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The security of terrestrial radionavigation systems (TRNS) has not yet been

addressed in the literature. This proposal builds on what is known about secur-

ing global navigation satellite systems (GNSS) to address this gap, re-evaluating

proposals for GNSS security in light of the distinctive properties of TRNS. TRNS

of the type envisioned in this paper are currently in their infancy, unburdened by

considerations of backwards compatibility: security for TRNS is a clean slate.

This thesis argues that waveform- or signal-level security measures are irrelevant

for TRNS, preventing neither spoofing nor unauthorized use of the service. Thus,

only security measures which modify navigation message bits merit consideration.

This thesis proposes orthogonal mechanisms combining navigation message en-

cryption (NME) and navigation message authentication (NMA), constructed from

standard cryptography primitives and specialized to TRNS: message encryption al-

lows providers to offer tiered access to navigation parameters on a bit-by-bit ba-

sis, and message authentication disperses the bits of a message authentication code

vii



across all data packets, posing an additional challenge to spoofers. This crypto-

graphic proposal, however, is still vulnerable to certain types of replay threats. This

thesis addresses this gap by augmenting TRNS with autonomous signal-situational-

awareness (SSA) capability, allowing TRNS operators to detect spoofing and mea-

coning attacks. Two signal authentication techniques for SSA are developed to

detect a weak spoofing signal in the presence of static and dynamic multipath.

This thesis also proposes enhancements to these signal authentication techniques.

These enhancements exploit the synergy from combining information across multi-

ple epochs, or over multiple monitoring beacons, to further lower the spoofer detec-

tion threshold. Both techniques with their enhancements are shown to be effective

in simulations of the varied operating environments that a generic TRNS will en-

counter. With both proposed cryptographic NME+NMA scheme and autonomous

SSA in place, TRNS gains a defensive capability that GNSS cannot easily match:

a comprehensive defense against most man-in-the-middle attacks on position, nav-

igation and timing services.
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Chapter 1

Introduction

Global Navigation Satellite Systems (GNSS) have provided excellent po-

sitioning solutions in open, outdoor environments, enabling a wide range of nav-

igation and timing applications. However, GNSS struggle to provide coverage in

deep-urban and indoor environments. The requirement for accurate and assured

indoor positioning limits the effectiveness of GNSS in high-stakes, safety-of-life

applications like enhanced 911 (E911), as well as in a new generation of commer-

cial applications like warehouse automation and asset tracking.

Current and upcoming terrestrial radionavigation systems (TRNS) like Lo-

cata [75] and NextNav [53,54] seek to address these needs. These systems are mar-

keted to provide position, navigation, and timing (PNT) solutions in environments

where GNSS signals are degraded or denied. TRNS consist of networks of syn-

chronized terrestrial ranging beacons, or pseudolites, which operate analogously to

GNSS satellites. These pseudolites broadcast signals powerful enough to reach the

interiors of typical buildings, permitting the acquisition of terrestrial PNT service

by urban or indoor users. A TRNS may serve to augment GNSS signals, improving

solution geometry and availability in dense urban areas [74, 76], or it may serve as

a primary navigation aid in the indoor environment [3].
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TRNS sensitivity to wide-band radio-frequency interference (RFI) [37, 38]

has been investigated in the literature. There have not, however, been any public

proposals for how to secure TRNS—or even any substantive discussion of security

considerations. Broadly, the security of TRNS parallels that of other historical ra-

dionavigation systems, as the shared vulnerabilities between the two domains arise

from fundamental properties of radio systems. Thus, security considerations for

TRNS can draw from lessons learned in the vibrant body of research on GNSS

signal security [67].

However, TRNS have unique vulnerabilities that have been recently out-

lined in reference [42], which include: (1) the vastly different dynamic range of

signal power for terrestrial versus space-based transmission; (2) the overlapping

angular distribution of spoofed, authentic, and multipath signals; and (3) the rela-

tive physical accessibility of TRNS transmitters. This means that TRNS operate in a

quantitatively distinct region of parameter space compared to GNSS: security code

estimation and replay (SCER) spoofing attacks [28] are facilitated by attackers’ ac-

cess to high signal-to-noise ratio (SNR) signals; receiver quantization and dynamic

range effects limit mitigations based on simultaneous demodulation of spoofed and

authentic waveforms [26]; and the potential for poor angular separation between

authentic and spoofed signals renders angle-of-arrival techniques based on multi-

element antennas [7, 15, 70] less effective.

Nevertheless, novel commercial TRNS’s design is a tabula rasa, offering an

opportunity to exploit unique advantages for enhanced security. These new security

measures can, of course, also leverage the best spoofing defenses produced by two
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decades of research effort in securing GNSS [68,80]. These includes cryptographic

and non-cryptographic techniques [16], which represents an overlapping and lay-

ered defense against radionavigation spoofing: receivers should seek to identify

reliable signals both by their content and by their context. The clean-slate design of

TRNS waveform offers flexibility in the application of the latest cryptographic de-

fense techniques without being constrained by the need of backward compatibility.

Mutual observability using signal multiplexing and bi-directional communication

between adjacent beacons can be built into the design of TRNS system architecture,

which will augment the TRNS system with secure time synchronization, integrity

monitoring, and autonomous signal-situational-awareness (SSA) capabilities.

TRNS networks have great potential to advance the security of PNT be-

yond what is possible with traditional GNSS alone. With green-field signals and

autonomous SSA, TRNS may finally offer a solid, comprehensive defense against

MITM (man-in-the-middle) attacks on PNT.

1.1 Thesis Statement and Expected Contributions

This thesis makes four primary contributions:

(i) It analyzes the security considerations of TRNS due to their wide signal dy-

namic range, proximity of threats to pseudolites, and potential dependence on

GNSS to meet the stringent synchronization and frequency stability require-

ments.

(ii) It offers a cryptographic security proposal for TRNS mobile users, with a fo-
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cus on data-level security in recognition of the futility of waveform- or signal-

level security. This proposal has two non-obvious aspects: MAC leavening,

whereby a modest number of navigation message authentication (NMA) bits

spread throughout the transmitted packets provide a significant improvement

in security, and multi-tiered navigation message encryption (NME), which

has not been used before in PNT security and makes the adoption of this

proposal more enticing for commercial service providers.

(iii) To address the cryptographic security proposal’s gap in the defense against

SCER and meaconing attacks, this thesis proposes an autonomous signal-

situational-awareness (SSA) overlay capability within a TRNS network. The

SSA capability augments basic TRNS operations with cooperative monitor-

ing among nearby beacons. While not all spoofers can be detected in this way,

SSA gives TRNS operators the best possible chance of detecting threats and

warning users without resorting to costly full-duplex techniques. Although

this contribution is similar to prior works by [91] and [21], it addresses a

TRNS-relevant problem of detecting a spoofing signal in the presence of

dynamic multipaths. This thesis also looks into the enhancement of TRNS

performance by performing joint detection across multiple epochs, and with

multiple monitoring beacons.

(iv) It conducts an urban multipath propagation measurement campaign at The

University of Texas at Austin. The statistical analysis on the data logs val-

idated the empirical multipath model used in SSA simulations, and gleaned

insights on the characteristics of dynamic multipath.

4



1.2 List of Publications
1.2.1 Journal Publications

[J1] Ronnie X.T. Kor, Peter A. Iannucci, and Todd E. Humphreys. Compre-

hensive PNT Security for a Terrestrial Radionavigation System. Navigation,

Journal of the Institute of Navigation, 2021. In preparation.

1.2.2 Conference Publications

[C1] Ronnie X.T. Kor, Peter A. Iannucci, Lakshay Narula, and Todd E. Humphreys.

A Proposal for Securing Terrestrial Radio-navigation Systems. In Proceed-

ings of the 33rd International Technical Meeting of the Satellite Division of

The Institute of Navigation (ION GNSS+ 2020), 2020.

[C2] Ronnie X.T. Kor, Peter A. Iannucci, and Todd E. Humphreys. Autonomous

Signal-Situational Awareness in a Terrestrial Radionavigation System. In

Proceedings of the 24th IEEE International Conference on Intelligent Trans-

portation, 2021. Submitted for review.

[C3] Todd E. Humphreys, Ronnie X.T. Kor, Peter A. Iannucci, and James E. Yo-

der. Open-World Virtual Reality Headset Tracking. In Proceedings of the

33rd International Technical Meeting of the Satellite Division of The Institute

of Navigation (ION GNSS+ 2020), 2020.

5



1.3 Thesis Organization

Chapter 2 analyzes the primary security considerations of TRNS. Chapter 3

gathers results from past proposals for GNSS security,and discusses the relevance

of each technique for TRNS. Chapter 4 presents a cryptographic security proposal

for securing TRNS mobile users with multi-tiered NME + message authentication

code (MAC)-leavened NMA. Chapter 5 details the signal authentication techniques

considered for SSA and their enhancements, and presents an analysis that quan-

tifies the effectiveness of autonomous SSA under some of the myriad operating

conditions encountered by a generic TRNS. Chapter 6 presents an empirical anal-

ysis of multipath in an urban environment. Chapter 7 concludes this thesis with a

summary of the main contributions.
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Chapter 2

TRNS Security Considerations

From the perspective of a radionavigation system, there are essentially two

types of adversaries: parties wishing to obtain service without authorization (stow-

aways), and parties wishing to deny, degrade, or deceive authorized users of the ser-

vice (jammers or spoofers). This divides radionavigation security into two domains,

termed Encryption (denying stow-aways) and Authentication (detecting spoofing).

(N.B. that cryptography is a useful tool in both domains). The focus of this work

on commercial TRNS prompts the adoption of the term “subscriber” to refer to an

authorized user.

2.1 Dynamic Range

The greater dynamic range of terrestrial signals is a fundamental difference

in the following sense: with GNSS, a spoofer cannot easily gain an advantage in

received signal strength by moving closer to the transmitter, because this would

require climbing thousands of kilometers above the ground. Instead, the adver-

sary who wishes to obtain a pristine signal must build a large antenna. In TRNS,

This chapter is based on: Ronnie X.T. Kor, Peter A. Iannucci, Lakshay Narula, and Todd E.
Humphreys. A proposal for securing terrestrial radio-navigation systems. In Proceedings of the
ION GNSS+ Meeting, Online, 2020.
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however, the adversary can “walk right up to” the pseudolite, obtaining a signal as

clear as they could wish. Furthermore, because a subscriber cannot anticipate how

much path loss may be present, it cannot anticipate how strong a signal ought to

be after de-spreading. These asymmetries enable an adversary to obtain pristine

signal replicas at low cost and high reliability, by placing a receive antenna close

to the pseudo-lite. This renders spreading code encryption (SCE) (after the fashion

of the GPS P(Y) code) largely irrelevant for TRNS: an adversary can always build

a network of receivers to obtain both the pseudolites’ spreading codes and their

coordinates.

2.2 Radio-Frequency Interference

Radionavigation systems, GNSS and TRNS alike, are susceptible to RFI

caused by jammers and spoofers. Fig. 2.1 gives an overview of RFI. Among all

the RFI threats, spoofing is of particular interest, as it stealthily fools a victim re-

ceiver without leaving obvious telltale signs. As a matched spectrum interference,

spoofing signal is statistically correlated with the authentic signal. A spoofer can

arbitrarily adjust its signal’s power, code phase, carrier phase, and signal structure

to smoothly overtake a victim receiver’s tracking loops, achieving maximum spoof-

ing efficacy in the process. Spoofing can be broadly classified into the following

types of attacks:

[S1] Self-consistent spoofing: This attack synthesizes false code phases and beat

carrier phases, such that a desired position/timing fix is induced at the victim
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receiver without triggering an alarm from an unusual code/carrier divergence

[28].

[S2] Data/Time spoofing: This attack generates a signal that has counterfeit data

bits but is otherwise in near-perfect code-phase alignment with the authentic

signal within the tracking channel of the victim receiver [43].

[S3] Security Code Estimation and Replay (SCER): This attack synthesizes a coun-

terfeit replica signal with a delay, by tracking individual signals and attempt-

ing to estimate each signal’s unpredictable security code chips or navigation

data bits on the fly [28].

[S4] Meaconing: This attack records the ensemble of authentic signals and replays

them to create a desired position/timing offset. This can be done by either

rebroadcasting the authentic signals recorded from a remote antenna at the

intended position, or inducing independent delay variations in each authentic

signal using phased-array signal processing [51].

2.3 Spoofing

The threat from GNSS spoofing has been a concern within the GNSS com-

munity ever since a portable spoofer was developed and successfully tested against

a COTS receiver [31]. A number of live-signal spoofing tests in a controlled envi-

ronment which followed thereafter also confirmed the effect [5, 35, 69]. This threat

continues to be relevant today, with reports of spoofers being used at 9 different
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Figure 2.1: A taxonomy of RF interference (i.e. an attaxonomy).

locations, each of which has the capability of “fooling” multiple victim receivers

to coincidentally move along the same track [4]. There are also recent rumors of

spoofing “in the wild” seen in specific spots such as Black Sea [9], Syria [58] and

China [23]. With recent advancements in RF microelectronics, together with open-

source GNSS signal generation software, building a functional GNSS spoofer will

become more accessible to the masses in the near future [29]. The spoofing threat

is also relevant to TRNS because a functional TRNS spoofer is essentially a mod-

ified GNSS spoofer, given sufficient resources and knowledge of the TRNS signal

architecture.

TRNS has differentiated itself by having a high SNR and a limited-access

standard, which is perceived to be able to counter against conventional spoofers

that rely on high signal power and accurate prediction of spreading codes and/or

navigation data bits to mount a successful attack. However, these characteristics do

not make TRNS foolproof against all spoofing threats. In fact, TRNS system has
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to tackle additional challenges due to high signal strength, wider signal dynamic

range, proximity of threats to transmitters, as well as a potential reliance on GNSS

for network synchronization. TRNS therefore faces a longer list of vulnerabilities

from its signal and physical characteristics than GNSS.

Unlike GNSS signals, with signal strength below noise floor at the receiver,

the spreading code sequence of TRNS can be exposed without the use of high-gain

antenna due to its high SNR. Reference [95] shows that the time slot usage, trans-

mitters’ PRN and navigation data bit of the Metropolitan Beacon System (MBS)

from NextNav can be derived by analyzing the power spectrum of the MBS signal.

This makes the cost of SCER attack on TRNS lower than that on GNSS, since the

embedded security codes of TRNS can be more easily observed and hence esti-

mated. In addition, even if TRNS adopts a restricted access standard and requires

the use of a secure tamper-resistant receiver to store the secret key like military

GNSS signals, it is still susceptible to record-and-replay attacks.

TRNS provides a wide-area positioning service using a network of synchro-

nized terrestrial transmitters. To ensure high accuracy in the PNT solution, stringent

synchronization and frequency stability requirements are placed on all pseudolites,

which may be satisfied either by: (1) the use of dedicated low-latency fiber-optic

connection across the entire network, which will incur significant setup cost and

will limit the deployment sites, or (2) the use of GNSS-disciplined atomic clocks,

which reduces infrastructure cost and offers greater flexibility in the placement of

the pseudolites. While option 2 may be preferable to providers, it exposes TRNS to

an additional attack surface through its reliance upon GNSS. In addition, the rela-
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tive accessibility of the pseudolites compared to the Earth-orbiting GNSS satellites

indicates that TRNS is more susceptible to direct attacks, either by physical or cyber

tampering, or by co-locating a high-power interference transmitter to overwhelm its

signal.

2.4 Conclusion

This chapter provides an discussion of TRNS security considerations with

respect to its vulnerabilities to spoofing threats, resulting from: (1) its high SNR and

wide signal dynamic range, (2) the indistinguishable angular distribution of spoofed

signal from that of the authentic and multipath signals, and (3) the accessibility of

its transmitters to physical or cyber tampering. Chapter 3 reviews existing GNSS

spoofing detection techniques and the challenges to their implementation for TRNS,

and identifies compatible methods for TRNS security.
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Chapter 3

Lessons Learned from GNSS Security

TRNS inherits from traditional radionavigation a bevy of well-known at-

tacks. For the same reason, TRNS can benefit from the products of a vibrant re-

search effort over the past 20 years to secure GNSS. Not all the techniques that have

been proposed for securing GNSS are applicable to TRNS, but it is equally true that

the obligation of GNSS operators to backwards compatibility has prevented them

from fully exploiting these developments. The time is right to incorporate what

has been learned about GNSS security into TRNS. The purpose of this section is to

review some of the most powerful security techniques that have been proposed for

GNSS and to identify those ideas that are compatible with TRNS.

GNSS spoofing defenses proposed in recent literature can be broadly clas-

sified into two categories [16, 82]: (1) cryptographic techniques that utilize unpre-

dictable but verifiable signal modulation in the GNSS spreading code or navigation

data, and (2) non-cryptographic techniques such as signal processing techniques,

geometric techniques, or drift monitoring techniques. A comprehensive review of

This chapter is based on: Ronnie X.T. Kor, Peter A. Iannucci, Lakshay Narula, and Todd E.
Humphreys. A proposal for securing terrestrial radio-navigation systems. In Proceedings of the
ION GNSS+ Meeting, Online, 2020.
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GNSS spoofing defenses is presented in [67].

3.1 Non-cryptographic Defenses

Non-cryptographic defenses are attractive because they do not require any

changes to GNSS signal-in-space (SIS). These techniques are categorized based on

their method of differentiating spoofing signals from authentic signals by looking

for consistency in the signal characteristics, signal geometry, or PNT solution.

3.1.1 Geometric Techniques

Geometric techniques exploit the RF signals’ geometric diversity to verify

the authenticity of the signal source. This includes angle-of-arrival (AOA) discrim-

ination techniques [7, 56, 57, 70], Doppler frequency difference of arrival (FDOA)

discrimination [24], or beamforming feature extraction [55] using multiple anten-

nas. Other geometric techniques advocate the use of single antenna, and discrim-

inate spoofed and authentic signals either with a known perturbation profile [66],

a random motion profile [8], or using multiple feeds from a single antenna [52].

The assumptions made by these techniques are (1) the spoofing signals generally

arrive from below or near the horizon [52], (2) the observations from spoofing sig-

nals are not aligned with the actual geometry between the satellites and the victim

receiver [56,57], and (3) there is a strong correlation between signal characteristics

of different satellites from the spoofing signals [7, 8, 66, 70].

Geometric techniques are less applicable to TRNS because, unlike with

GNSS, it is not costly for a sophisticated spoofer to co-locate dedicated spoofing

14



sources at each of the TRNS pseudolites in a local network, thereby defeating all

the assumptions made by geometric techniques. In addition, the need for hardware

modification or additional hardware might not be suitable for applications that ei-

ther use existing hardware for mass-market adoption, or have SWaP-C constraints.

3.1.2 Drift-Monitoring Techniques

Drift monitoring techniques look for unusual changes in the output of the

receiver, such as position or clock fix, by coupling with external sensors. These

include the use of an external oscillator to check for inconsistency in the clock bias

or clock drift [65], or the use of visual/inertial/radar odometry [39, 45] or a height

sensor [44] to place constraints on the reasonable error growth of a position fix.

The applicability of these techniques is limited by the SWaP-C constraints of the

applications, and the authentication performance is limited by the accuracy of these

sensors.

3.1.3 Signal Processing Techniques

Several techniques proposed in the GNSS literature apply advanced sig-

nal processing algorithms for spoofing detection. Unlike other non-cryptographic

spoofing defenses, these techniques can be readily implemented on existing GNSS

receivers via a firmware upgrade, and do not need additional hardware for their op-

erations. They can be categorized into two classes, one that detects the inception of

a spoofing attack, and another that does a brute-force search for all signals in the

landscape for post-inception detection.
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Included in the first class are techniques that look for a sudden deviation in

the received signal characteristics (carrier amplitude, beat carrier phase, code phase,

carrier-to-noise density ratio, or received power) to detect the onset of a spoofing

attack [1, 58]. Also included are techniques based on Signal Quality Monitoring

(SQM) that identify asymmetry or other distortion in the complex correlation func-

tion [11, 92]. Multiple signal metrics can be derived by combining observations of

both the received power and the correlation function distortion [91].

The second class of techniques performs a brute-force acquisition search for

the presence of known signals using Complex Ambiguity Function (CAF) monitor-

ing [25]. This approach avoids the problem of missed detection due to the transient

nature of initial spoofing drag-off.

These techniques generally work for GNSS, as it has signal strength below

the noise floor and a narrow dynamic range of signal power. In contrast, TRNS

generally have high SNR—for quick acquisition in both dense-urban and indoor

environments—and a wide signal power dynamic range. Analogous to variations

in the received signal strength from low-elevation GNSS satellites in an urban envi-

ronment, without complete knowledge of its deep-fading channel model, a mobile

receiver cannot straightforwardly predict the received signal strength of the authen-

tic signal emanating from a particular TRNS beacon. A potential spoofer will thus

have a wide margin to adjust its power in its attempt to overtake a victim receiver’s

tracking loops. Therefore, it is challenging for mobile receivers to perform spoof-

ing detection using these techniques, given the wide dynamic range of their received

power.
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In contrast, TRNS infrastructural monitors can fully exploit these signal

processing techniques for spoofing detection. Assuming that each of them has mul-

tiple correlators, and a secure clock synchronization [59] embedded in its network,

these monitors can narrowly characterize all signals in their nominal operating en-

vironments, such that any signal anomalies in their surveilled landscape will stand

out. This thesis capitalizes on these merits by proposing two signal authentication

techniques in Chapter 5 customized for these TRNS monitors, such that a spoofing

signal, with an SNR below that of the authentic signal, can be detected even in the

presence of static and dynamic multipath.

3.2 Cryptographic Defenses

The main objective of cryptographic spoofing defenses is to ensure informa-

tion security. Cryptographic techniques include encryption, which enforces the se-

crecy of data from unauthorized access, and authentication which verifies the origin

of the data. They provide three features: (1) authentication, by verifying the origin

of information, (2) confidentiality, by protecting the information from disclosure to

non-authorized parties, and (3) integrity, by detecting any unauthorized information

modification. These features increase the resilience of the signal against spoofing.

Several GNSS cryptographic spoofing defenses have been proposed and/or

implemented in both civil and limited-access GNSS signals. These spoofing de-

fenses add cryptographic features in small segments or in entire portion to either

the fast-rate spreading code or the low-rate navigation data. These cryptographic

techniques can be classified into the following groups: (1) navigation message en-
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cryption (NME), which encrypts the whole navigation data message before being

modulated onto the spreading code, (2) spreading code encryption (SCE), which en-

crypts the whole spreading code sequence, (3) navigation message authentication

(NMA), which adds unpredictable digital signature into the navigation data using

asymmetric cryptography, and (4) spreading code authentication (SCA), which in-

serts unpredictable watermark sequences within the open spreading code.

The straightforward, blanket encryption of a navigation signal may be at-

tractive as a means both to deny service to stow-aways and to authenticate the signal

to subscribers. However, there are sigificant caveats in both applications. The first

regards the use of symmetric cryptography.

One may apply symmetric encryption to the entire navigation message (NME)

and/or the spreading code (SCE, a la the GPS P(Y) code). The premise is that a

spoofer who does not know the symmetric key cannot produce a valid spoofing sig-

nal, or equivalently that a receiver can be confident in a signal that appears in the

output of a correlator tuned to the secret spreading sequence (with similar reasoning

for NME). However, a symmetric approach to authentication is extremely fragile,

because a leaked symmetric key can be used for spoofing. For this reason, military

deployment of SCE involves tamper-resistant hardware and costly, elaborate proce-

dures for secure distribution and management of the secret symmetric keys. This

approach is untenable for civil or commercial radionavigation.

NMA and SCA, in contrast, avoid the fragility of symmetric key manage-

ment by adopting asymmetric cryptography, using either delayed release approach

or public-private key pair. In SCA, short segments of unpredictable spreading code
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sequences (termed as “watermarks”) are interleaved with long segments of pre-

dictable spreading codes in fixed or random positions [79]. The receiver uses the

predictable sequences to track the broadcast signal, and stores the unpredictable

segments in the buffer while waiting for the information about the watermarks.

Once this information arrives, the receiver can synthesize the unknown spreading

sequence with the correct watermarks embedded in the right position, and correlates

this code segment with the relevant segment from its recorded signal to verify signal

authenticity. This technique requires modifications to the GNSS signal generation.

Hence, it will be difficult or impossible to be implemented on existing GNSS which

requires backward compatibility. However, TRNS, which comes with a green-field

waveform, can consider the implementation of SCA into its waveform design.

A growing literature advocates the use of NMA for civil GNSS signal au-

thentication, with proposed implementations for GPS [36, 79, 93], Galileo [13, 19],

QZSS [12] and SBAS [50, 60, 61]. NMA is already implemented in the Galileo

Open Service, which will start its Open Service Navigation Message Authentica-

tion (OSNMA) signal-in-space transmission in the first quarter of 2020 and have

full service available in 2021 [22]. This technique uses either a delayed symmet-

ric key release approach such as timed efficient stream loss-tolerant authentication

(TESLA) [93], or an asymmetric private-key/public-key approach such as the ellip-

tic curve digital signature algorithm (ECDSA) [36]. Unlike SCA, this technique

can be implemented into existing GNSS signal, provided that there are available

unused bits in the navigation message to store the digital signature. However, the

leftover bits in the navigation message are usually limited. A trade-off has to be

19



made between the cryptographic strength of the NMA scheme, which is determined

by the size of the key and the digital signature, and the authentication latency, which

is determined by the frequency of digital signature validation. TRNS has more flex-

ibility in incorporating NMA into their waveform design, and can offer low time-

to-first-authenticated-fix (TTFAF) while maintaining strong cryptographic security.

In contrast to GNSS, TRNS comes with a clean-slate waveform design,

and is not constrained by the need of backward compatibility. This offers TRNS

providers flexibility in their application of the latest cryptographic defense techniques—

many of which were originally proposed for GNSS. Chapter 4 proposes one imple-

mentation of NME and NMA for a TRNS.

3.3 Cooperative Sensing

Cooperative sensing for signal authentication has been considered in recent

GNSS literature. These can be broadly classified into: (1) temporal variations in

GNSS observables, and (2) code-less cross-correlation of unpredictable code se-

quences. The first method presents a spoofing detection mechanism which com-

pares the raw GNSS observables between two connected GNSS devices, which

includes carrier phase differential GNSS (CDGNSS) measurements [34] or signal

monitoring metrics [78]. The limitations of its applicability to TRNS has been out-

lined in Subsection 3.1.1 and 3.1.2.

The second method by [49] is based on code-less cross-correlation of the un-

predictable encrypted military P(Y) code between two civil GPS receivers. Fig. 3.1

illustrates the relationship between the publicly-known C/A and encrypted P(Y)

20



Figure 3.1: Relationship between publicly-known C/A signal and encrypted P(Y)
signals on reference receiver (left) and user receiver (right) (adapted from [71]).
The C/A codes (in blue vertical pulses) are in phase quadrature with the P(Y) codes
(in red horizontal pulses). The green portion of the P(Y) codes are extracted for
cross-correlation at each epoch.

signals on the GPS L1 frequency, and outlines the strategy of this cross-correlation

method outlined in [49]. First, each receiver estimates the delay and phase offset of

the blue C/A signals in their code and carrier tracking loops. A snippet of L1 signal

(in green) is then extracted from both receivers for authentication. These snippets

are then cross-correlated with each other based on known phase and timing relation-

ships between the C/A and P(Y) codes in each receiver. Although the green snippets

are encrypted, distorted by a narrow-band radio-frequency (RF) front-end [71], and

corrupted by thermal and quantization noise, the correlation of these green snippets

will result in a high correlation peak only if neither receivers are spoofed.

Two techniques have been developed from this cooperative approach. The

first technique by [63, 71] adopts a client-server architecture, in which a number of
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dedicated reference receivers provide GNSS authentication service for many client

receivers over a wide area via a secure communication link. Although this tech-

nique offers advantages similar to signal processing techniques outlined in Sub-

section 3.1.3, the security of the fixed reference stations (similar to those outlined

for TRNS in Section 2.3) affects the reliability of signal authentication. Recog-

nizing these limitations, [27] proposes a peer-to-peer architecture, which performs

pair-wise check between multiple voluntary peers followed by decision aggregation

from the detection statistics resulting from code-less cross-correlation. However, its

spoofing detection performance is dependent on the quantity and quality of crowd-

sourced data, and its implementation will be impeded by surveillance and privacy

concerns of end-users [32].

The code-less cross-correlation method rides on the existence of dual spread-

ing codes on the GPS L1 signal. However, this requirement might not be favored by

TRNS providers due to interoperability issues and bandwidth limitation. In addi-

tion, a tenet of the code-less cross-correlation method is the asymmetry created by

the encryption mechanism, which is only possessed by the service provider. How-

ever, this tenet can be shattered by SCER or meaconing attacks [71]. TRNS, on

the other hand, has bi-directional communication between infrastructural monitors,

allowing it to escape from the security ”no-go” theorem of [59] that prevents tra-

ditional GNSS from defeating full-duplex spoofing attacks. Chapter 5 outlines the

merits of autonomous SSA by having mutual observability within TRNS network.
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3.4 Conclusion

Both cryptographic and non-cryptographic techniques represent an overlap-

ping and layered defense against spoofing: receivers should like to identify reliable

signals both by their content and by their context. While these above-mentioned

techniques have been proven to be effective for GNSS, there are challenges to their

implementation for TRNS. However, TRNS comes with a clean-slate waveform

design, and is not constrained by the need of backward compatibility. This offers

TRNS providers flexibility in their application of the latest cryptographic and non-

cryptographic defense techniques—many of which were originally proposed for

GNSS. In this framework, one may envision two types of receivers with differing

needs: mobile users, and infrastructural monitors. Chapter 4 details a multi-tiered

NME + MAC-leavened NMA scheme to counter against unauthorized access and

half-duplex spoofer. Chapter 5 presents an autonomous SSA capability that com-

plements with the cryptographic proposal, and provides a deterrence against SCER

spoofing and meaconing attacks.
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Chapter 4

TRNS Cryptographic Security Design

This chapter presents a cryptographic security design proposal that addresses

the vulnerabilities of TRNS mobile users to two types of adversaries: spoofers and

unauthorized users.

A subscriber is said to have assured PNT from its TRNS network if either

(1) the subscriber’s pseudorange measurements are not substantially affected by the

spoofing signal, or, (2) the spoofing attack is flagged in the event that significant

disruption results from the spoofing signal. The security proposal outlined in this

chapter aspires not only to aid a protected TRNS subscriber in meeting one of these

conditions, but also to enable provision of tiered subscriber segments a la selective

availability.

Broadly, there are two types of spoofing attacks: one in which the adver-

sary forges a valid signal (navigation message and spreading code) similar to that

generated by an authentic transmitter but of different delay and/or content, and the

other in which the adversary simply re-broadcast a signal previously broadcasted

This chapter is based on: Ronnie X.T. Kor, Peter A. Iannucci, Lakshay Narula, and Todd E.
Humphreys. A proposal for securing terrestrial radio-navigation systems. In Proceedings of the
ION GNSS+ Meeting, Online, 2020.
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by an authentic transmitter. Authentication mechanisms such as SCA and NMA

are designed to thwart the first kind of attack. However, neither SCA nor NMA can

defend against the second type of spoofing attack [17]. This chapter focuses on the

design of an NMA scheme with some SCA elements that can provide alerts to the

first type of attack.

At this point, it is true that the GPS P(Y) code in fact uses SCE to prevent

the first kind of spoofing attack. In the special case where the subscriber (e.g., a

SAASM receiver) has a priori access to the spreading code and the symmetric key

but the spoofer does not, SCE can provide authentication. However, this is indefen-

sible in the case of TRNS because a general TRNS subscriber cannot be trusted as

benign. As such, SCE/NME were not proposed as anti-spoofing measures.

With regard to unauthorized usage, it is not possible to prevent the use of

TRNS signal as a signal-of-opportunity, whereby unauthorized users estimate the

position and clock states of the authentic transmitters so that these signals can be

used for localization. Nonetheless, unauthorized use as a signal-of-opportunity is

much more involved when the navigation message is not plainly available. Ac-

cordingly, this chapter proposed the use of NME to limit terrestrial PNT service to

authorized users.

4.1 Selective Navigation Message Encryption

This section considers an adversary that is not a valid subscriber of the

TRNS service, but nevertheless wishes to exploit the service. Data confidentiality

provided by symmetry key encryption is sufficient to defeat this type of adversary.
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Beyond the traditional GNSS NME scheme, which envisions a single segment of

authorized users, this thesis proposes a scheme that can be customized for multi-

ple tiers of subscribers. For example, the highest tier subscribers may decrypt the

full navigation message and access the most accurate transmitter position and clock

states, whereas lower tier subscribers may only decrypt a few most significant bits

of such information.

Fig. 4.1 provides an overview of the proposed encryption scheme. This

scheme is based on the counter mode (CTR) of the block cipher operation, which

is a standard method to generate a pseudo-random keystream from a short shared

secret. The use of this method requires two components: a shared secret key and

a unique initial value (IV). The rest of this sub-section describes a method that

involves tiered distribution of secret keys and the provision of a unique IV.

Each tier of subscription grants access to some subset of the pre-shared se-

crets (PSS) and corresponding encryption bit masks (EBM) used by the system.

Subscribers download these secrets in batches via a secure secondary channel and

store them in their receivers’ non-volatile memory. At each encryption period (e.g.

day of the month), a unique value of PSS = (PSS1,PSS2), is retrieved from stor-

age. PSS1 takes the role of a symmetric key. PSS2 is concatenated with the pseu-

dolite ID (TxID) and time of day (ToD), e.g. GPS or UTC time, to form a unique

IV, from which the block cipher E generates the key stream (KS).

KS = E(PSS1, (TxID ‖ToD ‖PSS2))
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Note that while PSS2 is a not publicly-known in this scenario, this is not

necessary a requirement. The most important consideration here is that the same

key-IV pair must never be re-used. For example, if ToD were chosen to be “seconds

since midnight”, then the same key-IV pair would repeat every 24 hours until a new

PSS pair is retrieved. Accordingly, it must be ensured that ToD does not repeat

faster than the key-swapping period.

A suitable block cipher to be used is AES-128 (Advanced Encryption Scheme,

using block size of 128 bits), which offers an equivalent symmetric-key strength of

128 bits. This symmetric-key strength of 128 bits is recommended by U.S. National

Institute of Standards and Technology (NIST) guidelines for cryptographic security

beyond 2030. The IV to the block cipher has to match its block size. The key

stream KS is combined with the EBM to form the masked key stream MKS. The

EBM enables tiered usage of NME.

MKS = KS ∧ EBM

The masked key stream is then XOR with the ciphertext C to reveal the

plaintext P .

P = MKS⊕ C

Each masked key stream applies to a different set of message bits. A high-

accuracy subscriber, for instance, will be provided with the full suite of pre-shared
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Figure 4.1: Proposed TRNS NME scheme from the perspective of a high-accuracy
service receiver. Note that in the high-accuracy receiver, both mid- and high-
accuracy key streams are computed in order to decrypt the entire message.

secrets, enabling it to reconstruct each of the masked key streams and thus to de-

crypt the entire message. A mid-accuracy subscriber will only be able to recon-

struct the masked key streams protecting the most significant bits of each of the

navigation parameters encoded in the message. Access is further limited to the pe-

riod of a subscription by limiting which days’ pre-shared secrets are provided to

which receivers. (Naturally, such a scheme cannot prevent subscribers from shar-

ing secrets with non-subscribers, beyond what protection is possible through e.g.

software obfuscation. Such insider attacks may call for remedies of a legal, rather

than technical, nature.)

It must be noted that the stream cipher structure (i.e. XOR-based encryp-

28



tion) is not suitable to ensure the authenticity of data. That is, it does not prove that

an incoming navigation message to a TRNS receiver originates from an authentic

TRNS pseudolite, because it is malleable: an attacker can take a valid encrypted

packet (E(M) ‖CRC(E(M))) and XOR it with (X ‖CRC(X)) for any bit string

X , producing a new valid encrypted packet which decrypts to M ⊕X .

More generically, the symmetric structure of this cipher is not suitable to

prevent real-time forgery of encrypted signals by a spoofer who might also, secretly,

be a subscriber with access to the symmetric keys. This type of spoofing attack will

be mitigated with NMA in the next section.

4.2 Combined Data and Signal Authentication

This section presents an NMA method based on the TESLA protocol [64]

that additionally provides limited signal authentication against a half duplex re-

broadcast-type spoofing attack.

Notionally, NMA requires asymmetric cryptography to generate and verify

digital signatures, and thereby to perform data origin authentication. Naı̈ve alter-

natives using symmetric cryptography suffer from the validator-can-spoof problem:

anyone who can validate such a “signature” can also forge one. However, asymmet-

ric cryptography is substantially more costly in both computation and communica-

tion overhead than symmetric cryptography when compared at an equivalent level

of security (i.e. log2 of the number of operations in the best-known attack). For

instance, ECDSA produces signatures whose length in bits is roughly four times

the equivalent security level.
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The TESLA protocol introduced a key innovation that bypassed this dilemma

and enabled the use of lightweight symmetric cryptography for NMA. TESLA in-

volves a form of asymmetry based on the delayed release of symmetric keys. This

protocol has emerged as a strong contender among broadcast authentication pro-

posals for GNSS [22]. The communication overhead of TESLA in bits per authen-

tication epoch is roughly twice the equivalent security level.

4.2.1 Data Authentication

This sub-section considers an adversary attempting to spoof the subscribers

of a TRNS. Importantly, such an adversary may be a highest-tier subscriber, and

hence have access to all symmetric encryption keys. As such, all navigation mes-

sage and spreading code bits, encrypted or otherwise, are known to the adversary.

The authentication design proposed in this thesis relies on the vanilla TESLA

protocol for data-level authentication. Fig. 4.2 describes the key chain and message

authentication code generation per the TESLA protocol. The TESLA protocol pro-

gresses in a reverse direction along a one-way key chain generation, starting with

the root key Kn obtained from the control segment (i.e. subscription server) and

ending with the public key K0 to be dispersed to all subscribers via secondary

channels for bootstrapping. Each downstream key Ki−1 is derived from the up-

stream key Ki using a one-way hash function HA1, and subsequently disclosed in

the ith broadcast message.

Ki−1 = HA1(Ki)
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The specific key corresponding to each epoch Ki is then passed into a dif-

ferent hash function HA2 to generate the input key K ′i for a hash-based message

authentication code (HMAC) function. The authentication code MACi is computed

from the concatenation Mi of all messages in the ith epoch. The reason for hav-

ing a second hash function before HMAC is subtle; interested readers should refer

to [64, Sec. 3.4].

Note that authentication is orthogonal to encryption: the scheme works

equally well in deployments with no encryption at all; in this case, the input Mi

to the HMAC is the plaintext. In either case, the input to the HMAC is whichever

bit string is known to all receivers once forward error correction has been removed.

MACi = trunc(HMAC(K ′i,Mi))

= trunc(HMAC(HA2(Ki),Mi))

Fig. 4.3 shows the process of authentication in an NMA-enabled receiver,

which operates in two phases. During the warm-start phase, the receiver obtains

the first packet Pi = [Mi,MACi, Ki−1] from the broadcast. As MACi cannot be

verified instantaneously without the corresponding Ki, the packet is stored in the

receiver’s memory until the arrival of Ki. However, the first received key Ki−1

can still be validated. This is done by applying Ki−1 through the prescribed chain

of one-way hash functions, and by matching the terminal key from the chain with

the public key K0 obtained from the server. At the next epoch, Ki arrives and

the receiver can transit into the steady-state phase, where it can perform both key

and MAC validation. The MAC generated from passing Mi and Ki into the HMAC
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Figure 4.2: Authentication processes at the TRNS pseudolite, which include one-
way key chain generation, MAC generation, and broadcast packet formation.

function is compared with the broadcasted MACi. The broadcasted MAC is deemed

to be authentic if it matches the locally generated MAC. In addition, the broadcasted

Ki goes through a shorter one-way key hash chain to obtain an output key. Ki is

considered authentic if the output key matches with the previously-validated key

Ki−1. An authentication event (AE) occurs when both components of the MAC-

key pair are deemed to be valid by the NMA scheme.

TESLA’s security draws from the cryptographic strength of the keyed-hash

MAC (HMAC) construction and the one-way key hash chain, both of which depend

on the strength of the underlying hash function, the length of the key, and the size

of the MAC tag. To meet the equivalent key symmetric-key strength of 128 bits for

cryptographic security beyond 2030 [62], SHA-256 is recommended as the hash

function to be used, and the key size is required to be at least 128 bits. NIST

also recommends the size of the MAC tag to be at least 32 bits, to minimize the
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Figure 4.3: Authentication processes within the TRNS receiver, which includes key
validation during bootstrapping, and both key and MAC validation during steady-
state phase.
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occurrence of MAC tag forgery [14]. Hence, the authentication overhead is at least

160 bits per AE. In addition, [10] mentions that the collision resistance of the hash

chain decreases linearly with its length. The length of the key generation chain

should therefore either be appropriately limited, or be circumvented by increasing

the key length at the cost of a higher authentication overhead.

4.2.2 Signal Authentication

The proposed NMA scheme—that is, the TESLA-based MAC-and-key mech-

anism described thus far—only serves to verify the origin of the data. Hence, the

data fields relevant to the PNT calculation, such as the pseudolites’ positions and

timing offsets, are authenticated. However, NMA does not prevent attacks wherein

the spoofer re-broadcasts an authentic TRNS signal.

One type of re-broadcast attack, known as security code estimation and re-

play (SCER), requires the spoofer to measure and estimate the current broadcast

symbol, and then generate and transmit a forged signal with the desired delay. There

is known to be no absolute defense against SCER spoofing in a uni-directional ra-

dionavigation system. However, a mitigating factor is that SCER attacks are some-

what challenging to execute because of the need for the spoofer to full duplex.

In a lower-cost half-duplex attack, the spoofer transmits either intermittently

or in an open-loop fashion, generating the spoofing waveform using only informa-

tion collected while not transmitting. Removing the requirement for nanosecond-

latency real-time bit estimation removes substantial engineering challenges in mount-

ing this attack. However, such a spoofer faces a dilemma when dealing with the

34



unpredictable segments of the broadcast message: it can continue with its open-

loop transmission and make random guesses about the unpredictable bits, thereby

running a high risk of triggering an alarm from NMA; or it can modulate its trans-

mission amplitude to leave an open window for the true signal to pass through.

This is significant, because this modulation is potentially detectable by a clever re-

ceiver, which will raise an alarm. To avoid detection, the spoofer must limit the rate

of change of amplitude and phase variables that it is introducing in between these

open windows. Thus, while the half-duplex spoofer would like to introduce con-

trolled delays (and hence position offsets) into the victim’s delay-locked loop, each

open window forces it to smoothly transition these delay variables back to zero.

This limits the size of possible undetectable offsets. The rest of this section extends

the TESLA-based NMA scheme to maximize the number of open windows that the

half-duplex adversary must deal with, thus providing limited signal authentication.

Since the adversary considered here is potentially a highest-tiered subscriber,

everything but MACi and Ki are already known to the adversary. If the unknown

bits are packaged together at the end of an epoch, as is conventional in data net-

works, the half-duplex adversary is very effective: the only open windows the re-

ceiver can expect are those covering the (infrequent) MAC and key packets; oth-

erwise, the attacker is free to transmit faulty timings provided that they send valid

data.

The key idea introduced in this thesis is to leaven the unpredictable MACi

bits into the navigation message packets such that the time duration between any

two open windows is as short as possible. This process is shown in Figs. 4.4 and
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Figure 4.4: NMA for a TRNS navigation stream. Error detection, forward error
correction, and encryption are not shown. Authentication packets terminate each
authentication epoch, and contain the TESLA key for the previous epoch (red), to-
gether with a message authentication code (green) computed from the preceding
packets in the current epoch. “Watermark” MAC bits (green stripes) are inserted at
fixed positions to frustrate half-duplex spoofing attacks. Note that while authenti-
cation can proceed without all MAC bits, it cannot proceed without all key bits. For
this reason, HMAC output bits (green) may be truncated to trade reduced security
for reduced authentication overhead, but key bits (red) cannot be truncated.

4.5. The watermark bits are placed at predictable positions in the navigation mes-

sage stream so that the receiver can still access the relevant fields for PNT calcu-

lation. The exact locations of these watermark bits are non-critical, as they will be

spread throughout the transmitted waveform by the interleaver. However, the wa-

termarks should be spaced out by at least the constraint length of the convolutional
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Figure 4.5: NMA for a short-packet TRNS navigation stream. Packets may be frag-
mented (e.g. Start, Stop) as required. The schedule of packet types, analogous to
almanac pages in GPS, determines the time-to-first-fix. To improve authentication
robustness, a receiver may re-construct lost packets before computing the MAC if
these packets are known to be repeated verbatim on a set schedule, and at least
one was successfully decoded. Note that a spoofer attempting a downgrade attack
(spoofing a zero bit in the “Encrypted” field) will trigger authentication alarms.

code in order to maximize the number of affected code bits.

The requirement to introduce controlled delays and transition them to zero

before the next open window, together with maximal frequency of open windows,
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limits the adversary’s ability to spoof large position incursions.

The duration between open windows is minimized if all of the MACi and

Ki bits are uniformly distributed across the navigation message. However, note that

while authentication can proceed without all MAC bits, it cannot proceed without

all key bits. Leavening key bits in the navigation message would increase the likeli-

hood of failed authentication due to a packet error containing a key bit. Accordingly,

the proposed protocol leavens only the HMAC output bits to trade reduced security

for reduced authentication overhead. Another consequence of a packet error would

be incomplete recovery of the navigation message bits, which would also preclude

authentication. Fortunately, a receiver may re-construct lost navigation message

bits before computing the MAC if these bits are known to be repeated verbatim on

a set schedule, and at least one was successfully decoded.

Although this elaboration of the proposed NMA scheme provides a degree

of signal authentication, it is not foolproof against all types of spoofing attacks. It

aims for the lesser goal of defeating half-duplex attacks and forcing attackers to turn

to more costly alternatives like SCER. Unfortunately, SCA fares no better against

SCER attacks than the proposed MAC-leavened NMA scheme. As such, use of

exotic signal-level authentication schemes provide no additional advantage.

4.3 Conclusion

In this chapter, this thesis proposed a multi-tiered NME + MAC-leavened

NMA scheme, which provides: (1) selective availability and enhanced data secu-

rity, (2) data authentication, and (3) protection against half-duplex spoofing attacks.
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However, the exposed spreading codes of a high-SNR TRNS signal makes it trivial

to replicate the embedded spreading codes in a SCER or meaconing attack: that

is, NME+NMA cannot fully protect against ultra-low-latency record-and-replay at-

tacks. In addition, the adversary’s receive power advantage renders exotic signal-

level security techniques like SCA or SCE irrelevant. Chapter 5 addresses this gap

in the spoofing defense by augmenting TRNS network with autonomous signal-

situational-awareness.
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Chapter 5

Signal Situational Awareness (SSA)

5.1 Introduction

This thesis aims to augment a terrestrial radionavigation system (TRNS)

with autonomous signal-situational-awareness capability, allowing the TRNS oper-

ator to detect spoofing and meaconing attacks. This addresses the remaining vul-

nerabilities of the technique proposed in Chapter 4 to full-duplex spoofing threats

such as SCER spoofing and meaconing attacks.

5.1.1 Related Work in Signal-Processing-Based Spoofing Detection.

Several techniques proposed in the GNSS literature apply advanced sig-

nal processing algorithms for spoofing detection. Unlike other non-cryptographic

spoofing defenses, the signal processing-based techniques outlined in Subsection

This chapter is based on:
Ronnie X.T. Kor, Peter A. Iannucci, and Todd E. Humphreys. Autonomous Signal-Situational

Awareness in a Terrestrial Radionavigation System. 2021. Submitted for review.
Ronnie X.T. Kor, Peter A. Iannucci, and Todd E. Humphreys. Comprehensive PNT Security for

a Terrestrial Radionavigation System. Navigation, Journal of the Institute of Navigation, 2021. In
preparation..
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3.1.3 can be readily implemented on existing GNSS receivers via a firmware up-

grade, and do not need additional hardware for their operations. They can be cate-

gorized into two classes, one that detects the inception of a spoofing attack, and an-

other that does a brute-force search for all signals in the landscape for post-inception

detection.

As highlighted in Subsection 3.1.3, these signal processing techniques will

be effective for TRNS infrastructural monitors, which can narrowly characterize the

signals in their nominal operating environment. This thesis proposes two signal au-

thentication techniques customized for these monitors, such that a spoofing signal,

with SNR below that of the authentic signal, can be detected even in the presence

of static and dynamic multipath.

5.1.2 Related Work in TRNS Security.

The work presented in this chapter is complementary with the cryptographic

proposal presented in Chapter 4, which focuses on cryptographic techniques for im-

proved navigation security in TRNS. Briefly, Chapter 4 proposes a multi-tiered nav-

igation message encryption (NME) + message authentication code (MAC)-leavened

navigation message authentication (NMA) scheme. One can think of Chapter 4’s

proposal as offering a basic level of security via cryptographic methods. No TRNS

should be fielded without such basic measures.

However, the techniques proposed in Chapter 4 are not sufficient to se-

cure TRNS because the exposed spreading codes of a high-SNR TRNS signals

makes them vulnerable to replication in a SCER or meaconing attack. Conse-
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quently, NME+NMA cannot fully protect TRNS against ultra-low-latency record-

and-replay attacks. Even exotic signal-level security techniques like spreading code

authentication (SCA) [2] or deterministic code-phase dithering [77] can be rendered

ineffective by a spoofer’s ability to access high-power authentic signals in a TRNS

network.

5.1.3 Contributions.

To address the vulnerability to SCER and meaconing attacks, this thesis pro-

poses an autonomous signal-situational-awareness (SSA) overlay capability within

a TRNS network. The SSA capability augments basic TRNS operations with coop-

erative monitoring among nearby beacons. While not all spoofers can be detected

in this way, SSA gives TRNS operators an improved chance of detecting threats and

warning users without resorting to costly full-duplex techniques (those that require

bi-directional communication with users). This type of autonomous SSA would

not be possible for GNSS space vehicles in medium Earth orbit, which can neither

hear each other’s signals nor detect low-power ground-based spoofers. This work

seeks to place TRNS SSA on a solid theoretical and practical footing. First, signal

authentication techniques for SSA are defined and developed. Second, enhance-

ments to these techniques are proposed, that exploit the synergy from combining

measurements across multiple epochs or over multiple monitoring beacons. Third,

simulations with a theoretical model of multipath and spoofing signals are presented

to quantify the effectiveness of autonomous SSA under operating conditions repre-

sentative of those encountered by a generic TRNS.
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5.1.4 Organization of this chapter.

TRNS signal model is introduced in Section 5.2. Section 5.3 details the sig-

nal authentication techniques considered for SSA. Section 5.4 proposes enhance-

ments to autonomous SSA by combining measurements from multiple beacons or

across multiple epochs. Simulation set-up and results are presented in Section 5.5,

and Section 5.6 provides concluding remarks.

5.2 Signal Model

To provide the context for SSA framework proposed in this chapter, the

GNSS signal models outlined in [91] are adapted to describe TRNS pre-correlation

and post-correlation single-interferer scenarios in a multipath environment.

5.2.1 Pre-Correlation Model

An authentic signal exiting a TRNS receiver’s radio frequency (RF) front-

end downconversion chain can be expressed by the following complex baseband

representation:

rA(t) =
√
PAD(t− τA)C(t− τA) exp(jθA) (5.1)

where t is time in seconds, PA is the received power of the authentic signal in watts,

D(t) is the navigation data modulation, C(t) is the spreading code modulation, τA

is the code phase in seconds, and exp(jθA) is the carrier with phase θA in radians.

Without loss of generality, the navigation data modulation is assumed to be unity,

i.e. D(t) = 1.
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Let rS(t) represent a single complex-valued spoofing signal that is struc-

turally identical to rA(t), which can be modeled as

rS(t) =
√
ηSPAC(t− τS) exp(jθS) (5.2)

where ηS = PS/PA is the spoofing power ratio (i.e. the ratio of the spoofing signal

power over the authentic signal power), and τS and θS are the spoofing signal’s code

and carrier phase respectively. Similarly, the ith multipath signal can be modeled

as

rM,i(t) =
√
ηM,iPAC(t− τM,i) exp(jθM,i) (5.3)

where ηM,i = PM/PA < 1 is the multipath power ratio of the ith multipath signal

relative to the authentic signal, and τM,i and θM,i are its code and carrier phase

respectively.

The full received signal model post-attenuation is given by

r(t) = β

[
rA(t) + rS(t) +

NM∑
i=1

rM,i(t)

]
+ rN(t) (5.4)

where β is the fixed attenuation determined by the receiver’s variable attenuator,

NM is the number of multipath signals captured by the receiver, and rN(t) repre-

sents the sum of thermal noise and quantization noise, which is modeled as a white

zero-mean complex-valued Gaussian process with constant spectral density N0.

In the tracking loop of the receiver, the incoming signal r(t) is correlated

with a local replica, which is modeled as

l(t, τ) = Cl(t− τ̂ − τ) exp(jθ̂) (5.5)
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where Cl(t) is the local code replica, τ is an arbitrary code phase lag in seconds,

and τ̂ and θ̂ are the best estimates of the code and carrier phase of the composite

signal r(t).

5.2.2 Post-Correlation Model

The complex-valued accumulation product Sk, which is produced from the

correlation of the incoming composite signal r(t) with the local replica l(t, τ) and

accumulation over an interval T ending at time tk = kT, k ∈ {1, 2, · · · }, is modeled

as [89]:

ξk(τ) = ξAk(τ) + ξSk(τ) +

NM∑
i=1

ξMk,i(τ) + ξNk(τ) (5.6)

where ξAk(τ), ξSk(τ), ξMk,i(τ) and ξNk(τ) are the complex correlation function

components corresponding to the authentic signal, spoofing signal, multipath sig-

nals and thermal noise respectively as shown in Fig. 5.1.

The correlation components ξAk(τ), ξSk(τ) and ξMk,i(τ) can be modeled as

ξAk(τ) =
√
PAkR(τ) exp(j∆θ̃Ak)

ξSk(τ) =
√
ηSkPAkR(−∆τ̃Sk + τ) exp(j∆θ̃Sk)

ξMk,i(τ) =
√
ηMk,iPAkR(−∆τ̃Mk,i + τ) exp(j∆θ̃Mk,i)

where PAk, ηSk and ηMk,i are the average values of PA, ηS and ηM,i respectively

over the kth accumulation interval, ∆τ̃Sk is the average value of τS − τ̂ over the ac-

cumulation interval, with similar definitions for ∆τ̃Mk,i, ∆θ̃Ak, ∆θ̃Sk and ∆θ̃Mk,i.

Note that ∆τ̃Ak = 0, based on the assumption that the path delay between the
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Figure 5.1: Components of the triangular-shaped post-correlation function made up
of an authentic signal (blue), its static (green) and dynamic (magenta) multipath,
and a weak spoofing signal (red). The amplitude and phase angle of each individual
components are relative to that of the local replica l(t, τ).

transmitter and monitoring receiver is accurately known a priori for secure syn-

chronization [59]. The correlation function R(τ) = E[C(t)Cl(t− τ)] approximates

the interaction between C(t) and Cl(t) over the correlation and accumulation oper-
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ations:

R(τ) ≈ 1

T

∫ tk

tk−1

C(t)Cl(t− τ)dt

5.2.3 Hypothesis Testing Framework

This thesis adopts a Bayesian binary hypothesis framework for distinguish-

ing between the null hypothesisH0 for the spoof-free case, and the alternate hypoth-

esis H1 for the spoofing case. In a Bayesian formulation of this binary hypothesis

testing problem, the parameter vector φ is viewed as a random quantity Φ, having

density w(φ), with πl , P (Φ ∈ Λl) being the prior probability that Φ falls in Λl.

Subsection 5.2.2 reveals three parameters relevant to describe the parameter vector

φ: signal power ratio η, code and carrier offsets ∆τ , τ − τA and ∆θ , θ − θA of

all signal components:

φ =
[
(η,∆τ,∆θ)S , (η,∆τ,∆θ)M1

. . . (η,∆τ,∆θ)MNM

]T
where ∆τS , τS − τA with similar definition for ∆τMi

, and ∆θS , θS − θA with

similar definition for ∆θMi
, i = {1, 2, · · · , Nm}. The vector φ is assumed to lie

in the parameter space Λ that can be divided into disjoint parameter sets Λ0 and Λ1

corresponding to H0 and H1 hypotheses respectively.

In what follows, we will define all of the quantities rigorously. Fig. 5.2

shows the dependence relationship between all these quantities as a directed graph-

ical model.

The conditional density of Φ given that Φ ∈ Λl is denoted as wl(φ), which
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φ =
[
(η,∆τ,∆θ)S , (η,∆τ,∆θ)M1...NM

]T
ηMi ∆τMi ∆θMi∆θS∆τSηS

ξzk(τ) nk

zk ξ̂Dk(τ)

µ̂k

L∗GLRT = µ̂T
kP
−1zk

1{L∗
GLRT>ν

∗
GLRT}

L∗AT = zTk P
−1zk

1{L∗
AT>ν

∗
AT}

Figure 5.2: Directed graphical model showing the conditional dependence between
parameters. The grey box denotes the parameter set, yellow ellipses are the random
variables, green boxes are the observations, cyan boxes are the estimates, orange
boxes are the test statistics, and red boxes represent indications of detection.

is defined as

wl(φ) =

{
0 φ /∈ Λl

w(φ)/πl φ ∈ Λl

This thesis proposes to decide between the two hypotheses based on the
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observed correlation deviation function zk at each tk, which will be detailed in

Section 5.3. The observation zk, which resides in the observation set Γ, can be

modeled as a random variable Zk with conditional density p(zk|φ). Hl is defined

as the hypothesis that Zk is distributed as p(zk|Φ ∈ Λl), l ∈ {0, 1}.

A decision rule δ(zk) is a partition of Γ into disjoint decision regions Γl,

l ∈ {0, 1}, such that Hl is chosen when zk ∈ Γl:

δ(zk) =

{
0 if zk ∈ Γ0

1 if zk ∈ Γ1

(5.7)

To find the optimal rule δ, Λl and wl(φ) have to be defined by the physical

characteristics and limitations of each signal. In particular, the conditional distri-

bution of wl(φ) are formed from the marginal conditional density of the multipath

signals’ parameters (wηMi
(x), w∆τMi

(x) and w∆θMi
(x)) and the spoofing signal’s

parameters (wηS(x), w∆τS(x) and w∆θS(x)). The remainder of this subsection de-

scribes the marginal distributions of these parameters.

This thesis adopts the empirical model of the multipath signal presented

in [91, Sec. III], which is derived from the analysis on simulations using the Land

Mobile Satellite Channel Model (LMSCM) [48]). In this empirical model, the rel-

ative phase ∆θMi
is uniformly distributed on [0, 2π) and independent of ηM1 and

∆τMi
, and there is a significant correlation between the parameters ηMi

and ∆τMi
,

with a linear correlation coefficient of approximately ρ = −0.26. wηMi
(x) is log-

normally distributed with a mean of−21 dB and a standard deviation of−5 dB and

has a supremum ηM = 1, consistent with the statistical model derived by [87]. As
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for the marginal distribution w∆τMi
(x), it is modeled as an exponential distribution:

w∆τMi
(x) =

1

µ
exp

(
−x
µ

)
, x ≥ 0

with µ being a quadratic function of the received signal’s elevation angle αe,

µ = 0.012α2
e − 2.4αe + 134

where ∆τ and αe are expressed in nanoseconds and degrees respectively. This

distribution is consistent with that in [84], with an upper-bound ∆τM = 2τc, where

τc is the chip interval of the spreading code C(t). In our study, the worst-case

effect of the multipath signal without severe shadowing is considered, such that the

elevation angle αe is assumed to be 0◦.

As for the spoofing signal, we consider the case where the power of the

spoofing signal is below that of the authentic signal, with the ratio of the spoofing

signal power over authentic signal power termed as spoofing power ratio. wηS(x)

is modeled as a log-normal distribution with a mean of ηS ≤ 1 and a standard

deviation of 1 dB. w∆θS(x) is uniformly distributed over the interval [0, 2π) (similar

to the multipath signals). Unlike [91] where w∆τS(x) is modeled as a carry-off-type

spoofing, the detector in this thesis is designed to expose any potential spoofer in the

signal landscape using a wide correlation window τw, therefore w∆τS(x) is modeled

as uniform over the interval [−τw/2,+τw/2].

Under the spoofer-free H0 case, the parameter set Λ0 is defined as

Λ0 = {φ ∈ Λ|ηS = 0}
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whereas for the spoofing hypothesis H1, the parameter set Λ1 is

Λ1 = {φ ∈ Λ|0 < ηS ≤ 1}

The thermal noise component ξNk(τ) has independent in-phase and quadra-

ture components, each being modeled as a zero-mean Gaussian white discrete-time

process:

E [R {ξNk(τ1)} I {ξNj(τ2)}] = 0 ∀ k 6= j

As discussed in [88], withC(t) being pseudorandom, only samples of ξNk(τ)

within 2τc of each other are correlated:

E [ξNk(τ1)ξ∗Nk(τ2)] =

{
2σ2

n(1− |τ1−τ2|
τc

), |τ1 − τ2| ≤ 2τc

0 |τ1 − τ2| > 2τc

where * indicates the complex conjugate, and σ2
n = N0

2T
is the variance of the in-

phase and quadrature components of ξNk(τ) with constant spectral density N0.

5.3 Signal Authentication

Consider a TRNS monitoring beacon listening to a transmitting TRNS bea-

con at a distance d away, with its post-correlation output described by Eq. 5.6.

There will typically be a significant number NM of multipath components evident

in the post-correlation function ξk(τ), but due to the quasi-static nature of the urban

environment, the variation in ξk(τ) will be small within an accumulation interval.

These variations are caused by: (1) thermal noise, (2) time-varying receiver non-

idealities, and (3) urban environment movement. The first two factors are modeled
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by the additive white Gaussian noise rN(t), while the third factor can be modeled

as a dynamic multipath component. Revisiting Eq. 5.6, each multipath components

can be further segregated into a static ξMs(k,i) and a dynamic ξMd(k,i) components:

NM∑
i=1

ξM(k,i)(τ) =

NM∑
i=1

ξMs(k,i)(τ) + ξMd(k,i)(τ) (5.8)

Let l be the number of signal taps across the correlation window of interest

τw, with the center-most tap being aligned with the receiver’s estimated correlation

function peak of the authentic signal and the remaining taps being evenly spaced

across the correlation window τw. The uniform tap interval is

∆δ =
τw
l − 1

and the l × 1 vector of tap locations is given by

δ =
[
−τw

2
,−τw

2
+ ∆δ, · · · , τw

2
−∆δ,

τw
2

]T
with δi = − τw

2
+ (i− 1)∆δ representing the ith tap location, i = 1, · · · , l.

The post-correlation function ξk(τ) = Ik(τ) + jQk(τ) can be viewed as

having an in-phase component Ik(τ) and a quadrature component Qk(τ). The post-

correlation function evaluated at all tap locations can be stacked into a single corre-

lation measurement vector:

qk =
[
Ik
(
− τw

2

)
, · · · , Ik

(
τw
2

)
, Qk

(
− τw

2

)
, · · · , Qk

(
τw
2

)]T (5.9)

A hypothesis test for signal anomaly detection can be formulated in terms

of the change in the distributions of qk due to an additional signal component or
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components. Let p0(qk) and p1(qk) be the distribution of qk under the null (H0)

and alternate (H1) hypotheses respectively, with H0 and H1 previously defined in

Subsection 5.2.3.

The measurement qk can be further dissected into its individual compo-

nents:

H0 : qk = q̄ +wk (5.10a)

H1 : qk = q̄ + µk +wk (5.10b)

where q̄ = E(qk) is the mean of the correlation measurement vector qk measured

under H0, andwk ∼ N(0, P ) is the measurement noise. P = E[(qk− q̄)(qk− q̄)T]

is the covariance of qk under H0, which describes properties of the dynamic multi-

path, thermal noise, and receiver non-idealities. UnderH1, there exists a correlation

distortion vectorµk that is a function of the signal anomaly’s code and carrier offset

∆τDk and ∆θDk respectively, scaled by the amplitude of this signal εDk > 0. µk

will be detailed in Subsection 5.3.2. In the case of a successful detection, the pa-

rameters of the signal anomaly (amplitude and code and carrier offset) match those

of the spoofing signal, whereas in the case of a false alarm, they match those of

dynamic multipath.

The hypotheses H0 and H1 can be expressed in terms of probability distri-

butions as follows, where p0(qk) is modeled as a Gaussian distribution with a mean

of q̄ and covariance P , and p1(qk) has the same distribution but with an unknown
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deviation to the mean:

H0 : qk ∼ N(q̄, P ) (5.11a)

H1 : qk ∼ N(q̄ + µk, P ) (5.11b)

This model conservatively assumes that the covariance of qk, P , is identical under

both H0 and H1. A spoofing signal can can introduce additional time variation in

ξk(τ) due to its own dynamic multipath, which can inflate P in the positive definite

sense. However, it is impossible to know the increase in the magnitude of P a

priori, so a less-sensitive model of having a constant P is assumed.

Suppose one subtracts the static components of ξk(τ). This is analogous

to performing nominal signal cancellation in the correlation domain by remov-

ing ξAk(τ) and
∑NM

i=1 ξMs(k,i)(τ). Then the correlation deviation function ξzk(τ) =

Izk(τ) + jQzk(τ) can be obtained:

ξzk(τ) = ξSk(τ) +

NM∑
i=1

ξMd(k,i)(τ) + ξNk(τ) (5.12)

Let

zk , qk − q̄ =
[
Izk
(
− τw

2

)
, · · · , Izk

(
τw
2

)
, Qzk

(
− τw

2

)
, · · · , Qzk

(
τw
2

)]T
be the vector of this correlation deviation function sampled at the tap locations. The

model in Eq. 5.11 can now be redefined as

H0 : zk ∼ N(0, P ) (5.13a)

H1 : zk ∼ N(µk, P ) (5.13b)
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The model in Eq. 5.13 is a special case of the general Gaussian problem [90]

for which the optimal test L(zk) can be reduced to

L(zk) = zTk P
−1zk − (zk − µk)TP−1(zk − µk)

H1

≷
H0

ν (5.14)

where ν > 0 is the threshold that yields the chosen probability of false alarm PF

given the distribution of L(zk) under H0.

This thesis tackles this problem using two different techniques. The first

technique, Anomaly Test (AT), simply looks at the fit of the observation zk to the

H0 distribution by considering only the first term of Eq. 5.14. The second technique,

Generalized Likelihood Ratio Test (GLRT), estimates µk from the observations zk

to form the detection statistic L(zk) for the hypothesis test. These two techniques

will be elaborated in their respective subsections.

5.3.1 Anomaly Test (AT)

Consider the optimal test in Eq. 5.14, which can be simplified by evaluating

just the likelihood of the p0(zk) distribution:

L∗AT(zk) = zTk P
−1zk

H1

≷
H0

ν∗AT (5.15)

where ν∗AT > 0 is the threshold that yields the chosen PF given the p0(zk) distribu-

tion.

This technique can be used to detect any changes from the nominal signal

landscape due to the presence of RFI. Due to its low computational needs, it is

favorable for round-the-clock surveillance of the signal landscape. However, it does
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not glean any insight into the characteristics of the spoofing signal, unlike the GLRT

detector, which will be elaborated in the next subsection.

5.3.2 Generalized Likelihood Ratio Test (GLRT)

The set of correlation distortion parameters {εDk,∆τDk,∆θDk} is first es-

timated using a modified maximum-likelihood (ML) technique proposed in [20].

The estimator derived from this ML technique can detect any anomalous signal

over a wide range of spoofing-to-authentic code offsets. This subsection details the

adaptation of this estimator for TRNS spoofing detection.

The complex-valued ith tap of the correlation distortion function at time

index k, ξDk(τ) , IDk(τ) + jQDk(τ) is expressed in terms of its amplitude εDk,

code phase offset ∆τDk and carrier phase offset ∆θDk as

ξDk(δi) = εDkR(δi −∆τDk) exp(j∆θDk) + ξNk(δi) (5.16)

The correlation distortion vector µk is similarly obtained by stacking the

correlation distortion function from multiple taps:

µk =
[
IDk

(
− τw

2

)
, · · · , IDk

(
τw
2

)
, QDk

(
− τw

2

)
, · · · , QDk

(
τw
2

)]T (5.17)

The estimation of the correlation distortion’s code phase offset can be sepa-

rated from the estimation of its amplitude and carrier phase offset by exploiting the

linear relationship

ξDk = H(∆τDk, δ)εDk exp(j∆θDk) (5.18)
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where ξDk = [ξDk(δ1), · · · , ξDk(δl)]T and the observation matrix H(∆τDk, δ) is

H(∆τDk, δ) =

R(δ1 −∆τDk)
...

R(δl −∆τDk)

 (5.19)

A coarse search is first performed by setting the code phase estimate ∆τ̂Dk =

δi for i = 1, · · · , l and solving for the ML estimate of εDk exp(j∆θDk) for each

candidate ∆τ̂Dk:

ε̂Dk exp(j∆θ̂Dk) =[
HT(∆τ̂Dk, δ)Q−1H(∆τ̂Dk, δ)

]−1
HT(∆τ̂Dk, δ)Q−1ξzk

(5.20)

where Q is the l × l Toeplitz matrix that accounts for the correlation of the com-

plex Gaussian thermal noise among the taps [6], and ξzk = ξzk(δ) is the vector

of correlation deviation function from all signal taps. The (a, b)th element of Q is

Qa,b = R(|a− b|∆δ), where ∆δ is the tap spacing.

The cost Jk corresponding to each set of estimates
{
âDk,∆τ̂Dk,∆θ̂Dk

}
is

calculated as

Jk = ‖ξzk −HT(∆τ̂Dk, δ)ε̂Dk exp(j∆θ̂Dk)‖2
Q (5.21)

where the norm is defined such that ‖x‖2
Q = xTQ−1x. The cost Jk is proportional

to the negative log-likelihood function, so the set with the minimum cost is the ML

estimate.

A bisecting search is then performed to obtain a refined code phase estimate

using linear interpolation. At each bisection point, new amplitude and carrier phase

estimates are determined by re-evaluating Eq. 5.20. The process is repeated until
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Jk converges, and the resulting estimates are accepted as the maximum-likelihood

estimate
{
ε̂Dk,∆τ̂Dk,∆θ̂Dk

}
. This estimate can correspond to the signal charac-

teristics of the dynamic multipath, spoofing signal, or thermal noise, depending on

their relative signal amplitude and code offset. Fig. 5.3 shows an example scenario

in which the signal characteristics of the ML estimate ξ̂Dk(τ) matches that of the

spoofing signal ξSk(τ) rather than the dynamic multipath ξMd(k,i)(τ). The larger

code offset of the spoofing signal skews the ML estimate more than the higher sig-

nal power of the dynamic multipath.

The maximum-likelihood estimate of the correlation distortion function can

be computed as

ξ̂Dk(τ) , ÎDk + jQ̂Dk (5.22)

= ε̂DkR(−∆τ̂Dk + τ) exp(j∆θ̂Dk) (5.23)

where the correlation distortion vector

µ̂k =
[
ÎDk

(
− τw

2

)
· · · ÎDk

(
τw
2

)
Q̂Dk

(
− τw

2

)
· · · Q̂Dk

(
τw
2

)]T
is obtained to evaluate the optimal test of Eq. 5.14.

Since both p0(zk) and p1(zk) are assumed to have the same covariance P ,

the optimal test in Eq. 5.14 can be reduced to

L′(zk) = µ̂T
kP
−1zk

H1

≷
H0

ν ′ (5.24)

where ν ′ > 0 is the threshold that yields the chosen PF based on the distribution of

L′(zk) under H0.
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Figure 5.3: The measured correlation distortion function ξDk(τ) (black dashed line)
and its ML estimate ξ̂Dk(τ) (solid black) from an example scenario, shown in their
in-phase components. The dotted black line corresponds to the delay of the authen-
tic signal τA. Note that ξ̂Dk(τ) has a closer match to ξSk(τ) (red) than to ξMk(τ)
(magenta), which implies that the estimated correlation distortion function is a good
representation of the spoofing signal’s complex correlation function.

Analysis can be further simplified by letting za,k = R−Ta zk and µa,k =

R−Ta µk, where Ra is the Cholesky factorization of P . The optimal test then be-

comes

L∗GLRT(za,k) = µ̂T
a,kza,k

H1

≷
H0

ν∗GLRT (5.25)

which implies a correlation-and-accumulation structure, with ν∗GLRT being the thresh-

old derived from the H0 distribution using a chosen PF . The full procedure is sum-

marized in Algorithm 1.

This technique is sub-optimal, as the quality of the detector depends on

the quality of the estimated parameters {εDk,∆τDk,∆θDk} from ML estimation.

Nonetheless, it is effective in discerningH1 fromH0 for TRNS spoofing detection.
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Algorithm 1: Multi-Tap Maximum-Likelihood Correlation Func-
tion Estimator (reproduced with permission from [20]), which takes
in the correlation deviation function ξzk and outputs the ML estimate
of its amplitude, code phase and carrier offset

{
ε̂Dk,∆τ̂Dk,∆θ̂Dk

}
.

Input : ξzk
Output:

{
âDk,∆τ̂Dk,∆θ̂Dk

}
1 for i = 1:l do
2 ∆τ̂Dk = δi

3 ε̂Dk exp(j∆θ̂Dk) =
[
HT(∆τ̂Dk, δ)Q−1H(∆τ̂Dk, δ)

]−1
HT(∆τ̂Dk, δ)Q−1ξzk

4 Jk,i = ‖ξzk −HT(∆τ̂Dk, δ)ε̂Dk exp(j∆θ̂Dk)‖2Q
5 end
6 ∆τ̂Dk,min = argmin(Jk)
7 ∆τ̂Dk,min2 = argmin(Jk 6= Jk,min)

8 while Jk,min2 > Jk,min do
9 ∆τ̂Dk,b =

∆τ̂Dk,minJk,min2+∆τ̂Dk,min2Jk,min

Jk,min+Jk,min2

10 ε̂Dk exp(j∆θ̂Dk) =[
HT(∆τ̂Dk,b, δ)Q−1H(∆τ̂Dk,b, δ)

]−1
HT(∆τ̂Dk,b, δ)Q−1ξzk

11 Jk,b = ‖ξzk −HT(∆τ̂Dk,b, δ)ε̂Dk exp(j∆θ̂Dk)‖2Q

12 if Jk,b < Jk,min2 then
13 Jk,min2 = Jk,b
14 ∆τ̂Dk,min2 = ∆τ̂Dk,b
15 end
16 end
17
{
ε̂Dk,∆τ̂Dk,∆θ̂Dk

}
= argmin(Jk)
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5.4 SSA Enhancements

Section 5.3 talks about a ‘single-shot’ detector that uses either signal authen-

tication techniques, where the detection statistics are derived from a short accumu-

lation interval (e.g. 1 ms) in each monitoring beacon. There exists a threshold for a

single monitor, beyond which a spoofer might be too weak to be detected in a single

experiment. However, this spoofer will be visible to TRNS operator if information

about the spoofer are gathered from multiple perspectives of the signal landscape,

or over a longer observation period. This section presents two enhancements to

the detection performance of autonomous SSA: (1) coherently or non-coherently

combine measurements over a longer accumulation interval, and (2) combining de-

tection statistics from multiple monitoring beacons at the same epoch. These en-

hancements are orthogonal to each other, and can work in tandem to improve SSA

detection performance at low spoofing power ratio.

5.4.1 Joint Detection across Multiple Epochs

One can lower the detection threshold by combining measurements across

multiple epochs. These measurements can be summed coherently or non-coherently,

depending on the signal dynamics.

Coherent Integration. Assuming that each components of ξzk(τ) do not vary over

multiple accumulation intervals, the measured distortion vector zk can be summed

coherently to form a new measurement vectorZ =
(∑Ncoh

k=1 zk

)
. In the AT, the new
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test statistic L∗AT,coh becomes

L∗AT,coh(Z) = ZTP−1Z
H1

≷
H0

ν∗AT,coh (5.26)

where ν∗AT,coh is the threshold that yields a user-chosen PF , based on the distribution

of L∗AT,coh(Z) under H0.

For the GLRT, a single combined correlation distortion M̂ is similarly es-

timated from Z using the ML estimation outlined in Subsection 5.3.2, and then

combined with Z to form the test statistic L∗GLRT,coh:

L∗GLRT,coh(Z) = M̂TP−1Z
H1

≷
H0

ν∗GLRT,coh (5.27)

with ν∗GLRT,coh being the threshold based on the distribution of L∗GLRT,coh(Z) under

H0 that meets the user-chosen PF .

Non-coherent Integration. In the case where the individual components of ξzk(τ)

are distinct in each accumulation interval, the test statistic computed in each epoch

can instead be non-coherently combined to form a new test statistic. In the case of

AT, the new test statistic L∗AT,ncoh is

L∗AT,ncoh =

Nncoh∑
k=1

L∗AT(zk)
H1

≷
H0

ν∗AT,ncoh (5.28)

where ν∗AT,ncoh is the threshold that meets a chosen PF , based on the distribution of

L∗AT,ncoh under H0.

Revisiting Eq. 5.14 and re-arranging terms, the test statistic at each epoch

can be defined as

L∗GLRT(za,k) = µT
a,kza,k + µT

a,kµa,k (5.29)
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The new test statistic L∗GLRT,ncoh from non-coherent combination of statistics

from multiple epochs is

L∗GLRT,ncoh =

Nncoh∑
k=1

L∗GLRT(zk)
H1

≷
H0

ν∗GLRT,ncoh (5.30)

with ν∗GLRT,ncoh being the threshold based on the distribution of L∗GLRT,ncoh under H0

that meets the user-chosen PF .

5.4.2 Joint Detection using Multiple Monitoring Beacons

The existence of bi-directional communication between monitoring bea-

cons in a TRNS network allows these beacons to mutually share information about

the signal landscape, using either peer-to-peer or client-server architecture. This

method enhances TRNS network’s detection performance, allowing the network to

expose a spoofer at a much lower spoofing power threshold than what is achievable

using a signal monitoring beacon. This subsection outlines the modification of AT

and GLRT for this purpose.

Anomaly Test Network Detector. For the anomaly test detector, the test statistics

from multiple beacons are summed to form a network test statistic LAT
k,net:

LAT
k,net =

Nbeacon∑
j=1

Lk,j
H1

≷
H0

ν∗net

where ν∗net > 0 is the threshold that yields the chosen PF based on the distribution

of LAT
k,net under H0.

GLRT Network Detector. The GLRT network detector takes a joint estimation-

detection approach, where the detection of the spoofer is conditional on the maximum-

likelihood estimation of the spoofer’s position and clock bias. First, the cost of the
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spoofer at each tap corresponding to each jth monitoring beacons is calculated

based on their correlation distortion observation ξzk,j:

Jk,j = ‖ξzk,j −HT(∆τ̂Dk,j, δ)âDk,j exp(j∆θ̂Dk,j)‖2
Q (5.31)

The TRNS network pre-defines a grid of possible spoofer’s position (x, y)

and an array of possible spoofer’s clock bias dt. At each point (x, y, dt) in this

grid, there is one particular correlator output i that corresponds to the geometric

and secular delay of the spoofer τk,j observed by the beacon, which correspond to

the cost Jk,j(∆τ̂Dk = τk,j). Combining the likelihood costs from all beacons gives

a score for that point,

Jnet,k(x, y, dt) =

Nbeacon∑
j=1

Jk,j(∆τ̂Dk = τk,j) (5.32)

and the lowest score gives the GLRT hypothesis for the spoofer’s location and clock

bias (x̂, ŷ, d̂t).

Using this ML estimate, the correlation distortion vector µ̂k,j for each bea-

con j can be calculated using Eq. 5.23, and the network-wide test statistic LGLRT
k,net

is

LGLRT
k,net =

Nbeacon∑
j=1

Lk,j =

Nbeacon∑
j=1

(
µ̂Tk,jP

−1
j zk,j + µ̂Tk,jP

−1
j µ̂k,j

)H1

≷
H0

ν∗net (5.33)

where ν∗net is the threshold that meets a chosen PF , based on the distribution of

LGLRT
k,net under H0. Algorithm 2 outlines the pseudo-code for the joint estimation-

detection approach of the GLRT network detector.
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Algorithm 2: Multi-Beacon Multi-Tap Maximum-Likelihood Cor-
relation Function Estimator

Input : ξzk,1, ξzk,2, · · · , ξzk,N
Output:

{
âDk,∆τ̂Dk,∆θ̂Dk

}
, LGLRT

k,net

1 for j = 1:Nbeacon do
2 for i = 1:l do
3 ∆τ̂Dk,j = δi

4 âDk,j exp(j∆θ̂Dk,j) =[
HT(∆τ̂Dk,j , δ)Q−1H(∆τ̂Dk,j , δ)

]−1
HT(∆τ̂Dk,j , δ)Q−1ξzk,j

5 Jk,ij = ‖ξzk,j −HT(∆τ̂Dk,j , δ)âDk,j exp(j∆θ̂Dk,j)‖2Q
6 end
7 end

8 for x = xmin:xmax do
9 for y = ymin:ymax do

10 for dt = dtmin:dtmax do
11 for j = 1:Nbeacon do
12 τk,j = diffRange(x,y,dt)

c τc

13 Jnet,k(x, y, dt) = Jnet,k(x, y, dt) + Jk,j(∆τ̂Dk = τk,j)

14 end
15 end
16 end
17 end
18
{
x̂, ŷ, d̂t

}
= argmin(Jnet,k)

19 for j = 1:Nbeacon do
20 ∆τ̂Dk,j = diffRange(x̂,ŷ,d̂t)

c τc

21 âDk,j exp(j∆θ̂Dk,j) =[
HT(∆τ̂Dk,j , δ)Q−1H(∆τ̂Dk,j , δ)

]−1
HT(∆τ̂Dk,j , δ)Q−1ξzk,j

22 ξ̂Dk,j(τ) , IDk,j + jQDk,j = âDk,jR(−∆τ̂Dk,j + τ) exp(j∆θ̂Dk,j)

23 Lk,j = µ̂Tk,jP
−1
j zk,j + µ̂Tk,jP

−1
j µ̂k,j

24 end
25 LGLRT

k,net =
∑Nbeacon
j=1 Lk,j ≷

H1

H0
ν∗net
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5.5 Simulations

The AT and GLRT spoofing detectors were tested in simulation under dif-

ferent scenarios. The following subsections outline the simulation setup, and the

performance of the detectors under different operating conditions (different trans-

mitter power level and receiver sensitivity range) and with the use of joint detection

techniques outlined in Section 5.4.

5.5.1 Simulation Setup

Fig. 5.4 shows the simulation setup that was used for all test cases involving

a single monitoring beacon. In each run, the spoofer power was set to reflect the

spoofing power ratio (i.e. ratio of the spoofing power versus the authentic signal

power) at the receiving beacon. A path loss exponent α of 3 was used to reflect a

generic urban environment of the TRNS beacons [72]. The monitoring receiver’s

antenna experiences an ambient temperature T of 290 K, and has a front-end band-

width B of 20 MHz. 10000 runs were conducted during the calibration phase using

H0 distribution, which is made up of 1 authentic signal, 8 static multipath and 1

dynamic multipath. Each post-correlation function ξk(τ) is computed across a cor-

relation window of 20 chips from 1 ms of signal accumulation. The test statistics

collated during calibration were used to compute the thresholds for each detector,

based on a probability of false alarm PFA of 1 in 1000. 2000 runs were then con-

ducted during the trial phase, with an additional spoofing signal in the landscape,

to determine the probability of detection PD of the spoofing signal at each spoof-

ing power ratio. The distributions of all the signal components were outlined in
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Subsection 5.2.2.

Figure 5.4: Simulation setup used for all test cases. The transmitting beacon and the
spoofer are located 10 km and 2 km away from the monitoring beacon respectively.
The top plot shows the amplitude of the authentic and spoofing signals over a 10 km
by 4 km grid, both of which are above the noise floor of the receiver.

5.5.2 Detector Comparison

Figs. 5.5 show the performance of the AT and GLRT detectors, respectively,

at a beacon transmit power of 30W. Each detector is simulated both with and with-

out a dynamic multipath component. In each of these 4 cases, the condition under

which the detector is trained and the condition under which it is evaluated is the

same. It is no surprise that the confounding influence of dynamic multipath reduces
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Figure 5.5: Simulation results for AT detector, without dynamic multipath (No DM)
and with dynamic multipath (DM). For discussion on the long-tail distribution on
the right, see Subsection 5.5.2. While the DM curve of GLRT appears similar to
that of AT, it exhibits differences at the 5% level in the vicinity of the threshold.

the performance of each detector. Absent dynamic multipath, the GLRT exhibits a

sensitivity advantage of roughly 5 dB. Under dynamic multipath, neither detector

exhibits a significant advantage: the GLRT’s 50% sensitivity threshold is 0.13 dB

better (i.e. lower) than that of the AT.

In the dynamic multipath cases, each detector exhibits a sharp threshold and

a long tail of false negatives. The region to the left of the threshold is dominated

by noise. In this regime, PD improves with increasing spoofing power ratio as

the spoofing power approaches a noise floor at the receiver. To the right is the

multipath-dominated region. Here, a false negative rate of 10% narrows towards

zero with increasing spoofing power ratio. This occurs because, as discussed in

Subsection 5.2.2, the spoofer’s simulated code phase may coincide with the window

of correlator output taps that are effectively desensitized by dynamic multipath.
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Due to the particular parameters used, this occurs 10% of the time. At high enough

spoofing power ratio, this desensitization no longer prevents detection.

5.5.3 Different Levels of Transmitter Power
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Figure 5.6: Simulation results of the GLRT detector under different transmitter
power level.

Fig. 5.6 shows the detection performance of the GLRT detector under differ-

ent authentic transmitter power levels. Each simulated detection has access to only

1 ms of signal. Considering transmit power levels running upwards from -70 dBW,

detection performances improves at all spoofing power ratios until the detector ex-

hibits a saturation effect at a transmit power level of 10 dBW. Note that the spacing

between adjacent curves is not uniform with transmit power level.

In order to interpret the saturation and non-uniform spacing effects, one

may recast these observations in terms of received power (not spoofing power ratio)

versus transmitted power. However, in order to do this, one must choose a single

point on the PD curve to summarize detector performance at a particular transmit
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Figure 5.7: Simulation results of the GLRT detector under different transmitter
power, showing the 50% detection sensitivity curve with 3-bit quantization in the
presence of dynamic multipath. Notice that the GLRT detector has a 23 dB detec-
tion advantage in the absence of dynamic multipath, which is also shown in Fig. 5.5.
This advantage diminishes with lower spoofing power ratio as thermal noise domi-
nates.

power level. In Fig. 5.7, this point is arbitrarily chosen to be the 50% detection

threshold. That is, at any given transmit power level, Fig. 5.7 shows the received

power corresponding to a 50% rate of detection of the spoofer by the monitoring

receiver.

Fig. 5.7 suggests that the saturation and non-uniform spacing phenomena

in Fig. 5.6 indicate the presence of 3 quantitatively distinct regimes, in order from

right to left:

I: Quantization noise power PQ dominates over thermal noise PN at the re-
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ceiver, where PN = SnnB is the noise power over a channel bandwidth B

and Snn being the noise spectral density. Furthermore, the sensitivity thresh-

old PI is greater than PN .

II: Thermal noise dominates over quantization noise and the detection threshold

is comparable to the thermal noise level, PI ≈ PN .

III: Thermal noise still dominates and the spoofing signal is only detectable post-

correlation (PI � PN ).

Naturally, if PI > PA, then we are “in clover”: detection is not challenging!

Receiver Front-End Details The boundary between Regions I and II is sensitive

to the behavior of the programmable gain amplifier (PGA) in the monitoring re-

ceiver. One common model for a quantizing receiver is to build a variable attenuator

followed by a fixed-gain amplifier before the signal reaches the analogue-to-digital

converter (ADC). In order to avoid saturating the ADC, that is, exceeding its input

voltage range, the variable attenuator is commanded to reduce the power from the

antenna according to the statistics of the ADC output in a feedback loop. In Fig 5.6,

the PD curves begin “stacking up” when the transmit power becomes high enough

to enter Region I: that is, when additional transmit power must be exactly offset

by increased attenuation in the receiver. In this regime, thermal noise is negligi-

ble compared to quantization noise, which tracks with transmitter power. Thus, in

Region I, the slope of the 50% detection curve in Fig. 5.7 is unity. Increasing the

transmitter power in Region I does not improve PD because the variable attenuator
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is forced to further suppress the incoming signal by the same amount, leading to no

net increase in sensitivity.

In Region II, there is no suppression of the incoming signal by the variable

attenuator, as all received signals are within the sensitivity range of the ADC at

full PGA gain. Assuming as in Section 5.3 that cancellation of the authentic signal

and the static multipath components at the monitoring receiver may be considered

perfect in this regime, the detector need only distinguish the spoofing signal from

thermal noise and dynamic multipath. So long as the dynamic multipath remains

relevant (i.e. comparably strong to the spoofed signal), it will prevent the receiver

from identifying spoofing signals that are below the noise floor, resulting in a rela-

tively flat 50% detection curve.

In Region III, both the spoofing signal and dynamic multipath have pro-

cessing gain advantage over thermal noise from despreading. The detector in this

regime has to only differentiate the spoofing signal from dynamic multipath, with

this sensitivity decreasing with lower transmit power level, resulting in the 50%

detection curve having a slope less than unity.

5.5.4 Receiver Sensitivity Range

Fig. 5.8 shows the detection performance of the GLRT detector with differ-

ent ADC bit depths for two distinct transmit power levels, and Fig. 5.9 shows these

data recast in terms of RX power at the 50% detection threshold versus authentic

signal TX power. One may infer that the sensitivity threshold does not improve

with bit depth at low transmit power levels. With regards to the regions discussed
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Figure 5.8: Simulation results of the GLRT detector with different ADC bit depth,
for a 0 dBW (top) and 40 dBW (bottom) transmitter located at 10 km away from a
listening beacon.

in Subsection 5.5.3, these plots reveal two trends. First, a larger ADC bit depth

results in a lower quantization noise level in Region I due to lower suppression by

the variable attenuator. Second, the dividing line between Regions I and II moves

rightward with increasing bit depth. That is, the thermal noise dominates up to a

higher transmit power level. Quantization is not the performance-limiting factor in

Region III.
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Figure 5.9: Simulation results of the GLRT detector under different transmitter
power, showing the 50% detection sensitivity curve with different levels of quanti-
zation. The boundary between Regions I and II varies with depth and is shown for
6-bit quantization.

5.5.5 Joint Detection over Multiple Epochs

From Fig. 5.9, one can observe that given a transmit power level and ADC

bit quantization, a monitoring beacon taking a ‘single-shot’ measurement of 1 ms

has a limit in its detection sensitivity. One way to increase this performance ceil-

ing is to accumulate measurements over a longer interval, as outlined in Subsec-

tion 5.4.1. This sub-section presents the simulation results from the implementation

of coherent and non-coherent combining of measurements.

Fig. 5.10 shows the detection performance of the GLRT detector with dif-

ferent coherent accumulation intervals. For both test cases with or without dynamic
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multipath, increasing the coherent accumulation interval to 50 ms improves the de-

tection performance of the GLRT detector by approximately 17 dB.
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Figure 5.10: Simulation results for the detection performance of a GLRT detector
using different coherent accumulation interval, for a 30 W transmitter located 10 km
away from the listening beacon.

In contrast, Fig. 5.11 shows a slight improvement of 0.04 dB in the GLRT

detector’s sensitivity threshold with increasing non-coherent integration intervals.

This indicates that the presence of dynamic multipath prevents a naı̈ve additive

combining of test statistics from effectively concentrating information over multi-

ple epochs. This is because the presence of dynamic multipath has the same desen-

sitizing effect to the joint detection threshold as to each single epoch threshold, such

that combining test statistics across epochs does not increase detection sensitivity.

In summary, a sufficiently long coherent accumulation interval should be

implemented to maximize the detection performance of the GLRT detector. How-

ever, the length of the accumulation interval should be constrained such that the

assumption of each signal component’s parameters being constant remains true.
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Figure 5.11: Simulation results for the GLRT detector with different non-coherent
integration, for a 30 W transmitter located 10 km away from the listening beacon.

5.5.6 Joint Detection with Multiple Monitoring Beacons

As outlined in Sub-section 5.4.2, combining measurements from a network

of monitoring beacons enhances detection performance beyond what is achievable

with the standalone operation of each individual beacon. This subsection quanti-

fies this improvement in detection performance, as well as the spoofer localization

accuracy of the GLRT network detector.

5.5.6.1 Simulation Setup

In the setup shown in Fig. 5.12, all four monitoring beacons are equidistant

from the 1 W transmitting beacon. At zero clock bias, the reference monitoring bea-

con B1 observes the spoofer’s delay to be aligned with the authentic signal, while

other beacons observe this delay at an offset with the authentic peak. In this simu-

lation, the spoofer’s clock bias is modeled to be uniformly distributed over two chip

interval [−τc, τc]. In addition, each monitoring beacon has a unique set of H0 dis-
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tribution. While the same multipath parameter set outlined in Sub-section 5.2.2 is

implemented in this simulation, every monitoring beacon observes a distinct set of

multipath delay at each epoch. The pre-defined array of possible spoofer’s location

covers an area spanning 2 km by 2 km and is discretized at 20 m, which is less than

the tap spacing of 0.1 chip. In addition, the pre-defined spoofer’s clock bias array

covers an interval of 2 chips, and is discretized at 1
3

of the tap spacing. Other sim-

ulation parameters, such as the number of runs for calibration and trial, path-loss

exponent, and characteristics of the monitoring receiver’s antenna and front-end,

have been outlined in Sub-section 5.5.1.

5.5.6.2 Network SSA Performance

From both Fig. 5.13 and Fig. 5.14, one observes that the detection perfor-

mance of both AT and GLRT network detectors outperform their individual mon-

itoring beacons, as they exploit the synergy from combining information across

multiple observers. However, a closer comparison between both figures reveal the

3 dB sensitivity advantage of the AT network detector over the GLRT network

detector. This can be explained by four observations made from the comparison

between the performances of individual beacons’ AT network detectors with their

GLRT counterparts. First, the AT/GLRT detection performances of B3 and B4 are

similar, as the spoofer appears at the correlation windows of both beacons with the

same spoofing power ratio, and geometric delay. Second, the GLRT detectors of

B2–B4 underperform their AT equivalents by 3 dB, due to inaccuracies in the ML

estimates of the spoofer’s position and clock bias. The ML estimation accuracy of
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Figure 5.12: Simulation setup with 4 monitoring beacons. In this scenario, the
4 monitoring beacons are located 1 km away from the transmitting beacon. In
addition, the spoofer is 200 m away from the reference monitoring beacon B1. The
dark area is the region where the spoofing signal power level is above that of the
authentic signal, and the spoofing power ratio at the reference beacon is unity.

the spoofer’s physical parameters, shown in Fig. 5.15, reaches a steady-state value

of 40 m at a spoofing power ratio of −22 dB and above, as a result of two factors:

the position geometry between the monitoring beacons and the spoofer; and the

mesh fineness of the pre-defined grid of spoofer’s possible position and clock bias.

The residual error of 40 m indicates a misalignment of the estimated spoofer’s code

offset ∆τ̂Dk,j by at least one-tenth of a chip, which leads to approximately 3 dB
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Figure 5.13: AT detection performance of each individual monitoring beacons, and
of the TRNS network (in black).
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Figure 5.14: GLRT detection performance of each individual monitoring beacons,
and of the TRNS network (in black).

degradation in detection performance. Third, B1’s AT and GLRT detectors perform

sub-optimally, having PD less than unity even at high spoofing power ratio. This

is because the spoofer’s secular delay from its simulated clock bias coincides with

B1’s window of correlator output taps that are desensitized by dynamic multipath.

Fourth, there is an increasing gap in the detection performance between GLRT and

AT detectors of B1 with the rise in spoofing power ratio. This is due to the cou-
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pling between a misaligned spoofer delay estimate and B1’s desensitized window of

correlator output taps, which further degrades B1’s GLRT detection performance.

However, this does not drastically affect either AT or GLRT network detection per-

formance, as the contribution of B1 to the GLRT network-wide test statistic is small

compared to the other beacons.
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Figure 5.15: 1-σ estimated spoofer position error at different spoofing power ratio
referenced at B1.

Even though GLRT network detection performance pales in comparison to

AT, it augments TRNS network with a spoofer localization capability. However,

the spoofer localization accuracy is only assured at high spoofing power ratio, as

shown in Fig. 5.15. This is further illustrated in two example scenarios. In the

scenario with low spoofing power ratio of −60 dB shown in Fig. 5.16, dynamic

multipath dominates over the spoofing signal at both B3 and B4. A lower cost

is assigned to the cells that match these multipath delays, which form the dark

ellipses in the plot. The intersection of these ellipses has the lowest likelihood cost

and denotes the ML estimate of the spoofer’s position, which is far from the true
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spoofer position in this example. In contrast, for the scenario with higher spoofing

power ratio of −30 dB shown in Fig. 5.17, all monitoring beacons assign lower

cost to the observed spoofing signal instead of the unique dynamic multipath that

each observes. This forms four dark concentric ellipses, each of which represents

the spoofer’s delay observed by each beacon. The cell with the lowest likelihood

cost occurs at the intersection of these ellipses, and this represents the ML estimate

of the spoofer’s position, which matches the true spoofer position perfectly in this

case.

5.5.6.3 Enhanced Network SSA with Multiple Observers

A natural question to ask is, does having more monitoring beacons improve

network SSA performance, and by how much? This section seeks to answer this

by comparing detection and localization performances between a 4-beacons TRNS

network (in Fig. 5.12) and a 8-beacons TRNS network (in Fig. 5.18).

Figs. 5.19 and 5.20 show the AT and GLRT network detection performances

respectively, along with the detection performance from each individual monitoring

beacons. Similar to Fig. 5.13 and 5.14, the network detectors using 8 monitoring

beacons outperform all its constituents, again highlighting the benefit of joint de-

tection across multiple beacons. One also observes similar detection performance

between beacon pairs B3–B4, B5–B6, and B7–B8, as the spoofing signal arrives at

their antenna with the same geometric delay and spoofing power ratio. The marked

improvements in detection performance and localization accuracy using 8 monitor-

ing beacons are shown in Fig. 5.21 and Fig. 5.22 respectively, where the detection
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Figure 5.16: Normalized likelihood cost across a pre-defined grid of potential
spoofer’s position, at a spoofing power ratio of -60 dB using a 1 W transmitter.
The dark ellipses denote the dynamic multipath’s delay observed by beacons B3
and B4.

sensitivity increases by 7 dB, while the residual estimated position error drops by

48% to 21 m. One notable reason is the placement of beacons B5 and B6 relative

to the spoofer. Their positions aid them to observe the spoofing signal outside the

desensitized correlation window unlike that of B1, and at a higher spoofing power

ratio than other beacons (namely B2, and beacon pairs B3–B4 and B7–B8). These

factors help beacon pair B5–B6 achieve the best detection performance among all

monitoring beacons, which in turn improves the overall network detection perfor-
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Figure 5.17: Normalized likelihood cost across a pre-defined grid of potential
spoofer’s position, at a spoofing power ratio of -30 dB using a 1 W transmitter.
The dark concentric ellipses denote the spoofer’s delay

mance.

5.5.6.4 Summary

This section illustrates the merits of performing joint detection across mul-

tiple beacons from simulation results. While GLRT network detection offers SSA

with spoofer localization augmentation, it has a 3 dB lower detection sensitivity

compared to AT network detection, and also comes with a higher computational
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Figure 5.18: Simulation setup used for spoofer detection and localization using 8
monitoring beacons which are located 1 km away from the transmitting beacon.
The spoofer’s setup is similar to Fig. 5.12

cost from its ML estimation and detection algorithm. However, GLRT offers a bet-

ter assurance of a spoofer’s existence in the signal landscape, as compared to AT

which only looks for any signal anomalies. One potential implementation that al-

lows TRNS operator to circumvent the higher computational load is to operate the

AT network detector for round-the-clock surveillance, and activates GLRT network

detector only upon detection of a signal anomaly.

This section also highlights the improvements in detection performance and
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Figure 5.19: AT detection performance of 8 individual monitoring beacons, and of
TRNS network (in black).
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Figure 5.20: GLRT detection performance of individual monitoring beacons, and
of the TRNS network (in black). The degraded detection performance of B1 across
all spoofing power ratio has been discussed in Fig. 5.14.

localization accuracy with an increase in the number of monitoring beacons. How-

ever, TRNS operator should also consider the additional costs involved in siting

more beacons, such as higher infrastructure cost, and greater instances of mutual

near-far interference resulting in degraded PNT performance.
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Figure 5.21: Comparison between the network detector’s performance using differ-
ent number of monitoring beacons.
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Figure 5.22: Comparison between the network detector’s spoofer localization ac-
curacy using different number of monitoring beacons.

5.6 Conclusion

This thesis proposes the addition of signal-situational-awareness (SSA) ca-

pability to the TRNS network, to augment cryptographic NME+NMA scheme in

countering against SCER and meaconing attacks. Two signal authentication tech-

niques are proposed for SSA that allow TRNS operator to detect weak signal spoof-

ing in the presence of multipath without the use of costly full-duplex techniques.
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The first technique, the anomaly test, compares the current observations against an

empirical model of typical (nominal) observations, and has an advantage in sim-

plicity and performance. The second technique searches for the spoofing signal and

compares the observations against a reconstruction of the most likely spoofer: the

GLRT technique. The GLRT method performs as well or better than the anomaly

test in all considered test conditions. The GLRT exhibits a sensitivity advantage of

5 dB over the anomaly test in the absence of dynamic multipath, which drops to

0.13 dB in the presence of dynamic multipath. In addition, the GLRT has a 50%

spoofer detection threshold up to -74 dB with high transmit power level of 30 W

and 6-bit ADC quantization. Simulations of both detectors under operating con-

ditions encountered by a generic TRNS quantify their performance. In addition,

techniques to enhance SSA performance are also proposed, which includes joint

detection across multiple epochs, or using multiple monitoring beacons. The de-

tection performance of the GLRT detector improves by approximately 17 dB when

the coherent accumulation interval increases from 1 ms to 50 ms. In addition, the

GLRT network detector made up of 8 monitoring beacons has a lower detection

threshold of -39 dB with a transmit power level of 1 W, and is augmented with a

spoofer localization capability that has an accuracy of 21 m above spoofing power

ratio of -28 dB. Terrestrial radionavigation systems will benefit not only from tech-

niques designed to secure traditional GNSS, but also from the exploitation of novel

opportunities for signal situational awareness arising from the proximity and mu-

tual audibility of the transmitting beacons, rendering TRNS more resilient against

man-in-the-middle attacks.
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Chapter 6

Urban Environment Multipath Profiling

6.1 Introduction

This chapter presents the statistical results of an urban multipath propaga-

tion measurement campaign. This campaign was carried out in an attempt to vali-

date the multipath empirical model by [91] presented in Subsection 5.2.2, which

was derived from the statistical analysis on the Land Mobile Satellite Channel

Model (LMSCM) [84].

Urban multipath propagation experiments had been conducted in the past

with the following goals: to accurately quantify the performance of radionavigation

systems in an urban setting [87]; and to minimize the performance degradation of

high sensitivity receivers due to multipath [46]. Extensive multipath measurement

and characterization studies in urban canyon environments had been carried out in

near GNSS L1-band in the last two decades by [84] and [94]. In [84], a blimp took

on the role of a simulated satellite to transmit a 10 W measurement signal over a

This chapter is based on: Ronnie X.T. Kor, Peter A. Iannucci, and Todd E. Humphreys. Compre-
hensive PNT Security for a Terrestrial Radionavigation System. Navigation, Journal of the Institute
of Navigation, 2021. In preparation..
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bandwidth of 100 MHz, with the center frequency at 1.51 GHz. A receiver mounted

on a measurement bus traveled through different environments (e.g. rural, suburban,

and urban) around Munich, and at varying speeds to characterize the multipath

observed by a car [83] or a pedestrian [47]. Post-processing of data logs using the

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)-

based super-resolution algorithm yielded sparse impulse response reconstructions

for the channel with a time resolution of 1 ns. Reference [85] used these results to

analyze the magnitude of the Doppler shifts and path delays of reflected signals in

both urban and suburban settings. Reference [94] extended this work by conducting

data collection in downtown Calgary, AB, Canada, and using the post-processed

data to characterize the Doppler offsets and path delays of all line-of-sight and

multipath signals.

Current commercial TRNS operate at either digital cellular band [54] or

ISM band [75]. A number of multipath propagation characterization studies for var-

ious cellular bands had been carried out three decades ago in major cities of United

States [73], Japan [86], and Toronto [81]. However, these studies were largely

based on sky–ground channels and roof–ground channels. Past studies placed less

emphasis on profiling roof–roof channels, which have their unique multipath char-

acteristics. This thesis seeks to address this gap by characterizing the roof–roof

channels, which will be instrumental in understanding the multipath environments

of TRNS infrastructural monitors. A measurement campaign was carried out at

various baselines at The University of Texas at Austin, in order to profile the mul-

tipath environment arising from different traffic and environmental conditions at
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these sites. Statistical analysis of the data logs validates the multipath empirical

model used for autonomous TRNS SSA that was outlined in Subsection 5.2.2.

6.2 Experimental Setup

S1

S2

S3

S4

Figure 6.1: Overview of the 4 baselines on the campus ground of The University of
Texas at Austin, and the direction of signal transmission for each baseline.

Four different baselines within the University of Texas at Austin were se-

lected, with the objective of profiling roof–roof urban channels over different trans-

mission ranges. Table. 6.1 summarizes the locations of 8 sites corresponding to

4 different baselines with their duration of recording, and Fig. 6.1 shows their in-

dividual directions of signal transmission. Table. 6.2 lists the ranges and height

differences of signal transmission for each baseline. Figs 6.2 to 6.5 outlines the

locations of the transmitter (TX) and receiver (RX) in each baseline, the placement
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of the test equipment, as well as the view from the receive antenna. Each of these

baselines has its unique characteristics:

S1: This setup profiles the multipath environment between two parking garages

along a quiet intersection of 27th Street and Wichita Street (see Fig. 6.2).

S2: This setup characterizes the environment along a busy road (East MLK Jr

Boulevard) within the campus (see Fig. 6.3).

S3: This setup depicts the multipath that emanates from the I-35 highway (see

Fig. 6.4)

S4: This setup profiles the multipath from a longer cross-section of the I-35 high-

way, at a longer signal transmission range (see Fig. 6.5).

Table 6.1: List of test sites at each baseline and the duration of data collection.

Baseline TX Sites RX Sites Duration [hr]

S1 27 St Garage Speedway Garage 8
S2 East Campus Garage Trinity Garage 1
S3 East Campus Garage Brazos Garage 12
S4 East Campus Garage Uni. Park Garage 2

Fig. 6.6 shows the measurement setup for both transmitter and receiver. In

each setup, the Intel NUC runs an application using GNU Radio, which controls the

signal generation/reception on the Ettus Research USRP N200 software-defined

radio (SDR). Each SDR draws its frequency reference from the Hewlett Packard

Z3801A oven-controlled crystal oscillator (OCXO), which is GPS-disciplined in
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Table 6.2: List of test sites’ estimated heights relative to the ground, the distances
and height differences of signal transmission.

Baseline TX Hgt [m] RX Hgt [m] Range [m] Hgt Diff [m]

S1 12 18 88 -6
S2 21 12 550 9
S3 21 33 733 -12
S4 24 36 1330 -12

TX-B

27 St Garage

RX-B

Speedway Garage

RX View

89 m

Figure 6.2: Position of the transmitter setup at 27th Street Garage (in red star) and
receiver setup at Speedway Garage (in magenta star), across a distance of 88 m.

both transmitter and receiver setup, and has an Allan variance of 10−11 s over an

integration time of 1 s. Ideally, this ensures that both ends of the link share a

common time origin. The SDR of the transmitter was programmed to generate
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TX-B

East Campus Garage

RX-B

Trinity Garage RX View

550 m

Figure 6.3: Position of the transmitter setup at East Campus Garage (in red star)
and receiver setup at Trinity Garage (in magenta star), across a distance of 550 m.

a 10-stage maximal-length sequence of 1023 chips that forms a sinc-shaped line

spectrum of several hundred single carriers over a bandwidth of 10 MHz at a center

frequency of 915 MHz.

The center frequency of 915 MHz was selected for three reasons. First,

this thesis is interested in validating the empirical model used in characterizing the

SSA performance of a generic TRNS network operating within the industrial, sci-

ence, and medical (ISM) band. This frequency band is attractive for TRNS because

low-frequency signals are more penetrating in urban environments. Second, test-

ing in the ISM band (902–928 MHz) offers two advantages: it is one of the few

wide-band channels (i.e. 10 MHz or greater) that are available for experimentation,

allowing fine multipath delay resolution of 15 m and above to be achieved; and
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TX-B

East Campus Garage

RX-B

Brazos Garage

RX View

735 m

Figure 6.4: Position of the transmitter setup at East Campus Garage (in red star)
and receiver setup at Brazos Garage (in magenta star), across a distance of 733 m.

higher signal power can be used under Part 97 Amateur Radio Service Rules [18] to

achieve longer-range experimentation. Third, quarter-wave “whip” antennas, which

are conveniently sized and nearly omni-directional, can be used to collect multipath

arriving from all directions. This is more faithful to the TRNS SSA scenario, where

infrastructural monitors are listening to authentic signals from adjacent beacons,

and spoofing signals coming in all directions.

Amateur radio convention dictates that experimental operation should be

polite: vacating the channel if it is busy, using the minimum power necessary for

the duration of the experiment, and announcing at the end of the experiment that the
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TX-B

East Campus Garage

RX-B

University Park GarageRX View

1330 m

Figure 6.5: Position of the transmitter setup at East Campus Garage (in red star)
and receiver setup at University Park Garage (in magenta star), across a distance of
1330 m.

channel is clear for other users. An amateur operator also has to send out an identi-

fication every 10 min in a format that any listener can understand. Because of these

constraints, the transmission power is set at 300 mW at the antenna output, and the

longest transmission duration was 1 hr. In addition, the spreading code transmission

is interrupted by periodic identification sequences consisting of pre-recorded Morse

code waveforms bearing the Amateur callsign of the licensed operator overseeing

the experiment, along with a message indicating the experimental nature of the sig-

nal. These interruptions necessitate careful data post-processing when estimating

long-term correlations (see Section 6.3).
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The received signal is sampled at 12.5 MHz at the receiver’s SDR, with

30 dB gain added along the processing chain. Applying a FFT on the received

signal shows a time resolution of 80 ns for the channel impulse response (CIR),

which is further refined to a time resolution of 20 ns by up-sampling the complex

correlation function. Further processing of the correlation function described in

Section 6.3 reveals the characteristics of multipath in each baseline, which will be

elaborated in Section 6.4.

6.3 Data Processing

Let τj represent the time that sample j is acquired, A(τj) is the signal am-

plitude, fs = 12.5 MHz is the sampling frequency, ∆t(τj) is the code phase (po-

tentially time-varying), Nc = 1023 is the number of chips in the spreading code,

Tc = 0.1 µs is the chip interval, C(τ modNcTc) is the spreading code, ∆θ(τj) is the

beat carrier phase in radians, and nj is i.i.d. zero-mean Gaussian noise. We model

the discrete-time TRNS signal as it exits the ADC of the RX USRP as

xj = A(τj)C((τj −∆t(τj)) modNcTc) cos [2πfsτj + ∆θ(τj)] + nj (6.1)

where xj is the jth sample.

The sequence xj is cross-correlated with C(τ). The resulting complex func-

tion may be modeled as

ξk , Ik + jQk

=
NkĀk

2
R̄(∆tk)

[
1

Nk

jk+Nk−1∑
j=jk

exp[i∆θ(τj)]

]
+ n′k

(6.2)
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Figure 6.6: Measurement setup for both transmitter and receiver, which is made
up of the following: i. Intel NUC computer running an application that uses GNU
Radio for signal generation/reception, ii. Ettus Research N200 software-defined
radio that generates or processes TRNS-like signal, iii. Hewlett Packard Z3801A
GPS-disciplined OCXO that provides frequency references to the USRP, iv. Mini-
Circuit ZRL-3500+ low-noise amplifier to boost the transmit signal, v. an omni-
directional cellular antenna for signal transmission and reception, and vi. a WiFi
range extender for remote control of the setup.
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Figure 6.7: Flowgraph of an application that controls signal generation, developed
using GNU Radio Companion.

whereNk is number of samples in kth accumulation, Āk is the average signal ampli-

tude over an accumulation interval, ∆tk is the code phase error at midpoint of code

interval, R̄(∆tk) is the spreading code auto-correlation function model, ∆θ(τj) is

the carrier phase error at τj , and n′k , nIk + jnQk
is a no-longer-i.i.d. complex

noise sequence.

An ideal data-logging scenario to characterize the multipath in an urban

landscape would be to record the signal transmission over a long duration with

both TX and RX being phase-aligned, such that ∆θ(τj) = 0 and ξk , Ik =

NkĀk

2
R̄(∆tk). A delay-locked-loop (DLL) can be used to estimate the average code

phase error ∆tk at the initial stage, and this value is subsequently used to align the

local replica with the authentic signal’s code phase for cross-correlation across the
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entire recording interval.

However, the measurement campaign faced three challenges. First, the

spreading code transmission was interrupted every 10 minutes in order to transmit a

periodic identification sequences bearing the operator’s callsign and the experimen-

tal nature of the signal. Second, data overruns occurred due to random fluctuations

in USRP data logging to an external hard disk. The dropouts due to overruns and

periodic identification are shown in Fig. 6.8. Third, even though both OCXO clocks

are frequency-locked to GPS, there is a slow drift in their phases over time, as shown

in Fig. 6.9.
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Figure 6.8: Time profile of the good intervals without operator identification and
data overrun, for a 1300 hr – 1350 hr log from S3.

A number of heuristics are implemented in the post-processing of these data

logs to overcome the above-mentioned challenges, and also to condense the enor-

mous data logs for analysis. First, data samples are cross-correlated with a local

replica, and are non-coherently combined over an interval of 100 ms to form the

complex correlation function at each epoch. Data segments corresponding to the

periods of data overrun are identified by looking for discontinuities in correlation
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Figure 6.9: Time profile of the carrier phase misalignment between the TX and RX
OCXO clocks, for a 1300 hr – 1350 hr log from S3.

magnitude, and the segments of operator identification are picked out by sharp drops

in correlation amplitude. With these data segments removed, a vector of good in-

tervals is formed, within which the correlation function is up-sampled to a 20 ns

resolution and then aligned in the lag domain. A filtered phase model θ(τj) is then

estimated from the profile of carrier phase delta changes ∆θ(τj), which is then

used to transform the complex correlation function into its baseband equivalent Ik.

Lastly, spectral analysis is performed on this baseband correlation function, and the

results are presented in the next section.

6.4 Statistical Analysis

A total of 33 hours of recordings were collected in this measurement cam-

paign, as described in Table. 6.1. This section presents the statistical analysis per-

formed for each baseline to highlight the unique multipath characteristic of each

urban channel, as well as the impact of weather on the multipath distribution.
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6.4.1 Multipath Characteristics

6.4.1.1 Baseline 1

Fig. 6.10 (top) shows the time profile of the channel impulse responses over

a 50 min recording interval, which is marked by periods of data overrun and oper-

ator identification in blue stripes. Multipath are generally concentrated close to the

authentic signal peak within a 1 µs interval, affirming the exponential power-delay

distribution discussed in Ref. [33]. However, there are accumulations of echoes at

larger delays, evident by bright bands in the plot. The consistency in correlation

peak amplitudes of these bright bands indicate that these contributions are from

static multipath.

Fig. 6.10 (bottom) shows the time profile of the channel impulse responses

from the dynamic components of the received signal, after the static components

have been removed from the complex correlation function. The bright bands on

this plot indicate the existence of dynamic multipath, evident by fluctuations in

peak amplitudes with time. The contribution of dynamic multipath to the overall

channel impulse responses is shown in Fig. 6.11, which compares the mean ampli-

tude value of the channel impulse responses (consisting of both static and dynamic

component), with that from the dynamic component only. There are 12 distinct

echoes in the mean channel impulse responses, of which 9 of them have dynamic

components. The likely source of these dynamic multipath are the strong reflections

from the trees that are along the line-of-sight transmission between TX and RX, as

shown in map view of Fig. 6.2.

Fig. 6.12 shows the power spectrum of the prompt correlator tap at S1 over
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the recording interval. One interesting note from this plot is the consistency in the

amplitude of dynamic multipath, which can be up to 10 s. The amplitude distribu-

tion of S1 in Fig. 6.13 confirms the log-normal distribution of multipath.

6.4.1.2 Baseline 2

Fig. 6.14 (top) shows the time profile of the channel impulse responses over

a 50 min recording interval, which is marked by periods of data overrun and opera-

tor identification in blue stripes. The larger number of bright bands outside the 1 µs

interval from the authentic signal peak are due to reflections off the walls and deck

of Trinity Garage rooftop, as well as the walls of adjacent Texas Swimming Center

(shown in the RX view of Fig. 6.3).

Fig. 6.14 (bottom) shows the time profile of the channel impulse responses

from the dynamic components of the received signal. Unlike Fig. 6.10 (bottom),

which has a number of bright bands appearing across the whole recording interval,

Fig. 6.14 (bottom) has only two such distinct echoes at 1.6 µs and 2.5 µs, which

is likely due to strong reflections from the trees that are along the line-of-sight

transmission between TX and RX, as shown in the map view of Fig. 6.3. However,

there are other bright bands with shorter intervals, which likely originates from

reflections off motor vehicles traveling along I-35 highway and E Martin Luther

King Jr Blvd road.

Fig. 6.16 and Fig. 6.17 respectively show the power spectrum and the am-

plitude distribution of the prompt correlator tap at S2 over the recording interval,

highlighting the log-normal distribution of multipath, and the consistency in the
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amplitude of its dynamic component (up to 10 s).

6.4.1.3 Baseline 3

Fig. 6.18 (top) shows the time profile of the channel impulse responses over

a 60 min recording interval. A number of distinct echoes (indicated by the bright

bands on the plot) are from the reflections of the authentic signal off the structure

of the Central Chilling Station (seen in the RX view of Fig. 6.4).

The dynamic channel impulse response plot (in Fig. 6.18 (bottom)) is marked

by a distinct constant-amplitude echo at 3.8 µs, and a number of bright bands with

much shorter interval. Similar to Fig. 6.18 (bottom), the short bright bands are

due to reflections off motor vehicles traveling along I-35 highway. The constant-

amplitude echo at 3.8 µs (with a distinct mean value shown in Fig. 6.19) comes

from strong reflections off the trees that line the Red River St road.

The power spectrum plot of the prompt correlator output in Fig. 6.20, and

its amplitude distribution shown in Fig. 6.21, also reveal the log-normal amplitude

distribution of multipath, and the consistency in the amplitude of its dynamic com-

ponent.

6.4.1.4 Baseline 4

Lesser trees and building structures are observed along the line-of-sight path

between TX and RX in S4, which results in less distinct echoes observed from

the channel impulse response plot of Fig. 6.22 (top). From the RX view photo in

Fig. 6.5, the distinct echo at 0.6 µs is due to signal reflection from Development
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Office Building. The source of the echo at 7.4 µs, which has a dynamic compo-

nent evident from the plots shown in Figs. 6.22 (bottom) and 6.23, is the strong

reflections off trees that are along the line-of-sight path of signal transmission. The

dynamic multipath from the reflections off motor vehicles on the I-35 highway are

not evident in Fig. 6.22 (bottom) and 6.23, as the delays of these reflections are

within 0.2 µs. The 20 ns time resolution from data processing is too coarse to

discern multipath within this short time interval. Similarly, the log-normal ampli-

tude distribution of multipath, and the consistency in their signal amplitude, are

presented in Fig. 6.25 and 6.24 respectively.

6.4.2 Weather Condition

Measurement exercises on two different days were carried out for Baseline

S1: a calm and sunny day on March 3, and a windy day on March 6. Figs. 6.26

and 6.27 show the mean values of the channel impulse responses at S1, collected

over the same time duration, for March 3 and March 6 respectively. The TX and

RX antenna were placed on the same spot on the two test dates, therefore a number

of distinct peaks are similar across these two plots. However, a closer comparison

of these plots reveal that a larger number of distinct dynamic echoes were visible

on March 6 as compared to March 3. This is because the wind creates significant

movement among the tree leaves, inducing greater signal reflections that were not

seen on a calm day. Based on this observation, it is recommended that the TRNS

operators calibrate the multipath parameter set discussed in Subsection 5.2.2 under

varied environmental conditions in order to obtain an accurate H0 distribution for
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spoofing detection.

6.5 Conclusion

A measurement campaign was carried out at 4 different sites in The Uni-

versity of Texas at Austin, to characterize multipath signals in an urban setting

with application to TRNS Signal-Situational-Awareness outlined in Chapter 5. A

statistical analysis is performed on the post-processed data-logs, which includes

identifying the peaks in the correlator outputs across each recording interval, and

assessing the path delays of both authentic and multipath signals. Four insights

were gained from this measurement campaign: First, observations of the dynamic

correlator output waterfall plots reveal the delays of the dynamic multipath, from

which one can infer their sources from these delays; Second, the empirical data af-

firms the log-normal amplitude distribution used in multipath signal model; Third,

the range of duration of dynamic multipath can be derived from the power spec-

trum plot of the prompt correlator output; And lastly, a comparison between two

measurement exercises conducted at the same baseline highlights the correlation

between weather and multipath observation. These insights will be useful to TRNS

operator not only in the design of SSA calibration trials for their network of mon-

itoring beacons, but also in the implementation of multipath mitigation techniques

for their mobile receivers.

Had time permitted, it would have been possible to access lower-level in-

terfaces to the USRP that would give explicit notifications of overruns, obviating

the need for code-phase alignment heuristics across overrun gaps. Additionally, up-
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grading the OCXO to phase-locked variants (rather than merely frequency-locked

devices) would significantly reduce the complexity of post-processing. Fortunately,

all observed outages were brief, and the phase drift was very slow. These properties

allow us to have confidence that the long-time (i.e. low-frequency) portions of the

auto-correlation (power-spectrum) are nevertheless good approximation.
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Figure 6.10: Waterfall plot of the channel impulse responses at S1 (top), and its
dynamic component only (bottom), over a duration of 50 min. The dark line at
26th min marks a short period of data overrun, while the other dark lines at every
10-min interval are the periods of operator identification.
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Figure 6.11: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in solid line) at S1, computed
using 8 hours of recordings.
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Figure 6.12: Power spectrum plot of the variations in the prompt correlator tap for
S1, computed using 8 hours of recordings.

Figure 6.13: Amplitude distribution of the prompt correlator tap for S1, computed
using 8 hours of recordings.
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Figure 6.14: Waterfall plot of the channel impulse responses at S2 (top), and its
dynamic component only (bottom), over a duration of 50 min. The dark lines at
every 10-min interval mark the periods of operator identification, and its thickness
is due to data overruns during the transition of spreading code change.
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Figure 6.15: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in solid line) at S2, computed
from a 50 min recording.
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Figure 6.16: Power spectrum plot of the variations in the prompt correlator tap for
S2, computed from a 50 min recording.

Figure 6.17: Amplitude distribution of the prompt correlator tap for S2, computed
from a 50 min recording.
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Figure 6.18: Waterfall plot of the channel impulse responses from S3 (top), and its
dynamic component only (bottom), over a duration of 60 min. The dark lines at 11th

and 37th are the periods of data overrun, while the other dark lines at every 10-min
interval are the periods of operator identification.
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Figure 6.19: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in solid line) at S3, computed
using 12 hours of recordings.
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Figure 6.20: Power spectrum plot of the variations in the prompt correlator tap for
S3, computed using 12 hours of recordings.

Figure 6.21: Amplitude distribution of the prompt correlator tap for S3, computed
using 12 hours of recordings.
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Figure 6.22: Waterfall plot of the channel impulse responses from S4 (top), and
its dynamic component only (bottom), over a duration of 60 min. This recording
is marked by frequent data overruns which overlap with the periods of operator
identification.
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Figure 6.23: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in solid line) at S4, computed
from a 60 min recordings.

10
-3

10
-2

10
-1

10
0

10
1

Frequency [Hz]

10
0

10
5

P
o

w
er

 d
en

si
ty

 [
d

B
/H

z]

Figure 6.24: Power spectrum plot of the variations in the prompt correlator tap for
S4, computed from a 60 min recording.

Figure 6.25: Amplitude distribution of the prompt correlator tap for S4, computed
from a 60 min recording.
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Figure 6.26: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in black solid line) at S1,
using logged data between 1300 hr – 1400 hr on March 3, 2021.
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Figure 6.27: Comparison between the mean values of the channel impulse re-
sponses (in dotted line), and its dynamic component (in black solid line) at S1,
using logged data between 1300 hr – 1400 hr on March 6, 2021.
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Chapter 7

Conclusion

This thesis first outlines the unique vulnerabilities of a generic TRNS system

due to its terrestrial infrastructure, high signal strength with wide dynamic range

for deep-urban and indoor coverage, and a potential reliance on GNSS for network

synchronization. Despite these challenges, this thesis draws upon the flexibility of-

fered by a clean-slate TRNS waveform and architecture to propose cryptographic

and non-cryptographic schemes that cater to two types of receivers with differing

needs: mobile users, and infrastructural monitors. The cryptographic security pro-

posal focuses on the needs of a mobile TRNS user. It is made up of two orthog-

onal schemes: a multi-tiered NME scheme, which not only limits TRNS service

to authorized users, but also can be customized for multiple subscriber tiers us-

ing selective decryption; and a novel MAC-leavened TESLA-based NMA scheme

which provides both data authentication, and a certain degree of signal authentica-

tion against half-duplex spoofing attacks. However, this proposal is not fool-proof

against SCER spoofing and meaconing threats. To address this gap in spoofing de-

fense, this thesis proposes the addition of signal-situational-awareness (SSA) to the

TRNS network of infrastructural monitors. Two signal authentication techniques,

the Anomaly Test, and the Generalized Likelihood Ratio Test (GLRT), are proposed

for SSA. These detectors allow TRNS operator to detect weak signal spoofing in
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the presence of multipath, without the use of costly full-duplex techniques. Simula-

tions of both detectors under operating conditions encountered by a generic TRNS

quantify their performance. In particular, the GLRT has a 50% spoofer detection

threshold up to -74 dB with high transmit power level of 30 W and 6-bit ADC

quantization. Two enhancements to the autonomous SSA’s detection performance

are also proposed which are complementary to each other: combining measure-

ments across multiple epochs, and over multiple beacons. In particular, coherent

integration of measurements over an accumulation interval of 50 ms improves the

threshold of the GLRT detector by 17 dB. In addition, increasing the number of

monitoring beacons from 4 to 8 reduces the GLRT network detector’s threshold

by 8.5 dB while reducing the spoofer localization accuracy by 48%. This thesis

also embarked on a multipath measurement campaign in The University of Texas

at Austin. Statistical analysis of the post-processed data logs affirms the TRNS

multipath power-delay empirical model used in SSA simulations, and also provides

insights into the characteristics of dynamic multipath in an urban setting. The com-

prehensive security proposal for TRNS outlined in this thesis not only provides

robust and accurate PNT service only to TRNS mobile subscribers with selective

availability and enhanced data security, but also exploits novel opportunities for

signal situational awareness arising from the proximity and mutual audibility of the

transmitting beacons. The implementation of this proposal renders TRNS more re-

silient against man-in-the-middle attacks than what is achievable with traditional

GNSS.
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7.1 Future Work

The MAC-leavened TESLA-based NMA scheme presented in Subsection 4.2.2

provides a degree of protection against half-duplex spoofing attacks, in that a poten-

tial spoofer can perturb a victim receiver’s delay lock loop (DLL) output during the

closed window. This level of protection is dependent on the victim receiver’s local

oscillator drift, and its un-modeled dynamics. A detailed analysis that quantifies the

level of spoofing protection provided by the proposed NMA scheme would be an

ideal next step for this thesis’s first contribution.

The results presented in Section 5.5 are based on a post-correlation function

that is computed across a correlation window of 20 chips. Future simulation can

look into the use of bigger correlation window for enhanced visibility of the signal

landscape in each accumulation interval.

Subsection 5.4.2 presents the improvement in detection and spoofer local-

ization with the increase in the number of monitoring beacons. However, the GLRT

network detector’s performance results from a confluence of factors, which include

the position geometry of the spoofer with the monitoring beacons, and the search-

space discretization for the spoofer’s geometric and temporal delay. Future work

can provide a comprehensive analysis of the network’s detection performance with

respect to the above-mentioned factors, and look into a refined localization of the

spoofer’s position post-detection.

The autonomous SSA outlined in Chapter 5 is primarily based on symmetric

difference (SD) metric, a hybrid signal quality metric that is based on both received
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power and correlation function distortion. Future work can look into the extrac-

tion of multiple features at different stages of single processing, such as antenna

steering vector calculation, signal acquisition and tracking, and PVT calculation, to

accurately characterize each signal component in the landscape [55]. Using multi-

ple signal features for spoofer detection, in combination with joint detection across

multiple epochs and over multiple beacons (outlined in Section 5.4) can drastically

improve the capability of SSA.

The multipath propagation measurement campaign outlined in Chapter 6

was largely constrained within the campus ground for two reasons: 1. the use of

campus Wifi for remote control of the transmitter and receiver, and 2. the ease of

getting approval for outdoor experimentation. Future work can extend the measure-

ment campaign to varied environments (e.g. suburban, and deep-urban) by setting

up cellular-based remote access. In addition, one might consider the use of lower-

level interfaces to the USRP with heuristics to automatically detect overruns and

log them with timestamps.
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