and use them to

perform long-horizon planning to complete the task even under uncertainty.

1.1 Contributions

In particular, this dissertation presents the following contributions:

1. A hierarchical POMDP planner that can leverage hybrid task dynamics to perform

long-horizon motion planning under uncertainty (Chapter 4).

2. An action-conditional model inference algorithm, Act-CHAMP, for estimating kine-

matic models and possible transitions points in the governing model for articulated

objects from unsegmented data (Chapter 5).

3. An algorithm to construct hybrid automata for articulated objects using the detected

changepoints and estimated local models from Act-CHAMP (Chapter 5).

4. A method for learning articulation models for objects directly from raw depth images

without requiring to know their articulation model category a priori (Chapter 6).

5. A novel representation for distributions over rigid body transformations and articu-

lation model parameters based on screw theory, von Mises-Fisher distributions, and

Stiefel manifolds (Chapter 7).

6. An approach that efficiently learns distributions over articulation model parameters for

objects directly from depth images without needing to know their articulation model

category a priori (Chapter 7).
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Chapter 2

Background and Related Work

This chapter surveys work related to the main threads of this thesis, intending to pro-

vide a background for the presented work among the existing literature on robotics research.

Section 2.1 focuses on the POMDP-based planning methods for robot motion planning under

uncertainty. Section 2.2 surveys methods for learning kinematic models of articulated bodies

from observations.

2.1 POMDP-based Planning for Robot Motion Planning Under
Uncertainty

Robot motion planning methods aim to find a cost-optimal path connecting an initial

state of the robot to a target state while avoiding obstacles given a complete and correct

model of the world dynamics and a cost function specifying preferences over paths [70].

However, more often than not, the world dynamics model is either incomplete or contains

inaccuracies, resulting in uncertainty over the effectiveness of the generated plan from a

motion planner that assumes otherwise. Partially observable Markov decision processes

(POMDPs) [50, 62, 94] is a framework that reasons about possible incompleteness or inaccu-

racies in the world dynamics model and develops cost-optimal motion plans that are effective

even under uncertainty. In Section 3.2 we discuss them in detail. In this section, we briefly

describe different POMDP-based motion planning methods for robot motion planning under
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uncertainty.

Broadly, POMDP based methods can be divided into two categories based on whether

their state, action and observation spaces are discrete or continuous. Discrete space POMDP

solvers, in general, either approximate the value function using point-based methods [69, 112,

119, 123, 124] or use Monte-Carlo sampling in the belief space [6, 65, 68, 74, 101, 122, 125] to

make the POMDP problem tractable. Continuous space POMDP solvers often approximate

the belief over states as a distribution having finite parameters (typically Gaussian) and

either solve the problem analytically using gradients [51, 81, 144] or use random sampling

in the belief space [2, 48]. Other approaches have also extended point-based methods to

continuous domains [119].

Discrete space POMDP solvers have been shown to be able to successfully plan for

large discrete space domains. However, continuous space domains are infinite-dimensional,

and discrete space solvers often fail to find feasible solutions for planning horizons longer than

a few steps [68]. Among continuous space POMDP solvers, Agha-Mohammadi et al. [2] and

Hollinger and Sukhatme [48] have proposed sampling based methods that can find effective

solutions even in complex domains. However, most sampling based methods suffer from

the problem of obtaining sub-optimal solutions and can only be probabilistically optimal at

best [27]. Gradient-based POMDP solvers [51, 81, 144] form another class of very powerful

POMDP solvers which can find locally optimal solutions, but in the context of manipulation

planning, sudden changes in dynamics due to contacts result in non-finite gradients at the

transition points and restrict the applicability of such methods.
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2.1.1 POMDP planning in domains with hybrid dynamics

POMDP solvers for domains governed by hybrid dynamics models, such as the one

proposed in this work, have been previously discussed by Brunskill et al. [13], Sreenath et al.

[127] and Agha-mohammadi et al. [3]. Recall that a hybrid dynamics model consists of

multiple local dynamics models of which only one is active at any given time. In the most

closely related work to ours, Brunskill et al. [13] proposed a point-based POMDP planning

algorithm, SM-POMDP planner, for solving continuous-state POMDPs based on the hybrid

system dynamics. They approximated the complex nonlinear system dynamics using a hy-

brid multi-modal dynamics model with continuous state-dependent discrete mode switching

conditions. However, unlike our POMDP planner (Chapter 4), SM-POMDP planner plans

only in the continuous domain and the discrete states are obtained “passively” using the

switching conditions. While this approach can be used to find feasible motion plans, it is not

leveraging some of the major natural advantages of the hybrid dynamics representation such

as shorter planning horizons and a structured way to leverage dynamics for state uncertainty

reduction.

Sreenath et al. [127] discussed the problem of bipedal walking on a varying terrain

by formulating it as a POMDP problem defined on a continuous-time hybrid system. They

proposed a bi-level POMDP controller to track the transitions in the terrain as a set of

discrete states and were able to show stable bipedal walking in simulated domains. However,

this is a passive approach as well, as it uses hybrid dynamics only to capture the transitions in

the terrain and not to simplify the POMDP problem. Agha-mohammadi et al. [3] discussed a

POMDP solver with hybrid states to solve health-aware stochastic motion planning problem

for quadrotors, however, the proposed solution is restricted only to the domains in which
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the discrete and continuous states evolve independently.

Pineau et al. [112] and Toussaint et al. [142] have also previously proposed hierarchical

POMDP planners. The planner developed by Pineau et al. [112] leverages a human-designed

task hierarchy to reduce problem complexity, while Toussaint et al. [142] emphasizes auto-

matic discovery of hierarchy in state space using a dynamic Bayesian network. Although

such approaches can work well for some robot control tasks, we believe that a more natural

hierarchy of subtasks emerges automatically if a hybrid dynamics model is used to represent

tasks with nonlinear dynamics, such as robot manipulation tasks involving contacts.

2.1.2 Further approaches

As hybrid dynamics models are very effective in modeling nonlinearities that are

due to sudden transitions in the dynamics, a natural application for the proposed POMDP

solver is contact-rich robotic manipulation. One of the current approaches for solving the

robot manipulation planning problem is to search for an optimal sequence of parameterized

manipulation actions or primitives to perform the task [26, 66]. Kroemer et al. [66] have

proposed to represent primitives for different phases (modes) of a multi-phase manipulation

task using dynamic movement primitives (DMPs) and learn a library of such manipulation

skills which can be sequenced to perform a task. Unfortunately, a lack of a task dynamics

model prevents these methods from generalizing to novel manipulation tasks, e.g. having

different cost functions, even if it involves the same objects.

More recently, researchers [31, 41, 67, 71, 83, 99] have explored using deep learning

techniques to develop end-to-end control policies directly from vision; however, under sparse

availability of training data (especially in robotics), these approaches tend to fail to develop
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generalized control policies for all system states or initial conditions.

2.2 Learning Object Kinematics from Observations

POMDP-based planning methods require world dynamics models to generate motion

plans. Service robots would need to learn such models directly from observations. In this

section, we survey existing approaches for learning such models for articulated objects from

observations as articulated objects constitute one of the largest sets of household objects

service robots will interact with frequently.

2.2.1 Articulation Model Estimation from Visual Observations

Learning articulation properties for objects directly from visual data has been stud-

ied via different approaches in the literature [1, 7, 44, 63, 64, 72, 85, 86, 100, 109, 111,

131, 132]. Sturm et al. [131] proposed a probabilistic framework to learn motion models of

articulation bodies from human demonstrations. Pillai et al. [111] extended the framework

to estimate the articulation model for textured objects directly from raw RGB images by

extracting SURF features from the images and tracking them robustly. However, this frame-

work [131] assumes that the objects are governed by a single articulation model, which may

not hold true for all objects. For example, a stapler intrinsically changes its articulation

state (e.g., rigid vs. rotational) based on the relative angle between its arms. To address

this, Niekum et al. [100] proposed an online changepoint detection algorithm, CHAMP, to

detect both the governing articulation model and the temporal changepoints in the articula-

tion relationships of objects. However, all these approaches are observation-only and may fail

to correctly infer the object articulation model under noisy demonstrations or in cases when
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actions are critical for inference. In this dissertation, we present MICAH (Chapter 5) that

uses an action-conditional approach to learn articulation properties for objects and hence is

more robust to noise compared to prior methods.

More recently, Abbatematteo et al. [1] and Li et al. [72] proposed methods to learn

articulation properties for objects from raw depth images given articulation model category.

In a related body of work on object parts mobility estimation, Wang et al. [147] and Yan

et al. [153] proposed approaches to segment parts of the object in an input point cloud and

estimate their mobility relationships, given a known articulation model category. Alleviating

the requirement of having a known articulation model category, we introduce ScrewNet in

Chapter 6 that performs category-independent articulation model estimation from depth

images. However, ScrewNet [58] and other existing methods [1, 72, 75, 147, 153] for learning

articulation models for objects can only predict point estimates for the articulation model

parameters. Addressing this, in Chapter 7 we present a novel approach, DUST-net, that

predicts a distribution over the articulation model parameters.

2.2.2 Interactive Perception

Another closely related body of work is of interactive perception approaches that aim

at leveraging the robot’s actions to better perceive objects and build accurate kinematic

models [12, 63, 64, 85, 86]. Katz and Brock [63] first used this approach to learn articulated

motion models for planar objects [63] and later extended it to use RGB-D data to learn

3D kinematics of articulated objects [64]. Mart́ın-Mart́ın et al. [87] and Mart́ın-Mart́ın and

Brock [86] further extended the approach and used hierarchical recursive Bayesian filters to

develop online algorithms from articulation model estimation from RGB images. Though
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these approaches use a robot’s actions to generate perceptual signals for model estimation,

they require the robot’s interaction behavior to be pre-scripted by an expert, unlike MICAH

(Chapter 5), that can estimate models even from noisy demonstrations given by non-expert

humans. Another limitation of current IP approaches is that they still require textured

objects for estimating the object articulation model, whereas the methods introduced in this

dissertation, ScrewNet (Chapter 6) and DUST-net (Chapter 7) impose no such requirement

on the objects.

Recently, Gadre et al. [32] introduced Act the Part (AtP), an approach for learning

to interact with articulated objects for discovering and segmenting their parts in the input

images. However, AtP primarily focuses only on articulated objects having revolute joints,

whereas, ScrewNet and DUST-net can estimate articulation properties of objects belonging

to all common articulation model categories, namely revolute, prismatic, rigid, and helical.

2.2.3 Active Learning

In some cases, the provided demonstrations might not be informative enough to

estimate the articulation motion model with high confidence. Hausman et al. [44] developed

an active learning algorithm to disambiguate the active articulation model of objects by

taking informative actions. In another related work, Barragän et al. [7] proposed a decision-

theoretic framework that uses Bayesian filtering to take actions for reducing entropy over the

governing model type and its parameters for a mechanism. However, both methods assume

that the governing model and its parameters do not change with time. Through MICAH [56],

we aim to alleviate this assumption by presenting an approach to perform model inference

even for objects whose articulation properties changes depending upon their configuration.
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2.2.4 Rigid Body Pose Estimation

Articulation model estimation for objects can be viewed as a subset of the body of

work on rigid body pose estimation [15, 16, 21, 73, 104, 107, 120, 126, 136, 146, 148, 150].

Byravan et al. developed SE3-nets [15] and SE-3Pose-Nets [16] to learn predictive dy-

namics models of object motion in a scene from input point-cloud data and applied ac-

tion vectors which can be used to directly perform robot visuomotor control from input

point cloud data. Some selected recent work on estimating point estimates for rigid body

poses are [21, 73, 104, 107, 126, 146, 148, 150]. Various methods for estimating distribu-

tions over orientation or rigid body transformations have also been proposed in the litera-

ture [5, 34, 35, 98, 108, 115, 118, 120, 128, 135]. Gilitschenski et al. [34] proposed Kalman

filters that leverage the Bingham distribution to estimate orientation vectors—that is, points

on the unit hypersphere. Gilitschenski et al. [34], Arun Srivatsan et al. [5], Srivatsan et al.

[128] and Rosen et al. [118] propose strategies that can be used to estimate the rigid body

transformation of an object using a combination of Bingham and Guassian distributions,

and the von Mises-Fisher distribution, respectively. Further approaches for estimating pose

uncertainty have been proposed which are not based on estimating distributions over orien-

tation or rigid body transformations, such as Shi et al. [120], which estimates uncertainty by

measuring the disagreement of an ensemble of deep learning models trained on RGB image

data. The mathematical model used by methods presented in this dissertation are inspired

by these work, but 1) extends them to also represent uncertainty over the configuration of

articulated object components about screw axes, and 2) integrates them into a deep learning

model that is capable of learning these configurations from raw depth images. In addition,

while these approaches use distributions over orientations and rigid body transformations to
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produce estimates, DUST-net directly outputs a distribution that can be used to facilitate

further applications such as uncertainty-aware behavior planning.

2.2.5 Articulated object pose estimation

For known articulated objects, the problem of articulation model parameter esti-

mation can also be treated as an articulated object pose estimation problem. Different

approaches leveraging object CAD model information [25, 90, 106] and the knowledge of ar-

ticulation model category [1, 72, 151, 155] have been proposed to estimate the 6D pose of the

articulated object in the scene. These approaches can be combined with an object detection

method, such as YOLOv4 [10], to develop a pipeline for estimating the articulation model

parameters for objects from raw images. On the other hand, the methods presented in this

dissertation, ScrewNet (Chapter 6) and DUST-net (Chapter 7), can directly estimate the

articulation model for an object from depth images without requiring any prior knowledge

about it.

2.2.6 Human Pose Estimation from images

Human pose estimation is another related field of work [14, 30, 39, 77, 95, 117, 154,

157, 158]. However, as the human body consists of only revolute joints, this body of work

assumes that the joint model category for the articulated body, i.e., the human body, is

known as a priori. Whereas, the methods we present do not assume the availability of this

information and can estimate articulation properties of objects belonging to all common

articulation model categories, namely revolute, prismatic, rigid, and helical.
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2.2.7 Further approaches for articulation model estimation

Articulation motion models can be viewed as geometric constraints imposed on two

or more rigid bodies. Pérez-D’Arpino and Shah [109] have proposed a method, C-LEARN,

to learn geometric constraints encountered in a manipulation task from non-expert human

demonstrations. Subramani et al. [132, 133] developed an approach to learn geometric

constraints governing relative motion between objects from human demonstrations. Their

proposed approach can successfully learn geometric constraints even from noisy demonstra-

tions. Other approaches for learning articulation properties for objects from human demon-

strations have explored leveraging different sensing modalities [24, 75, 76]. Recently, Daniele

et al. [24] proposed a multimodal learning framework that incorporates both vision and

natural language information for articulation model estimation. Affordances provide yet

another framework to represent the relationship between the applied actions on an object

and the observed object motion. Sun et al. [134] have proposed an object-object affordance

learning approach to model the interactive motions between paired objects, human actions,

and object labels as human-object-object affordances. However, these approaches predict

point estimates for the articulation model parameters, unlike DUST-net, which predicts a

distribution over the articulation model parameters.
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Chapter 3

Notation and Preliminaries

In this chapter we introduce the notation that we will use throughout most of this

dissertation. For a more in depth treatment of partially observable Markov decision pro-

cesses, hybrid dynamics, screw transformations, and statistics over Stiefel manifolds, we

recommend Thrun et al. [138], Lygeros et al. [79], Siciliano and Khatib [121], and Chikuse

[22], respectively.

3.1 Markov Decision Processes

A Markov decision process (MDP) is a model of an agent (a robot, in our case)

interacting with a world. The agent takes as input the state of the world and generates

output actions affecting the state of the world. Formally, an MDP is defined as a tuple

〈X,U, T, R, γ,X0〉, where X is the set of states of the world, U is the set of actions, T :

X × U → Π(X) is the state-transition function, R : X × U → R is the reward function,

γ ∈ [0, 1) is the discount factor, and X0 is the initial state distribution [62, 138]. In the

MDP framework, it is assumed that, while there may be uncertainty about the effects of an

agent’s actions due to stochastic world dynamics or inaccurate world dynamics model, there

is no uncertainty about the agent’s current state — it is known completely and perfectly.

A policy π is a mapping from states X to a probability distribution over actions U.
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Figure 3.1: An MDP models the interactions between agent and world. An MDP agent aims
to find an optimal policy π∗ that maximizes the expected discounted sum of future rewards

The value of a policy π under reward function R is defined as the expected return of that

policy, V π
R = Ex0∼X0 [

∑∞
t=0 γ

tR(xt) | π]. The value of executing policy π starting at state

x ∈ X is given as V π
R (x) = E[

∑∞
t=0 γ

tR(xt) | π, x0 = x]. Given an MDP representation of a

task, we would like our agents to find an optimal policy π∗ under the given reward function

R, such that starting in state x if it is executed, it would maximize the expected discounted

sum of future rewards V ∗R = maxπ V
π
R .

3.2 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) extend the MDP frame-

work to the cases when the agent is unable to observe the current state. Instead, the agent

makes an observation based on the action and the resulting state. Formally, a POMDP is

defined as tuple 〈X,U, T, R,Z,O, γ〉, where X,U, T, R, γ describe an MDP, Z is the set of

observations the agent can experience of its world, and O : X × U → Π(Z) is the observa-

tions function, which gives, for each action and resulting state, a probability distribution

over possible observations [62]. The goal of the agent stays the same: to maximize expected

discounted sum of future rewards.

To account for the uncertainty over its current state, the robot keeps an internal belief
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state b[xt] ∈ B, that summarizes all past control inputs and sensor measurements,

b(xt) = p(xt|x0,u0, ...,ut−1, z1, ..., zt) (3.1)

where xt ∈ X, ut ∈ U and zt ∈ Z are the robot’s state, control input and received measure-

ment at time step t, respectively and B ⊂ {X −→ R} represent the space of all possible beliefs.

If we choose belief states to be probability distributions over states of the world represented

as an MDP, the decision process over belief states is also Markov, i.e., the belief state at

time t + 1 is dependent only on the belief state at time t and the action at time t [62]. A

POMDP can be decomposed into two parts: state estimation and action generation. The

first part is to update update the current belief state posterior based on the last action ut,

the current observation zt+1, and the belief state prior b−t+1,

bt+1(ut, zt+1, b̂t+1) = η1 p(zt+1|xt+1) b̂t+1 (3.2)

where η1 is a normalizing constant and the observation function is defined as O = p(zt+1|xt+1).

The second part uses a policy π defined over the agent’s belief states to generate an action

ut+1 for the time step t+ 1 given the current belief state posterior b+t+1. The resulting belief

state prior for the time step t+ 1 is

b̂t+2(xt+2,ut+1, bt+1) = η2

∫
p(xt+2|xt+1,ut+1) bt+1 dxt+1 (3.3)

where η2 is a normalizing constant and the transition function for the underlying MDP is

given as T = p(xt+1|xt,ut).

3.3 Hybrid Dynamics

A hybrid dynamics model of a system is a dynamics model in which the states of the

system evolve with time over both continuous space x ∈ X = RN and a finite set of discrete
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Figure 3.2: A POMDP extends the MDP framework to the case when the agent is unable to
observe the current state. A POMDP agent can be decomposed into a state estimator and
a policy π

states q ∈ Q ⊂W [79]. Each discrete state of the system corresponds to a separate dynamics

model that governs the evolution of continuous states. These types of dynamical models are

sometimes referred to as switched dynamical systems in the literature [33].

In a hybrid model, discrete state transitions of the system can be represented as

a directed graph with each possible discrete state q corresponding to a node and edges

(e ∈ E ⊆ Q × Q) marking possible transitions between the nodes. These discrete state

transitions are conditioned on the continuous states. A transition from the discrete state q

to another state q′ happens if the continuous states x are in the guard set G(q, q′) of the

edge eq
′
q where eq

′
q = {q, q′}, G(·) : E → P (X) and P (X) is the power set of X. Thus, for

each discrete state q, in a hybrid dynamics model we can define:

xt+1 = F q(xt, ut), zt = Hq(xt) (3.4)

where x ∈ Rn, u ∈ Rm, z ∈ Rl, F q(x, u) and Hq(x) are the continuous state, control input,

observation variables, state dynamics and observation functions respectively. Evolution of

the discrete state of the system can be modeled by a finite state Markov chain. Defining the
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Figure 3.3: Kinematic graph for microwave which considers the kinematic model as only
revolute.

state transition matrix as Π = {πij}, the discrete state evolution can be given as:

qt+1 = Πqt (3.5)

3.4 Kinematic Graphs

We represent the kinematic structure for articulated objects using kinematic graphs

[131]. A kinematic graph G = (VG, EG) consists of a set of vertices VG = 1, ..., p, correspond-

ing to the p parts of the articulated object, and a set of undirected edges EG ⊂ VG × VG,

each describing the kinematic link between two object parts. Each joint (ij) is assigned a

kinematic model Mij, a parameter vector θij, and a set defining the range of the joint cij.

The graph of a microwave, for example, consists of two nodes (a body and a door), with

a revolute kinematic model encoded in the edge between the body and door. An example

kinematic graph for a microwave is shown in Figure 3.3. In this example, the parameter

vector, θ12, encodes the position and orientation of the axis of rotation between the body

and the door as well as the radius of the door’s rotation, and the joint range, cij, defines the

set of possible values the angle made by the door and the body can take.
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Figure 3.4: Extended kinematic graph for microwave which considers a hybrid model that
can be revolute or rigid, depending on the configuration.

Sturm et al. [131] proposed to associate a single kinematic link model Mij with model

parameter vector θij with each edge. However, there are many articulated objects with links

that are not governed by a single kinematic link model. For example, in most configura-

tions, a microwave door is a revolute joint with respect to the microwave; however, due to

the presence of a latch, this relationship changes to a rigid one when the door is closed. In

this dissertation, we extend kinematic graphs so that they can represent the hybrid kine-

matic structure of such objects (see Figure 3.4). Extended kinematic graph construction is

discussed in more details in Chapter 5.

3.5 Screw Transformations and Plücker Coordinates

Chasles’ theorem states that “Any displacement of a body in space can be accomplished

by means of a rotation of the body about a unique line in space accompanied by a translation

of the body parallel to that line” [121]. This line is called the screw axis of displacement,
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S [59, 89]. We use Plücker coordinates to represent this line. The Plücker coordinates of

the line l = p + xl are defined as (l,m), with moment vector m = p × l [59, 89]. The

constraints ‖l‖ = 1 and 〈l,m〉 = 0 ensure that the degrees of freedom of the line in space

are restricted to four. The rigid body displacement in SE(3) is defined as σ = (l,m, θ, d).

The linear displacement d and the rotation θ are connected through the pitch h of the screw

axis, d = hθ. The distance between l1 := (l1,m1) and l2 := (l2,m2) is defined as:

d((l1,m1), (l2,m2)) =


0, if l1 and l2 intersect

‖l1 × (m1 −m2)‖, elif l1 ‖ l2
|l1 ·m2 + l2 ·m1|
‖l1 × l2‖

, else

(3.6)

Frame transformations on Plücker lines: Given a rotation matrix R and a

translation vector t between two frames FA and FB, a 3D line displacement matrix D̃ can be

defined between the two frames for transforming a line l := (l,m) from frame FA to frame

FB as: [
Bl
Bm

]
= BD̃A

[
Al
Am

]
,

where,BD̃A =

[
R 0

[t]×R R

]
, [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 (3.7)

where [t]× denotes the skew-symmetric matrix corresponding to the translation vector t, and

(Al,A m) and (Bl,B m) represents the line l in frames FA and FB, respectively [8].

3.6 Stiefel Manifold and statistics over it

Stiefel manifold: The Stiefel manifold Vk,m is the space whose points are sets of

k orthonormal vectors in Rm, called k-frames in Rm (k ≤ m) [22]. Points on the Stiefel

manifold Vk,m are represented by the set of m× k matrices X such that XTX = Ik, where
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Ik is the k × k identity matrix; thus Vk,m = {Xm,k;X
TX = Ik}. Some special cases of the

Stiefel manifold are the unit hypersphere V1,m in Rm for k = 1, and the orthogonal group

O(m) of m×m orthonormal matrices for m = k.

Matrix von Mises-Fisher distribution: A random matrix X on Vk,m is said

to have the matrix von Mises-Fisher distribution (or matrix Langevin distribution), if its

density function is given by F(X|m,F) =
1

0F1(
m
2
, 1
4
FTF)

exp(Tr(FTX)), where F is any

m × k matrix and 0F1 is a hypergeometric function with matrix argument [22]. We can

write the general (unique) singular value decomposition (SVD) of F as F = ΓΛΩT , where

Γ ∈ Ṽk,m, Ω ∈ O(k), Λ = diag(λ1, ..., λk), λ1 ≥ ... ≥ λk ≥ 0, Ṽk,m denotes the set of

matrices Γ ∈ Vk,m with the property that all the elements of the first row of the matrix Γ

are positive, and O(k) denoting the orthogonal group in k dimensions. It can be shown that

0F1(
m
2
, 1
4
FTF) = 0F1(

m
2
, 1
4
Λ2). For more details, we refer to [22].
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Figure 3.5: Matrix von Mises-Fisher distribution over V3,2, X, Y, Z axes are shown in red,
blue and green colors, respectively. Magenta and cyan colors denote vectors corresponding to
the first and second column of the matrix M ∈ V3,2 representing the mode of the distribution
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Chapter 4

Robot Motion Planning Under Uncertainty and

Hybrid Dynamics

One of the biggest challenges in robot motion planning is to develop feasible motion

plans for systems having highly nonlinear dynamics in the presence of partial or noisy obser-

vations. Often, these nonlinearities are caused by sudden transitions or discontinuities in the

dynamics (for example, due to contacts in a robot manipulation task). When task dynamics

change suddenly in state space, even small state estimation errors can lead to large deviations

and plan failure. Therefore, reasoning about uncertainty over states becomes crucial in order

to develop robust motion plans. In this chapter, we introduce a novel hierarchical POMDP-

based motion planner for tasks with hybrid dynamics, the POMDP-HD planner [55], as the

first contribution of this thesis. We propose to leverage a natural, simplifying assumption

that the nonlinear dynamics of robot motion planning tasks can be decomposed into a dis-

crete set of simpler local dynamics models, of which only one is active at any given time

(e.g. a change in dynamics due to contact). Note that these local dynamics models may be

approximate, especially when they are learned from data or are a simplification of a complex

underlying model. A complete dynamics model can then be defined as a hybrid dynamics

model having hybrid states comprised of the continuous states of the system along with a

discrete state denoting the active local dynamics model.

31



The POMDP-HD planner garners numerous benefits. Due to hierarchical structure, it

breaks long-horizon planning problems into multiple smaller segments that can be sequenced

to find a complete solution. Since POMDP planning becomes exponentially more difficult

with longer horizons [62, 103], a hierarchical approach breaks the problem into chunks that

can be solved with significantly less effort. Another major benefit of planning with hybrid

states is that the planner can choose to leverage a specific local dynamics model in order to

improve the effectiveness of the generated plans. For example, if it is known a priori that

in the k-th local dynamics model, motion is allowed only along a particular vector (e.g. due

to presence of a wall), it can be used to reduce the state uncertainty along the dimensions

orthogonal to the allowed motion vector. This indirect feedback for uncertainty reduction

is critical for tasks in which observations are highly noisy, or even entirely unavailable (for

example, due to occlusions).

4.1 Hierarchical POMDP Planner

We propose to solve the problem of motion planning under uncertainty for tasks

governed by highly nonlinear dynamics as a POMDP problem defined on a hybrid dynamics

model. Different local dynamics models constituting the task dynamics are represented

as distinct discrete states of the hybrid model. Under uncertainty over the robot state, a

separate discrete distribution needs to be maintained to represent our confidence over the

active local dynamics model at each time step. Jointly, a hybrid belief over the hybrid state

of the system can be defined with a continuous part representing uncertainty over the robot

state and a discrete part representing uncertainty in the active local dynamics model. In

this work, we assume that the continuous part of hybrid belief is represented by a mixture
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of L Gaussian distributions, each having a mixing weight of αl, given as:

bxt =
L∑
l=1

αlN(µl,Σl) (4.1)

4.1.1 Belief Propagation under Hybrid Dynamics

A hybrid belief is defined as B = {bx, bq}, where bx and bq correspond to the belief

over continuous robot state, x, and discrete states, q, respectively. Propagation of hybrid

beliefs using Bayesian filtering can be separated into two steps: making a prediction using the

dynamics model to obtain a belief prior and updating it based on the received observation

to compute the belief posterior.

4.1.1.1 Belief Prior

We extend the system dynamics, F q(xt, ut), for uncertainty propagation and represent

it as Fq(bxt , ut). At each time step t, we can propagate the current belief bxt through the system

dynamics of each discrete state Fq(xt, ut) individually and then take a weighted sum of the

propagated belief set to obtain a belief prior for the next time step b̂xt+1, as:

b̂xt+1 =
∑
q′

Fq
′
(bxt , ut) b

q
t [q
′] (4.2)

where bqt [q
′] = p(qt = q′|xt) is q′-th component of bqt , and xt, qt and ut represent the continuous

states, discrete state, and continuous control input to the system at time t, and b̂[xt+1] is

denoted as b̂xt+1. Note that Fq
′
(xt, ut) represents a general dynamics function and can be

stochastic. Under stochastic continuous state dynamics, the definition of the discrete state

transition matrix as given in Equation 3.5 needs to be extended. Assuming the transitions
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of discrete states are given by a directed graph with self-loops, we can define the extended

discrete state transition matrix Π at time t as Πt = {p(qjt+1|qit, b̂xt+1)} ∀qi, qj ∈ Q where

p(qjt+1|qit, b̂xt+1) =

{
η
∫
RN 1

qj

qi
(x)b̂xt+1(x)dx, if ∃ eq

i

qj
,

ε, otherwise
(4.3)

where 1q
j

qi
(x) is an indicator function defined as:

1
qj

qi
(x) =

{
1, if x ∈ G(qi, qj)

0, otherwise
(4.4)

where η =
∑|Q|

k=1 πt(i, k) is a normalization constant, and ε is a small probability to handle

cases when received observations do not correspond to any legal discrete transition. Calcu-

lating the extended discrete state transition matrix Πt at each time step using Eq. 4.3 can be

computationally expensive. An approximation of Πt can be obtained by sampling n random

points from the belief over continuous states bxt+1 and calculating ratio of points lying in the

guard set G(qi, qj) to the total number of sampled points for each discrete state qj.

4.1.1.2 Belief Posterior

We use a hybrid estimation algorithm based on Bayesian filtering to reduce the uncer-

tainty over states using noisy continuous state observations. The proposed algorithm consists

of two layers of filters: the first estimates the continuous states of the system and the second

estimates the discrete states of the system. Upon receiving observation zt+1, the continuous

state prior is updated by taking a weighted sum of a bank of extended Kalman filters running

independently, with each discrete mode having an individual filter. The weights for the sum

are determined using the prior for the discrete mode b̂qt+1. The complete update step for

34



continuous states can be written as:

bxt+1 = b̂xt+1 +
∑
q′

(
Kq′

t+1(zt+1 −H
q′

t+1(b̂
x
t+1))

)
b̂qt+1[q

′] (4.5)

where Kq′

t+1 is the Kalman Gain for discrete state q′ at time t+1 and b̂qt+1[q
′] is q′-th component

of b̂qt+1. The update for the discrete state can be obtained by using a Bayesian filter update

given as:

bqt+1 = γMt+1 ◦ b̂qt+1 (4.6)

where Mt+1 = [P (zt+1|qt+1 = q′)]T ∀q′ ∈ Q, ◦ is the element-wise multiplication operator,

γ =
1∑

q′ Mt+1 ◦ b̂q
′

t+1

is a normalization constant and

P (zt+1|qt+1 = q′) = zt+1 ∼ H
q′

t+1(b
x
t+1) (4.7)

where H
q′

t+1(.) is the observation function for state q′. Mixing weights for the mixture of

Gaussians are also updated based on the received observations as

αlt+1 = N(zt+1 − ẑlt+1|0,Σl
t+1), where, ẑlt+1 =

∑
q′

b̂qt+1[q
′ ] (Hq′

t+1µ
l
t+1) (4.8)

A new mixture of L Gaussians is then chosen to represent the continuous belief bxt+1 at the

next step.

4.1.2 Direct Planning

With the hybrid belief propagation equations defined, we can now use trajectory op-

timization technique to solve the POMDP. We assume maximum likely observations (MLO)

obtained by propagating the current belief over continuous states through the system dy-

namics (Eqn. 4.2) as the true observations for developing locally optimal motion plans, as
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Algorithm 1: High-Level Plan → Continuous State Goals

1 Function high level plan to countinuous state goals (high-level plan)
2 for each qk in high-level plan do

3 Define corresponding full-confidence vector, W k
full conf =

{
1, if q = qkgoal
0, else

4 Sample n random points: Xsample = {x1, ..., xn} ∼ X;
5 for each xi ∈ Xsample do
6 Find confidence distribution on discrete states wi ∈Wsample:
7 Sample a random set X ′ ∼ X;
8 for each q′ ∈ Q do

9 wi(q
′) =

|x′ ∈ X ′ ∩G(q′, q′′) ∀q′′|
|X ′|

;

10 Find cost of divergence ci ∈ C ′ ⊂ R: ci(xi) = Hellinger(wi,W
k
full conf );

11 Define cost map on complete domain X: Ccomplete(x) = Interpolate(C ′);

12 Find best representative point in continuous state: xkbest = global optimization(x,
Ccomplete);

13 Append xkbest to Xcs goals;

14 return Xcs goals;

introduced by Platt et al. [61]. In this work, the nonlinear optimization problem set up for

trajectory optimization is posed as a sequential least squares programming (SQP) problem

and solved using the SNOPT software package [36, 37]. We denote this approach as the

direct planning approach.

4.1.3 Hierarchical Planner

Although the direct planning approach can be used to solve the POMDP, planning

for longer horizons in complex tasks, such as contact-rich manipulation tasks, can result

in infeasible computational costs [103]. To tackle this challenge, we propose a hierarchical

planner that decomposes the POMDP problem into smaller subproblems which can be solved

with significantly less effort.
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The proposed hierarchical planner has two levels: a higher level to find the best

sequence of local dynamics models that should be visited along the path (by visiting cor-

responding regions in continuous state space) and a lower level that is similar to the afore-

mentioned direct planning approach. The higher level planner generates a set of candidate

high-level plans consisting of all feasible permutations (without repetitions) of the discrete

states of the task∗. A transition between two discrete states is deemed to be an infeasible

transition, if the regions of the continuous state space corresponding to the two discrete

states form a pair of positively-separated sets.

We define the term confidence to denote the probability of a continuous state belief

to be in a particular discrete state. Spatial distribution of confidence across the continuous

domain for a particular discrete state is defined as the confidence map associated with that

state. A confidence map for a particular discrete state can be converted into a cost map by

calculating a cost of divergence between a full-confidence vector (W k
full conf , one-hot vector

with probability of being in that particular state equals to one) and the confidences at

randomly sampled points across the domain. A high-level plan can then be converted into

a sequence of continuous state goals by finding the global minimum of such cost maps

associated with each discrete state in the plan (see Algorithm 1). The lower level planner

is then called for each of these continuous state goals and a complete continuous state path

for the high-level plan is generated by combining the outputs of lower level planner. An

∗The feasibility check also helps in keeping the POMDP tractable. Gulyás et al. [40] have shown that
the average path length for a connected graph decreases as its graph connectivity increases. If the graph
of discrete states, from which the set of feasible high-level plans is derived, is not sparse enough to solve
the POMDP tractably, a simple heuristic can be defined that penalizes plans with longer path lengths.
Preferential choice of shorter plans results in fewer calls to the lower level planner and reduces computational
time.
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additional discrete state is added to each high-level plan which represents the desired goal

of the task and is considered to be active within an ε−neighbourhood of the actual task

goal. High-level plans are then ranked by calculating a divergence cost on the distribution of

planner’s confidence on the active discrete state at the final point of the plan and the desired

confidence distribution (all the probability mass within the ε−neighbourhood of the goal).

The continuous state plan corresponding to the high-level plan with the minimum cost is

chosen to be executed.

In this work, we have used Hellinger distance [18] to calculate the divergence cost

between the discrete distributions as it forms a symmetric bounded metric with a value

between 0 and 1, and was found to be more numerically stable than the Bhattacharya

distance, KL-divergence, and Jensen–Shannon divergence on the tested application domains.

Radial basis functions were used to interpolate the divergence costs throughout the domain

and the differential evolution method was used to find the approximately globally optimal

solutions of the generated cost map [129].

4.1.4 Trajectory Stabilization

With the MLO assumption, it is very likely that during execution the belief over robot

state will diverge from the nominal trajectory planned. To ensure that the execution phase

belief follows the plan, a belief space LQR (B-LQR) controller can be defined around the

nominal trajectory. B-LQR controllers were introduced by Platt et. al [61] and can be seen

as belief-space extension of Linear-Quadratic Regulators (LQR). For systems modelled as

linear-Gaussian processes, a B-LQR controller is optimal and equivalent to a linear-Quadratic

Gaussian (LQG) controller. In B-LQR, each point in the nominal trajectory is defined as
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a set point and quadratic costs are defined for the distance from it and the control effort

required to converge to it. Closed form solutions exist to ensure convergence to the set

point within a finite time horizon. While stabilizing the trajectory, the most likely active

discrete state is taken to define the governing dynamics of the system. However, it may

happen that the B-LQR controller is unable to stabilize the execution phase (actual) belief

around the nominal trajectory. If the planned belief for the next step deviates more than

a δ-threshold from the actual belief after the observation update, a replanning call to the

planner is triggered.

4.2 Experiments

The proposed POMDP solver for hybrid dynamics was tested on two tasks: au-

tonomous navigation and localization in a walled-domain with extremely poor observations,

and a real manipulation task of partially assembling a toy airplane [17] under noisy obser-

vations by leveraging contacts to reduce uncertainty.

4.2.1 Domain-I: Walled Domain

The first task is an autonomous navigation task in a 2D domain ({x, y} ∈ [−2, 15])

having extremely noisy observations (w ∼ N(·|0, 15 units), zero-mean Gaussian noise). The

domain consists of two perpendicular walls parallel to the x and y axis respectively. As the

motion along a wall is constrained to be only parallel to the wall, the robot can use it to

efficiently localize itself in a direction orthogonal to the wall. We compare the performance

of the hierarchical planner with the direct planning approach. Note that the direct planning

approach is similar in principle to the SM-POMDP planner proposed by Brunskill et al. [13]
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and hence, provides a comparison of the proposed hierarchical planner with a flat, single-level

planning approach. Hybrid dynamics model can be given as

f(xt,u) =



xt + u, if x > −2, y > −2

xt +

[
0 0

0 1

]
u, if x < −2

xt +

[
1 0

0 0

]
u, if x > −2, y < −2,

(4.9)

where xt = {xt, yt}T . The observation function was defined as h(xt) = xt + w. Matrices

defining the cost function over error in states, control input, additional cost for final state

error and covariance were taken as Q = diag(0.5, 0.5), R = diag(10.0, 10.0), QT = 1e4 and

Λ = 1e7 respectively. Number of Gaussians used to model continuous belief L = 1.

Sample trajectories planned by the direct planning and the hierarchical planner are

shown in Figure 4.1. It is evident from the figures that the hierarchical planner plans

to selectively visit the two discrete states representing the walls, in contrast to the direct

method. Also, the hierarchical planner is able to converge to the goal faster and with a

much lower uncertainty than the direct planning approach. As the direct planner does not

leverage the knowledge of local dynamics models in a structured way, it needs to plan longer

trajectories to gather more information. However, due to high noise in the observations, it

still fails to converge to the goal with high accuracy.

Additional statistical analysis to compare the two approaches in terms of total plan-

ning time, final error and final belief uncertainty are presented in Table 4.1. It can be seen

from Table 4.1 that, for comparable final error and final belief uncertainty, the hierarchi-

cal planner is able to find a solution approximately 5 times faster than the direct planning

approach.
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(a) Direct Planning (b) Hierarchical Planning

Figure 4.1: A comparison of planned and actual trajectories using the direct planning and
hierarchical planning approaches on the walled domain. For both cases, Initial belief mean
µ = {5, 5}, cov = diag(11.5, 11.5) , True start position:={3.5, 2.0}. Gray circles represent
belief covariance.

4.2.2 Domain-II: Airplane assembly

We experimentally demonstrate that the hierarchical POMDP planner can be used

to tractably solve a real world manipulation task — the partial assembly of a toy airplane

from the YCB dataset [17]. We considered the first step of inserting the landing gear into

the wing as a test case for our planner. The task requires a high precision with maximum

tolerance of ±0.2 cm. Feedback on the location of the airplane in world was noisy and had an

average estimation error of ±2.0 cm. This experiment demonstrates two important features

of the proposed planner: first, the planner can be scaled to solve real-world manipulation

planning under uncertainty problems and second, due to the hierarchical planning approach,

the planner essentially enables the robot to plan and “feel around” to localize itself when
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observations are noisy, similar to what a human might do.

In a robot manipulation task involving contacts, based on the type of contact between

the bodies, the number of state-dependent local dynamics models can be large, or even

infinite. We simplify the problem by assuming an approximate hybrid dynamics model, in

which the local dynamics models correspond to possible motion constraints that the robot

can encounter while executing the task. For example, the task of placing a cup on a table

can be considered to be approximately made of two local dynamics models: one when the

two objects are not in contact and the other when the cup is in contact with the table

plane. The second dynamics model represents the motion constraint placed on the cup by

the table by restricting its motion to be only along its plane and not penetrating it. This

approximation helps in having a succinct and effective representation of the task dynamics;

under this approximation, for a specific set of inputs, the relative motion between the two

objects in contact will always be the same, independent of the type of contact between them.

In this case, the specific set of inputs would be the set of all inputs which do not result in

moving the cup away from the table plane, resulting in breaking the contact between them.

In this experiment, we consider the domain to be made up of four distinct local

Metric Direct Hierarchical
Average Total time (in seconds) 51.908 10.695
Average Final Error [−0.168, 0.172]T [0.086,0.198]T

Average Final Maximum Belief Uncertainty 0.696 0.625

Table 4.1: Comparison of direct and hierarchical planning. Values are averaged over 5 runs.
Planning horizon: 20 steps. Belief start: [5, 5]T . actual start: [3.5, 2.0]T . Termination
condition: Maximum likelihood estimate of belief converged within a ball of 0.2 unit radius
around the goal ([0, 0]T ) with max covariance of 1 unit.
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dynamics models: two corresponding to the linear motions along the wing plane edges, one

corresponding to the corner of the plane and one to represent free-body motion elsewhere in

the domain. At the highest level, the planning problem can be broken down into two steps:

first, to localize the gear at a point in a plane parallel to the wing and second, to insert the

gear into the hole. A hybrid dynamics model in a plane parallel to the wing can be given as

f(xt,u) =



xt +

[
0 0

0 1

]
u + v, if x ∈ [4, 4.5], y > −13.5

xt +

[
1 0

0 0

]
u + v, if x < 4, y ∈ [−14,−13]

xt + 0 ∗ u + v, if x ∈ [4, 4.5], y ∈ [−14,−13.5]

xt + u + v, otherwise

(4.10)

where v is process noise, modeled as v ∼ N(·|0, I2) with 1 unit = 1 cm. The obser-

vation function h(xt) = xt + w with zero-mean Gaussian observation noise w ∼ N(·|0, 2I2).

The planner took 14.682 seconds for planning on an Intel® CoreTM i7-6700 CPU @3.40GHz,

16Gb RAM. Feedback was obtained on the location of the airplane in the world frame by

doing an online color-based object cluster extraction, using multi-plane segmentation from

the Point Cloud Library (PCL) on the point cloud data of a Microsoft Kinect v2 sensor. Ma-

trices defining the cost function over error in states, control input, additional cost for final

state error and covariance were taken as Q = diag(0.5, 0.5), R = diag(0.1, 0.1), QT = 5000

and Λ = 1e7 respectively. Number of Gaussians used to model continuous belief L = 1.

Figure 4.3 shows snapshots of the trajectory executed by the robot during the task

from two perpendicular angles. The right Panel of Figure 4.2 shows the trajectory planned

by the hierarchical planner and the actual trajectory taken by the robot in a plane parallel to

the wing. It can be see from Fig. 4.2 that the planner plans to activate the motion constraint
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Figure 4.2: Left Panel : Toy Airplane from YCB Dateset. Right Panel :Planned and Actual
trajectories for the airplane assembly task in a plane parallel to wing plane. Bold black lines
represents the edges of the airplane wing. 1 unit = 10 cm.

parallel to the wing in order to reduce its uncertainty. Once localized in the plane parallel

to the wing, the robot changes planes to move to a point directly above the hole and then

proceeds to insert the landing gear into the wing.

4.3 Conclusion

We present a hierarchical POMDP planner for hybrid dynamics which can develop

locally optimal motion plans for tasks involving nonlinear dynamics under noisy observa-

tions. We proposed to model nonlinear task dynamics, especially due to sudden changes in

dynamics, using a hybrid dynamics model. The POMDP-HD planner generates hierarchical

motion plans at two levels: first, a high-level motion plan that sequences the local dynamics

models to be visited and second, based on the best high-level plan, a detailed continuous

state motion plan to be followed by the robot. The hierarchical planning approach breaks

the large POMDP problem into multiple smaller segments with shorter planning horizons,
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Figure 4.3: Snapshots of the robot assembling the toy airplane

which significantly increases the computational efficiency of the planner. High-level planning

also enables the robot to leverage task dynamics to improve its performance—for example,

reducing uncertainty using the task motion constraints in order to develop motion plans

which are more robust to state uncertainty. However, the hierarchical planner requires ac-

cess to a task dynamics model for developing motion plans. In the next chapter, we partially

alleviate this requirement by presenting an algorithm to learn planning-compatible hybrid

kinematic models for articulated objects directly from visual observations.
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Chapter 5

Learning Hybrid Object Kinematics for Efficient

Hierarchical Planning Under Uncertainty

Robots working in human environments need to perform dexterous manipulation on

a wide variety of objects. Such tasks typically involve making or breaking contacts with

other objects, leading to sudden discontinuities in the task dynamics. Furthermore, many

objects exhibit configuration-dependent dynamics, such as a refrigerator door that stays

closed magnetically. While the presence of such nonlinearities in task dynamics can make

it challenging to represent good manipulation policies and models, if well-understood, these

nonlinearities can also be leveraged to improve task performance and reduce uncertainty.

For example, when inserting a screw into the underside of a table, if direct visual feedback is

not available, indirect feedback from wiggling the screw (a semi-rigid connection between the

screw and the table) can be leveraged to ascertain whether the screw is inserted or not. In

other words, the sensed change in dynamics (from free-body motion to rigid contact) serves

as a landmark, partially informing the robot about the state of the system and reducing

uncertainty. Such dynamics can be naturally represented as hybrid dynamics models or

hybrid automata [79], in which a discrete state represents which continuous dynamics model

is active at any given time.

Current model-free reinforcement learning approaches [41, 67, 99, 152] can learn to
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cope with hybrid dynamics implicitly, but require large amounts of data to do so, scale poorly

as the problem complexity grows, face representational issues near discontinuities, and do not

transfer well to significantly different problems. Conversely, hierarchical POMDP planning-

based methods [13, 55, 67, 142] can represent and reason about hybrid dynamics directly,

scale well via plan decomposition, work well on novel problems, and reason about uncertainty,

but typically rely on precise hand-specified models and task decompositions. In this chapter,

we introduce Model Inference Conditioned on Actions for Hierarchical Planning (MICAH)

that bridges this gap and enables hierarchical POMDP planning-based methods, such as the

POMDP-HD planner from the previous chapter, to perform novel manipulation tasks given

noisy observations. MICAH infers hybrid automata for objects with configuration-dependent

dynamics from unsegmented sequences of observed poses of object parts. These automata

can then be used to perform motion planning under uncertainty for novel manipulation tasks

involving these objects.

MICAH consists of two parts, corresponding to our two main contributions: (1) an

novel action-conditional inference algorithm called Act-CHAMP for kinematic model estima-

tion and changepoint detection from unsegmented data, and (2) an algorithm to construct

hybrid automata for objects using the detected changepoints and estimated local models from

Act-CHAMP. Due to action-conditional inference, MICAH is more robust to noise and less

vulnerable to several modes of failure than existing model inference approaches [86, 100, 111].

These prior approaches assume that the visual pose observations alone provide sufficient in-

formation for model estimation, which does not hold for many scenarios and can lead to

poor performance. For example, an observation-only approach cannot distinguish between

observations obtained by applying force against a rigid object and taking no action at all on
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a free body, estimating that the model is rigid in both the cases.

To evaluate our method, we first show that for articulated objects, MICAH can

correctly infer changepoints and the associated local models with higher fidelity and less

data than a state-of-the-art observation-only algorithm, CHAMP [100]. We also consider

four classes of noisy data to demonstrate its robustness to noise. Next, to test the planning-

compatibility of the learned models, we learn hybrid automata for a microwave and a drawer

from human demonstrations and use them with a recently proposed hierarchical POMDP

Planner, POMDP-HD [55], to successfully manipulate them in new situations. Lastly, we

show that the learned models through MICAH are rich-enough to be leveraged creatively by

a hierarchical planner for completing novel tasks efficiently—we learn a hybrid automaton

for a stapler and use it to dexterously place the stapler at a target point that is reachable

only through a narrow corridor in the configuration space.

5.1 Preliminaries

5.1.1 Changepoint Detection

Given a time series of observations y1:n, a changepoint model introduces a number

of temporal changepoints τ1, ..., τm that split the data into a set of disjoint segments, with

each segment assumed to be governed by a single model (though different models can gov-

ern different segments). We build on the online MAP (maximum a posteriori) changepoint

detection model proposed by Fearnhead and Liu [29], which was specialized for detecting

motion models for articulated objects by Niekum et al. [100]. Given a time series of obser-

vations y1:n and a set of parametric candidate models M , the changepoint model infers the

MAP set of changepoint times τ = {τ0, τ1, ..., τm, τm+1} where τ0 = 0 and τm+1 = n, giving
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us m + 1 segments. Thus, the kth segment consists of observations yτk+1:τk+1
, and has an

associated model Mk ∈M with parameters θk.

Assuming that the data after a changepoint is independent of the data prior to that

changepoint, we model the position of changepoints in the time series as a Markov chain in

which the transition probabilities are defined by the time since the last changepoint,

p(τi+1 = t|τi = j) = β(t− j) (5.1)

where β(·) is a probability distribution over time. For a segment from time s to t, the model

evidence for the governing model being M, is defined as:

L(s, t,M) = p(ys+1:t|M) =

∫
p(ys+1:t|M, θ)p(θ)dθ (5.2)

The distribution over the position of the most recent changepoint prior to time t, Ct, can be

efficiently estimated using the standard Bayesian filtering recursions and an online Viterbi

algorithm [29]. We define Es as the event that given a changepoint at time s, the MAP choice

of changepoints has occurred prior to time s. Then, the probability of having a changepoint

at time t, Pt, is defined as:

Pt = p(Ct = s,M, Es,y1:t)

PMAP
t = p(Changepoint at t, Es,y1:t)

(5.3)

which results in

Pt(s,M) = (1−B(t− s− 1)) L(s, t,M) p(M) PMAP
s

PMAP
t = max

s,M

[
β(t− s)

1−B(t− s− 1)
Pt(s,M)

]
(5.4)

where B(·) is the cumulative distribution function of β(·). By finding the values of (s,M)

that maximize PMAP
t , the Viterbi path can be recovered at any point. This process can be
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repeated until the time t = 0 is reached to estimate all changepoints that occurred in the

given time series y1:T .

The algorithm is fully online, but requires O(n) computations at each time step,

since Pt(s,M) values must be calculated for all s < t. The computation time is reduced to a

constant by using a particle filter that keeps a constant number of particles, M , at each time

step, each of which represents a support point in the approximate density p(Ct = s,y1:t). If

at any time step, the number of particles exceeds M , stratified optimal resampling [29] is

used to choose which particles to keep such that the Kolmogorov-Smirnov distance from the

true distribution is minimized in expectation.

5.2 MICAH

Given a sequence of object part pose observations Dy (e.g. from a visual tracking

algorithm) and a sequence of applied actions Da on an articulated object, MICAH creates

a planning-compatible hybrid automaton for the object. It does so in two steps: (1) it

estimates the kinematic graph Ĝ representing the kinematic structure of the object given

the sequence of pose observations Dy and the applied actions Da, and then (2) constructs a

hybrid automaton H representing the motion model for the object given Ĝ.

For the first step, we extend the framework proposed by Sturm et al. [131] in two im-

portant ways to better learn the kinematic structure of articulated objects. First, we include

reasoning about the applied actions along with the observed motion of the object while

estimating its kinematic structure. Second, we extend the framework to be able to learn

the kinematic structure of more complex articulated objects that may exhibit configuration-

dependent kinematics, e.g., a microwave. The original framework [131] assumes that each
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link of an articulated body is governed by a single kinematic model. For complex articu-

lated objects that exhibit configuration-dependent kinematics, the transitions points in the

kinematic model along with the set of governing local models and their parameters need to

be estimated to learn the complete kinematic structure of the object.

To facilitate these extensions, we introduce a novel action-conditional changepoint

detection algorithm, Action conditional Changepoint detection using Approximate Model

Parameters (Act-CHAMP), that can detect the changepoints in the relative motion between

two rigid objects (or two object parts), given a time series of observations of the relative mo-

tion between the objects and the corresponding applied actions. The algorithm is described

in section 5.2.1.

Kinematic trees have the property that their edges are independent of each other.

As a result, when learning the kinematic relationship between object parts i and j of an

articulated object, only their relative transformations are relevant for estimating the edge

model. MICAH first uses the Act-CHAMP algorithm to learn the kinematic relationships

between different parts of the articulated object separately, and then combines them to

estimate the complete kinematic graph Ĝ for the object. Once the kinematic graph Ĝ for

an articulated object is known, MICAH constructs a hybrid automaton H to represent its

motion model. We choose hybrid automata as they present a natural choice to model the

motion of objects that may exhibit different motion models based on their configuration.

Steps to construct a hybrid automation from the learned kinematic graph Ĝ is described in

section 5.2.2.

51



5.2.1 Action-conditional Model Inference

Following Sturm et al. [131], we define the relative transform between two objects

with poses xi and xj ∈ SE(3) at time t as: ∆ij,t = xi,t 	 xj,t
∗. Additionally, we define an

action at taken by the demonstrator at a time t as the intended displacement to be applied

to the relative transform between two objects from time t to t + 1 as: at = ∆ij,t 	∆ij,t+1.

Given the time-series of observations Dyij
= y1:T of relative motion between the two object

parts i and j of an articulated object and the corresponding applied actions Daij
= a1:T , we

wish to find the set H̃ij defining the kinematic relationship between the two object parts.

The set H̃ij consists of tuples (c̃k−1ij , c̃kij,M
k
ij, θ

k
ij), where c̃k−1ij and c̃kij denote the starting and

the end configurations for the model Mk
ij to be the governing local model with parameters

θkij. For the sake of clarity, we drop the subscript {ij} in the following discussion in this

section.

We propose a novel algorithm, Act-CHAMP, that performs action-conditional change-

point detection to estimate the set H̃ij given input time series of observations y1:T and the

corresponding applied actions a1:T . Act-CHAMP builds upon the CHAMP algorithm pro-

posed by Niekum et al. [100]. The CHAMP algorithm reasons only about the observed

relative motion between the objects for estimating the kinematic relationship between the

objects. However, an observation-only approach can easily lead to false detection of change-

points and result in an inaccurate system model. Consider an example case of deducing the

motion model for a drawer from a noisy demonstration in which the majority of applied ac-

∗The operators ⊕ and 	 represent motion composition operations. For example, if poses xi, xj ∈
R4×4 are represented as homogeneous matrices, then these operators correspond to matrix multiplications
xi ⊕ xj = xixj and its inverse multiplication, xi 	 xj = x−1i xj , respectively.
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tions are orthogonal to the axis of motion of the drawer. Due to intermittent displacements,

an observation-only approach might model the motion of the drawer to be comprised of a

sequence of multiple rigid joints. On the other hand, an action-conditional inference can

maintain an equal likelihood of observing either a rigid or a prismatic model under off-axis

actions, leading to a more accurate model.

Given the two time series inputs y1:T and a1:T , we define the model evidence for model

M being the governing model for the time segment between times s and t as:

L(s, t,M) = p(ys+1:t|M, as:t−1) =

∫
p(ys+1:t|M, θ, as:t−1)p(θ)dθ (5.5)

Each model M admits two functions: a forward kinematics function, fM,θ, and an

inverse kinematics function, f−1M,θ, which maps the relative pose between the objects ∆ij to

a unique configuration c for the model (e.g. a position along the prismatic axis, or an angle

with respect to the axis of rotation) as:

fM,θ(cM) = ∆ (forward kinematics)

f−1M,θ(∆) = cM (inverse kinematics)

We consider three candidate models Mrigid, Mrevolute, and Mprismatic to define the kinematic

relationship between two objects. Complete definitions of forward and inverse kinematics

models for these models are beyond the scope of this work; for more details, see Sturm et al.

[131].

Additionally, we define the Jacobian and inverse Jacobian functions for the model M
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as

JM,θ(δcM) = δ∆ (Jacobian)

J−1M,θ(δ∆) = δcM (inverse Jacobian)

where δ∆ and δcM represent small perturbations applied to the relative pose and the

configuration, respectively.

Using these functions, we can define the likelihood of obtaining observations y1:T

upon applying action a1:T under model M as:

p(y2:T |M, θ, a1:T−1) =
T∏
t=2

p(yt | ∆̂t) (5.6)

where ∆̂t is the predicted relative pose under the model M at time t, and can be calculated

using the observation yt−1 and applied action at−1 at time t− 1 as:

∆̂t = fM,θ( f
−1
M,θ(yt−1) + J−1M,θ at−1) (5.7)

The probability p(yt | ∆̂t) can be calculated by defining an observation model, given

an observation error covariance Σy for the perception system as:

yt ∼

{
∆t + N(0,Σy) if ν = 1

U if ν = 0
(5.8)

where the probability of observation being an outlier is p(ν = 0) = γ, in which case it is

drawn from a uniform distribution U. The data likelihood is then defined as:

p(yt|∆t) = p(yt|∆t, γ)p(γ), where, (5.9)

p(yt|∆t, γ) = (1− γ)p(yt|ν = 1) + γp(yt|ν = 0), (5.10)

p(γ) ∝ e−wγ, (5.11)
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and w is a weighting constant.

Finally, similar to Niekum et al. [100], we can define our BIC-penalized likelihood

function as:

lnL(s, t,M) ≈ ln p(ys+1:t|M, θ̂, as:t−1)−
1

2
kq ln(t− s) (5.12)

where estimated parameters θ̂ are inferred using MLESAC (Maximum Likelihood Estima-

tion Sample Consensus) [140]. This likelihood function can be used in conjugation with the

changepoint detection algorithm described in section 5.1.1 to infer the MAP set of change-

point times τ along with the associated local models Mk ∈ M with parameters θk. The

detected changepoints τ and the local models can be later combined appropriately to obtain

a set Hij consisting of tuples (τ k−1ij , τ kij,M
k
ij, θ

k
ij), where τ k−1ij and τ kij denote the starting and

the end changepoints for the time segment k in the input time series y1:T .

The transition conditions between the local models can be made independent of the

changepoint times, τ , by making use of the observations corresponding to the changepoint

times yτ ⊆ y1:T . If an observation yτk corresponds to the changepoint τ k denoting the

transition from local model Mk to the model Mk+1, then the inverse kinematics function

f−1
Mk,θk

can be used to find an equivalent configurational changepoint c̃k, a fixed configuration

for model Mk, that marks the transition from model Mk to the next model Mk+1. We

can thus convert the set Hij to the set H̃ij, consisting of tuples (c̃k−1ij , c̃kij,M
k
ij, θ

k
ij), that is

independent of the input time series.

The complete kinematic structure of the articulated object can then be estimated

by finding the set of edges EG, denoting the kinematic connections between its parts, that

maximizes the posterior probability of observing Dz under applied actions Da [131]. However,
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Figure 5.1: Extended kinematic graph for microwave which considers a hybrid model that
can be revolute or rigid, depending on the configuration.

to account for complex articulated objects that exhibit configuration-dependent kinematics,

now each edge ẽij ∈ EG of the kinematic graph G can correspond to multiple kinematic link

models Mk
ij, unlike the original framework [131], in which each edge corresponds to only

one kinematic link model Mij ∈ Mij. To denote the change, we call such kinematic graphs,

extended kinematic graphs. An example extended kinematic graph for a microwave is shown

in Figure 5.1.

5.2.2 Hybrid Automaton Construction

Hybrid automata present a natural choice for representing an articulated object that

can have a discrete number of configuration-dependent kinematics models. A hybrid au-

tomaton can model a system that evolves over both discrete and continuous states with time

effectively, which facilitates robot manipulation planning for tasks involving that object. We

define the hybrid automaton H = (Q,X,U, Init, f, I,E,G, R, φ) for the articulated object as:
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• Q =
∏

ẽij∈EG
Mij, i.e. the Cartesian product of the sets of local models defining

kinematic relationship between two object parts;

• X =
∏

ẽij∈EG
c̄ij, where we use a single variable c̄ij ∈ R to represent the configuration

value cMk under all models Mk
ij ∈ Mij, as each of the candidate articulation models

admits a single-dimensional configuration variable cM ∈ R;

• U = UC =
∏

ẽij∈EG
uij, where uij ∈ R is the input delta to be applied to the continuous

state c̄ij and the set of discrete input variables is the null set UD = ∅ as we cannot

control the discrete states directly;

• Init is defined as per the task definition;

• The vector field f governing the evolution of the continuous state vector x with time is

defined as f(q, x, u) = (xt−xq) + ut, where q ∈ Q, xt,x
q ∈ X, and u ∈ U . The vector

xq ∈ X is so defined that its l-th element xq[l] =
∑k−1

r=0 c̃rij, where l-th dimension of X

corresponds to the kinematic relationship between object parts i and j with ẽij ∈ EG,

and q[l] = Mk
ij;

• For each discrete state q ∈ Q, an invariant set I(q) is defined such that within it

the time evolution of the continuous states is governed by the vector field f(q, x, u)

∀x ∈ I(q) ⊆ X, u ∈ U . We define I as I =
∏

ẽij∈EG
Dom(Mij), where Dom(Mij) =

{Dom(Mk
ij)∀k ∈ |M|} with Dom(Mk

ij) defined as Dom(Mk
ij) = [0, c̃k+1

ij );

• The set of edges defines the set of feasible transitions between the discrete states,

E = {(q, q′) | q[l] = Mk
ij ⇒ q′[l] = Mr

ij, r ∈ {k − 1, k, k + 1}};
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• Guards G can be constructed using the configurational changepoints estimated for the

object. If an edge e = (q, q′) ∈ E corresponds to a transition from a local model Mk
ij

to model Mk+1
ij , then the guard for the edge e can be defined as G(e) = {c̄ij ≥ c̃k+1

ij }.

Analogously, the guard for the reverse transition G(e′ = (q′, q)) = {c̄ij < 0}. To

handle the corner cases when c̄ij < 0 for M1
ij or c̄ij > ĉm+1

ij for model Mm
ij (assuming

|Mij| = m), we define two additional edges e0ij and e−1ij which corresponds to the self

transitions to the same discrete states such that c̄ij is lower-bounded at 0 for M1
ij and

upper-bounded at ĉm+1
ij for model Mm

ij ;

• The reset map R is an identity map;

• The set of admissible inputs φ(q,x) = U.

5.3 Experiments and Discussions

In the first set of experiments, we compare the performance of Act-CHAMP with the

CHAMP algorithm [100] to estimate changepoints and local motion models for a microwave

and a drawer. Next, we test the complete method, MICAH, to construct planning-compatible

hybrid automata for the microwave and drawer and discuss the results of manipulation

experiments to open and close the microwave door and the drawer using the learned models.

Finally, we show that MICAH can be combined with a recent hierarchical POMDP planner,

POMDP-HD [55], to develop a complete pipeline that can learn a hybrid automaton from

demonstrations and leverage it to perform a novel manipulation task—in this case, with a

stapler. A video showcasing the experiments is available at: https://youtu.be/f35gMoOoOy8.
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(a) Microwave (b) Drawer

Figure 5.2: Inferred motion models for the microwave and the drawer using Act-CHAMP.
Points denote the recorded relative poses of object parts from one demonstration. The green
circle represents the detected rigid model, the circular arc represents the detected revolute
model, and the line represents the detected prismatic model.

5.3.1 Learning Kinematics Models for Objects

We collected six sets of demonstrations to estimate motion models for the microwave

and the drawer. We provided kinesthetic demonstrations to a two-armed robot, in which

the human expert physically moved the right arm of the robot, while the left arm shadowed

the motion of the right arm to interact with objects while collecting unobstructed visual

data. The first two sets provide low-noise data, by manipulating the door handle or drawer

knob via a solid grasp. The next two sets provide data in which random periods of no

actions on the objects were deliberately included while giving demonstrations. The last

two sets consist of high-noise cases, in which the actions were applied by pushing with the

end-effector without a grasp. Relative poses of object parts were recorded as time-series

observations with an RGB-D sensor using the SimTrack object tracker [105]. For each time

step t, the demonstrator’s action at on the object was defined as the difference between the
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(a) CHAMP (b) Act-CHAMP

Figure 5.3: Act-CHAMP correctly infers the drawer motion model, while CHAMP (baseline)
falsely detects a changepoint under noisy demonstrations.

position of the right end-effector at times t and t+ 1.

With grasp: Both algorithms (CHAMP and Act-CHAMP) detected a single change-

point in the articulated motion of the microwave door and determined the trajectory to be

composed of two motion models, namely rigid and revolute. For the drawer, both algorithms

were able to successfully determine its motion to be composed of a single prismatic motion

model(see Table 5.1). This demonstrates that for clean, information-rich demonstrations,

Act-CHAMP can perform on par with the baseline.

No-Actions: When no action is applied to an object, due to the lack of motion, an

observation-only model inference algorithm can infer the object motion model to be rigid.

Moreover, if the agent stops applying actions after interacting with the object for some

time, an observation-only approach can falsely detect a changepoint in the motion model.

We hypothesize that an action-conditional inference algorithm such as Act-CHAMP won’t

suffer from these shortcomings as it can reason that no motion is expected if no actions are
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applied. To test it, we conducted experiments in which the demonstrator stopped applying

actions on the object midway during a demonstration for an extended time randomly at two

distinct locations. As expected, the observation-only CHAMP algorithm falsely detected

changepoints in the object motion model and performed poorly (see Table 5.1). However,

as Act-CHAMP reasons about the applied actions as well, it performed much better (see

Table 5.1).

Without grasp: When actions are applied directly on the object (microwave door

and the drawer, respectively), the majority of the applied actions are orthogonal to the axis

of motion leading to low-information demonstrations. In such a case, while CHAMP almost

completely failed to detect correct motion models for the microwave (5% success), Act-

CHAMP was able to correctly detect models in almost one-third of the trials (see Table 5.1).

For the drawer, CHAMP falsely detected a changepoint and determined that the articula-

tion motion model is composed of two separate prismatic articulation models with different

model parameters (Figure 5.3). However, due to action-conditional inference, Act-CHAMP

correctly classified the motion to be composed of only one articulation model (Figure 5.3,

see Table 5.1).

5.3.2 Object Manipulation Using Learned Models

To test the effectiveness of the learned hybrid automata using MICAH, we used them

to perform the tasks of opening and closing a microwave door and a drawer using a robot

manipulator. We use the POMDP-HD planner [55] to develop manipulation plans. Figure 5.4

shows the belief space and actual trajectories for the microwave and drawer manipulation

tasks. For both the objects, low final errors were reported: 0.05±0.01 rad for the microwave
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(a) Microwave (b) Drawer

Figure 5.4: Plots showing belief space [blue] and actual trajectories [orange] for microwave
and drawer manipulation tasks using learned models. Error bars represent belief uncertainty.

and 0.005± 0.003 m for the drawer (average of 5 different tasks), validating the effectiveness

of the learned automata.

5.3.3 Leveraging Learned Models for Novel Manipulations

Finally, we show that our learned models and planner are rich enough to be used to

complete novel tasks under uncertainty that require intelligent use of object kinematics. To

do so, we combine MICAH with the POMDP-HD planner for performing a manipulation

task of placing a desk stapler at a target point on top of a tall stack of books. Due to the

height of the stack, it is challenging to plan a collision-free path to deliver the stapler to

the target location through a narrow corridor in the free configuration space of the robot;

if the robot attempts to place the stapler at the target point while its governing kinematic

model is revolute, the lower arm of the stapler will swing freely and collide with the obstacle.

However, a feasible collision-free motion plan can be obtained if the robot first closes and
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(a) Stapler: {x, y, z} (b) Stapler: θ vs time

Figure 5.5: Planned trajectories for the stapler placement experiment. (Left) in {x, y, z}
(Right) Relative angle of the stapler arms over time.

Figure 5.6: Snapshots showing the executed trajectory for the stapler placement task. The
red region denotes the unreachable workspace for the robot’s end-effector.

locks the stapler (i.e. rigid articulation), and then proceeds towards the goal. To change the

state of the stapler from revolute to rigid, the robot can plan to make contact with the table

surface to press down and lock the stapler in a non-prehensile fashion.

As the task involves making and breaking contacts with the environment, we need

to extend the learned hybrid motion model of the stapler to include local models due to

contacts. We approximately define the contact state between the stapler and the table as to

be either a line contact (an edge of the lower arm of the stapler in contact with the table),
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a surface contact (the lower arm lying flat on the table) or no contact. The set of possible

local models for the hybrid task kinematics can be obtained by taking a Cartesian product of

the set of possible discrete states for the stapler’s hybrid automaton and the set of possible

contact states between the stapler and the table. However, if the stapler is in the rigid mode,

its motion would be the same under all contact states. Hence, a compact task kinematics

model would consist of four local models—the stapler in revolute mode with no contact with

the table, the stapler in revolute mode with a line contact with the table, the stapler in

revolute mode with a surface contact with the table, and the stapler in rigid mode.

Given a human demonstration of robot’s interaction with the stapler as input, MICAH

first learns a hybrid automaton for the stapler and then extends it to the hybrid task model

using the provided task-specific parameters. Next, the POMDP-HD planner uses the learned

task model to develop motion plans to complete the task with minimum final state uncer-

tainty. Note that only the final Cartesian position for the stapler was specified as the target

for the task and not the articulation state of the stapler (rigid/revolute). Motion plans

generated by the planner are shown in Figure 5.5. As can be seen from the plots, the plan-

ner plans to make contacts with the table to reduce the relative angle between the stapler

arms and change the articulation model of the stapler. The plan drags the stapler along the

surface of the table, indicating that it waits until it is highly confident that the stapler has

become rigid before breaking contact. Making contacts with the table along the path also

helps in funneling down the uncertainty in the stapler’s location relative to the table in a

direction parallel to the table plane normal, thereby increasing the probability of reaching

the goal successfully. Figure 5.6 shows snapshots of the motion plan and actual execution of

the robot performing the task.
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5.4 Conclusion

Robots working in human environments require a fast and data-efficient way to learn

motion models of objects around them to interact with them dexterously. We present a

novel method MICAH, that performs action-conditional model inference from unsegmented

human demonstrations via a novel algorithm, Act-CHAMP, and then uses the resulting

models to construct hybrid automata for articulated objects. Action-conditional inference

enables articulation motion models to be learned with higher accuracy than the prior methods

in the presence of noise and leads to the development of models that can be used directly

for manipulation planning. Furthermore, we demonstrate that the learned models are rich

enough to be used for performing novel tasks with such objects in a manner that has not

been previously observed.

One limitation of Act-CHAMP is that it requires time series of observations of relative

poses between the object parts as input, which are often not available in unstructured human

environments. In the next chapter, we address this limitation and present ScrewNet, a

method that estimates articulation properties for objects directly from raw sensory input.
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Chapter 6

Category-Independent Articulation Model Estimation

From Depth Images Using Screw Theory

Human environments are populated with objects that contain functional parts, such

as refrigerators, drawers, and staplers. These objects are known as articulated objects and

consist of multiple rigid bodies connected via mechanical joints such as hinge joints or slider

joints. Service robots will need to interact with these objects frequently. For manipulating

such objects safely, a robot must reason about the articulation properties of the object.

Safe manipulation policies for these interactions can be obtained directly either by using

expert-defined control policies [9, 53] or by learning them through interactions with the

objects [41, 67]. However, this approach may fail to provide good manipulation policies

for all articulated objects that the robot might interact with, due to the vast diversity of

articulated objects in human environments and the limited availability of interaction time.

An alternative is to estimate the articulation models through observations, and then use a

planning [55] or model-based RL method [67] to manipulate them effectively.

Existing methods for estimating articulation models of objects from visual data either

use fiducial markers to track the relative movement between the object parts [76, 100, 131]

or require textured objects so that feature tracking techniques can be used to observe this

motion [56, 86, 111]. These requirements severely restrict the class of objects on which
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these methods can be used. Alternatively deep networks can extract relevant features from

raw images automatically for model estimation [1, 72]. However, these methods assume

prior knowledge of the articulation model category (revolute or prismatic) to estimate the

category-specific model parameters, which may not be readily available for novel objects en-

countered by robots in human environments. Addressing this limitation, in this chapter, we

present a novel approach, ScrewNet, which uses screw theory to perform articulation model

estimation directly from depth images without requiring prior knowledge of the articulation

model category. ScrewNet unifies the representation of different articulation categories by

leveraging the fact that the common articulation model categories (namely revolute, pris-

matic, and rigid) can be seen as specific instantiations of a general constrained relative

motion between two objects about a fixed screw axis. This unified representation enables

ScrewNet to estimate the object articulation models independent of the model category.

ScrewNet garners numerous benefits over existing approaches. First, it can estimate

articulation models directly from raw depth images without requiring a priori knowledge of

the articulation model category. Second, due to the screw theory priors, a single network suf-

fices for estimating models for all common articulation model categories unlike prior methods

[1, 72]. Third, ScrewNet can also estimate an additional articulation model category, the

helical model (motion of a screw), without making any changes in the network architecture

or the training procedure.

To evaluate ScrewNet, we conduct a series of experiments on two benchmarking

datasets: the simulated articulated objects dataset provided by Abbatematteo et al. [1], and

the PartNet-Mobility dataset [20, 93, 149], and three real-world objects: a microwave, a

drawer, and a toaster oven. We first test the performance of ScrewNet in estimating the
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Figure 6.1: ScrewNet estimates the articulation model for objects directly from depth images
and can generalize to novel objects within and across articulation model categories
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articulation model parameters for unseen object instances from depth images that belong

to the same object classes as seen during the training. Next, we evaluate its performance

in estimating the parameters for unseen object instances belonging to novel object classes

from a single articulation model category. Finally, we test its performance in estimating the

articulation model parameters for unseen object instances of known object classes, but across

articulation model categories. We compare the performance of ScrewNet with a current

state-of-the-art method proposed by Abbatematteo et al. [1] and three ablated versions of

ScrewNet and show that it outperforms all baselines with a significant margin.

6.1 Problem Formulation

Given a sequence of n depth images I1:n of motion between two parts of an articulated

object, we wish to estimate the articulation model M and its parameters φ governing the

motion between the two parts without knowing the articulation model category a priori.

Additionally, we wish to estimate the configurations q1:n that uniquely identify different

relative spatial displacements between the two parts in the given sequence of images I1:n

under model M with parameters φ. We consider articulation models with at most one

degree-of-freedom (DoF), i.e. M ∈ {Mrigid,Mrevolute,Mprismatic,Mhelical}. Model parameters

φ are defined as the parameters of the screw axis of motion, i.e. S = (l,m), where both l

and m are three-dimensional real vectors. Each configuration qi corresponds to a tuple of

two scalars, qi = (θi, di), defining a rotation around and a displacement along the screw axis

S. We assume that the relative motion between the two object parts is governed only by a

single articulation model.
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6.2 ScrewNet

We propose ScrewNet, a novel approach that given a sequence of segmented depth

images I1:n of the relative motion between two rigid objects estimates the articulation model

M between the objects, its parameters φ, and the corresponding configurations q1:n. In

contrast to state-of-the-art approaches, ScrewNet does not require a priori knowledge of the

articulation model category for the objects to estimate their models. ScrewNet achieves

category independent articulation model estimation by representing different articulation

models through a unified representation based on the screw theory [121]. ScrewNet represents

the 1-DoF articulation relationships between rigid objects (rigid, revolute, prismatic, and

helical) as a sequence of screw displacements along a common screw axis. A rigid model is

now defined as a sequence of identity transformations, i.e., θ1:n = 0 ∧ d1:n = 0, a revolute

model as a sequence of pure rotations around a common axis, i.e., θ1:n 6= 0 ∧ d1:n = 0,

a prismatic model as a sequence of pure displacements along the same axis, i.e., θ1:n =

0 ∧ d1:n 6= 0, and, a helical model as a sequence of correlated rotations and displacements

along a shared axis, i.e., θ1:n 6= 0 ∧ d1:n 6= 0).

Under this unified representation, all 1-DoF articulation models can be represented

using the same number of parameters, i.e., 6 parameters for the common screw axis S and

2n = |{(θi, di)∀i ∈ {1...n}}| parameters for configurations, which enables ScrewNet to per-

form category independent articulation model estimation. ScrewNet not only estimates the

articulation model parameters without requiring the model category M, but is also capable

of estimating the category itself. This ability can potentially reduce the number of control

parameters required for manipulating the object [56]. A unified representation also allows

ScrewNet to use a single network to estimate the articulation motion models across cate-
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Figure 6.2: Taking a sequence of depth images as input, ScrewNet first extracts features
from the depth images using ResNet, passes them through an LSTM layer to encode their
sequential information, and then uses MLP to predict a sequence of screw displacements
having a shared screw axis

gories, unlike prior approaches that required separate networks, one for each articulation

model category [1, 72]. Having a single network grants ScrewNet two major benefits: first, it

needs to train fewer total parameters, and second, it allows for a greater sharing of training

data across articulation categories, resulting in a significant increase in the number of train-

ing examples that the network can use. Additionally, in theory, ScrewNet can also estimate

an additional articulation model category, the helical model, which was not addressed in

earlier work [1, 86, 131].

72



6.2.1 Architecture

ScrewNet sequentially connects a ResNet-18 CNN [45], an LSTM with one hidden

layer, and a 3-Layer MLP. ResNet-18 extracts features from the depth images that are fed

into the LSTM which encodes the sequential information from the extracted features into a

latent representation. Using this representation, the MLP then predicts a sequence of screw

displacements having a common screw axis. The network is trained end-to-end, with ReLU

activations for the fully-connected layers. Fig. C.1 shows the network architecture. The

model category M is deduced from the predicted screw displacements using a decision-tree

based on the displacements properties of each model class.

6.2.2 Loss function

Screw displacements are composed of two major components: the screw axis S, and

the corresponding configurations qi about it. Hence, we pose ScrewNet training as a multi-

objective optimization problem with loss

L = λ1LSori + λ2LSdist + λ3LScons + λ4Lq, (6.1)

where λi weights the respective component. LSori penalizes the screw axis orientation mis-

match as the angular difference between the target and the predicted orientations. LSdist

penalizes the spatial distance between the target and predicted screw axes as defined in

Eqn. 3.6. LScons enforces the constraints 〈l,m〉 = 0 and ‖l‖ = 1. Lq := α1Lθ + α2Ld penal-

izes errors in the configurations, where Lθ and Ld represent the rotational and translational

error respectively:
Lθ = I3,3 −R(θtar; ltar) R(θpred; lpred)T ,

Ld = ‖dtar · ltar − dpred · lpred‖
(6.2)
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with R(θ; l) denoting the rotation matrix corresponding to a rotation of angle θ about the

axis l. We choose this particular form of the loss function for Lq, rather than a standard

loss function such as an L2 loss, as it ensures that the network predictions are grounded in

their physical meaning. By imposing a loss based on the orthonormal property of the 3D

rotations, the proposed loss function ensures that the learned angle-axis pair (lpred, θpred)

corresponds to a rotation R(θtar; ltar) ∈ SO(3). Similarly, the loss function Ld calculates

the difference between the two displacements along two different axes ltar and lpred, rather

than calculating the difference between the two configurations, dtar and dpred, which assumes

that they represent displacements along the same axis. Hence, this choice of loss function

ensures that the network predictions conform to the definition of a screw displacement. We

empirically choose weights to be λ1 = 1, λ2 = 2, λ3 = 1, λ4 = 1, α1 = 1, and α2 = 1.

6.2.3 Training data generation

The training data consists of sequences of depth images of objects moving relative to

each other and the corresponding screw displacements. The objects and depth images are

rendered in Mujoco [139]. We apply random frame skipping and pixel dropping to simulate

noise encountered in real world sensor data. We use the cabinet, drawer, microwave, the

toaster-oven object classes from the simulated articulated object dataset[1]. The cabinet,

microwave, and toaster object classes contain a revolute joint each, while the drawer class

contains a prismatic joint. We consider both left-opening cabinets and right-opening cab-

inets. From the PartNet-Mobility dataset [20, 93, 149], we consider the dishwasher, oven,

and microwave object classes for the revolute articulation model category, and the storage

furniture object class consisting of either a single column of drawers or multiple columns of
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drawers, for the prismatic articulation model category.

To generate the labels for screw displacements, we consider one of the objects, oi, as

the base object, and calculate the screw displacements between temporally displaced poses

of the second object oj with respect to it, as illustrated in Fig. 6.3. Given a sequence of n

images I1:n, we calculate a sequence of n− 1 screw displacements 1σoj = {1σ2, ...1σn}, where

each 1σk corresponds to the relative spatial displacement between the pose of the object

oj in the first image I1 and the images Ik, k∈{2...n}. Note 1σoj is defined in the frame Fo1j

attached to the pose of the object oj in the first image I1. We can transform 1σoj to a frame

attached to the base object Foi by defining the 3D line motion matrix D̃ (Eqn. 3.7) between

the frames Fo1j and Foi [8], and transforming the common screw axis 1S to the target frame

Foi . The configurations 1qk remain the same during frame transformations.

6.3 Experiments

We evaluated ScrewNet’s performance in estimating the articulation models for ob-

jects by conducting three sets of experiments on two benchmarking datasets: the simulated

articulated objects dataset provided by Abbatematteo et al. [1] and the recently proposed

PartNet-Mobility dataset [20, 93, 149]. The first set of experiments evaluated ScrewNet’s

performance in estimating the articulation models for unseen object instances that belong

to the object classes used for training the network. Next, we tested ScrewNet’s performance

in estimating the model parameters for novel articulated objects that belong to the same

articulation model category as seen during training. In the third set of experiments, we

trained a single ScrewNet on object instances belonging to different object classes and artic-

ulation model categories and evaluated its performance in cross-category articulation model
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Figure 6.3: The training labels are generated by calculating the screw displacements between
the temporally displaced poses of the object oj, and expressing them in a frame of reference
attached to the base object oi

estimation. We compared ScrewNet with a state-of-the-art articulation model estimation

method proposed by Abbatematteo et al. [1]. Lastly, to evaluate how effectively ScrewNet

transfers from simulation to real-world setting, we trained ScrewNet solely using simulated

images and tested it to estimate articulation models for three real-world objects.

In all the experiments, we assumed that the input depth images are semantically seg-

mented and contain non-zero pixels corresponding only to the two objects between which we

wish to estimate the articulation model. Given this input, ScrewNet estimates the articula-

tion model parameters for the pair of objects in an object-centric coordinate frame defined

at the center of the bounding box of the object. Note while the approach proposed by Ab-

batematteo et al. [1] can be used to estimate the articulation model parameters directly in

the camera frame, for a fair comparison to our approach, we modified the baseline to predict

the model parameters in the object-centric reference frame as well.
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6.3.1 Same object class

In the first set of experiments, we investigated whether our proposed approach can

generalize to unseen object instances belonging to the object classes seen during the training.

For this set of experiments, we trained a separate ScrewNet and a baseline network [1] for

each of the object classes and tested how ScrewNet fares in comparison to the baseline under

similar experimental conditions. We generated 10,000 training examples for each object

class in both datasets and performed evaluations on 1,000 withheld object instances. From

Fig. 6.4, it is evident that ScrewNet outperformed the baseline in estimating the joint axis

position and the observed joint configurations by a significant margin for the first dataset.

However, for the joint axis orientation estimation, the baseline method reported lower errors

than the ScrewNet. Similar trends in the performance of the two methods were observed on

the PartNet-Mobility dataset (see Fig. 6.4). ScrewNet significantly outperformed the baseline

method in estimating the joint axis displacement and observed joint configurations, while

the baseline reported lower errors than ScrewNet in estimating the joint axis orientations.

However, for both the datasets, the errors reported by ScrewNet in screw axis orientation

estimation were reasonably low (< 5°), and the model parameters predicted by ScrewNet

may be used directly for manipulating the object. These experiments demonstrate that

under similar experimental conditions, ScrewNet can estimate the joint axis positions and

joint configurations for objects better than the baseline method, while reporting reasonably

low but higher errors in joint axis orientations.
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6.3.2 Same articulation model category

Next, we investigated if our proposed approach can generalize to unseen object classes

belonging to the same articulation model category. We conducted this set of experiments

only on the PartNet-Mobility dataset as the simulated articulated objects dataset does not

contain enough variety of object classes belonging to the same articulation model category

(only 3 for revolute and 1 for prismatic). For the revolute category, we trained ScrewNet and

the baseline on the object instances generated from the oven and the microwave object classes

and tested it on the objects from the dishwasher class. For the prismatic category, we trained

them on the objects from the storage furniture class containing multiples columns of drawers

and tested it on the storage furniture objects containing a single column of drawers. We

trained a single instance of ScrewNet and the baseline for each articulation model category

and used them to predict the articulation model parameters for the test object classes. We

used the same training datasets as used in the previous set of experiments. Results are

reported in Fig. 6.5. It is evident from Fig. 6.6 that ScrewNet was able to generalize to novel

object classes belonging to the same articulation model category, while the baseline failed

to do so. Both methods reported low errors in the joint axis orientation and the observed

configurations. However, for the joint axis position, the baseline method reported mean

errors of an order of magnitude higher than the ScrewNet for both the articulation model

categories.

6.3.3 Across articulation model category

Next, we studied whether ScrewNet can estimate articulation model parameters for

unseen objects across the articulation model category. For these experiments, we trained
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a single ScrewNet on a mixed dataset consisting of object instances belonging to all object

model classes. To test whether sharing training data across articulation categories can help

in reducing the number of examples required for training, we used only half of the dataset

available for each object class (5000 examples each) while preparing the mixed dataset.

We compared its performance with a baseline network that is trained specifically on the

particular object class. We also conducted ablation studies to test the effectiveness of the

various components of the proposed method.

Fig. 6.6 summarizes the results for the first dataset. Even though we used a single

network to estimate the articulation model for objects belonging to different articulation

model categories, ScrewNet performed at par or better than the baseline method for all the

object model categories. ScrewNet outperformed the baseline while estimating the observed

joint configurations for all object classes, even though the baseline was trained separately for

each object class. For joint axis position estimation, ScrewNet reported significantly lower

errors than the baseline for the cabinet and the drawer classes, and comparable errors for the

microwave and the toaster classes. In estimating the joint axis orientations, both methods

reported comparable errors for the cabinet, drawer, and the toaster classes. However, for

the cabinet object class, ScrewNet reported a higher error than the baseline method, which

may stem from the fact that the cabinet object class includes both left-opening and right-

opening configurations that have a difference 180° in their axis orientations. On the PartNet-

Mobility dataset (see Fig. 6.6), the performances of the methods was similar, with ScrewNet

outperforming the baseline method with a significant margin in estimating the joint axis

positions and the observed joint configurations while reporting higher errors than the baseline

in estimating the joint axis orientations. The results show ScrewNet leverages the unified
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Figure 6.7: [Real-world images] Images with overlayed ground-truth joint axis (blue) and
predicted axis (red) for different poses of the microwave

representation and performs cross-category articulation model estimation with better on

average performance than the current state-of-the-art method while using only half the

training examples.

In comparison to its ablated versions, ScrewNet outperformed the L2-error and the

two-images versions by a significant margin for both datasets and performed comparably

to the NoLSTM version. For the first dataset, the NoLSTM version reported lower errors

than ScrewNet in estimating the joint axis orientations, their positions, and the observed

joint configurations for the microwave, cabinet, and toaster classes. However, the NoLSTM

version failed to generalize across articulation model categories and reported higher errors

than the ScrewNet for the drawer class, and sometimes even predicted NaNs. On the second

dataset, ScrewNet reported much lower errors than the NoLSTM ablated version for all

object model categories. These results demonstrate that for reliably estimating articulation

model parameters across categories, both the sequential information available in the input

and a loss function that grounds predictions in their physical meaning are crucial.
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6.3.4 Real world images

Finally, we evaluated how effectively ScrewNet transfers from simulation to a real-

world setting. ScrewNet was trained solely on the combined simulated articulated object

dataset. Afterwards, we used the model to infer the joint axis of a microwave, a drawer,

and a toaster oven. Figure 6.7 qualitatively demonstrates ScrewNet’s performance for three

different poses of the microwave. Despite only ever having seen simulated data, ScrewNet

achieved a mean error of ∼ 20° in axis orientation and ∼ 1.5cm in axis position on real-

world sensor input. These results demonstrate that ScrewNet achieves reasonable estimates

of the articulation model parameters for real-world objects when it is trained solely using

simulated data. In order to obtain better performances a retraining on real world data would

be required.

6.4 Conclusion

Articulated objects are common in human environments and service robots will be

interacting with them frequently while assisting humans. For manipulating such objects, a

robot will need to learn the articulation properties of such objects through raw sensory data

such as RGB-D images. Current methods for estimating the articulation model of objects

from visual observations either require textured objects or need to know the articulation

model category a priori for estimating the articulation model parameters from the depth

images. We present ScrewNet that uses screw theory to unify the representation of different

articulation models and performs category-independent articulation model estimation from

depth images. We evaluate the performance of ScrewNet on two benchmarking datasets

and compare it with a state-of-the-art method. Results show that ScrewNet can estimate
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articulation models and their parameters for objects across object classes and articulation

model categories successfully with better on average performance than the baselines while

using half the training data and without requiring to know the model category.

While ScrewNet successfully performs cross-category articulation model estimation, it

only predicts point estimates for an object’s articulation model parameters. Point estimates

alone are insufficient to guarantee safe interactions with an articulated object as the robot

lacks enough information to discern the accuracy of the estimated parameters. In the next

chapter, we introduce DUST-net, a method that learns distributions over articulation models

representing the network’s confidence over the estimated model parameters and hence is

indicative of the accuracy of the estimated parameters. Analogous to ScrewNet, DUST-net

takes raw depth images as input and does not need to know the articulation model categories

for objects a priori to learn such distributions.
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Chapter 7

Distributional Depth-Based Estimation of Object

Articulation Models

Service robots will need to interact with articulated objects such as drawers, refrig-

erators, and dishwashers, often while assisting humans in performing day-to-day tasks. To

interact safely with such objects, a robot must reason about their articulation properties

while manipulating them. An ideal method for learning such properties might estimate

these parameters directly from raw observations, such as RGB-D images while requiring lim-

ited or no a priori information about the task. The ability to additionally provide confidence

over the estimated properties would allow such a method to be leveraged for developing safe

manipulation policies for interacting with articulated objects [55]. Knowing the estimator’s

confidence over the estimated properties will also enable the robot to use methods that can

increase its chances of task success, such as active learning based methods for information

gathering [23] and behavior policy learners that provide safety guarantees [137].

The majority of existing methods to learn articulation models for objects from visual

data either need fiducial markers to track motion between object parts [63, 64, 100, 131]

or require textured objects [56, 85–87, 111]. Recent deep-learning based methods address

this by predicting articulation properties for objects from raw observations, such as depth

images [1, 58, 72, 75] or PointCloud data [147, 153]. However, the majority of these meth-
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ods [1, 72, 147, 153] require knowledge of the articulation model category for the object

(e.g., whether it has a revolute or prismatic joint) which may not be available in many real-

istic settings. Alleviating this requirement, Jain et al. [58] introduced ScrewNet, which uses

a unified representation based on screw transformations to represent different articulation

types and performs category-independent articulation model estimation directly from raw

depth images. However, ScrewNet [58] and related methods [1, 72, 75, 147, 153] only pre-

dict point estimates for an object’s articulation model parameters. Nonetheless, reasoning

about the uncertainty in the estimated parameters can provide significant advantages for

ensuring success in robot manipulation tasks, and allows for further advancements such as

robust planning [55], active learning using human queries [23], and the learning of behavior

policies that provide safety assurances [137]. Motivated by these advantages, we propose a

method for learning articulation models, which estimates the uncertainty over model param-

eters using a novel distribution over the set of screw transformations based on the matrix

von Mises-Fisher distribution over Stiefel manifolds [22]. We introduce DUST-net, Deep

Uncertainty estimation on Screw Transforms-network, a novel deep learning-based method

that, in addition to providing point estimates of the object’s articulation model parameters,

leverages raw depth images to provide uncertainty estimates that can be used to guide the

robot’s behavior without requiring to knowledge of the object’s articulation model category

a priori.

DUST-net garners numerous benefits over existing methods. First, DUST-net es-

timates articulation properties for objects with uncertainty estimates, unlike most current

methods [1, 58, 72, 75, 147, 153]. These uncertainty estimates, apart from helping robots

to manipulate objects safely [55], could allow a robot to take information-gathering actions
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when it is not confident and enhance its chances of success in completing the task. Second,

similar to ScrewNet [58], DUST-net can estimate model parameters without the need to

to know the articulation model category a priori, by leveraging the unified representation

for different articulation model types. Third, this unified representation helps DUST-net

to be more computationally and data-efficient than other state-of-the-art methods [1, 72],

as it uses a single network to estimate model parameters for all common articulation mod-

els, unlike other methods that require a separate network for each articulation model cate-

gory [1, 72, 147, 153]. Empirically, DUST-net outperforms other methods even when trained

using only half the training data in comparison. Fourth, the distributional learning setting

yields more robustness to outliers and noise. Fifth, DUST-net is able to reliably estimate

distributions over articulation model parameters for objects in the robot’s camera frame. By

contrast, ScrewNet [58], the most closely related approach to ours, can only predict point

estimates for articulation model parameters in the object’s local frame.

We evaluate DUST-net through experiments on two benchmarking datasets: a simu-

lated articulated objects dataset [1] and the PartNet-Mobility dataset [20, 93, 149], as well

as three real-world objects: a microwave, a drawer, and a toaster oven. We compare DUST-

net with two state-of-the-art methods, namely ScrewNet [58] and an MDN-based method

proposed by Abbatematteo et al. [1], as well as two baseline methods. The experiments

demonstrate that the samples drawn from the distributions learned by DUST-net result in

significantly better estimates for articulation model parameters in comparison to the point

estimates predicted by other methods. Additionally, the experiments show that DUST-net

can successfully and accurately capture the uncertainty over articulation model parameters

resulting from noisy inputs.
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Figure 7.1: DUST-net uses a sequence of images I1:n to compute the parameters, Φ, of
the conditional distribution over the joint parameters S and configurations {θ, d}1:n−1. This
distribution allows for inference and reasoning, such as uncertainty and confidence, over both
the parameters and the configurations. Using a von Mises-Fisher distribution on a Stiefel
manifold allows for an efficient reparameterization that inherently obeys multiple constraints
that define rigid body transformations.

7.1 Problem Formulation

Given a sequence of n depth images I1:n of motion between two parts of an articulated

object, we estimate the parameters of a probability distribution p(φ|I1:n) representing uncer-

tainty over the parameters φ of the articulation model M governing the motion between the

two parts. Following Jain et al. [58], we define the model parameters φ as the parameters of

the screw axis of motion, S = (l,m), where both l and m are elements of R3. This unified

parameterization can be used in articulation models with at most one degree-of-freedom
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(DoF), namely rigid, revolute, prismatic, and prismatic [58]. Additionally, we estimate the

parameters of a distribution p(q1:n−1|I1:n) representing uncertainty over the configurations

q1:n−1 identifying the rigid body transformations between the two parts in the given sequence

of images I1:n under model M with parameters φ. Configurations qi, i ∈ {1...n − 1} corre-

spond to a set of tuples, qi = (θi, di), defining a rotation around and a displacement along the

screw axis S. We assume that the relative motion between the two object parts is determined

by a single articulation model.

7.2 DUST-net

Given a sequence of depth images I1:n of motion between two parts of an articulated

object, DUST-net estimates parameters of the joint probability distribution p(φ, q1:n−1|I1:n)

representing uncertainty over the articulation model parameters φ governing the motion

between the two parts and the observed configurations q1:n−1. When deciding how to learn

this distribution, two goals arise. While some parameters, such as the translation of an object

part along a screw axis, are defined on Euclidean space, the set of valid screw axes exhibits

constraints that prevent standard distributions defined on R6 from being applied without

complicating the learning process. For example, a standard representation for distributions

over screw axes is as the product of a Bingham distribution over the line’s orientation and a

multivariate normal distribution over its position in space [121]. However, this representation

produces non-unique estimation targets. A rotation of θ about the screw axis with orientation

l results in the same transformation as a rotation of −θ about the screw axis with orientation

−l. Similarly, a displacement d along l results in the same transformation as a displacement

−d along −l. This leads to ambiguities in the targets in the estimation problem and can
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hinder the performance of the trained estimator. By selecting a representation that accounts

for these symmetries, these non-unique estimation targets are removed. Second, once a

suitable parameterization is chosen, we seek a parametric form for the joint distribution

which can be learned by a deep network.

First, we consider the problem of parameterizing the set of screw axes. As noted

earlier, we define the model parameter φ as the parameters of the screw axis of motion

S = (l,m). However, this parameterization requires that l has unit norm, and that l and

m are orthogonal. To eliminate these constraints, we rewrite the moment vector of a screw

axis as m = ‖m‖m̂, where ‖m‖ and m̂ represent its magnitude and a unit vector along it

respectively, and the Plücker coordinates for the screw axis as S = (l, m̂, ‖m‖). The Plücker

coordinates can then be seen as an unconstrained point in the space S := V2,3 × R+, where

(l, m̂) ∈ V2,3 and ‖m‖ ∈ R+. Consequently, a distribution over screw transformations can

be defined as the product of any probability distribution defined on V2,3 and a distribution

over R+. Importantly, because of the one-to-one mapping from elements of V2,3 × R+ to

screw axes, the non-unique estimation targets described above are eliminated. Based on this

parametrization of screw axes, we define the set of valid configuration parameters as follows.

We restrict the range of values for the rotation about the screw axis to be θ ∈ [0, 2π) and

restrict the displacement along the axis to be d ∈ R+. Note that these constraints do not

reduce the representational power of the screw transform (l,m, θ, d) to denote a general rigid

body transform, but merely ensure a unique representation.

Having described the parameterization of the set of screw axes and configurations,

we now consider the task of defining a joint probability distribution over their values. We

propose to represent the distribution over predicted screw axis parameters, p(S | I1:n) whit
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S ∈ S, as a product of a matrix von Mises-Fisher distribution F(·|3,F) defined on the

Stiefel manifold V2,3 and a truncated normal distribution N+(·|µ, σ) with truncation interval

[0,+∞) over R+. Formally,

p(S | I1:n) = p
(
l, m̂, ‖m‖

∣∣ I1:n,F, µm, σ
2
m

)
= F ( l, m̂ | 3,F) N+

(
‖m‖ | µm, σ

2
m

)
, (7.1)

where F is a 3 × 2 matrix representing the parameters of the matrix von Mises-Fisher

distribution over V2,3, and µm and σm denote the mean and standard deviation of the

truncated normal distribution.

Given the sequence of n images, we also wish to estimate the posterior over configura-

tions q1:n−1 = {θ1:n−1, d1:n−1} corresponding to the rotations about and displacements along

the screw axis S. We define the joint posterior representing the uncertainty over the screw

axis S and the configurations {θ1:n−1, d1:n−1} about it as a product of the aforementioned

distribution and a set of distributions defined over the configuration parameters,

p(S, θ1:n−1, d1:n−1 | I1:n,Φ) = p(S; F, µm, σ
2
m) Ψ(θ1:n−1;ψ) Υ(d1:n−1; υ) (7.2)

where Φ = {F, µm, σ
2
m, ψ, υ} is the set of parameters for the distribution and Ψ and Υ

represent the set of distributions having parameters ψ and υ over the configurations θ1:n−1

and d1:n−1, respectively. In this work, we consider Ψ and Υ to be products of truncated

normal distributions such that Ψ =
∏n−1

i=1 N+(θi|Mi
θ, σ

2
θ) and Υ =

∏n−1
i=1 N+(di|Mi

d, σ
2
d) with

Mθ = {µ1
θ, ..., µ

n−1
θ }, Md = {µ1

d, ..., µ
n−1
d }, σθ, and σd denoting the set of means and the

standard deviations of the set of truncated normal distributions over the configurations

θ1:n−1 and d1:n−1, respectively.

The proposed distribution enables DUST-net to enjoy several benefits over the current

state-of-the-art methods [1, 58, 72, 75, 147, 153] in estimating articulation model parameters
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for objects, as noted earlier. First, DUST-net predicts articulation model parameters for

objects along with uncertainty estimates over them instead of just point estimates, unlike

other methods[1, 58, 72, 75, 147, 153]. Second, due to a unified parameterization for different

articulation models, DUST-net can estimate model parameters without needing to know

articulation model category a priori unlike other state-of-the-art methods [1, 72]. Third,

it is more computationally and data-efficient in comparison to existing methods [1, 58, 72,

75, 147, 153]. Fourth, by representing Plücker coordinates of the screw axis as a point in

the space S, DUST-net handles the two constraints, ‖l‖ = 1 and 〈l,m〉 = 0, imposed on

the Plücker coordinates implicitly. This ensures that the predicted model parameters are

always valid. Lastly, due to estimating the model parameters in a distributional learning

setting, DUST-net is more robust to noise and outliers in comparison to ScrewNet [58], the

most closely related approach to ours. Moreover, due to the distributional representation,

DUST-net does not require its input to correspond to a time series and does not need an

LSTM layer in its network architecture. This helps DUST-net to be more computationally

and data-efficient in comparison to ScrewNet. Both these factors help DUST-net to be able

to estimate the articulation model parameters for objects both in the camera frame and in

the local frame of objects, unlike ScrewNet which can only do so in the object’s local frame.

7.2.1 Distribution Parameter Matrix F

The parameter matrix for the matrix von Mises-Fisher distribution over V3,2 is a 3×2

matrix, F. This presents two possible parameterizations of the matrix: first, to estimate each

of the 6 elements of the 3 × 2 matrix F and second, to estimate the matrices Γ,Λ, and Ω

defining the SVD of F, given by F = ΓΛΩT . The second parameterization decouples the
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two objectives of distribution mode alignment with the ground truth labels and uncertainty

representation; the mode of the distribution is given by M = ΓΩT , and the concentration

matrix for the distribution is given by K = ΩΛΩT . This decoupling allows the network to

independently optimize both objectives, whereas in the first parameterization, changes in

the elements of F causes changes in both components.

By definition, Λ is a 2 × 2 diagonal matrix with two independent parameters, and

Ω ∈ O(2) is a rotation matrix in two dimensions with one independent parameter, the

rotation angle ω. The matrix Γ ∈ Ṽ3,2 can be constructed from a rotation matrix R ∈ O(3)

by keeping only the first two columns of R. Hence, the matrix Γ can be defined by three

independent Euler angles, (α, β, γ) denoting rotation according to the ZY X convention in

the rotating frame. Euler angles can suffer from the problem of gimble lock [121], which

we resolve by restricting the Euler angles to be in the ranges α ∈ [0, 2π), β ∈ [0, π), and

γ ∈ [0, 2π).

7.2.2 Normalization Factor of Matrix von Mises-Fisher Distribution

One of the main challenges of using the matrix von Mises-Fisher distribution is the

calculation of its normalization factor 0F1(
m
2
, 1
4
Λ2), which is a hypergeometric function of

matrix argument [22]. In this work, we approximate this hypergeometric function using a

truncated series in terms of zonal polynomials, which are multivariate symmetric homoge-

neous polynomials and form a basis of the space of symmetric polynomials [22]. Through

our preliminary experiments, we found that this truncated series is a good approximation of

0F1 as it converges to a finite value, if the singular values of the F , i.e. λ1 and λ2 are less

than λmax = 50.
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7.2.3 Architecture

DUST-net sequentially connects a ResNet-18 CNN [45] and a 2-layer MLP. ResNet-

18 extracts task-relevant features from the input images, which are used by the MLP to

predict a set of parameters Φ for the distribution p(S, θ1:n−1, d1:n−1 | I1:n,Φ). The network is

trained end-to-end, with ReLU activations for the hidden fully-connected layers. The first

four output (out of 40) of the last linear layer of MLP, corresponding to the parameters

(α, β, γ) and ω representing the matrices Γ and Ω respectively, are fed through a ReLU-6

layer to ensure that the predictions map to their respective ranges. Remaining output is fed

through a Softplus layer to ensure that the predicted parameters are non-negative.

7.2.4 Training

The training data for the model consists of sequences of depth images of objects

parts moving relative to each other and the corresponding screw transforms y = (l, m̂, ‖m‖,

θ1:n−1, d1:n−1). The objects and depth images are rendered in Mujoco [139]. We train DUST-

net by maximizing the log-probability of the labels y under the distribution p(y | I1:n,Φ):

L(y,Φ) = − log p(y | Φ) (7.3)

We assume that the observed configurations in I1:n share the same variance. We use

the precision parameters rather than the standard deviations, σm, σθ and σd to represent

the distribution during training for better numerical stability. Following the discussion on

training MDNs by Makansi et al. [82], we separate the training in three stages. In the first

stage, we assume the dispersion of the matrix von Mises-Fisher distribution to be fixed with

Λ = diag(λ0, λ0), λ0 = 1 and learn parameters corresponding to Γ and Ω matrices. In the
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Figure 7.2: Mean error values on the MAAD (top) and Screw Loss (bottom) metrics for
the simulated articulated objects dataset [1] (lower values are better). Point estimates for
DUST-net (violet) correspond to the modes of the distributions predicted by DUST-net.

second stage, we fix the Λ matrix and learn the rest of the parameters in the set Φ. Finally,

we train to predict the complete set Φ.

7.3 Experiments

In this section, we evaluate DUST-net on its ability to learn articulation model pa-

rameters and uncertainty estimates. We conducted three sets of experiments evaluating

DUST-net’s performance under different criteria: (1) how accurate point estimates of the

articulation model parameters drawn from DUST-net’s estimated distribution are in com-

parison to the existing methods, (2) how effectively DUST-net captures the uncertainty over

parameters arising from noisy input, and (3) how effectively DUST-net transfers from sim-

ulation to a real-world setting. We evaluated DUST-net’s performance on two simulated
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benchmarking datasets: the objects dataset provided by Abbatematteo et al. [1], and the

PartNet-Mobility dataset [20, 93, 149], as well as a set of three real-world objects. From the

simulated articulated object dataset [1], we considered the cabinet, microwave, and toaster

oven for revolute articulations and the drawer object class for prismatic articulations. From

the PartNet-Mobility dataset [20, 93, 149], we considered five object classes: the dishwasher,

oven, and microwave object classes for the revolute articulation model category, and the

storage furniture object class consisting of either a single column of drawers or multiple

columns of drawers, for the prismatic articulation model category. Among the three sets

of experiments, we conducted the first two sets of experiments on the simulated datasets,

while the last set of experiments were conducted on the real-world object dataset. In all

the experiments, we assumed that the input depth images are semantically segmented and

contain non-zero pixels corresponding only to the two objects between which we wish to

estimate the articulation model.

We compared DUST-net’s performance in estimating point estimates for articulation

model parameters with two state-of-the-art methods, ScrewNet [58] and an MDN-based

approach proposed by Abbatematteo et al. [1]. ScrewNet estimates the object’s articulation

model parameters in a local frame located at the center of the object, whereas DUST-net

does so directly in the camera frame. We compare our method with ScrewNet predicting

parameters both in the object local frame and the camera frame. Additionally, we propose

two baseline methods that estimate distributions over articulation model parameters and

compare to them DUST-net. The first baseline method (vm-SoftOrtho) can be viewed as

an extension of ScrewNet to a distributional setting. It represents the uncertainty over the

screw axis orientation vector l and the direction of moment vector m̂ using two independent
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Figure 7.3: Mean error values on the MAAD (top) and Screw Loss (bottom) metrics for
the PartNet-Mobility dataset [20, 93, 149] (lower values are better). Point estimates for
DUST-net (violet) correspond to the modes of the distributions predicted by DUST-net.

von Mises-Fisher distributions and imposes a soft orthogonality constraint over the modes

of the two distributions. The distributions over the moment vector magnitude ‖m‖ and

configurations q1:n−1 are considered to be normal distributions. This method suffers from the

same drawback as ScrewNet, i.e., the use of a soft orthogonality constraint during training,

and therefore cannot predict a valid set of screw axis parameters directly, unlike DUST-net.

The second baseline method (Direct F ) uses the same probability distribution as DUST-

net to represent the uncertainty over the articulation model parameters, but estimates the

individual elements of the F matrix directly. As a result, it fails to capture the uncertainty

over model parameters accurately.
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7.3.1 Accuracy of Point Estimates

The first set of experiments evaluated DUST-net’s accuracy in predicting point esti-

mates for articulation model parameters. We use the mode of the estimated distribution as

the point estimate for model parameters. We used two metrics to evaluate accuracy: Mean

Absolute (Angular) Deviation (MAAD) and Screw Loss (Metric proposed in ScrewNet [58]).

MAAD metric indicates how close the individual screw parameters are to targets, whereas

the Screw Loss indicates how close the complete predicted screw transforms is to the target

transforms. The MAAD metric calculates the angular distance between the orientation of

the predicted and ground-truth axis orientation vectors l and the orientation vectors of the

screw axis moment vectors m̂. For the remaining parameters (‖m‖, θ1:n−1, d1:n−1), it calcu-

lates the mean absolute deviation between the predicted and ground-truth values. The screw

loss reports the angular distance between the predicted and ground-truth screw axis orienta-

tion vectors l as orientation error and the length of the shortest perpendicular between the

predicted and ground-truth screw axes as the distance between them. Configuration errors

θ1:n−1 are reported as the difference between the predicted rotation about the predicted screw

axis and the true rotation, whereas errors over d1:n−1 are calculated as the Euclidean distance

between the points displaced by the predicted and true displacements along respective axes.

Results for the synthetic articulated objects dataset and the PartNet-Mobility dataset

are shown in Figures 7.2 and 7.3, respectively. Results demonstrate that under both metrics,

the estimates obtained from DUST-net are typically more accurate than those obtained

from the state-of-the-art methods. The first baseline, vm-SoftOrtho, performs comparably

with DUST-net on both datasets when only MAAD estimates are considered. However,

Figures 7.2 and 7.3 show that it produces a very high distance (≈ 1m) between the predicted
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Figure 7.4: Variation of the mean of the singular values of predicted distribution concentra-
tion matrices over screw axes by DUST-net with artificially injected noise. Predicted singular
values decrease monotonically with input noise, showing that the network’s confidence over
the predicted parameters decreases with input noise.

and ground-truth screw axes. This error arises due to the soft-orthogonality constraint used

by vm-SoftOrtho, as DUST-net and the second baseline method, both of which handle

the constraint implicitly, do not report high errors on that metric. Meanwhile, the second

baseline, Direct F , performs comparably with DUST-net on both metrics for both datasets,

but fails to capture the uncertainty over parameters with the required accuracy.

7.3.2 Uncertainty Estimation

The second set of experiments evaluated how effectively DUST-net’s predicted dis-

tribution captures the epistemic uncertainty over the predicted articulation parameters. We

evaluate this by adding artificial noise to the training labels form the two simulated datasets

while training DUST-net. As more noise is added, we expect the confidence estimates pro-
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(a) (b)

Figure 7.5: (a) Mean error values on MAAD (top) and Screw Loss (Bottom) metrics for real-
world objects when the network was trained solely using simulated data [1] (b) Predicted
concentrations over articulation model parameters. DUST-net estimation performance on
simulated data [1] (hatched green) included for comparison. DUST-net reported lower con-
fidence in its predictions for real-world objects than simulated data (b), analogous to its
degraded estimation accuracy(a).

duces by DUST-net to decrease as well. We add noise to the labels by sampling perturbations

from a matrix von Mises-Fisher distribution with varying singular values λ1 and λ2 of the dis-

tribution parameter matrix F and the truncated normal distributions with varying precision

parameters βj, j ∈ {‖m‖, θ, d}. Figure 7.4 show the variation of the mean of the singular val-

ues of the predicted distribution concentration matrices over screw axes by DUST-net with

injected noise. In the noiseless case, the singular values of the matrix von Mises-Fisher dis-

tribution increases until they reach their maximum allowed value at λmax = 50. When label

noise is added, our results show that DUST-net’s confidence over its predicted parameters

decreases monotonically as more noise is added to the labels, supporting our hypothesis.
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7.3.3 Sim to Real Transfer

Lastly, we evaluated how effectively DUST-net transfers from simulation to a real-

world setting. DUST-net was trained solely on the simulated articulated object dataset [1].

Afterward, we used it to infer the articulation model parameters for three real-world ob-

jects. Results (Fig. 7.5(a)) report that DUST-net outperforms the current state-of-the-art

method, ScrewNet, in estimating the model parameters for real-world objects. However,

the estimated parameters using DUST-net are not yet accurate enough to be used directly

for manipulating these objects. This sub-par performance stems from the significant differ-

ences between the training (clean and information-rich simulation data) and test datasets,

which consists of noisy depth images acquired with a Kinect sensor and contain high salt-

and-pepper noise, spurious features, and incomplete objects. A noteworthy insight from the

results is that DUST-net also reports very low confidence over the predicted parameters for

real-world objects, compared to when it is tested on the simulated data (Fig. 7.5(b)). This

clearly delineates why it is beneficial to estimate a distribution over the articulation model

parameters instead of point estimates. Given only point estimates of articulation model

parameters, a robot has no way to determine if the estimates are reliable for manipulating

the object safely or not. In contrast, DUST-net’s reported confidence over the predictions

could allow the robot to develop safe motion policies for articulated objects [55, 137] or use

active learning based methods [23] to reduce uncertainty over the articulation parameters.

7.4 Conclusion

We introduced DUST-net, which utilizes a novel distribution over screw transforms

on a Stiefel manifold to perform category-independent articulation model estimation with
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uncertainty estimates. We evaluated our approach on two benchmarking datasets and three

real-world objects and compared its performance with two current state-of-the-art meth-

ods [1, 58]. Results show that DUST-net can estimate articulation models, their parameters,

and model uncertainty estimates for novel objects across articulation model categories suc-

cessfully with better accuracy than the state-of-the-art methods.

At present, DUST-net can only predict parameters for 1-DOF articulation models

directly. For multi-DoF objects, an additional image segmentation step is required to mask

out all non-relevant object parts. This procedure can be repeated iteratively for all object

part pairs to estimate relative models between object parts that can be combined later to

construct a complete kinematic model for the object [56]. An interesting extension of DUST-

net could estimate parameters for multi-DoF objects directly by learning a segmentation

network along with it. Another exciting direction of future work is to use DUST-net in an

active learning setting where, if the robot is not confident enough about the estimates of the

articulation model parameters, it can actively take information-gathering actions to reduce

uncertainty.
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Chapter 8

Future Work

In this chapter we discuss open questions and areas of future work related to the work

presented in this dissertation.

8.1 Robot Motion Planning Under Uncertainty and Hybrid Dy-
namics

In Chapter 4, we proposed to model robot manipulation tasks involving sudden tran-

sitions in dynamics using hybrid dynamics models. We then introduced the hierarchical

POMDP-HD planner that leverages the hybrid structure of state transition dynamics mod-

els to develop motion plans for such tasks under uncertainty. A limitation of modeling robot

manipulation tasks using hybrid models is that the number of local dynamics models in

the model, i.e., the discrete states, can increase combinatorially with the number of objects

involved in the task and possible contact configurations between them. POMDP-planning

with a large number of states is a difficult task as the time complexity for finding a solution

for the problem can increase exponentially with the number of states [62]. This problem may

further exacerbate for a hierarchical planner such as the POMDP-HD planner as it generates

a complete continuous state trajectory at its lower level for each high-level candidate plan.

A potential solution for resolving this issue may be to take a greedy approach for gener-

ating the candidate high-level plans. Instead of considering candidate plans starting from
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all possible current discrete states, the high-level planner may develop plans only for those

states, in which its belief over being in that state is more than an ε threshold. This greedy

behavior can significantly reduce the number of states that the planner needs to consider

while generating the high-level plans and help it to develop motion plans tractably even for

complex tasks.

8.2 Learning Object Kinematics from Observations

In this dissertation, we introduced two methods, ScrewNet (Chapter 6) and DUST-

net (Chapter 7), that can learn articulation properties for objects directly from raw ob-

servations. However, at present, they can only predict parameters for 1-DOF articulation

models directly. For multi-DoF objects, an additional image segmentation step is required

to mask out all non-relevant object parts. This procedure can be repeated iteratively for

all object part pairs to estimate relative models between object parts that can be combined

later to construct a complete kinematic model for the object using MICAH (Section 5.2.2).

An interesting extension of these methods would be to estimate parameters for multi-DoF

articulated objects directly by learning a segmentation network along with them.

Another limitation of DUST-net is that its predictions for the concentration param-

eters Λ indicating the singular-values of the parameter matrix F for the matrix von Mises-

Fisher distribution over the Stiefel manifold V3,2 are upper-bounded. This limitation arises

due to the numerical approximation for the normalization factor 0F1 of the distribution. Pal

et al. [102] have recently proposed an approximation for the hypergeometric function 0F1 for

a given value of the input argument matrix D and an error level ε. With this approximation,

the upper bounds on the concentration parameters Λ may be removed.
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DUST-net’s ability to predict distributions over articulation model parameters for

objects opens other exciting avenues for future research directions as well. One such direction

is to use DUST-net in an active learning setting where, if the robot is not confident enough

about the estimates of the articulation model parameters, it can actively take information-

gathering actions to reduce uncertainty. Another interesting direction would be to combine

DUST-net with approaches to learn behavior policies that provide safety assurances, such

as the one suggested by Taylor et al. [137], to develop an end-to-end system for interacting

with articulated objects safely.

8.3 Combined Framework

In this dissertation, we introduced methods for learning state transition functions

for objects directly from observations. We also introduced the POMDP-HD planner that

develops motion plans for long-horizon robot manipulation tasks under uncertainty. A fruit-

ful future research direction would be to combine all these methods in a single framework.

Given a sequence of depth images depicting the motion of different object parts, the combined

framework will directly generate an uncertainty robust motion plan for novel long-horizon

manipulation tasks involving the object. A schematic for the complete framework is shown

in Figure 8.1. Given the depth images, the combined framework may first use DUST-net

and the hybrid automaton construction algorithm (HAC) to learn a state transition function

for the object and later use the learned model with the POMDP-HD planner to develop

long-horizon motion plans under uncertainty for novel manipulation tasks involving the ob-

ject. This framework will enable service robots to perform long-horizon manipulation tasks

involving novel objects reliably and safely even while using noisy sensors.
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Figure 8.1: A schematic of the combined framework. Given a sequence of depth images
depicting the motion of different parts of an articulated object, will directly generate an un-
certainty robust motion plan for novel long-horizon manipulation tasks involving the object

8.4 POMDP-based Task and Motion Planning

Toussaint et al. [143] recently proposed a Logic-Geometric Programming (LGP) [141,

143] based framework to jointly perform task and motion planning for robot manipulation

tasks involving multiple objects. The framework uses hybrid models to model the dynamics

of the objects involved in a task and interactions between them. Ha et al. [42], Migimatsu and

Bohg [91] have further extended the framework to robot manipulation tasks with stochastic

dynamics. An interesting future research direction would be to extend the framework further

to a POMDP task setting, i.e., for robot manipulation tasks with stochastic dynamics and

observational uncertainty. As the POMDP-HD planner [55] directly operates over hybrid

dynamics models, combining it with the LGP framework may lead to a promising solution

for performing POMDP-based task and motion planning.
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8.5 Learning Object Dynamics Models from Observations

A basic rigid-body model of an object has four components: link geometry param-

eters, link inertia parameters, joint models with their parameters, and a link connectivity

graph [121]. While various methods have focused on learning these components from data

individually (link geometry [19, 92], link inertia parameters [38, 78], joint models [56–58],

and link connectivity graph [56, 156]), learning a complete rigid body dynamics model for

objects has largely been unexplored. Learning such models for objects will help robots to

reason directly about the applied external forces and torques on the objects, enabling them to

perform dynamic manipulation tasks involving those objects dexterously. An exciting future

research direction would be to explore methods that can enable robots to learn dynamics

models for complex objects, such as high-DoF articulated objects and objects exhibiting

configuration-dependent dynamics, directly from observations. A promising research direc-

tion lies in exploring the conjugation of these methods for learning physically-grounded object

dynamics models [38, 78] with the the methods presented in this dissertation for learning

kinematics models for objects from observations.
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Chapter 9

Conclusion

Service robots that can assist humans in performing day-to-day tasks will need to

be general-purpose robots that can perform a wide array of tasks without requiring much

supervision. However, current robots are typically highly specialized, can only perform

fixed, predefined tasks reliably, need to operate in controlled environments, and require

complete and accurate knowledge about their surroundings to function effectively. Through

this dissertation, we aim to bridge this gap by introducing methods that enable robots to

learn about novel tasks directly through observations and use this knowledge for performing

novel manipulation tasks with high reliability even under uncertainty.

Lacking complete information about its tasks and environments, a service robot can-

not use pre-programmed motion policies or online motion generation methods that do not

reason about the lack of information as they may be unreliable under partial information.

Reasoning about the lack of complete information becomes critical for manipulation tasks

that a service robot would have to perform. Their manipulation tasks will often require

interacting with multiple objects that make or break contacts during the task. Contacts

can cause sudden transitions in objects’ dynamics, which upon compounding with state

estimation errors, can cause the robot to fail in completing its tasks.

Addressing this, in this dissertation, we used the Partially Observable Markov De-
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cision Processes (POMDPs) [62] framework to develop motion plans for robots that reason

about the uncertainty due to partial information as well while generating motion plans.

However, POMDPs incur exponentially increasing computational costs with planning time

horizon [62, 80, 97, 103, 145], which restricts the current POMDP-based planning methods

to problems having short time horizons. Another challenge that arises while using planning-

based methods is that they require state transition dynamics functions for the world they

are operating in to develop plans. As a service robot will need to perform novel tasks while

assisting humans, it must be able to learn the state transition functions for its tasks in an

online fashion using the information available to it.

Addressing these challenges, this dissertation advanced the state-of-the-art of robot

motion planning under uncertainty and model learning from observations by answering the

question:

How can a robot learn state transition functions for complex manipulation
tasks directly from observations and use them to perform long-horizon plan-
ning under uncertainty?

In Chapter 4, we focused on developing motion plans for long-horizon robot manip-

ulation tasks that reason about the uncertainty due to partial information as well. We first

proposed to model the world state transition functions for robot manipulation tasks involving

sudden transitions, such as those due to contacts, using hybrid models. We then introduced

a hierarchical POMDP planner that leverages the representational power of hybrid models

to develop reliable motion plans for long-horizon tasks under uncertainty.

Next, we addressed the challenge of learning state transition functions for tasks in-

volving manipulating household objects directly from observations. One of the largest sets
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of household objects that a service robot would need to interact with frequently is house-

hold appliances. Household appliances, such as refrigerators, microwaves, and drawers, are

predominantly articulated objects and consist of multiple functional parts connected by me-

chanical joints such as hinges and sliding joints. Motivated by this, in this dissertation, we

introduced methods for learning kinematics models for such objects directly from observa-

tions and presented an algorithm to construct the state transition functions from the learned

kinematics models for manipulating these objects.

In Chapter 5, we presented the first method, MICAH, which consists of two algo-

rithms. First, ACT-CHAMP, an action-conditional model inference algorithm that estimates

kinematic models and possible changepoints between them for articulated objects given un-

segmented data. It is well-suited for articulated objects that exhibit configuration-dependent

articulation properties, such as a stapler that intrinsically changes its articulation state (e.g.,

rigid vs. rotational) based on the relative angle between its arms. Second, an algorithm for

constructing hybrid automata representing state transition functions for articulated objects

using the detected changepoints and estimated local models from Act-CHAMP. We demon-

strated the accuracy of MICAH in learning models by using it to learn such models for

three household objects and using the learned models to perform novel manipulation tasks

involving those objects.

We introduced the second method, ScrewNet, in Chapter 6. ScrewNet removed

MICAH’s requirement of needing series of observations of relative poses between the object

parts as input. It presented a way to learn articulation properties of objects directly from

raw depth images without requiring to know their articulation model category a priori. We

demonstrated ScrewNet’s effectiveness by evaluating its performance on two benchmarking
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simulation datasets and a real-world dataset and showing that it outperforms a state-of-the-

art method while requiring only half the training data.

Lastly, in Chapter 7 we presented the third method, DUST-net, that learns distribu-

tions over articulation model parameters directly from raw depth images. Results demon-

strated that the distributional representation helps DUST-net to achieve better accuracy

than other state-of-the-art methods while making it more computationally and data-efficient

than other methods. By reasoning about the uncertainty in the estimated parameters,

DUST-net opens several new avenues for ensuring success in robot manipulation tasks, such

as using uncertainty-robust planning methods and using active learning approaches to reduce

uncertainty over the articulation parameters. The learned distributions over the articulation

model parameters for an object using DUST-net can later be combined with the hybrid

automata construction algorithm of MICAH to construct a state transition function with

model uncertainty estimates for manipulating the object.

This dissertation introduced methods for learning state transition functions for robot

manipulation tasks directly from observations and using them to perform long-horizon mo-

tion planning to complete the tasks. Jointly these methods present a unified framework that

can enable robots to adapt to their work environments quickly and learn to perform novel

manipulation tasks reliably without much supervision. We believe that this dissertation

provides foundational results on robot motion planning uncertainty and online model learn-

ing that can bridge the gap between the current robots and the dexterous general-purpose

service robots.
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Appendix A

POMDP-HD Planer

A.1 Preliminaries

A.1.1 Trajectory Optimization using Direct Transcription

Direct Transcription is a trajectory optimization method in which a constrained non-

linear optimization problem is set up with the user-defined objective function over a set of

knot-points {xi, ui}) chosen to discretize the continuous space trajectory into a set of de-

cision variables. The system dynamics are imposed as the constraints on the optimization

problem. For discrete-time systems, these knot-points can be taken as the system state xt
and the control input ut at each time step t. However, planning for longer horizons will

then require specifying a high number of knot-points (xi, ui) which can result in very high

computational costs. This can be resolved by approximately parameterizing the space of

possible trajectories by a series of M segments and solving the optimization problem for a

knot points only at the start and end points of segments. The intermediate points on the

trajectory can be obtained via numerical integration. Let x′1:M and u′1:M−1 be sets of state

and action variables that parameterize the trajectory in terms of segments. The ith segment

can be assumed to start at time iδ and ends at time iδ + δ − 1, where δ =
T

M
for a time

horizon T .

A general objective function for trajectory optimization can be given as

J(x1:T , u1:T ) ≈ Ĵ(x′1:M , u
′
1:M) =

M∑
j=1

x′Ti Qx
′
i + u′Ti Ru

′
i (A.1)

where Q and R represent the cost matrices associated with the state and the input

respectively. The system dynamics incorporated as constraints can be defined as:

x′2 = φ(x′1, u
′
1), ... x′k = φ(x′k−1, u

′
k−1) (A.2)
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where the function φ(x′i, u
′
i) can be seen as performing numerical integration of the current

state variable x′i till the next state variable x′i+1. The function φ is given as

x′i+1 = φ(x′i, ui) = F (x′i, ui) +
iδ+δ−1∑
t=iδ

[F (xt+1, ui)− F (xt, ui)] (A.3)

where F (xt, ut) represents the system dynamics.

Trajectory optimization using direct transcription can be extended for belief space

planning by assuming Gaussian noise over continuous states [61]. If the belief over contin-

uous states is defined as bt = N(µt,Σt), trajectory optimization can be formulated as an

optimization problem over variables µt and st, where µt represents the mean of the belief

state and st = {sT1 , ..., sTd }T is a vector composed of d columns of Σt = [s1, ..., sd]. Analo-

gous to the deterministic case, problem is constrained to follow belief space dynamics. The

corresponding objective function can be given as

J(b1:T , u1:T ) ≈ Ĵ(b′1:M , u
′
1:M)

= sTMΛsM +
M∑
j=1

µ′Ti Qµ
′
i + u′Ti Ru

′
i

(A.4)

where Q, R and Λ represent the cost matrices associated with belief mean, control

input and the belief covariance at final discrete time step respectively. Belief dynamics can

be incorporated in the formulation as the constraints:

b′2 = Φ(b′1, u
′
1), ... b′k = Φ(b′k−1, u

′
k−1) (A.5)

where the function Φ(b′i, ui) is given as

b′i+1 = Φ(b′i, ui) = F(b′i, ui) +
iδ+δ−1∑
t=iδ

[F(bt+1, ui)− F(bt, ui)] (A.6)

where F(b′i, ui) represents extended system dynamics. Propagation of belief bt through system

dynamics F(b′i, ui) has been previously discussed by Platt et al. [61] in further details.
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A.2 Further Experimental Details

A.2.1 Domain-I

Matrices defining the cost function over error in states, control input, additional cost

for final state error and covariance were taken as Q = diag(0.5, 0.5), R = diag(10.0, 10.0),

QT = 1e4 and Λ = 1e7 respectively. Number of Gaussians used to model continuous belief

L = 1.

A.2.2 Domain-II

Feedback was obtained on the location of the airplane in the world frame by doing an

online color-based object cluster extraction, using multi-plane segmentation from the Point

Cloud Library (PCL) on the point cloud data of a Microsoft Kinect v2 sensor. Matrices

defining the cost function over error in states, control input, additional cost for final state

error and covariance were taken as Q = diag(0.5, 0.5), R = diag(0.1, 0.1), QT = 5000 and

Λ = 107 respectively. Number of Gaussians used to model continuous belief L = 1.
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Appendix B

ScrewNet

B.1 Experimental details

B.1.1 Dataset

Objects used in the experiments from each of the dataset are shown in the Figures B.1

and B.2. We sampled a new object geometry and a joint location for each training example

in the simulated articulated object dataset, as proposed by [1]. For the PartNet-Mobility

dataset, we considered 11 microwave (8 train, 3 test), 36 dishwasher (27 train, 9 test), 9 oven

(6 train, 3 test), 26 single column drawer (20 train, 6 test), and 14 multi-column drawer (10

train, 4 test) object models. For both datasets, we sampled object positions and orientations

uniformly in the view frustum of the camera up to a maximum depth dependent upon the

object size.

B.1.2 Experiment 1: Same object class

Numerical error values for the first set of experiments for the simulated articulated

objects dataset are presented in the Table B.1. It is evident from the Table B.1 that the

baseline succeeded in achieving nearly zero prediction error (0.08°) in joint axis orientation

estimation for all object classes. ScrewNet also performed well and reported low prediction

Figure B.1: Object classes used from the simulated articulated object dataset [1]. Object
classes: cabinet, drawer, microwave, and toaster (left to right)
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Figure B.2: Object classes used from the PartNet-Mobility dataset [20, 93, 149]. Object
classes: dishwasher, oven, microwave, drawer- 1 column, and drawer- multiple columns (left
to right)

errors (< 0.5°) for the drawer, microwave, and toaster object classes. For the cabinet object

class, while ScrewNet reported a higher mean error (∼ 5°), it is relatively small compared

to the difference in axis orientations, 180°, between the two possible configurations of the

cabinet (left-opening or right-opening). For the other two model parameters, namely the

joint axis position and the observed configurations, ScrewNet significantly outperformed the

baseline method.

Axis Orientation (deg) Axis displacement (cm) Configuration

Cabinet - Baseline 0.082± 0.000 8.472± 6.277 16.921± 8.212 deg

Cabinet - Ours 5.667± 13.888 1.236± 0.66 1.083± 0.707 deg

Drawer - Baseline 0.082± 0.000 4.067± 1.483 7.389± 2.439 cm

Drawer - Ours 0.252± 0.000 1.114± 0.035 1.517± 0.016 cm

Microwave - Baseline 0.083± 0.000 3.441± 1.218 21.670± 7.097 deg

Microwave - Ours 0.304± 0.000 2.322± 1.323 0.329± 0.005 deg

Toaster - Baseline 0.082± 0.000 2.669± 1.338 11.902± 4.242 deg

Toaster - Ours 0.114± 0.000 1.566± 0.018 0.314± 0.018 deg

Table B.1: Mean error values for joint axis orientation, joint axis position, and configurations
for 1000 test object instances for each object class from the simulated articulated objects
dataset [1]. Lowest error values for a particular test object set are reported in bold.

Numerical error values for the first set of experiments for the PartNet-Mobility dataset

are reported in the Table B.2. Similar trends followed in the performance of the two ap-

proaches. The baseline achieved very high accuracy in predicting the joint axis orientation,

whereas ScrewNet reported reasonably low but slightly higher errors (< 2.5°). For the joint
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Axis Orientation (deg) Axis displacement (cm) Configuration

Dishwasher - Baseline 0.082± 0.000 46.267± 20.247 9.735± 4.6 deg

Dishwasher - Ours 0.918± 0.000 6.136± 5.455 4.037± 1.613 deg

Oven - Baseline 0.082± 0.000 81.444± 27.083 13.087± 4.649 deg

Oven - Ours 0.583± 0.223 2.111± 1.910 0.720± 0.140 deg

Microwave - Baseline 0.082± 0.000 26.781± 10.273 11.856± 2.456

Microwave - Ours 0.879± 0.063 4.893± 4.252 2.549± 0.939 deg

Drawer- 1 column - Baseline 0.082± 0.000 79.228± 13.944 17.524± 3.700 cm

Drawer- 1 column - Ours 2.140± 0.000 11.567± 9.748 3.181± 0.793 cm

Drawer- Multi. cols. - Baseline 0.082± 0.000 63.064± 18.913 4.483± 6.403 cm

Drawer- Multi. cols. - Ours 1.287± 0.000 12.557± 8.317 4.419± 2.891 cm

Table B.2: Mean error values for joint axis orientation, joint axis position, and configurations
for 1000 test cases for each object class from the PartNet-Mobility Dataset

axis position and the observed configurations, ScrewNet outperformed the baseline method

on this dataset as well.

B.1.3 Experiment 2: Same articulation model category

Numerical results for the second set of experiments are reported in the Table B.3. It

is evident from the Table B.3 that the ScrewNet was able to generalize to novel object classes

belonging to the same articulation model category, while the baseline method failed to do so.

While both approaches reported comparable errors in estimating the joint axis orientations

and the observed configurations, the baseline reported errors of an order of magnitude higher

than ScrewNet in the joint axis position estimation.

Axis Orientation (deg) Axis displacement (cm) Configuration

Oven - Baseline 0.082± 0.000 44.699± 12.259 9.915± 3.934 deg

Oven - Ours 0.918± 0.000 7.486± 1.273 8.650± 0.207 deg

Drawer- 1 column - Baseline 0.082± 0.000 50.990± 25.984 5.283± 8.862 cm

Drawer- 1 column - Ours 1.287± 0.000 14.548± 5.823 4.399± 0.654 cm

Table B.3: Mean error values for joint axis orientation, joint axis position, and configurations
for 1000 test objects belonging to each object classes from the PartNet-Mobility Dataset
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B.1.4 Ablation studies

We consider three ablated versions of ScrewNet. First, to test the effectiveness of the

proposed loss function, we consider an ablated version of ScrewNet which is trained using

a raw L2-loss between the labels and the network predictions (named as L2-Error version

while reporting results). As the second ablation study, we test whether using an LSTM

layer in the network helps with the performance or not (named as NoLSTM version while

reporting results). We replace the LSTM layer of the ScrewNet with a fully connected layer

such that the two networks, ScrewNet and its ablated version, have a comparable number

of parameters. Lastly, to check if a sequence of images is helpful in the model estimation or

not, we consider an ablated version of ScrewNet that estimates the articulation model using

just a pair of images (named as 2 imgs version while reporting results). Note that ScrewNet

and all its ablated versions use a single network each. Numerical results for the simulated

articulated objects dataset are presented in the Table B.4, and for the PartNet-Mobility

dataset are shown in the Table B.5.
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Axis Orientation (deg) Axis displacement (cm) Configuration

Cabinet - Baseline? 0.082± 0.000 8.472± 6.277 16.921± 8.212 deg

Cabinet - NoLSTM 8.688± 20.504 2.521± 4.341 1.984± 5.172 deg

Cabinet - L2-Error 90.186± 12.244 5.580± 5.138 3.847± 5.377 deg

Cabinet - 2 imgs 18.716± 40.197 3.188± 5.795 12.898± 8.846 deg

Cabinet - Ours 16.988± 14.971 5.479± 4.363 4.65± 5.904 deg

Drawer - Baseline? 0.082± 0.000 4.067± 1.483 7.389± 2.439 cm

Drawer - NoLSTM 14.957± 25.526 2.116± 2.287 3.878± 2.883 cm

Drawer - L2-Error 7.931± 13.745 11.141± 3.159 5.847± 1.468 cm

Drawer - 2 imgs 23.310± 27.888 5.118± 2.829 7.664± 4.883 cm

Drawer - Ours 3.473± 8.839 1.302± 0.999 2.448± 1.092 cm

Microwave - Baseline? 0.082± 0.000 3.441± 1.218 21.67± 7.097 deg

Microwave - NoLSTM 2.725± 8.813 2.439± 1.708 0.803± 2.519 deg

Microwave - L2-Error 10.125± 10.953 3.76± 3.021 4.957± 4.489 deg

Microwave - 2 imgs 2.547± 3.480 5.115± 5.076 18.269± 12.658 deg

Microwave - Ours 8.770± 13.363 3.398± 2.675 4.033± 5.998 deg

Toaster - Baseline? 0.082± 0.000 2.669± 1.338 11.902± 4.242 deg

Toaster - NoLSTM 7.410± 17.645 2.597± 1.86 1.030± 2.230 deg

Toaster - L2-Error 18.750± 17.243 9.173± 4.229 2.661± 2.823 deg

Toaster - 2 imgs 12.833± 22.596 4.123± 3.196 16.016± 10.703 deg

Toaster - Ours 11.583± 14.798 3.003± 1.75 3.471± 2.876 deg

Table B.4: Mean error values for joint axis orientation, joint axis position, and configurations
for 1000 test objects belonging to each object classes from the simulated articulated objects
dataset. Symbol ? denote that the baseline has a significant advantage over other methods
as it uses a separate network for each object class, while all ScrewNet and its ablations use
a single network
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Axis Orientation (deg) Axis displacement (cm) Configuration

Dishwasher - Baseline? 0.082± 0.000 46.267± 20.247 9.735± 4.600 deg

Dishwasher - NoLSTM 41.485± 41.184 9.815± 6.782 5.415± 4.097 deg

Dishwasher - L2 Error 25.405± 15.119 12.653± 8.119 7.828± 1.913 deg

Dishwasher - 2 imgs 1.935± 0.021 11.544± 4.729 5.706± 4.152 deg

Dishwasher - Ours 11.850± 15.267 6.789± 5.630 6.081± 3.043 deg

Oven - Baseline? 0.082± 0.000 81.429± 27.244 13.026± 4.670 deg

Oven - NoLSTM 29.968± 39.034 11.014± 13.235 10.574± 6.332 deg

Oven - L2 Error 27.197± 13.103 26.452± 14.704 11.823± 1.067 deg

Oven - 2 imgs 1.939± 0.018 4.791± 1.370 10.498± 7.481 deg

Oven - Ours 7.881± 7.763 6.786± 2.443 5.010± 1.233 deg

Microwave - Baseline? 0.082± 0.000 26.781± 10.273 11.856± 2.456 deg

Microwave - NoLSTM 40.911± 32.830 15.993± 14.080 3.865± 2.350 deg

Microwave - L2 Error 60.566± 7.705 59.286± 6.485 7.463± 1.612 deg

Microwave - 2 imgs 91.826± 0.012 11.994± 2.549 5.212± 3.606 deg

Microwave - Ours 24.959± 24.847 15.271± 13.561 3.507± 1.987 deg

Drawer- 1 col. - Baseline? 0.082± 0.000 79.228± 13.944 17.524± 3.700 cm

Drawer- 1 col. - NoLSTM 42.318± 35.604 47.991± 29.586 10.923± 6.449 cm

Drawer- 1 col. - L2 Error 48.136± 9.533 60.046± 19.375 14.202± 2.153 cm

Drawer - 1 col. - 2 imgs 89.372± 0.047 80.356± 8.087 25.753± 18.374 cm

Drawer- 1 col. - Ours 19.876± 21.684 28.329± 15.005 5.729± 4.259 cm

Drawer- Multi. cols. - Baseline? 0.082± 0.000 63.064± 18.913 4.483± 6.403 cm

Drawer- Multi. cols.- NoLSTM 38.393± 33.113 49.419± 23.998 6.181± 5.228 cm

Drawer- Multi. cols.- L2 Error 38.866± 5.243 44.422± 26.927 6.422± 0.766 cm

Drawer- Multi. cols. - 2 imgs 89.361± 0.053 78.131± 4.888 12.229± 3.961 cm

Drawer- Multi. cols. - Ours 9.292± 15.295 17.813± 14.719 0.915± 1.772 cm

Table B.5: [Experiment: Across articulation model category] Mean error values for joint axis
orientation, joint axis position, and configurations for 1000 test objects belonging to each
object classes from the PartNet-Mobility Dataset. Symbol ? denote that the baseline has a
significant advantage over other methods as it uses a separate network for each object class,
while all ScrewNet and its ablations use a single network
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Appendix C

DUST-net

C.1 Hypergeometric function pFq

A general hypergeometric function pFq in the matrix argument can be written as an

infinite series in terms of zonal polynomials, which are multivariate symmetric homogeneous

polynomials and form a basis of the space of symmetric polynomials [22]. Given an m×m
symmetric, positive-definite matrix Y, the hypergeometric function pFq of matrix argument

Y is defined as

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣Y) :=
∞∑
n=0

∑
ν∈Pn

(a1)ν · · · (ap)ν
(b1)ν · · · (bq)ν

· Cν(Y )

n!
, (C.1)

where

• Pn is the set of all ordered integer partitions of n

• (a)ν is the generalized Pochhammer symbol, defined as

(a)ν = (a)(ν1,...,νk) :=
k∏
i=1

(
a− i− 1

2

)
νi

;

, where, (a)νi = a(a+ 1)...(a+ νi − 1), (a)0 = 1,

• and Cν(Y ) denotes the zonal polynomial of Y , indexed by a partition ν, which is a

symmetric homogeneous polynomial of degree n in the eigenvalues y1, . . . , ym of Y ,

satisfying ∑
ν∈Pn

Cν(Y ) = (trY )n = (y1 + · · ·+ ym)n. (C.2)
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Figure C.1: DUST-net architecture

Using zonal polynomials, we can define the hypergeometric function 0F1(
3
2
, 1
4
Λ2) defin-

ing the normalization factor of the matrix von Mises-Fisher distribution over Stiefel manifold

V3,2 as

0F1(
3

2
,
1

4
Λ2) :=

∞∑
n=0

∑
ν∈Pn

1

(3
2
)ν

Cν(Λ)

n!
, (C.3)

where Λ = diag(λ1, λ2), Pn is the set of all ordered integer partitions of n, (a)ν is the

generalized Pochhammer symbol, and Cν(Λ) denotes the zonal polynomial of Λ indexed by a

partition ν. This series converges for all input matrices for a general hypergeometric function

pFq if p ≤ q, which holds in our case [22]. Recently, Jiu and Koutschan [60] investigated

the zonal polynomials in detail and developed a computer algebra package to calculate these

polynomials in SageMath. We use this package to calculate the the hypergeometric function

0F1(
3
2
, 1
4
Λ2). However, as the number of terms in the series grows combinatorially with n, we

truncate the series at n = 25 for computational reasons. Through our experimental analysis,

we found that this truncated series is a good approximation of 0F1 as the series converges to

a finite value, if the singular values of the F , i.e. λ1 and λ2 remain below a maximum value

λmax = 50.
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C.2 Network Architecture

Figure C.1 shows the detailed network architecture for DUST-net. DUST-net uses

an off-the-shelf convolutional network, ResNet-18, to extract task-relevant visual features

from the input images, which are later passed through a two-layer MLP to predict a set of

parameters Φ for the distribution p(S, θ1:n−1, d1:n−1 | I1:n,Φ). We use ReLU activations for

the hidden fully-connected layers. The first four output parameters (out of 40) of the last

linear layer of MLP correspond to the parameters (α, β, γ) and ω, representing the matrices

Γ and Ω respectively, which lie in ranges [0, 2π), [0, π), [0, 2π), and [0, 2π) respectively. We

pass the first four values of the output of the last linear layer through a ReLU-6 layer [49] to

correctly map the predicted values with their respective ranges. The rest of the parameters

are required to be non-negative. We pass the remaining output values of the last linear layer

through a Softplus layer for non-negative output.

C.3 Experimental details

C.3.1 Datasets

Objects used in the experiments from each of the dataset are shown in the Figures C.2

and C.3. We sampled a new object geometry and a joint location for each training example

in the simulated articulated object dataset, as proposed by [1]. For the PartNet-Mobility

dataset, we considered 11 microwave (8 train, 3 test), 36 dishwasher (27 train, 9 test), 9 oven

(6 train, 3 test), 26 single column drawer (20 train, 6 test), and 14 multi-column drawer (10

train, 4 test) object models. For both datasets, we sampled object positions and orientations

uniformly in the view frustum of the camera up to a maximum depth dependent upon the

object size. The objects and depth images are rendered in Mujoco [139]. We apply random

frame skipping and pixel dropping to simulate noise encountered in real world sensor data.

Figure C.2: Object classes used from the simulated articulated object dataset [1]. Object
classes: cabinet, drawer, microwave, and toaster (left to right)
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Figure C.3: Object classes used from the PartNet-Mobility dataset [20, 93, 149]. Object
classes: dishwasher, oven, microwave, drawer- 1 column, and drawer- multiple columns (left
to right)

We consider three household objects — a microwave, a drawer, and a toaster oven, in the

real world objects dataset for evaluating DUST-net’s performance. The objects are shown

in Figure C.4.

To generate the labels for screw displacements, we follow the same procedure as used

by Jain et al. [58]. Considering one of the objects, oi, as the base object, we calculate the

screw displacements between temporally displaced poses of the second object oj with respect

to it. Given a sequence of n images I1:n, we calculate a sequence of n−1 screw displacements
1σoj = {1σ2, ...1σn}, where each 1σk corresponds to the relative spatial displacement between

the pose of the object oj in the first image I1 and the images Ik, k∈{2...n}. Note 1σoj is

defined in the frame Fo1j attached to the pose of the object oj in the first image I1. We

then transform 1σoj to the camera frame by defining the 3D line motion matrix D̃ between

the frames Fo1j and Foi [8], and transforming the common screw axis 1S to the target frame

Foi . The configurations 1qk remain the same during frame transformations. The 3D line

motion matrix D̃ between two frames can be constructed using the rotation matrix R and a

translation vector t between two frames FA and FB, as:

[
Bl
Bm

]
= BD̃A

[
Al
Am

]
, where,BD̃A =

[
R 0

[t]×R R

]
, [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 (C.4)

where [t]× denotes the skew-symmetric matrix corresponding to the translation vector t, and

(Al,A m) and (Bl,B m) represents the line l in frames FA and FB, respectively [8].
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Figure C.4: Real world objects used to evaluate DUST-net’s performance. Object classes:
microwave, drawer, and toaster (left to right)

C.3.2 Baseline: vm-SoftOrtho

von Mises-Fisher distribution: The von Mises-Fisher distribution (or Langevin

distribution) is a unimodal probability distribution on the (m−1) sphere in Rm. A randomm-

dimensional unit vector x is said to have the von Mises–Fisher distribution, if its probability

distribution function is given by: fm(x|µ, κ) = Cm(κ) exp(κµTx), where the concentration

parameter κ ≥ 0, the mean direction ‖µ‖ = 1 and the normalization constant Cm(κ) =
κ

m
2
−1

(2π)
m
2 Im

2
−1(κ)

where Iν denotes the modified Bessel function of the first kind at order

ν [84]. For m = 3, the normalization constant reduces to C3(κ) =
κ

4π sinhκ
=

κ e−κ

2π(1− e−2κ)
.

As noted in the main text 7.3, the first baseline method (vm-SoftOrtho) represents

the uncertainty over the screw axis orientation vector l and the direction of moment vector m̂

using two independent von Mises-Fisher distributions. To ensure that the learned distribu-

tions respect the Plücker constraint, the method imposes a soft orthogonality constraint over

the modes of the two distributions. The distributions over the moment vector magnitude

‖m‖ and configurations q1:n−1 are considered to be truncated normal distributions.

C.4 Further Results

C.4.1 Accuracy of Point Estimates

Detailed numerical results for the synthetic articulated objects dataset and the PartNet-

Mobility dataset are shown in Tables C.1 and C.2, respectively. Results demonstrate that

under both metrics, the estimates obtained from DUST-net are considerably more accurate

than those obtained from the state-of-the-art methods. DUST-net also correctly estimates

very high distribution concentration parameters for the true, noise-free labels. The first
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Figure C.5: von Mises-Fisher distribution in R3. X, Y, Z axes are shown in red, blue and
green colors, respectively. Black color represents the mean direction of distribution

baseline, vm-SoftOrtho, performs comparably with DUST-net on both datasets when only

MAAD estimates are considered. However, Tables C.1 and C.2 show that it produces a very

high distance (≈ 1m) between the predicted and ground-truth screw axes. This error arises

due to the soft-orthogonality constraint used by vm-SoftOrtho, as DUST-net and the second

baseline method, both of which handle the constraint implicitly, do not report high errors on

that metric. Meanwhile, the second baseline, Direct F , performs comparably with DUST-net

on both metrics for both datasets, but fails to capture the uncertainty over parameters with

the required accuracy.

C.4.2 Uncertainty Estimation

The detailed numerical results from the second set of experiments are shown in Ta-

ble C.3. In the noiseless case, the singular values of the matrix von Mises-Fisher distribution

increases until they reach their maximum allowed value at λmax = 50, while the precision

parameters βj, j ∈ {‖m‖, θ, d} for truncated normal distributions over remaining parameters

become arbitrarily large.
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C.4.3 Real objects

The numerical results from the sim-to-real transfer experiments are shown in Ta-

ble C.4. Results report that while DUST-net outperforms ScrewNet in estimating the model

parameters for real-world objects, the estimated parameters are not yet accurate enough to

be used directly for manipulating these objects. However, a noteworthy insight from the

results is that DUST-net also reports very low confidence over the predicted parameters.

This clearly delineates why it is beneficial to estimate a distribution over the articulation

model parameters instead of plain point estimates, as discussed earlier in the section 7.3.3.
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