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Abstract 

 

WAVE TRANSPORT IN PARITY-TIME SYMMETRIC, TIME-

VARYING, AND QUASI-PERIODIC SYSTEMS 

Zhicheng Xiao, Ph. D. 

The University of Texas at Austin, 2021 

 

Supervisor:  Andrea Alù 

 

The past several decades have witnessed a rapid growth of research interest in the 

fields of artificial materials and systems, in particular in the areas of parity-time 

symmetric systems, time-varying systems and quasi-periodic systems. These newly 

developed material platforms have been enabling many exotic wave-matter interaction 

phenomena unavailable in nature. In this context, I investigated a series of wave transport 

and scattering phenomena in parity-time symmetric, time-varying and quasi periodic 

systems in this dissertation. First, I proposed a sensing circuit based on sixth-order 

exceptional point (EP), which supports high sensitivity, resolution, and nondegraded 

thermal noise performance compared with conventional diabolic point (DP) sensing 

system. I also studied the influence of thermal noise in a general two-level sensing 

platform based on EP. Second, I demonstrated a robust microwave tunneling device 

operating in the extreme case in which the transmission channel is shorted through a 

small reactance. We observed full restoration of information and overall transparency to 

an external observer through use of a pair of parity-time-symmetric emitter and absorber. 

Third, I studied the effects of realistic switching parameters and synchronization in a 

series of nonreciprocal devices based on synchronized loss modulation. The research 



 viii 

showed that the nonreciprocal response of these systems experiences a linear regression 

of insertion loss and isolation with respect to the timing error among switches. 

Remarkably, impedance matching, and nonreciprocal phase shifts are immune from 

synchronization issues, and reasonable levels of synchronization errors still guarantee 

low insertion loss and good isolation. Fourth, I studied wave scattering phenomena in 

static and dynamic quasi-periodic LC resonator array, which provides an easily accessible 

and reconfigurable platform to study fractal energy band and topological edge state. 

Overall, my explorations have been enabling a new degree of control of waves in circuits 

and metamaterials, pushing forward the opportunities for extreme wave-matter 

interactions using gain and time modulations. 
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Chapter 1: Introduction  

 Electromagnetic wave emission, propagation, scattering and wave-matter 

interactions represent old yet ever-evolving fields that have been studied for centuries. 

Natural materials and wave transport channels are generally reciprocal, time-invariant 

and are bound by constraints dictated by reciprocity, time-bandwidth limits, and 

degradation from disorder and defects. In the past several decades, a plethora of 

artificially engineered materials and systems were proposed and demonstrated, such as 

negative index materials [1]-[2], epsilon-near-zero (ENZ) materials [3]-[5], meta-surfaces 

[6]-[8], parity-time symmetric systems [9]-[14], spatial-temporally modulated systems 

[15]-[21], and quasi periodic systems [22]-[23]. These artificially engineered materials 

and systems open an exciting research avenue for both scientists and engineers. Many 

exotic wave-matter interaction phenomena, new devices, and applications were 

developed and demonstrated based on these artificial materials. For example, 

metamaterials and meta-surface designed based on nonlocal response and Green’s 

function approach can support ultrafast, compact, energy-efficient analogue optical signal 

processing [24]-[28]. Parity-time (PT)-symmetric systems, combing balanced loss and 

gain elements, enabled a host of unprecedented wave scattering properties, such as 

unidirectional invisibility [29], negative refraction [30], perfect imaging [31], robust 

wireless power transfer [32]-[33], coherent perfect absorber (CPA)-laser[34]-[36], robust 

wave tunneling [37], and enhanced sensing near exceptional point (EP) [38]-[39]. Spatio-

temporally modulated component is another exciting research frontier. Sophisticatedly 

engineered spatial-temporally modulated materials or discrete electronic components can 

support wideband and reconfigurable on-chip optical signal isolation and electronic 

signal routing without the use of bulky magnetic materials. Quasi-periodic systems, 
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where the resonance of each element is modulated periodically in space, exhibited fractal 

band structure in the parameter space. The quasi-periodicity in artificially materials 

allows us to emulate physics of electrons in two-dimensional atomic lattice subjected to a 

strong vertical magnetic field, opening a new way to study the topological phase 

transition and edge states.  

Considering the above exciting progress, during my PhD I investigated a series of 

electromagnetic wave scattering phenomena in PT-symmetric, time-varying, and 

quasiperiodic systems, as described in this dissertation. In the following sections, I will 

first briefly review some fundamental background knowledge in these research fields and 

outline the original research I carried out in this framework. 

1.1 WAVE SCATTERING IN PT-SYMMETRIC SYSTEMS 

A classical interpretation of quantum mechanics dictates that any observable must 

be represented by self-adjoint operators [40]. In other words, the physical operator is 

Hermitian, ensuring real eigenvalues, orthogonal eigenstates in Hilbert space, and 

conservation of probability with time evolution [40]. Interestingly, it was revealed that 

there is a set of non-Hermitian Hamiltonians whose eigenvalues can be real in the 

parameter space if they satisfy Parity-Time (PT) symmetry [9]-[11]. PT symmetry means 

that the Hamiltonian is commutative to the ˆ ˆPT operator, where P̂  is the space reversal 

operator ( )→−r r and T̂  is the time reversal operator ( )t t→− . For a time-independent 

Hamiltonian, PT symmetry indicates that the conjugate of potential under space reversal 

is equal to the potential itself:  ( ) ( )*V V− =r r , implying balanced gain and loss unit 

distribution in space.   
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( )1

in r

( )1

out r

( )2

in r

( )2

out r

( )in

n r

( )out

n r

 

Figure 1.1: A general N-port scattering system.   

Following the pioneering work by Bender, theoretical investigations mushroomed 

in a plethora of physics frontiers, such as quantum field theory [42]-[43], coherent perfect 

absorber (CPA)[34]-[36], and ideal volumetric imaging for electromagnetic waves 

[30][31]. Since the paraxial wave equation has a similar form with the 2-D Schrödinger 

equation of matter wave, the unusual features of PT symmetric systems were also 

observed experimentally in optics by engineering the refractive index, under the PT-

symmetry condition ( ) ( )*n n= −r r  [44]. As a result, optical waveguiding and scattering 

systems have become a fertile ground for innovative ideas in this area of research and 
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facilitated the discovery of a host of new phenomena. Therefore, it’s important to review 

the fundamental scattering properties of electromagnetic waves in PT-symmetric systems.  

In general, for an N-port network, the steady state solutions of the scattering fields 

in channels obey  

 
( )

( )
2

2

2
0,

c

 
 + = 
  

r
E r   (1.1) 

where ( ) ( ), Re i tt e− =  E r E r . Outside the cavity, the electric field has the form  

 ( ) ( ) ( )
1

,
i n

in out

i i i i
i

a b
=

=

= +E r r r   (1.2) 

where ,
i i
a b  are the amplitudes of the input and output excitations at i-th port, 

respectively, n is the total number of ports. They obey the input-output relations 

 ( )
1

,
m n

i im m
m

b S a
=

=

=   (1.3) 

where ( )S  is the scattering matrix. In lossless, reciprocal, and time-invariant 

materials, the scattering matrix is unitary:  

 † .S S = I   (1.4) 

For a PT-symmetric system, however, the scattering matrix has the following property 

[34] 

 ( )* 1 ,PTS PT S−=   (1.5) 
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where 

0 0 1

0 1 0

1 0

1 0 0

P

 
 
 =
 
 
  

 is the space reversal operator, T is the time reversal 

operator. The Hamiltonian matrix obey the following relation: †PHP H= , indicating 

that Hamiltonian and S matrix have different properties.  

1.2 WAVE SCATTERING PROPERTIES IN ONE-DIMENSIONAL PT-SYMMETRIC SYSTEM  

Consider a PT-symmetric two-port optical network whose scattering matrix reads 

 .L

R

r t
S

t r

 
=  
 

  (1.6) 

where 
L
r  and 

R
r  are the reflection coefficient on the left and right port respectively, t

is the transmission coefficient from left port to right port or vice versa. We substitute the 

properties of scattering matrix [Eq. (1.5)] into the above equation and get  

 
* *

* *

1 0
.

0 1
LR

RL

r tr t

t rt r

     
=     
   

  (1.7) 

Therefore, we have the following relations for two-port PT-symmetric network [45]  

 

* *

* *

2*

0

0

1

L L

R R

L R

r t r t

r t r t

r r t

 + =


+ =


+ =

  (1.8) 

Assuming that the eigenvectors of the scattering matrix is 
n
 and the corresponding 

eigenvalues are 
n
s , we have  
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 .
n n n

S s=   (1.9) 

We substitute Eq. (1.5) into the above equation and get  

 ( ) ( )* 1
.

n n

n

S P P
s

=   (1.10) 

We apply a complex conjugate operation over the above equation and get  

 ( ) ( )* *

*

1
.

n n

n

S P P
s

=   (1.11) 

Now, we figure out the relation between *

n
P  and 

n
. From the characteristic equation 

(1.9), we have two eigenvalues and two eigenstates 

 

( ) ( )

( ) ( )

2 22 2

2 22 2

4 4
, ,.

2 2

4 4
, .

2 2
1 1

L R L R L R L R

L R L R L R L R

r r r r t r r r r t
s s

r r r r t r r r r t

t t

+ −

+ −


+ + − + + − − + = =




    − + − + − − − +   
= =   
   
   

  (1.12) 

When ( )
2 24 0

R L
r r t− +  , the scattering system is in the exact phase regime, the 

eigenstate can be expressed as  

 
2 2

2 2

1
, ,

2cos 2cos

i i

i i

e ei

e e

−

+ −
−

   
   

= =   
   −   

  (1.13) 
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where 
( )

2 24
cos ,sin

2 2

L R
L R

r r t
r r

t t

− +
−

= = . Therefore, we have *P PT
  
= =

, which indicates that PT and S share the same eigenstates in the exact phase regime.  

Then, Eq. (1.11) will simplify to  

 
*

1
.S

s 



=   (1.14) 

We have  

 1.s s
+ −
= =   (1.15) 

According to Eq. (1.12), we have *s s
+ −
= .  

Above the exceptional point, the eigenstate can be expressed as  

 , ,
1 1+ −

 +   − 
= =   
   

  (1.16) 

,
2
L R
r r

t

−
=

( )
2 24

2

L R
r r t

t

− +
= , 

2 2
1− = . Therefore, we have  

 * ,P PT
 
= =   (1.17) 

Then, the 
*

1
.S

s 
= , we have  

 
1
.s

s+

−

=   (1.18) 

In summary, for one-dimensional PT-symmetric scattering system, there are unitary 

scattering region where both eigenvalues satisfy 1s s
+ −
= =  and nonunitary scattering 
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region where eigenvalues satisfy 
1

s
s+

−

= . These two regions are separated by the 

exceptional point of the system.  

1.3 WAVE SCATTERING IN TIME-VARYING SYSTEMS 

Another important topic in this dissertation is wave scattering in time-varying system. 

In this section, we provide a very basic tutorial about time-modulated resonator where the 

main results are from refs [46]-[47]. As shown Fig.1.2, a resonator with time varying 

resonant frequency is side coupled to two waveguides. Assuming that port 1 is excited 

with wave 
1 1

i ts S e+ + −= , the CMT equation is 

 

( )( ) 1

1 1

2

,

,
0

e e

e

e

da
i t a s

dt

s s
a

s

+

− +

−


= − − +


     
  = − +   
      

  (1.19) 

where 
e
 is the decaying rate between the resonator and the waveguide, 

1
s+  is the 

excitation at the left port, 
2
s−  is the transmitted wave, and 

1
s−  is the reflected wave, 

( )a t  is the field amplitude in the cavity. The solution of the field amplitude is:   

 ( )
( ) ( )dt dt

dt
1

.e ei t i ti t

e
a t e S e e

− + ++ − =    (1.20) 

We substitute the expression ( ) ( )0
cos

m
t t= +  into the above equation 

and get the field amplitude  

 ( )
( ) ( )

dt
0 0sin sin

1
.

e m e m
m m

i t i t i t i t
i t

e
a t e S e e

 
− + − + +

+ −=    (1.21) 

We employ the following identity:  

 
sin

,
m

m m

ni t
in t

n
n m

e J e


=+

=−

 
=  

 
   (1.22) 

and simplify Eq. (1.21):  
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( )1s t+

( )1s t−

 

( )2s t+

( )2s t−

( )t

 

Figure 1.2: Schematic of periodically modulated resonator. The resonant frequency is 

( ) ( )0
cos

m
t t= + , where 

0
 is the static resonant frequency, 

  is the modulation depth, 
m

is the modulation frequency. 

 

 ( )
( )

( )1

0

m

k n
i k n te

k n
k n m m m e

S
a t J J e

i n

+=+ =+
 − + − 

=− =−

    
=    

− + +   
    (1.23) 

where 
n
J  is the Bessel function of the first kind [48]. The above equation looks very 

complicated. However, it represents a rigorous solution of the field amplitude inside the 

cavity. When the modulation depth 0 = , only the terms 0n k= =  are nonzero. The 

above equation can be then simplified to 

 ( )
( ) 10

0

,e i t

e

a t S e
i

+ −

 =
=

− +
  (1.24) 

which corresponds to the static case.  

As a result, the reflection and transmission coefficient in time domain is  

 

( )
( )

( )

( )
( )

( )

11

0

21

0

1 ,

.

m

m

k n
i k n te

k n
k n m m m e

k n
i k n te

k n
k n m m m e

S t J J e
i n

S t J J e
i n

=+ =+
− −

=− =−

=+ =+
− −

=− =−

     
= − +    

− + +    


    
=     − + +   

 

 

  (1.25) 

It is easy to convert the above time domain scattering parameters to frequency domain 

since they are expressed in Fourier series:  
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( ) ( )
( )

( )

( ) ( )
( )

2

0

11

0

21

0

1 , 0

, 0

p
e

p
p mn e

p
e

n p p
p m m m e

p
n e

n p p
p m m m e

J n
i

S

J J n
i p

S J J
i p

=+

=−

=+

+
=−

=+

+
=−

   
− + =   

− +   
= 

     
     − + +    


     =    

 − + +   







  (1.26) 

Since the resonator is time-varying, the scattered fields have infinite number of 

harmonics, which can be expressed as  

 

( ) ( ) ( )

( ) ( ) ( )

1 11 1

2 21 1

m

m

n
n i n t

n

n
n i n t

n

s S S e

s S S e

=+
− +− +

=−

=+
− +− +

=−


=



 =





  (1.27) 

1.3.1 Adiabatic limit 

When the modulation frequency 
m

 is sufficiently low, the mode amplitude 

evolves in time in a quasi-static frequency ( )t . Assume that the solution of the field 

amplitude can be expressed as ( ) ( ) i ta t A t e−= . Then 

( ) ( )
( )

d d

dt dt

i t i t
a t A t

e i A t e− −= − . For adiabatic limit, 
( )

( )
d

dt

A t
i A t −  and we 

have 
( )

( )
d

dt

i t
a t

i A t e− −  . This assumption is very much like the slowly varying 

envelope approximation of optical beams. Then the field amplitude is  

 ( ) ( )
( )( )

1 .ei t i t

e

S
a t A t e e

i t

+

− −= =
− +

  (1.28) 

and the time-domain transmission coefficient is  

 ( )
( )( )21

e

e

S t
i t

=
− +

  (1.29) 
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Figure 1.3: The transmitted field amplitude and envelope in adiabatic limit. 

 

Figure 1.4: Amplitude and phase of the scattering parameter of the fundamental tone in 

adiabatic limit. 

The adiabatic limit 
( )

( )
d

dt

A t
i A t −  can be simplified to  

 0

2

e

m m


   (1.30) 

Now, we provide an example to compare the approximate solution with the full-

wave numerical simulation. Assume that 
0

1, , , , 1
50 5 5m e

= = =  = = . The 

input port is excited with wave  ( ) 0

1

i ts t e−+ = . In this case, the system complies with the 

adiabatic approximation. The output signal in time domain are plotted in the following 
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figure where the adiabatic approximation results agree well with our numerical 

simulations.   

It is also interesting to study the scattering parameter of the fundamental tone. In 

the adiabatic limit, the transmission coefficient of the fundamental tone is the time-

average value of the time-domain transmission coefficient:  

 

 ( ) ( )
( )( ) ( )

dt dt(0)

21 210 0 2
2

0

1 1
.

m m e e

m m e
e

S S t
i t i

 

= = =
  − +  − − + 

   (1.31) 

We compare our adiabatic approximation results with the numerical results in Eq. (1.26), 

which demonstrate excellent agreement with each other.   

1.4.1 High frequency limit 

In the high modulation frequency limit, we have 
m e
 . If the excitation is 

0

1

i ts e−− = , then the transmitted field can be expressed as  

 
( ) ( ) ( )0

2 21 0
m

n
n i n t

n

s S e
=+

− +−

=−

=    (1.32) 

where the scattering parameter of the n-th order harmonics is 

( ) ( )21 0

p
n e

n p p
p m m m e

S J J
ip

=+

+
=−

    
=    

+   
 . Since 

m e
 the term p=0 is much 

larger than other terms. Therefore, we have  

 
( ) ( )21 0 0

,
n

n

m m

S J J
    

=    
   

  (1.33) 

The transmitted field is simplified to  

 
( )0

2 0
m

n
i n t

n
n m m

s J J e
=+

− +−

=−

    
=    

   
   (1.34) 
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Figure 1.5: The transmitted field amplitude and envelope in high frequency limit. 

We provide an example to compare the approximate solution with the numerical 

simulation. Assume that 
0

1, 0.1, 0.005, 0.1, 1
m e

= = =  = = . The output signal 

in time domain is plotted in the Fig. 1.5 where the high-frequency approximation results 

agree quite well with our numerical simulations.   

Now, we study the scattering parameter of the fundamental tone. From Eq. (1.26)

, we can infer that the scattering parameter of the fundamental tone is  

 
( ) ( )

( )
0 2

21

0

,
p

e
p

p m m e

S J
i p

=+

=−

 
=  

− + + 
   (1.35) 

The above equation indicates that transmission coefficient is maximal when 

0 m
p= + . When the frequency 

0 m
p + , the transmission coefficient is almost 

zero. Therefore, the transmission spectrum is essentially a series of Lorentzian curve with 

amplitude 2

p

m

J
 
 
 

. The study of scattering properties of single time-varying resonator 

can be easily extrapolated to a one-dimensional resonator array or even higher-

dimensional scenarios.  
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Figure 1.6: Amplitude and phase of the scattering parameter of the fundamental tone in 

high frequency limit. 

 

1.4 ORGANIZATION OF THIS DISSERTATION 

In the following, I discuss intriguing electromagnetic wave scattering and 

transport phenomena in PT-symmetric, time-varying and quasi-periodic structures. In the 

second chapter, I discuss a sensing circuit based on a sixth-order exceptional point. The 

sensitivity of the system is shown to be significantly higher than the one of a 

conventional Hermitian sensing system due to the exotic topological feature around 

exceptional point. In Chapter 3, I put forward a theoretical model to analyze the Green’s 

function, scattering signal, and integrated thermal noise in a general two-level sensing 

system. A circuit model is proposed to confirm our theoretical analysis. In Chapter 4, I 

proposed and demonstrated wave tunneling in a PT-symmetric microwave circuit. The 

system is based on a synchronized wave absorber and emitter. The whole circuit is also 

proven to be stable despite the presence of gain element. In chapter 5, I investigated the 

synchronization issue in nonreciprocal devices based on commutated transmission lines. 
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My study shows that insertion loss of the nonreciprocal device experience linear 

degradation while the impedance matching remains unaffected. I also proposed 

mitigation methods for the isolator design. In chapter 6, I studied the eigenfrequency 

distribution of spatially modulated coupled resonator arrays. The system shows a fractal 

band structure and looks like a butterfly. Meanwhile, I also studied the scattering 

properties of associated systems in which the resonant frequency is modulated 

periodically in time.   
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Chapter 2: Enhanced Sensing in an Electronic Circuit with a Sixth-

Order Exceptional Point1 

In this chapter, I present an enhanced sensing design in an electronic circuit with a 

sixth-order exceptional point. The influence of thermal noise on the measurements and 

the signal to noise ratio (SNR) are systemically analyzed and compared with sensing 

protocol in Hermitian counterpart. The main results of this chapter are from ref [49].  

2.1 INTRODUCTION 

Sensing is of fundamental importance in modern society, ranging from industrial 

process monitoring [50], biomedical sample ingredient analysis [51], to massive 

deployment of wireless sensor network for the internet of things [53]-[54]. Most sensors 

rely on resonant structures, analyzing spectrum shifts of a single resonance or spectrum 

splitting of two degenerate modes when a perturbation to be sensed occurs. Typical 

examples include nanoparticle detection with ultrahigh-Q photonic microresonators [56] 

and wireless sensors based on LC microwave resonators [57]. In general, the magnitude 

of frequency splitting is linearly proportional to the perturbation strength due to the 

Hermitian nature of these sensing systems [58]-[59]. The degenerate sensing point in 

these Hermitian systems is thus known as diabolic point (DP).  

Recent advances in the fields of non-Hermitian physics and PT symmetry [60]-

[71] have revealed that enhanced sensitivity can be achieved based on a new type of 

degenerate point, known as exceptional point (EP). At EPs, two or more eigenvalues and 

their corresponding eigenvectors coalesce, leading to a nondiagonalizable Hamiltonian 

that demonstrates an Nth-order root law of eigenfrequency splitting when N degenerate 

 
1 This chapter is published in ref [49]. Zhicheng Xiao, Huanan Li, Tsampikos Kottos, and Andrea Alu are 

coauthors. Zhicheng Xiao proposed the idea, run simulation, wrote the manuscript, Hunan Li and 

Tsampikos Kottos helped write and revise the manuscript, Andrea Alu wrote the manuscript and supervised 

the project. 
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eigenmodes are lifted by the perturbation [72]: 
1 N

   , where  is the 

perturbation strength. The sensitivity is thus proportional to 
1 1N−

, which, for small 

perturbation, is much higher than the linear sensitivity    of DPs, as evidenced by 

some experimental demonstrations [68]-[71].  

Nonetheless, the possibility to implement EP sensing in various setups has 

triggered an ongoing debate over the past several years [73]-[78]. On the one hand, there 

is a fundamental resolution limit for EP sensing schemes based on purely lossy systems 

due to the presence of imaginary part of the eigenfrequencies [73]. This imaginary 

component leads to a broadening of the reflection or transmission spectrum and further 

sets a fundamental resolution limit on the sensitivity of the device. This bound is 

analogous, in another context, to conventional optical diffraction limit, where the angular 

resolution is limited by resolvable distance between two overlapping Airy disk diffraction 

patterns from two adjacent point sources [79]-[80]. On the other hand, PT-symmetric 

sensing systems with balanced loss and gain units can potentially improve the resolution 

limit, given that proper readout design and perturbation strategy are deployed. However, 

these gain and loss elements unavoidably add noise into the system, imposing another 

fundamental bound on the sensitivity.  

In this chapter, we endeavor to address these issues by proposing an enhanced 

sensing scheme based on a sixth-order EP supported by a PT -symmetric electronic 

circuit [see Fig. 1.1 (a)]. Instead of detecting the resonant frequency splitting, we detect 

the eigenfrequency shift by measuring the reflected signals at the lossy side of our circuit. 

First, we set our system to a static EP with zero eigenfrequency. When the system is 

perturbed from the ideal EP condition, a reflection dip emerges, and shifts away from the 

static point. The reflection dip exactly matches the purely real eigenfrequency of the 

system under perturbation and shows a resonant shift following a fourth-order root law  
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Figure 2.1: Hypersensitive PT-symmetric sensing circuit design and its possible 

application scenarios. (a) PT-symmetric sensing circuit. The pink region 

consists of a pair of PT-symmetric resonators. The negative impedance -R is 

realized by an amplifier feedback circuit with noninverting configuration, 

where the gain coefficient is 1
g f
R R+ . The PT-symmetric resonator pair 

is connected in shunt to are resistance 1
g f
R R+ and then in series to a 

microwave generator with internal impedance 
0
Z  and voltage 

g
V . (b) 

Supersensitive microfluid flow sensor based on capacitive perturbation. The 

microfluid speed is sensed by measuring the temperature gradient created by 

the heater. (c) Supersensitive pressure sensor based on capacitive 

perturbation. A pressure sensitive membrane responds to external pressure 

and changes the effective capacitance of
0
C . (d) Supersensitive 

accelerometer based on capacitive perturbation. Acceleration is sensed by 

attaching a dielectric slab sandwiched within the capacitor plates and 

connected to two springs. 

with respect to the perturbation strength. These resonant shifts can be measured with high 

resolution, even for very weak perturbations. We further verify this claim through a  

comparative study of our EP sensing scheme with a DP sensing protocol supported by a 

similar circuit layout. As we show in the following, due to the low-pass feature of our 

sensing circuit, thermal noises are alleviated to an identical level as the corresponding DP 

sensing scheme. 
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2.2 SIXTH-ORDER EXCEPTIONAL POINT SENSING SYSTEM 

Our sensing scheme is based on a PT -symmetric circuit supporting a sixth-order 

EP. The circuit design is shown in Fig. 2.1 (a). In the pink-highlighted region, two 

resonators formed by a grounded capacitor C and a floating inductor L, are coupled with 

a grounded capacitor 
0
C  . A positive resistor R and a negative resistor -R are connected 

in parallel with the left and right resonator, respectively. To reveal the sensing 

mechanism in our scheme, we formulate the corresponding non-Hermitian Hamiltonian 

and study its eigenfrequency. Using Kirchhoff’s laws, the dynamics of the voltages at 

various nodes of the isolated system follow these equations: 

 

1 1 1 2

2 2 1 3

3 3 2 3

0,

2 0,

0,

V V V V

V V V V

V V V V

 + + − =


+ − − =
 − − + =

  (2.1) 

where n
n

dV
V

d
= , n

n

dV
V

d
= , 1,2,3n = , 

0
t=  is the normalized time, 

1 L

R C
=  

is the intrinsic gain or loss rate of the LC resonator,  
0

C C=  is the coupling 

coefficient between the two resonators. It is easy to show that Eq. (2.1) is invariant 

under a joint time-reversal and parity operation, and therefore the system is PT symmetric 

[62]. Constructing a state vector for this six-variable  linear system 

1 2 3 1 2 3

T

V V V V V V  =   , we can recast Eq. (2.1) into the Schrodinger-type 

equation:  

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
,

0 0 0

2 0 0 0

0 0 0

eff

i

i

id
i H

i i id

i i i

i i i

 
 
 
 

=  =  
− − 
 −
 

−  

  (2.2) 
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where 
eff

H  is the effective Hamiltonian describing the dynamics of our circuit. The 

eigenfrequencies are found through the associated characteristic equation 

Det 0 :
eff
H − =I  

 ( )2 4 2 2 22 2 1 2 2 0, + − − + + − =
 

  (2.3) 

where I is the six-dimensional unity matrix. Solving Eq. (2.3), we find six 

eigenfrequencies:  

 

 

2 2 2 2 4

1,2

2 2 2 2 4

1,2

3,4

1
2 2 4 4 4 ,

2

1
2 2 4 4 4 ,

2

0.


=  + − + − + +




=  + − + − + +

 =



  (2.4) 

There is always a pair of eigenfrequencies corresponding to the dc solution of the 

system, with the eigenstate 1 1 1 0 0 0
T

 =    . This sixth-order EP occurs for 

the following:  

 
5 1 5 1

; ,
2 4EP EP

+ −
= =   (2.5) 

which are inherent properties of the circuit topology. It’s possible to show that the 

exceptional point is sixth order by transforming the effective Hamiltonian into a Jordan 
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normal form: 1

eff
H SJS−= , where the Jordan matrix J and transformation matrix S are： 

 

( ) ( )
( )

( ) ( )

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
,

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

1 1 5 3 5 3 5 1 5 0

1 5
1 1 0 0 0

2
1 0 0 0 0 0 .

0 1 5 3 5 3 5 1 5

1 5
0 0 0

2
0 0 0 0 0

J

j j

j

S

j j j

j j

j

 
 
 
 

=  
 
 
 
  

 − − − − + +
 
 

− − 
− 

 
 =
 

+ − − − − + 
 

+ −
 
 
    (2.6) 

The number of off-diagonal “1” in the Jordan matrix clearly shows that the exceptional 

point is sixth order. The sixth-order EP can also be verified in the parameter space of 

coupling and gain/loss rate [see Fig. 2.2].  

This sixth-order EP is ideally suited for sensing applications if we consider a 

perturbation to the system. Here, we assume that the perturbation is applied to the 

coupling capacitor with ( )1
EP

= + , modeling the realistic scenario where the 

capacitor serves as a small sensing platform [see Figs. 2.1 (b)–1(d)]. In the following 

subsections, we will study the relation between the sensed quantity and the perturbation 

strength.  
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Figure 2.2: Second order exceptional line, diabolic point, and sixth-order EP in the 

parameter space.  

2.2.1 Hypersensitive microfluid speed sensor (or temperature sensor) 

 The microfluid speed sensor design in this work essentially consists of two 

temperature sensors and a heater which creates a flow direction dependent asymmetric 

temperature profile. The fluid speed is determined by measuring the temperature 

difference using the two temperature sensors. To simplify the study, we assume that the 

fluid is water, which has an empirical temperature-dependent relative dielectric constant:  

 
1 2

,
r
c c T= −   (2.7) 

where  K 1

1 2
197, 0.4c c −= = , K is Kelvin, T is the temperature of water. The above 

equation is applicable for temperatures ranging from 273 K to 373 K. Assume that the 

system is set at the sixth-order EP with a reference temperature 300EPT K= , which 

means the capacitance value of the coupling capacitor is  

 ( )0 0 1 2
,EP EP A

C c T c
d

= −   (2.8) 

where A is the effective area of the capacitor plates and d is the distance of between the 

two plates. When the temperature of the liquid increases, the system drifts away from the 

sixth-order EP with a temperature-dependent coupling capacitance 
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 ( ) ( )0 0 1 2
,

A
C T c Tc

d
= −   (2.9) 

where T is the temperature to be sensed. According to the relation between the coupling 

coefficient and the perturbation strength in previous section, we find the relation between 

the temperature drift and the perturbation strength:  

 ,
1

T
T

T
= 

−
  (2.10) 

where 3 12

1 2

5.2 10
300

c
K

c c
− −= = 

−
,  EPT T T= − . The above equation indicates that 

when the temperature drift under perturbation is small enough, the perturbation strength 

is linearly proportional to the temperature drift.  

2.2.2 Hypersensitive pressure sensor  

 Assume that the capacitor consists of two circular metallic plates with radius 

r and thickness t.  The top plate is pressure sensitive and stretchable while the bottom 

plate is fixed. Without any pressure on the upper plate, the system should operate in the 

sixth-order EP. The coupling capacitance is  

 
2

0 0
,EP

r

r
C

d
=   (2.11) 

r
 is the relative permittivity of the slab, 

0
 is the vacuum permittivity, d is the 

distance between the plates. When a small pressure P is applied on the upper plate, the 

displacement on the centroid of the upper plate is  

 
( )4 2

2

3 1
,

16

r
d P

Et

−
 =   (2.12) 

where  is the Poison ratio, E is the Young’s modulus. Then the capacitance of the 

coupling capacitor under pressure is  
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 ( )

1
2

0 0

tanh
.

r

d
r dC P
d d

d

− 

=


  (2.13) 

Therefore, the relation between the perturbation strength and the pressure is  

 
( )4 2

2

3 11
.

3 16

r
P

Et

−
   (2.14) 

Note that in this design, the perturbation strength  is negative since the coupling 

coefficient  decreases after perturbation. Nevertheless, our protocol still holds. The 

only difference is that now one needs to substitute in the expression for the resonant shift 

the absolute value of .   

2.2.3 Hypersensitive accelerometer 

When the acceleration is zero, the system should operate in the sixth-order EP, 

which means the dielectric slab is fully matched with the plates of the capacitor. The 

coupling capacitance can be expressed as 

 
0 0

,EP

r

A
C

d
=   (2.15) 

where 
r
 is the relative permittivity of the slab, 

0
 is the vacuum permittivity, A is the 

area of the plates of the capacitor, d is the distance between the plates. When we apply 

the acceleration, the slab will move out of the plates, changing the effective capacitance 

value of the capacitor: 

 ( )0 0

1 2
1 1 ,

r

r

A ma
C a

d kL

  
= + −  

   

  (2.16) 

where m is the mass of the dielectric slab, k is the stiffness coefficient of the spring, L is 

the length of the capacitor plate, a is the absolute value of the acceleration. The edge 

effect is ignored here, and a rigorous simulation on the electromagnetic field should be 

engaged for practical implementations. According to the definition of the coupling 
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coefficient and the perturbation strength in previous section, the relation between the 

perturbation strength and the acceleration is easily obtained:  

 
1 2

1 ,
r

ma

kL

 
 − 
 

  (2.17) 

which clearly shows that the perturbation strength is linearly proportional to the 

acceleration.  

2.3 ONE-PORT SCATTERING AND READOUT SETUP  

We connect the PT -symmetric resonator pair in shunt to a resistor 
0
Z  and in 

series with a microwave generator having same internal impedance 
0
Z . This readout 

design ensures that the whole sensing network remains matched around the EP to the 

internal impedance of the generator, avoiding backward propagating waves reflected into 

the generator [81]. According to the readout circuit design in Fig. 2.1 (a), the reflection 

coefficient can be expressed as 

 0
11

0

,
2

in

Z
S

Z Z
= −

+
  (2.18) 

where 
in
Z  is the input impedance of the PT-symmetric resonator pair,  

 
( )

( )

4 3 2

4 2 2 2

1 2 2
.

2 2 1 2 2
in

i R i i
Z

 − − + + + =
 + − − + + −
 

  (2.19) 

As expected, the denominator of 
in
Z  corresponds to the characteristic equation of the 

PT -symmetric system, which implies that the resonant dips of 
11
S  directly correspond 

to the system eigenfrequency. The dependence of the resonant shift on a small 

perturbation  can be found by solving the eigenvalue problem:  

 ( ) ( ) ( ) ( ), , ,
eff EP EP
H = =  =    (2.20) 

where the eigenvalues are:  
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( ) ( )

( ) ( )

2
2

1,2

2
2

3,4

5,6

1
5 1 16 5 1 ,

2

1
5 1 16 5 1 ,

2
0


 =  − − + −




=  − + + −


=



  (2.21) 

If perturbation strength is relatively small, we can expand the above equation in Newton-

Puiseux series [72]:   

 

1 3 5

4 4 4
1,2

1 3 5

4 4 4
3,4

5,6

1 5
,

8

1 5
,

8

0,

i o

o

   −
=  + + +   

    


  − +
=  + + +  

    
 =




  (2.22) 

The corresponding eigenvectors are:  

 

( ) ( )

( ) ( )

( ) ( )

1 1 1 1 1 1 1 1

4 4 2 4 2 4 4 4
1

1 1 1 1 1 1 1 1

4 4 2 4 2 4 4 4
2

1 1 1 1 1 1 1 1

4 4 2 4 2 4 4 4
3

4

1 5
1 1 1 1 5 3 5 ,

2

1 5
1 1 1 1 5 3 5 ,

2

1 5
1 1 1 1 5 3 5 ,

2

T

T

T

i

i

i i j j j

   +
 = = − + − + + + − − −  

    

   +
 = − = + + + + + +  

    

   +
 = = + − + + − +  

    

 ( ) ( )

( )

( )

1 1 1 1 1 1 1 1

4 4 2 4 2 4 4 4

5 5

6 6

1 5
1 1 1 1 5 3 5 ,

2

0 1 1 1 0 0 0 ,

0 1 1 1 0 0 0 ,

T

T

T

i i i j j j














   +
= − = − − − + − + − − −  

    

 = =   


 = =    

  (2.23) 

 

The above analysis indicates that if the resonant frequency shift is:  
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Figure 2.3: Amplitude of reflection coefficient, eigenfrequency shift, and sensitivity at 

EP and DP. (a) Amplitude of reflection coefficient with different 

perturbation strength for EP sensing system. (b) Amplitude of reflection 

coefficient for DP sensing system. (c) Eigenfrequency shift at EP and DP, 

dashed lines represent the corresponding series expansion truncated to the 

first order. (d) Sensitivity at EP and DP versus the perturbation. The 

components are chosen as follows:  μH100L = ,  pF100C = , 

 618.03R =  , Z =50 
0

 . For EP sensing system  pF
0

323.6C = ; for DP 

system  F
0

0.1C = . The above ADS simulation results confirmed our 

theory (see the Appendix A for circuit schematic). 

 

 
1 3 5

4 4 4
1 5

8EP
o
 − +

= + + + 
 

  (2.24) 
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We confirm our theoretical analysis by simulating the reflection amplitude for 

different perturbation strengths in Fig. 2.3 (a). When the perturbation ϵ is 0, the system 

exactly operates at a sixth-order EP with eigenfrequency 0
EP
=  leading to a resonant 

dip on the reflection spectrum. When the coupling coefficient μ increases, the whole 

sensing system deviates from the sixth-order EP. Consequently, another resonant dip 

arises and shifts to the right, clearly seen in Fig. 2.3 (a). We extract these resonant dips 

EP
 and show them in Fig. 2.3 (c). Our data indicate that the resonant frequency shift 

is proportional to the fourth-order root of the perturbation strength, as expected. 
 

To prove that the higher-order EP in our electronic circuit offers enhanced 

sensitivity compared to conventional sensors, we study an analogous Hermitian sensing 

circuit supporting a DP. Referring to Fig. 2.1 (a), the Hermitian counterpart of our circuit 

layout can be realized by removing both the loss element R and the gain element -R. The 

Hermitian system operates at a second order DP as the coupling coefficient goes to 0. 

In Fig. 2.3 (b), we report the reflection amplitude associated with this circuit for various 

perturbation strengths. The corresponding eigenfrequency shift 
DP

 is also shown in 

Fig. 2.3 (c). Both curves confirm that the resonant frequency shift is linearly proportional 

to the perturbation strength for DP sensing. We compare the sensitivity of our EP and DP 

sensing schemes in Fig. 2.3 (d), showing that the higher-order EP sensing scheme indeed 

provides enhanced sensitivity.  

A perturbation on the resistor, inductor, or capacitor in the resonator, in principle, 

can result in frequency shift or splitting. However, these perturbation schemes inevitably 

bring in complex eigenfrequencies, which broaden the line shape and create a wide 

unresolvable region, as shown in previous EP sensor demonstrations [68][69]. Our design 

is devoid of these complex eigenfrequencies and therefore 
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Figure 2.4: Thermal noise power spectral density. The circuit parameters are identical to 

Fig. 2. (a) Thermal noise power spectral density from the impedance Z0, 

from the resistor R, and from the gain element -R, respectively, in the PT -

symmetric system. (b) Thermal noise power spectral density from the 

impedance
0
Z  in the corresponding Hermitian system. (c) Total thermal 

noise power spectral density in the PT symmetric system, dashed line 

indicates the ADS simulation results. (d) Total thermal noise power spectral 

density in the corresponding Hermitian system, the dashed line indicates 

ADS simulation results (see the Appendix A for circuit schematic). 

 

dramatically improves the sensing resolution, especially for small perturbations. Our 

assessments are further confirmed in the Appendix A. In practice, sophisticated 
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techniques should be involved to maintain a good match between the gain and loss 

parameter [77]. 

2.4 MITIGATING THERMAL NOISE  

PT -symmetric circuitry relies on additional gain and loss elements, prone to add 

noise to the system. This issue has raised a degree of skepticism from the community 

concerning the effectiveness of EP sensing protocols. There are shot noise, flicker noise, 

and thermal noise in an electronic circuit. Since the shot noise mainly exists in circuits 

with tunneling diode or vacuum tube, and flicker noise can be significantly reduced 

below the level of thermal noise by choosing wirewound resistors [82]-[85], we aim for 

analyzing thermal noise in this work. In the following, we will show how thermal noise is 

alleviated in our sensing scheme.  

Thermal noise in an electronic circuit is characterized by the power spectral 

density (PSD) which reads: ( ) ( )
2

4
i B i i
S f k T H f R= [84][85], where 

B
k  is the 

Boltzmann constant, T is the temperature, 
i
R  is the resistance of the noise source, and 

( )i
H f  is the transfer function. The latter defines the voltage ratio between the probing 

point [see Fig. 2.1 (a)] and the noise source. We first investigate the PSD associated with 

the internal impedance of the generator. Assuming that there is an equivalent voltage 

noise source in series with the internal impedance
0
Z , we find that the transfer function 

takes the form ( )1 0
2

in in
H Z Z Z= + . Since the resistor 

0
Z  is in shunt with the internal 

impedance 
0
Z , the transfer function is 

2 1
H H= , leading to an identical PSD to the 

internal impedance
0
Z . For the loss element R, the transfer function is 

( )3 0 0 0
2

in in in
H Z Z Z Z RZ RZ= + + . The noise from the negative impedance -R is more 

complicated to assess because it depends on the specific circuit design implementing the 

negative impedance. Here, we assume to use an amplifier circuit with noninverting  



 31 

 

Figure 2.5: Simulation of measurement results under the influence of thermal noise. The 

circuit parameters are identical to Fig. 2.3, except for the capacitor C in the 

resonator. The temperature T is 300 K and the voltage of the generator 
g
V  

is 1 Volt. (a) Amplitude of reflection coefficient, with  pF100C = . (b) 

Amplitude of reflection coefficient, with  pF20C = . (c) Amplitude of 

reflection coefficient, with  pF1C = .  

feedback configuration. The feedback impedance is thus set to R, which indicates that the 

noise PSD is proportional to R. The thermal noise PSD from each noise source is shown 

in Fig. 2.4 (a), which indicates that the noise PSD from the gain and loss elements are 

negligible compared to those stemming from the two 
0
Z  elements. We conclude 

therefore that the total thermal noise PSD in the PT -symmetric sensing system and its 

corresponding Hermitian system are almost identical. Figures 2.4 (c) and 2.4 (d) show the 

theoretical and numerical thermal noise PSD provided by ADS software, which are in 

excellent agreement with each other. 

Integrated noise power and signal to noise ratio (SNR) are important metrics of 

thermal noise as well. In a circuit with N independent noise sources, the total noise power 

can be expressed as 

 ( )d2

0
1

,
N

noise noise i
i

P v S f f


=

= =   (2.25) 

where 
noise
V  is the noise voltage, N is the total number of noise sources. Since the noise 

power from the resistor R and -R are negligible compared with the impedance 
0
Z , we 
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only consider the noise power from the internal impedance 
0
Z  and shunt resistor 

0
Z . 

Substituting the transfer function into Eq. (2.25), the approximate thermal noise power 

from each 
0
Z  takes the form: 2

B
k T C , indicating that the noise power is independent 

of the impedance value
0
Z , the inductance L, and the coupling capacitance 

0
C . 

Therefore, the noise power in our PT -symmetric sensing network and the Hermitian 

counterpart are:  

 .PT Hermitian B
noise noise

k T
P P

C
    (2.26) 

an expression identical to the integrated noise of a low pass RC filter [85]. This result 

indicates that the integrated thermal noise of the PT -symmetric and Hermitian sensing 

systems are identical due to the low pass feature of our design. When the system is 

perturbed, the total noise power slightly changes, but this variation is negligible. At EP or 

DP, the resonator pair is essentially open, which results in 2
g
V  signal voltage at the 

probing point, where
g
V is the voltage of the generator. Therefore, the SNR at EP or DP is 

 

2

.
4

gEP DP

B

CV
SNR SNR

k T
 =   (2.27) 

Finally, we study the influence of thermal noise on measurement results. The 

probing voltage 
probe
V  and the reflection coefficient

11
S in our sensing network has an 

intuitive relation:  

 ( )11
2 1.

probe noise g
S V V V= + −   (2.28) 

Therefore, the deviation of the reflection coefficient is 

 
11 11 2

4
,

PT Hermitian
B

g

k T
D S D S

CV
     =      (2.29) 

where “D” indicates the deviation. Equations (2.27)-(2.29) prove that our EP sensing 

system shares the same thermal noise performance compared with the corresponding DP 

sensing scheme. Figure 2.5 shows the simulation of measurements under the influence of 
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thermal noise. Figure 2.5 (a) corresponds to the sensing circuit we designed in this work, 

where thermal noise has little influence on the measurement results, confirming that 

thermal noise in our EP sensing system is fully manageable by choosing a proper 

working capacitance value in the resonator. Figure 2.5 (b) shows a marginal design, for 

which the measurement results can still be recorded. Figure 2.5 (c) demonstrates a failed 

design, where the signal is fully buried by thermal noise and no sensing can be 

performed. 

2.5 CONCLUSIONS  

In this chapter, we have put forward a sensing circuit based on a sixth-order EP, 

showing an enhanced resonant shift proportional to the fourth-order root of the 

perturbation strength. Due to the balanced loss and gain configuration and our 

perturbation scheme, the resolution is also improved. Our PT -symmetric system not only 

serves as a sensing platform, but also filters out high-frequency thermal noise, leading to 

a nearly identical thermal noise level compared to the corresponding Hermitian DP 

sensing scheme. Considering the combined high-sensitivity, improved resolution, and 

nondegraded thermal noise performance, we envision that accelerometers, pressure 

sensors, or microfluid flow speed sensors may be implemented following this scheme 

with unprecedented sensitivity, resolution, and excellent thermal noise performance, as 

sketched in Fig. 2.1. 
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Chapter 3: Noise Performance of Enhanced Sensing based on Second-

Order Exceptional Points2 

In this chapter, continuing on the previous analysis, I present a general study of 

the Green’s function, scattering poles, and thermal noise performance of enhanced 

sensing around exceptional points. A circuit example is proposed based on a second-

order exceptional point to confirm the theoretical analysis. The main results are from the 

ref. [86] , which is under review.  

3.1 INTRODUCTION 

Bifurcation occurs when a physical system’s topological features experience sharp 

transitions in response to a smooth change of a certain parameter within the system [87]-

[88]. It can be ubiquitous in nature and of fundamental importance in characterizing a 

plethora of intriguing dynamic processes, such as the onset of lasing behavior in a 

pumped cavity [89]-[90], outbreak of insects in a forest [91], and self-oscillating 

chemical reactions [92]. In recent years, a new category of bifurcation, known as 

exceptional points (EP), has attracted widespread attention and excited intense interest in 

the fields of photonics [14],[66], acoustics [94]-[95] and electronics [62]-[63],[96]. 

Exceptional points are degeneracies in the spectrum of non-Hermitian operators where 

two (or in general N) eigenvalues and their corresponding eigenvectors coalesce resulting 

in a collapse of the eigenbasis [72]. Due to the exotic topological feature at these branch 

points, many fascinating applications were developed, such as mode switching [98] , 

topological energy transfer [99], and polarization state conversion [100]. More recently, 

enhanced sensing utilizing the sharp eigenvalue bifurcation around EP has facilitated a 

 
2 This chapter is in preparation and going to be submitted to a journal.  
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series of experimental demonstrations [68]-[71], [101]-[104]. By lifting the N-fold non-

Hermitian degeneracy at EP, the eigenfrequencies of an open system undergo a splitting 

with N-th order root law [97], which is highly sensitive to parametric perturbation 

compared with the linear response of diabolic point (DP) sensing in Hermitian systems. 

However, these enhanced sensing demonstrations based on EP in various non-

Hermitian platforms have led to a series of arguments concerning their sensitivity, 

resolution, and signal to noise ratio performance [73]-[77], [105]-[106]. Langbein studied 

the mode amplitude of unbalanced-loss sensing system and argued that these perturbed 

mode amplitudes scale linearly with the perturbation strength [73]. Lau et al. investigated 

the quantum EP sensing and claimed that nonreciprocal EP sensing setup shows the 

prospect of enhanced sensitivity and favorable noise performance [74]. On the other hand, 

Wang et al. have experimentally demonstrated that enhanced sensing near EP is masked 

by simultaneously enhanced Petermann factor due to the nonorthogonality of modes at 

EP [78].  Despite the fundamental importance of understanding the effects of quantum 

noise in the EP-sensing, in many sensing schemes the dominant issue is classical noise 

and its mitigation. In this work, we attempt to provide a unified theoretical framework to 

analyze the sensitivity, resolution, and classical thermal noise performance of two-level 

EP and DP sensing systems. We pay close attention to the self-orthogonality of 

degenerate eigenmodes at EP and decompose the Green’s function of the effective 

Hamiltonian by reconstructing the collapsed eigenspace using Jordan vectors [107]-[109]. 

Our study shows that, it’s possible to have enhanced sensitivity, resolution, and 

nondegraded thermal noise performance in a one-port reflective EP sensing setup. Our 



 36 

theoretical results are further confirmed with concrete simulations of EP sensing in an 

electronic circuit and show an exciting prospect for EP sensing in optomechanical, 

electromechanical, acoustic, and open quantum systems [110].    

3.2 SENSITIVITY AND SCATTERING ANALYSIS OF NON-HERMITIAN SENSING SYSTEMS 

3.2.1 Eigenfrequency and mode bifurcation of non-Hermitian sensing systems 

In this work, we aim to analyze EP and DP sensing in two-level systems, which 

are described by Hamiltonian
+

+

1 1

2 2

,
i

H
i

 
=  
 

where 
i

 is the resonant 

frequency of the mode i, 
i
 is the associated gain or loss rate, positive 

i
 represents  

gain and negative 
i
 represents loss, 1,2i = .  is the coupling rate between these 

two resonant modes or cavities. Various combination of resonances, loss (gain) rate or 

coupling rate can lead to different non-Hermitian and Hermitian systems. To simplify our 

study, we employ a simple one-port sensing network to probe the eigenfrequency of the 

system [see Fig. 3.1]. The eigenfrequencies are obtained by solving the eigenvalue 

problems 
eff
H =u u  and T T

eff
H =v v : 

 

( ) ( ) ( ) ( )
2

' ' 2 ' '

1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1

1 1
4 - - -

2 2 2

i
i i i i


= + + +  + + + + +   

           (3.1) 

where =
eff
H H i−  , =

0

0 0
e

 
  

 
 is the external decaying matrix, ='

1 1 e
− , u  and 

Tv are right and left eigenvectors, respectively.  
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

( )1s t+

( )1s t−


1 1
i+ +

2 2
i

 

Figure 3.1: One-port scattering setup where a probing channel is side coupled to mode 

+
1 1
i . The decaying matrix is =

0

0 0
e

 
  

 
, 

e
 is the external loss rate 

from mode 1 to the waveguide, = 2
e

 is the corresponding coupling 

coefficient. 

EP or DP sensing requires the system to be initialized to an EP or DP where the 

eigenvalues are degenerate. For unbalanced loss system, unbalanced loss/gain system, 

and parity-time (PT)-symmetric system, the condition for EP is 

= = =

'

1 2

1 2 0
,

2EP

−
, where the system has a degenerate eigenfrequency 

( )= + '

0 1 22EP

i
+ . For Hermitian system, DP condition is: = =

1 2 0
, 

=0,
1 2

0
DP

= = , where the degenerate eigenfrequency is =
0DP

. After setting 

these non-Hermitian and Hermitian systems to the degenerate point, we apply a 

perturbation on the system where the perturbed Hamiltonian can be expressed as 

( ) ( )20 1
,

eff
H H H= + +

0
H  is the Hamiltonian at EP or DP,  is the relative 

perturbation strength, 
1
H  is the first-order perturbation matrix,  is an asymptotic 

notation. When the sensing system is perturbed around the EP, we have eigenvalue 

problems ( )eff
H =u u  and T T

eff
H =v v , which leads to the following 

eigenfrequencies  
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 ( )
1

2
0 1 0

,T

EP
H


  v u   (3.2) 

where 
EP

 is the degenerate eigenfrequency at EP, 
0
u  and 

0

Tv  are right and left 

eigenstates at EP, which are defined by 
0 0 0EP
H =u u  and 

0 0 0

T T

EP
H =v v ,

1
u  and 

1

Tv

are right and left Jordan chain vectors defined by +
0 1 1 0EP
H =u u u and 

+
1 0 1 0

T T T

EP
H =v v v . The following normalization conditions are adopted in our 

derivation: 
0 0 1 0 0 1 1 1

0, 1, 0T T T T= = = =v u v u v u v u . Perturbation at EP results in a mode 

splitting 
1

2
0 1 0

2 T

EP
H  v u , which demonstrates an enhanced sensitivity compared 

with linear mode splitting. Note that 
0 1 0

THv u is not necessarily a purely real parameter, 

indicating that unproper perturbation scheme may bring in unwanted imaginary part, 

leading to broadened spectrum and reduced resolution.  

For DP sensing, the effective Hamiltonian at DP is 0
0

0

0

0
H

 
=  
 

. Since 

perturbation on the resonance will only shift one of the resonances, we assume a 

perturbation on the coupling coefficient with perturbation matrix 0
1

0

0

0
H

 
=  
 

. 

Therefore, the eigenfrequencies are  

 ( ) 0 0
,


=    (3.3) 

with 
0

2
DP

 =  scaling linearly versus the perturbation strength. Equations (3.2) 

and (3.3) are the main evidence supporting the claim that EP sensing offers enhanced 

sensitivity compared with DP sensing. However, as argued in many papers, these 

eigenfrequencies are not direct observables. Therefore, it is important to unveil the 

relation between these eigenfrequencies and scattering peaks and valleys in a realistic 

sensing setup. 



 39 

3.2.2 Green’s function and scattering extremes 

We have studied the mode bifurcation and sensitivity of EP and DP sensing 

systems in previous subsection. Now, we reveal the relation between the eigenfrequency 

and the resonant dips or peaks of scattering spectrum, which is largely unexploited in 

current literature. This line of study helps define the fundamental resolution limit of our 

EP and DP sensing schemes. Coupled mode theory (CMT) is a powerful tool to 

characterize the dynamic evolution of the mode amplitude and the scattered fields 

[111][112]:  

 

( )
( ) ( ) ( )

( ) ( ) ( )

d

dt
,

,

T
t

iH t K t

t C t K t

+

− +


= − − +


 = +

a
a s

s s a

  (3.4) 

where ( ) ( ) ( )=
1 2

T

t a t a t 
 a  is the field amplitude of the cavity or mode. T is a 

transpose operator, K  is the coupling matrix which defines the coupling between the 

cavity and the probing waveguide, = † 2K K  is the decaying loss matrix, † is a 

conjugate transpose operator, =
r t

C
t r

 
 
 

 is the scattering matrix when the non-

Hermitian sensing system is totally disconnected from the probing waveguide. r is the 

reflection coefficient and t is the transmission coefficient, and the whole matrix satisfies 

passivity condition C=†C I , where I  is a two by two identity matrix. 

( ) ( ) ( )=
1 2

T

t s t s t   
 s  are the input and output state vectors, respectively.  

By performing a Fourier transform over Eq. (3.4) and using the relation 

*CK K= −  dictated by time-reversal symmetry, we obtain the scattering matrix:  

 ,TS C iKGK= +   (3.5) 

where S  is defined by the relation ( ) ( )=S− +s s , I  is a two by two identity matrix, 

( )
1

eff
G H

−

= −I  is the Green’s function. It determines the joint spectral response of the 
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isolated system and its associated probing waveguide. The Green’s function is singular if 

0
eff

Det H− =I , corresponding to the case where the excitation signal frequency is 

equal to one of the eigenfrequencies of the effective Hamiltonian. Therefore, we employ 

modal expansion approach to clearly show the relation between Green’s function, 

scattering poles and eigenvectors of effective Hamiltonian:  

 ( ) ( )
1 1

, , 0 ,
T T

T T
G + + − −



+ −+ + − −

= +  
− −

u v u v

v u v u
  (3.6) 
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Figure 3.2: One-port scattering setup where a probing channel is side coupled to mode 

+
1 1
i . The decaying matrix is =

0

0 0
e

 
  

 
, 

e
 is the external loss rate from mode 1 to 

the waveguide, = 2
e

 is the corresponding coupling coefficient. Relation between 

resonant mode splitting and scattering extremes in EP sensing schemes. (a) Reflectance 

of the unbalanced loss sensing system. 
1 2

0.01, 0.05, 0.01
e

= − = − = . The exceptional 

point is 0.015
EP
=  and the resolving threshold point is 0.034

TP
= . (b).  

Eigenfrequencies and the valleys of the reflectance curve. In the region 
EP TP
  , 

we can see the bifurcation of eigenfrequency, but we cannot see the valleys the 

reflectance curve because of the linewidth broadening. In the region 
TP

 , we can see 

valleys of the reflectance curve. (c) Reflectance of the PT-symmetric sensing system. 

1 2
0.05, 0.05, 0.01

e
= − = = . The exceptional point is 0.045

EP
=  and the resolving 

threshold point is 0.055
TP
= . (d).  Eigenfrequencies and the peaks of the reflectance 

curve. In the region 
EP TP
  , we can see the bifurcation of eigenfrequency, but we 

cannot see the peaks the reflectance curve because of the linewidth broadening. In the 

region 
TP

 , we can see peaks of the reflectance curve. 

 

where  is the relative strength of perturbation on the effective Hamiltonian, 

 are 

the eigenvalues of ( )eff
H , 


u  and T


v  are the right and left eigenstates of the 

effective Hamiltonian ( )eff
H , which are defined by eigenvalue problems 

( )eff
H

  
=u u  and ( )T T

eff
H

  
=v v .   

The above equation is valid for both EP and DP sensing systems, but its behavior 

is significantly different at EPs and DPs. In the limit of 0→ , the system locates 

exactly at the exceptional point. Both left and right eigenstates become self-orthogonal (

=lim 0T T

+ + − −
→

=v u v u ), which results in ill-defined Green’s function. It’s necessary to 

employ Jordan decomposition of the effective Hamiltonian ( )eff
H  to deal with the dot 

product and cross product of these eigenvectors, which leads to the following Green’s 

function at EP:  
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 ( )
( )

( )0 0 0 1 1 0

2
, 0

T T T

EP

EPEP

G
+

=  + 
−−

u v u v u v
  (3.7) 

where 
EP

 is the degenerate eigenfrequency at EP, 
0
u  and 

0

Tv  are right and left 

eigenstates at EP, which are defined by 
0 0 0EP
H =u u  and 

0 0 0

T T

EP
H =v v ,

1
u  and 

1

Tv

are right and left Jordan chain vectors defined by +
0 1 1 0EP
H =u u u  and 

+
1 0 1 0

T T T

EP
H =v v v . For DP sensing system, the eigenspace remains untouched by 

Hermitian degeneracy, resulting in the following Green’s function at DP: 

 ( ) 0 0 0 0

0 0 0 0

1
, 0 ,

T T

T T
DP

G
 

= = +  −  

u v u v

v u v u
  (3.8) 

where 
0DP

=  is the degenerate eigenfrequency at DP, 
0
u  and 

0

Tv  are right and left 

eigenstates at DP, which are defined by 
0 0 0DP
H =u u  and 

0 0 0

T T

DP
H =v v . Armed 

with Eqs. (3.6)-(3.8), we are now ready to analyze the effects of noise to the sensitivity 

of EP and DP sensing.  

Substituting Eq. (3.6) into Eq. (3.5), we obtain the reflectance of our one-port 

sensing network:   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 2 2 2

2 2

22 2 2 2

2 2

+ +

+ +

4 2

0 1 0 12

11 4 2

0 1 0 1

2
.

2

e e

e e

S

   − + + − − + +   
=

   − + − − − + −   

  (3.9) 

The reflectance peaks or valleys, which are employed to characterize the mode splitting 

of the non-Hermitian sensing system, also demonstrate square root splitting with respect 

to the perturbation strength. However, these peaks or valleys are always smaller than the 

eigenfrequencies of the non-Hermitian system. In Fig. 3.2, we show the reflectance, 

scattering extremes, and eigenfrequency of unbalanced loss sensing system and PT-

symmetric system. It indicates that there is always an unresolvable region for EP sensing 

and PT-symmetric sensing system can help improve resolution limit compared with 

unbalanced loss system.    
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1 1
i+ +

2 2
i

( )1
n t ( )2
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1 2

( )3n t

 

Figure 3.3: Thermal noise model. Two thermal baths ( )1
n t , ( )2

n t  are connected with 

mode 1 and 2, respectively. Another thermal bath ( )3
n t  represents the 

external thermal fluctuation pumped into the resonant mode 1.  The 

coupling rate for internal thermal bath is 2
i i
= ; the coupling rate for 

external thermal bath is 2
e

= ; the temperature of all the thermal baths 

is T. 

3.3 THERMAL NOISE PERFORMANCE  

The past several years has witnessed a series of arguments against EP sensing. 

One of the major concerns is about the thermal noise which can potentially mask the 

supersensitive mode splitting. In this section, we will show the influence of thermal noise 

on the measurement results and demonstrate that proper design of EP sensing protocols 

can help mitigate the unwanted thermal noise effects. Thermal noise model is shown in 

Fig. 3, where three thermal baths of temperature T are coupled to the modes with 

coupling coefficient 
1 1

2= , 
2 2

2=  , and 2
e

=  , respectively. The 

Langevin equation governing the time evolution of the mode amplitudes reads:  

 
( )

( ) ( )
d

dt
,

eff

t
iH t t= − +

a
a n   (3.10) 
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where ( ) ( ) ( )=
1 2

T

t a t a t 
 a  is the amplitude of modes due to the excitation of random 

thermal noise, 
1

2

2 0 2

0 2 0

e

 
  =
 
 

 is the coupling matrix between the 

thermal baths and the modes, ( ) ( ) ( ) ( )=
1 2 3

T

t n t n t n t 
 n  is the random thermal 

fluctuation associated with the gain/loss elements, which satisfy ( ) 0
i
n t = , 

( ) ( ) ( ) ( )* ' '

i i
n t n t t t= − ,  ( ) ( )* ' 0

i j
n t n t = . " "  is the Dirac-Delta function, 

" "means the expectation value of a stochastic process, ( )
( )exp 1

B
k T

 =
−

 is 

the Bose Einstein distribution, is the Planck’s constant, 
B
k  is the Boltzmann constant.  

Since the coupled modes are connected with three thermal baths, random thermal 

noise will emit to the probing waveguide. Power spectral density (PSD) is an important 

parameter to characterize the thermal noise. To this end, we perform a Fourier transform 

over Eq. (3.10) and figure out the amplitudes of modes excited by random noise: 

( ) ( ).iG = a n  As a result, the emitted noise amplitude in frequency domain is:  

 ( ) ( ) ( ) ( )+
1 11 1 2 12 2 11 3

2 2 2 2 ,
noise e e
n i G n G n G n = +

  
  (3.11) 

where 
11
G  and 

12
G are matrix elements of the Green’s function. According to the 

Wiener-Khinchin theorem, the PSD of emitted thermal noise is:  

 ( ) ( ) ( )+
2 2

1 11 2 12
4 ,

e e
S G G = + 

  
  (3.12) 

where relations ( ) ( ) ( ) ( )* ' '

i i
n n = −   and 

( ) ( ) ( ) ( )* ' * '

1 2 2 1
0n n n n= = are used. We substitute the expression of Green’s 

function from Eq. (3.6) into the above equation and get the PSD of emitted thermal 

noise: 

( )
( ) ( )  ( )

( ) ( ) ( ) ( )

2

2 2

22 2 2 2

2 2
+ +

2 2

1 0

4 2

0 1 0 1

4
,

2

e e

e e

S

 + − + + 
  

=
   − + − − − + −   

 (3.13) 
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Figure 3.4: Power spectral density of thermal noise and integrated thermal noise. (a) 

Thermal noise power spectral density in PT-symmetric sensing system.

=0.05,
0

0.02, 300
e
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0
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B
k T  . (b) Integrated thermal noise 

versus perturbation strength. (c) Integrated thermal noise versus 
0 e

. 
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where we assume ( ) 1 21 ,
2

e

EP EP

− −
= + = . At EP, the PSD of the emitted 

thermal noise reduces to:  

 ( )
( ) ( )  ( )2 2

2 2 2

1 0

4

4
, 0 .

e EP

EP

e

S

 + − + + 
  

= 
−

  (3.14) 

Since measurements are influenced by the emitted noise in the whole spectrum, it’s 

equally important to analyze the total noise power, which is defined as: 

( )P
noise

S d
+

−
=  . It’s possible to show that to have small noise power for weak 

perturbation, we must have 
1 2

0, 0  . To simplify our study, we assume the system 

is PT-symmetric, which means 
1 0 2 0 0

, , 0= = −  . Fig. 3.4 (b) shows that when 

0
0.5

e
 , total noise power decreases as the system approaches to EP, which is very 

favorable for EP sensing. At EP, the integrated noise power is:  

 ( ) ( )noise
P

2

0 0 0 0
8 4 2 1 .EP

e e
 = − + 
  

  (3.15) 

Figure 3.4 (c) shows the noise power versus 
0e

, indicating that for 
0

0.5
e
 , the 

noise power almost keeps constant. Minimal noise power at EP becomes 
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( )noise
P

0 0min
6EP =   as =

0

1

4e
. Figure 3.4 (b) shows the emitted thermal noise 

PSD with different perturbation strength.  

3.4 REALISTIC EP SENSING DESIGN 

To further confirm our theoretical analysis, we present a realistic EP sensing design 

exhibiting enhanced sensitivity, resolution, and favorable thermal noise level. As shown 

in Fig. 3.5, we put forward a realistic electronic circuit supporting a 2nd order EP, which 

can be used for enhanced sensing. A lossy resonator with loss element R and a gain 

resonator with gain element -R are coupled with inductor 
0
L , obeying PT-symmetry. 

According to Kirchhoff’s current and voltage laws, voltages 
1
V and 

2
V  follow the 

relations:  

 

( )

( )

2

2

d d
+

dd

d d
+ +

dd

1 1
1 22

2 2
2 12

1 0,

1 0,

V V
V V

V V
V V


+ + − =



 − − =


  (3.16) 

where 
0

1

LC
= ,

0

L

L
= , 

1 L

R C
= ,

0
t= . We construct a state vector 

=
1 2 1 2

T

V V V V    , with 1 2
1 2

,
dV dV

V V
d d

= = . We substitute the state vector into 

Eq. (3.16) and get effective Hamiltonian matrix of our system 

 
( )

( )

0 0 0

0 0 0
,

1 0

1 0

eff

i

i
H

i i i

i i i

 
 
 =
 − + −
 

− +  

  (3.17) 
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Figure 3.5: PT-Symmetric enhanced sensing circuit and its nondegraded thermal noise 

performance. (a) Circuit schematic. The PT-symmetric pair is connected in 

series to a microwave generator with internal impedance 
0
Z  and voltage 

g
V . (b) Power spectral density of thermal noise at the probing point from 

the noise source 
0
, ,Z R R− , respectively. The components are chosen as 

follows:  μH100L = ,  pF100C = , 
0

50Z =  ,  1000R =  , 
0

2

3
L L=   

(c) Theory and simulation of total thermal noise power spectral density. (d) 

Total noise power versus the relative perturbation strength. (e) Total noise 

power versus the capacitance in the resonator. 

where the system obeys the dynamic evolution equation 
eff

d
i H
d

 =  . By solving 

the characteristic equation of the system Det 0
eff
H − =
 

I , we have the 

eigenfrequencies of the PT-symmetric system:  

 

2 2 2 2 4

1,2

2 2 2 2 4

3,4

2 2 4 4 4
,

2

2 2 4 4 4
,

2


+ − + − − + = 



 + − − − − +

= 


  (3.18) 

The above equation indicates that the system operates at a second order EP if the 

coupling and gain/loss rate satisfies = 21

2
 . When a perturbation is applied upon 

the coupling element ( )= + +21
1

2

 
 
 

, resonant mode splitting can be expressed as:  

 
1 3

2 2
2

1
o
 

 = +
+




+
+


  (3.19) 

The above mode splitting can be detected by measuring the reflection coefficient of our 

sensing system.  

We proceed to evaluate thermal noise performance of our design. For electronic 

circuit, the thermal noise power spectral density (PSD) reads: ( ) ( )
2

4
i B i i
S f k T H f R= , 

where 
B
k  is the Boltzmann constant, T is the temperature, 

i
R  is the resistance of noise 
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source, ( )i
H f  is the transfer function defining the ratio of voltages between the 

probing point and noise source. In our EP sensing design, there are one external noise 

source from the impedance  
0
Z , and another two internal noise sources from the lossy 

and gain resonators. Rigorous theoretical analysis shows that  

 

( )

( )

( )
( )

0

2

0

0

2
2

0

0

22
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2
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in

in
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in

in
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in
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S f k TZ

Z Z

Z Z
S f k T

R Z Z

Z Z i
S f k T

R Z Z i i−


 =

+



=
+




= + − − +


  (3.20) 

 

where 
( )

( )

2

4 2 2

1

2 1 1 2
in

R i i
Z

 − + + + =
 + − + + + 

 is the input impedance of the PT-

symmetric circuit. Equation (3.20) indicates that if 
0

1Z R  , the thermal noise power 

spectral density at probing point almost depends on the external noise source, leading to a 

smooth response of noise fluctuation when the system is perturbed at EP. This is the 

scenario we discussed in section 3.2, where we showed that if 
0

0.5
e
 , the thermal 

noise is almost a constant for various perturbation strengths. Figure 5(b) demonstrates the 

PSD from each noise source, indicating that external noise from 
0
Z  is dominant; fig. 3.5 

(c) shows the total noise PSD both from theoretical analysis and ADS simulation, which 

agrees well with each other; fig. 3.5(d) shows the integrated thermal noise power versus 

perturbation strengths, which is robust for sensing; fig. 5(e) shows the integrated thermal 

noise versus the capacitance in the resonator.  
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3.5 CONCLUSIONS 

In this Section, we have provided a unified theoretical framework to analyze the 

sensitivity, resolution, and thermal noise performance of two-level EP and DP sensing 

protocols. Our study indicates that, although the Green’s function of EP sensing systems 

shows a combination of square Lorentzian and Lorentzian noise spectra at the EP 

compared with conventional DP sensing system, the integrated thermal noise is still 

manageable if proper ratios of internal and external decaying rates are chosen. These 

arguments are confirmed with a judiciously designed 2nd order EP sensing circuit and 

unveil a bright future for EP sensing applications in many other fields, including 

optomechanical, acoustic and open quantum systems. 
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Chapter 4: Robust Wave Tunneling and Information Transfer based on 

Parity-Time-Symmetric Emitter-Absorber Pairs3 

Robust signal transfer in the form of electromagnetic waves is of fundamental 

importance in modern technology, yet its operation is often challenged by unwanted 

modifications of the channel connecting transmitter and receiver. Parity-time (PT) 

symmetric systems, combining active and passive elements in a balanced form, provide 

an interesting route in this context. In this chapter, we demonstrate a PT-symmetric 

microwave system operating in the extreme case in which the channel is shorted through 

a small reactance, which acts as a nearly impenetrable obstacle and it is therefore 

expected to induce large reflections and poor transmission. After placing a gain element 

behind the obstacle, and a balanced lossy element in front of it, we observe full 

restoration of information and overall transparency to an external observer, despite the 

presence of the obstacle. Our theory, simulations and experiments unambiguously 

demonstrate stable and robust wave tunneling and information transfer supported by PT-

symmetry, opening opportunities for efficient communication through channels with 

dynamic changes, active filtering and active metamaterial technology. The main results 

of this chapter are from ref [37].  

4.1 INTRODUCTION 

Information transfer in the form of electromagnetic waves is ubiquitous in today’s 

world, from free space (wireless) to transmission-line (guided) channels [113]-[116]. The 

channels connecting transmitter and receiver are typically time-varying and are affected 

by the presence of various obstacles. Therefore, the wave must tunnel through non-ideal 

 
3 This chapter is published in ref [37]. Y. R., S. T., and A. A. conceived the idea, Z. X. and Y. R. 

performed the simulation, Z. X. and Y. R. did the measurements, Z. X. contributed to the first draft of the 

paper, all the authors worked on the paper, and A. A. supervised and funded the research. 
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channels, with strong insertion loss. Resonant transmission, such as electron tunneling 

through quantum wells, resonant photon tunneling through optical barriers, and 

microwave tunneling through extremely squeezed or bent channels can address this issue 

to some extent, but typically with severe trade-offs in terms of bandwidth, sensitivity and 

complexity, among others [117]-[120]. In most practical scenarios, dynamic and complex 

electromagnetic environments pose challenges to the system operation and make these 

solutions even more challenging. For instance, in applications where dynamic obstacles 

are inevitable, like communicating with biomedical implants such as artificial cardiac 

pacemakers [121] or interrogating embedded health sensors in civil infrastructures [122], 

engineers need to adaptively tune complex matching networks or the operational 

frequency to maximize the transmission efficiency. In extreme scenarios, the channel 

between transmitter and receiver may be completely blocked, which cannot be addressed 

by dynamically tuning the matching network. In such practical scenarios, transferring the 

signal over the channel may be impossible. 

In a recent theoretical work [123], we showed that in such systems instead of 

transferring the input signal to the receiving port through a channel with dynamic 

changes, one can just transfer a little information about the input signal during the 

transient, and replicate the entire signal at the output port using this information based on 

a different form of signal tunneling driven by parity-time (PT) symmetry. Quite 

interestingly, in contrast to conventional solutions, in such a system, the input and output 

ports do not have to stay connected throughout the whole information transfer process.  

Here, we experimentally prove that, by placing a shunt lossy element in the 

transmitting node before the obstacle and a judiciously designed gain element in the 

receiving node, forming a PT-symmetric conjugate pair [124]-[133], we can restore full 

transmission at the operational frequency, despite the presence of a nearly unitary 
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reflective obstacle blocking the transmission channel. The obstacle in our experiment is 

modelled as a shorting element along a transmission line. The lossy element paired with 

the obstacle is designed to behave as a Salisbury screen absorber [134], while the gain 

element acts as a synchronized emitter operating as the time-reversed version of a 

Salisbury absorber. This PT-symmetric wave tunneling, and information transfer system 

enables robust full-wave transmission through an otherwise impenetrable barrier. 

4.2 PT-SYMMETRIC WAVE TUNNELING AND INFORMATION TRANSFER SYSTEM  

PT-symmetric tunneling and robust information transfer is schematically sketched 

in Fig. 4.1 (a), where the signal is transported wirelessly via an air channel from a 

transmitting to a receiving antenna. When a reflective obstacle is inserted within the 

transmission channel, information transfer efficiency is expected to drop dramatically. To  

0Z 0-Z0L

0, 0Z τ = T 40, 0Z τ = T 4

0-Z

TX ANT RX ANTObstacle

generator

0Z

0Z 0Z

PT - Symmetric emitter - absorber pair

0Z

0Z
generator

( )a

( )b ( )c ( )d
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Figure 4.1:  (a) PT-symmetric wave tunneling and information transfer scheme. A 

highly reflective obstacle blocks the channel. A gain element 
0
Z−  is 

placed behind this obstacle and a lossy element R  is placed before the 

obstacle to facilitate full wave transmission. (b) A simplified wired version 

of PT-symmetric robust information transfer scheme based on transmission 

line. The obstacle is modeled as a small inductive element 
0
L . (c) 

Fundamental odd and even mode profiles of the PT-symmetric absorber-

emitter pair. They are significantly different from Hermitian system due to 

the Neumann boundary condition and PT-symmetry. The point
2

L
Z = − and    

2

L
Z =  marks the location of the loss and gain unit, where L  is the 

electrical length of the transmission connecting these two elements. (d) 

Tunneling characteristics of the PT-symmetric system. The phase 

transmission maxima locates at ( )     
0

2 1 , 0, 1, 2, 3k k= + =  and the 

in-phase transmission peaks are determined by the transcendental equation  
1

0 0

1
tan

2 2

−

   
=   

   
, where

0 0 0
L Z= is the coupling strength 

between the absorber and emitter, 
0 0

2 T= is the fundamental resonant 

frequency. 

restore full wave transmission, in this work we add a gain element 
0
Z−  behind the 

reflecting obstacle and a conjugate lossy element 
0
Z  in front of it to form a PT-

symmetric conjugate pair, where 
0
Z  is the characteristic impedance of the transmission 

channel [see Fig. 4.1(a)]. As we show in the following, this combination can largely 

restore transmission through the channel, despite the presence of the largely reflective 

obstacle. In order to prove this principle, we model the wireless information transmission 

channel with a basic transmission line, as shown in Fig. 4.1(b), and the highly reflective 

obstacle with a small inductor 
0
L , close to a short and therefore highly reflective. Since 

we utilize the resonant tunneling feature of the PT-symmetric system, the transmission 

line is set at half-wavelength of the impinging wave. As a result, the loss element 
0
Z , the 

first quarter-wavelength transmission channel, and the highly reflective obstacle behave 



 55 

like a Salisbury screen absorber. The obstacle, the second quarter-wavelength 

transmission channel, together with the gain element 
0
Z−  work as a synchronized 

information transmitter, a time-reversed replica of a Salisbury absorber, which emits in 

sync with the absorbing portion. We show that in steady state the whole PT-symmetric 

system works as a tunneling channel for impinging waves, mimicking a lossless, ideally 

transmitting channel. 

To begin with, we analyze the resonant transmission mode and frequency of the 

PT-symmetric wave tunneling and information transfer system. We define the steady 

state voltage on the transmitting node, obstacle and receiving node as 
source
V , 

obstacle
V , 

and 
load
V , which form the state vector 

T

source obstacle load
V V V=    . The characteristic 

equation reads PT = , which supports even and odd eigenstates 

T

1 1 1
+
=  −   , 1 0 1

T

−
=  −   , and eigenvalues 1


=  , where 

0 0 1

0 1 0

1 0 0

P

 
 

=  
 
 

 is the parity operator, T is the time reversal operator (equivalent to 

complex conjugation for steady state), and T  is the transpose operator. As we can infer 

from the above analysis, the obstacle is a short and contributes no phase delay at odd 

resonant tunneling states. Therefore, the total phase delay of the transmitted wave is 

( )0 2 1
2

T
k= +  with ( )     

0
2 1 , 0, 1, 2, 3k k= + = , 

0 0
2 T=  being the 

resonant frequency of the fundamental standing mode. For the even scattering state, we 

sum up the phase delay on the transmission line and the inductor: 

 0 0 0

0

2arctan 2 ,
4 2 4

T Z T
k

L
− + − =   (4.1) 

which can be simplified to the characteristic equation 



 56 

 

1

0 0

1
tan ,

2 2

−

   
=   

   
  (4.2) 

where 
0 0 0
L Z=  is the coupling strength between the Salisbury screen absorber and 

its conjugate emitter, and 
0
Z  is the characteristic impedance of the transmission line. 

The eigen-equation of even standing modes is a transcendental equation, which requires a 

numerical evaluation. As  approaches zero, the circuit is shorted by the obstacle and 

the wave cannot tunnel through the system; as  approaches infinity, the load can be 

neglected and the even mode has the close-form solution  
0

2 , 0,1,2,3k k= = . An 

alternative approach to find the resonant frequencies of the system is to employ the 

transfer matrix method and the generalized conservation law, with detailed calculations 

presented in the Appendix B. The standing even/odd mode solutions 


 explicitly 

show that the absorber and emitter exhibit identical amplitudes and 0/π phase difference, 

which is direct evidence of synchronized wave absorption at the input port and emission 

at the output port. We demonstrate the standing wave profile of this PT-symmetric 

absorber-emitter pair in Fig. 4.1 (c). The unusual standing mode profile, considering the 

presence of the reflective obstacle, is a direct manifestation of PT-symmetry and 

Neumann boundary conditions at the ports. We also show the power transmission 

spectrum in Fig. 4.1 (d), which demonstrates full wave tunneling at the resonant 

frequencies. The tunneling mechanism satisfies the generalized flux conservation law 

applicable to any two-port PT symmetric network, which reads 
( )1 e L Ri

L R
T r r

− +
− =  , 

where T  is the power transmission coefficient, 
L
r  and 

R
r  are the amplitude reflection 

coefficients on the left and right ports of the system, 
L
 and 

R
 are the corresponding 

phase of the amplitude reflection coefficients. As a result, the system demonstrates super-

unitary power transmission inside the region bounded by any pair of even and odd 

tunneling eigenfrequencies. Note that, due to the presence of gain in the system, the 
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transmission may go over unity at frequencies close to the tunneling frequency, however 

the system remains stable. 

To better understand the PT-symmetric wave tunneling, it is of interest to 

investigate the scattering properties at resonance and analyze the PT phase transition of 

the scattering state. Rigorous transfer matrix analysis enables us to express the scattering 

properties of even and odd resonant states of this two-port information transfer network 

as 

 
1

0

0 1

,2
1

S j
−



  
 

=   
    

  

  (4.3) 

where S
+

 and S
−

 are scattering matrices of even and odd resonant modes, respectively, 

obeying the symmetry relation ( ) ( )*PS PS
 

= I . Wave tunneling happens at the 

resonant frequencies and it is totally independent of the obstacle strength  or its type 

(inductive, capacitive, resistive or any combination of these) between the Salisbury 

absorber and the synchronized emitter, since the obstacle is effectively shorted in steady 

state. This offers unique flexibility to maintain the transmissivity of the proposed system 

for arbitrary variations of the obstacle, ensuring stable operation. Even for dynamically 

varying obstacles, the system is capable of self-tuning to a stable full transmission region. 

However, if the obstacle has scattering loss the system will fail to recover the signal. 

The scattering matrix in Eq. (4.3) has two eigenvalues  

( )
2

0

1,2

0

1j−  −
= . At ( )

1

0

−

=  these two eigenvalues coalesce, 

supporting a non-Hermitian degeneracy. This exceptional point (EP) separates the 

scattering system from its PT-symmetric phase when ( )
1

0

−

  and its broken-PT-
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symmetric phase when ( )
1

0

−

 . We substitute the eigenfrequencies of even and 

odd scattering states ( )
1

0

−

 into the expression ( )
1

0

−

= to find the EPs  

 

, 0,1,2
1

2arctan 2
2

1
, 0,1,2

2 1
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EP
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k

k

k
k


= =

 +



= =
+

  (4.4) 

Depending on the reflectivity of the obstacle, i.e., how close to zero is its reactance, the 

resonant tunneling state can be in the exact PT-symmetry phase with unitary eigenvalues 

1 2
1= = , or in the broken PT-symmetry phase with 

1 2
1/ 1=  . The PT 

tunneling functionality is independent of the PT-symmetry phase transition point. The 

stability analysis is presented in the Appendix B, which shows inherent stability for any 

finite value of the obstacle reflectivity [0   ].  

4.3 EXPERIMENTAL REALIZATION AND ROBUSTNESS ANALYSIS 

We experimentally demonstrate a robust proof-of-concept PT-symmetric 

microwave tunneling prototype [see Figs. 4.2(a) and 4.2(b)]. The gain unit is realized 

through a dispersive negative impedance converter (NIC) based on a non-inverting 

feedback amplifier configuration [see Fig. 4.2(a)]. A compensating inductor 
c
L  in series 

with the non-inverting port realizes a purely negative impedance 
0
Z−  at the operational 

frequency. The dispersion relation of the NIC follows  

 ( )
( )
0

0

,
1

p

NIC F c

p

s A
Z s Z sL

s A

+
= +

+ −
  (4.5) 

where
0
A  is the open-loop gain of the amplifier, 

p
 is the pole frequency of the 

amplifier, ( )f f g
R R R= +  is the feedback factor, 

0
2

F
Z Z=  is the feedback resistor, 

and s  is the complex frequency. We choose a compensating inductor 
0 3

3
c dB
L Z=

and the operational frequency 
0 3

3
dB

= , where 
3 0

2
dB p

A=  is the 3-dB 
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frequency of the closed-loop gain coefficient. The NIC dispersion is shown in Fig. 4.2(c), 

showing a negative impedance 
0
Z−  at the operational frequency 

0
.  

Our prototype is designed to work at the fundamental odd scattering state. We 

realize the transmission line through a π-type LC resonator to reduce the form factor [see 

Fig. 4.2(a)], which offers unitary transmission as well as π/2 phase delay at resonant 

frequency to mimic a quarter-wavelength transmission line segment. The impedance is 

automatically matched at both transmitting and receiving nodes, as we choose 

0 0
L Z=  and 

0 0
1C Z= . This compact design significantly reduces the form 

factor of our device from 2  to a deeply subwavelength scale 50 . The fabricated 

device is shown in Fig. 4.2(b), with a size of approximately 2 cm by 2 cm. We confirm 

our theoretical analysis with a co-simulation between ADS and the Modelithics package, 

which shows excellent PT-symmetric tunneling at 48.7 MHz. The scattering properties 

are demonstrated in Fig. 4.2(d) with a tunneling point of -0.01 dB transmission and -28.8 

dB reflection.  Finally, we confirm the PT-symmetry of our designed circuit by graphing 

the spectral properties of the eigenvalues of the scattering  
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Figure 4.2: Realistic design and implementation of the PT-symmetric wave tunneling 

prototype. (a) Circuit schematic. Transmission line is replaced with a π-type 

transmission line which consists of inductor L and capacitor C. (b) 

Photograph of the fabricated PCB prototype. Two big white components are 

tunable resistors. The black component with six pins is OPA 355-Q1 

amplifier. Left and right ports are source port 1 and load port 2 in the 

schematic. Upper and lower ports are DC bias ports for the amplifier. (c) 

Dispersion of the impedance of the gain element. Black circle marks the 

operational point. (d) ADS and Modelithics simulation of the amplitude of 

scattering parameters. Tunneling point is marked in the figure. (e) Spectral 

properties of eigenvalues of the scattering matrix. Exact PT-symmetry is 

achieved at tunneling frequency where eigenvalues obey unitary conditions 

( ) ( )1 0 2 0
1= . The coupling coefficient is 0.13, ensuring robust 

operation of the whole circuit in presence of obstacle. (f) Numerical 

transient response at the source port where full absorption is achieved at 

tunneling frequency. The generator voltage is 1 Volt. (g) Numerical 

transient response at the obstacle which is short in the steady state. (h) 

Numerical transient response at the load port where full wave tunneling is 

observed in the steady state. 

matrix in Fig. 2(e). With coupling coefficient 0.13= , the eigenvalues demonstrate 

unitary property 
1 2

1=  at 
0
, which is a typical hallmark of PT-symmetry in the 

broken symmetry phase. No other PT-symmetry point is found in the full spectra. 

To better understand how this PT-symmetric wave tunneling circuit works, we 

plot the temporal response at source, obstacle and load nodes in Figs. 2(f)-(h). We place a 

microwave generator 
0

sin
g
V t=  with internal impedance 

0
Z  in the source node. The 

voltage at this port initially experiences a small reflection and then rapidly reaches steady 

state 
0

1
sin

2source
V t= , indicating that the impinging wave is fully absorbed by the shunt 

resistor 
0
Z . The obstacle node demonstrates a purely decaying response, confirming our 

previous steady state analysis in the ideal PT-symmetric configuration 0
obstacle
V = .  The 

load port is essentially an emitter, and it demonstrates an exponentially growing trend 

towards steady state 
0

1
sin

2load
V t= − . Since it operates at the fundamental odd 
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resonant tunneling state, the emitted wave has a π phase shift with respect to the 

impinging wave. 

Apart from the PT-symmetric full wave tunneling functionality, our design is 

stable and robust to parameter detuning and reasonable fabrication errors. To study the 

stability issue, it is important to investigate the voltages at source, obstacle, and load in 

the complex frequency domain. Application of the Kirchhoff’s current and voltage laws 

leads to a set of linear equations 
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  (4.6) 

where ( )g
V s  is the voltage of the microwave generator, ( )source

V s , ( )obstacle
V s , ( )load

V s

are the complex voltages on source, obstacle, and load nodes, respectively. Here we 

define the transfer function as the voltage ratio between load versus generator: 

( ) ( ) ( )load g
H s V s V s= . To maintain a stable operation, the impulse response should 

have a finite energy, which is equivalent to requiring that all the poles of the transfer 

function lie on the left hemi-Riemann sphere Equation (4.6) indicates that the relative 

pole locations only depend on the strength of the obstacle. As  approaches to zero, the 

transfer function turns to zero and it is meaningless to study the stability issue. As   
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( )a ( )b

 

Figure 4.3: Realistic design and implementation of the PT-symmetric wave tunneling 

prototype. Pole diagram and impulse response. (a) Pole distribution of the 

transfer function on a Riemann surface. Grey solid line (Prime meridian) 

marks the watershed between stable and unstable regions. North pole is the 

pole in the case = , corresponding to an open obstacle and leading to 

marginally stable operation. For the prototype we fabricated 0.13= , there 

are eight poles in the transfer function, A, B, C, D, E, C*, D*, E*, where C*, 

D*, E* are the conjugates of C, D, E, respectively. A and B are located on 

the 90-degree west longitude; C, D, E are located close to the prime 

meridian but to the left; C*, D*, E* are located in the back surface. All these 

eight poles are in the stable region. (b) Numerical impulse response at the 

gain unit. The input port is excited with a pulse ( )generator
V t= . 

goes to infinity, the emitter is directly connected with the absorber, creating a marginally 

stable point on the north pole [see Fig. 3(a)]. In this scenario, any small perturbation on 

the system will move the marginally stable point and transform it into eight poles on the 

right hemi-Riemann sphere. Numerical computation indicates that our circuit operates 

robustly as the coupling strength varies between 0.1 and 0.3. As our realistic design 

involves both dispersive negative feedback and a π-type transmission line, they place a 

more stringent condition on stability compared with the ideal model where the stable 
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condition is 0   . In our fabricated prototype, we carefully choose  = 0.13 to 

ensure a stable operation within expected fabrication imperfections. Figure 4.3 

demonstrates the pole distributions as well as the impulse response of our design. There 

are eight poles on the left hemi-Riemann sphere when 0.13= , indicating that our 

fabricated prototype is stable.  

4.4 OBSERVATION OF PT TUNNELING AND INFORMATION TRANSFER 

Figures 4.4(a) and 4.4(b) show the experimentally measured and theoretically 

calculated forward transmission spectrum and phase. A PT-symmetric unitary 

transmission was observed at 44.8 MHz with 180-degree phase, which agrees with our 

simulation. Meanwhile, the reflection is fully suppressed at this point, as shown in Figs. 

4.4(c) and 4.4(d). The experimental reflection phase at resonance is essentially undefined 

due to the zero amplitude, causing fast oscillations around the resonance, as shown in 

Fig. 4.4(d). It is worth mentioning that at resonance, the experimental backward 

reflection amplitude 
22
S  is 15 dB and the phase Arg

22
S    is -90 degree, confirming 

that our PT-symmetric system has asymmetric reflections and satisfies the generalized 

conservation law. Since the system is linear and time-invariant, reciprocity is satisfied 

and the transmission coefficients in forward and backward directions are identical. The 

observed tunneling frequency is smaller than the simulation results, which may stem 

from the fabrication error where the inductance or capacitance values in the transmission 

line is smaller than designed ones. The scattering parameters in a narrower or wider 

spectrum are demonstrated in Figures 4. 5 and 4.6. In the Fig. 4.7, we show the  
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Figure 4.4: Measurements of the amplitude transfer characteristics and reflection 

coefficient. (a) Forward transmission spectrum. Resonant tunneling occurs 

at 44. 8 MHz.  (b) Phase diagram of the transmission coefficient. 

Tunneling field experiences  phase shift at resonant frequency. (c) 

Reflection at input port. -50 dB reflection is observed at 44.8 MHz, 

indicating that matching network works quite well. (d) Phase diagram of 

reflection coefficient at input port. Measured data in a wider (20-200 MHz) 

and narrower (40-50 MHz) spectrum are presented in the extended data Figs 

3 and 4 in the supplementary document.  

linearity of our tunneling circuit, which demonstrates an excellent linear relation between 

input and output power at tunneling frequency. This graph clearly shows that although at 

the steady state the output is completely disconnected from the input (since the inductive 

load is fully shorted), the output can still linearly follow the input. In other words, if after 

reaching the steady state, any change happens to the input signal, the system goes into the  
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Figure 4.5: Comparison between experimental S parameters and simulation S 

parameters. The input signal power is -25 dBm.  a. Amplitude of 

experimental scattering parameters ranging from 20MHz to 200MHz. b. 

Phase of experimental scattering parameters ranging from 20MHz to 

200MHz. c. Amplitude of simulation scattering parameters ranging from 

20MHz to 200MHz. d. Phase of simulation scattering parameters ranging 

from 20MHz to 200MHz. 

 

 

\ 
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Figure 4.6: A closer look into the S parameter, ranging from 40MHz to 50MHz.  a. 

Amplitude of experimental scattering parameters. b. Phase of experimental 

scattering parameters. Reflection coefficient experiences large oscillation 

from 44 to 46 MHz. This is due to the undefined phase at singular point.   

 

Figure 4.7: Linearity of the tunneling device. Straight line represents the fitting curve of 

the input-output power relation. Dots are measured experimental data. The 

system shows an excellent linear power response from -25 dBm to -5 dBm.    

transient regime for a very short period of time, during which the information of the input 

signal is communicated towards the output port and then output reaches the steady state 

again and fully replicates the input signal. 

4.5 MATERIALS AND METHODS 

4.5.1 Circuit design and fabrication 

The design of the circuit and fabricated prototype are shown in Fig. 4.2(a) and 

4.2(b). In the NIC part, we use amplifier OPA 355-Q1 from Texas Instrument. This 

amplifier has a 200 MHz gain bandwidth product, with open loop gain 5

0
10A =  and 

pole frequency  Hz2 2000
p
=  . The effective impedance of the NIC in Fourier 
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domain can be easily inferred from equation.   by replacing complex frequency s  with 

physical frequency j : 
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To have purely negative impedance 
0
Z− , the real part of the above equation should be 

0
Z−  and the imaginary part of the effective impedance should be 0. Then, we have the 

following operational conditions 
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where  
0

50Z =  ,  100
F
Z =  , ( ) 0.5

f f g
R R R= + = ,  560

f g
R R= =  . Here, the 

feedback resistor
F
Z is chosen as 

0
2Z  due to the dispersion of the one-pole model 

amplifier. We substitute these values into the above equation and get the operational 

frequency  MHz2 57.74f = =  of the negative impedance converter and the 

compensating inductor  nH238.7
c
L = . In circuit simulation, we use two inductors with 

inductance value 120 nH. Then, we co-simulate our circuit with ADS and Modelithics to 

check the effective negative impedance. Our simulations demonstrate a  50.9− 

negative impedance at 50.2 MHz. The shift of the design frequency can be contributed to 

the parasitic effect and possible high-order poles in the amplifier. The inductor 

 nH150L =  and capacitor  pF68C =  in the transmission line are chosen to match both 

the operational frequency of NIC and the characteristic impedance of the port. The 

reflective obstacle is modeled as an inductor  nH
0

20L = , leading to a coupling factor 

0.13=  and ensuring robust operation of the system.  
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The circuit is fabricated on a 0.062-inch-thick FR-4 substrate with relative 

permittivity 4.4 and dissipation factor 0.017. The following components are surface 

mounted on the PCB board: (1) characteristic impedance
0
Z from KOA Speer with part 

number RK73B1ETTP510J; (2) feedback resistor 
F
Z  from KOA Speer with part 

number RK73B1ETTP910J; (3) feedback resistor ..
f
R .. from KOS Speer with part 

number RK73B1ETTP561J; (4) two variable resistors from Bourns Inc. with part number 

3223W-1-101ETR-ND and 3223W-1-200ETR-ND; (5) capacitor in the resonator from 

Murata Inc. with part number GRM1552C2A680GA01#; (6) inductors from Coilcraft 

with part numbers 0402HPHR15X, 0402CS20N, and 0402CS12X; (7) amplifier from 

Texas Instrument with part number OPA355QDBVRQ1; (8) port connectors from 

Amphenol with part number 132322.  

4.5.2 Stability analysis 

A linear, time-invariant, causal circuit is stable if and only if the impulse response 

is absolutely integrable, which means  

 ( ) finite
0

,H t dt


=   (4.9) 

where ( )
0

np t

n
n

H t c e


=

=  is the impulse response, 
n
p  is the n-th pole of the transfer 

function ( )
0

n

n n

c
H s

s p



=

=
−

 , 
n
c  is the amplitude coefficient of each Laplace component 

Therefore, to operate in the stable region, all the real parts of the poles must be negative:  

 ,Re 0,
n

n p       (4.10) 

which is the stability condition of a linear, causal and time invariant circuit.  
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In our circuit, we assume the system is excited with a power source 
g
V  which 

has an internal impedance 
0
Z . The transfer function ( )H s  can be defined as ratio 

between ( )load
V s  and ( )g

V s . According to Kirchhoff’s current and voltage laws, we 

express currents and voltages in Laplace domain 
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where 0
0

00

3 3
2

23
NIC

s s
Z Z

s

 +
= + 

−  

. We solve the above linear equation set and get the 

transfer function 
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  (4.12) 

Simple numerical calculation is employed to solve the pole locations of the above 

transfer function. Our calculation indicates that for stable operation of the PT-symmetric 

circuit, the coupling coefficient must meet the following condition  

 0.1 0.3.    (4.13) 
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It is also equally important to investigate the impulse response and confirm the 

stability of our PT-symmetric system in time domain. We substitute the solutions of the 

poles into the following equation of impulse response 

 ( ) ( )Res
1

,st

n
n

H t e H s


=

 =     (4.14) 

where "Res"  means the residue of a complex function. Appendix B demonstrates the 

impulse responses with parameter detuning, which shows that the impulse response has a 

finite energy and evolves in a stable fashion in time domain. Both frequency and time 

domain analyses prove that our system is immune from reasonable unwanted perturbation 

and fabrication error and maintains stable operation. It’s important to note that the 

stability issue inherently relies on the measurement circuit (where the generator, source 

and load impedance are included), rather than the isolated PT-symmetric tunneling 

system.  

5. CONCLUSIONS 

In this Chapter, we have demonstrated microwave tunneling and information 

transfer through a PT-symmetric absorber-emitter pair. Our study represents a landmark 

towards realistic implementation of information transfer systems with extreme 

robustness, able to tunnel the input signal through otherwise impenetrable obstacles with 

large robustness, and it shows promises to spawn a series of applications. For instance, 

our loss-neutral-gain arrangement exhibits a third-order exceptional point in the bound 

state. By properly designing the system at this higher order exceptional point, the 

eigenfrequency splitting of the corresponding Hamiltonian matrix shows an enhanced 

high sensitivity proportional to the cubic root of the perturbation strength on the system, 

which is very favorable to design ultrasensitive microsensors. Meanwhile, this prototype 

can be used as a bandpass active filter which allows for simultaneous narrow-band signal 
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filtering and amplification. Furthermore, our design provides relevant insights into 

realization of active cloaking devices and active metasurfaces which exhibit unique 

properties not available in passive counterparts. In summary, the design strategies and 

stability analysis in this work pave the way towards future realizations of PT-symmetric 

functionalities in optics and microwave regimes. Considering the extensive connections 

between electromagnetic, mechanic, and matter waves, our study can also spur practical 

applications of PT-symmetry in these other fields of research.  
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Chapter 5: Role of Synchronization in Nonreciprocal Devices with 

Commutated Transmission Lines4  

Commutated transmission lines have been recently explored as an interesting way 

to break Lorentz reciprocity, avoiding any resonant structure, and enabling broad 

bandwidths with giant isolation combined with lenient requirements on the modulation 

frequency. The scheme relies on precise synchronization among different switches 

connected through transmission lines, offering in principle infinite bandwidth. In this 

chapter, we investigated the effects of realistic switching parameters and synchronization 

on the device performance, providing interesting physical insights on the operation of 

these devices. Our results shows that the nonreciprocal response of these systems 

experiences a linear regression of insertion loss and isolation with respect to the timing 

error among switches. Remarkably, impedance matching, and nonreciprocal phase shifts 

are immune from synchronization issues, and reasonable levels of synchronization errors 

still guarantee low insertion loss and good isolation. Our study also provides practical 

guidelines to envision nonreciprocal devices based on commutated modulation of 

conductivity, opening interesting opportunities for several fields of technology, including 

wireless communications, quantum technologies and photonic circuits. The main results 

of this chapter are from ref [138].  

5.1 INTRODUCTION  

Time reversal symmetry (TRS) is a fundamental property of many classical 

physical systems, which dictates that a system remains symmetric under the time reversal 

operation [139]-[142]. In linear time-invariant (LTI) and non-gyrotropic electromagnetic 

 
4 This chapter is previously published in ref [138], Zhicheng Xiao did theoretical analysis and run circuit 

simulation, Dimitrios Sounas did theoretical analysis, Aravind Nagulu run circuit simulation, all the 

coauthors contribute to write the manuscript, H. Krishnaswamy and A. Alu supervised and funded the 

work.  
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systems, TRS leads to the well-known Lorentz reciprocity theorem. Breaking Lorentz 

reciprocity allows creating asymmetric transmission when exciting from different 

directions, and it has been an exciting research topic over the past decade [143]-[158], 

since it shows great promise for novel devices and applications, such as on-chip optical 

diodes, superconducting quantum circuits, and circulators for full-duplex communication 

systems [156]-[163].  

The conventional approach to break Lorentz reciprocity is to bias a system with a 

quantity that is odd-symmetric under time reversal operation, such as linear velocity, 

conduction current, or magnetic field. Among all these approaches, magnetic bias is by 

far the most common for microwave and optical nonreciprocal devices. However, devices 

based on this approach tend to be bulky, expensive, and incompatible with chip-scale 

fabrication processes, due to lattice mismatch between magnetic nonreciprocal media and 

semiconductors. Nonlinear Kerr effects in asymmetric resonant structures provides 

solutions to several of these problems, including bias-free non-reciprocity, small form 

factor, and compatibility with integrated systems technology. Unfortunately, however, 

nonlinear nonreciprocity is characterized by fundamental limitations, such as narrow 

dynamic range, intensity-dependent operation, sensitivity to noise, a trade-off between 

insertion loss and transmission, and operation for non-simultaneous excitation from 

different ports [164]-[166]. Another approach that has proven very attractive for the 

design of magnetless nonreciprocal devices without the problems of nonlinear systems is 

based on time modulation of permittivity. Different types of such linear time-variant 

(LTV) systems have been proposed so far, including systems with travelling wave 

modulation, effective gauge fields and angular momentum biasing, which have proven to 

be dynamic and versatile platforms for many nonreciprocal devices.  
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A related approach to realize nonreciprocal devices is based on transmission-line 

commutation. Such LTV devices leverage the fact that conductivity can be modulated 

with a large contrast, exceeding 105 between ON and OFF states at frequencies up to tens 

of GHz. Such modulation can be typically achieved using transistors as switches, making 

it particularly attractive to realize miniaturized and fully integrable non-reciprocal 

devices. Synchronized conductivity modulation has been employed to realize isolators 

and gyrators with theoretically infinite bandwidth, as well as the first circulator fully 

integrated in a 65nm CMOS chip [158]. Synchronized conductivity modulation across 

transmission lines has enabled high-performance circulators, making these approaches 

viable to commercial applications. Specifically, transmission line commutation has 

enabled CMOS integrated circulators in the millimeter-wave frequency range (25GHz 

operation in and 60GHz operation in) as well as circulators with insertion losses of 

around 2dB, isolation greater than 40dB and watt-level power handling at radio 

frequencies. Conductivity modulation is preferable over temporal modulation of the real 

part of permittivity, since the latter is a weak effect, as well as over capacitance 

modulation in varactors, whose nonlinearity makes them not ideal for high-power 

applications. Nevertheless, the performance of these devices relies heavily on 

synchronization of the clocking signals. 

In this chapter, we explore the effects of realistic switch de-synchronization on 

the performance of this class of nonreciprocal devices, analyzing to what degree this 

effect may degrade the device performance. We quantitatively evaluate the impact of 

timing errors on various key metrics, focusing on three types of nonreciprocal devices 

originally introduced in: a gyrator, an isolator, and a circulator, which respectively 

exhibit nonreciprocal phase response, nonreciprocal amplitude response, and 

unidirectional flow of signals. In Sections 2, 3, 4, we present ideal singly-balanced 
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nonreciprocal designs and explain how commutated switches can be employed to create 

nonreciprocal phase or amplitude responses. Then, we study realistic scenarios in which 

synchronization issues arise. Our study indicates that the network is still perfectly 

matched in the presence of a switch timing error. However, the transmission and insertion 

loss experience a linear recession versus. A differential configuration is then analyzed, 

with ideally infinite bandwidth. Compared with singly-balanced configurations, 

differential geometries offer the additional advantage that the insertion loss is 

independent of the input signal frequency in the presence of timing errors. Finally, we 

discuss practical implementation guidelines for the considered devices and provide an 

outlook on these results and their implications on technology. 

5.2 GYRATORS 

A gyrator is a nonreciprocal phase shifter offering 180 degrees phase shift 

difference when excited from opposite directions [167][168]. Tellegen was the first to 

show that a combination of gyrators and other reciprocal lumped elements can implement 

any linear operation of interest [167]. In this section, we review how commutated 

transmission -lines can be employed to create a nonreciprocal phase response, and 

introduce singly-balanced and differential gyrator designs, studying the effect of 

synchronization issues. Our calculations and modeling are based on time and frequency 

domain analyses, further validated numerically using the homemade Floquet Scattering 

Matrix (FSM) approach [169] and commercial Advanced Design System (ADS) 

software.   
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Figure 5.1: Circuit schematic and modulation signals of the gyrator. (a) Circuit 

schematic of a single branch gyrator. (b) Circuit schematic of a singly-

balanced gyrator. (c) Modulation signals. “1” stands for “on”, and “0” 

stands for “off”.    

5.2.1 Singly-balanced gyrator  

A schematic of a singly balanced nonreciprocal phase shifter is shown in Fig. 

5.1(a). A lossless transmission line segment is sandwiched between two switches, with  

switching signals P1(t) and P2(t) shown in Fig 5.1(c), where “1” and “0” represent 

“infinite” and “zero” conductivity (full and zero transmission), respectively. The second 

switch 
2
P  is delayed by a quarter period of the modulation signal compared to the first 

switch 1
P . The transmission line delay is chosen to be also equal to a quarter period of 

the modulation signal, and assuming non-dispersive propagation. When we apply an 

excitation at port 1 and switch 1 is on, the signal passes through the transmission line and 

switch 2, traveling to port 2. If the switch 1 is off, the input signal is totally reflected at 

port 1. On the other hand, a signal incident at port 2 when switch 2 is closed, after 

propagation through the delay line, finds switch 1 in its open state and is reflected 

towards port 2. Upon reaching this port, switch 2 is also open and the signal experiences 

another reflection towards port 1, where it eventually is transmitted after traveling along 
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the transmission line three times. If switch 2 is open, the incident signal at port 2 is totally 

reflected. The temporal responses of the output signals at the two ports are hence 

described by: 

 ( )2 1 1
,

4 4
m m
T T

V t V t P t− +    
= − −   

   
  (5.1) 

 ( ) ( ) ( )1 1 1
1 ,V t V t P t− +  = −    (5.2) 

 ( )1 2 2

3 3
,

4 4
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V t V t P t− +    
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   
  (5.3) 

 ( ) ( ) ( )2 2 2
1 ,V t V t P t− +  = −    (5.4) 

where 
m
T  is the modulation period, ( )i

V t+  is the input signal at i-th port, and ( )i
V t−  

is the output signal at i-th port. Eqs. (5.1)-(5.2) and (5.3)-(5.4) apply for excitation 

from ports 1 and 2, respectively.  

As we see from Eqs. (5.1)-(5.2) and (5.3)-(5.4), the time delay of forward and 

backward transmitted signals is nonreciprocal, and equal to 4
m
T  and 3 4

m
T , 

respectively, which results in direction dependent phase. This is reflected in the 

frequency response of the system, which is rigorously derived in Appendix C. By looking 

at the zero-th Fourier harmonic, we readily obtain the non-reciprocal scattering matrix of 

the fundamental tone: 

( )

3

4

4

11
,

2
1

m

m

T
j

T
j

e
S

e

−

−

 
 

=  
 
 

     (5.5) 

which is consistent with the time-domain description above. Equation (5.5) clearly 

shows a nonreciprocal phase response for forward and backward transmitted signals. 

When the input frequency satisfies the condition ( )2 1
m

k= + , where   0, 1, 2k = , 

the phase difference between forward and backward transmitted signals becomes  and 

the device operates as a lossy gyrator. 
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Figure 5.2: Harmonics of forward transmitted signal and S parameters of the singly-

balanced gyrator. (a) Harmonics of forward transmitted signal. Blue line 

marks the harmonics of the first branch with switches P1 and P2. Red line 

stands for the harmonics of the complementary branch with switches P3 and 

P4. (b) Magnitude of S parameters of a singly balanced gyrator. (c) Phase of 

S parameters of a singly balanced gyrator.  

From the frequency-domain standpoint, each switch acts as a frequency mixer, 

which converts the incoming signal from either of the two ports into an infinite discrete  

series of harmonics with certain phases. Each of these harmonics propagate along the 

transmission line and, upon reaching the second switch, the signal experiences another 

mixing event, which partially converts these harmonics to the fundamental tone, leading 

to an overall 6 dB insertion loss [factor 1 2  in Eq. (5.5)]. During the mixing events, the 

signals pick up modulation phases with positive/negative sign at the first/second switch, 

respectively. As a result, the output signal acquires an additional phase equal to the phase 

difference between switches. Since the two switches are closed with a delay 4
m
T  and 

3 4
m
T  with respect to each other in the forward and backward directions respectively, 

the phase of the output signal is different in opposite directions, as observed in Eq. (5.5).  

The 6 dB insertion loss of the single-branch gyrator described in Eq. (5.5) can be 

compensated by adding a second branch with complementary clocks, as shown in Fig. 

5.1(b). In this case, the output signal is the superposition of the transmitted signal through 

the top branch, given by Eqs. (5.1)-(5.4), and the one through the bottom branch, which 
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can be derived by applying a 2
m
T  delay to all switches. Then, it is easy to find that the 

total output signals at the ports are given by 

 
( ) ( )

( )
2 1

1

4 ,

0,

m
V t V t T

V t

− +

−

 = −


=

     (5.6) 

for excitation from port 1 and 

 
( )

( )

1 2

2

3
,

4

0,

m
T

V t V t

V t

− +

−

  
= −  

  
 =

     (5.7) 

for excitation from port 2. By converting Eqs. (5.6) and (5.7) to frequency domain, we 

find that the scattering matrix for the fundamental tone is 

 ( )

3

4

4

0
.

0

m

m

T
j

T
j

e
S

e

−

−

 
 

=  
 
 

      (5.8) 

A  nonreciprocal phase shift occurs at ( )2 1
m

k= + , where 

   0, 1, 2, 3,k = , at which the device operates as an ideal, infinite bandwidth, lossless 

gyrator. Figures 5.2(b) and (c) show the amplitude and phase characteristics of the 

forward and backward transmission coefficients 
21
S  and 

12
S , respectively. Indeed, the 

amplitude of transmission coefficient is unitary and frequency-independent, while the  

nonreciprocal phase shift occurs at discrete frequency points. The suppression of 

insertion loss in this system can also be understood by looking at the spectrum of the 

output signal from the two branches, presented in Fig. 5.2(a) (blue and red for the top and 

bottom branches, respectively). We can see that higher-order harmonics experience 

opposite phase shift in the two branches, leading to destructive interference at the output 

ports. On the other hand, the fundamental tone maintains the same phase shift in both 

branches, leading to constructive superposition at the output port. In other words, while 

each transmission-line arm sustains propagation of many harmonics, essentially the  
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Figure 5.3: Envelope of modulated signals of the gyrator with timing error. (a) Forward 

transmitted signal envelope from excitation at port 1 of a single branch 

gyrator with time delay 4
m
T ; (b) forward transmitted signal envelope from 

excitation at port 1 of a single branch gyrator with time delay 3 4
m
T ; (c) 

forward transmitted signal envelope from excitation at port 1 of a singly 

balanced gyrator with time delay 3 4
m
T ; (d) forward transmitted signal 

envelope from excitation at port 1 of a singly balanced gyrator with time 

delay 4
m
T . 

sampling of the input signal split into the two parallel lines, at the two ports the 

synchronization of the switches allows to recombine ideally the signal, without any 

distortion. The overall transfer function operates as a pseudo-linear-time-invariant 

system, in which no frequency conversion occurs. It is obvious that this ideal response is 

not possible in absence of ideal synchronization, hence it is important to consider the 

effect of imperfections in the switching network on the overall Floquet transfer matrix of 

the system. 

In this context, consider the single branch gyrator design in Fig. 1(a) and assume 

now that the second switch has a small timing error   with respect to the first one, 

( ) ( )2 1
4

m
P t P t T= − − . For a monochromatic excitation 

j te  at port 1, most part of 

the signal, overlapping with the waveform in Fig. 3(a), passes through the second switch 
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with a time delay 4
m
T , while a small tail, overlapping with the waveform in Fig. 3(b), 

bounces twice inside the transmission line and transmits through the second switch with 

time delay 3 4
m
T . The reflected signal ( )1

V t−  is not affected by the timing error. For 

monochromatic excitation 
j te at port 2, most of the signal, overlapping with the 

waveform in Fig. 3(a),  passes through the first switch with delay 3 4
m
T , while a small 

tail overlapping with the waveform in Fig. 5.3(b),  is transmitted through the 

transmission line with delay 4
m
T . The time domain response of this slightly 

desynchronized gyrator is described by: 

 ( ) ( ) ( )2 1 1 1 2

3
,

4 4
m m
T T

V t V t t V t t− + +   
= − + −   

   
   (5.9) 

 ( ) ( ) ( )1 1 1
1 ,V t V t P t− +  = −       (5.10) 

 ( )1 2 1 2 2

3 3
,

4 4 4 4
m m m m
T T T T

V t V t t V t t− + +       
= − − + − −       

       
  (5.11) 

 ( ) ( ) ( )2 2 2
1 ,V t V t P t− +  = −       (5.12) 

where Eqs. (5.9)-(5.10) and (5.11)-(5.12) correspond to excitation from port 1 and port 

2, respectively. The functions ( ) ( ) 
1 2

,t t  are envelopes of modulated signals and 

have a period 
m
T  [see Figs. 5.3(a) and (b)]. The scattering matrix for the fundamental 

frequency component is readily obtained (see Appendix A): 

3

4 4

3

4 4

1 1

2 2
,

1 1

2 2

m m

m m

T T
j j

m m

T T
j j

m m

e e
T T

S

e e
T T

− −

− −

   
+ −  
   

=  
   

− +   
  

  (5.13) 

which indicates that, at the operational frequency ( )    2 1 , 0, 1, 2, 3
m

k k= + = , the 

single branch gyrator exhibits additional insertion loss of 2
m
T , proportional to the 

timing error.  
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Figure 5.4: Inter-modulation (IM) products a singly balanced gyrator with relative 

timing error 0.1
m
T = . n stands for the order of harmonics and y axis 

is the amplitude of each harmonics. 

Next, we study the balanced gyrator with timing error, and assume that the same 

timing error as between switches 
1
P  and 

2
P  is also applied to switches 

3
P  and 

4
P , 

i.e. ( ) ( )4 3
4

m
P t P t T= − − .  This assumption is practically reasonable because we 

can use single-pole-double-throw switches to replace 
1
P  and 

3
P , and 

2
P  and 

4
P . The 

temporal responses are then given by  

 ( ) ( ) ( )2 1 1 1 2

3
,

4 4
m m
T T

V t V t t V t t− + +   
= − + −   

   
   (5.14) 

 ( )1
0,V t− =       (5.15) 

 ( )1 2 1 2 2

3 3
,

4 4 4 4
m m m m
T T T T

V t V t t V t t− + +       
= − − + − −       

       
  (5.16) 

 ( )2
0.V t− =       (5.17) 

Again, here Eqs. (5.14)-(5.15) and (5.16)-(5.17) correspond to excitation from port 1 

and 2, respectively. ( ) ( ) 
1 2

,t t  are envelopes of modulated signals [see Figs. 5.3(c) 
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and (d)]. Remarkably, despite the synchronization error, the network remains ideally 

matched at both ports. This result stems from the fact that the desynchronized tail 

transmits through the two-port network rather than bouncing back to the source.  

 

Figure 5.5: Inter-modulation (IM) products a singly balanced gyrator with relative 

timing error 0.1
m
T = . n stands for the order of harmonics and y axis 

is the amplitude of each harmonics. Scattering properties of a singly 

balanced gyrator with timing error. (a) Magnitude of the backward 

transmission
12
S ; (b) Magnitude of the forward transmission 

21
S ; (c) Phase 

of the backward transmission 
12
S ; (d) Phase of the forward transmission 

21
S . 

0
 is the operational frequency and   is the input frequency shift. 

Harmonic analysis of this singly balanced gyrator with timing error is given in Appendix 

C.  
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Figure 4 shows the amplitude of harmonics of a singly-balanced gyrator with a 

relative timing error 10%
m
T =  and operational frequency 

m
= . The 

fundamental tone amplitude is 1 4 0.6
m
T−  =  and higher-order harmonics are 

enveloped by ( )sinc4
m m
T n T  . Expectedly, as the timing error   

approaches zero, residual even-order harmonics disappear, and the fundamental tone 

approaches full transmission. The fundamental-tone scattering parameters of the singly-

balanced gyrator can be found from the results in Appendix C as  

0

0

3

4 4

3

4 4

2 2
1

.
2 2

1

m m

m m

T T
j j

m m

T T
j j

m m

e e
T T

S

e e
T T

− −

− −

   
+ −  
   

=  
   
− +   

  

     

(5.18) 

From Eq. (5.18), we gather an important conclusion: impedance matching and 

nonreciprocal phase shift of a singly-balanced gyrator at the fundamental frequency are 

immune to switch timing errors. On the other hand, the insertion loss, 1 4
m
T−  , 

increases linearly with the timing error. Fig. 5.5 shows the scattering matrix as a function 

of input signal frequency and switch timing error. Furthermore, insertion loss increases as 

we depart from the frequency of optimal operation ( )    2 1 , 0, 1, 2, 3,
m

k k+ = . In 

order to have an insertion loss of less than 3dB, the resulting maximum timing error is 

7.3%. In IC implementations, it is feasible to keep the timing errors well below these 

levels, as well as to include calibration circuitry that corrects such timing errors. 

5.2.1 Differential gyrator 

As shown in the previous subsection, a singly-balanced gyrator exhibits full 

transmission over a bandwidth limited only by the dispersion of transmission lines in  
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Figure 5.6: Circuit schematic of the differential gyrator. Switching signals are the same 

as Fig. 5.1. 

absence of synchronization errors. However, the gyrator functionality, i.e., a 

nonreciprocal phase difference of π, is available only at discrete frequencies 

( )2 1 , 0,1,2,3,
m

k k= + = . This problem can be overcome using a differential 

configuration, which exhibits a nonreciprocal π phase shift over an infinite bandwidth 

under ideal conditions (ideal switches, dispersion-free transmission lines, no timing 

errors). The circuit schematic is shown in Fig. 5.6. For excitation from port 1, the signal 

is fully transmitted through the network with a time delay ( ) ( )2 1
4

m
V t V t T− += − . For 

excitation from differential port 2, the signal is flipped due to the differential arrangement 

of the switches. Therefore, the transmitted signal is ( ) ( )1 2
4

m
V t V t T− += − − . The 

scattering parameters can be expressed as 

 ( )
4

4

0
.

0

m

m

T
j j

T
j

e
S

e

− +

−

 
 

=  
 
 

     (5.19) 

The transmission is unitary, and the nonreciprocal phase difference is π at all frequencies, 

making it an ideal gyrator.  

In presence of switch desynchronization, the performance is deteriorated: for 

excitation from port 1, a major part of the signal overlapping with 
1
( )t  in Fig. 5.3(c) 

passes through the network with time delay 4
m
T , while a small desynchronized tail 

overlapping with 
2
( )t  in Fig. 5.3(d) is transmitted through the gyrator with flipped 
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polarity. For backward excitation from differential port 2, the large part of the signal 

overlapping with 
1
( )t  in Fig. 5.3(c) is flipped, and a small tail overlapping with 

2
( )t  

in Fig. 5.3(d) propagates without flipping of the polarity. The above time-domain 

operation is described by the equations 

 ( ) ( ) ( )2 1 1 1 2
,

4 4
m m
T T

V t V t t V t t− + +   
= − − −   

   
   (5.20) 

 ( )1
0,V t− =      (5.21) 

 ( )1 2 1 2 2
,

4 4 4 4
m m m m
T T T T

V t V t t V t t− + +       
= − − − + − −       

       
  (5.22) 

 ( )2
0.V t− =      (5.23) 

Again, here Eqs. (5.20)-(5.21) and (5.22)-(5.23) correspond to excitation from port 1 

and 2, respectively. 

The corresponding scattering matrix for the fundamental tone, derived rigorously 

in Appendix C, reads  
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  

   (5.24) 

Eq. (5.24) indicates that the differential gyrator also maintains a zero return loss even in 

the presence of timing errors. In addition, the differential gyrator has the advantage of 

having a non-reciprocal phase response that is not affected by desynchronization, owing 

to the differentially arranged switches. Although the insertion loss is affected by the 

timing error, the impact is nondispersive, indicating that the bandwidth is not affected 

either. 



 88 

Z0, Tm/4

P1(t) P2(t)
( )+

1V t

( )-

1V tPort 1 Port 2

(a)

(b)

( )+

2V t

( )-

2V t

2Z0, Tm/4

2Z0, Tm/4

( )+

1V t

( )-

1V tPort 1 Port 2( )-

2V t

( )+
a mV t - T / 4

( )-
a mV t + T 4

( )+
aV t

( )+
bV t

( )-
aV t

( )-
bV t

( )+
b mV t - T / 4

( )-
b mV t + T 4

P1(t) P2(t)

P3(t) P4(t)

 

Figure 5.7: Circuit schematic of the isolator. (a) Single branch isolator, modulation 

signals P1 and P2 are the same as Figure 1. (b) Singly balanced isolator, 

modulation signals P1, P2, P3, and P4 are the same as Figure 1. The 

characteristic impedance of the transmission line is 2Z0. 

5.3 ISOLATORS 

In the previous section, we have characterized singly-balanced and differential 

gyrator designs by modulating the switch conductivity between zero and infinity. While 

this configuration can realize gyration and nonreciprocal phase shifts, nonreciprocal 

transmission magnitude cannot be realized with this strategy, because the circuit, in the  

the absence of frequency conversion, is lossless, and it is impossible to realize isolation in 

lossless, linear devices. A two-port isolator design necessarily involves finite loss to 

absorb the energy in the direction of isolation. In this section, we relax this assumption 

and discuss the design of singly-balanced and ultra-broadband doubly-balanced isolators 

based on modulating the conductivity over a finite range, which allows the presence of 

absorption. We then investigate synchronization issues and remedy strategies are 

proposed to counterbalance these imperfections.  
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5.3.1 Singly-balanced isolator 

Figure 5.7(a) shows an isolator design, based on a transmission line sandwiched 

between two modulated resistances, where the conductivity is modulated between 

infinity, i.e., perfect transmission, and a finite value 
m
R . In time domain, the modulation 

follows the same pattern as in the case of the gyrator. By tracking the propagation of 

input signals through the system as in the gyrator case, the output signals can be 

expressed as 

( ) 2

2 1 1 1 1
1 ,

4 4 4 4
m m m m
T T T T

V t V t P t V t P t− + +
        

= − − + − − −        
        

  (5.25) 

( ) ( ) ( )1 1 1 1 1
1 1 ,

2 2
m m
T T

V t V t P t V t P t− + +
    

 =  − + − − −     
    

      (5.26) 

 ( ) 2

1 2 2 2

3 3
,

4 4 4
m m m
T T T

V t V t V t P t− + +     
=  − + − −     

     
       (5.27) 

 ( ) ( ) ( )2 2 2 2 2
1 ,

2 2
m m
T T

V t V t P t V t P t− + +    
 =  − + − −    

   
   (5.28) 

where Eqs. (5.25)-(5.26) are the temporal responses for excitation at port 1, Eqs. (5.27)-

(5.28) are the temporal responses for excitation at port 2, and ( )1
P t  and ( )2

P t  are the 

switching signals, provided in Fig. 1(c) (here, “0” stands for finite conductivity, namely 

resistance 
m
R , while “1” stands for infinite conductivity, i.e., perfect transmission). 

( )
1

0
2

m m
R R Z

−

 = +  is the reflection coefficient when the resistance is 
m
R , and 

1= −  is the corresponding transmission coefficient. Equations (5.25)-(5.28) 

simplify into Eqs. if the resistance 
m
R  approaches infinity ( 1 = , 0 = ), as expected. 

The scattering matrix for the fundamental tone is given by 
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3
22 4 4

2 4 2

1
1
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1
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j j j
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e e e
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+  +    

  
=  

  + +   
  

    (5.29) 



 90 

 

Figure 5.8: S parameter of the isolator. (a) Magnitude of the S parameter of a single 

branch isolator. (b) Phase of the S parameter of a single branch isolator. (c) 

Magnitude of the S parameter of a singly balanced branch isolator. (d) Phase 

of the S parameter of a singly balanced isolator. 

The above result encompasses many interesting scenarios. When 0 = , it 

corresponds to the case in which the switch is always on, and hence we achieve a 

reciprocal response, ( )12 21
exp 4

m
S S j T= = − , and zero return loss, 

11 22
0S S= = . 

When 1 = , the circuit is a single-branch gyrator, consistent with the previous section, 

with a return loss of 6dB , 
11 22

1

2
S S= = , and nonreciprocal phase transmission [see Eq. 

(5.5)]. Interestingly, the same model can provide full isolation for appropriately selected  

values of   and T . In particular, if we require full isolation (
12

0S = ), we find that it is 

obtained for ( )    2 1 , 0, 1, 2, 3,
m

k k= + = , and ( ) 0
2 1 3

m iso
R R Z= = + . 

Isolation in this case is the result of destructive interference at port 1 of the signals that 
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reach this port after 1 and 3 paths through the transmission line, as evidenced by the 

phase of the two terms in the expression of 
12
S . Under these circumstances, we find that 

return and insertion loss are given by 
11 22

2 3S S= = −  and ( )21
2 2 3S = − , 

respectively.  

It is interesting to note that these quantities do not depend on the parameters of 

the system (
m
T  and 

0
Z ), but instead are inherent properties of the considered circuit 

topology. Figs. 8(a) and 8(b) plot amplitude and phase of the scattering parameters for 

this isolator design. At 
m

=  and 3
m

= , full isolation is achieved, whereas at 

2
m

=  we find reciprocal transmission ( )21 12
2 2 3S S= = − − . It is interesting that 

the transmission amplitude in the forward direction is the same for all frequencies, which 

can also be seen from Eq. (5.29). The forward-propagating signal always experiences a 

finite reflection  , due to the finite resistance value 
m
R . In order to eliminate this return 

loss, we consider a differential topology [Fig. 7(b)], in which the characteristic 

impedance of the two parallel transmission lines is tuned to 
0

2Z  to match the port 

impedance. The reflection coefficient for each individual signal pass in this case is 

frequency-dependent, and a rigorous temporal analysis is presented in Appendix C. The S 

parameters at ( )2 1
m

k= +  become 

 
( )

( ) ( )

( )

1 2 2

2 1 1

0 1
,

1 0m

k

k k

j
S

j

+

= + +

 − −
 =
 − 

T Rr
   (5.30) 

where ( )
1

0 0
8 8

m
Z R Z

−

= +T  and ( )
1

0
8

m m
R R Z

−

= +R are the transmission and 

reflection coefficients experienced by the signal during each pass. Interestingly, the 

above equation indicates that impedance is automatically matched at operation 

frequencies. The condition for complete backward isolation is =R T , thereby leading 

to an isolation resistance 
0

8
m iso
R R Z= =   for full isolation. 

iso
R  marks the boundary 
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of the nonreciprocal phase difference for transmission, where 
m iso
R R  indicates zero 

phase difference between 
21
S  and 

12
S , and 

m iso
R R  provides to  phase difference. 

In the extreme case 0
m
R → , the design recedes to a transmission line with characteristic 

impedance 
0
Z . In the extreme scenario 

m
R → , the circuit becomes the differential 

gyrator we discussed in previous section.  

 

 

 

Figure 5.9: S parameter of a single branch isolator with timing error. (a) Magnitude of 

the return loss 
11
S  of a single branch isolator. (a) Magnitude of the 

isolation 
12
S  of a single branch isolator. (c) Magnitude of the transmission 

21
S  of a single branch isolator. (d) Phase of the isolation 

11
S  of a single 

branch isolator. (e) Phase of the isolation 
12
S  of a single branch isolator. (f) 

Phase of the transmission 
21
S  of a single branch isolator. 

To further validate our temporal analysis across the full spectrum band, we use 

the composite Floquet Scattering Matrix (FSM) method, as described in to compute the 

scattering parameters [Figs. 5.8(c) and (d)] for isolation resistance
0

8
iso
R Z= . Our 
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numerical results from composite FSM method are in excellent agreement with the 

analytical results and also with numerical simulations using Keysight ADS, which are not 

shown here for space limitations. 

Now, we consider a single-branch isolator with a small timing error, where 

( ) ( )2 1
4

m
P t P t T= − −  and 4

m
T  . A rigorous temporal and frequency 

analysis, similar to the one presented for the gyrators in the previous section, is 

performed in Appendix B. We obtain the S parameters 

 
2 2 3

22 4 4

2 2 32

4 4 2

1
1

2 2
.

1
1

2 2

m m m

m m m

T T T
j j j

m m

T T T
j j j

m m

e e e
T T

S

e e e
T T

− − −

− − −
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+   + +  −
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      
      

    
    
     

 

 (5.31) 

Interestingly, the timing error of the second switch has no influence on the return loss at 

either port. This is a major advantage of the synchronized loss modulation design. 

Assuming no timing error, when port 1 is excited by an input signal ( )exp j t , it passes 

through the transmission line and the second switch consecutively during the first half of 

the modulation period. The signal in the second half of the modulation period is partially 

reflected at port 1, transported through the delay line, reflected at port 2, and, finally, 

partially transmits through the first switch. The return signal is essentially a superposition 

of the first-time reflection and another second-time reflection with a delay 4
m
T , 

leading to a phase delay ( )exp 2
m

j T−  in the second term of  
11
S  and 

22
S . In the 

presence of a timing error, the second reflection (the one happening when switch 1 is 

open) occurs over the time 2
m
T − , instead of 2

m
T . However, there is an extra 

reflection with the same scaling factor T  and time delay 2
m
T , occurring over an 
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Figure 5.10: S parameter of a single branch isolator with timing error Variation of S 

parameters of the single branch isolator in presence of timing error, as a 

function of the switch resistance. (a) Magnitude of the return loss 
11 22
S S=  

of a single branch isolator. (a) Magnitude of the isolation 
12
S  of a single 

branch isolator. (c) Magnitude of the transmission 
21
S  of a single branch 

isolator. (d) Phase of the return loss 
11 22
S S=  of a single branch isolator.  

(e) Phase of the isolation 
12
S  of a single branch isolator. (f) Phase of the 

transmission 
21
S  of a single branch isolator. 

additional time   right after switch 1 is closed, during which the signal finds switch 2 

in the open state. This additional reflection compensates for the reduced duration of the 

main reflection at the fundamental tone, leading to the same reflection coefficient as 

when there is no timing error, although it affects the intermodulation products. In other 

words, the sole effect of the timing error is redistribution of power among the 

intermodulation harmonics. For the transmitted signals, the timing error results in a signal 

tail bouncing back and forth inside the delay line before finding its way out, leading to an 

extra average insertion loss 2

m
T   over the modulation period, as shown in 

12
S  
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Figure 5.11: S parameter of the singly-balanced isolator with timing error. (a) Magnitude 

of the return loss 
11
S  of a singly-balanced branch isolator. (b) Magnitude of 

the isolation 
12
S  of a singly -balanced branch isolator. (c) Magnitude of the 

transmission 
21
S  of a singly-balanced branch isolator. (d) Phase of the 

return loss 
11
S  of a singly-balanced branch isolator.  (d) Phase of the 

isolation 
12
S  of a balanced singly-branch isolator. (c) Phase of the 

transmission 
21
S  of a singly-balanced branch isolator. 

and
21
S  in Eq. (5.31). In Figure 5.9, we plot scattering parameters computed using the 

composite FSM method, which show good agreement with analytical results from Eq. 

(5.31) and our theoretical analysis in the previous paragraph. To maintain -20 dB 

isolation, the relative timing error should be less than 10.9%. The corresponding 

fractional bandwidth is 12.5%.   

Another degree of freedom in the isolator design is the resistor value, which we 

can tune to optimize the isolation in presence of timing error. Figure 5.10 shows the 

modification of the scattering parameters as we vary  and 
m
R , as from Eq. (5.31). 

As seen in Fig. 5.10(b), the isolation map shows a dip for certain combinations of   
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and 
m
R . An abrupt phase jump in 

12
S  shown in Fig. 5.10(e) indicates that ideal 

isolation is indeed possible. We closely studied the backward propagation coefficient in 

Eq. (5.31), and derived an analytical expression for optimal resistance as a function of  

  and 
m
R : 

 

1

0

8 4
2 1 3 1 ,

optimal

m m

R Z
T T

−
    
 = + − − 

     

   (5.32) 

which perfectly matches our numerical simulation and ensures ideal isolation. The 

insertion loss grows as we tune the resistor to improve isolation upon a given timing 

error, as shown in Fig. 5.10(c), implying a trade-off between isolation and insertion loss 

as the timing error grows. 

The singly-balanced isolator simultaneously enables perfect impedance matching, 

full transmission, and full isolation at its operation frequencies.  Figure 5.11 shows the 

scattering parameters plotted versus timing error in the proximity of the operation 

frequency. As we see in Fig. 5.11(a), the return loss is immune to synchronization issues 

and it remains as low as 40 dB when relative timing error varies from -0.25 to 0.25. The 

sharp phase transition from -90 deg to 90 deg along 0 =  in Fig. 5.11(d) is consistent 

with the region with zero return loss. At the operational frequency, the scattering matrix 

can be written as 

 

( )

( )
( )

( )
( )

2 2

1 2 2

2 1 2 2

1

2 1
0 1

.
2 1

1 1 0

m

k

m

k

k

m

j
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S

j
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+

= +

+

 + −
− − + +

=
 + −

− −

  
  

   
 
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 

 
    

R T
R T

R T

   (5.33) 
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Figure 5.12: Variation of the singly-balanced isolator in presence of timing error, as a 

function of the switch resistance.  (a) Magnitude of the isolation 
12
S  of a 

singly-balanced branch isolator. (c) Magnitude of the transmission 
21
S  of a 

singly-balanced branch isolator. (d) Phase of the isolation 
12
S  of a singly-

balanced branch isolator. (c) Phase of the transmission 
21
S  of a singly-

balanced branch isolator. 

This equation describes many interesting scenarios. For instance, =1R  

corresponds to a desynchronized gyrator [Eq. (5.18)],  0 =  represents an ideally 

synchronized isolator [Eq. (5.30)], =10& = R  denotes a perfect gyrator [Eq. 

(5.8)] and =0R  implies a reciprocal transmission line. The insertion loss exhibits a 

linear decay 1 2
m
T−   with synchronization issues, and the isolation increases 

linearly with the relative delay 2
m
T  when =R T . To maintain a 3 dB insertion 

loss and 20 dB isolation, the relative timing error should stay within 5%. Backward 
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transmission can be made identically zero (i.e., infinite isolation), when the open switch 

resistance is tuned to the optimal value 

 

1

0
8 1 4 .

optimal

m

R Z
T

−

 
= −  

 

     (5.34) 

By tuning the resistor to this value, the system ensures ideally infinitely isolation and 

transmission loss below 3 dB, even with 11% relative timing error, readily achievable in 

IC implementations. Figure 5.12 shows this trade-off in the case of the double branch 

isolator in presence of timing errors. 

5.3.2 Ultra-broadband isolator 

Another way to obtain an isolator is to add a differential dissipative port in 

parallel to port 1 in a singly-balanced gyrator, which can absorb the energy for backward 

excitation from port 2 [see Fig. 5.13]. For excitation from port 1, the circuit behaves like 

a quarter-wavelength transmission line:  ( ) ( )2 1
4

m
V t V t T− += − . For excitation from 

port 2, during the first half of the modulation period, the signal passes through switch 
2
P   

and meets an open circuit at port 1. However, switch 
3
P  is on and port 3 is loaded with 

a characteristic impedance 
0
Z . Therefore, the signal is fully absorbed at port 3. For the 

second half of the modulation period, the signal is transmitted through switches 
4
P  and 

1
P  , when excited from port 1, and is again fully dissipated at port 3, when excited from 

port 2. The scattering parameters of this isolator are  

 ( )
4

0 0
.

0
mTj

S
e
−

 
 =
 
 

     (5.35) 

The operational bandwidth of this isolator is ideally infinite compared with the singly-

balanced isolator which operates at a discrete set of frequencies.  
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Figure 5.13: Circuit schematic of the ultra-broadband isolator. Modulation signals P1, 

P2, P3, and P4 are the same as Fig. 1. 

Consider now synchronization issues in this isolator. When port 1 is excited by a 

monochromatic signal 
j te , most of the signal overlapping with ( )1

t  in Fig. 5.3(c) 

passes through the transmission line and reaches port 2. A small tail of the signal, with 

duration  , overlaps with ( )2
t  in Fig. 3(d) and is reflected to port 3, where it is 

absorbed. Hence, the transmitted signal is ( ) ( ) ( )2 1 1
4

m
V t V t T t− += − . Since no  

signal is reflected to the input port, return loss is zero. For excitation from port 2, most of 

the signal overlaps with ( )1
t  in Fig. 5.3(c) and is absorbed at port 3, apart from a 

small tail overlapping with ( )2
t  in Fig. 5.3(d), which passes through port 1, leading to 

a transmitted signal ( ) ( ) ( )1 2 2
4 4

m m
V t V t T t T− += − − . The scattering matrix of the 

fundamental tone is extracted from Eq. in Appendix B: 

 ( )

4

4

2
0

.
2

1 0

m

m

T
j

m

T
j

m

e
T

S

e
T

−

−

 
 
 

=   
 − 
  
  

    (5.36) 

The timing error affects only isolation and insertion loss through the term 2
m
T . 

Intermodulation products of this isolator with timing error are plot in Fig. 14, showing 

little influence on the overall spectrum of the transmitted signal for moderate delays.  
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Figure 5.14: IM products of an ultra-broadband isolator with relative timing error 

0.1
m
T = . n stands for the order of harmonics and y axis is the 

amplitude of each harmonics. 

5.4 CIRCULATORS 

In this section, we present three circulator designs and investigate their 

performance in presence of synchronization issues. The first design is a singly-balanced 

circulator, which is based on an extension of the singly-balanced gyrator described in  

Section II. The second circulator is a doubly balanced circulator based on differential 

gyrator. The third circulator is based on the ultra-broadband isolator design discussed in 

the previous section, where we remove the load 
0
Z  and add port 3 in its replacement.  

5.4.1 Singly-balanced circulator 

A circulator is a multiport device that routes the signal with a given handedness 

from port to port. One approach to obtain a circulator is to embed a gyrator in a 

transmission-line ring, as in Fig. 5.15, where we have used the balanced gyrator from 

Sec. II as the basic element to yield nonreciprocity. Isolation at the various ports arises 

due to destructive interference from the reciprocal and nonreciprocal paths in the loop. At 

frequency ( )    2 1 , 0, 1, 2, 3
m

k k= + = , the gyrator provides 2( 32 1)k +  and 

(2 ) 21k +  phases in the two opposite directions. If a monochromatic signal 
j te   
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Figure 5.15: Singly-balanced circulator. Modulation signals P1, P2, P3, and P4 are the 

same as Fig. 1. 

enters from port 1, it is split into two signals with identical amplitudes. One takes the path 

via port 3, and the other goes directly from port 1 to port 2. These signals experience a 

relative  phase shift and interfere destructively at port 2, leading to full isolation, 

21
0S = . On the other hand, at port 3 these signals interfere constructively, leading to a  

unitary transmission, 
31
S j= − . We can analyze the responses of excitation at port 2 and 

port 3 in a similar way and obtain 

( )
( )

( )

1

2 1

1

0 1 0

0 0 1 .

1 0 0

m

k

k

k

S j

j

+

= +

+

 −
 
 = −
 
 − 

    (5.37) 

A more thorough theoretical analysis is presented in Appendix C, where the 

responses at all frequencies are derived. This circulator is essentially asymmetric, since 

the transmission coefficients are not identical: 
31 23 12
S S S=  . The directionality of the 

circulator can be reversed by reversing the nonreciprocal phase response of the gyrator.  

In order to validate our analysis, we numerically evaluate the scattering 

parameters using the composite FSM method. Figures 5.16(a) and 5.16(b) demonstrate 

amplitudes and phases of scattering parameters at port 1. As we see, the circulator 

exhibits isolation in 
21
S  larger than 40 dB and full transmission at frequency 

m
=  

and 3
m

= . The phase discontinuity of 
21
S  and the 2−  phase shift of 

31
S   at  



 102 

 

Figure 5.16: S parameter of the singly-balanced circulator. (a) Magnitude of the S 

parameter at Port 1 of a singly-balanced circulator. (b) Phase of the S 

parameter at Port 1 of a singly-balanced circulator. 

m
=  and 3

m
=  are consistent with theoretical predictions in Eq. (5.37). The 

scattering matrix accounting for timing errors is  
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 
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  
  

 (5.38) 

From Eq. (5.38), we see that the insertion loss and isolation deteriorate as the timing 

error increases. The return loss remains identically zero, unaffected by the presence of 

synchronization issues. For the insertion loss to be smaller than 3 dB and the isolation 

larger than 20 dB, the timing error needs to be smaller than 5%. A full picture of the S-

parameters for excitation from port 1 versus the timing error and input frequency is 

provided in Fig. 5.17 by using FSM numerical simulations. 
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Figure 5.17: S parameter of a singly-balanced circulator with timing error. (a) Magnitude 

of the return loss 
11
S  of a singly-balanced circulator. (b) Magnitude of the 

isolation 
21
S  of a singly-balanced circulator. (c) Magnitude of the 

transmission 
31
S  of a singly-balanced circulator. (d) Phase of the return 

loss 
11
S  of a singly-balanced circulator. (e) Phase of the isolation 

21
S  of a 

singly-balanced circulator. (f) Phase of the transmission 
31
S  of a singly-

balanced circulator. 

5.4.2 Doubly-balanced circulator  

The circulator can also be designed leveraging the differential gyrator where the 

nonreciprocal phase response has an ideally infinite bandwidth. Figure 5.18 demonstrates 

the design of our doubly-balanced circulator. Due to the similarity between doubly and  

singly balanced circulator design, the scattering parameters at frequencies 

( )    2 1 , 0, 1, 2, 3
m

k k= + =  are identical to Eq. (5.37). However, the responses 

at other frequencies are slightly different from the singly balanced circulator due to 

different phase response in the gyrator. A detailed and rigorous theoretical analysis is 

presented in Appendix C. Our results indicate that doubly-balanced circulator offers a  
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Figure 5.18: Doubly-balanced circulator. Modulation signals P1, P2, P3, and P4 are the 

same as Fig. 5. 1. 

larger bandwidth compared with the singly-balanced circulator. We also confirm our 

theoretical results using FSM numerical methods and plot the amplitude and phase of 

scattering parameters in Fig. 5.19 for the case when the port 1 is excited.  

 

As timing error exists in the device, the scattering parameters at the operational 

frequencies are  
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  (5.39) 

which are identical to the circulator based on singly-balanced gyrator in Eq. (5.38).  
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Figure 5.19: S parameter of the doubly-balanced circulator. (a) Magnitude of the S 

parameter at Port 1 of a singly-balanced circulator. (b) Phase of the S 

parameter at Port 1 of a singly-balanced circulator. 

5.4.2 Ultra-broadband circulator  

A circulator can also be obtained by adding a differential port 3 in parallel with 

port 1 in the ultra-broadband isolator design, as sketched in Fig. 5.20. The time-domain 

analysis here is quite straightforward. For excitation from port 1, the signal passes 

through the transmission line with time delay 4
m
T  and arrives at port 2: 

( ) ( )2 1
4

m
V t V t T− += − . For excitation from port 2, the signal reaches port 3 with a 

quarter-period delay: ( ) ( )3 2
4

m
V t V t T− += − . For excitation from port 3, the signal 

passes through the transmission line, reflects at port 2 and arrives at port 1 with a delay 

2
m
T : ( ) ( )1 3

2
m

V t V t T− += − . The scattering parameters of this ultra-broadband 

circulator are 

 ( )

2

4

4

0 0

0 0 .

0 0
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e

S e
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     (5.40) 
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Figure 5.20: Circuit schematic of the ultra-broadband circulator. Modulation signals P1, 

P2, P3, and P4 are the same as Fig. 5. 1. 

Consider now the case of synchronization delays: when excitation is applied to 

port 1, most of the signal passes through the transmission line and reaches port 2, apart 

from a small tail that is reflected to port 3 with a delay 2
m
T . The output signals at ports 

2 and 3 are ( ) ( ) ( )2 1 1
4

m
V t V t T t− += −  and ( ) ( ) ( )3 1 2

2 4
m m

V t V t T t T− += − − , 

respectively, where ( )1
t  and ( )2

t  are the pulse sequences in Figs. 3(c), (d).  We 

performed similar analyses on port 2 and 3 and obtained the following scattering matrix 

in presence of a timing error: 

( )

4 2

4 4

2 4

2 2
0 1

2 2
1 0 .

2 2
1 0

m m

m m

m m

T T
j j

m m

T T
j j

m m

T T
j j

m m

e e
T T

S e e
T T

e e
T T

− −

− −

− −

   
−  

   
 
   

= −   
  
   
 − 

    

 (5.41) 

It is seen that the timing error has no effect on the return loss also in this case, 

while it increases the insertion loss and reduces isolation by a factor of 2
m
T . Eq. 

(5.41) holds for any frequency, in contrast to Eq. (5.38), which holds only at frequencies 

(2 1)
m

k= + , consistent with the fact that the singly-balanced circulator has a limited 
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bandwidth, whereas this design offers, in principle infinite bandwidth, only limited by the 

dispersion of the transmission-lines and finite fall and rise times of the switches. 

 

 

 

 

Figure 5.21: Envelope of modulated signals of a single branch isolator with timing error. 

(a) Forward transmitted signal envelope from excitation at port 1; (b) 

forward transmitted signal envelope tail from excitation at port 1; (c) 

backward transmitted signal envelope tail from excitation at port 2; (d) 

backward transmitted signal envelope from excitation at port 2. 
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Figure 5.22: Envelope of modulated signals of a single branch isolator with timing error. 

(a) Forward transmitted signal envelope from excitation at port 1; (b) 

forward transmitted signal envelope tail from excitation at port 1; (c) 

backward transmitted signal envelope tail from excitation at port 2; (d) 

backward transmitted signal envelope from excitation at port 2. 

 

5.5 CONCLUSIONS 

In this chapter, we have presented several nonreciprocal devices based on 

commutated switch networks and analyzed the effects of switch desynchronization on 

their performance. Our main conclusion is that commutated switch networks provide an 

excellent platform to realize nonreciprocal devices, such as gyrators, isolators and 

circulators, with excellent performance metrics. Timing errors in the switching schemes 

do not affect return loss in all these devices. In turn, insertion loss and isolation degrade 

linearly with an increase in timing error. In general, there is an upper bound for the 

timing error for the insertion loss and isolation to remain below certain thresholds, but 

these limits are readily achievable in conventional integrated circuit layouts. Furthermore, 

integrated-circuit implementations enable the design of calibration circuitry that corrects 

for timing errors, and our results provide guidelines for the nature and extent of the errors 

that should be calibrated. We found that for isolation larger than 20 dB and insertion loss 

smaller than 3 dB, the timing error should be smaller than 7.3%, 5%, 5% for the gyrator, 

isolator and circulator, respectively. We have presented opportunities to realize very large 

(in principle infinite) isolation, circulation and nonreciprocal phase shifts, and in some 

instances these bandwidths can be preserved even in the presence of timing errors by 

suitably controlling the switch resistance. In practice, there are more non-idealities that 

can be investigated in these systems, including dispersion in the delay line sections, finite 

rise and fall times of the switches, and other desynchronization scenarios. These 



 109 

phenomena go beyond the scope of this work. Overall, our results show a positive 

outlook for commutated switching networks for nonreciprocal functionalities, given their 

direct integrability in a vast family of circuit technologies, and their very small footprint. 

We envision that similar concepts may be extended also to acoustics and photonics, 

opening exciting opportunities to broaden the family of efficient magnet-free 

nonreciprocal devices based on spatial-temporal modulation. 
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Chapter 6: Wave Scattering in Time-Varying and Quasi-Periodic 

Coupled Resonator Chain 

Recent progress in topological materials and systems has garnered tremendous 

attention from scientists [173]-[175]. Fractal band structures, like Hofstadter butterfly 

[176], are of great importance and interest considering its capability of supporting 

topological edge states [177] and relation with quantized Hall conductance [173]. This 

intriguing band pattern is conventionally realized by biasing Bloch electrons in a strong 

magnetic field. As the ratio between the number of states per Landu level eB/h and the 

number of states per Bloch band 1/a2 becomes irrational, self-similar recursive energy 

spectrum appears [B is the magnetic field, h is the Planck constant, a is the lattice 

constant]. Experimental realization of the Hofstadter butterfly band pattern generally 

requires good matching between the magnetic length and the Bloch wavelength, which is 

unfeasible due to the need of extremely strong magnetic fields [178]-[179]. Therefore, 

scientists have started to realize it in semiconductor heterostructures and 2D materials 

without using magnetic fields. Here, we propose an alternative path to realize the 

Hofstadter butterfly pattern by using a chain of quasi-periodic LC resonators. This 

approach provides an easily accessible and reconfigurable platform to fractal energy 

band. We also propose a one-port scattering network to probe the eigenfrequency in a 

single measurement, which is devoid of tedious onsite measurement on each resonator. 

At the same time, time modulation provides a very exciting route to realize exotic 

scattering properties. Finally, we investigated the influence of time modulation on the 

band structure and scattering properties. 

6.1 STATIC QUASI-PERIODIC RESONATOR ARRAY  
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Figure 6.1: The circuit scheme to realize Hofstadter butterfly band diagram. The n-th 

resonator consists of shunt inductor 
n
L  and capacitor 

n
C . The resonators 

are mutually coupled through an inductor 
c
L . The total number of 

resonators is q. 

Figure 6.1 demonstrates the circuit model that can show a Hofstadter butterfly 

band diagram. We write the Kirchhoff’s current and voltage law as  

 

1, , 1

1,

1

, 1

1

,

,

,

,

,

n

n

n
n n L

n n n n n

L

n n

n n

n n c

n n

n n c

dV
I C I

dt
I I I

dI
V L

dt
dI

V V L
dt
dI

V V L
dt

− +

−

−

+

+


= +


 = +


=




− =



− =


  (6.1)  

which can be recast into the following second order differential equation set:  

 
2

1 12

1 1 1
1 2 .n n n n

n n n

c n n c n n c n n

d V L L L
V V V

L L C L L C L L Cdt − +

 
= − + + + 

 
  (6.2) 

Since the voltage on the resonator node is not directly related to the total energy 

stored in the LC resonator, we define two complex variables  
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 ( ) ,
2 n

n n
n n L

n

C L
a t V i I

C


 
=  

 
 

     (6.3) 

where ( )
2

n
a t  stands for the electric and magnetic energy at the n-th resonator. We 

perform a time derivate over the above equation, employ the relation nL

n n

dI
V L

dt
=  and 

get the following relation 

 
( ) 1

.
2

n n n
n

n n

da t C dV
i V

dt dt L C

  
 = 
 
 

  (6.4) 

Therefore, the voltage on n-th resonator can be expressed with the mode 

amplitude of the resonator: 

 
2

.
1

2

n n n
n

n n n

n

L da da
V i

dt dt

dV da da

dt dt dtC

+ −

+ −

  
= − −   

  


 
= +  

 

  (6.5) 

We substitute the above equation into Eq. (6.2) and have  

 
1 1

1 1 1
1 2 .n n n n

n n n

c c cn n n n n n

da L L L
i a i a i a

dt L L LL C L C L C



  

− +

 
=  + 

 
  (6.6) 

Since 
n
a  is a conjugate pair, we only need to solve one of the differential equations: 

 
1 1

1 1 1
1 2 .n n n n

n n n

c c cn n n n n n

da L L L
i a i a i a

dt L L LL C L C L C
− +

 
= + − − 

 
  (6.7) 

If we assume that the inductor in each unit is identical 
1 2 0n
L L L L= = =  and the 

capacitor is distributed as  
0

2
sin

n

n p
C C C

q

 
= +   

 
, we can define the resonant 

frequency of n-th resonator as 
0

0

21
1 sin

2n

n n

n pC

C qL C

  
=  −  

   

assuming <<1 
0

C

C

 
 
 
 

. We also define the mutual coupling coefficient as n

c

L

L
= .  

Then, Eq. (6.7) can be simplified to 
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 ( ) 1 1
1 2 ,n

n n n n n n

da
i a i a i a

dt − +
= + − −   (6.8) 

In the weak coupling regime 1 , 
0 0

0

2
sin

2n

n pC

C q

  
= −    

   

, the 

above equation is approximately 

( )0 0 1 0 1

0

2
1 2 1 sin ,

2
n

n n n

da n pC
i a i a i a

dt C q − +

  
 + − − −  

   

    (6.9) 

which is the Harper equation. We define a variable 
0
t=  and simplify the above 

equation to 

( ) 1 1

0

2
1 2 1 sin

2
n

n n n

da n pC
i a a a
d C q − +

  
− = + − − −  

   

   (6.10) 

As a result, we can write the Hamiltonian matrix of this coupled resonator system 

a

( )

( )

( ) ( )

0

0

0

2
1 1 sin 0 0

2

4
1 2 1 sin 0

2

0

0 0 0 1 1 sin 2
2

pC

C q

pC

C q
H

C
p

C


+ − −


− + − −

=

−


− + −

   
   

   
   
   
   
 
 
 
 

  
  
  

  (6.11) 

The eigenfrequency of this Hamiltonian is shown in Fig. 6.2 for a simple case where the 

number of resonators is 100.  
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Figure 6.2: Eigenfrequency distribution of the coupled LC resonator system. The 

number of resonators is 100. The coupling coefficient between the resonator 

is 0.1= . The variation amplitude of the capacitor is 
0

0.1
2

C

C


= . 

6.2 ONE-PORT EIGENFREQUENCY MEASUREMENT SETUP  

The conventional way to measure the eigenfrequency of this coupled resonator 

system is to excite the resonators with voltage waves and measure the responses at each 

resonator. This approach is tedious and time consuming when the number of resonators is 

large. In this work, we use a one-port scattering network to probe the eigenfrequency of 

the system, which is shown in Fig. 6.3. We add a probing waveguide or transmission line 

to the resonator on the end of the resonator chain. The coupled mode equation of this 

system reads:  

 

( )
( ) ( ) ( )

( ) ( ) ( )

d

dt

t
iH t t

t C t t

 +

− +


= − − +


 = +

a
a s

s s a

  (6.12) 
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Figure 6.3: One-port network structure to probe the eigenfrequencies of the coupled 

resonator system where 
0

2
cos

n

n p

q

 
= +   

 
.  

where ( ) ( ) ( ) ( )1 2 q
t a t a t a t



 =
 

a  is the field amplitude vector,

1

2

3

0 0 0

0 0

0 0

0 0 0

0 0 0
q

H

 
 
 
 =
 
 
 
 

 is the Hamiltonian, 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

 
 
 
  =
 
 
 
 

 is the 

decaying matrix, 

2 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

 
 
 
  =
 
 
 
 

 is the coupling matrix, C = −I , 

( ) ( )1
0 0t s t


− − =  s  is the reflected wave, ( ) ( )1

0 0t s t


+ + =  s is the 

excitation. The coupled mode equation can be simplified a step further: 

 

( )
( ) ( ) ( )

( ) ( ) ( )

d

dt

1 1 1
2

t
iH t t

s t s t a t

 +

− +


= − − +


 = − +

a
a s

  (6.13) 

which indicates that the reflected field only depends on the field in the first cavity.  
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Figure 6.4: The reflection coefficient of 10 resonator array based on coupled mode 

theory. 
0

2
cos

n

n p

q

 
= +   

 
, 

0
1= , 0.1 = , 0.1= , 

0.05= , 0p = , 10q = .  

We performed a Fourier transform over the above equation and get the field 

amplitude:  

 ( )
( )

( )

Det

Det

1
2

,
i M s

a
H t i

+  =
 − +  I

  (6.14) 

where 

2

3

0 0

0

0 0

0 0
q

M

 −
 

− =
 
 

−  

, which is a ( ) ( )1 1q q−  −  matrix. 

Therefore, the reflection coefficient is  

 ( )
( )
( )

Det Det

Det Det

1

11

1

.
H i Ms

S
H i Ms

−

+

−  −  +     = =
 −  +     

I

I
  (6.15) 

Since Det H −  I  and Det M    are real, we have ( )11
1S = . If the 

frequency of the excitation wave is the eigenfrequency, we have Det 0H −  = I . This 

assumption leads to ( )11
1S = , meaning that the zero-phase point of ( )11

S

corresponds to the eigenfrequency of the system. The simulation results are shown in Fig.  
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Figure 6.5: The reflection coefficient of 10 coupled LC resonator array in ADS 

software.
0

2
cos

n

n p
C C C

q

 
= +   

 
 

0
5C pF= , 0.2C pF =  

0
5L nH=  

50
p
L nH=  0p =  10q =  where 

p
L  is the coupling inductance and 

0
L  

is the inductance in the resonator.  

6.5. To further verify our approach, we run circuit simulation with ADS software, which 

is shown in Fig. 6.5. The phase in Fig. 6.5 is flipped compared with Fig. 6.4 because “j” 

is defined as the imaginary unit in ADS software.    

6.3 TIME-MODULATED QUASIPERIODIC RESONATOR ARRAY 

Time modulation is a very interesting route to realize novel scattering parameters. 

The coupled mode equation of the above system reads  

 

( )
( )( ) ( ) ( )

( ) ( ) ( )

d

dt
,

,

t
iH t t t

t C t t

 +

− +


= − − +


 = +

a
a s

s s a

  (6.16) 
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where ( ) ( ) ( ) ( )1 2 q
t a t a t a t



 =
 

a  is the field amplitude vector,

( )
( )

( )

( )

1
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0 0

0 0

0 0 0

0 0 0
q

t

t

H t
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 
 
 
 =
 
 
 
  

 is the time-varying Hamiltonian, 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

 
 
 
  =
 
 
 
 

 is the decaying matrix, 

2 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

 
 
 
  =
 
 
 
 

 is the 

coupling matrix, C = −I , ( ) ( )1
0 0t s t


− − =  s  is the reflected wave, 

( ) ( )1
0 0t s t


+ + =  s is the excitation. The coupled mode equation can be 

simplified a step further: 

 

 

( )
( )( ) ( ) ( )

( ) ( ) ( )

d

dt

1 1 1

,

2 ,

t
iH t t t

s t s t a t

 +

− +


= − − +


 = − +

a
a s

  (6.17) 

which indicates that the reflected field only depends on the field in the first cavity. The 

solution of the field amplitude is easily obtained by employing the theory of differential 

equation:  

 ( )
( )

( )
( )dt dt

dt.
iH t iH t

t e t e
− + + + = a s   (6.18) 

The solution is extremely complicated and only numerical solution is possible. 

However, in the low-frequency limit, we can solve Eq. (6.18) analytically.  
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Figure 6.6: Schematic of periodically modulated resonator array. The resonant 

frequency is ( ) 0

2
cos

n m

n p
t t

q

 
= +  + 

 
, where 

0
 is the static 

resonant frequency,   is the modulation depth, 
m

 is the modulation 

frequency, q is the total number of resonator, the coupling coefficient 

between resonator is , the coupling coefficient between the first resonator 

and the waveguide is . 

Assume that the field amplitude can be expressed as ( ) ( ) i tt t e−=a A , the first 

order derivative can be expressed as 
( ) ( )

( ) ( )
d d

dt dt

i t i t i t
t t

e i t e i t e− − −= −  −
a A

A A  

when the modulation frequency is very small. Meanwhile, assume that the excitation is 

( ) i tt e+ + −=s S . Eq. (6.18) can be simplified to  

 ( ) ( )
1

t iH t i
−

 + = − +  A S   (6.19) 

We substitute the excitation vector +S  and the coupling matrix   into the 

above equation 

 ( ) ( )

1

1

2

0

,0

0

S

t i H t i

+

−

 
 
 
  = − +    
 
 
 

A I   (6.20) 

where I is a unitary matrix having the same dimension with the Hamiltonian matrix 

( )H t . According to Cramer’s rule, the solution of the field envelope in the first resonator 

is  

 ( )
( )

Det

Det

1

1

2
,

M i S
A t

H t i

+  =
 − +  I

  (6.21)   
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where 

( )
( )

( )

2

3

0 0

0

0 0

0 0
q

t

t
M

t

 −
 

− 
=  
 
 −
 

, which is a ( ) ( )1 1q q−  −  

matrix. Therefore, the time-domain reflection coefficient is  

 ( )
( )

( )

Det Det

Det Det
11

H t i M
S t

H t i M

 − − +    =
 − +    

I

I
  (6.22) 

There are a few important results stemming from the above equation:   

1. The excitation is fully reflected, because ( )Det H t − I  and Det M    are 

real, leading to unitary reflection  ( )11
1S t = . This is reasonable, considering 

there is no loss in the resonator array.  

2. For static resonator array, there is no frequency mixing. The frequency domain 

reflection coefficient is ( )
Det Det

Det Det
11

H i M
S

H i M

−  −  +     =
 −  +     

I

I
. We have 

( )11
1S = . If the frequency of the excitation wave is the eigenfrequency, we 

have Det 0H −  = I . This assumption leads to ( )11
1S = , meaning that the 

zero-phase point of ( )11
S corresponds to the eigenfrequency of the system.  

3. For a dynamic resonator array, it’s possible to find the reflection coefficient of the 

fundamental tone  

 
( ) ( )

( )

( )

Det Det
d

Det Det

0

11 0

1
,

mT

m

H t i M
S t

T H t i M

 − − +    =
 − +    


I

I
  (6.23) 

where 
2

m

m

T =  is the modulation period. Figure 6.7 demonstrates the scattering 

properties of this one-port time-varying network.  
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Figure 6.7: Scattering parameter of the fundamental tone in a time-varying coupled 

resonator chain. There are 10 coupled dynamic resonators with resonant 

frequency
0
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Chapter 7: Summary  

In conclusion, during my PhD I have investigated a series of wave transport 

phenomena in parity-time-symmetric, time-varying, and quasi-periodic systems. In the 

second chapter, I have put forward a sensing circuit based on a sixth-order EP, showing 

an enhanced resonant shift proportional to the fourth-order root of the perturbation 

strength. Due to the balanced loss and gain configuration and our perturbation scheme, 

the resolution is also improved. Our PT -symmetric system not only serves as a sensing 

platform, but also filters out high-frequency thermal noise, leading to a nearly identical 

thermal noise level compared to the corresponding Hermitian DP sensing scheme. 

Considering the combined high-sensitivity, improved resolution, and nondegraded 

thermal noise performance, we envision that accelerometers, pressure sensors, or 

microfluid flow speed sensors may be implemented following this scheme with 

unprecedented sensitivity, resolution, and excellent thermal noise performance. 

In chapter 3, I have developed a unified theoretical framework to help analyze the 

sensitivity, resolution, and thermal noise performance of two-level EP and DP sensing 

protocols. Our study indicates that although Green’s function of EP sensing system 

shows a combination of square Lorentzian and Lorentzian noise spectra at EP compared 

with conventional DP sensing system, the integrated thermal noise is still manageable if 

proper ratio of internal and external decaying rate is chosen. These arguments are 

confirmed with a judiciously designed 2nd order EP sensing circuit and unveil a bright 

future for EP sensing applications in many other fields, including optomechanical, 

acoustic, and open quantum systems.   

In Chapter 4, I have demonstrated microwave tunneling and information transfer 

through a PT-symmetric absorber-emitter pair. Our study represents a landmark towards 

realistic implementation of information transfer systems with extreme robustness, able to 
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tunnel the input signal through otherwise impenetrable obstacles with large robustness, 

and it shows promises to spawn a series of applications. For instance, our loss-neutral-

gain arrangement exhibits a third-order exceptional point in the bound state. By properly 

designing the system at this higher order exceptional point, the eigenfrequency splitting 

of the corresponding Hamiltonian matrix shows an enhanced high sensitivity proportional 

to the cubic root of the perturbation strength on the system, which is very favorable to 

design ultrasensitive microsensors. Meanwhile, this prototype can be used as a bandpass 

active filter which allows for simultaneous narrow-band signal filtering and 

amplification. Furthermore, our design provides relevant insights into realization of 

active cloaking devices and active metasurfaces which exhibit unique properties not 

available in passive counterparts. In summary, the design strategies and stability analysis 

in this work pave the way towards future realizations of PT-symmetric functionalities in 

optics and microwave regimes. Considering the extensive connections between 

electromagnetic, mechanic, and matter waves, our study can also spur practical 

applications of PT-symmetry in these other fields of research.  

In Chapter 5, I have presented several nonreciprocal devices based on 

commutated switch networks and analyzed the effects of switch desynchronization on 

their performance. Our main conclusion is that commutated switch networks provide an 

excellent platform to realize nonreciprocal devices, such as gyrators, isolators and 

circulators, with excellent performance metrics. Timing errors in the switching schemes 

do not affect return loss in all these devices. In turn, insertion loss and isolation degrade 

linearly with an increase in timing error. In general, there is an upper bound for the 

timing error for the insertion loss and isolation to remain below certain thresholds, but 

these limits are readily achievable in conventional integrated circuit layouts. Furthermore, 

integrated-circuit implementations enable the design of calibration circuitry that corrects 
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for timing errors, and our results provide guidelines for the nature and extent of the errors 

that should be calibrated. We found that for isolation larger than 20 dB and insertion loss 

smaller than 3 dB, the timing error should be smaller than 7.3%, 5%, 5% for the gyrator, 

isolator and circulator, respectively. We have presented opportunities to realize very large 

(in principle infinite) isolation, circulation and nonreciprocal phase shifts, and in some 

instances these bandwidths can be preserved even in the presence of timing errors by 

suitably controlling the switch resistance. In practice, there are more non-idealities that 

can be investigated in these systems, including dispersion in the delay line sections, finite 

rise and fall times of the switches, and other desynchronization scenarios. These 

phenomena go beyond the scope of this work. Overall, our results show a positive 

outlook for commutated switching networks for nonreciprocal functionalities, given their 

direct integrability in a vast family of circuit technologies, and their very small footprint. 

We envision that similar concepts may be extended also to acoustics and photonics, 

opening exciting opportunities to broaden the family of efficient magnet-free 

nonreciprocal devices based on spatial-temporal modulation. 

In chapter 6, I have studied the band structure of a quasi-periodic LC resonator 

array. A one-port reflective sensing network is proposed to measure the eigenfrequency 

of the system without the need of tedious measurement on each resonator.   
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Appendix A 

In this appendix, EP sensing circuit schematic with ADS is presented. We also 

present other sensing protocols based on perturbation over the capacitor and inductor in 

the lossy resonator, which are different from the one we adopted in Chapter 2. Our 

theoretical derivations and ADS simulations indicate that the resolution of the first 

scheme is 0.8 , where  is the perturbation strength; while the second scheme is 

completely useless due to the large linewidth broadening.  

1. EP SENSING CIRCUIT SCHEMATIC  

 

 

Figure A.1: EP sensing circuit schematic. A port with 50Ω characteristic impedance is 

connected to the lossy side of the PT-symmetric circuit. S-PARAMETERS 

simulator is used to simulate the scattering parameters. The port is excited 

with a monochromatic wave sweeping from 0 MHz to 1.5 MHz with step 

size 0.1 kHz.  
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Figure A.2: DP sensing circuit schematic. A port with 50Ω characteristic impedance is 

connected to the left side of the coupled resonator. S-PARAMETERS 

simulator is used to simulate the scattering parameters. The port is excited 

with a monochromatic wave sweeping from 1.1 MHz to 1.9 MHz with step 

size 1 kHz. 

 

Figure A.3: Noise simulation of EP sensing circuit. A port with 50Ω characteristic 

impedance is connected to the lossy side of the PT-symmetric circuit. AC 

simulator is used to simulate the noise voltages at various nodes of the 

circuit. The port is excited with a monochromatic wave sweeping from 0.1 

MHz to 4 MHz with step size 0.01 MHz. 

 

Figure A.4: Noise simulation of DP sensing circuit. A port with 50Ω characteristic 

impedance is connected to the left side of the coupled resonator. AC 

simulator is used to simulate the noise voltages at various nodes of the 

circuit. The port is excited with a monochromatic wave sweeping from 0.1 

MHz to 4 MHz with step size 0.01 MHz. 
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2. SENSING PROTOCOL BASED ON PERTURBATION OVER THE CAPACITOR IN THE 

LOSSY RESONATOR  

LL

PT - symmetric resonator pair

1V
2V 3V

R C -R0Z
0Z

+
1S

-
1S

probeVgV

0C

inZ

C

 

Figure A.5: Sensing circuit design based on perturbation over the capacitor in the lossy 

resonator.  

Figure A.5 demonstrates an interesting sensing protocol where the capacitor in the 

lossy resonator is perturbed around the sixth-order exceptional point. Therefore, the 

capacitance value in the lossy resonator can be expressed as: ( ) ( )1C C= + , where   

is the perturbation strength. According to Kirchhoff’s current and voltage laws, we 

express the voltages at various nodes in the isolated PT-symmetric system as follows:   

 

 

( )
2

2

2

d d

dd

d

d

d d

dd

1 1
1 22

2
2 1 32

3 3
2 32

1 0,

2 0,

0,

V V
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V
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V V
V V


+ + + − =




+ − − =



− − + =


  (7.1) 

where 
0
t=  is the normalized time, 

0

1

LC
=  is the resonant frequency of the 

resonator, 
1 L

R C
=  is the gain/loss parameter, 

0

C

C
= is the coupling coefficient  
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Figure A.6: Amplitude of the reflection coefficient with different perturbation strengths. 

When the perturbation is weak, the resonant dip is invisible. When the 

perturbation  is 1, we can see a resonant dip. The circuit components are 

identical to the Fig.2 in the associated paper. 

between the two resonators. The effective Hamiltonian of the PT-symmetric system can 

be expressed as:  

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

.
0 0 0

1 1 1
2 0 0 0

0 0 0

eff

i

i

i

H i i i

i i i

i i i

 
 
 
 
 

= − − 
 + + +
 −
 
 − 

  (7.2) 

We substitute the conditions （
5 1 5 1

,
4 2

− +
= = ）for sixth-order EP into the 

above equation and find the associated characteristic equation of the Hamiltonian:  

( ) ( ) ( ) ( )2 4 3 24 1 2 1 5 2 1 5 4 5 1 0.i i + − + − + + + − =
  

 (7.3) 
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The full expressions of the eigenfrequencies are extremely lengthy. Here, we just list a 

series expansion of the solutions:  

 

( ) ( )

( ) ( )

( )

1 1

4 2
1,2

1 1

4 2
3,4

5,6

0.5272 1 ,

0.5272 1 ,

0,

i

i

  
=  + +  

  
  

= −  + + 
 

 =



  (7.4) 

where “ ” stands for higher-order term. The above eigenfrequencies are complex and 

therefore can potentially mask the hypersensitive resonant shift in our sensing circuit. We 

confirm our claim by running ADS simulations. Figure A.6 clearly shows that the sensing 

system cannot resolve small perturbation. Our numerical study proves that the resolution 

limit is 0.8 .  

3. SENSING PROTOCOL BASED ON PERTURBATION OVER THE INDUCTOR IN THE 

LOSSY RESONATOR 

LL

PT - symmetric resonator pair
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2V 3V

R C -R0Z
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+
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-
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0C

inZ

C

 

Figure A.7: Sensing circuit design based on perturbation over the inductor in the lossy 

resonator.  
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The above circuit demonstrates another sensing protocol where the inductor in the 

lossy resonator is perturbed around the sixth-order exceptional point. Therefore, the 

inductance value in the lossy resonator can be expressed as: ( ) ( )1L L= + , where  

is the perturbation strength. According to Kirchhoff’s current and voltage laws, we 

express the voltages at various nodes in the isolated PT-symmetric system as follows:  

 

( ) ( )
2

2

2

d d

dd

d

d

d d

dd

1 1
1 22
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  (7.5) 

where 
0
t=  is the normalized time, 

0

1

LC
=  is the resonant frequency of the 

resonator, 
1 L

R C
=  is the gain/loss parameter, 

0

C

C
=  is the coupling coefficient 

between the two resonators. The effective Hamiltonian of the sensing system can be 

expressed as:  

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

.
0 0 0

1 1
2 0 0 0

0 0 0

eff

i

i

i

H i i
i

i i i

i i i

 
 
 
 
 

= − −
 + +
 −
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  (7.6) 

We substitute the conditions (
5 1 5 1

,
4 2

− +
= = ) for sixth-order EP into the above 

equation and find the associated characteristic equation of the Hamiltonian:  

 ( ) ( ) ( )5 3 24 1 4 2 1 5 3 5 2 0,i i + + − + − + + =
  

  (7.7) 
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which has no analytical solutions. Numerical calculations indicate that the 

eigenfrequencies take the following form:  

 

( )

( )

( )

( )

1,2

3,4
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,

,

,
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a ib

c id

if
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
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  (7.8) 

where a, b, c, d, f are real parameters determined by the perturbation strength . The 

above eigenfrequencies (  and 
1,2 3,4

) are complex and therefore can potentially mask 

the hypersensitive resonant shift in our sensing circuit. We confirm our claim by running 

ADS simulations. Figure A.8 clearly shows that the sensing based on this protocol is 

completely useless. 

 

Figure A.8: Amplitude of the reflection coefficient with different perturbation strengths. 

The resonant dips are invisible for any perturbation strengths. The circuit 

components are identical to the Fig. 2.2. 
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Appendix B 

1. SCATTERING PROPERTIES OF IDEAL PT-SYMMETRIC WAVE TUNNELING CIRCUIT  

0Z , τ 0Z , τ

Port 1 Port 2

0Z
0-Z0L

 

Figure B.1: PT-symmetric resonant transmission circuit model. 

 Figure. B.1 demonstrates the circuit model of the PT-symmetric resonant 

transmission device. The transfer matrix of the two-port network can be expressed as: 

 

0 0

0 0 0 0 0

1 0 cos sin 1 0 cos sin 1 0

,1 1 1
1 sin cos 1 sin cos 1

jZ jZ

T j j

Z Z j L Z Z
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         
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         
                  

  (8.1) 

where 
0
Z  is the characteristic impedance of the transmission line,  is the time delay 

in the transmission line,  is the signal frequency, 
0
L  is the inductance of the shunt 

inductor. By simplifying Eq. (8.1), the following four matrix elements are obtained: 

0 0 0
11

0 0 0

0 0
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2 2 2
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2 2 2
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T

L

Z Z Z
T j

L L L

  
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  
  
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  

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


 
= + + − + 

 

 (8.2) 

According to the relation between scattering matrix and transfer matrix:  
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the S-parameters are given by   
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When 
0 0

1

4 2f
= =  , the above equations can be simplified to  
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  (8.5) 

where 
0
 is the designed frequency of the circuit,  0 0

0

L

Z
=  is the ratio between the 

impedance of the inductor and the characteristic impedance. To have a unitary 

transmission, one of the reflection coefficients must be zero. When 
11

0S = , there are two 

sets of solutions: 
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  (8.6) 

In the case 
0

2 1, 0,1,2,3k k= + = , the scattering matrix downgrades to  
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In the case 
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In summary, the solution 
0

2 1, 0,1,2,3k k= + =  corresponds to a resonator operating 

at the odd times of resonant frequencies, while the solution

1

0 0

1
tan

2 2

−

   
=   

   
 

corresponds to a resonator operating at the even times of resonant frequencies. The 

transmission phase of Eqs. (8.7) and (8.8) confirms this assessment. It’s worth 

mentioning that the anisotropic transmission resonance is irrelevant to whether if the 

system is in exact PT phase or in broken PT phase regimes. When the loss and gain is 

balanced, the resonant transmission in PT-symmetric system is very similar to resonant 

transmission in Febry-Perot resonator.  

Meanwhile, the asymmetric resonant transmission can also happen on the second 

port where 
22

0S = . The solutions are 
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1

0

0

0

6 sin

.

3cos 5

−

 
= 

  −

  (8.9) 

As we see from the above equation, the solutions always exist. But the resonant 

frequencies are inherently different from Eq. (8.6). The smaller  is, the larger  

becomes. In this case, the 
12 21

1S S= =  and 
11

0S  . It indicates that this resonant 

transmission network can only provide unidirectional resonant transmission of signals. 

Figure. B. 2 demonstrates the scattering parameters of an ideal PT-symmetric 

resonant transmission device. There are ten forward unidirectional resonant transmission 

points. They are: 
0

1,3,5,7,9=  and 
0

0.88,2.68,4.53,6.42,8.35= . There are two 

backward unidirectional resonant transmission point, they are: 

0

7.56,7.82,9.44,9.88= . These resonant transmission points are consistent with Eqs. 

(8.6) and (8.9).  

 

Figure B.2: PT-symmetric resonant transmission circuit model. Scattering parameters of 

ideal PT-symmetric resonant transmission device. We choose 0.1=  in 

the above graph. a. The amplitude of scattering parameters. b. The phase of 

scattering parameters. 
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Figure B.3: PT-symmetric resonant transmission circuit model. Scattering parameters of 

ideal PT-symmetric resonant transmission device. We choose 0.1=  in 

the above graph. a. The amplitude of scattering parameters. b. The phase of 

scattering parameters. Realistic implementation of PT-symmetric resonant 

transmission circuit.  
0 3

3
C dB
L Z=  is the compensating inductor. 

3dB
 

is the 3dB bandwidth of the amplifier. The negative impedance converter 

exhibits 
0
Z−  impedance at operational frequency 

0 3
3

dB
= . The 

negative impedance converter is based on one-pole amplifier model. The 

feedback factor is 
1

2
=  and the feedback resistance is

0
2

F
Z Z= . 

2. SCATTERING PROPERTIES OF REALISTIC PT-SYMMETRIC WAVE TUNNELING 

CIRCUIT 

For practical implementation of the PT-symmetric resonant transmission circuit. We 

make two major modifications over the ideal model. First, the transmission line is 

replaced with a π model LC tank with finite transmission window to shrink the form 

factor of the board. Second, the negative impedance is implemented with an amplifier 

feedback circuit. Figure B.3 demonstrates our final implementation of PT-symmetric 

resonant transmission circuit. The effective negative impedance is  

 

2 2 2 2

0 0
0 2 2 2 2

00 0

3 3
2 ,

23 3NIC

j
Z Z

 − −
= + 

+ +  

  (8.10) 

where 
0
 is the operational frequency of the negative impedance converter as well as 

the whole PT-symmetric circuit. Therefore, the transmission line elements are  
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Figure B.4: Scattering parameters PT-symmetric resonant transmission device based on 

one-pole NIC. We choose 0.1=  in the above graph. a. The amplitude of 

scattering parameters. b. The phase of scattering parameters. 

0

0 0 0

1
,

Z
L C

Z
= = , which offers full signal transmission and quarter period delay at 

frequency 
0
. We apply the transfer matrix formalism:   
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          

  (8.11) 

The corresponding scattering matrix can be obtained by substitute the above equation into 

Eq. (8.3). We plot the theoretical scattering properties of our PT-symmetric resonant 

transmission in Fig. B.4.  

At operational frequency, the scattering matrix the transmission is unitary, and 

reflection is zero at port 1. The gain side has a 26 dB amplitude reflection coefficient 

with 
2

−  phase. The scattering properties at resonant transmission point is consistent 

with that of an ideal PT-symmetric resonant transmission circuit model, which is shown 

in Fig. B.2 and Eq. (8.7). It’s important to note that our PT-symmetric resonant 
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transmission circuit ideally has a single resonant transmission point due to the finite 

transmission bandwidth of the transmission line and the dispersion of the NIC. The 

scattering matrix obeys unitary condition at resonant transmission frequency 

( )0 1Det S  =  , indicating that the circuit is perfectly PT-symmetric at this designed 

point.  

3. SIMULATION OF REALISTIC PT-SYMMETRIC WAVE TUNNELING CIRCUIT  

Implementation of the PCB board involves consideration of parasitic effects, wave 

leakage in the circuit channel and many more. In this section, we demonstrate our 

simulation results of our PCB board with ADS and Modelithics package.  

 

Figure B.5: Scattering parameters of PT-symmetric resonant transmission device by 

using ADS and Modelithics package. a. The amplitude of scattering 

parameters. b. The phase of scattering parameters. The following 

components are used: nH pF,L
0

150 , 68 20 , 240
C

L C nH L nH= = = = , and 

the amplifier is Texas Instrument (TI) OPA355. The resistors on the 

converting input port of the amplifier are 560R =  , which are tunable. The 

theoretical operational frequency is MHz0
0

1
49.8

2 2
f

LC
= = = . The 

resonant transmission frequency inferred from the simulation results is 48.7 

MHz, which is very close to theoretical value. The parameter 0 0

0

L

Z
=  is 

0.12 in our circuit.  
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Figure. B.5 demonstrates our PCB board simulation results. The resonant 

transmission frequency is 48.7 MHz, where the transmission dB
12 21

0.01S S= = , and 

reflection dB
11

28.8S = − , dB
22

23.4S = . The simulation results are in excellent 

agreement with our theoretical prediction in previous section.  

4. PHASE TRANSITIONS OF IDEAL PT-SYMMETRIC WAVE TUNNELING CIRCUIT  
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Figure B.6: Phase diagram of the PT-symmetry resonant transmission circuit. a. Blue 

region is the PT-symmetry phase while red region is the broken-symmetry 

phase. White line is the PT-symmetry phase transition boundary. b. Spectral 

properties of eigenvalues with 1= . The system exhibits multiple PT-

symmetry and broken-symmetry regions. c. Evolution of real part of the 

eigenvalues versus coupling coefficient at resonant transmission 

frequency
0

. d. Evolution of imaginary part of the eigenvalues versus 

coupling coefficient  at resonant transmission frequency
0
. 

Since the system obeys PT-symmetry, it’s important to study the phase diagram 

and phase transition. By solving the eigenvalue problem of scattering matrix in Eq. (8.5), 

we have the following eigenvalues 

 

0 0 0 0 0

1

0 0 0 0

2 2

0 0 0 0 0 0 0

0 0

3 cos 2 sin

4 cos 2 1 sin

2 2
2 3 4 4cos 1 4 cos 4 2sin sin

4 cos

j j

j j j

j j

 
− − 

 =
   

− + − + + +   
   

      
 − + + + − + + − +     
       

−
 

− + − + + 
  0 0

0 0 0 0 0

2

0 0 0 0

2 2

0 0 0 0 0 0 0

,

2 1 sin

3 cos 2 sin

4 cos 2 1 sin

2 2
2 3 4 4cos 1 4 cos 4 2sin sin

j

j j

j j j

j

 
+ 

 

 
− − 

 =
   

− + − + + +   
   

      
 − + + + − + + − +     
       

+

− +
0 0 0 0

.

4 cos 2 1 sinj j


























    
 − + + +   
    

  (8.12) 
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From the above equation, we know that the eigenvalues are dependent on the input signal 

frequency and the coupling coefficient . The PT-symmetry phase transition boundary 

can be obtained by equating 
1 2
= :  

 ( )
1

0

0

0

1 cos

,

2 1 sin
EP

−−
 

=  
   − 
 

  (8.13) 

where 
EP

 is the exceptional point (EP) of this PT-symmetric scattering system, which 

is marked as white line in Fig.B.6(a).  At resonant transmission frequency 

( ) 0
2 1 , 0,1,2,3

k
k k= + = , the exceptional point is ( )

1

2 1EP k k
= =

+
. At 

resonant transmission frequency 
0

2 1
arctan 2

2k
k

 
= + 
 

, the exceptional point is 

( )
1

2arctan 2
2

EP k

k

= =

+

. At frequency
0 0 0

1 5 9
, ,

2 2 2
= , the system is 

always in broken-symmetry region. At frequency 
0 0 0

2 ,4 ,6= , the system is 

always in PT-symmetry region.   

Figure B.6(b) demonstrates the spectral properties of eigenvalues with coupling 

coefficient 1= . For regions ( ) ( )10 1 10 2
log log 0= = , we can infer that 

( ) ( )1 2
1= = , indicating that the system is in the PT-symmetry phase. For regions 

( ) ( )10 1 10 2
log log= − , we can infer that ( ) ( )1 2

1/ 1=  . The PT-

symmetry is broken in these regions and the PT operator will not share the same 

eigenvalues and eigenstates with the scattering matrix. When the input signal frequency 

is known, the eigenvalues experience phase transition with respect to coupling coefficient 

. Figures B.6(c) and (d) show the evolution of eigenvalues at resonant transmission 

frequency 
0

= . The EP point is ( )0 1
EP

= , which is consistent with the phase 

diagram Fig. B.6(a) and Eq. (8.13). When 
EP

 , the real part of the two eigenvalues 
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are zero and the imaginary part of the two eigenvalues are nonzero. They obey relation 

1 2
Im 1/ Im 1  =       , exhibiting a broken-symmetry phase. When  

EP
 , both 

real and imaginary parts are nonzero, but they obey 
1 2

1= = , exhibiting a PT-

symmetry exact phase.  

5. PHASE TRANSITIONS OF REALISTIC PT-SYMMETRIC WAVE TUNNELING CIRCUIT  

For realistic PT-symmetric resonant transmission circuit, the system is PT-symmetric 

at resonant transmission frequency. Therefore, the scattering matrix obeys the following 

properties of PT-symmetric scattering systems at resonant transmission frequency  

 ( ) ( )* 1

0 0
,PS P S−   (8.14) 

where 
0 1

1 0
P

 
=  
 

 is the parity operator. For input frequency other than 
0
, the above 

equation is not respected in general and the system is categorized as a non-Hermitian 

scattering system where gain is involved but imbalanced with loss.    

 

Figure B.7: Spectral properties of the eigenvalues of the realistic PT-symmetric circuit. 

a. With coupling coefficient 0.1= . b. With coupling coefficient 1= . 

c. With coupling coefficient 5= . When coupling coefficient varies, the 

system is always PT-symmetric at resonant transmission frequency as 

evidenced by the unitary condition ( ) ( )1 0 2 0
1= .  

At operational frequency, the scattering matrix reduces to  
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0 1

,2
1

S j

 − 
 =
 − −
  

  (8.15) 

where the eigenvalues are 
2

1,2

1j−  −
= . The exceptional point is 1

EP
= , which 

demonstrates identical dynamics shown in Fig. B. 6(c) and (d).  

 

6. STABILITY ANALYSIS OF AN IDEAL PT-SYMMETRIC WAVE TUNNELING CIRCUIT 

 

In this section, we provide a detailed derivation of the transfer function and stability 

analysis of an ideal PT-symmetric resonant transmission circuit. To analyze the influence 

of parameter detuning, we assume two small perturbations on the circuit: relative time 

delay perturbation


on the second segment of transmission and small perturbation 

0

Z

Z


 on the ideal negative impedance.  

At port 2, the effective load impedance is a negative impedance in parallel with the 

characteristic impedance 

1

0

0

1
Z

Z
Z

−  
 +  
   

. Therefore, the effective reflection coefficient 

on the load side is 

 
2

0

1
.

1 2
l Z

Z

 =


+

  (8.16) 

The input impedance on the second transmission line is 

 

2 2

2

2 2

2

2 0
,

s s

l

in s s

l

e e
Z Z

e e

−

−

+
=

−
  (8.17) 
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where 
2
 is the time delay of the second transmission line. For the first transmission 

line, the load impedance is an inductor in parallel with input impedance on the second 

transmission line  

 
1 0 2

,
L in
Z sL Z=   (8.18) 

where is an operator to calculate the shunt impedance on the left and right side of this 

symbol. Then, the load impedance on the first transmission line can be simplified to 

 
( )

( ) ( )

2 2

2

1 2 2

2

0 0

0 0 0 0

.

s s

l

L s s

l

sZ L e e
Z

Z sL e Z sL e

−

−

+
=

+ + − 
  (8.19) 

So, for the first transmission line the reflection coefficient is   

 
( )

( )

2 2

2

1 2 2

2

0 0 0

0 0 0

2
.

2

s s

l

l s s

l

Z e sL Z e

sL Z e Z e

−

−

− + − 
 =

+ + 
  (8.20) 

The transfer function on the inductor can be expressed as 

 ( ) 1

1 1

1

1
,

3

l

inductor s s

l

H s
e e−

+
=

+
  (8.21) 

where 
1  is the time delay on the first transmission line. As a result, the transfer function 

on the load of the second transmission line can be written as 

 ( ) 1 2

1 1 2 2

1 2

1 1
,

3

l l

s s s s

l l

H s
e e e e− −

+ +
= 

+ +
  (8.22) 

where 
1l

  is expressed in Eq. (8.20). We continue to simplify the transfer function to

( )
( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1 1 2

0

0

0 0 0 0 0 0

0 0

4 1

.

3 1 2 2 3 1 2 2
s s s s

Z
L s

Z
H s

Z Z
L s Z e Z e Z e L s Z e

Z Z

+ − − − +

 
+ 

 =
    
+ + + − + + −   

   

  (8.23) 

Now, we assume 
1
=  and 

2
1
  

= + 
 

. The above equation will be simplified to  
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( )
( ) ( )

0

0

2 2

0 0 0 0 0 0

0 0

4 1

.

3 1 2 2 3 1 2 2
s s

s s

Z
L s

Z
H s

Z Z
L s Z e Z e Z e L s Z e

Z Z

     
+ − +   

−    

 
+ 

 =
    
+ + + − + + −   

   

  (8.24) 

The above equation is the transfer function of an ideal PT-symmetric resonant 

transmission circuit with parameter detuning. We apply simple numerical calculations 

and figure out the poles of the transfer function.  

 



 146 

Figure B.8: Pole locations of transfer function with parameter detuning. a. Pole 

locations with   
0

0.5, 0.05
Z

Z


= = − . b. Pole locations with  

 
0

0.5, 0
Z

Z


= = . c. Pole locations with   

0

0.5, 0.05
Z

Z


= = . d. Pole 

locations with   0.5, 0.05


= = − . e. Pole locations with  

 0.5, 0


= = . f. Pole locations with   0.5, 0.05


= = . Note that 

the number of poles is infinite, and we only show the poles that will 

potentially cause stability problems.   

Figure B.8 demonstrates the pole locations with parameter detuning. Our study 

indicates that the circuit remains stable for any value 0  based on the assumption that 

there’s no parameter detuning. If imperfection exists, the coupling coefficient should 

be larger than 0.1 to ensure stable operation. In summary, the ideal PT-symmetric 

resonant transmission is stable for any coupling coefficient. To ensure a more robust 

operation [5% tolerance on impedance and delay detuning], the coupling coefficient 

should be larger than 0.1.  
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Appendix C 

1. HARMONIC ANALYSIS OF SINGLY-BALANCED GYRATOR 

For the upper branch gyrator, we assume that the input signal at the port 1 of the 

singly-balanced gyrator is monochromatic with 
tje .  Performing the Fourier transform 

of Eqs. (5.1)-(5.2) in the main text we obtain the reflected and transmitted signals 

 ( )
( )

( )4
2

1 sin
2 ,

m

m

n
Tn j j n t

n

n

V t e e
n

=+ − +−

=−

−

=    (8.25) 

 ( ) ( )
2

1

sin
2 .m

n
j

n
j n t

n

n
e

V t e
n

=+
+−

=−

=    (8.26) 

Similarly, Fourier-transforming Eqs. (5.3)-(5.4) in the main text we obtain the reflected 

and transmitted signals for excitation from port 2: 

 ( ) ( )
2 3

4
1

sin
2 ,

m

m

n
j

Tn j j n t

n

n
e

V t e e
n

−

=+ − +−

=−

=    (8.27) 

 ( ) ( )
2

sin
2 .m

n
j n t

n

n

V t e
n

=+
+−

=−

=    (8.28) 

We notice that all the scattering parameters of the fundamental tone are multiplied with a 

factor 1 2 , leading to 6 dB insertion loss for the transmitted signal in both directions. 

There are two mechanisms contributing to this factor. First, the switches transmit only 

during half of the modulation period, whichever port is excited, allowing only half of the 

incident power to enter the device. Second, again due to the switches, in the reflected and 

transmitted signals, the total power distributed to all the higher-order harmonic is 

 
2 2 2

1, 3

2

, 5
2

0

sin
2 1 1

,
4n n

n

n

n n

+

=− =  






 
 
  = =    (8.29) 
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which is half of the power that gets into the circuit. Therefore, the power that gets out of 

the circuit at the fundamental tone is 1 4  of the input power, resulting in an insertion 

loss of 6 dB.  

We continue to perform the harmonic analysis of a slightly desynchronized single 

branch gyrator. To analyze the scattering properties, we transform Eqs. (5.9)-(5.12) to 

Fourier series:   

 

( )
( )

( )

( )

1

4 4
2

0

1
3 3

4 4

0

1 1 1

2 2

1
,

2
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m
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m m

m

n jnn
T T

j jj n t j t

n m
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T T

j jj n t j t

n m

j e
V t e e e e

n T

j e
e e e e

n T

− +

− −+−



− +

− −+



 − −    = + − 
 
 

 − +  + +





  (8.30) 
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1
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n
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n

n
e

V t e
n

=+
+−

=−

=    (8.31) 
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1
,

2

m
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m

m
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m
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T T

j jj n t j t
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T T

j jj n t j t
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j e
V t e e e e

n T

j e
e e e e

n T

− 

− −+−



− 

− −+



 − −    = + − 
 
 

 − +  + +





  (8.32) 

 ( ) ( )
2

sin
2 .m m

n
j n t jn

n

n

V t e e
n

=+
+ − −

=−

=    (8.33) 

The above equations reduce to Eqs. (8.25)-(8.28) when timing error   is set to zero. 

When the second switch is desynchronized, the transmitted signals possess both odd and 

even harmonics rather than odd harmonics only as in perfect synchronization case.  

The harmonic analyses of a double branch gyrator with timing error are again 

given by:  
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( ) ( )
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2
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m
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
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 ( )1
0,V t− =   (8.35) 
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m
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n
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

− −

   − + −      = −  
 

   
+ − +  

    


  (8.36) 

 ( )2
0,V t− =   (8.37) 

The above equations indicate that the double branch gyrator has residual even-order 

harmonics in the presence of the desynchronization. 

2. HARMONIC ANALYSIS OF DIFFERENTIAL GYRATOR 

To study the IM products and scattering properties of the fundamental tone, we 

perform a Fourier transform over the temporal response and get the Fourier series of the 

responses:  

( ) ( ) 4 4
2

0

2 cos 1 42 1 ,

m
m m

m

jn
T T

j jj n t j t

n m

n
j e

V t e e e e
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

 −   
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  (8.38) 

 ( )1
0,V t− =   (8.39) 

 ( )
( )

( ) 4 4
1

0

1 1 1 4
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m
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j e
V t e e e e
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       
 
 

   (8.40) 

 ( )2
0.V t− =   (8.41) 

The above equation demonstrates the same IM products as Eqs. (8.34)-(8.37). 

Therefore, they share the identical IM products distribution as shown in Fig. 5.4. 
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3. TEMPORAL AND SPECTRAL ANALYSIS OF SINGLY-BALANCED ISOLATOR 

For a single branch isolator, the temporal domain responses are expressed in Eqs. 

(5.25)-(5.28). The Fourier series can be easily obtained:  

 ( ) ( ) ( )2 4
2
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2 1 ,
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n

V t e e
n

=+ − +−

=−

 
=  + 

  
   (8.45) 

For a singly-balanced isolator, the analysis is much more complicated. Assume that the 

network is excited with a monochromatic signal ( ) ( )1
expV t j t+ =  at port 1. The left 

side of the network is essentially a Wye-topology network with time-varying scattering 

properties ( )S t . The output and input signals obey the following relation:  

 

( )
( )
( )

( )
( )
( )
( )

1 1

,
a a

b b
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  (8.46) 

where the time-domain scattering matrix is  
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R R R R R
R R R

S t P t P t
R R R R R
R R R R

P t P t
R R R R R

 + − 
+ + + + + + +

 
− = + −

 + + + + +
 

+ − −
 − +

+ + + + +  

 (8.47) 

and 
0m

R R Z=  is the relative resistance. Meanwhile, the right side of the network is 

also a Wye-topology network with the following scattering relations  
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  (8.48) 

From Eqs. (8.46) and (8.48), we have the following relations  
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and 
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We substitute Eq. (8.49) into Eq. (8.50) and get 
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(8.51) 

Shifting the reference time of the above equation by 
2
m
T

 and employing the Bloch 

theorem  
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we obtain the following linear equations for   and 
a b
V V− −
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(8.53) 

We solve the linear equations (8.49) and (8.53) together and get the solutions of 

   , , ,
a b a b
V V V V+ + − − . Then, the reflected signals and transmitted signals can be expressed as 

a linear combination of the above known signals 
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  (8.54) 

The frequency-domain scattering parameters of the fundamental tone is essentially the 

time-average value of the envelope of the above equation, which can be easily obtained 
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  (8.55) 

We follow the same procedures for excitation at port 2 and figure out the scattering 

parameters  
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Equations (8.55) and (8.56) are the major results of this section. They will degenerate 

to Eq. (5.33)  in the main text at operational frequency ( )2 1
m

k= + , 

   3...0, 1, 2,k =  

4. SYNCHRONIZATION ANALYSIS OF SINGLY-BALANCED ISOLATOR 

In this appendix, we will perform a rigorous time and frequency analysis of a single 

branch isolator with timing error. Assume that port 1 is excited with a monochromatic 

signal ( )exp j t . In the first half modulation period, most of the signal passes through 

the second switch with time delay 4
m
T , apart from a small tail that experiences partial 

transmission through port 2. The mismatched tail is partially reflected at port 2 and 

bounces back to port 1 with another partial reflection at port 1. The partially reflected 

signal is transmitted through the transmission line again and fully transports through the 
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second switch. In the second half modulation period, a small tail experiences partial 

transmission through port 1 and fully transmits through port 2 due to time mismatch. 

However, most of the signal during this modulation period is partially transmitted 

through switch 1 and switch 2 with transmission coefficient 2 . The reflected signal at 

port 1 can be analyzed in a similar way, and we summarize the responses for excitation 

from port 1 below: 
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 (8.57) 

where ( )1
t  and ( )2

t  are envelopes of the modulated signal [see Fig. 5.19], ( )2
V t−

is the transmitted signal, and ( )1
V t−  is the reflected signal at port 1. The above temporal 

responses at port 1 can be analyzed to a Fourier series as 
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 (8.58) 

For monochromatic excitation ( )exp j t  at port 2, most of the signal is fully 

transmitted through switch 2 and partially transmitted through switch 1. The reflected 
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signal bounces back and forth and transmits through switch 1 with an amplitude 2 . In 

the first half modulation period, a small desynchronized tail passes through switch 1 

without loss. In the second half modulation period, most of the signal is partially 

transmitted through switch 2 with amplitude  , and then fully transmitted through 

switch 1. A small tail partially transmits through switch 2 and then partially transmits 

through switch 1, with an amplitude 2 . The reflected signal at port 2 can be analyzed in 

a similar way, and we summarize the responses for excitation from port 2 below 
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  (8.59) 

where ( )3
t  and ( )4

t  are envelopes of modulated signal [see Fig. 19], ( )1
V t− is 

transmitted signal, and ( )2
V t−  is the reflected signal at port 1. The above temporal 

responses can be expressed in frequency domain as 
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 (8.60) 

In summary, we have analyzed the temporal as well as frequency responses of a 

desynchronized single branch isolator. Equations (8.58) and (8.60) are our major 

results and they become Eqs. (8.42)-(8.45) when the timing error is zero. 



 156 

5. SYNCHRONIZATION ANALYSIS OF ULTRA-BALANCED ISOLATOR 

When there’s timing error in the ultra-broadband isolator, we transform the time-

domain responses into Fourier series:   
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 ( )1
0,V t− =       (8.62) 
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 ( )2
0.V t− =       (8.64) 

From the above equations, we can infer that the both forward and backward propagation 

signal share the same IM products distribution, which is enveloped by a sinc function: 

( )sinc2
m m
T n T  . Fig. 5.14 demonstrates the IM products of this isolator with 

relative timing error 0.1
m
T = . The fundamental tone of the forward transmission 

signal is 0.8, while the fundamental of the backward transmission signal is 0.2.  

6. ANALYSIS OF SINGLY-BALANCED CIRCULATOR 

In this appendix, we will present a rigorous temporal and frequency domain 

analysis of the singly-balanced circulator. Assume that the network is excited with a 

monochromatic signal ( ) ( )1
expV t j t+ =  at port 1. Then, we have the following 

relation:  
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where time-domain scattering parameters is  
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Meanwhile, at port 2 we have  
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At port 3, we have  
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Since the scattering parameters are time-independent, we can perform a Fourier-

transform over Eqs. (9.1), (9.3) and (9.4). The matrix form of these equations is 
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 (9.5) 

We solve the above linear equation, substitute the solution into (9.1), (9.3), and 

(9.4), and get the scattering parameters   
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 (9.6) 

We execute similar analyses at port 2 and port 3 and get the scattering parameters  
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 (9.7) 
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and  
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 (9.8) 

Equations (9.6)-(9.8) are the major results of this section. They transform into 

Eq. (5.37) at operational frequency ( )     2 1 , 0, 1, 2, 3
m

k k= + = .  

7. ANALYSIS OF DOUBLY-BALANCED CIRCULATOR 

In this appendix, we will present a rigorous temporal and frequency domain 

analysis of the doubly-balanced circulator. Assume that the network is excited with a 

monochromatic signal ( ) ( )1
expV t j t+ =  at port 1. Then, we have the following 

relation: 
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( )

1 1

,

2

b b

a a m
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   
   

=   
   

−   

     (9.9) 

where time-domain scattering parameters is  
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      (9.10) 

Meanwhile, at port 2 we have  
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     (9.11) 

At port 3, we have  
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    (9.12) 

Since the scattering parameters are time-independent, we can perform a Fourier-

transform over Eqs. (9.9), (9.11) and (9.12). The matrix form of these equations is 
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 (9.13) 

We solve the above linear equation, substitute the solution into (9.9), (9.11) and 

(9.12), and get the scattering parameters   
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 (9.14) 

We execute similar analyses at port 2 and port 3 and get the scattering parameters  
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  (9.15) 

and  
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  (9.16) 

Equations (9.14)-(9.16) are the major results of this section. They transform into 

Eq. (5.37) at operational frequency ( )     2 1 , 0, 1, 2, 3
m

k k= + = .  
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8. ANALYSIS OF SYNCHRONIZATION OF DOUBLY-BALANCED CIRCULATOR 

With timing error, the Fourier series at three ports can be expressed as  

 ( )1
0,V t− =   (9.17) 
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The above equation indicates that the ultra-broadband circulator has the same IM 

products compared with ultra-broadband isolator. 
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