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Abstract 

Understanding the dynamic interactions among soil and plant rhizosphere microbiomes is critical for 

predicting community function and developing improved probiotic and biocontrol agents for plant growth, 

biofuel production, and human health. However, uncovering these interactions is a grand challenge in 

microbiology due to the lack of experimental tools suitable for discovery and characterization. This research 

develops high throughput microwell recovery arrays (MRA) combined with advanced bioinformatics 

techniques to screen and detect microbial interactions across soil/root microbial communities to uncover 

bacteria species with an important function. 

The first part of this thesis describes developing a novel, light-responsive, step-polymerized poly(ethylene 

glycol) hydrogel membrane to retrieve cells from MRAs with a high degree of spatial control. The utility 

of microwell arrays, particularly in screening applications, could be significantly expanded if cells of 

interest could be removed from individual wells for subsequent genetic and phenotypic characterizations. 

The photodegradability of the membrane permits exchange of nutrients and waste products and seals motile 

bacteria within microwells and enables individual wells of interest to be opened using a patterned UV light 

for selective release and retrieval. 

The second part of the thesis demonstrates the unique application of the MRA platform to discover multi-

membered consortia that generate emergent outcomes. The platform was initially developed to discover 

dual-species co-culture and interactions between two well-characterized interaction pairs, Agrobacterium 

tumefaciens and Pseudomonas aeruginosa. After investigating the on-chip co-culture using this pair, 

Populus trichocarpa rhizosphere microbiome was screened for strains affecting the growth of Pantoea sp. 

YR343, an indole-3-acetic acid (IAA) producing, plant growth-promoting bacteria isolated from Populus 

deltoides rhizosphere. 

The third chapter of the thesis uses this approach for enhancing the survival and colonization of commercial 

nitrogen-fixing, plant growth-promoting bacteria, Azospirillum brasilense, into maize roots to improve crop 



yield. Diazotrophs such as Azospirillum brasilense function as biofertilizers by colonizing plant roots and 

enhancing plant productivity through symbiotic interactions within the rhizosphere. Using the MRAs, new 

isolates showing that promote A. brasilense growth were extracted and identified by 16S sequencing as 

Serratia mercescens, Serratia nematodiphila, Serratia urelytica, Pantoea agglomerans, Enterobacter 

tabaci, and Acinetobacter bereziniae, and the interactions were validated off-chip in 96 well plate reader. 

Also, the growth enhancement and the improvement of the survival and colonization of A. brasilense in 

Zea mays roots were validated in plant growth chamber experiments, demonstrating the potential to apply 

the interactions found in vitro towards in vivo systems of agricultural relevance.  

In the final chapter of the thesis, the screening capabilities using MRAs were further extended towards 

screening non-pathogenic Agrobacterium isolates for the growth inhibition of pathogenic A. tumefaciens, 

which is a key plant biotechnology tool and also the causative agent of Crown Gall disease.  MRAs were 

used to combine fluorescently labeled A. tumefaciens sp.15955 with non-pathogenic Agrobacterium 

isolates collected from native plant roots at the Konza Prairie Biological Station (Manhattan, KS) to uncover 

several candidates for inhibiting A.tumefaciens sp. 15955 growth. The discovery of such growth-inhibiting 

isolates will help improve plant productivity by using them as reliable biocontrol agents that prevent Crown 

Gall disease, and further demonstrates the unique capability of the MRA platform to screen natural isolate 

collections to discover bacteria capable of inhibiting pathogens. 
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Abstract 

Understanding the dynamic interactions among soil and plant rhizosphere microbiomes is critical for 

predicting community function and developing improved probiotic and biocontrol agents for plant growth, 

biofuel production, and human health. However, uncovering these interactions is a grand challenge in 

microbiology due to the lack of experimental tools suitable for discovery and characterization. This research 

develops high throughput microwell recovery arrays (MRA) combined with advanced bioinformatics 

techniques to screen and detect microbial interactions across soil/root microbial communities to uncover 

bacteria species with an important function. 

The first part of this thesis describes developing a novel, light-responsive, step-polymerized poly(ethylene 

glycol) hydrogel membrane to retrieve cells from MRAs with a high degree of spatial control. The utility 

of microwell arrays, particularly in screening applications, could be significantly expanded if cells of 

interest could be removed from individual wells for subsequent genetic and phenotypic characterizations. 

The photodegradability of the membrane permits exchange of nutrients and waste products and seals motile 

bacteria within microwells and enables individual wells of interest to be opened using a patterned UV light 

for selective release and retrieval. 

The second part of the thesis demonstrates the unique application of the MRA platform to discover multi-

membered consortia that generate emergent outcomes. The platform was initially developed to discover 

dual-species co-culture and interactions between two well-characterized interaction pairs, Agrobacterium 

tumefaciens and Pseudomonas aeruginosa. After investigating the on-chip co-culture using this pair, 

Populus trichocarpa rhizosphere microbiome was screened for strains affecting the growth of Pantoea sp. 

YR343, an indole-3-acetic acid (IAA) producing, plant growth-promoting bacteria isolated from Populus 

deltoides rhizosphere. 

The third chapter of the thesis uses this approach for enhancing the survival and colonization of commercial 

nitrogen-fixing, plant growth-promoting bacteria, Azospirillum brasilense, into maize roots to improve crop 



yield. Diazotrophs such as Azospirillum brasilense function as biofertilizers by colonizing plant roots and 

enhancing plant productivity through symbiotic interactions within the rhizosphere. Using the MRAs, new 

isolates showing that promote A. brasilense growth were extracted and identified by 16S sequencing as 

Serratia mercescens, Serratia nematodiphila, Serratia ureilytica, Pantoea agglomerans, Enterobacter 

tabaci, and Acinetobacter bereziniae, and the interactions were validated off-chip in 96 well plate reader. 

Also, the growth enhancement and the improvement of the survival and colonization of A. brasilense in 

Zea mays roots were validated in plant growth chamber experiments, demonstrating the potential to apply 

the interactions found in vitro towards in vivo systems of agricultural relevance.  

In the final chapter of the thesis, the screening capabilities using MRAs were further extended towards 

screening non-pathogenic Agrobacterium isolates for the growth inhibition of pathogenic A. tumefaciens, 

which is a key plant biotechnology tool and also the causative agent of Crown Gall disease.  MRAs were 

used to combine fluorescently labeled A. tumefaciens sp.15955 with non-pathogenic Agrobacterium 

isolates collected from native plant roots at the Konza Prairie Biological Station (Manhattan, KS) to uncover 

several candidates for inhibiting A.tumefaciens sp. 15955 growth. The discovery of such growth-inhibiting 

isolates will help improve plant productivity by using them as reliable biocontrol agents that prevent Crown 

Gall disease, and further demonstrates the unique capability of the MRA platform to screen natural isolate 

collections to discover bacteria capable of inhibiting pathogens. 
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Figure 2.7: Membrane degradation of bacteria-seeded microwells leads to bacteria release. Bright-

field and fluorescence images (A, B) before and (C, D) after irradiating a 60 μm microwell with 

the Polygon400. A. tumefaciens was seeded at OD = 0.2 and cultured for 2 days. Exposed area, 

120 μm circle; irradiation time, 5 min; light output, 2 mW/mm2; scale bar = 30 μm. ................. 27 

Figure 2.8: Effect of irradiation time on bacteria release from 20 μm diameter wells. (A) Wells 

were irradiated as indicated for either 1, 2, 3, 4, or 5 min and afterward (B−E) observed over the 

course of 10 min. Light output 0.7 mW/mm2. Scale bar = 25 μm, n = 2. .................................... 28 

Figure 2.9: Several wells can be opened simultaneously using the Polygon400. (A) A. tumefaciens 

expressing fluorescent mCherry was seeded at OD = 0.2 and cultured for 1 day. (B) Simultaneous 

irradiation of ten 50 μm microwells with a 60 μm circle pattern for 5 min at 0.7 mW/mm2. (C) 

Microwells that were irradiated show diffuse red fluorescence due to the moving bacteria. (D) 

Fluorescein maleimide labeling confirms membrane degradation. (E, F) Same as C and D but after 

washing with LB medium. Scale bar = 100 μm. Simultaneous opening of multiple wells has been 
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Figure 2.10: A. tumefaciens isolated from microwells are viable and can be cultured. (A) Total of 

72 microwells (40−50 μm in diameter) were opened with light. After careful washing of the 

membrane with LB with 0.05% Tween20, the solution was placed inside a plate reader and the 

OD tracked over time. Washings after opening the microwells (rhombus) show an increase in OD 

over the course of 16 h whereas washings before opening the microwells (circles) do not show 

bacterial growth (n = 3). (B) Quantification of bacteria colony forming units (CFU/mL) present in 

the washing solutions before and after opening of ten 50 μm diameter wells (n = 3). ................. 31 

Figure 2.11: Effect of light pattern on bacteria removal from microwells after culture for 1 day 

(OD = 0.2 seeding density). (A) 40 μm microwells containing bacteria were (B) irradiated either 

with 60 μm light circle or 60/40 μm light ring patterns (blue) for 5 min at 0.7 mW/mm2. (C) Cells 

are released as shown by the diffuse red fluorescence. After washing, the membrane is fixed and 

imaged by confocal microscopy. (D) Fluorescence signal (green indicating fluorescein-labeled 

membrane, red indicating cells expressing mCherry) coming from the xy plane along the green 

line in E. (E) Fluorescence signal coming from the xz plane along the red line in D. Scale bar = 40 

μm. Effect of ring versus circle irradiation on cell release was done in triplicate ........................ 32 

Figure 3.1: (A) Model C58-GFP (green) – PAO1-mCherry (red) co-culture in the MRA. Arrows 

indicate rare outlier wells where C58-GFP outgrew PAO1-mCherry. (B) Scatter plot of green 

(C58-GFP) versus red (PAO1-mCherry) well signals from a sample 549 well array at various time 

points. Outlier wells where C58 outgrew PAO1 are identified after the culture period (green). (C) 

Individual growth trajectories from a sample nominal well (well #1109), where PAO1 growth rate 

was significantly higher than that of C58 and an outlier well (Well #1223), where C58 outgrew 

PAO1............................................................................................................................................. 49 

Figure 4.1: Microwell recovery arrays for screening microbe-microbe interactions. (i) GFP-

expressing focal species are combined with a random combination of bacteria cells from an 

environmental microbiome in a stochastic seeding process. Different shapes represent unique 

microorganisms. (ii) Cells are trapped within their wells using a photodegradable PEG hydrogel 

membrane and monitored in parallel during co-culture using TLFM. (iii) The membrane is ablated 

over a target well showing highest or lowest levels of focal species growth using patterned light 

exposure, then (iv) isolates are extracted and recovered from an opened well. (v) Isolates are 
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identified using 16S amplicon sequencing. (vi) Steps (iii-v) are repeated in iterative fashion to 

remove each community of interest. ............................................................................................. 56 

Figure 4.2: YR343-GFP growth in mono-culture and co-culture within 10 µm microwells. (A) 

TLFM images of a sample 15×15 array of microwells after (i) seeding only YR343-GFP or (ii) 

seeding YR343-GFP with isolates from a P. trichocarpa rhizobiome. (B) Growth curves generated 

from a sample 900 microwell array during YR343-GFP mono-culture, or (C) YR343-GFP co-

culture with rhizosphere isolates. Outlier wells representing growth promoting and antagonistic 

communities, respectively were identified from the growth curves. ............................................ 63 

Figure 4.3: Sequential removal of growth-promoting and antagonistic communities from an array 

sub-section after co-culture. (A) Microwell array before and after co-culture. This 15×15 

microwell array contained both a YR343 growth promoting community (blue) and YR343 

antagonistic (red) community that were targeted for extraction. (B) Targeted removal of the 

microwell community in which YR343 grows to its highest observed end-point fluorescence (top 

row, blue outline), followed by targeted removal of a microwell community in which YR343-GFP 

grew poorly (bottom row, red outline). Purple area denotes UV exposure area used for membrane 

degradation. (C) Maximum likelihood phylogenetic tree based on partial 16S rRNA sequences 

(1007 sites) of select reference strains and isolates extracted from promoted (P) and antagonized 

(A) wells. We collapsed the branches of the monophyletic group composed of Enterobacter sp. 

and Pantoea sp. strains and the clade of Stenotrophomonas sp. strains. A. tumefaciens C58 was 

used as the outgroup (OG) organism and the following reference strains were included: Pantoea 

sp. YR343, Enterobacter cloacae E3442, Pseudomonas putida S13.1.2, Stenotrophomonas 

maltophilia NCTC10259. We labelled nodes with corresponding bootstrap percentages. .......... 65 

Figure 4.4: Interactions identified in the MRA can be validated in 96-well plate format. (A) Left: 

YR343 growth curves after inoculation into conditioned media from the antagonistic isolate, the 

isolate consortia, or unconditioned media (UCM). The control (green line) is conditioned media 

that was not inoculated with YR343 to verify that there was no growth carry over or contaminating 

microbes present. Right: Corresponding carrying capacity and growth rates for each growth curve. 

(B) Left: Analogous YR343 growth curves after inoculation into conditioned media from a 

promoter isolate or the promoter isolate combination. Right: Corresponding carrying capacity and 

growth rates. All growth experiments occurred at 28°C, 215 RPM. Statistical differences were 

identified by comparison of growth metrics between YR343 culture in conditioned media from 

each isolate or isolate mixture and YR343 growth in UCM (Wilcoxon two-sample test, *=P<0.01, 

n=6 independent experiments). ..................................................................................................... 68 

Figure 5.1: MRAs for discovery of isolates that improve the colonization of A. brasilense in maize 

roots. (A) Healthy maize crops are picked in the flowering season for extraction of the rhizosphere 

microbiome. Stems are cut from the roots, soil is removed, and roots are washed to collect the 

rhizosphere microbiome. Different shapes represent unique microorganisms. (B) GFP-expressing 

A. brasilense strain Sp7 is combined with random isolates from the maize rhizosphere microbiome 

in 10 mm diameter microwells and trapped a photodegradable PEG hydrogel membrane. The 

growth of Sp7 was monitored in parallel during co-culture using TLFM, and the wells showing 

the highest level of Sp7 growth were extracted by selective ablation of the photodegradable 

membrane using patterned light exposure. The isolates extracted and recovered from the opened 

wells were then identified using 16S amplicon sequencing. (C) Isolates were co-inoculated with 
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A. brasilense on healthy maize seeds (genotype B73), and plant growth studies were conducted to 

measure Sp7 colonization in maize roots and resulting plant growth. ......................................... 77 

Figure 5.2: (A) Taxanomic bar plots of Zea mays rhizosphere enriched samples from roots and 

after culture in R2A, TY, and LB media. (B) TLFM images of a sample 15×15 array of microwells 

during monoculture of A. brasilense Sp7-GFP or during co-culture of A. brasilense Sp7-GFP with 

Zea mays L. rhizosphere isolates seeded into wells at a Sp7:isolate ratio of 1:1. The promoter 

outlier well A (indicated by the white square) and the promoter outlier well B (indicated by the 

white arrow) demonstrated the highest end-point fluorescent signal and growth rate of Sp7. (C) 

Sp7 growth curves generated from a sample 900 microwell array during Sp7 monoculture (inset) 

and co-culture................................................................................................................................ 85 

Figure 5.3 Isolate extraction and validation of interactions. (A) Sequential removal of symbiotic 

communities from Sp7 co-culture with maize root isolates. Target wells were exposed to UV light 

in a ring pattern with a 10 µm inner diameter and a 20 µm outer diameter to remove the 

photodegradable membrane above the well. After degradation, cells were washed out of the opened 

wells using R2A media. Yellow arrow denotes bacteria cells during removal from a well. (B) Sp7 

growth curves after inoculation into conditioned media from each of the six symbiotic isolates or 

unconditioned media (UCM). (C) Corresponding carrying capacity and growth rates. All growth 

experiments occurred at 28°C, 215 RPM. Statistical differences were identified by comparing Sp7 

growth metrics in conditioned media from each isolate with Sp7 growth in UCM (Wilcoxon two-

sample test, *=P<0.01, n=3 independent experiments). ............................................................... 86 

Figure 5.4: Growth of axenic maize seedlings in growth chamber environment. (A) The double-

tube growth chanber for accomodating surface-sterilized and germinated maize seedlings 

inoculated with ultrapure water (control), Sp7 monoculture, and Sp7 with a promoter isolates. Two 

test tubes were attached in a mouth-to-mouth fashion with air-porous tape. (B) Growth of the 

axenic maize seedlings in the double-tube growth chamber at Day 15. (C) Comparison of plant 

heights for each treatment at Day 5 and Day 15 (*, Wilcoxon Rank test: p-value < 0.01). ......... 90 

Figure 5.5: Sp7-GFP colonization in Zea mays roots. (A) Plated colonies after 108 fold diluted 

cell suspensions from Zea mays roots in R2A agar plates supplemented with 100 µg/ml ampicillin 

and tetracycline. (B) CFU/ml and relative abundance of Sp7-GFP from each co-inoculation in Zea 

mays roots. .................................................................................................................................... 92 

Figure 6.1: Microwell recovery arrays for screening in the pathogen challenge mode. (i) GFP-

expressing Agrobacterium tumefaciens sp. 15955 are combined with Agrobacterium isolates from 

Helianthus annus rhizosphere at a cellular ratio favorable for A.tumefaciens sp. 15955 growth. 

Here, a limited number of Agrobacterium isolates were challenged against A.tumefaciens sp. 

15955 to discover the most potent inhibitors of A. tumefaciens sp. 15955. Here, different shapes 

represent unique Agrobacterium isolates. Cells are stochastically seeded and trapped within 

microwells using a photodegradable PEG hydrogel membrane to get unique combinations of 

interaction networks and monitored in parallel during co-culture using TLFM. (ii) Wells with 

lowest levels of focal species growth were identified as anatagonistic outliers. (iii) The membrane 

over the target antagonistic well is eroded using patterned light exposure, then (iv) isolates 

inhibiting the growth of A.tumefaciens sp. 15955 were extracted and recovered from an opened 

well and characterized using whole genome sequencing. .......................................................... 103 
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Chapter 1 : Introduction 

1.1 Importance for screening microbe-microbe interactions 

The dynamic and diverse microbial communities play a critical role in therapeutic drug 

development [1, 2], crop production [3, 4], high-value product development [5], bioenergy 

production [6, 7], bioremediation of environmental contamination [8, 9], soil clean-up [8], 

digestion of municipal solids [9], and enhancement water quality [10]. The inter-species and intra-

species interactions among the microbial population in a natural environment are often shaped by 

factors such as microbe-microbe interactions, species abundance, structural organization and 

environmental cues. Such interactions facilitate the development and success of functionally 

important engineered microbial communities [3, 11]. Despite leveraging from the development of 

genomic and metagenomic approaches to determine community structure and species abundance 

[12, 13], understanding and harnessing the function of these communities remain difficult [14–

16]. Gaining a fundamental understanding of these factors is important, as this knowledge can be 

used to aid efforts to engineer microbiomes to achieve desired outcomes or produce specific 

products [17, 18]. Despite this knowledge gap, uncovering important interactions is critical for 

understanding natural community structure and function, response to environmental perturbations, 

and for design of constructed communities for engineered outcomes. However, the limited 

understanding of microbial interactions limits the rational design of synthetic communities in the 

majority of applications.  

Uncovering the interactions among highly diverse microbial communities requires the 

development of high-throughput technologies capable of combining cellular and phenotypic 

observations with the characterization of the interactions and addressing the qualitative, low 

throughput limitations of traditional microbiology methods. Traditional microbiological methods 
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relied on hand-spotting different microbes together and could only do qualitative analysis of bulk 

populations, making this technology low-throughput [19]. These methods for probing interactions 

are dependent on the bulk co-cultures of interacting cell populations in nutrient media [15, 16, 20].  

With the development of micro- and nanoscale fabrication techniques, major improvements has 

been made for the advancements in high-throughput measurement, observation of single-cell 

behavior, and precise design and manipulation of the microenvironment. Although, the 

conventional high throughput technologies have aided in understanding microbial mutualism [21], 

community response to environmental pressures [22–24], and physico-chemical aspects of the 

microenvironments contributing to driving community phenotypes [25–28], they are widely 

limited to low-throughput detection without integrating downstream sample processing steps after 

screening.  

This research aims to develop a high throughput, operationally simple, yet powerful platform 

capable of simultaneously screening thousands of unique microbial interactions in a single 

experiment using a simple microscope setup across thousands of pairs or collections of root-

associated bacterial isolates and microbes. This platform would address the qualitative, low 

throughput limitations of traditional microbiology methods to screen thousands of interactions 

instead of a few in high throughput resolution. As bacterial communities can be effectively 

influenced by the modification of local environment [1], the platform will also be designed to tune 

the chemical and physical microenviornments and study their influence on biochemical 

mechanisms interaction. This platform will dramatically expedite the rate at which unknown 

microbial interactions are discovered and characterized and will uncover context-dependent 

interaction mechanisms. With the analysis of bacterial cell-to-cell communication and virulence 

mechanisms, this platform will also be developed as a general microbiology tool for screening 
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bacterial interactions in any microbiome. This can surely help solve longstanding and emerging 

questions, such as how microbiomes can protect against pathogenic bacteria. To complete these 

goals, bacteria cells were cultured on the platform and then removed using photodegradable 

membranes to analyze cell-to-cell interactions between them.  

1.2 Emerging Technologies to Analyze Microbe-Microbe Interaction 

1.2.1 Traditional co-culture methods 

The classical approach for screening microbe-microbe interaction solely relied on hand-spotting 

different microbes together and monitoring their growth, followed by microscopic and 

biochemical identification [29]. The first example of culture-based isolation was demonstrated by 

Alexander Fleming, when he accidentally discovered the presence of a colony of Penicillium 

notatum in his culture dish containing colonies of Staphylococcus, paving  the way for the era of 

antibiotics. But with these traditional methods, only 10’s of interactions can be monitored. Also, 

only qualitative measurements can be made from the observation of bulk colonies.  

However, these methods require several days for completion and are rather time-consuming [30]. 

Also, culture-based methods sometime lack specificity in selecting or identifying unknown 

organisms [31] because most microbes have sophisticated and poorly understood growth 

conditions and cannot be readily cultured in vitro  [32]. As this approach relies mainly on 

measuring a bulk population [33], quantitative cell-to-cell interaction data cannot be obtained [34]. 

Such drawbacks make this technology low throughput. Self-alteration of Gram staining 

(distinguishing between Gram-positive and Gram-negative groups), colony formation, and 

antigenicity (the capacity of an antigen to bind specifically with a group of certain products that 

have adaptive immunity) of many pathogens often make conventional detection methods 
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inefficient, and new effective control measures and improved diagnostic tools are required [35, 

36].  

1.2.2 Flow Cytometry 

Flow cytometry (FC) is a powerful technology for investigating many aspects of cell biology and 

isolating cells of interest. Developed in the late 1960s, FC utilizes highly focused, extremely bright 

beams of light (usually lasers) to directly reveal aspects of cells by the way light is scattered or 

indirectly by attaching fluorescent probes to cellular receptors or other cellular components. 

Originating from microscopy, blood cell counting instruments, and inkjet printing technology [19], 

FC can be utilized to analyze interactions among bacteria colonies based on their size and 

fluorescence properties [37]. High-throughput cell sorting, combined with fluorescent labeling, 

allows semi-quantitative determination; for example, various protein levels in a population of cells 

made FC a successful technology for single-cell analysis [38, 39]. The power of flow cytometry 

derives from the fact that it quantitatively analyzes individual cells, thus permitting the 

identification of sub-populations within a sample [37].  

FC is a “state-of-the-art” technique for characterizing distributions of individual cell behavior in a 

high throughput (up to 10000 cells/s) manner. It is also possible to measure multiple parameters 

simultaneously on each cell in a time-dependent manner, where cells are sampled at different time 

points [37]. Conventional FC requires many cells for analysis (at least 100,000 cells), and cells 

must be mixed again before the second round of analysis. Hence FC gives information on the 

distribution of a group of cells. Likewise, tracking cell divisions using FC is performed in bulk 

[40].  But, FC was neither designed for handling, manipulating and dynamic analysis of single 

cells nor observing spatial localization of fluorescence within a cell. Using FC alone, it is not 

possible to quantify individual cell behavior. Also, FC was not designed to culture bacteria while 



 

5 
 

analyzing the interactions. Currently, the limitations of flow cytometry is being addressed by 

fluorescence-activated single cell sorting (FACS) to measure and characterize multiple cell 

generations by using highly specific antibodies tagged with fluorescent dyes. 

1. 2.3 Microfluidic devices 

Several microfluidic approaches have been developed for studying bacterial growth, interactions, 

and behavior in precisely controlled physicochemical environments [23, 41, 42]. Such devices 

make it possible for modification of microbiomes at the single-cell level and analysis of microbial 

synergy and mutualism [22], study quorum-mediated behaviors, i.e., production and secretion of 

certain signaling molecules called autoinducers [43] and the role of spatial habitat structure in 

driving new community phenotypes [44, 45]. The key reasons for the emerging popularity of 

microfluidic devices in microbial engineering are the laminar flow of fluids, the requirement of 

small volumes of reagents, and short diffusion lengths [46]. These attributes promote ease in 

creating and accurately controlling the fluid flow in specific microenvironments with automation 

[26, 47, 48]. This enables high sensitivity, high-throughput, and a high level of control for the 

study of cell-to-cell interactions, specifically when studying multi-species microbial communities 

as opposed to study of single species in isolation [10]. Microfluidic platforms enable researchers 

to perform controlled ecological experiments in well-defined ecosystems and facilitate the 

characterization of naturally occurring communities [49]. Drescher et al. demonstrated that flow 

through soil-like porous materials, industrial filters, and medical stents dramatically modifies the 

morphology of Pseudomonas aeruginosa biofilms to form 3D streamers, which, over time, bridge 

the spaces between obstacles and corners in non-uniform environments. They discovered that the 

accumulation of surface-attached biofilm has little effect on flow through such environments, 

whereas biofilm streamers cause sudden and rapid clogging [50].   

https://en.wikipedia.org/wiki/Signaling_molecules
https://en.wikipedia.org/wiki/Autoinducer
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Microfluidic techniques can be effective in isolating and analyzing individual bacteria from 

environmental samples. The ability to confine individual cells can eliminate the need for pre-

analysis culturing and provide the opportunity for single-cell genomics on cells obtained from 

natural communities [51, 52]. This approach has proven useful for characterizing environmental 

communities by allowing researchers to link specific species to specific community functions or 

identify new host-phage interactions [12, 23, 52]. Liu et al. demonstrated screening of antibiotic-

resistant E. coli by initially encapsulating E. coli and generating picodroplets containing 

proliferating cells from those with non-proliferating cells [53]. This method can be further 

improved with quantitative analysis of the bacterial number and scattering signal and sorting 

techniques.  

1.2.4 3D printed bacterial communities 

Mimicking ecological microenvironments can play a vital role in understanding interactions within 

bacterial communities. For example, varying the geometry of the microenvironment the 

microbiomes reside in can prove effective in modifying parameters that influence cell-cell 

interaction between two species. Synthetic ecosystems can use bacterial communities inhabiting 

engineered landscapes as model systems for socio-microbiology studies [1]. The ability to track 

large numbers of individual cells competing in complex landscapes makes synthetic ecosystems 

ideally suited to test ecological predictions for a microbiome. The opportunity to probe the same 

community in diverse ecological scenarios is valuable for elucidating bacterial social behaviors. 

Hol et al. showed that in a spatially structured habitat, two strains of bacteria only compete with 

their local neighbors and self-organize into a structured community in which they coexist [54].  

Connell et al. developed a micro-3D printing strategy for creating “designer” ecosystems tailored 

to investigate the interaction and integration of multiple bacterial populations within essentially 
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any 3D arrangement [55]. In his approach, bacteria were mixed with gelatin and a photosensitizing 

molecule and cooled to ambient temperatures to suspend bacteria at various 3D positions 

throughout the thermally set gel to maintain cell viability [56, 57]. Then two-photon-

polymerization was used to crosslink gelatin into a hydrogel and achieve polymer–protein hybrid 

structures for cell encapsulation. 

Enclosures of specified geometry are fabricated around one or more bacteria providing the ability 

to print populations of bacteria with submicrometer 3D resolution. Moreover, printed structures’ 

mechanical and chemical properties can be tuned by adding desired proteins, such as BSA, to the 

fabrication gel. Bacteria embedded in a thermally set gelatin precursor are dispersed in three 

dimensions, allowing multiple populations of cells to be printed in complex configurations that 

can have definable chemical and physical inter-connectivity. Two such enclosures containing S. 

aureus and Pseudomonas aeruginosa were prepared by nesting Staphylococcus. aureus 

microcolony surrounded by P. aeruginosa on all sides [55]. Each suspension containing a single 

species was nested in a 3D printed enclosure and surrounded by a suspension of another species. 

While separated by a highly porous material like gelatin, they showed that a picoliter-volume 

aggregate of S. aureus could display substantial resistance to β-lactam antibiotics by enclosure 

within a shell composed of P. aeruginosa. It can be seen from their results that the presence of P. 

aeruginosa in the outer shell improved the survival percentage of S. aureus in the core enclosure, 

showing better antibiotic resistance. This is surely a novel approach to study diffusional 

interactions between two species. Nonetheless, being able to study the interactions between a pair 

of species makes it low-throughput, and not well positioned to explore an entire microbiome where 

potentially thousands of unique species are present. For a high-throughput study of interactions 

within diverse microbiomes alternative approaches are neccesary.  
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1.2.5 Cell microarrays 

A cell microarray is a microscope slide printed with thousands of microscale spots in defined 

positions, with each spot containing living cells [58]. Scientists have previously used cell 

microarrays for probing and screening of extracellular matrices and phenotypic functions of 

specific genes of bacteria [59]. In most cases, cell microarrays use some surface functionality 

(lectin, antibody surface functionalization) to isolate and profile cell populations in a high-

throughput fashion. Lectin microarrays are printed on a solid support for profiling of glycome 

within a cell or tissue [60, 61]. There have been applications of microarrays containing cells and 

extracellular or genetic materials to investigate the interactions between individual cell growth [62, 

63], physiological differentiation [64], secreted proteins [65], polymers [66] and small molecules 

[67], microenvironmental heterogeneity [68], and resistance to liquid wetting and gas penetration 

[69, 70].  

Cell microarrays are inherently high-throughput and typically require low reagent consumption 

[71–73]. But the agglomeration of cells [74], leading to neighboring effects due to the homogeneity 

of culture media [72] limits cell microarrays’ capabilities for high-throughput screening. This 

phenomenon paves the way to cross-contamination and makes high throughput non-adherent 

cellular studies difficult [75]. As a result, the association of medium and cells with surfaces [76, 

77] and the separation of cell agglomerates are mandatory. 

1.3 Microwell Recovery Arrays to Screen Symbiotic and Antagonistic Interactions 

Microwell recovery arrays (MRA) consist of high-density, compositionally unique, independent 

array of wells to partition bacteria into small culture sites. The growth of a fluorescently labeled 

bacteria in an array of microwells can be tracked using time lapse fluorescent microscopy. In 

MRAs surface-associated bacteria construct biofilms and pattern spontaneously on periodic 
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nanostructure arrays [78]. The variety of micro and nanoscale topology of a surface can highly 

influence attachment such communities [79].  An array of microwells with different pitches can 

modify various microenvironment parameters easier while confining multiple species to study 

inter and intra-species interactions. Microwell arrays can isolate species or cells within the 

microstructures by varying the microenvironment properties while maintaining cell viability and 

functionality for a relatively long period and individually controlling microenvironments in each 

culture unit. In order to maintain physical separation of culture units, arrays must be sealed with 

heavily weighted covers [80] or mineral oil [81, 82] . Microfluidic perfusion-culture systems have 

also demonstrated the capability of long-term cell culture [83, 84].  

Microwell arrays have been coupled with fluorescence time-lapse microscopy to track parallel 

growth of bacterium from replicate microscale bacterial populations in controlled 

microenvironments, as demonstrated by Hansen et al., where P. aeruginosa growth was monitored 

in 20 μm diameter microwell arrays in a highly parallel fashion to investigate growth under spatial 

confinent [85]. It is also feasible to accommodate two different species of bacteria expressing 

different fluorescent markers in a microwell format to track individual species for study of cell-to-

cell interactions. . Alteration of the structure and depth of the microwells can enhance the trapping 

of species [86]. Thus, investigating multispecies interactions via microwell arrays can be a viable 

option, leading to future studies with monoculture and multi-culture studies, genome sequencing, 

quorum sensing, and other characterization experiments. Modifications of these microwell arrays 

can be possible when the communities or populations of bacteria are instead trapped within a single 

hydrogel [87]. 

1.4 Thesis Approach and Central Objective 

The main objective and focus of this dissertation are to outline high throughput microwell recovery 
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arrays (MRA) combined with advanced bioinformatics techniques for the simultaneous detection 

and screening of microbial interactions across thousands of compositionally unique communities 

to discover bacteria collections that antagonize or promote the survival and growth of bacteria with 

an important function. The workflow of MRAs include stochastic seeding of a fluorescently 

labeled focal species with a known beneficial function (i.e., plant growth promotion) or detrimental 

function (i.e., pathogenesis) with an environmental isolate mixture from a plant/soil microbiome 

of interest into an array of microwells [85] to confine interacting cells together in small microwells 

(diameter =10 µm). Confinement of the cells in such small length scales mimic the formation of 

multispecies biofilms [88] in natural environment and facilitates inter-cellular interactions [89].  

Cells are then trapped within the wells using a photodegradable polyethylene glycol (PEG)-based 

membrane (developed in Chapter #2) [90] to co-culture and track the growth of the fluorescently 

labeled focal strain with time-lapse fluorescent microscopy (TLFM). Then a Polygon 400 

patterned light source is used to extract cellular communities showing highly enhanced or 

diminished focal species growth in any individual well by spatiotemporally degrading the 

membrane above the target well and recover the interacting cells by releasing them into a solution.  

The proof-of-concept of MRAs demonstrated here enables sequential screening and isolation of a 

microbial community from any well of interest indicating the desired phenotype, identify the 

interacting strains using advanced sequencing techniques, and validate the interactions in follow-

up bioassays.  

This report will detail the development and application of the MRA, beginning with development 

of the hydrogel membrane (Project #1), use of the MRA to explore interspecies interactions 

between a model interaction pair (Project #2), and application of the MRA to discover critical 

microbe-microbe interactions in Populus rhizosphere, in effort to promote the production of woody 
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biomass for use as a biofuel feedstock (Project #3), application of MRA for enhancing the survival 

and colonization of commercial nitrogen-fixing, plant growth-promoting bacteria, Azospirillum 

brasilense, into maize roots to improve crop yield (Project #4), use of MRA for screening non-

pathogenic Agrobacterium isolates for the growth inhibition of pathogenic A.tumefaciens (Project 

#5). 

1.4.1 Project #1 Development of photodegradable hydrogel membrane for selective 

extraction of microbes 

The need for extending the high-throughput screening capabilities of microwell recovery arrays 

from microscopic observations of fluorescently labeled bacteria to subsequent genetic and 

phenotypic characterizations necessitates the development of a cell retrieval approach for off chip 

validation of the interactions observed on chip. The utility of such cell retrieval approach can 

successfully get extended towards combining microwell array measurements, selective extraction 

and subsequent enrichment of cells from wells with “omic” technologies (e.g., 16S rRNA 

sequencing, whole-genome sequencing, RNA-seq, etc.). In project #1, in collaboration with Dr. 

Andre van der Vlies, a new cell retrieval approach was outlined using a semipermeable, 

photodegradable membrane that permits the exchange of nutrients and waste products and seals 

motile bacteria within microwells [90]. For the development of the workflow, a novel, light-

responsive, step-polymerized poly(ethylene glycol) hydrogel membrane was used to trap 

Agrobacterium tumefaciens seeded in silicon microarrays. Agrobacterium tumefaciens is an 

economically important plant pathogen which causes crown gall disease in plants [91, 92]. The 

endpoint observations of mCherry-expressing A. tumefaciens cell growth in microwells were 

tracked using TLFM and the photodegradability of the membrane was utilized to release and 

retrieve viable cells from the individual wells of interest by exposing to patterned UV light in a 
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spatiotemporal manner. This material-based approach was later used to perform bacteria retrieval 

with a high degree of spatial control and adapted to screening interactions in model and non-model 

interaction systems.  

1.4.2 Project #2 Exploiting stochastic cellular processes of a model system to 

generate outlier communities with rare phenotypes in microwell arrays 

The microwell array platform was developed as a general microbiology tool for screening 

interactions in any microbiome. The goal of this work was to investigate the inter-bacterial 

interactions in MRA format between two ubiquitous and well-defined microbes Agrobacterium 

tumefaciens and Pseudomonas aeruginosa. Since, A. tumefaciens is an important model  and the 

causative agent of Crown Gall disease in plants [93], extensive studies have been conducted to  

study it’s impact on host-microbe signaling [94], bacterial cell-to-cell communication [95] and 

virulence mechanisms [96, 97]. Here, the MRA proof-of-concept was developed by combining A. 

tumefaciens with P. aeruginosa, a human pathogen previously demonstrated to suppress A. 

tumefaciens growth in biofilms [98], in MRAs to study the model interactions between the two 

microbes. The study of the competitive factors between these two model bacteria produced novel 

insights for the development of the MRA workflow for non-model systems. 

1.4.3 Project #3 Application of microwell arrays for the screening of positive and 

negative interactions in non-model systems 

The goal of this work was to extend the MRA screening capabilities to a non-model focal species. 

For this, we chose Pantoea sp. YR343. YR343 is a Gram-negative, plant growth-promoting 

bacteria (PGPB) isolated from the rhizosphere of an eastern cottonwood Populus deltoides tree 

[99, 100]. As P. deltoides is a promising biofuel feedstock [101], uncovering interactions that 

influence the function of beneficial organisms in its rhizosphere has received intensive interest in 
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recent years [102–104]. YR343 can also colonize Triticum aestivum roots to stimulate food 

production [100, 103, 104] and has garnered interest in antibiotic production [102, 103], 

bioremediation and waste recycling [105, 106], and cancer treatment [107, 108]. On the other hand, 

other Pantoea sp. are pathogenic in plants, animals, and human systems. Thus, uncovering unique 

sets of organisms that can either promote or inhibit Pantoea growth, as demonstrated here, has use 

in several contexts [109].  

1.4.4 Project #4 Screening and discovery of plant growth-promoting bacteria to 

enhance plant growth using microwell recovery arrays 

To address the negative impacts of commercial chemical fertilizers and pesticides on the 

environment and human health, more emphasis is given to biofertilizers, i.e., plant growth-

promoting bacteria (PGPB) inoculants capable of enhancing plant growth by beneficially 

interacting with the plant root microbiome [110–113]. This project aims to develop microwell 

recovery arrays (MRAs) to screen symbiotic interactions between maize (Zea mays L.) rhizosphere 

microbiome and Azospirillum brasilense , a commercially available diazotroph PGPB, to improve 

its survival and colonization into maize roots and enhance crop yield. A. brasilense is the most 

widely adopted diazotroph. It displays versatile C- and N-metabolism [114]. It also promotes plant 

growth through additional mechanisms, including phytohormone production [115], development 

of stress tolerance [114], biocontrol of phytopathogens [116], solubilization of phosphates [117] 

and production of siderophores [118]. Since maize (Zea mays) is a non-leguminous crop of great 

significance in food production, consistent efforts have been extended towards understanding the 

association and colonization of diazotrophs with maize [119–121]. However, the broad adoption 

of N-fixing PGPB for the growth promotion of maize is impaired by the lack of knowledge on 

different symbiotic plant-bacteria interactions [112, 113]. Successful establishment of a PGPB 



 

14 
 

inoculant in the root of non-leguminous plants is widely dependent on symbiotic interactions 

between the PGPB and the species present in the plant rhizosphere and endosphere microbiome 

[122–124]. Therefore, identifying symbiotic bacteria that improve the growth and survival of 

A.brasilense in Zea mays roots is critical for biofertilizer development. 

1.4.5 Project #5 Screening of biocontrol agents for disease prevention in plants 

This project aimed to screen pathogenic A. tumefaciens SP.15955 against hundreds of non-

pathogenic Agrobacterium isolates collected from Kansas native plant roots to discover new 

Agrobacterium strains capable of suppressing the establishment of this pathogen. The MRA is 

adapted to a pathogen "challenge model" that is designed to select and isolate the non-pathogenic 

Agrobacterium isolates that are the most potent inhibitors of pathogenic A. tumefaciens 15955. 

Here, a small number of A. tumefaciens sp. 15955 expressing GFP were combined with 

Agrobacterium isolates extracted from the roots of Helianthus annuus plants and seeded into arrays 

of 10 µm diameter microwells in different cell ratios.  To effectively "challenge" candidate isolates 

against Agrobacterium 15955 (Agro 15955-GFP hereafter), the number of Agrobacterium isolates 

in each well is sequentially reduced. Wells that show greatest inhibition of Agro 15955-GFP at the 

lowest ratio are identified as the most potent inhibitors. With the extraction and recovery 

capabilities of the MRAs, the collection of Agrobacterium isolates most capable of diminishing 

Agro 15955-GFP are sampled for follow-up phenotypic characterization with whole-genome 

sequencing techniques.   
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Chapter 2 : Development of photodegradable hydrogel membrane for 

selective extraction of microbes 

2.1 Overview 

Microwell arrays are important tools for studying single cell behavior and cell-cell interactions, 

both in microbial and mammalian systems. However, retrieval of cells from microwell arrays with 

high spatial precision remains a major technical hurdle that prevents follow-up genetic and 

phenotypic characterization of cells within observed microwells. This work describes a new, 

material-based approach to grow and retrieve live bacterial cells from small (≥20 μm diameter) 

microwells in an array using the plant pathogen Agrobacterium tumefaciens as a model bacterium. 

Our approach uses a light-responsive, steppolymerized poly(ethylene glycol) hydrogel interface 

as a membrane that confines motile cells within microwells while allowing nutrient exchange and 

cell growth. The key design feature is the photodegradability of the membrane, as it enables 

individual wells of interest to be opened using patterned UV light for selective release and retrieval 

of cells. Extraction can occur in parallel from any number and combination of wells defined by 

the user. These advancements represent a new use for light-responsive hydrogels and the ability to 

retrieve cells from microwells with high spatial precision enables several applications that require 

the isolation and characterization of cells with rare phenotypes from heterogeneous populations.  

 

 

 

* Manuscript appearing in: André J. van der Vlies, Niloy Barua, Priscila A. Nieves-Otero, 

Thomas G. Platt, and Hansen R.R. On Demand Release and Retrieval of Bacteria from 

Microwell Arrays Using Photodegradable Hydrogel Membranes. ACS Applied Bio Materials, 2, 

266−276 (2019). doi: 10.1021/acsabm.8b00592 

Reproduced with the permission from the American Chemical Society. 

 



 

16 
 

2.2 Introduction 

Microwell arrays allow for high-throughput manipulation and study of cells. These platforms have 

several key features including their small size, high well density, and ease with 

which they allow for cell confinement [12, 125–128]. In recent years, microwell arrays have been 

used to probe single cells to understand cellular heterogeneity [129] and rare cell function [130], 

among other applications [131, 132]. While the majority of microwell applications focus on 

mammalian systems, microwells are also useful in the study of microbial systems. These platforms 

have been used to examine mutant libraries [82] and to characterize the growth dynamics of single 

bacterial cells [133]. If microwells are large enough to confine multiple cells or designed to 

promote exchange of materials between wells, they become excellent tools for studying cell-cell 

interactions [12, 25]. In this context, microwell formats have been used to examine the ecological 

dynamics of microbial communities under selective environmental pressures [4, 44], the 

consequences of contact-mediated interactions [134], and quorum sensing [133, 135]. Despite the 

plethora of current applications, a critical limitation often exists: cells remain in wells during the 

entire analysis [10]. As a result, characterizations are typically limited to on-chip fluorescence-

based measurements. The utility of microwell arrays, particularly in screening applications, could 

be significantly expanded if cells of interest could be removed from individual wells for 

subsequent genetic and phenotypic characterizations. In particular, coupling of “omic” 

technologies (e.g., 16S rRNA sequencing, whole genome sequencing, RNA-seq, etc.) with 

microwell array measurements could be enabled if selective extraction of cells from wells and in 

some cases subsequent enrichment through culture is achieved. For example, microwells could be 

used to examine a large number of mutant genotypes for a target phenotype during a mutant library 



 

17 
 

screen but would require subsequent isolation of selected mutants from individual wells for 

mutation mapping [10, 136]. 

Hansen and co-workers recently reported a microwell screening platform designed to probe 

microbe−microbe interactions [85, 134, 137–139]. Although this platform had the benefit of high-

throughput measurement, it had limited characterization capabilities due to the lack of cell 

retrieval. Kim and co-workers recently addressed this problem using a manual capillary driven 

bacteria retrieval strategy from 100 μm diameter wells [82]. This approach allows for cell retrieval; 

however, it requires relatively large microwell sizes. Additionally, their strategy makes individual 

microwells closed systems with limited nutrient flux due to the use of fluorinated oil to 

compartmentalize the wells. These constraints motivate the development of new materials and 

interfaces that enable efficient nutrient exchange as well as selective extraction of live cells from 

microwells at improved spatial resolutions. 

In this paper, we outline a new cell retrieval approach using a semipermeable, photodegradable 

membrane that permits exchange of nutrients and waste products and seals motile bacteria within 

microwells. The photodegradability of the membrane enables individual wells of interest to be 

opened using patterned UV light for selective release and retrieval. The proof of concept studies 

use a light-responsive poly(ethylene glycol) (PEG) hydrogel as a photodegradable membrane and 

silicon microarrays seeded with the bacterium Agrobacterium tumefaciens, the causative agent of 

crown gall disease in a wide range of plants including apples, walnuts, and sunflowers [91]. As is 

common among bacteria, the success of this plant pathogen is heavily influenced by interactions 

with other bacteria, many of which are unknown [92]. The platform allows tracking or endpoint 

observation of cell growth based on fluorescence intensity measurement of mCherry-expressing 

A. tumefaciens inside of microwells. Using a light patterning tool, selected microwells can be 
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opened individually or in parallel, thereby allowing subsequent retrieval of viable cells. This 

material-based approach affords a high degree spatial control over bacteria retrieval and can be 

adapted to other high-throughput screening formats. For these reasons, we expect that this 

Figure 2.1: Concept of on demand release and retrieval of bacteria from microwell arrays using a 

photodegradable membrane. (A) Microwell array (blue) is seeded with fluorescent cells (red) that 

are confined to the wells by attaching a membrane (yellow) that supports cell growth. Irradiation 

with light (yellow arrows) degrades the membrane and opens selected microwells after which cells 

can be retrieved. (B) Photodegradable membrane is made by reacting a four arm PEG-thiol (blue) 

with a photodegradable PEG diacrylate (red with green dot) by a Michael-type addition reaction. 

(C) Polymer network of the membrane is degraded when the photodegradable nitrobenzyl group 

(green) present in the crosslinks is cleaved by light (yellow circle) and the polymeric reaction 

products dissolve in the aqueous medium. (D) To seal seeded cells (red) into microwells with the 

photodegradable hydrogel, we placed a glass slide with a mixture of the four arm PEG-thiol and 

PEG-diacrylate (cyan) on top of the seeded microwell with spacers (peach) in between. The 

membrane precursor solution mixes with the medium (white) inside the wells and cross-links to 

form the membrane (light blue). After the glass slide is removed, the membrane swells (yellow) 

when placed in the culture medium. 
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approach will be a powerful tool for microbiome engineering efforts, as well as other applications 

where screening or studying cell−cell interactions is important.  

2.3. Results and Discussion 

2.3.1. Concept and Material Selection.  

A key feature of our strategy for on-demand release of bacteria from microwell arrays is the 

attachment of a photodegradable membrane (yellow) on a silicon microarray (blue) that confines 

motile, live cells (red) in the wells (Figure 2.1A). The membrane forms a physical barrier that 

prevents bacteria from escaping the microwells but allows diffusion of nutrients, oxygen, and 

metabolic waste products. The membrane can also be locally degraded by bacteria to generate 

space for growth within the wells. Light irradiation of selected microwells opens the wells, 

allowing for retrieval and characterization of the present cells (Figure 2.1A). 

Hydrogels are cross-linked networks of hydrophilic polymers that have a high water content and 

tend to swell. Hydrogels are widely used for sustained drug delivery systems, tissue engineering 

applications, nonfouling coatings, and material adsorption [140]. Because of their high water 

content, biocompatible hydrogels are well-suited for use as the membrane-enclosing bacteria 

within microwells required for our on demand cell retrieval scheme. Anseth and co-workers [141] 

reported the development of photodegradable hydrogels using the thiol-acrylate Michael-type 

addition reaction between functionalized multiarm PEG polymers pioneered by Hubbell et al. 

[142].The photodegradability of these hydrogels stems from the incorporation of a light-cleavable 

nitrobenzyl group within their network structure, which allows for a controlled decrease in cross-

linking density throughout the network upon light exposure to the point of reverse-gelation. These 

materials allow for high spatiotemporal control over degradation [143] and are nontoxic to cells 

[143, 144], and their aqueous nature permits transport of nutrients and waste products [145] to 
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support bacterial cell growth within microwells. For these reasons, we identified photodegradable 

PEG hydrogels as a good material for use as responsive membranes over microwells. To generate 

membranes, a step-growth polymerization mechanism that uses a tetra-functional PEG-thiol 

crosslinker and a photodegradable PEG-diacrylate was used (Figure 2.1B). A key advantage of 

this polymerization approach is that it generates hydrogel networks with uniform cross-linking 

density and microstructure, allowing for uniform diffusion across the array [141]. 

2.3.2. Membrane Attachment to the Microwell Array.  

It was reasoned that the swelling properties of PEG hydrogels, i.e., the increase in volume by 

adsorption of water, could be used as a means of attaching the membrane to the microwell array. 

PEG hydrogels are prepared by mixing PEG diacrylate with multiarm PEG thiol at basic pH to 

Figure 2.2: Confocal images of the membrane attached to a microwell array. Schematic 

representations of the microwell viewed in the (A) xy and (B) xz planes to aid interpreting the data 

in C and D. (C) Fluorescence signal, indicating fluorescein labeling of the PEG hydrogel 

membrane, coming from the xy plane along the green line in the xz plot shown in D. (D) 

Fluorescence signal coming from the xz plane along the red line shown in the xy plot in C. (E) 

Proposed locking mechanism for membrane attachment. The membrane precursor solution mixes 

with culture medium (white) and crosslinks to form the hydrogel (light blue). When placed in 

culture medium the membrane swells (yellow) creating forces on the walls of the microwells 

preventing detachment. Microwell size: 100 μm, scale bar: 100 μm, (n = 2). 
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form the cross-linked network [142]. This precursor solution can form a thick film on the 

microwell array and move into the microwells before complete cross-linking and gelation occurs. 

Upon immersing the microwell array in culture medium, swelling of the crosslinked polymer 

network can then lock the membrane into place and seal the microwells, preventing motile bacteria 

from moving out (Figure 2.2E). Physical attachment of the membrane to the microwell array may 

be facilitated by the scalloped sidewalls of the microwells resulting from the Bosch etching process 

[85]. In this way, attachment of the membrane could be achieved without the need for a reactive 

surface. 

To test the attachment strategy, we first filled microwells with LB medium and prepared them as 

shown in Figure 2.1D. Upon removing the glass slide, the membrane remained firmly attached to 

the microwells and no membrane movement was observed after incubating the array in LB 

medium for 2 days (n= 2). The number of microwells per unit surface area appeared to be critical 

for stable membrane attachment. Microwell arrays with large blank areas, i.e., areas without 

microwells showed membrane detachment within several hours when placed in LB medium. To 

verify that membrane attachment occurred through an anchoring mechanism, we used confocal 

laser scanning microscopy to obtain three-dimensional reconstructions of fluorescently labeled 

membranes on the microwell arrays (Figure 2C, D). Because of its nonfluorescence, the silicon 

microwell array appears black whereas the membrane appears green after labeling the membrane 

with fluorescein (for details see section 4.8 in the Experimental Section). The membrane is present 

throughout microwells with observed diameters (100 μm) and depths (20 μm) that correspond to 

well dimensions (Figure 2.2). Similar results were obtained for microwells with 4, 20, 40, 50, and 

60 μm diameters (data not shown). Swelling of the membrane was confirmed by measuring 

membrane thickness after arrays were placed in LB medium. Hydrogels were observed to be 
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approximately 150 μm thick despite having been polymerized on microwell arrays using 38 μm 

spacers, suggesting that swelling had occurred.  

2.3.3. Bacteria Can Grow When Encapsulated in the Hydrogel Membrane Material.  

A potential limitation to attaching the membrane to the microwells via the anchoring mechanism 

described in the previous section is that the membrane may occupy well space required for 

bacterial growth. However, these photodegradable PEG hydrogels have ester groups in the cross-

links that in theory could be degraded via hydrolysis, as has been reported for ester-containing 

PEG hydrogels [146]. We reasoned that the presence of the ester structure throughout the hydrogel 

network should allow for bacteria-dependent network degradation. Consequently, bacteria 

embedded within the hydrogel membrane should be able to grow within spaces that they create by 

locally degrading the membrane. To test this, we encapsulated A. tumefaciens cells expressing the 

fluorescent protein mCherry by adding the cells to the membrane precursor solution (Figure S1). 

Figure 2.3: Confocal images of A. tumefaciens after encapsulation inside the membranes at 

different time points. Bacteria in the hydrogel were fixed after (A) 0, (B) 10, and (C) 24 h before 

acquiring fluorescence confocal images. (D) Bacterial clusters are present in the hydrogel 24 h 

after encapsulation (differential interference contrast (DIC) image). Thiol concentration: 35 mM, 

acrylate concentration: 35 mM. Scale bar: 50 μm, (n = 3). 
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After gelation, individual bacteria cells encapsulated within the membrane could be observed by 

microscopy (data not shown). After 24 h, the membrane itself appeared opaque (Figure S2A, B) 

indicating that bacteria had grown within the membrane (n = 4). This was confirmed by 

microscopy which showed the presence of large (20-40 μm) clusters of cells (Figure S2C). These 

clusters also formed inside membranes prepared at higher thiol/acrylate concentrations (35 mM 

instead of 22 mM) (Figure 2.3, Figure S3A, B). Membranes were fixed at different time points to 

see how the initial single bacteria grow into larger clusters over the course of 1 day. To confirm 

that the bacteria inside these clusters were alive after 24 h, we placed unfixed membranes in LB 

containing triphenyltetrazolium chloride (TTC) [147]. This compound is colorless but is reduced 

by metabolically active bacteria resulting in the formation of pink, water-insoluble crystals. When 

TTC was added the membrane turned pink and microscopic observation showed the presence of 

crystals indicating that the bacteria in the clusters were alive (Figure S3C) (n = 3). The mesh size 

of PEG hydrogels is typically in the nanometer range [146]. For this reason, it is unlikely that the 

space occupied by the observed clusters of bacterial cells (Figure 2.3) was initially present in the 

membrane. The presence of the large clusters also suggests that the mesh size of the membrane 

allows for sufficient mass transfer of nutrients to support bacteria growth. To further investigate 

mass transfer from the wells, we loaded GFP protein (MW = 27 kDa) into the wells, attached the 

membrane, and monitored well fluorescence (Figure 2.4). Although protein aggregation and 

adsorption to the well walls may impede GFP diffusion, the decrease in well fluorescence intensity 

over 10 h indicates that the system allows for diffusion of nutrients and large biomolecules. PEG 

hydrogels formed with higher polymer concentrations and a smaller mesh size [148–150] also 

supported the formation of large clusters of viable bacteria (data not shown). Finally, to quantify 

the effect of the hydrogel on cell growth and metabolic activity, we encapsulated A. tumefaciens 
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in the hydrogel and compared its growth to the same number of cells grown in suspension using 

the TTC assay. Bacteria encapsulated within the hydrogel showed 40% reduction in metabolic 

activity compared to those grown in suspension (Figure S4). Because TTC measures metabolic 

activity, this reduction could be explained by lower cell numbers and/or less metabolically active 

bacteria in the hydrogel compared to those grown in suspension.  

2.3.4. Culture of Cells in Microwell Arrays with Attached Hydrogel Membranes. 

Our platform requires that the photodegradable membrane both prevents cells from leaving 

microwells and does not interfere with cell growth. Three hours after seeding cells into 20 μm 

diameter wells, fluorescein-labeling of the hydrogel shows that the membrane is present 

Figure 2.4: GFP diffusion from the wells. (A) Time-lapse fluorescent images of wells after 

loading them with GFP, membrane attachment, and soaking in 1X PBS media. (B) Average 

fluorescence intensity from the wells at each time point.. 
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throughout these microwells with localized spots of higher fluorescence intensity (Figure 2.5A, 

left panel). These spots spatially correspond to the location of the seeded bacteria (Figure 2.5A, 

middle and right panels). We propose that reaction of fluorescein maleimide with thiol groups 

present on the bacteria result in cells having fluorescent signal in both the green and red channels. 

To show that the bacteria can grow with the membrane attached to the array, we seeded A. 

tumefaciens at the same optical density but kept the microwell immersed in medium for 24 h. 

Consistent with bacterial growth, there is an increase in the red fluorescence signal following this 

Figure 2.5: Confocal images of A. tumefaciens-seeded microwell array with an attached hydrogel 

membrane. (A) Fluorescence intensities 3 h after cell seeding coming from the xy plane along the 

green line and the xz plane along the red line. Left panel green fluorescence fluorescein-labeled 

membrane; middle panel red fluorescence of the bacteria; right panel overlay of both. (B) Same as 

A but after culturing for 24 h. Samples were fixed prior to measurements. Well diameter, 20μm; 

seeding OD = 0.2; scale bar = 20 μm, n = 5. 
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incubation (Figure 2.5B, middle panel). Further, bacteria are present above the silicon/membrane 

interface (Figure 2.5B, middle and right panels). Although 38 μm spacers were used during 

hydrogel preparation, the thickness of the membrane is much greater due to swelling of the 

membrane in the culture medium (approximately 150 μm thick). Bacteria are present 

approximately 40 μm above this interface, indicating that bacteria invade the membrane. However, 

membrane degradation appears to occur mainly in the z-direction, with relatively little degradation 

occurring in the x and y-directions (Figure S5). For this reason, we observe no mixing between 

neighboring wells over the 24 h time period required for growth (Figure 2.5B). Although we did 

not observe mixing of cells from neighboring wells in our experiments, this might not be the case 

for other bacterial strains or experimental conditions. For this reason, use of this platform may 

Figure 2.6: Microwells can be opened by degrading the membrane with light. (A) 45 μm wells 

after membrane attachment, (B) patterned light during irradiation (blue), (C) after irradiation (D) 

and after labeling with fluorescein maleimide. Exposed area, 50 μm diameter circle; irradiation 

time, 5 min; light output, 1.4 mW/mm2; scale bar = 100 μm; n = 3. 
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require optimization of experimental conditions such as bacteria seeding density or further 

optimization of microwell design.  

In summary, these observations indicate that the membrane polymerized over a seeded microwell 

array serves as an effective barrier that compartmentalizes the microwells while allowing bacteria 

to proliferate inside of the microwells-a critical requirement when screening for growth or growth 

inhibition. The process of attaching the membrane and observing growth is robust and has been 

carried out many times (n = 22). Although we have not experimentally determined an upper limit 

of assay time, based on the degree of membrane degradation observed after 24 h (≈ 40 μm) and 

the membrane thickness (≈ 150 μm) it is estimated that the membrane should be operational for at 

least 3 days in its current configuration. 

Figure 2.7: Membrane degradation of bacteria-seeded microwells leads to bacteria release. Bright-

field and fluorescence images (A, B) before and (C, D) after irradiating a 60 μm microwell with 

the Polygon400. A. tumefaciens was seeded at OD = 0.2 and cultured for 2 days. Exposed area, 

120 μm circle; irradiation time, 5 min; light output, 2 mW/mm2; scale bar = 30 μm. 
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2.3.5. Membrane Photodegradation and Cell Release. 

The ability to selectively open microwells is critical for our application. To demonstrate this, we 

used patterned illumination with the Polygon400 to degrade the membrane over, and thereby open, 

targeted 45 μm diameter microwells (Figure 2.6). To confirm membrane degradation has occurred 

only in irradiated areas, we labeled the membrane with the thiol-reactive fluorescein maleimide 

dye and observed by fluorescence microscopy. As expected, irradiated areas are devoid of 

fluorescent signal indicating that polymer network degradation is localized to directly irradiated 

areas.  

To demonstrate the ability to release bacteria from microwells, we seeded A. tumefaciens in 60 

μm wells, allowed them to grow for 2 days, and then irradiated the membrane with light (Figure 

2.7). As expected, the polymer network degrades, opens the microwells, and releases cells. A few 

Figure 2.8: Effect of irradiation time on bacteria release from 20 μm diameter wells. (A) Wells 

were irradiated as indicated for either 1, 2, 3, 4, or 5 min and afterward (B−E) observed over the 

course of 10 min. Light output 0.7 mW/mm2. Scale bar = 25 μm, n = 2. 
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minutes after light exposure, bacteria move to the irradiated area next to the microwell (Figure 

2.7C), whereas other cells stay in the microwell (Figure 2.7D) (n = 6). Notably, localized clusters 

of cell fluorescence present within microwells prior to irradiation (Figure 2.7B) are no longer 

visible after irradiation. Instead the fluorescence signal observed within irradiated microwells 

appears diffuse, suggesting that cells remaining in wells are no longer structured into clusters by 

the hydrogel (Figure 2.7D). Thus, under these experimental conditions A. tumefaciens cell clusters 

appear to be readily removed upon light exposure, corresponding to the release of bacteria. This 

may not be true for all experimental conditions or bacteria, and so additional sample processing 

may be necessary in cases where bacteria remain as stable cell clusters or biofilms after irradiation. 

The Polygon400 allows spatiotemporal control over membrane degradation. To examine how 

irradiation time at a fixed light intensity impacts bacteria release from 20 μm diameter microwells, 

we irradiated adjacent microwells for 1, 2, 3, 4, or 5 min (Figure 2.8A). Cells were observed 

moving out of all of these wells by 5 min after irradiation (Figure 2.8D), however cells were 

observed exiting microwells that were irradiated for longer periods of time only 1 or 2 min after 

irradiation (Figure 2.8B, C).  

A benefit of this method is that any number and combination of wells can be simultaneously 

opened, enabling parallel extraction of cell populations, if desired. To demonstrate this, ten nearby 

50 μm diameter microwells were simultaneously irradiated using the Polygon400 (Figure 2.9A, 

B), resulting in cell release (Figure 2.9C, E) and membrane degradation (Figure 2.9D, F) from 

each targeted well. The cell-dependent fluorescence signal drops to background levels after 

washing the microwells with LB medium showing that the bacteria can be removed (Figure 2.9E). 

The release of bacteria can be semi-quantified by measuring the fluorescence intensity from the 

individual wells before and after opening. The fluorescence intensity of opened wells decreases by 
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about 60% (Figure S6), consistent with our observations of cells are leaving the microwells after 

irradiation. After the wells are washed, the fluorescence intensity of opened wells drops by another 

30%, suggesting that most cells can be removed.  

2.3.6. Retrieval of Bacterial. 

To verify that bacteria from selected wells can be harvested from wells and cultured for follow-up 

analysis, opened wells were washed with an extraction medium. Washing after well opening is an 

easy and straightforward approach to retrieve cells. Additionally, this approach allows easy 

verification that bacteria have been extracted by using a microscope to inspect washed microwell 

Figure 2.9: Several wells can be opened simultaneously using the Polygon400. (A) A. tumefaciens 

expressing fluorescent mCherry was seeded at OD = 0.2 and cultured for 1 day. (B) Simultaneous 

irradiation of ten 50 μm microwells with a 60 μm circle pattern for 5 min at 0.7 mW/mm2. (C) 

Microwells that were irradiated show diffuse red fluorescence due to the moving bacteria. (D) 

Fluorescein maleimide labeling confirms membrane degradation. (E, F) Same as C and D but after 

washing with LB medium. Scale bar = 100 μm. Simultaneous opening of multiple wells has been 

done numerous times (>20). 
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arrays (e.g., Figure 2.9E). To show that we can retrieve bacteria from selected microwells, 72 

microwells (40-50 μm in diameter) were opened in four different runs (Figure S7). The arrays 

were then washed with extraction medium (LB with 0.05% Tween20) to remove the bacteria from 

the microwells. To show that the bacteria were viable and could be enriched, the washings were 

cultured overnight in a polystyrene well plate. As a control to show that the isolated bacteria 

originate from the opened microwells, the microwell array was also washed with the same volume 

of extraction medium prior to the well opening. The washings taken from opened wells showed 

bacteria growth, as measured by the increase in OD at 600 nm. In contrast, the control washings 

Figure 2.10: A. tumefaciens isolated from microwells are viable and can be cultured. (A) Total of 

72 microwells (40−50 μm in diameter) were opened with light. After careful washing of the 

membrane with LB with 0.05% Tween20, the solution was placed inside a plate reader and the 

OD tracked over time. Washings after opening the microwells (rhombus) show an increase in OD 

over the course of 16 h whereas washings before opening the microwells (circles) do not show 

bacterial growth (n = 3). (B) Quantification of bacteria colony forming units (CFU/mL) present in 

the washing solutions before and after opening of ten 50 μm diameter wells (n = 3). 
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taken from wells prior to opening did not increase in OD over time (Figure 2.10A). This suggests 

that the bacteria cultured from washings after well opening originated from the opened microwells. 

Because the observed OD increase is only qualitative, we repeated the experiment and plated the 

washing solutions on agar to quantify cell density (Figure 2.10B). Colony forming units per mL  

(CFU/mL) were approximately 1000-fold higher in the extract after opening ten wells. This 

suggests that >99.9% of the cells present in the extract originated from the wells. These results 

demonstrate that under these experimental conditions A. tumefaciens cells can be retrieved from 

the microwells and remain sufficiently viable to be cultured for follow-up analysis. However, 

Figure 2.11: Effect of light pattern on bacteria removal from microwells after culture for 1 day 

(OD = 0.2 seeding density). (A) 40 μm microwells containing bacteria were (B) irradiated either 

with 60 μm light circle or 60/40 μm light ring patterns (blue) for 5 min at 0.7 mW/mm2. (C) Cells 

are released as shown by the diffuse red fluorescence. After washing, the membrane is fixed and 

imaged by confocal microscopy. (D) Fluorescence signal (green indicating fluorescein-labeled 

membrane, red indicating cells expressing mCherry) coming from the xy plane along the green 

line in E. (E) Fluorescence signal coming from the xz plane along the red line in D. Scale bar = 40 

μm. Effect of ring versus circle irradiation on cell release was done in triplicate 
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irradiation may problematically reduce cell viability when experiments use other bacterial strains 

or experimental conditions. Accordingly, use of this platform under other conditions may require 

the optimization of irradiation time, membrane thickness, or other design features to maintain cell 

viability through the extraction and retrieval procedure.  

2.3.7. Avoiding Direct Exposure of Bacteria to UV Light. 

A well-recognized problem in applications using light for manipulation of cells is its effects on 

cell viability and behavior [151]. The use of a two-photon process for cleavage of the nitrobenzyl 

group has been reported and can be used to avoid this problem [152]. However, we found that 

projecting light in ring patterns with an inner diameter corresponding to the diameter of the well 

can also release bacteria from the wells while avoiding direct UV exposure (Figure 2.11A-C). 

Here, the membrane surrounding the perimeter of the well is removed, and the remaining 

membrane island likely diffuses into solution. This has the advantage that the bacteria inside the 

wells are not directly exposed to UV light, thereby reducing its effect. We found that irradiation 

of 40 μm diameter microwells with either full light circles or light ring patterns resulted in loss of 

the membrane above the wells (Figure 2.11D). In both cases, cells in targeted wells were released 

as observed by the diffuse mCherry fluorescence patterns (Figure 2.11C). Confocal microscopy 

after washing the wells (Figure 2.11D, E) confirmed that the bacteria were released for both light 

patterns. The ability to illuminate only the well perimeter is a critical feature of this approach, 

allowing the user to illuminate the surface with higher intensities and longer exposure times if 

necessary. 
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2.4. Experimental Section 

2.4.1. Instrumentation.  

2.4.1.1. Bright-Field and Fluorescence Microscopy. 

All images were taken with an upright (BX51, Olympus Japan) microscope equipped with a 3S 

camera (Luminara, Ottawa, ON, Canada) controlled by the Infinity Capture Software unless 

otherwise stated. For experiments involving the Polygon400 (Mightex Systems), the camera was 

controlled by the Mightex Polyscan2 software. Greyscale images were processed and colored 

using ImageJ software [153] for visualization: blue for Polygon400 light patterns, red for mCherry, 

and green for fluorescein. 

2.4.1.2. Confocal Laser Scanning Fluorescence Microscopy (CLSFM).  

Fluorescent images were acquired on an Olympus FluoView FV1000-D confocal laser scanning 

fluorescence microscope equipped with 473 and 559 nm lasers and controlled by Fluoview 

software. 

2.4.1.3. Polygon400 Light Patterning Instrument.  

Light patterns were projected onto the membrane using the Polygon400 instrument attached to the 

BX51 upright microscope via an adapter containing a dichroic/filter cube. The 365 nm high-power 

LED source (50 W) was controlled by a BioLED light source control module and delivered to the 

Polygon400 with a liquid light guide (Figure S8). A BioLED analog and digital I/O control 

module provided computer control and TTL trigger when used with the LED controller. Size and 

shape of the pattern, light intensity as well as irradiation time were controlled with the Mightex 

PolyScan2 software. Approximate light intensities for the 10×/0.3NA and 20×/0.5NA objectives 

according to the manufacturer are 7 and 20 mW/mm2, respectively, with the LED source at 
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maximum intensity (100%). Prior to each experiment, the Polygon400 was calibrated with a mirror 

and the calibration software. 

2.4.1.4. Measurements of Optical Densities and Growth Curves.  

Optical densities (OD) of bacteria cultures (100 μL) at 600 nm were measured in 96 well plates on 

an Epoch2 microplate reader (Biotek). Time course experiments were done by measuring the OD 

at 600 nm using 100 μL of bacteria suspension in 96 well plates with a cover at 

28 °C and with continuous orbital shaking at 237 cpm (cycles per minute). 

2.4.1.5. 1H NMR Spectroscopy.  

1H NMR spectra were recorded on a Varian Mercury 400 MHz or Varian System 500 MHz 

spectrometer in deuterated chloroform (CDCl3) or dimethyl sulfoxide (d6-DMSO). The number of 

scans was 32-64 and the D1 was 1 s for small compounds and 10 s for polymers. 

2.4.1.6. Plasma Cleaner.  

The plasma cleaner was a PDC-001-HGP instrument (Harrick Plasma). 

2.4.1.7. pH Meter.  

The pH of solutions was measured with an Oakton pH 700 instrument. 

2.4.2. Materials.  

2.4.2.1. Chemical Reagents.  

N-hydroxy succinimide (NHS), dicyclohexyl carbodiimide (DCC) and poly(ethylene glycol) 

(PEG)-diamine (MW 3400), deuterated chloroform (CDCl3), dimethyl sulfoxide (d6-DMSO), 

phosphorpentoxide (P4O10), sodium phosphate dibasic (NaH2PO4), Alconox detergent, 4A 

molecular sieves, sodium hydroxide (NaOH), triethylamine (Et3N), trichloro- (1H,1H,2H,2H-

perfluorooctyl)silane, 1 M HCl (aq), and anhydrous toluene were purchased from Sigma-Aldrich. 

Four arm PEG-thiol (MW 10000) was purchased from NOF America Corporation. 
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Dimethylformamide (DMF), ethanol (EtOH), dichloromethane (CH2Cl2), ethyl acetate (EtOAc), 

diethyl ether (Et2O), sodium hydrogen sulfate (NaHSO4), anhydrous magnesium sulfate (MgSO4), 

and isopropanol were purchased from Fisher. Fluorescein maleimide was purchased from Cayman. 

All chemicals were used as received unless stated otherwise. CH2Cl2 and Et3N were dried over 4A 

molecular sieves. NB-COOH (for chemical structure see Scheme S1) was prepared in five steps 

starting from acetovanillone following reported procedures [143, 154, 155]. The 1H NMR 

chemical shifts in CDCl3 or d6-DMSO for all intermediates were consistent with reported 1H NMR 

chemical shifts. 

2.4.2.2. Bacteria Culture.  

Tryptone soy agar, yeast extract, kanamycin, isopropylthiogalactoside (IPTG), 

triphenyltetrazolium chloride (TTC), Tween20, and sodium chloride (NaCl) were purchased from 

Sigma-Aldrich. A. tumefaciens C58 pSRKKm-mCherry was prepared using established 

electroporation methods [156]. This plasmid carries the gene encoding the fluorescent protein 

mCherry under control of the lac promoter allowing for IPTG induction of mCherry expression 

[157]. 

2.4.3. Synthesis of the Photodegradable Poly(ethylene glycol) PEG Diacrylate.  

The synthesis of this polymer has been reported [143] and was prepared in a different way by 

reacting PEG-diamine with the N-hydroxysuccinimide ester of the nitrobenzyl carboxylic acid as 

outlined in Scheme S1. 

NB-NHS. NB-COOH (251.6 mg, 0.71 mmol) and 82.0 mg of (0.71 mmol) of NHS were dissolved 

in a mixture of 2 mL of DMF and 4 mL of CH2Cl2. The solution was cooled at 0 °C for 25 min 

before a solution of 146.9 mg (0.71 mmol) of DCC in 2 mL of CH2Cl2 was added. The mixture 

was stirred for 19 h. The suspension was concentrated in a flow of nitrogen and filtered through a 
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plug of glass wool inside a glass Pasteur pipet. The residue was washed with 2 mL of EtOAc and 

the filtrate diluted to 25 mL with the same solvent. The yellow solution was washed with water (3 

× 25 mL), dried over MgSO4, and concentrated in a flow of nitrogen. The solid was dried under 

reduced pressure to yield NB-NHS as a yellow solid in quantitative yield. 1H NMR (CDCl3) δ = 

7.60 (s, 1H, CHaromat), 7.01 (s, 1H, CHaromat), 6.54 (m, 1H, CH), 6.43 (d, 1H, CH = CHtrans), 6.17 

(dd, 1H, CH=CH2), 5.87 (d, 1H, CH = CHcis), 4.16 (t, 2H, CH2O), 3.91 (s, 3H, OCH3), 2.88 (t, 2H, 

CH2CO), 2.84 (s, 4H, COCH2CH2CO), 2.29 (m, 2H, CH2CH2CH2), 1.66 (d, 3H, CH3CH). 

2.4.3.1 Photodegradable PEG Diacrylate.  

NB-NHS and PEG-diamine were dried under reduced pressure in the presence of P4O10 at 40 °C 

to constant weight; 317.8 mg (0.71 mol, 4.2 equiv (eq) relative to amine) of NB-NHS was 

dissolved in 2 mL of CH2Cl2 and to the slightly hazy solution was added over the course of 5 min 

a solution of 290 mg (0.085 mmol, 0.17 mmol amine groups) of PEG-diamine and 29.7 μL (0.21 

mmol) of Et3N in 5 mL of CH2Cl2. The mixture became clear and was stirred in the dark at room 

temperature. After 23 h, the solution was concentrated in a flow of nitrogen and the residue 

suspended in 2 mL of CH2Cl2. The mixture was filtered and the residue washed with CH2Cl2 (2 × 

2 mL). The filtrate was diluted with 100 mL of Et2O to precipitate the polymer that was recovered 

by filtration through a glass filter. The residue was dissolved in 25 mL of 1 M NaHSO4 (aq) and 

filtered (0.22 μm). The clear solution was extracted with CH2Cl2 (3 × 25 mL), dried over MgSO4, 

and concentrated in a flow to a volume of 6 mL. This solution was diluted with 100 mL of Et2O to 

precipitate the polymer. The polymer was recovered by filtration, dissolved in 8 mL CH2Cl2 and 

diluted with 100 mL of Et2O. The precipitate was filtered, dried under reduced pressure to yield 

267.1 mg of a faint yellow solid. 1H NMR (CDCl3) δ = 7.58 (s, CHaromat), 6.99 (s, 1H, CHaromat), 

6.51 (m, CH + NH), 6.42 (d, CH = CHtrans), 6.15 (dd, CH=CH2), 5.86 (d, CH = CHcis), 4.10 (t, 
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CH2O), 3.92 (s, OCH3), 4.18-3.26 (CH2CH2O), 2.38 (t, CH2NH), 2.16 (m, CH2CH2CH2), 1.64 (d, 

CH3CH). The degree of functionalization for a MW = 3400 was 80% by comparing the integral 

ratios of the aromatic and CH2CH2 PEG protons. This degree of functionalization was considered 

when preparing the aqueous stock solutions. 

2.4.4. Microwell Fabrication.  

Microwell arrays were fabricated to contain a parylene liftoff mask to allocate cells in microwells 

while eliminating background cells, according to the procedures outlined in Hansen et al. [85]. 

Arrays were designed to contain wells with diameters ranging from 8 to 200 μm at different 

pitches. 

2.4.5. Bacteria Culture.  

LB medium was supplemented with 150 μg/mL kanamycin and 0.5 mM IPTG and prepared fresh 

for each experiment from frozen stocks stored at -20 °C. Under laminar flow a frozen 25% glycerol 

stock of A. tumefaciens was inoculated in 2 mL LB medium in round-bottom borosilicate glass 

tubes (13 mm × 100 mm, 10 mL, Globe Scientific). The culture tubes were closed with Bacti-caps 

(Clark Scientific) having openings to provide oxygen at atmospheric conditions inside the tube. 

Cultures were grown at 28 °C for 22 h by shaking at 200 rpm. After spinning down at 2000 g for 

10 min the bacteria pellet was suspended in medium and diluted 1:250 in fresh medium (culture 

volume 2 mL). After 11 h at 28 °C and 200 rpm, the bacteria reached mid log phase and the culture 

had a typical OD of 0.2 (100 μL). The bacteria were spun down at 2000 g for 10 min and 

resuspended in 100 μL of fresh LB medium at the desired OD. 
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2.4.6. Membrane Fabrication.  

2.4.6.1. Cross-Linking Buffers.  

Phosphate buffered saline LB pH8 was prepared by adding NaH2PO4 to LB and adjusting the pH 

of the solution with 5 M NaOH (aq). The final phosphate concentration was 100 mM. This solution 

was sterile filtered (0.22 μm), lyophilized, and dissolved in half the volume of ultrapure water to 

make the 2× LB phosphate buffer solution used for membrane fabrication. 

2.4.6.2. Membrane Precursor Solutions.  

Solutions of four arm-PEG thiol and photodegradable PEG diacrylate in ultrapure water were 

sterile filtered (0.22 μm), aliquoted, lyophilized and stored at -20 °C for long-term use. Working 

solutions were prepared by dissolving aliquots in water to give four arm PEG thiol and 

photodegradable PEG diacrylate solutions with concentrations of 20 and 49 mM [141], 

respectively, and stored at -20 °C until use. Because of the high PEG concentration, the amount of 

water added to make the solutions was corrected by subtracting the volume of PEG calculated 

from the amount dissolved assuming a PEG density of 1 g/mL. 

2.4.6.3. Perfluoroalkylated Glass Slides.  

Five glass slides 25 × 75 × 1 mm (Fisher Scientific) were washed with 20 mL of a 2% w/v Alconox 

solution for 20 min with sonication inside a polypropylene slide mailer. Slides were then washed 

with ultrapure water (3 × 20 mL) and finally sonicated in water (20 mL) for 20 min. Slides were 

blown dry with nitrogen and both sides plasma treated for 2 min in air at 800 mTorr with the RF 

power set to high output (45 W). The slides were placed inside a slide mailer and 20 mL of 0.5% 

v/v of trichloro(1H,1H,2H,2H-perfluorooctyl)silane in toluene was added. After 3 h at room 

temperature, the slides were washed with toluene (3 × 20 mL) and EtOH (3 × 20 mL) and dried 

by blowing nitrogen. Slides prepared in this way were easier to separate after membrane 
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preparation compared to slides prepared by chemical vapor deposition under reduced pressure 

inside a vacuum desiccator. For long-term storage, the slides were kept in 70% isopropanol. 

2.4.6.4. Spacers to Control Membrane Thickness.  

Initial thickness of the membrane was controlled in the range 38 to 102 μm using steel thickness 

feeler gage poc-kit assortment blades (Precision Brand). 

2.4.6.5. Encapsulation of A. tumefaciens Inside the Membrane.  

Bacteria in the mid log phase were diluted to an OD of 0.2 (100 μL). The cell suspensions were 

spun down in a 500 μL Eppendorf tube and resuspended in the same volume of 2× LB phosphate 

buffer after supernatant removal. To 12.5 μL of bacteria suspension was added 5.6 μL of the 

photodegradable PEG diacrylate and the suspension was carefully mixed with the pipet, before 6.9 

μL of the four-arm PEG thiol solution was added [141]. After careful mixing the mixture was 

pipetted (e.g., 4 × 6 μL) onto a glass slide having 102 μm spacers on opposite sides (Figure S1). 

A second glass slide was placed on top and left for 25 min at room temperature for thiol-acrylate 

cross-linking and subsequent hydrogel formation. After carefully separating the slides, membranes 

were washed with LB (5 × 1 mL) to remove nonencapsulated bacteria. The membranes were then 

placed inside a 24-well plate in 2 mL of LB and cultured in the incubator at 28 °C without shaking. 

2.4.6.6. Cell Viability Assay.  

TTC was dissolved in LB medium at 5 mg/mL and diluted 10-fold into LB medium containing the 

hydrogel. 

2.4.6.7. Membrane Fabrication on Microwells Directly. 

The microwell array was layered with 600 μL of medium and placed inside a desiccator. A vacuum 

was applied for 30 min to replace air trapped inside the wells with LB medium (Figure S9). For 

experiments without bacteria the surface was blotted at the sides with Kimwipes tissue paper and 
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the parylene carefully removed using Scotch tape [85]. For experiments with A. tumefaciens, the 

wells were inoculated with 600 μL of a bacteria suspension (OD = 0.2). After 1 h the bacteria 

suspension was removed with a pipet and the array carefully blotted with a Kimwipe before 

removing the parylene with Scotch tape. For microarrays without parylene coating, bacteria could 

also be removed with a PDMS slab after seeding [82]. Immediately after cell seeding, 12.5 μL of 

2× LB phosphate buffer was mixed with 5.6 μL of the photodegradable PEG diacrylate and 6.9 μL 

of the four-arm PEG thiol, then 15 μL of the mixture pipetted onto a glass slide. The glass slide 

was inverted and placed on top of the microwell array having two 38 μm spacers on opposite sides 

(Figure 2.1D) and incubated at room temperature for 25 min for hydrogel formation. After careful 

separation of the glass slide from the microwell array, the membrane-covered microwell array was 

placed inside a rectangular well made of polydimethylsiloxane on a glass slide containing 1-2 mL 

of LB medium (Figure S10) and kept inside the incubator at 28 °C without shaking. This setup 

prevented drying up of the membrane and enabled easy handling of the microwell array on the 

microscope stage. 

2.4.7. Membrane Degradation with the Polygon400.  

The microarray with membrane was kept in LB medium during the experiments in order to prevent 

membrane dehydration and to dissipate local heating due to the LED light. In addition, immersion 

in the medium allowed PEG products cleaved from the membrane to solubilize and diffuse away 

from the wells during irradiation. The Polygon400 tool allows for exposure of a user-defined 

pattern light in any shape within the working area of the objective, as well as control of light 

intensity and irradiation time [158, 159]. Light patterning experiments were done using 10× and 

20× objectives, corresponding to (maximum) rectangular working areas of 330 μm × 590 and 165 

μm × 295 μm, respectively. 
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2.4.8. Fluorescent Labeling of the Membrane.  

After light exposure, membranes were visualized by fluorescence microscopy by coupling pendant 

thiol groups with fluorescein maleimide [160]. 20 μL of a 10 mM stock solution of fluorescein 

maleimide in DMF was added to the microwell array in 1 mL of LB. This reaction occurs in the 

pH range 6.5-7.4 and was therefore done directly in LB (pH 6.7). Labeling was typically done for 

2 h or overnight. Before image collection, the membrane was washed with LB (3 × 1 mL) to 

remove unreacted fluorophore. 

2.4.9. Fixing Bacteria Inside the Membrane and Microwells. 

The bacteria were fixed in 2.5% glutaraldehyde and 2.5% formaldehyde overnight in LB and 

washed with LB (3 × 1 mL) before the confocal microscope measurements. 

2.4.10. Retrieval of Live Bacteria from Membrane-Covered Microwell Arrays.  

A. tumefaciens was seeded at OD = 0.2 (100 μL), washed with LB medium (2 × 5 mL), placed 

inside a polystyrene Petri dish, and cultured for 24 h in 5 mL LB medium at 28 °C without shaking. 

The array was washed (2 × 5 mL) with extraction medium (0.05% Tween20 in LB) to remove any 

bacteria that could be present outside the membrane, and placed inside the sample holder. The 

array was again washed in the sample holder with extraction medium (4 × 2 mL) using a pipet. 

The washings were spun down at 2000 g for 10 min and the supernatant carefully removed leaving 

1 mL inside the culture tube. This sample served as the negative control. The microarray was 

immersed in 1 mL extraction medium and a total of 72 wells were opened in four different runs. 

After the experiment, another 1 mL of extraction medium was added and the wells washed by 

pipet. After transferring the washing to a culture tube the microwell array was washed with 

additional extraction medium (3 × 2 mL). The washings were combined and spun down at 2000 g 

for 10 min and the supernatant carefully removed leaving 1 mL inside the culture tube. After 
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suspending with the pipet, a volume of 100 μL of retrieved bacteria and 100 μL of the negative 

control were placed inside the well plate and the OD at 600 nm was measured as a function of time 

inside a plate reader. The remaining (0.9 mL) solutions were placed inside an incubator at 28 °C 

and shaken at 200 rpm. 

2.5. Conclusions 

The retrieval capabilities demonstrated here connect the high-throughput screening benefits 

inherent to microwell array formats with the ability to extract, isolate, and enrich cells from any 

well of interest to determine molecular or phenotypic information about that cell population. The 

approach has potential to be used for follow-up characterizations on cell populations that show a 

desired and/or rare function. Follow-up assays could include but are not limited to whole genome 

sequencing, a variety of cellular functional assays, discovery of new strains or genotypes, and 

identification of genetic determinants of key phenotypes.  

The proof-of-principle studies demonstrated here show that the photoresponsive membrane 

attaches to microwell substrates, confines bacteria while allowing for nutrient exchange and cell 

growth, and is degradable with patterned light for cell release and retrieval from any well of interest 

at high (20 μm) spatial precision. Key design features are the presence of the photoreactive 

nitrobenzyl group, allowing for polymer network degradation, thereby opening the wells in a 

spatially controlled manner using the Polygon400 pattern illumination instrument, and the ability 

to avoid direct exposure of cells to UV using patterned ring illumination. In our laboratory, these 

methodological advancements will be used for screening, 16S rRNA sequencing, and 

identification of environmental microbes with antagonistic or synergistic impacts on bacteria of 

key functional importance, such as A. tumefaciens and other pathogens. Although our focus is on 
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bacteria, the platform and method should be amendable for applications involving mammalian 

cells as well. 
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Chapter 3 : Exploiting stochastic cellular processes of a model system to 

generate outlier communities with rare phenotypes in microwell arrays 

3.1 Background and Motivation 

The goal of this work was to develop the platform for co-culture, using a dual-species interaction 

between two well-defined microbes, A. tumefaciens and Pseudomonas aeruginosa. This pair has 

high abundance and similarity in culture parameters [161] and a well-studied, competitive 

interaction in bulk and biofilm co-cultures, characterized by P.aeruginosa propagating over A. 

tumefaciens with quorum-regulated growth-rate and motility advantages [162].   A. tumefaciens is 

an important model bacterium whose study has yielded key insights into host-microbe signaling 

[95], bacterial cell-to-cell communication [96] and virulence mechanisms [93, 97]. Further, A. 

tumefaciens is a key plant biotechnology tool  with strong agricultural relevance and an 

economically important pathogen of several crops [163]. Although, A. tumefaciens’ pathogenesis 

and intraspecific interactions have been studied extensively [162], little is known about A. 

tumefaciens interactions with other members of plant microbiomes. Also, most of the functions of 

A. tumefaciens in plant soil are unknown. Identifying interactions that suppress A. tumefaciens’ 

function will inform biocontrol strategies that use other microbes to attain antibiotic resistance 

against A. tumefaciens. The study of the competitive factors between these two bacteria can also 

produce novel insights on the development, nutrition, host finding and reproduction in co-culture 

systems [55, 164].  

* This chapter consists of excerpts taken from the manuscript appearing in: Niloy Barua, Ashlee 

M Herken, Kyle R Stern, Sean Reese, Roger L Powers, Jennifer L Morrell-Falvey, Thomas G 

Platt, Ryan R Hansen. Simultaneous Discovery of Positive and Negative Interactions Among 

Rhizosphere Bacteria Using Microwell Recovery Arrays. Frontiers in Microbiology, 11: 601788 

(2020). doi: 10.3389/fmicb.2020.601788 

Reproduced with the permission from the Frontiers Media Limited. 
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3.2 Materials and Methods 

3.2.1 Preparation of bacteria strains 

Bacteria strains and plasmids used are listed (Supplementary Table 1). We introduced pSRKKm-

sfGFP into A. tumefaciens C58 and pSRKKm-mcherry into P. aeruginosa PAO1 via mating with 

Escherichia coli S17-1 λpir carrying the respective plasmids using previously described methods 

[165]. These plasmids were transformed into competent S17-1 λpir E. coli strains using calcium 

chloride heat-shock transformation.  

3.2.2 Bacteria Seeding and Trapping on Microwell Arrays 

C58-GFP and PAO1-mCherry were grown in LB and YR343-GFP was grown in R2A media to 

mid-log phase and then resuspended in their respective growth media to an OD600 of 0.2. To 

inoculate microwell substrates, 700μL of this cell suspension was then incubated over an 

individual MRA substrate (Supplementary Figure 2) at room temperature for 1h. The substrates 

were dried and the parylene was peeled off of the microwell surface along with the cells attached 

to the background regions of the array by applying Scotch tape and forceps [85]. For studies 

involving C58-GFP and PAO1-mCherry co-culture, the seeding solution contained C58-GFP and 

PAO1-mCherry cells in a 1:1 or 1:100 ratio at a total OD600 of 0.1.  

3.2.3 MRA design and fabrication 

MRAs were designed to contain 10 μm diameter microwells etched to 20 μm well depths, spaced 

at a 30 µm pitch. The array consisted of a 77 grid of sub-arrays, each sub-array contained a 1515 

array of microwells, totalling 11,025 microwells available for analysis. Each well in the 1515 

sub-array was assigned with its own unique on-chip address for identification using brightfield 

microscopy (Supplementary Figure 2). Microwell arrays were fabricated on 3-inch diameter N-

type silicon wafers (University Wafers) after coating with a 1μm thick layer of Parylene N (PDS 
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2010 Labcoater, Specialty Coating Systems. Arrays were then fabricated in a cleanroom 

environment using photolithography (Supplementary Figure 3) following previous protocols [85, 

166, 167].  

3.2.4 Time lapse fluorescence microscopy (TLFM) 

A Nikon Eclipse Ti-E inverted microscope with NIS Elements software, a motorized XYZ stage, 

a humidified live-cell incubation chamber (Tokai Hit), and a DS-QiMc monochromatic digital 

camera was used for TLFM measurements. Seeded microwell arrays (with or without the 

photodegradable membrane) were attached to an LB-agar PDMS coverslip (Supplementary 

Figure 4). PDMS was required to enable sufficient oxygen diffusion into the wells during, prior 

experiments using glass coverslips resulted in poor culture for aerobic bacteria due to limited 

oxygen diffusion [85]. The substrate was then placed in a custom 3D printed scaffold designed to 

accommodate the microwell array while submerged under liquid media. The scaffold aided in 

image acquisition by maintaining a constant distance (100 µm) between the array and the glass 

slide, enabling the microwell substrate to stay within the focal plane during the culture period 

(Supplementary Figure 5). More information on microwell attachment to these materials and on 

the design of the scaffold can be found in the Supplementary information.  The scaffold along with 

the inverted microwell substrate were then placed inside a humidified live-cell incubation chamber 

at 28⁰C for imaging. A FITC filter was used to image C58-GFP strains (20×, 200 ms, 17.1× gain) 

and a TRITC filter was used to image PAO1-mCherry strains (20×, 300 ms, 17.1× gain). For 

YR343-GFP, images were taken with a FITC filter (20×, 300 ms, 36× gain) with a neutral density 

filter with 25% standard light intensity to minimize photobleaching. With these imaging 

conditions, individual cells within the wells could be resolved. Brightfield images were also taken 

at each section of the array after fluorescent imaging. Images of the microwell arrays were taken 
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every 60 minutes during culture. Green and red fluorescent images from the C58-GFP and PAO1-

mCherry co-culture system were analyzed using Protein Array Analyzer tool in ImageJ to generate 

growth profiles for each organism. YR343-GFP in monoculture or mixed culture was evaluated 

using an image analysis routine in MATLAB to identify wells with highest and lowest growth 

levels for extraction. 

3.2.5 Image Analysis 

Time-lapse fluorescent microscopy and fluorescence-based image analysis can be routinely used 

to generate and access bacteria growth trajectories in this microwell format, as recently described 

by Timm et al. [137]. ImageJ was used to quantify growth trends of the C58-GFP and PAO1-

mCherry. MATLAB was used to identify wells with highest and lowest levels of growth for 

YR343-GFP monoculture and co-culture studies. Here, simultaneous brightfield and fluorescence 

images of each array subsection consisting of 15×15 microwells were taken every hour for a 15 hr 

culture period. Brightfield and fluorescence images were imported and sorted based on subarray 

location, then the location of the wells was recorded and fluorescence intensities were averaged 

across each individual well and subtracted from background levels for each time point. Average 

growth rates and end point well intensities were then quantified across the entire microwell 

population. Outlier wells with highest levels of deviation in end-point fluorescence (t=12 h) were 

identified as target wells using the Grubb's outlier test [168] and their addresses were recorded. 

From these outlier wells, the top 5 growth promoting wells with highest average growth rates and 

top 4 antagonist wells with the lowest average growth rates were picked for extraction. In addition, 

4 wells with nominal average growth rates were picked for extraction. 
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3.3 Results and discussions 

3.3.1 Microwell Recovery Arrays enable parallel monitoring of microscale co-

culture sites and generation of outlier wells with unique growth phenotypes 

Our prior results demonstrated that microwell arrays could be used for parallel tracking of the 

growth of P. aeruginosa PAO1 communities during mono-culture in microwells, where small (5 

Figure 3.1: (A) Model C58-GFP (green) – PAO1-mCherry (red) co-culture in the MRA. Arrows 

indicate rare outlier wells where C58-GFP outgrew PAO1-mCherry. (B) Scatter plot of green 

(C58-GFP) versus red (PAO1-mCherry) well signals from a sample 549 well array at various 

time points. Outlier wells where C58 outgrew PAO1 are identified after the culture period 

(green). (C) Individual growth trajectories from a sample nominal well (well #1109), where 

PAO1 growth rate was significantly higher than that of C58 and an outlier well (Well #1223), 

where C58 outgrew PAO1. 
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and 10 µm diameter) wells were used to generate high variations in inoculum densities across the 

array during the seeding step, and growth outcomes were dependent on inoculum density and the 

level of spatial confinement present [85]. To develop the platform for multi-species co-culture, 

here we added Agrobacterium tumefaciens C58 to this system. Strains PAO1 and C58 have a well-

characterized, competitive interaction in vitro, where PAO1 tends to outcompete C58 due to 

quorum sensing-regulated growth rate and motility advantages [98, 169]. A mixture of C58 cells 

expressing green fluorescent protein (GFP; hereafter C58-GFP) to PAO1 cells expressing mCherry 

protein (hereafter PAO1-mCherry) was inoculated into 10 µm diameter wells at a seeding 

concentration of OD600=0.1). Based on our previous characterizations [85], we estimate that this 

results in ~20 cells per well. Under these conditions, PAO1-mCherry and C58-GFP cells are paired 

together at a high-dispersity due to the stochastic, Poisson seeding process [85]. C58-GFP:PAO1-

mCherry seeding ratios of 1:1 and 1:100 were both investigated.  

 We observed similar qualitative outcomes at both seeding ratios. In each case, the MRA 

platform enabled parallel tracking of species growth according to the respective fluorescence 

emission signals from each addressable well during co-culture and end-point growth levels as well 

as signature growth profiles could be attained from each well with image analysis (Figure 3.1, 

Supplementary Figure 7). For the 1:100 seeding ratio, which was the seeding ratio used in the 

following studies, a comparison of end-point fluorescence signals after a 36 h co-culture period 

identified that the majority of the wells (96%) generated outcomes where PAO1-mCherry outgrew 

C58-GFP (Figure 3.1B,C). This was likely because of a favorable PAO1 seeding ratio, PAO1 

growth advantages, or a combination of both factors. However, in the MRA format, outlier testing 

identified a minority (4%) of wells with communities dominated instead by C58-GFP cells after 

co-culture (Figure 3.1B,D). This finding reveals that high-dispersity microbe pairing between 
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competing species produces wells with rare growth outcomes after co-culture. Here, despite C58 

cells being present at lower concentrations in the seeding solution, the stochastic seeding process 

generated a minority of wells with conditions allowing C58-GFP to grow well. This finding was 

leveraged towards more complex co-culture systems, where the stochastic seeding and parallel 

growth tracking features of the MRA are applied to screening interactions in environmental 

microbiomes. 

3.4 Summary and Conclusion 

In this project we successfully demonstrated the proof of concept of microwell arrays to detect rare 

phenotypes / rare growth outcomes in a well-characterized PAO1-C58 interaction system. We 

seeded bulk co-culture of the two fluorescently labeled species in microwell arrays to achieve 

stochastic assembly. With the aid of TLFM we could track the growth of both species in co-culture. 

It was demonstrated that in the majority of the wells, PAO1 suppressed the growth of C58, 

consistent with the claim that PAO1 can act as an antagonist against C58 in bulk co-culture. We 

could also identify rare outliers where C58 showed more enhanced growth than PAO1 when we 

had an inoculum ratio favorable for C58 growth. It is expected that by assembling a low number 

of cells in small wells we can identify rare outcomes driven by stochastic cellular processes. This 

technique will be used to screen and discover symbiotic and antagonistic interactions in the 

Populus root microbiome in Chapter 4.  
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Chapter 4 : Simultaneous Discovery of Positive and Negative Interactions 

Among Rhizosphere Bacteria Using Microwell Recovery Arrays 

4.1 Overview 

Understanding microbe-microbe interactions is critical to predict microbiome function and to 

construct communities for desired outcomes. Investigation of these interactions poses a significant 

challenge due to the lack of suitable experimental tools available. Here we present the Microwell 

Recovery Array, a new technology platform that screens interactions across a microbiome to 

uncover higher-order strain combinations that inhibit or promote the function of a focal species. 

One experimental trial generates 104 microbial communities that contain the focal species and a 

distinct random sample of uncharacterized cells from plant rhizosphere. Cells are sequentially 

recovered from individual wells that display highest or lowest levels of focal species growth using 

a high-resolution photopolymer extraction system. Interacting species are then identified and 

putative interactions are validated. Using this approach, we screen the poplar rhizosphere for 

strains affecting the growth of Pantoea sp. YR343, a plant growth promoting bacteria isolated 

from Populus deltoides rhizosphere. In one screen, we montiored 3600 microwells within the array 

to uncover multiple antagonistic Stenotrophomonas strains and a set of Enterobacter strains that 

promoted YR343 growth. The later demonstrates the unique ability of the platform to discover 

multi-membered consortia that generate emergent outcomes, thereby expanding the range of 

phenotypes that can be characterized from microbiomes. This knowledge will aid in the 

development of consortia for Populus production, while the platform offers a new approach for 

screening and discovery of microbial interactions, applicable to any microbiome.  

* This chapter consists of excerpts taken from the manuscript appearing in: Niloy Barua, Ashlee M Herken, Kyle R Stern, Sean 

Reese, Roger L Powers, Jennifer L Morrell-Falvey, Thomas G Platt, Ryan R Hansen. Simultaneous Discovery of Positive and 

Negative Interactions Among Rhizosphere Bacteria Using Microwell Recovery Arrays. Frontiers in Microbiology, 11: 601788 

(2020). doi: 10.3389/fmicb.2020.601788 

Reproduced with the permission from the Frontiers Media Limited. 
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4.2 Introduction 

Microbial communities are often highly diverse and have widespread impacts on human health 

[170, 171], agricultural productivity [17, 172], energy production [18, 173], and water quality 

[174, 175]. Interactions among the species and strains that co-occur within microbiomes often 

influence their function and the establishment and success of functionally important taxa [3]. 

While genomic and metagenomic approaches have transformed our ability to determine 

community composition and species co-occurrence patterns [176, 177], understanding how 

interactions amongst strains impact community structure and function remains difficult [14–16]. 

Despite this knowledge gap, there is a considerable need for understanding how natural community 

structure influences function, how communities respond to environmental pressures, and how 

communities can be constructed for engineered outcomes [13]. Engineered communities have 

provided ground-breaking approaches in a few applications such soil clean-up [8] and digestion of 

municipal solids [9], however the limited understanding of microbial interactions has impeded the 

use of synthetic communities in the majority of applications. For example, commercial 

development of plant growth promoting bacteria (PGPB) formulations for plant production has 

been limited by the fact that many useful bacterial species are incompatible with each other [20]. 

These limitations require the development of new experimental tools to holistically study and 

understand microbe-microbe interactions [10, 178].  

                  The high species diversity of many microbiomes necessitates new screening tools that 

are designed to explore the vast number of potentially important microbe-microbe interactions. 

These tools must connect an observed cellular or community phenotype with genetic information 

from the interacting species as well as information on the interaction itself. Classical 

microbiological techniques for probing interactions rely on manually pairing isolates together [29], 
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inherently low-throughput approaches that in practice are often based on qualitative observations 

of bulk populations. Micro- and nanoscale devices offer vast improvements by providing high-

throughput measurement, observation of single cell behavior, and precise design and manipulation 

of the microenvironment. These approaches have advanced our understanding of microbial 

mutualism [179], metabolite exchange [180], community adaptation to environmental pressures 

[42, 181], and the role of spatial structure in driving community phenotypes [27, 44, 182], among 

other findings. Recently, Kehe et al. [28] introduced the k-Chip, an innovative microscale platform 

designed to screen multi-membered communities consisting of various combinations of known 

isolates for emergent phenotypes. While these tools are expected to provide important 

advancements in our understanding of microbiomes, they are widely limited to on-chip 

measurements. Consequently, cells must be identified and manipulated during or prior to the 

screening observations, which greatly constrains both the number of strains that can be considered 

and undermines the ability to discover interactions involving unknown strains present in a 

microbiome.  

             Here, we present the microwell recovery array (MRA), a discovery-driven, lab-on-a-chip 

device designed to first screen interactions within mixtures of unknown environmental isolates 

taken from plant root microbiomes, then uncover pair-wise or multi-species communities that best 

antagonize or promote the function  (e.g. growth) of a non-model focal species (Figure 4.1). The 

strategy uses microwells to randomly combine the focal species — typically one with a known 

beneficial function (e.g. plant growth promotion) or deleterious function (e.g. pathogenesis) — 

with a unique sample of cells from a microbiome into an array of microwells. Our previous studies 

demonstrated that seeding bacteria into small (2 to 10 µm diameter) wells enables only small 

numbers of cells to be seeded into wells, where the number of seeded cells shows high dispersity 
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across the array and follows a randomized, Poisson distribution - a process we refer to as stochastic 

seeding. Thus, even when a small number of unique species are present in the seeding solution, 

thousands of distinct, separated combinations of cells can be generated across the array for parallel 

observation [85].  

              Here, a 10 µm well diameter was chosen to confine a small number of interacting cells 

together at length scales similar to those found in multi-species biofilms [88], confinement at these 

length scales often facilitates inter-cellular interactions [89]. Cells are then trapped within the wells 

using a previously developed photodegradable polyethylene glycol (PEG)-based membrane [90], 

co-cultured, and then focal strain growth in each well is tracked with time lapse fluorescent 

microscopy (TLFM). Cellular communities showing a desired phenotype (e.g. highly enhanced or 

diminished focal species growth) can be extracted from any individual well using a patterned light 

source to spatially ablate the membrane, releasing cells into solution for recovery. The extraction 

and recovery capabilities are the key enabling features of the platform, allowing for sampling of a 

microbial community from any number of individual microwells that indicate a desired outcome, 

in a sequential fashion. Ultimately, this allows one to identify the interacting strains after the 

screening step. Relying on the stochastic seeding to generate randomized combinations between 

multiple species, thousands of distinct combinations of cells can be observed in a single screen. 

Extraction also enables follow-up phenotypic characterization with standardized assays to confirm 

the interaction. 

               To develop the approach, we first investigate co-culture in the MRA format using a well-

characterized interaction between Pseudomonas aeruginosa and Agrobacterium tumefaciens [98, 

169], followed by a microbiome screen using Pantoea sp. YR343 as the non-model focal species. 

Strain YR343 is a Gram-negative, plant growth promoting bacterium (PGPB) isolated from the 
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rhizosphere of an eastern cottonwood Populus deltoides tree [100, 183]. As Populus trees are 

promising biofuel feedstocks [101],  uncovering interactions that influence the function of 

beneficial organisms in its rhizosphere has received intensive interest in recent years [102, 104, 

184, 185]. However, due to the fact that the Populus root microbiome is highly complex and 

diverse, many microbe-microbe interactions are unknown [186].  Pantoea sp. YR343 can also 

colonize Triticum aestivum and stimulate lateral root formation [100, 183]. Likewise, related 

Pantoea strains have garnered interest for antibiotic production [105], bioremediation and waste 

recycling [109], and cancer treatment [187]. On the other hand, other Pantoea sp. can be 

pathogenic in plant, animal and human systems [188]. Thus, uncovering

 

Figure 4.1: Microwell recovery arrays for screening microbe-microbe interactions. (i) GFP-

expressing focal species are combined with a random combination of bacteria cells from an 

environmental microbiome in a stochastic seeding process. Different shapes represent unique 

microorganisms. (ii) Cells are trapped within their wells using a photodegradable PEG hydrogel 

membrane and monitored in parallel during co-culture using TLFM. (iii) The membrane is ablated 

over a target well showing highest or lowest levels of focal species growth using patterned light 

exposure, then (iv) isolates are extracted and recovered from an opened well. (v) Isolates are 

identified using 16S amplicon sequencing. (vi) Steps (iii-v) are repeated in iterative fashion to 

remove each community of interest. 
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unique sets of organisms that both promote or inhibit Pantoea growth, as demonstrated here, has 

use in several contexts.    

4.3 Materials and methods 

4.3.1 Preparation of bacteria strains and P. trichocarpa samples. 

Bacteria strains and plasmids used are listed (Supplementary Table 1). Pantoea sp. YR343-GFP 

constitutively expresses EGFP from a chromosomal insertion as previously described by Bible et 

al. [183]. All strains and isolates used were stored in 25% glycerol at -80 ⁰C. Further information 

on A. tumefaciens C58, P.aeruginosa PAO1, and Pantoea sp. YR343 culture is included in 

Supplementary Information. For extraction of microbes from Poplar root, a sample of Nisqually-

1 Populus trichocarpa root was first obtained from the greenhouse facilities at Oak Ridge National 

Laboratory. Roots were removed from soil and the aerial parts of the plant were separated from 

the root system. Large soil aggregates were removed by manually shaking by hand. The remaining 

portions of the roots were removed with sterile blades. Root pieces were then washed extensively 

with 1.5 L of sterile ice-cold PBS-tween20 solution (7 mM Na2HPO4, 3 mM NaH2PO4, pH 7.0 and 

0.05% tween20). The washed solution was filtered through 0.45µm sterile syringe filters 

(Whatman) to remove larger particles in the suspension. The filtered solution was centrifuged for 

15 min at 4400 rpm to obtain the pellet containing rhizosphere-enriched isolates (de Souza et al., 

2016). Glycerol stocks were prepared for P. trichocarpa root isolates and stored frozen at -80°C. 

Bacterial cells were later revived by scrapping off a small amount of frozen cells using a sterile 

inoculation loop and mixing in 2 mL R2A broth media (pH: 7.2 ± 0.2, Teknova) in sterile test 

tubes and cultured for 24 hrs (28°C, 215 rpm). The community composition of both the 

rhizosphere-enriched isolate sample and the R2A media culture used to seed the microarray were 

analyzed using 16S rRNA community analysis (Supplementary Figure 1). 
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4.3.2 MRA design and fabrication.  

MRAs were designed to contain 10 μm diameter microwells etched to 20 μm well depths, spaced 

at a 30 µm pitch. The array consisted of a 77 grid of sub-arrays, each sub-array contained a 1515 

array of microwells, totalling 11,025 microwells available for analysis. Each well in the 1515 

sub-array was assigned with its own unique on-chip address for identification using brightfield 

microscopy (Supplementary Figure 2). Microwell arrays were fabricated on 3-inch diameter N-

type silicon wafers (University Wafers) after coating with a 1μm thick layer of Parylene N (PDS 

2010 Labcoater, Specialty Coating Systems). Arrays were then fabricated in a cleanroom 

environment using photolithography (Supplementary Figure 3) following previous protocols [85, 

166, 167].  

4.3.3 Bacteria seeding and trapping on microwell arrays.  

For studies involving YR343-GFP and P. trichocarpa rhizobiome co-culture, washed YR343-GFP 

cells and P. trichocarpa rhizobiome cells were mixed to achieve a YR343-GFP:isolate ratio of 

approximately 1:100 in the seeding solution at an OD600 of 0.2. To keep the cell concentrations of 

C58-GFP in co-culture experiments constant, PAO1-mcherry at OD600=10 was added to C58-GFP 

at OD600=0.1 to reach a C58-PAO1 ratio of 1:100. The inoculum was then diluted to OD600=0.1 

and 700µL of this inoculum was then seeded into microwell array substrates as described above. 

Similarly, OD600=0.2 cultures of P. trichocarpa rhizobiome was mixed with OD600=20 of YR343-

GFP to reach a YR343-P. trichocarpa ratio of 1:100. This seeding suspension was diluted to 

OD600=0.2 and seeded on top of microwell arrays for co-culture studies. For YR343-P. trichocarpa 

studies, the photodegradable membrane was then attached to the seeded array [90]. A schematic 

describing the seeding and trapping steps is provided (Supplementary Figure 4). 
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4.3.4 Time lapse fluorescence microscopy (TLFM) 

A Nikon Eclipse Ti-E inverted microscope with NIS Elements software, a motorized XYZ stage, 

a humidified live-cell incubation chamber (Tokai Hit), and a DS-QiMc monochromatic digital 

camera was used for TLFM measurements. Seeded microwell arrays (with or without the 

photodegradable membrane) were attached to an LB-agar PDMS coverslip (Supplementary 

Figure 4). PDMS was required to enable sufficient oxygen diffusion into the wells during, prior 

experiments using glass coverslips resulted in poor culture for aerobic bacteria due to limited 

oxygen diffusion [85]. The substrate was then placed in a custom 3D printed scaffold designed to 

accommodate the microwell array while submerged under liquid media. The scaffold aided in 

image acquisition by maintaining a constant distance (100 µm) between the array and the glass 

slide, enabling the microwell substrate to stay within the focal plane during the culture period 

(Supplementary Figure 5). More information on microwell attachment to these materials and on 

the design of the scaffold can be found in the Supplementary information.  The scaffold along with 

the inverted microwell substrate were then placed inside a humidified live-cell incubation chamber 

at 28⁰C for imaging. A FITC filter was used to image C58-GFP strains (20×, 200 ms, 17.1× gain) 

and a TRITC filter was used to image PAO1-mCherry strains (20×, 300 ms, 17.1× gain). For 

YR343-GFP, images were taken with a FITC filter (20×, 300 ms, 36× gain) with a neutral density 

filter with 25% standard light intensity to minimize photobleaching. With these imaging 

conditions, individual cells within the wells could be resolved. Brightfield images were also taken 

at each section of the array after fluorescent imaging. Images of the microwell arrays were taken 

every 60 minutes during culture. Green and red fluorescent images from the C58-GFP and PAO1-

mCherry co-culture system were analyzed using Protein Array Analyzer tool in ImageJ to generate 

growth profiles for each organism. YR343-GFP in monoculture or mixed culture was evaluated 
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using an image analysis routine in MATLAB to identify wells with highest and lowest growth 

levels for extraction. 

4.3.5 Image Analysis 

Time-lapse fluorescent microscopy and fluorescence-based image analysis can be routinely used 

to generate and access bacteria growth trajectories in this microwell format, as recently described 

by Timm et al. [137]. ImageJ was used to quantify growth trends of the C58-GFP and PAO1-

mCherry. MATLAB was used to identify wells with highest and lowest levels of growth for 

YR343-GFP monoculture and co-culture studies. Here, simultaneous brightfield and fluorescence 

images of each array subsection consisting of 15×15 microwells were taken every hour for a 15 hr 

culture period. Brightfield and fluorescence images were imported and sorted based on subarray 

location, then the location of the wells was recorded and fluorescence intensities were averaged 

across each individual well and subtracted from background levels for each time point. Average 

growth rates and end point well intensities were then quantified across the entire microwell 

population. Outlier wells with highest levels of deviation in end-point fluorescence (t=12 h) were 

identified as target wells using the Grubb's outlier test [168] and their addresses were recorded. 

From these outlier wells, the top 5 growth promoting wells with highest average growth rates and 

top 4 antagonist wells with the lowest average growth rates were picked for extraction. In addition, 

4 wells with nominal average growth rates were picked for extraction. 

4.3.6 Recovery of isolates from wells and isolate naming convention.  

The extraction procedure was slightly modified from van der Vlies et al. which was previously 

developed for highly efficient removal of cells from individual wells with minimal cross-talks, 

thus offering well-specific extraction [90] and is described in Supplementary Information. 

Extraction occurred from the microwell array in a sequential fashion, first from five different target 
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wells in which YR343-GFP exhibited promoted growth (P1, P2, P3, P4, P5), then four different 

target wells in which YR343-GFP exhibited antagonized growth (A1, A2, A3, A4) and finally four 

different target wells in which YR343-GFP exhibited intermediate growth (N1, N2, N3, N4). 

Extracts from each well were plated onto solid R2A media (28°C, overnight) for recovery. After 

culture, five distinct isolates (A, B, C, D, and E) were picked based on unique colony morphology 

and streak purified. Isolates in Supplementary Figure 6 are thus labelled according to the 

microwell they were isolated from, then the order at which it was extracted from the array, then 

the order at which it was picked from the plate after recovery. For example, isolate A4A, the isolate 

that most strongly antagonizes YR343 growth, was extracted from the fourth antagonistic well and 

was the first colony picked from the R2A plate.  Following extraction, extract containing the 

suspension of cells from an individual microwell was plated onto R2A media. Colonies were again 

cultured in liquid media overnight (28⁰C, 215 rpm) and stored in glycerol stocks at -80C. 

4.3.7 Identification with 16S rRNA sequencing.  

Individual colonies were cultured in R2A media and genomic DNA of each isolate was extracted 

using the Promega (Madison, WI) Wizard® DNA Purification kit, diluted to 20 ng/µL in 20µL 

aliquots and sent to Genewiz (South Plainfield, NJ, USA) for 16S ribosomal RNA (rRNA) Sanger 

sequencing of the V1 to V9 regions, enabling identification with approximately genus-level 

specificity. The sequences were aligned using MUSCLE [189] and generated a maximum 

likelihood phylogenetic tree based on partial 16S rRNA sequences (1007 bp) using PhyML 

3.3.20190909 [190] with 1000 bootstrap replicates and using the Smart Model Selection [191] tool 

based on Akaike Information Criterion, a starting tree estimated using BIONJ, and the NNI method 

for tree topology improvement.   
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4.3.8 Validation using 96 well plate cultures 

To obtain cell free culture fluid (CFCF) from individual isolates, each isolate was cultured (28⁰C, 

3000 rpm) in 2mL of R2A broth media overnight, and then cells were removed from the media by 

centrifugation (2000g, 10 min). To obtain CFCF from combinatorial mixtures, isolate panels were 

inoculated individually in R2A media and cultured overnight, followed by cell removal by 

centrifugation. CFCF from each isolate was then mixed together at equal volumes to obtain 

combinatorial CFCF. To obtain conditioned media, isolate or combinatorial CFCF was mixed with 

YR343-GFP in fresh R2A media at a 1:1 volumetric ratio to reach an initial OD600 value of 0.1 

(final volume = 100 µL), at which point growth was quantified with a Biotek Epoch 2 Multi-Mode 

Microplate Reader (28 ⁰C, 300rpm). Unconditioned media was obtained following the same 

procedure except 1X PBS was added to fresh R2A media instead of isolate CFCF. To verify the 

OD600 measurement was due to YR343-GFP growth, CFCF from selected isolates without 

inoculation of YR343 was also measured. A total of n=6 independent replicates were measured 

for each culture condition. Growth rates and carrying capacities of each condition were quantified 

using Growthcurver [192] and compared using the Wilcoxon two-sample test. 

4.4 Results and discussion 

4.4.1 Co-culture of Pantoea sp. YR343 with stochastically assembled communities 

from the P. trichocarpa rhizosphere simultaneously generates positive and negative 

YR343 growth outcomes. 

To extend the microwell platform capabilities to screening non-model test species against 

unknown isolates, we screened rhizobiome samples from the P. trichocarpa root microbiome for 
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effects on the growth of focal species Pantoea sp. YR343 expressing GFP (hereafter denoted 

YR343-GFP). Here, we used stochastic seeding, attachment of the photodegradable PEG 

Figure 4.2: YR343-GFP growth in mono-culture and co-culture within 10 µm microwells. (A) 

TLFM images of a sample 15×15 array of microwells after (i) seeding only YR343-GFP or (ii) 

seeding YR343-GFP with isolates from a P. trichocarpa rhizobiome. (B) Growth curves generated 

from a sample 900 microwell array during YR343-GFP mono-culture, or (C) YR343-GFP co-

culture with rhizosphere isolates. Outlier wells representing growth promoting and antagonistic 

communities, respectively were identified from the growth curves. 
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membrane [90], and focal species growth monitoring to identify rare combinations of cells 

generating unique YR343-GFP growth profiles (Figure 4.1, steps i and ii). To characterize the 

composition of the seeding solution, 16S community analysis was used (Supplementary Figure 

1) and we observed 120 OTUs from the root washing and 85 OTUs after culturing the root washing 

in R2A media to prepare the isolate mixture used to seed the wells. Thus, it was expected that the 

YR-343 focal species is combined with random samplings of cells belonging to 85 different OTUs  

in wells throughout the array.   

Cell mixtures were seeded into 10 µm diameter microwells at high density (OD600 = 0.2) and at a 

1:100 YR343:isolate ratio, cultured, and growth kinetics in each well were tracked over the course 

of 12 h using TLFM. Based on prior results [85], we estimate this seeding condition generates ~35 

cells/well. The 1:100 seeding ratio follows the from the previous system and ensures that the focal 

species will be combined with several unknown isolates in each well during the co-culture. For 

comparison, monoculture arrays consisting of only YR343-GFP focal species was used as a 

control. In each case, YR343-GFP growth was evaluated in 225 co-culture microwells from a 

1515 well grid (Supplementary Figure 2) across 16 selected arrays on a single substrate 

(n=3600 microwells total). Here, R2A media was chosen as a generalist culture media. This media 

has been used to recover more than 300 phylogenetically diverse isolates from P. trichocarpa 

rhizosphere and endosphere samples, and so should permit co-culture of a large number of 

combinatorial strain mixtures within the microwell environment [184]. While the YR343-GFP 

monoculture generated growth profiles across the array with relatively low variance (2=3.55) 

according to final end-point fluorescence levels, mixed cultures generated a wider range of growth 

profiles, with final growth levels of higher variance (2=17.55), indicating an impact due to the 

addition of the environmental isolates (Figure 4.2A-C). 



 

65 
 

In co-culture, 14% of the wells contained microcolonies that appeared to grow out of the wells and 

into the membrane space, causing the microcolony diameter to expand beyond the well diameter 

(>10 µm) (Figure 4.2Aii), indicating a positive interaction. While the locations on the array where 

this effect occurred appeared random, we checked for the possibility of crosstalk between 

Figure 4.3: Sequential removal of growth-promoting and antagonistic communities from an array 

sub-section after co-culture. (A) Microwell array before and after co-culture. This 15×15 

microwell array contained both a YR343 growth promoting community (blue) and YR343 

antagonistic (red) community that were targeted for extraction. (B) Targeted removal of the 

microwell community in which YR343 grows to its highest observed end-point fluorescence (top 

row, blue outline), followed by targeted removal of a microwell community in which YR343-GFP 

grew poorly (bottom row, red outline). Purple area denotes UV exposure area used for membrane 

degradation. (C) Maximum likelihood phylogenetic tree based on partial 16S rRNA sequences 

(1007 sites) of select reference strains and isolates extracted from promoted (P) and antagonized 

(A) wells. We collapsed the branches of the monophyletic group composed of Enterobacter sp. 

and Pantoea sp. strains and the clade of Stenotrophomonas sp. strains. A. tumefaciens C58 was 

used as the outgroup (OG) organism and the following reference strains were included: Pantoea 

sp. YR343, Enterobacter cloacae E3442, Pseudomonas putida S13.1.2, Stenotrophomonas 

maltophilia NCTC10259. We labelled nodes with corresponding bootstrap percentages. 
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neighboring wells, where a developing microcolony may influence growth in another well due to 

diffusion of metabolites or other biomolecular products. Of wells with this enhanced growth 

phenotype, 2% of neighboring wells also showed this phenotype, suggesting that well-to-well 

crosstalk can occur. The possiblity of falsely identifying an interaction due to well-to-well 

crosstalk is accounted for with follow-up, off-chip validation experiments that verify the 

interaction after it is found in the inital screen (described in Section 3.4). On the other end, wells 

showing decreases in well fluorescence signal were also identified, these decreases were caused 

by lysis of the focal species and GFP diffusion from the wells, as previously observed when using 

PAO1 as the focal species [85]. This effect was noted in 34% of co-culture microwells. Wells that 

initially contained a fluorescent signal above background levels, followed by highest decreases in 

fluorescence signal were identified as containing candidate cells antagonistic to YR343-GFP. This 

ensured that these wells initially contained the focal species, and that its growth was inhibited 

during co-culture. The rest of the wells did not show evident increases or decreases in YR343-GFP 

growth.  

4.4.2 Sequential extraction, recovery and identification of isolates from microwell 

communities. 

Following on-chip analysis in mixed culture arrays, the patterned illumination tool was used to 

extract communities from the five wells with highest fluorescence signal after 12 hours of culture 

(Figure 4.3A, B). This was followed by extraction of communities from four wells with the lowest 

levels of YR343-GFP growth, and four wells where YR343-GFP grew to intermediate levels. 

Extraction required exposure of a patterned 365 nm light (20 mW/cm2, 10 min) to remove the 

membrane over the well. While 365nm light has the potential to damage bacteria, these exposure 

conditions were previously found suitable for retrieving viable bacteria from wells [90]. Membrane 
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removal was confirmed by brightfield microscopy, at which point cellular material was observed 

moving out of the wells and into solution (Figure 4.3B). After exposure, arrays were washed with 

extraction buffer (R2A media + 0.05% Tween20 solution) to retrieve cells from an opened well. 

Extraction buffer was then plated onto R2A-agar for growth and recovery of individual colonies. 

During our previous characterizations of this procedure, we noted that >99.9% of bacteria 

originated from opened wells as opposed to outside contamination [90], which provided high 

confidence that the recovered product here originated from the target well. We also previously 

observed that bacteria could be completely removed from wells after washing [90], thus we 

expected minimal cross-contamination when opening additional wells for further sampling. After 

recovery, phylogenetic analysis based on 16S rRNA sequences of all strains isolated from each 

targeted microwell was performed (Supplementary Figure 6). The analysis revealed that all 

extracted microwells identified as growth promoting for YR343-GFP (5 of 5) harbored 

Enterobacter sp. / Pantoea sp. strains, and one of these wells contained at least one Pseudomonas 

sp. strain. In stark contrast, all wells identified as antagonistic to YR343-GFP contained at least 

one Stenotrophomonas sp. strain. Several of these wells (3 of 4) also contained at least one 

Enterobacter sp. or Pantoea sp. strain (Figure 4.3C). All isolates obtained from the wells with 

nominal effects on YR343-GFP are phylogenetically related to Enterobacter sp. and Pantoea sp. 

strains. Given that the extraction method was efficient and specific for recovering cells from the 

targeted wells [90], the recovered isolates were expected to be responsible for the promoting or 

antagonistic effects on YR343, but required validation with an independent, off-chip test.  

4.4.3 Interactions can be recapitulated in 96-well plate format for validation. 

The extraction of cellular communities from the MRA allows for off-chip validation and 

characterization of the microbial interactions observed during the screen. This capability is critical 
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for validation, as the high density of microwells (625 wells/mm2) has potential to cause false 

positives, perhaps due well-to-well cross-talk due to diffusion of molecules. This necessitates that 

Figure 4.4: Interactions identified in the MRA can be validated in 96-well plate format. (A) Left: 

YR343 growth curves after inoculation into conditioned media from the antagonistic isolate, the 

isolate consortia, or unconditioned media (UCM). The control (green line) is conditioned media 

that was not inoculated with YR343 to verify that there was no growth carry over or contaminating 

microbes present. Right: Corresponding carrying capacity and growth rates for each growth curve. 

(B) Left: Analogous YR343 growth curves after inoculation into conditioned media from a 

promoter isolate or the promoter isolate combination. Right: Corresponding carrying capacity and 

growth rates. All growth experiments occurred at 28°C, 215 RPM. Statistical differences were 

identified by comparison of growth metrics between YR343 culture in conditioned media from 

each isolate or isolate mixture and YR343 growth in UCM (Wilcoxon two-sample test, *=P<0.01, 

n=6 independent experiments). 
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the interactions observed in the screen are also observed in an independent validation assay.  To 

address this, we used a 96-well plate format to measure how strains isolated from MRA influenced 

the growth of YR343-GFP. This represented a scaled-up environment (from 1.6 pL microwell 

volumes to 100 µL solution volumes) that precludes diffusive crosstalk from neighboring wells.   

 For these evaluations, we hypothesized that both growth promotion and inhibition 

measured in MRA format resulted from diffusive interactions between the focal species and the 

collection of isolates present within a well. To test this hypothesis, YR343-GFP was cultured in 

96-well plate format in media conditioned by four selected isolates recovered from a selected 

antagonist well (Well A4, Supplementary Figure 6). Conditioned media was obtained by first 

culturing isolates in R2A media to stationary phase, then removing the cells to obtain cell free 

culture fluid (CFCF). Fresh R2A media was then added to the CFCF in a 1:1 volumetric ratio to 

supply growth nutrients, and YR343-GFP was inoculated for growth monitoring. Conditioned 

media obtained using CFCF from a combined co-culture of all 4 antagonistic strains was also 

evaluated. These growth curves were compared to a control curve with YR343-GFP growth in 

unconditioned media, which consisted of R2A media instead supplemented with blank 1X PBS 

buffer at the same volumetric ratio. A second control curve consisting of conditioned media 

without YR343 inoculum was also included to verify that measured growth was not due to 

contaminating microbes. Growthcurver R was then used to estimate bacterial carrying capacity 

and growth rate [192] in each experiment (Supplementary Figure 8). Congruent with microwell 

observations, we observed that conditioned media from 4 isolates significantly reduced the 

carrying capacity and growth rate of YR343-GFP compared to its culture in unconditioned media 

(Figure 4.4A). Conditioned media from the combined 4-member antagonist combination also 

showed significantly lower carrying capacity and growth rate compared to the unconditioned 
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control media (Supplementary Tables 2, 3). CFCF from Stenotrophomonas isolate A4A had 

statistically equivalent growth metrics as that from the CFCF consortia, suggesting that this strain 

is the most potent inhibitor of YR343.  

 To investigate the effect of the strains identified as YR343 growth promoters, YR343-GFP 

growth was again monitored in media conditioned with CFCF from clonal cultures, here using 5 

isolates selected from a selected promoter well (Well P3, Supplementary Figure 6). To test for 

an emergent effect, additional control curves from conditioned media containing CFCF produced 

from a co-culture of the combined 5 isolates was also evaluated. When YR343 growth in 

conditioned media from the CFCF of individual isolates was measured, only two were able to 

increase growth rate and one was able to increase carrying capacity (Figure 4.4B, Supplementary 

Figure 9). Strikingly however, the CFCF from the 5-member consortia was able to provide highest 

increases in both YR343 growth rate and carrying capacity. The 5-member consortia also provided 

a statistically significant increase in carrying capacity compared to isolate P3B, the individual 

isolate that generated the highest increase in YR343 carrying capacity after conditioning media on 

its own (Supplementary Tables 4, 5). To further verify that antagonistic or promoting behavior 

was unique to the strains isolated from the promoting and inhibitory microwells, the same 96-well 

plate analysis was performed using nominal isolates taken from a microwell that showed 

intermediate growth of YR343-GFP during on-chip co-culture. This served as a final control to 

verify the 96-well plate assay accurately recapitulates growth behavior observed on the MRA. 

Here, a well with final endpoint growth level comparable to YR343 monoculture was identified 

and 4 isolates were extracted from the well. YR343-GFP growth was then monitored in media 

conditioned with CFCF from clonal cultures and the combined 4 member consortia cultures. 

YR343 growth in conditioned media from the CFCF of individual isolates and the CFCF from the 
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4-member consortia did not provide significant increases or decreases in YR343 growth rate or 

carrying capacity (Supplementary Figures 10, 11; Supplementary Tables 6, 7).  

 Taken together, these findings indicate that the observed enhancement of YR343’s 

population growth corresponds with the behavior observed in the microwell environment, and that 

in some cases it can depend on the presence of multiple strains, not simply the consequence of a 

pairwise interaction. As such, the enhanced YR343 growth is an emergent property of the 

community of species recovered using the MRA, demonstrating the unique power of this approach 

to identify functions dependent on higher-order interactions among bacterial species.  

4.5 Conclusions 

The MRA examines thousands of combinatorial unique, multi-species communities to discover 

both antagonistic and growth promoting interactions on a focal species. Using this new approach, 

we simultaneously identified individual strains that antagonize focal species growth, as well as 

multi-strain consortia that uniquely promotes focal species growth only when co-cultured in 

combination. The platform is the first of its kind, unique because it (i) screens organisms that are 

unknown during the screening step, dramatically expanding the number of interactions and cellular 

combinations that can be accommodated, and (ii) screens in combinatorial fashion to uncover 

higher-order microbial networks that generate emergent phenotypes, which cannot be measured 

with other platforms or devices. The platform allows for the user to perform the co-culture in a 

defined culture medium, which must be carefully selected based on the question or goal of the 

screen. The key innovation underlying this capability is the ability to recover cells from specific 

microwells of interest, thereby allowing for subsequent off-chip genetic characterization for 

species identification then phenotypic characterization for validation of the interaction. This 

enables one to input any number of bacteria strains into the device for analysis. Extraction then 
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enables one to steamline the screen with established techniques, such as -omic based analysis of 

samples and follow-up validation of the uncovered interactions using standardized methods, as 

demonstrated in this work. In our laboratory, MRA fabrication and materials cost ~$20 per screen, 

which compares favorably to other comparable techniques such as flourescence-activated cell 

sorting (FACS), which often has a higher associated cost ($100-$200/hr) and is not directly 

amenable to a co-culture format. The improved throughput at which different interactions can be 

tested also provides a significant saving in both time and effort.  

 For the first generation of the MRA, we have developed its use towards screening 

interactions that influence growth phenotypes. A drawback of the current platform is that it screens 

interactions based on growth in an environment that is both chemically and physically different 

than the rhizosphere, thus interactions that are identified in the MRA must still be evaluated in the 

relevant natural enviornment (e.g. in vivo). Also, the MRA requires that the interacting isolates are 

also culturable in the media added, limiting the number of interactions that can be accounted for. 

Finally, the user should excersize caution when extracting cells using the 365 nm light source, as 

this wavelength can have a bactericidal effect. If direct UV exposure is a concern, the pattern of 

light can be varied to expose only the edges or sides of the wells, which is also effective in releasing 

cells from wells and the hydrogel membrane while minimizing light exposure [90]. Despite these 

current limitations, the MRA approach has potential to be expanded towards screening 

microbiomes for organisms that have positive or negative effects on other focal species functions, 

provided that the function can be coupled to a fluorescence reporter (e.g. a GFP promoter-reporter). 

This may include microbial interactions that affect quorum sensing activation [193], virulence 

factor expression [194], and plasmid conjugation [195], to name a few. While demonstrated here 

for the P. trichocarpa root microbiome, the platform is directly amenable to screening interactions 
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across any microbiome where high species diversity is present, which may include the gut, soil, 

freshwater and marine ecosystems, and other rhizosphere environments.  
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Chapter 5 : Microwell Recovery Array Screening of the Maize Rhizosphere to 

Improve Azospirillum brasilense Colonization and Plant Growth Outcomes 

5.1 Overview 

Plant growth-promoting bacteria (PGPB) are key for sustainable food production and may alleviate 

negative impacts of chemical fertilizers on human health and environment. Successful application 

requires PGPB survival and colonization into the root microbiome, which is influenced by 

interactions with other microbes present. This paper develops the microwell recovery array 

(MRA), a microfabricated high-throughput screening device, as a novel bioprospecting tool to 

rapidly isolate and discover bacteria that improve Azospirillum brasilense colonization in corn 

root. The device simultaneously tests 104 interactions between A. brasilense and members of the 

Zea mays rhizobiome. In a single test, the MRA isolated Serratia marcescens, Serratia 

nematodiphila, Serratia ureilytica, Pantoea agglomerans, Enterobacter tabaci, and Acinetobacter 

bereziniae, which were confirmed as symbiotes to A. brasilense using off-chip validation assays. 

Isolates were then co-inoculated with A. brasilense on axenic maize seedlings inside a plant growth 

chamber and accelerated plant growth after 15 days, only when co-inoculated with A. brasilense. 

Follow-up root colonization assays identified that isolates also increased A. brasilense levels. 

These findings uncover new interactions useful for developing improved PGPB consortia and 

demonstrate that the MRA tool can rapidly explore complex environmental microbiomes for new 

isolates useful for generating positive phenotypic outcomes on a host.  

 

Manuscript: Barua N., Clouse M.K., Wagner M., Diaz D.R., Platt T.G., Hansen.  R., Microwell 

Recovery Array Screening of the Maize Rhizosphere to Improve Azospirillum brasilense 

Colonization and Plant Growth Outcomes., In preparation. 
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5.2. Introduction 

Increasing crop production and enhancing plant health in a sustainable manner is critical in the 

face of climate change [196], increasing population [197], reduction of cultivable lands [198], and 

pest or pathogen mediated diseases in crops [110, 199]. While chemical fertilizers and pesticides 

have significantly contributed to enhancing food production [110], their indiscriminate use has 

proven unsustainable and negatively impacts human and environmental health [111]. Much effort 

has been given to exploiting plant growth-promoting bacteria (PGPB) as bioinoculants, i.e., 

biofertilizers, to enhance plant growth [112, 113] and address the limitations of chemical 

approaches. Biofertilizers offer a low energy, environmentally friendly, and sustainable approach 

to promoting plant growth and increasing biomass production by nitrogen fixation [196, 200], 

phytohormone synthesis [201], stimulating root development [202], pathogen defense [203], and 

alleviating environmental [204] and human-induced stresses [13, 196].  

Currently, the biofertilizer market is dominated by diazotroph PGPB, such as Rhizobium spp., 

Bradyrhizobium spp., Actinorhizobium spp., Azotobacter spp., and Azospirillum spp. [114, 205]. 

A. brasilense is the most widely adopted diazotroph, and it displays versatile C- and N-metabolism. 

It also promotes plant growth through additional mechanisms, including phytohormone production 

[115], development of stress tolerance [114], inhibition of phytopathogens [116], solubilization of 

phosphates [117] and production of siderophores [118]. With this array of benefits, much effort 

has been given to understanding the microbial interactions that influence the association and 

colonization of A. brasilense and other diazotroph bacteria with non-leguminous maize (Zea mays) 

crops [119–121, 206]. Prior studies have also shown that co-inoculation of A. brasilense with 

complimentary organisms such as Bradyrhizobium [207, 208] and cyanobacteria isolates [209–
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212] improves maize yield, suggesting that PGPB applied as symbiotic, multi-species consortia 

may be key for biofertilizer improvement.   

Despite its importance in food production, most interactions that influence PGPB in the root 

environment remain poorly understood [112, 113] and as a result, PGPB are often unreliable and 

pose a high economic risk amongst agricultural producers, limiting broad adoption of N-fixing 

PGPB [20, 110]. Uncovering favorable PGPB interactions is a daunting task due high species 

diversity and abundance in the native root microbiome, which also varies widely due to differences 

in soil type/conditioning, irrigation, and climate at different producer sites [213]. Such a task 

necessitates development of new high-throughput screening technologies that can rapidly explore 

interactions in a microbiome and accelerate the pace of discovery. Here, microwell recovery arrays 

(MRAs) [85, 90, 214] were used to rapidly search the maize (Zea mays L.) rhizosphere microbiome 

for bacteria that improve A. brasilense colonization on corn roots for accelerated plant growth.  

To develop this approach, rhizosphere isolates from Zea mays L. were first collected from 

agricultural soils at a producer site in central Kansas and the composition of the microbial 

communities was analyzed with 16S community analysis to identify the culture medium that 

recovers the highest diversity of isolates. Then, A. brasilense species Sp7 expressing GFP [215] 

(herein referred to as Sp7) and small numbers of maize rhizosphere isolates are inoculated into 

individual microwells. Due to the randomized cell seeding process characterized previously [85, 

139], only a few isolates are partitioned into each well with Sp7, thus wells are compositionally 

unique from each other. Cells in the MRA are then co-cultured and Sp7 growth is monitored in 

parallel using time-lapse fluorescent microscopy (TLFM). Image analysis reveals the location of 

individual wells containing bacteria symbiotic to A. brasilense by increasing its growth rate and 

final growth level. Equipped with a photoresponsive hydrogel membrane extraction system and a 
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patterned light source [90], the MRA system can then selectively remove isolates from any 

individual well where a favorable effect on A. brasilense growth is found. Isolates are identified 

with 16S sequencing, interactions are validated in 96-well plate co-cultures, and symbiotic isolates 

are then applied in seedling co-inoculations to study their effect on A. brasilense root colonization 

Figure 5.1: MRAs for discovery of isolates that improve the colonization of A. brasilense in maize 

roots. (A) Healthy maize crops are picked in the flowering season for extraction of the rhizosphere 

microbiome. Stems are cut from the roots, soil is removed, and roots are washed to collect the 

rhizosphere microbiome. Different shapes represent unique microorganisms. (B) GFP-expressing 

A. brasilense strain Sp7 is combined with random isolates from the maize rhizosphere microbiome 

in 10 mm diameter microwells and trapped a photodegradable PEG hydrogel membrane. The 

growth of Sp7 was monitored in parallel during co-culture using TLFM, and the wells showing 

the highest level of Sp7 growth were extracted by selective ablation of the photodegradable 

membrane using patterned light exposure. The isolates extracted and recovered from the opened 

wells were then identified using 16S amplicon sequencing. (C) Isolates were co-inoculated with 

A. brasilense on healthy maize seeds (genotype B73), and plant growth studies were conducted to 

measure Sp7 colonization in maize roots and resulting plant growth. 



 

78 
 

and plant development (Figure 5.1). Here, we demonstrate that with one screen, the successful 

discovery of a panel of new isolates, each of which enhanced A. brasilense-mediated plant 

development, can be uncovered. This demonstrates the unique ability of the MRA as a 

bioprospecting tool that can rapidly access an environmental microbiome and uncover new strains 

with potential application as biofertilizers. Similar MRA methodology can be followed for 

screening for root and soil microbiomes for biocontrol agents or for discovery of bacteria 

producing new antimicrobial compounds. 

 

5.3. Experimental Methods 

5.3.1 Extraction and culture of Zea mays root isolates 

Soil and root samples were collected from four sampling sites at Budke field (co-ordinate: 

39.3533616 and -98.362541, 1147 m above sea level) and four sampling sites at Boyde field (co-

ordinate: 39.3950754 and -98.3470027, 968 m above sea level) at Glen Eder, Kansas during the 

flower blooming season. The soil samples were sent to K-State Soil Testing Lab for a complete 

analysis of carbon, nitrogen, phosphorous content, and soil pH. The comprehensive analysis of the 

soil samples from the two fields is listed in Supplementary Table 1. A total of 8 sets of 

rhizosphere soil and root samples were collected from maize plants grown in both fields (Figure 

5.1A). The rhizosphere soil and root samples were immediately kept on ice, transferred to the 

laboratory, and stored at 4 ºC. The suspensions were extracted by washing 200 g of each 

rhizosphere soil and root samples with 200mL of sterile, ice-cold 1X phosphate buffer saline (PBS 

buffer: 8 g/L NaCl, 0.2 g/L KCL, 0.2 g/L KH2PO4,1.15 g/L Na2HPO4, pH 7) for 20 minutes [216]. 

The resulting suspensions were sterile filtered using 0.8 µm sterile filters and suspended at 4400 
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rpm for 20 minutes to collect pellets containing rhizosphere isolates. Pellets containing Zea mays 

rhizosphere isolates were stored at -80ºC in 25% glycerol [214].  

5.3.2 Media selection 

Bacterial colonies of Zea mays rhizosphere samples were picked up from glycerol stocks using a 

sterile inoculation loop and incubated in TY Media (10g/L Bacto-tryptone, 10g/L NaCl, 5g/L 

Yeast Extract, pH: 7 ± 0.2), R2A media (0.50 g/L Yeast extract, 0.50 g/L Proteose Peptone, 

0.50g/L Casamino acids, 0.50 g/L Glucose, 0.50 g/L Soluble starch, 0.30 g/L Na-pyruvate, 0.30 

g/L K2HPO4, 0.05 g/L MgSO4.7H2O, pH: 7 ± 0.2), LB media (10g/L Tryptone, 10g/L NaCl, 5g/L 

Yeast Extract, pH: 7 ± 0.2), in sterile test tubes for 24 hrs (28°C, 215 rpm). After incubation, 

rhizosphere-enriched pellets from each culture media were stored at -80ºC in 25% glycerol before 

the selection, classification, and 16S community analysis to detect the media that recovered the 

highest diversity of Zea mays rhizosphere isolates. 

5.3.3 16S community analysis of Zea mays root isolates 

Purified gDNA samples of the Zea mays rhizosphere and their cultures in TY, R2A, and LB media 

were extracted using E.Z.N.A soil DNA kit (Omega Bio-Tek, Norcross, GA) and DNeasy Blood 

& Tissue Kit (Qiagen, Germantown, MD), diluted to 20 ng/µL in 100 µL aliquots and sent to 

Integrated Genomics Facility (Department of Plant Pathology, Kansas State University, 

Manhattan, KS) for 16S Illumina sequencing of the hypervariable V3 and V4 region using Nextera 

XT index Kit v2 (Illumina, Inc., San Diego, CA). 16S rRNA community analysis was performed 

with Qiime2-2020.8 (Bolyen et al., 2019). The multiplexed raw sequence data with the barcodes 

were demultiplexed using q2‐demux plugin, quality filtered, and denoised with q2‐dada2 

(Callahan et al., 2016) plugin aligned with mafft (Katoh et al., 2002). The q2-diversity plugin was 

used to determine alpha‐diversity metrics (observed OTUs [217] and Shannon’s diversity index 
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[218] after the rarefaction of the samples to 900 sequences per sample. Taxonomy was assigned 

to amplicon sequence variants using the silva-138-99-515-806 [219] classify‐sklearn naïve Bayes 

taxonomy classifier against the Silva 138 99% O.T.U.s reference sequences [220]. The q2-taxa 

plugin was used to explore and visualize the taxonomic composition of the classified sequences 

by creating taxa bar plots [221] for the Zea maize rhizobiome.  

5.3.4 MRA design and fabrication 

MRAs were fabricated by following the protocols described by Barua et al. [214]. Each array was 

divided into a 7×7 grid of sub-arrays, consisting of a 15×15 microwell arrays of 10 µm diameter, 

20 µm depth, and 30 µm pitch. A total of 11,025 microwells were etched on a single 3-inch 

diameter N-type silicon wafer (University Wafers), coated with 1 μm thick layer of Parylene N 

(PDS 2010 Labcoater, Specialty Coating Systems), using standard photolithography techniques 

described in previous publications [166, 167]. 

5.3.5 Bacteria seeding and trapping in microwell arrays 

A. brasilense SP7-GFP and Zea mays rhizosphere isolates were cultured in LB, R2A and TY media 

to mid-log phase and resuspended in their respective growth media to an OD600 of 0.1. Bacteria 

cells were inoculated in microwell arrays using protocols described previously (Figure 5.1B)  [90, 

139, 214]. For co-culture studies, cultures of SP7 (OD600=0.1) and Zea mays rhizosphere isolates 

were mixed at a ratio of 1:1 to reach a final OD600 of 0.1. 700 µL of each cell suspension was 

seeded on top of microwell arrays for 1 hr at room temperature for co-culture studies. Then, the 

substrates were dried, followed by the parylene lift-off process to remove cells attached to the 

array’s background regions [85, 90, 214]. 
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5.3.6 Photodegradable membrane attachment 

A novel poly-ethylene glycol (PEG) photodegradable membrane was attached on top of the MRA 

seeded with cells by following previously described methods [90]. The protocol for the attachment 

of the photodegradable membrane is described in detail in supplementary information. 

5.3.7 Time-lapse fluorescent microscopy and image analysis 

Wells were monitored with TLFM and outlier wells showing improved A. brasilense growth in 

the MRA were identified using image analysis in ImageJ. TLFM and image analysis methods have 

been described previously [214] and are also included in supplementary information. 

5.3.8 Recovery and storage of Isolates from microwell arrays 

Isolates were extracted from microwell arrays following previously described procedures [90, 

214]. The top two individual wells (A, B) with enhanced growth of Sp7 were opened by exposing 

them to a UV lighted in a ring pattern area with a 10 µm inner diameter and a 20 µm outer diameter 

to minimize cellular damage. The individual isolate cell suspensions were then plated onto agar 

growth media after extraction, and three colonies were sampled from each extracted microwell 

based on differences in colony morphology and color. Then individual colonies were cultured in 

respective media and stored in glycerol stocks to remove each isolate’s genomic DNA. A total of 

8 individual promoter isolates were recovered in this process and labeled as isolate A1, A2, A3, 

A4, B1, B2, B3, B4 for validation. 

5.3.9 Validation using 96-well plates 

It was previously demonstrated that the interactions observed in the promoter wells in MRA can 

be recapitulated in a 96-well plate validation assay [214]. Same methodology was applied to 
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validate the growth enhancement of A. brasilense in co-culture with the eight individual promoter 

isolates. The methods for the validation assays are included in the supplementary information. 

5.3.9 Identification of promoter isolates, culture and storage 

Eight individual isolates were identified with 16S rRNA sequencing described in the 

supplementary information. Six bacteria species capable of enhancing A. brasilense growth were 

identified as Acinetobacter bereziniae, Pantoea agglomerans, Serratia ureilytica, Serratia 

marcescens, Serratia nematodiphila, and Enterobacter tabaci.   Bacterial strains were streaked in 

R2A agar plates and incubated at 28°C for 24 hrs. A single colony of each strain was inoculated 

in 2 mL of R2A broth at 28 °C and 215 rpm overnight and stored in glycerol at -80°C. 

5.3.10 Plant growth studies to validate survival and colonization of A.brasilense SP7-

GFP 

Plant growth studies were conducted to validate the enhancement of Zea mays growth and SP7 

survival and colonization in maize roots in the presence of SP7 combined with each of the six 

bacterial strains using the protocol described by Niu and Kolter [222]. First, a small colony from 

the frozen stocks of the six bacterial strains and SP7 were inoculated in 2 mL of R2A broth at 28°C 

and 215 rpm overnight. 50 µL of overnight culture of each strain was transferred to 2 mL of fresh 

R2A broth and cultured for another 8 hr at 28°C. Cells were suspended at 4400 rpm for 10 min 

and resuspended in 1X PBS. Cell suspensions were diluted to ~108 cells per milliliter for each 

strain. Each cell suspension was mixed with SP7 in 50 mL falcon tubes in equal volume to prepare 

the dual-species bacterial suspensions [222]. 80 surface-sterilized and germinated maize seedlings 

were soaked in the six co-culture cell suspensions, SP7 monoculture cell suspension, mono-culture 

control cell suspensions of six individual isolates, and a sterile 1X PBS control, without shaking 

at room temperature for 1 hr. The maize seedlings adhered to bacteria, and the sterile seedlings 
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were transferred onto 20 ml ½ Murashige and Skoog (MS) agar (0.8%) in 16 x 150 mm glass tubes 

with sterile forceps. Sterile empty glass tubes of the same size were attached to the tubes containing 

seeds in a mouth-to-mouth way using porous air porous tape [222]. Sealed glass tubes were then 

placed in test tube racks and were transferred in a growth chamber under the conditions mentioned 

above, and the growth of the maize seedlings was observed for 15 days to measure root lengths 

and SP7 colonization in the maize roots in combination with one of the six bacterial strains (Figure 

5.1C). 

5.3.11 Quantification of A.brasilense SP7-GFP colonization on maize roots 

Three maize seedlings inoculated with SP7 monoculture and co-culture with one of the six bacteria 

strains were sampled on day 15 after inoculation. Roots from each maize seedling were cut and 

washed with sterile 1x PBS to remove agar adhered to the root surface. A 1-cm long primary root 

fragent below the maize kernel was then cut and transferred into 1.5 mL centrifuge tubes 

containing six glass beads (diameter: 3 mm, Propper) and 1 mL sterile 1x PBS buffer. The bacterial 

cells colonized on the root surfaces were dislodged by sonicating (amplitude: 30%; pulse: on 01 

sec, off 01 sec; time: 30 sec) for 1 min, then vortexing for another 1 min. This step was repeated 

twice, and the tube was put on ice for 1 min. The bacteria cell suspensions were collected and 

sequentially diluted by a dilution factor of 108. 10 µL of the diluted bacterial suspensions were 

spotted on R2A agar plates supplemented with 200 µg/mL of ampicillin and 10 µg/mL of 

tetracycline. The plates were tilted to spread the cells on agar surfaces and air-dried before 

incubating the plates at 28 °C in the dark for 16 to 60 hrs. The numbers of the colony-forming 

units (CFUs) were counted and recorded to calculate SP7 abundance in the roots colonized with 

SP7 monoculture and co-culture with the six bacterial strains using the following formula [222]: 

A. brasilense SP7-GFP abundance = 
CFU number ×100 ×Dilution times

Weight of root fragent (mg)
 (1) 
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5.4. Results and Discussions 

5.4.1 Development of the Microwell Recovery Arrays for Screening the Zea mays L. 

Rhizobiome for Isolates Symbiotic to A. brasilense. 

To screen interactions between Zea mays rhizosphere isolates and Sp7, it was first necessary to 

identify nutrient media that recovered the highest taxonomic diversity. This ensured that a 

maximum number of interactions would be observed during co-culture. Here, LB, TY, and R2A 

media were used to culture the rhizosphere microbiome of Zea mays L., cultures were then 

characterized using 16S community analysis. Sequencing unveiled 368 OTUs from the root 

washing, 233 OTUs after culturing the root washing in LB media, 330 OTUs after culturing the 

root washing in TY media, and 351 OTUs after culturing the root washing in R2A 

(Supplementary Figure 1A). Shannon’s diversity indexes for the isolates after root washing and 

after culture in LB, TY, and R2A media were 11.51, 9.334, 10.829, and 11.436, respectively 

(Supplementary Figure 1B). Taxonomic bar plots for the rhizosphere microbiome showed 

members of four bacterial phyla (Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria), 

with Pseudomonas, Serratia, Salmonella, and Bacillus genus making up the majority of the 

communities (Figure 5.2A). Based on the highest number of OTUs and the highest Shannon’s 

diversity index, R2A media was selected as the culture media for the MRA screen. 

After media selection, the MRA was used to screen for unknown interactions between the Zea 

mays L rhizobiome samples and A. brasilense strain Sp7-GFP. Prior MRA screens used 10 µm 

diameter wells to confine bacteria together and facilitate interaction, and bacteria were seeded at a 

concentration of OD600 = 0.2. Such conditions generated inoculum densities of ~35 cells/well, 

where each well was inoculated with a unique multispecies combination of bacteria [85, 214].  

These conditions were again used here, cells were then trapped inside wells by attaching a 
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photodegradable PEG membrane [90] and growth of Sp7 in each well was tracked during culture 

over 24 hrs using TLFM (Supplementary Figure 2,3, and 4). Growth kinetics were compared to 

those of Sp7 monoculture control arrays to identify wells showing Sp7 growth promotion. Both 

monoculture and co-cultures were evaluated across 3600 microwells.  

Compared to the monoculture control, significant changes in Sp7 growth metrics were observed 

on co-culture. Averaged endpoint fluorescence levels of Sp7 monoculture across the measured 

wells (n=3600 wells) showed relatively low variance (2=67) compared to co-culture (2=553), 

indicating an impact due to the addition of the rhizosphere microbiome (Figure 5.2B). Individual 

Figure 5.2: (A) Taxanomic bar plots of Zea mays rhizosphere enriched samples from roots and 

after culture in R2A, TY, and LB media. (B) TLFM images of a sample 15×15 array of 

microwells during monoculture of A. brasilense Sp7-GFP or during co-culture of A. brasilense 

Sp7-GFP with Zea mays L. rhizosphere isolates seeded into wells at a Sp7:isolate ratio of 1:1. 

The promoter outlier well A (indicated by the white square) and the promoter outlier well B 

(indicated by the white arrow) demonstrated the highest end-point fluorescent signal and growth 

rate of Sp7. (C) Sp7 growth curves generated from a sample 900 microwell array during Sp7 

monoculture (inset) and co-culture. 
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wells with increases in growth rates and final growth levels (Figure 5.2C) were also frequently 

observed. Wells containing Sp7 symbiotic interactions were detected by comparing both endpoint 

fluorescent signals and growth rates of Sp7 to monoculture wells using Grubb’s outlier testing 

[168]. The top two outlier wells (well A and B) with highest growth rates and end-point 

fluorescence signals of Sp7 (Figure 5.2B) were picked using Grubb’s outlier testing as the 

promoter wells containing the most potent symbionts of Sp7. A noticeable lag time was observed 

for Sp7 growth in promoter outlier wells compared to the monoculture wells. But the promoter 

Figure 5.3 Isolate extraction and validation of interactions. (A) Sequential removal of symbiotic 

communities from Sp7 co-culture with maize root isolates. Target wells were exposed to UV light 

in a ring pattern with a 10 µm inner diameter and a 20 µm outer diameter to remove the 

photodegradable membrane above the well. After degradation, cells were washed out of the 

opened wells using R2A media. Yellow arrow denotes bacteria cells during removal from a well. 

(B) Sp7 growth curves after inoculation into conditioned media from each of the six symbiotic 

isolates or unconditioned media (UCM). (C) Corresponding carrying capacity and growth rates. 

All growth experiments occurred at 28°C, 215 RPM. Statistical differences were identified by 

comparing Sp7 growth metrics in conditioned media from each isolate with Sp7 growth in UCM 

(Wilcoxon two-sample test, *=P<0.01, n=3 independent experiments). 
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isolates present in the promoter wells significantly enhanced the end-point fluorescent signals and 

growth rates of Sp7, indicating symbiotic interactions. With this criteria, 16.5% of the wells in the 

co-culture array exhibited symbiotic interactions. The top two outliers with the highest Sp7 

endpoint fluorescence signals and growth rates after 24 hours of culture were identified for 

selective recovery of the symbiotic isolates.  

 

5.4.2 Symbiotic Isolate Extraction, Identification, and Validation 

The Polygon400 patterned illumination tool was used to extract Sp7 symbiotic communities from 

the two highest outlier wells in the co-culture MRA for species identification and off-chip 

validation. Target wells were exposed to ring patterned (20 µm outer diameter,10 µm internal 

diameter) 365 nm light (20 mW/cm2, 10 min [90, 214]) to degrade the membrane over the well 

and retrieve viable bacteria. Membrane degradation and extraction was confirmed by brightfield 

microscopy (Figure 5.3A). Cells from an opened well were then retrieved by washing the arrays 

with corresponding nutrient media (R2A media). Media used in the extraction was then streak 

isolated on corresponding agar plates (R2A agar) to recover individual isolate colonies. During 

previous development of this extraction protocol, it was demonstrated that >99.9% of bacteria 

extracted originated from an opened well with minimal cross-contamination from other wells or 

from the outside environment [90], which ensured that the isolates recovered here originated from 

one of the two target wells.  

After extraction, phylogenetic analysis using 16S rRNA amplicon sequencing of all recovered 

isolates was performed (Supplementary Figure 5). Eight symbiotic isolates were identified as 

Serratia marcescens (2 of 8), Serratia nematodiphila (1 of 8), Serratia ureilytica (1 of 8), 

Enterobacter tabaci (2 of 8), Acinetobacter bereziniae (1 of 8), and Pantoea agglomerans (1 of 

8). At this point, the MRA reduced the initial root microbiome isolate sample to a panel of six 
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isolates for further investigation (Figure 5.1C). Details on the symbiotic isolates and their specific 

plant growth-promoting capabilities are listed in Table 1. It was notable that five out of the six 

different isolates were previously characterized as plant growth-promoting rhizobacteria [183, 

223–227], however, to our knowledge, none have been reported to have a symbiotic effect on A. 

brasilense.  

To verify the on-chip observations, interactions between each isolate and Sp7 were recapitulated 

in an independent off-chip co-culture. Following our previous validation assay procedure [214], 

cell free culture fluid (CFCF) from each isolate was added with R2A growth media at a ratio of 

1:1 to create conditioned media. Sp7 was then inoculated into conditioned media at an initial OD600 

of 0.2 and cultured in a 96-well plate format to quantify its growth metrics (Figure 5.3B). Culture 

in CFCF accounts for diffusive interactions between the focal species and the isolate and thus the 

interactions observed in a 1.6 pL volume of an individual microwell are scaled up to 100 mL 

solution volumes in individual wells of a 96-well plate [214]. A monoculture of Sp7 (OD600=0.2) 

in unconditioned media (UCM), which was R2A culture media instead supplemented with a blank 

solution (1X PBS) at a 1:1 ratio, was also performed and used for comparison. As a negative 

control, conditioned media was inoculated without Sp7 to verify that the measured growth was 

solely due to the isolates, not contaminating microbes. Growthcurver R [192] was then used to 

estimate the carrying capacities and growth rates of Sp7 in each experiment (Supplementary 

Figure 6). The quantified growth metrics revealed that, congruent with microwell observations, 

all six isolates significantly increased the growth rate and carrying capacity of Sp7 compared to 

the UCM monoculture control (Figure 5.3C), validating the interactions uncovered in the MRA 

screen and motivating further investigation of the interacting pair in the context of a root host. 
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Isolate Isolate ID 
Effect on growth 

promotion 
References 

Serratia nematodiphila A1 N-fixing PGPR [223] 

Serratia marcescens 

A2 Indole-3 acetic acid 

(IAA) and siderophore 

production 

[224, 225] 

 
B3 

Serratia ureilytica A3 N-fixing PGPR [223] 

Enterobacter tabaci 

A4 
Indole-3 acetic acid 

(IAA) and siderophore 

production; solubilization 

of phosphate and 

potassium; nitrogen 

metabolism 

[226] 

B2 

Pantoea agglomerans B1 IAA production 
 

[228, 229] 

Acinetobacter bereziniae B4 
No known application in 

plant growth promotion 
[230] 

Table 5.1: Identification of Sp-7 mutualist isolates extracted from the Zea mays L. rhizosphere 

microbiome using the MRA and their previously described impact on plant growth promotion. 

5.4.3 Effect of A. brasilense - isolate co-inoculation on Zea Mays growth 

With a panel of validated isolates, the effect of co-inoculation with Sp7 and each individual isolate 

on the growth of axenic maize seedlings was studied in a growth chamber environment. After 

inoculating the surface-sterilized and germinated seeds with a cell suspension containing both Sp7 

and an isolate at a cellular ratio of 1:1, the axenic seedlings were transferred to a glass tube growth 

chamber and allowed to grow in ½ MS agar for 15 days (Figure 5.4A and B). Two control 

treatments, one with no inoculation and one with Sp7 inoculation only were used for comparison. 

Because several isolates also had known plant growth promoting properties (Table 1) surface-

sterilized and germinated seedlings inoculated only with individual isolates was added as a final 

set of controls (Supplementary Figure 7).  All glass tube growth chambers were then placed 
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under diurnal light in a plant growth chamber, and height of the plants were measured every five 

days.  

In all the treatments, leaf emergence from the maize seedlings was observed on Day 2, it was 

therefore concluded that the isolate co-inoculation with Sp7 did not have an observed impact on 

leaf emergence. Co-inoculations also did not significantly impact plant height at Day 5. However,  

significant differences were observed at Day 15 (Figure 5.4B and C). At this time, seedlings 

grown after inoculating with Sp7 monoculture showed significantly higher plant height compared 

to the axenic maize seedlings grown in no-inoculum conditions, demonstrating the positive impact 

of A. brasilense alone. Additionally, axenic seeds soaked with Sp7 and each individual isolate 

showed significantly higher plant height at Day 15 compared to both control treatments of Sp7 

only and no inoculum. Finally, plant height for the seedlings inoculated only with individual 

isolates showed diminished growth compared to seedlings inoculated with Sp7 only 

Figure 5.4: Growth of axenic maize seedlings in growth chamber environment. (A) The double-

tube growth chanber for accomodating surface-sterilized and germinated maize seedlings inoculated 

with ultrapure water (control), Sp7 monoculture, and Sp7 with a promoter isolates. Two test tubes 

were attached in a mouth-to-mouth fashion with air-porous tape. (B) Growth of the axenic maize 

seedlings in the double-tube growth chamber at Day 15. (C) Comparison of plant heights for each 

treatment at Day 5 and Day 15 (*, Wilcoxon Rank test: p-value < 0.01). 
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(Supplementary Figure 7). This control rules out growth enhancement only from individual 

isolates, and demonstrates that improvements in plant growth are achieved when co-inoculating A. 

brasilense together with promoter isolates.  

5.4.4 Survival and Colonization of A. brasilense on Maize roots 

Given the A. brasilense growth promotion observed in MRA and 96-well plate co-cultures 

combined with improved maize growth outcomes with co-inoculation, we hypothesized that the 

promoter isolates enhanced A. brasilense colonization levels over the root host during plant growth 

studies. To test this hypothesis, standard plating methodology was used to measure Sp7 

colonization levels in maize roots from the plant growth studies [222]. Cell suspensions were 

collected by washing 20 mg of the roots after Day 15 using 1X PBS, then sequentially diluted by 

a factor of 108. Suspensions were then plated in 3 parallel columns to quantify A. brasilense levels 

in CFU/mL. Plating was done on antibiotics-supplemented R2A agar plates (100 µg/mL 

ampicillin, 100 µg/mL tetracycline) to selectively recover Sp7. To verify that only Sp7 would be 

recovered, individual cultures of six individual isolates were also plated on R2A agar plates 

supplemented with these antibiotics and cultured for 72 hr, and no cell colonies were observed 

(Supplementary Figure 8). 

After plating the cell suspensions, it was observed that seedling co-inoculation with S. ureilytica, 

S. marcescens, P. agglomerans, E. tabaci, and A. bereziniae generated significantly higher levels 

of Sp7 compared to inoculations with only Sp7 (p-value<0.01), with S. nematodiphila showing 

less of and increase (p-value<0.05) . Among the six-cell suspensions, S. ureilytica generated the 

highest levels of Sp7. The CFU/mL value was normalized to the root mass to compute the relative 

abundance of Sp7. While all isolates generated elevated levels of Sp7 relative abundance values 

compared to the control (p<0.05), S. ureilytica, S. marcescens, P. agglomerans, and A. bereziniae 
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generated the most significant increases (p-value<0.01). Similar to the CFU/mL data, co-

inoculations with S. ureilytica generated the highest levels of relative abundance (Figure 5.5A 

and B). This verifies that the isolates increased the survival and colonization of Sp7 in maize roots 

and strongly suggests this as the reason for the improvements in plant growth on co-inoculation, 

as observed in Figure 5.4.  

5.6 Conclusions 

Unraveling microbe-microbe interactions that exist between PGPB and indigenous bacteria in the 

rhizosphere of crops is critical for efficient and reliable use of PGPB in sustainable food and 

agriculture production [231]. Poor survival and colonization of inoculated PGPB in the rhizosphere 

is commonly cited as a limiting factor in reliable PGPB field application [232], highlighting the 

need to expedite the pace at which important interactions are discovered. Building off of previous 

progress [90, 139, 214], here we applied the MRA tool towards identification of symbiotic 

interactions between a well-known diazotrophic PGPB and maize rhizobiome samples taken from 

Figure 5.5: Sp7-GFP colonization in Zea mays roots. (A) Plated colonies after 108 fold diluted 

cell suspensions from Zea mays roots in R2A agar plates supplemented with 100 µg/ml 

ampicillin and tetracycline. (B) CFU/ml and relative abundance of Sp7-GFP from each co-

inoculation in Zea mays roots. 
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the field. In one screen, the MRA device uncovered six complementary bacteria from a maize 

rhizosphere community that were complementary to A. brasilense. Compared to traditional, low-

throughput methods of observing interactions that require sequencing candidate isolates before the 

interaction is observed, the MRA first provides high-throughput observation of thousands of 

interactions between PGPB and unknown microbiome members. Only isolates that elicit the 

highest impact on PGPB growth metrics are removed for sequencing, identification and further 

investigation. Combined with the high-density of microscale co-culture cites, a single MRA device 

can accommodate interactions from diverse and complex microbiomes consisting of thousands of 

unique bacteria species or strains. 

 Here we also demonstrate, for the first time, that interactions initially observed in the MRA 

screen can also be observed in the context of a root host, and that pairing of symbiotic isolates 

found in the MRA with the PGPB can elicit a positive phenotypic impact on plant development. 

The finding supports a growing body of literature suggesting that application of PGPB as 

complementary, multispecies consortia instead of as single-strain inoculations can improve plant 

health and development [233, 234]. Moreover, the workflow developed here - consisting of field 

sampling, media selection, MRA screening, cross validation, and application - lays the ground 

work for future bioprospecting endeavors that search for environmental isolates with symbiotic or 

antagonistic interactions to bacteria with known functional importance. The rapid pace at which 

interactions can be discovered and new isolates can be obtained can lead to savings in cost and 

time, advantageous from both academic and commercial standpoints. Beyond the search for 

microbes useful for PGPB consortia, the approach holds promise for discovery of pathogen 
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inhibitors, both for biocontrol applications and for discovery of new bacteriocins that can combat 

antimicrobial resistance.     
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Chapter 6 : Microwell Recovery Array for Rapid Screening of Large Isolate 

Collections for Identification of Pathogen-Suppressing Bacteria 

6.1 Overview 

Screening soil and root microbiomes to discover microorganisms that can inhibit the survival and 

growth of pathogenetic bacteria is important for developing improved probiotic and biocontrol 

agents. Microwell recovery arrays (MRA), a novel high throughput screening tool, is designed to 

generate random combinations between a fluorescently labeled bacterial pathogen and a controlled 

number of microbiome isolates. Isolates that display the highest levels of pathogen antagonism 

can be extracted, validated with off-chip assays, then characterized with whole sequencing. With 

the aid of the MRAs, libraries containing 576 unique Agrobacterium isolates are rapidly screened 

for pathogen suppression. MRAs were designed to operate in a pathogen challenge mode that 

screens for the most potent inhibitors of Agrobacterium tumefaciens, the causative agent of Crown 

Gall disease in plants. While A. tumefaciens pathogenesis and intraspecific interactions have been 

studied extensively, far less is known about A. tumefaciens interactions with other members of 

plant microbiomes. Therefore, a high number of fluorescently labeled A. tumefaciens sp.15955 

was combined with a low number of non-pathogenic Agrobacterium isolates collected from 

Helianthus annuus roots to isolate the Agrobacterium isolates most capable of suppressing A. 

tumefaciens sp.15955. First, an inoculum of A. tumefaciens sp. 15955 expressing GFP and 

Agrobacterium isolates was seeded in microwells at various cellular ratios. After culture, selective 

recovery of cells from individual wells displaying the highest levels of Agro 15955-GFP inhibition 

was achieved using a high-resolution, light-based extraction system. The interactions are then 

validated in 96-well plate assays, and the phenotypic characterization of the candidate isolates is 

performed. Here, several Agrobacterium isolates were uncovered for inhibiting A. tumefaciens sp. 
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15955 growth. A total of nine non-pathogenic Agrobacterium isolates were discovered as potent 

inhibitors of Agro 15955-GFP, and a bacteriocin bioassay was conducted to validate the inhibitory 

effects of isolates. The discovery of such growth-inhibiting isolates will help improve plant 

productivity by using them as reliable biocontrol agents that prevent Crown Gall disease. Further, 

the MRA pathogen challenge model developed here is broadly applicable to screening 

microbiomes or isolate collections for pathogen-inhibiting bacteria and their associated gene 

clusters, relevant to discovery of probiotic strains and discovery of new antibiotics in response to 

the emergence of antimicrobial resistant pathogens. 
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6.2 Introduction 

Pathogenic microorganisms are often causative agents of plant disease [235, 236], blood 

contamination [237, 238], lung infection [239, 240], and food poisoning [238, 241] in humans and 

animals. Probiotic bacteria that are antagonistic towards these pathogens represent a potential 

alternative in preventing and controlling pathogenic microorganisms. Application of microbes that 

are antagonistic towards these pathogens has recently emerged as a promising alternative approach 

to traditional biocontrol methods, which are limited by time sensitivity, low host specificity, 

unpredictability, and high capital cost. With this approach, screening and isolation of beneficial 

bacteria from their natural environment, followed by genomic characterization, is essential for 

their discovery and application [242]. However, despite recent advances in genomic and 

metagenomic approaches to determine community structure and species abundance [12], 

identification of those organisms with the highest potential for pathogen inhibition from a complex 

microbiome remains difficult, primarily due to the wide range of functional diversity found in 

natural isolates and the missing link between genomic information and function in most organisms.  

 Based on their observed interactions with pathogens, screening microorganisms is a 

promising alternative for selecting potential biocontrol agents [11, 243]. Observing microbe-

microbe interactions can provide insight into the antagonizing organisms’ ecological fitness and 

its effectiveness against the competing pathogen [244]. Such an approach has proven to provide 

the discovery of landmark biocontrol agents. For example, Agrobacterium tumefaciens, a 

ubiquitous α-proteobacterium of the Rhizobiaceae family and the causative agent of crown gall 

disease in plants [245, 246], infects more than 90 families of dicotyledonous plants, resulting in 

significant agronomic losses [247–250]. [251, 252]. Rhizobium rhizogenes K84 and its plasmid-

transfer-deficient derivative K1026 have been widely used as crown gall biocontrol agents because 
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of their innate capabilities to produce the antibiotic agrocin 84 [253]. This was the first natural 

bacterial isolate used as a commercial biocontrol agent and was initially isolated from the soil 

around a plant gall [254]. While traditional techniques for environmental control include reducing 

plant wounds [251], abandoning pathogen infested soils [255], soil fumigation [245], and 

Agrobacterium-induced programmed cell death [256] have also been explored, use of avirulent 

Agrobacterium strains such as K84 have proven to be the most effective for inhibiting A. 

tumefaciens [257].  Despite its commercial success, K84 has been impeded by limited host 

specificity, necessitating the need for a more diverse and robust panel of biocontrol agents against 

A. tumefaciens. For example, Kawaguchi et al. conducted in vitro antibiosis assay for biological 

control of crown gall by combining non-pathogenic Agrobacterium vitis strain VAR03-1 from a 

nursery stock of grapevine (Vitis vinifera L.) with A. tumefaciens strains in yeast-mannitol agar 

plates [258]. Non-pathogenic Agrobacterium vitis strain VAR03-1 produced a bacteriocin and 

successfully inhibited tumor formation on the stems of tomato and grapevine seedlings caused by 

Agrobacterium tumefaciens [258]. Recently, Li et al. screened Agrobacterium vitis sp. E26 can 

produce the antibacterial compound Ar26, with proven inhibition against crown gall tumors [259]. 

While both applications successfully screened non-pathogenic Agrobacterium strains to inhibit 

pathogenic A. tumefaciens strains, they were widely reliant on qualitative, low throughput 

observation of manually paired, dual-species bulk populations in agar plates.  

 Micro- and nanoscale devices are useful alternatives for addressing the limitations of 

classical methods for studying bacteria interaction because they facilitate high-throughput 

measurement and can track single-cell behavior while providing a well-controlled 

microenvironment. These approaches have advanced our understanding of microbial mutualism 

[179], metabolite exchange [180], community adaptation to environmental pressures [25, 181], 
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and the role of spatial structure in driving community phenotypes [44, 182], among other findings. 

Here, microwell recovery array (MRA), a high-throughput, lab-on-a-chip device was demonstrated 

to screen pair-wise or multi-species interaction networks among environmental bacterial isolates 

and a fluorescently-labeled focal species in the pathogen challenge mode. The platform offers the 

benefit of combining then screening up to 104 unique microbial combinations, then recovery of 

any sample from any well for genetic characterization, dramatically increasing the pace at which 

significant interactions can be uncovered. Our previous studies [214] provided an initial 

demonstration of this approach by screening interactions between a beneficial plant growth-

promoting bacteria (PGPB) and the Populus rhizobiome to uncover higher-order networks of 

bacteria that promoted PGPB growth. Building on this approach, the MRA screen was adapted to 

a “pathogen challenge mode” where the focal species is instead a fluorescently labeled pathogen 

used to challenge isolates that are potential candidates for biocontrol. By controlling the pathogen-

to-isolate seeding ratios [85], isolates are countered against increasingly higher numbers of 

pathogens to identify the most potent inhibitors. Using this methodology, a small number of A. 

tumefaciens sp. 15955-the plant pathogenetic focal species expressing GFP was combined with 

Agrobacterium isolates extracted from the roots of Helianthus annuus plants and seeded into arrays 

of 10µm diameter wells in different cell ratios. While seeding interacting cells together in such 

very small confinement, multi-species biofilms are successfully mimicked [88] and inter-cellular 

interactions are facilitated. The seeded cells are then trapped inside the microwells with a 

previously developed photodegradable polyethylene glycol (PEG)-based membrane [90], co-

cultured, and then focal strain growth in each well is tracked with time-lapse fluorescent 

microscopy (TLFM). Microwells with diminished Agro 15955-GFP are extracted from any 

individual well using a patterned light source by spatially eroding the membrane, releasing cells 
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into a solution for recovery and downstream genome characterization (Figure 6.1). With the 

extraction and recovery capabilities of the MRAs, a collection of Agrobacterium isolates capable 

of diminishing Agro 15955-GFP were sampled for follow-up phenotypic characterization and 

whole genome sequencing. A total of nine Agrobacterium isolates capable of inhibiting the growth 

of Agro 15955-GFP were extracted in the pathogen challenge mode and were validated off-chip 

using 96-well plate validation assays and bacteriocin bioassays. Currently, the whole genome 

sequences of the Agro 15955-GFP are undergoing bioinformatics analysis to identify bacteriocin 

gene clusters responsible for pathogen inhibition. 

6.3 Experimental Methods 

6.3.1 Preparation and culture of A.tumefaciens sp. 15955 Strains 

Bacteria strains and the plasmids used in this research are listed in the Table S1. A.tumefaciens sp. 

15955 expressing sfGFP from a T-DNA insertion, as described by Platt et al. [260]. Plasmid 

pSRKKm-sfGFP was introduced into A. tumefaciens sp. 15955 via mating with Escherichia coli 

S17-1 λpir carrying the plasmids using previously described methods [165]. These plasmids were 

transformed into competent S17-1 λpir E. coli strains using calcium chloride heat-shock 

transformation. A. tumefaciens sp. 15955 were stored in 50% glycerol at -80 ⁰C. Sterile inoculation 

loops were used to pick up cells from the frozen stocks and culture in ATGN media (0.079 M 

KH2PO4, 0.015 M (NH4)2SO4, 0.6 mM MgSO4.7H2O, 0.06 mM CaCl2.2H2O, 0.0071mM 

MnSO4.H2O, 0.125 M FeSO4.7H2O, 28 mM Glucose, pH: 7 ± 0.2) in sterile test tubes 

supplemented with Kanamycin (150 μg/mL) for 24 hrs (28°C, 215 rpm). 

6.3.2 Extraction and culture of Agrobacterium root isolates 

Sunflowers were identified as Helianthus annuus before blooming based on leaf and stem 

morphology. Sunflowers were extracted by gently removing soil from around the base of the plant 
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using a spade. Roots were exposed by gently shaking the root to remove excess soil. Samples were 

then placed in a Ziploc bag and placed on ice until at the lab. Once at the lab, the samples were 

weighed and soaked in 1X phosphate buffer saline added to the Ziploc bag. The bags were agitated 

every 10 minutes for 1 hour. 100 mL were then removed from the soil-water slurry and diluted. 

The dilutions were plated on media 1A and placed at 28°C for 3 to 5 days. Colonies that were 

round, black, and shiny were then struck onto yeast lactose media and ATGN. These samples were 

placed at 28°C overnight. The next day the yeast lactose plates were flooded with Benedict's 

reagent, and colonies that formed a yellow precipitate were selected from the corresponding 

ATGN plate and struck for isolation on ATGN and incubated overnight at 28°C. A colony was 

selected from that primary isolation streak and was struck again for isolation on ATGN, which 

was then incubated overnight at 28°C. A colony from the secondary streak was then selected and 

grown in liquid ATGN to freeze at -80°Celsius. From the freezer stock, the isolate was grown in 

liquid ATGN overnight until an OD600 of between 0.4 and 1.0 was reached, which should 

correspond to cells in the mid-log growth phase. 

6.3.3 Initial Sequencing of Agrobacterium root isolates 

The Qiagen blood and tissue kit were used to extract the DNA. DNA concentrations were measured 

with a pico green assay kit. The DNA was then sent to Integrated Genomics Facility (IGF) at 

Kansas State University, and we received the raw files back once they have sequenced them.  

6.3.4 MRA design and fabrication 

MRAs containing 10µm diameter microwells, 20µm depth, and spaced at a 30µm pitch were 

etched on silicon wafers (University Wafers). The array was divided into a 7×7 grid of sub-arrays; 

each sub-array consisted of 15×15 arrays of microwells and contained 11,025 microwells available 

for analysis [214]. Wells were assigned with unique on-chip addresses for identification during 
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brightfield microscopy. 3-inch diameter N-type silicon wafers (University Wafers) were coated 

with a 1μm thick layer of Parylene N (PDS 2010 Labcoater, Specialty Coating Systems), and 

standard photolithography techniques following previous protocols were applied to fabricate 

MRAs [90, 214]. 

6.3.5 Bacteria seeding and trapping in microwell arrays 

A.tumefaciens sp. 15955-GFP and Agrobacterium root isolates were grown in ATGN minimal 

media to mid-log phase and resuspended in their respective growth media to an OD600 of 0.1. Cells 

were inoculated in microwell arrays using the protocols described in previous papers [90, 214]. 

700µL cell suspensions were incubated over the substrates at room temperature for 1hr. Then, the 

substrates were dried, followed by the parylene lift-off process to remove cells attached to the 

background regions of the array [85, 214]. For co-culture studies of screening Agrobacterium root 

isolates, the seeding solution contained SP 15955-GFP, and Agrobacterium root isolates were 

mixed at ratios of 1:1, 10:1, and 100:1. For 1:1 ratio, OD600=0.1 cultures of SP 15955-GFP and 

Agrobacterium root isolates were mixed at equal volumes to reach a final OD600=0.1. Again, for 

the 10:1 ratio, OD600=1 cultures of SP 15955-GFP and OD600=0.1 cultures of Agrobacterium root 

isolates were mixed and diluted to reach OD600=0.1. Similarly, for the 100:1 ratio, OD600=10 

cultures of SP 15955-GFP and OD600=0.1 cultures of Agrobacterium root isolates were mixed and 
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diluted to reach OD600=0.1. 700µL of each of these suspensions were seeded on top of microwell 

arrays for 1hr at room temperature for co-culture studies. 

6.3.6 Photodegradable membrane attachment 

A previously described protocol for attaching the photodegradable hydrogel membranes to 

microwell arrays was used here [90, 214]. At first, perfluoroalkylated glass slides were prepared 

by incubating 25×25 mm clean glass slides (Fisher Scientific) in 20 mL of 0.5% v/v 

trichloro(1H,1H,2H,2H-perfluorooctyl) silane in toluene for 3 hrs [90, 214]. Then, NaH2PO4 was 

added with ATGN liquid media to obtain phosphate buffer saline (PBS) with 100mM final 

phosphate concentration, and the pH of the solution was adjusted eight by adding 5M NaOH (aq.). 

Figure 6.1: Microwell recovery arrays for screening in the pathogen challenge mode. (i) GFP-

expressing Agrobacterium tumefaciens sp. 15955 are combined with Agrobacterium isolates 

from Helianthus annus rhizosphere at a cellular ratio favorable for A.tumefaciens sp. 15955 

growth. Here, a limited number of Agrobacterium isolates were challenged against A.tumefaciens 

sp. 15955 to discover the most potent inhibitors of A. tumefaciens sp. 15955. Here, different 

shapes represent unique Agrobacterium isolates. Cells are stochastically seeded and trapped 

within microwells using a photodegradable PEG hydrogel membrane to get unique combinations 

of interaction networks and monitored in parallel during co-culture using TLFM. (ii) Wells with 

lowest levels of focal species growth were identified as anatagonistic outliers. (iii) The membrane 

over the target antagonistic well is eroded using patterned light exposure, then (iv) isolates 

inhibiting the growth of A.tumefaciens sp. 15955 were extracted and recovered from an opened 

well and characterized using whole genome sequencing.  
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12.5 µL of this PBS-ATGN solution was then mixed with 5.6 μL of photodegradable PEG 

diacrylate monomer (MW 3400) and 6.9 μL of a four-arm PEG thiol solution monomer to obtain 

membrane precursor solution [141] (MW 10000, NOF America Corporation, DE-100SH) with 

equal concentrations of both PEG diacrylate monomer (22mM) and four-arm PEG thiol solution 

monomer (22mM). The membrane precursor solution was then transferred on top of the microwell 

substrates by pipetting 15µL of the liquid precursor solution on top of the perfluoroalkylated glass 

slides and placing the solution over the seeded microwell substrate. A constant 38µm gap between 

the glass slide and the microwell for the precursor solution was provided with the aid of metal 

spacers were used. The membrane was then formed through monomer crosslinking and gelation 

by incubating for 25min at room temperature [90, 214]. After careful separation of the glass slide 

from the membrane-functionalized microwell array, the microwell array was placed inside a 

custom 3D printed scaffold, previously designed for imaging microwell arrays with time-lapse 

fluorescence microscopy [214].  

6.3.7 Time-lapse fluorescent microscopy 

Time-lapse fluorescent microscopy images were acquired with a Nikon Eclipse Ti-U inverted 

microscope equipped with a 20× objective, a motorized XYZ stage, a humidified live-cell 

incubation chamber (Tokai Hit) a DS-QiMc monochromatic digital camera, and NIS Elements 

Image acquisition software. The seeded microwell arrays were sealed with the photodegradable 

PEG membrane, and the inverted arrays were placed in a custom 3D printed scaffold to keep them 

submerged under liquid media while imaging [214]. Then the scaffold was placed inside a 

humidified live-cell incubation chamber at 28⁰C during imaging. A FITC filter was used to image 

15955-GFP and YR343-GFP strains (20×, 200 ms, 17.1× gain) with a neutral density filter with 

25% standard light intensity to ensure imaging without photobleaching. Brightfield images were 
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also taken at each section of the array after fluorescent imaging. Images of the microwell arrays 

were taken every 60 minutes during culture.  

6.3.8 Image Analysis 

GFP fluorescent images from the 15955-GFP and Agrobacterium root isolate co-culture system 

was analyzed by the protocol described by Timm et al. We used the Protein Array Analyzer tool 

in ImageJ to generate growth profiles for each organism to identify the top 3 wells with the lowest 

growth levels for extraction [137]. At first, the timelapse fluorescent images were imported as 

image sequences corrected by subtracting darkfield images from illumination field images with 

the image calculator plugin. Then image backgrounds were removed by selecting a 125 radius 

sliding paraboloid, and illumination correction was performed using calculator plus plugin. 

Finally, each strain’s growth in the microwells was calculated using ImageJ “Micro Array” plugin 

[137]. 

6.3.9 Recovery and storage of Isolates from microwell arrays 

Isolates were extracted from microwell arrays by following the procedures described previously 

[90, 214]. The top three individual wells (A, B, C) with diminished growth of Agro 15955-GFP 

were then opened by exposing them to a ring pattern UV exposure area with 10µm inner diameter 

and 20µm outer diameter. The individual isolate cell suspensions were plated onto ATGN agar 

media after extraction, and three colonies were sampled from each extracted microwell based on 

differences in colony morphology and color. Then individual colonies were cultured in AT 

minimal media and stored in glycerol stocks to extract genomic DNA of each isolate. 9 individual 

antagonistic isolates were recovered in this process and labeled as isolate A1, A2, A3, B1, B2, B3, 

C1, C2 and C3 for validation. 
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6.3.10 Validation using 96 well plates.  

To obtain CFCF from individual isolates, each isolate was cultured (28⁰C, 3000 rpm) in 2mL of 

ATGN liquid media overnight, and then cells were removed from the media by centrifugation 

(2000g, 10 min). To obtain CFCF from combinatorial mixtures, isolate panels were instead 

inoculated together in R2A media and cultured overnight, followed by cell removal by 

centrifugation. To obtain conditioned media, isolate CFCF was mixed with Agro 15955-GFP in 

fresh ATGN media at a 1:1 volumetric ratio to reach an initial OD600 value of 0.1 (final volume = 

100 µL), at which point growth was quantified with a Biotek Epoch 2 Multi-Mode Microplate 

Reader (28⁰C, 300rpm). Unconditioned media was obtained following the same procedure, except 

1X PBS was added to fresh ATGN media instead of isolate CFCF. To verify, the OD600 

measurement was due to Agro 15955-GFP growth, CFCF from selected isolates without 

inoculation of Agro 15955-GFP was also measured. A total of n=3 independent replicates were 

measured for each culture condition. The growth kinetics of Agro 15955-GFP in all co-culture and 

mono-culture wells were analyzed with Growthcurver, an R package to determine the growth rates 

and carrying capacities of bacteria cells [192]. The average growth rates of Agro 15955-GFP were 

calculated for each co-culture, and mono-culture wells and the average growth rates of each 

combination were compared with those from the mono-culture using the Wilcoxon two-sample 

test. 

6.3.11 Bacteriocin bioassays 

Strains to be tested for bacteriocin production were detected on ATGN agar plates using A. 

tumefaciens sp. 15955 as an indicator, following the protocol described by Fattahi et al. [87]. Agro 

15955-GFP and recovered nine antagonist isolates were cultured overnight in ATGN liquid media 

at 28 °C and 215 rpm. All cultures were diluted to OD600=0.6 in ATGN media. 35 µl of the 
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antagonist isolates were inoculated in tubes containing 10ml of molten ATGN agar (65 °C), 

vortexed vigorously for 10 s, and then poured onto sterile 60 × 15 mm Petri dishes. 7.5 μL of the 

Agro 15955-GFP cells were spotted in the center of the solidified agar previously overlaid with 

antagonist isolates and allowed to air-dry. The plates were then wrapped with parafilm to prevent 

the shrinking of the media and incubated at 28 °C for 72 hrs to validate the accumulation of 

bacteriocin [257].  

Figure 6.2: Phylogeny tree for Agrobacterium isolates extracted from Helianthus annuus roots 
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6.4. Results  

6.4.1 Whole-genome sequencing uncovers a diverse collection of Agrobacterium 

isolates 

The whole-genome sequencing of the Helianthus annuus root isolate collection generated a diverse 

collection of Agrobacterium isolates. A total of 576 Agrobacterium isolates were identified from 

the whole-genome sequencing data.   

6.4.2 Co-culturing a reduced number of Agrobacterium root isolate cells with A. 

tumefaciens sp. 15955 for the MRA screening in pathogen challenge mode 

To demonstrate operation of the MRA in pathogen challenge mode, A. tumefaciens sp. 15955 

(hereafter denoted Agro 15955-GFP) and Agrobacterium root isolates were stochastically seeded 

in microwell arrays at different cellular ratios, trapped the cells inside the microwells using 

photodegradable PEG membrane, and tracked. Agro 15955-GFP fluorescent signals were used to 

screen for isolates inhibiting the growth of Agro 15955-GFP. Control Agro 15955-GFP mono-

culture arrays seeded only with Agro 15955-GFP at OD600=0.1 were tracked with time-lapse 

fluorescence microscopy (TLFM) for comparison. In each case, Agro 15955-GFP growth was 

tracked across 4×4 arrays of microwells, with each array containing 225 wells (n=3600 in total). 

Fluorescent signals of each well were calculated every hour and over 24 hours using ImageJ [137].  

The seeding of Agro 15955-GFP contributed to a consistent growth trend throughout the array in 

the Agro 15955-GFP in mono-culture control (Figure 6.3A). This resulted in a low variance of 

the distribution of endpoint fluorescent levels (σ2=97) and a nominal growth rate of ~6.01 hr-1
 in 

most wells. Despite having nominal growth in most wells, a fraction of wells in the mono-culture 

arrays were outlier wells showing endpoint fluorescent signals significantly lower than the nominal 

wells. This can be due to the presence of a very low number of cells initially seeded in these wells, 
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which can occur due to the Poisson seeding process [85]. Although the outlier wells in mono-

culture showed significantly lower endpoint fluorescence signals of Agro 15955-GFP, the growth 

Figure 6.3: The MRA pathogen challenge mode. (A) TLFM images of a sample 15×15 

array of microwells after (i) seeding only Agro 15955-GFP (monoculture control) (ii) 

seeding Agro 15955-GFP with Agrobacterium isolates at a ratio of 1:1, (iii) seeding Agro 

15955-GFP with Agrobacterium isolates at a ratio of 1:10, (iv) seeding Agro 15955-GFP 

with Agrobacterium isolates at a ratio of 1:100. (B) Averaged growth curves generated from 

a sample 900 microwell array during mono-culture and co-cultures, (C) averaged growth 

rates from the 900 microwell array calculated for mono-culture and co-cultures, (D) % of 

outliers in co-culture arrays exhibiting inhibition against Agro 15955-GFP. Wilcoxon two 

sample tests were conducted to compare the % of outliers in co-culture with the % of 

outliers in Agro 15955-GFP mono-culture. The % of outliers in the case of Agro 15955-

GFP and Agrobacterium isolates co-culture at a ratio of 1:100 showed no-significant 

differences with the % of outliers in Agro 15955-GFP mono-culture. The % of outliers in 

1:1 and 1:10 co-culture ratios were significantly higher compared to the % outliers in 1:100 

co-culture ratio and hence the Agro 15955-GFP mono-culture (*, p-value<0.01).     
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rates of Agro 15955-GFP were similar to the nominal growth rates. The nominal growth rate of 

Agro 15955-GFP in mono-culture was later used as an important growth metric for comparison 

with Agro 15955-GFP growth measurements in co-cultures (Figure 6.3B, C, and D). 

For co-culture, Agro 15955-GFP and Agrobacterium root isolates, cultured in ATGN media, were 

mixed (OD600=0.1) at a ratio of 1:1 and seeded in 10µm diameter microwell arrays and the growth 

kinetics of Agro 15955-GFP were tracked in each well for every hour over a period of 24 hours. 

Compared to the monoculture control (Figure 6.3A), the first co-culture generated a variety of 

growth outcomes (Figure 6.3B). As evident, the majority (28%) of wells showed no fluorescent 

signal, indicating isolates that were able to inhibit Agro 15955-GFP at a low challenge level 

(Figure 6.3A, D). To further challenge the Agrobacterium isolates against Agro 15955-GFP, the 

number of isolates seeded in each well was decreased by one and two orders of magnitude using 

Agro 15955-GFP : isolate seeding ratios of 10:1 and 100:1. The different seeding ratios generated 

higher ratios of Agro 15955-GFP cells against Agrobacterium root isolates during co-culture to 

further select the top inhibitory isolates. In the case of the co-culture of Agro 15955-GFP and 

Agrobacterium isolates at a ratio of 1:10, the number of outliers inhibiting Agro 15955 dropped to 

15.5% (Figure 6.3D). The number of Agro 15955-GFP inhibiting outliers dropped to only 1.5% 

when Agrobacterium isolates were further challenged by combining with Agro 15955-GFP at a 

ratio of 1:100 (Figure 6.3D). This is due to the higher Agro 15955 initially seeded, presenting a 

greater challenge to antagonistic isolates. 

In co-cultures, outlier wells with negative interactions were observed with decreased endpoint 

fluorescence signals of the wells. The outlier wells were picked with Grubb’s outlier test [168] by 

comparing the endpoint fluorescent signals, as well as the growth rates of Agro 15955-GFP in co-

culture with the nominal growth rate and endpoint fluorescent signal of Agro 15955-GFP in mono-
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culture to ascertain that the wells were showing positive and negative interactions between Agro 

15955-GFP and Agrobacterium isolates in a single well. Wells with lower endpoint fluorescent 

signals and with a growth rate similar to the nominal wells were omitted as outliers since these 

wells can have only a limited number of Agro 15955-GFP cells and no Agrobacterium isolates to 

interact with. The distribution of the endpoint fluorescent levels of the Agro 15955-GFP showed 

very low variance in mono-culture (σ2=97) compared to the co-cultures at 15955-isolate ratios of 

1:1 (σ2=619), 1:10 (σ2=471), and 1:100 (σ2=162), indicating an impact due to the addition of the 

Agrobacterium isolates (Figure 6.3A). The growth curves based on the average fluorescent signals 

of each array also indicated that the addition of Agrobacterium isolates generated variable growth 

scenarios (Figure 6.3B, C). 

 

 

Figure 6.4: Sequential removal of antagonistic communities from an array sub-section after co-

culture. (A) Microwell array before and after co-culture. This 15×15 microwell array contained 

Agro 15955-GFP antagonistic (red) community that were targeted for extraction. (B) Targeted 

removal of the microwell community in which Agro 15955-GFP grew poorly (red outline). Purple 

area denotes a ring pattern UV exposure area with 10µm inner diameter and 20µm outer diameter 

used for membrane degradation.  
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6.4.3 Sequential extraction, recovery, and identification of isolates from microwell 

communities. 

A Polygon 400 patterned illumination tool was used to extract Agro 15955-GFP inhibiting 

communities from the three wells with the lowest Agro 15955-GFP endpoint fluorescence signal 

after 24 hours of culture to run off-chip identification and validation (Figure 6.4A, B). The target 

wells were exposed to a patterned 365 nm light (20 mW/cm2, 10 min), exposure conditions 

previously applied for membrane degradation, to ablate the membrane over the well and retrieve 

viable bacteria from wells [90, 214]. The degradation of the membrane was confirmed by 

brightfield microscopy (Figure 6.4B). After exposure, cells were retrieved from an open well by 

washing the arrays with extraction buffer (ATGN media + 0.05% Tween20 solution). Later, 

individual isolate colonies were recovered by streak isolating the extraction buffer on ATGN-agar 

plates. It was previously observed that >99.9% of bacteria were extracted from the opened wells 

rather than from outside contamination [90], providing high confidence that the target well was 

the source of the recovered bacteria. It was further validated in the previous characterization that 

bacteria could be removed entirely from the target well with minimal cross-contamination when 

opening additional wells for further sampling [90]. Following recovery, whole-genome 

phylogenetic analysis was conducted for comparative genomic analysis of the extracted isolates 

against the Agro 15955-GFP genome. The analysis revealed that 6 out of 9 isolates extracted from 

the wells contained at least one unique gene (Figure 6.4B).  

6.4.4 Validation of interactions by recapitulating in 96-well plate format. 

It was previously demonstrated that positive and negative microbial interactions observed in 

microwell recovery arrays can be validated off-chip by recapitulating in a 96-well plate format 

[214]. Here a scaled-up environment was presented (from 1.6 pL microwell volumes to 100 µL 
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solution volumes) to measure how strains isolated from MRA influenced the growth of Agro 

Figure 6.5: Interactions identified in the MRA can be validated in 96-well plate format. (A) 

Agro 15955-GFP growth curves after inoculation into conditioned media from the 

antagonistic isolates, the 9-member isolate consortia, or unconditioned media (UCM). The 

control (black line) is conditioned media that was not inoculated with Agro 15955-GFP to 

verify that there was no growth carry over or contaminating microbes present. (B) 

Corresponding carrying capacity and growth rates for each growth curve. All growth 

experiments occurred at 28°C, 215 RPM. Statistical differences were identified by 

comparison of growth metrics between Agro 15955-GFP culture in conditioned media from 

each isolate or isolate mixture and YR343 growth in UCM (Wilcoxon two-sample test, 

*=P<0.01, n=3 independent experiments). (C) Observations of the follow up bacteriocin 

bioassay. The control plate consisted of Agro 15955-GFP in both center and in the agar and 

a uniform growth was observed throughout the plate. Control Agro 15955-GFP bacterial 

growth is contained inside the red dashed line. The antagonist isolates in the center of the 

plate showed a zone of inhibition surrounded by Agro 15955-GFP. Here, bacterial growth of 

the antagonistic isolates is contained inside the red dashed line. 
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15955-GFP. It was hypothesized in the previous studies that the inhibition measured in MRAs was 

direct caused by diffusive interactions between the focal species and the collection of isolates 

present within a well. This hypothesis was tested in the current approach by culturing Agro 15955-

GFP in 96-well plate format in media conditioned by nine selected isolates selected from the top 

3 antagonist wells (Well 7008, Figure 6.2). To obtain conditioned media, each antagonist isolates 

were first cultured in ATGN media to stationary phase, and cell-free culture fluid (CFCF) was 

collected by removing cells. Fresh Agro 15955-GFP cultured in ATGN media was then added to 

the CFCF in a 1:1 volumetric ratio for growth monitoring. These growth curves were compared to 

a control curve with Agro 15955-GFP growth in unconditioned media, which consisted of ATGN 

media instead supplemented with blank 1X PBS buffer at the same volumetric ratio. A second 

control curve consisting of conditioned media without Agro 15955-GFP inoculum was also 

included to verify that measured growth was not due to contaminating microbes. Growthcurver R 

was then used to estimate bacterial carrying capacity and growth rate [192] in each experiment 

(Figure S1). Congruent with microwell observations, it was observed that conditioned media from 

9 isolates significantly reduced the carrying capacity and growth rate of Agro 15955-GFP 

compared to its culture in unconditioned media (Figure 6.5A). Conditioned media from the 

combined 9-member antagonist combination showed significantly lower carrying capacity and 

growth rate than the unconditioned control media (Figure 6.5B, Tables S2, S3).  

6.4.5 Follow-up phenotypic characterization of antagonist isolates 

Following cell retrieval and recovery, the antagonistic isolates were streaked onto ATGN agar 

plates. The bacteriocin bioassay was performed as described in experimental methods to 

corroborate phenotypic observations in the microwell arrays with standard microbiological 

approaches [87, 257, 261]. The co-culture of the antagonistic isolates and Agro 15955-GFP 
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generated a zone of inhibition, i.e., a region near antagonistic isolates with no bacterial growth due 

to inhibition (Figure 6.5C). Additionally, Agro 15955-GFP cultured in the center of the ATGN 

plate supplemented with Agro 15955-GFP as control generated a uniform growth throughout the 

plate (Figure 6.5C). It was concluded from these observations that the inhibitory phenotype 

observed between the isolates and Agro 15955-GFP in the microwell screen can be validated using 

standard follow-up assays. 

6.5 Discussions 

Crown gall disease in plants, caused by tumorigenic Agrobacterium tumefaciens, has often been 

regarded as an economically important disease-causing extensive damage to plant health [262]. 

Biological control of A.tumefaciens with antagonistic strains of non-pathogenic Agrobacterium 

isolates has been successful in many applications [252, 253, 257–259]. But, classical 

microbiological techniques for probing interactions rely on manually pairing isolates together 

(Goers et al., 2014); inherently low-throughput approaches are often based on qualitative 

observations of bulk populations. Micro- and nanoscale devices offer vast improvements by 

providing high-throughput measurement, observation of single-cell behavior, and precise design 

and manipulation of the microenvironment.  

Here, the rapid isolation of Agrobacterium isoloates that were top A.tumefaciens was performed 

by operating the MRA in a pathogen challenge mode.  Agro 15955-GFP and Agrobacterium 

isolates were co-cultured and seeded in microwell recovery arrays in three co-culture ratios (1:1, 

10:1, and 100:1) under conditions favorable growth conditions for Agro 15955-GFP. By 

challenging the isolates with increasing numbers of Agro 15955-GFP, we were able to lower 

numbers of antagonistic outliers generated across the array and thereby selected only the most 

potent who learned to survive and grow in excess of Agro 15955-GFP. It was demonstrated that 
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the Agro 15955-GFP and the Agrobacterium isolate co-culture ratio of 100:1 generated Agro 

15955-GFP growth trends similar to Agro 15955-GFP mono-culture (Figure 6.3B). Here the 

average growth rate of Agro 15955-GFP among the microwells in 100:1 co-culture ratio showed 

no significant difference with the Agro 15955-GFP mono-culture (Figure 6.3C) and the number 

of antagonistic outliers showing inhibition of Agro 15955-GFP was significantly less compared to 

the other two co-culture ratios (Figure 6.3D). However, under these 100:1 co-culture conditions, 

only a limited number of antagonistic outliers were generated (1 in 67 wells), based on endpoint 

fluorescent signal and growth rate of Agro 15955-GFP. These wells were identified as containing 

the most potent inhibitory isolates . 

Outlier wells were exposed to ring patterned UV light of internal diameter 10µm and outer 

diameter 20µm. Using the ring pattern, only the perimeter of the microwells was exposed to UV 

light while keeping the inside of the wells covered to preserve the functionality of the isoalte. After 

exposure and removal of the membrane on top of the outlier wells, the majority of the cells out of 

the opened wells were extracted by washing with ATGN nutrient media. The extracted cells were 

stored in glycerol stocks and sterile isolated using ATGN agar plates to recover nine individual 

agrobacterium isolates. The isolates were then cultured in ATGN media, and the genomic DNA 

was extracted from these isolates to perform whole-genome sequencing.  The interactions observed 

in the microwell arrays were recapitulated in 96-well plate assays to validate the inhibition of Agro 

15955-GFP. This off-chip assay demonstrated that all nine agrobacterium isolates selected from 

the MRA also diminished the growth rates and carrying capacities of Agro 15955-GFP in a 

standardized assay. Later, the nine isolates were validated for the diffusive interactions due to 

bacteriocin gene clusters in a standard bacteriocin assay. The bacteriocin assay generated a zone 

of inhibition around the Agrobacterium isolates, indicating further proof of the diffusive 
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interactions causing the inhibition of Agro 15955-GFP. Currently, bioinformatics analysis is being 

conducted in the Platt Lab at KSU to identify the candidate bacteriocin gene clusters from the 

extracted isolates using whole-genome sequencing.  

6.6 Conclusions 

Agrobacterium tumefaciens is the natural genetic engineer because of its widespread application 

in transgenic plant production [93]. In natural settings, it is the agent of Crown Gall Disease, and 

it is crucial to develop biocontrol agents capable of inhibiting this immensely important plant 

pathogen. Here MRAs were applied for screening a library of 576 non-pathogenic Agrobacterium 

isolates capable of preventing Agrobacterium tumefaciens growth. Combining an unknown 

collection of rhizosphere isolates with A.tumefaciens in MRA, a library of A.tumefaciens 

antagonizing isolates was rapidly screened. Although the capability of MRAs in screening the 

Agrobacterium challenge model was demonstrated, the platform is maneuverable to screening 

interactions across any microbiome, including the gut, the respiratory tracts, soil, aquatic systems, 

and other rhizosphere environments.  

The pathogen challenge model demonstrated in this work will be critical in the field of therapeutic 

drug development. For example, new antibiotics for pathogen suppression can be developed 

quickly by combining important human pathogen with a collection of the gut microbiome and 

challenging the gut microbiome isolates to find the most potent inhibitors. Currently, addressing 

the challenges due to the emergence of antibiotic-resistant pathogens has become a daunting task 

for scientists. And using the MRA in the pathogen challenge mode will certainly play a vital role 

in screening new antibiotics to fight against antibiotic-resistant pathogens. Moreover, the MRA 

operation in the pathogen challenge mode can be critical for developing probiotic formulations for 

gut and soil microbiome. The highly diverse human gut microbiome alterations are associated with 
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serious diseases like cancer  [263]. The screening of inhibitory interactions demonstrated here can 

be extended towards manipulating the gut microbiome to improve the activity of anti-cancer 

agents.  
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Chapter 7 : Conclusion and Future Goals 

7.1 Development of photodegradable hydrogel membrane for selective extraction of 

microbes 

In chapter 2, a polyethylene glycol (PEG) based, photoresponsive membrane with photocleavable 

nitrobenzyl group was developed to connect the microscopic observations in microwell recovery 

array platform with the ability to confine, extract, isolate, identify cells from any well of interest 

via off-chip validation and 'omic' type characterizations. The retrieval capabilities developed in 

this approach were used in most of the dissertation (Chapters 4, 5, and 6) to enable follow-up 

characterizations on cell populations that showed the desired function. The proof-of-principle 

studies demonstrated in Chapter 2 show that the photodegradable PEG hydrogel can be attached 

onto silicon microarrays seeded with the bacterium Agrobacterium tumefaciens, allowing cell 

growth and nutrient exchange, and was degraded with a user-defined pattern of 365 nm light in a 

spatiotemporally controlled manner using the Polygon400 pattern illumination instrument. 

Although as low as 20 μm diameter wells were demonstrated in this application, the approach was 

later applied to extract, isolate, and recover cells from any well of interest at 10 µm resolution. 

This approach was combined with advanced sequencing techniques to identify microbes with 

antagonistic or synergistic impacts on bacteria of key functional importance in later applications. 

7.1.1 Future Goals 

For future work, I would recommend enhancing the ability to selectively extract the cells out of 

microwells by overlaying the microwell substrates with microfluidic channels dedicated to 

transport cells out of the opened wells. This can eliminate the chances of cross-contamination 

while extracting multiple wells simultaneously and ensure that cells are extracted at high purity 

into low solution volumes, which is necessary for many single-cell applications. Also, the design 
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of the microwells can be altered by fabricating a nanofluidic channel between two wells and study 

the single-cell interaction between two connected, adjacent wells. Another layer of PEG diacrylate 

hydrogel can be developed on top of the PEG hydrogel with nitrobenzyl group attached to the 

microwells in such a setup. After degradation of the photoresponsive hydrogel layer, the 

interacting cells can be trapped inside the non-photoresponsive PEG diacrylate hydrogel and 

removed with the aid of microfluidics. In addition, the functionalization of the microwell substrate 

surface needs to be improved to enhance the successful attachment of the hydrogel membrane on 

MRA substrates. 

After attaching the PEG diacrylate hydrogel membrane on top of MRAs and allowing the trapped 

cells to grow, it was observed that the membrane swelled due to the water absorbency properties 

of the hydrogel membrane. . The swelling phenomenon caused the membrane to detach from the 

MRA surface after just 48 hr of cell growth. The biofilm structure in the microwell arrays 

significantly contributes to the hydrogel membrane's degradation and needs to be thoroughly 

studied to achieve favorable membrane attachment to the MRA substrate. I would recommend 

modifying the membrane to be resistant to degradation and making a chemically and biologically 

stable, photodegradable membrane to improve the swelling behaviors of the hydrogel. Application 

of polysaccharide or polymeric adhesives such as HSA crosslinked disuccinimidyl tartarate (DST), 

acrylate and N-hydroxysuccinimide (NHS) bifunctional tetronic hydrogels, a dextran-based 

hydrogel comprised of amino dextran and oxidized dextran, or acrylate end-functionalized 

poloxamine adhesives can be investigated to increase adhesion strength and improve the issue of 

hydrogel swelling. External stimuli such as temperature, pH, light, magnetic/electric field can also 

be investigated to increase the attachment of the membrane for a longer period. Finally, there lies 
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a major scope to investigate the chemical properties of cell culture medium on the mechanical 

interactions between bacterial cells and hydrogels. 

7.2 Application of microwell arrays for the screening of positive and negative interactions in 

model and non-model systems 

The majority of this thesis (Chapters 3, 4, 5, and 6) implemented the high-throughput screening 

abilities of the microwell platform to identify the desired growth outcome of a fluorescently 

labeled focal species with an isolate collection of interest. In Chapter 3, the proof-of-concept of 

the MRAs was used to trap a model interaction pair, A. tumefaciens and P. aeruginosa, and detect 

rare phenotypes / rare growth outcomes in outlier wells. After monitoring the end-point and growth 

kinetics of the two species during co-culture, the majority of wells showed co-culture outcomes 

consistent with previous literature findings (P. aeruginosa favored growth). In contrast, rare 

phenotypes / rare growth outcomes (A. tumefaciens favored growth) were detected in a minority 

of the outlier wells indicating rare growth outcomes.  

7.2.1 Future Goals 

The model interaction between A. tumefaciens and P. aeruginosa needs further investigation due 

to the quorum sensing-regulated growth rate and motility advantages of P. aeruginosa. I would 

propose investigating the type VI secretion system of A. tumefaciens on P. aeruginosa in the 

presence of phenylpropanoid-type phytochemicals such as Acetosyringone in MRAs and extend 

this knowledge to prevent wounding and other physiologic changes in plants caused by A. 

tumefaciens. Such quorum-mediated interaction studies can be extended towards the development 

of biocontrol agents in other plant systems. 
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7.3 Application of microwell arrays for the screening of positive and negative interactions in 

non-model systems 

In Chapter 4, the microwell platform capabilities to detect rare growth outcomes developed in 

Chapter 3 were demonstrated to screen a non-model test species against unknown isolates. A four-

membered microbe community extracted from biofuel crop P. deltoides roots was screened to 

enhance and antagonize the growth of plant growth-promoting rhizobacteria Pantoea sp. YR343. 

The motile bacteria cells from the bulk co-cultures of YR343-GFP and P. deltoides root 

microbiome were trapped in microwell arrays using the crosslinked, photo-degradable PEG  

hydrogel membrane developed in Chapter 2. Therefore, a unique combination of isolates and 

YR343-GFP was randomly combined to study desired interactions within each microwell. Later, 

a MATLAB-based computational image analysis tool was used to detect the YR343-GFP growth 

promoter/antagonist outliers from the fluorescent images. Then the cells were extracted out of 

these outlier wells, and four-member growth-promoting consortia and a four-member antagonist 

consortia were identified by 16S rRNA sequencing. The interactions were validated by 

recombining the cell-free culture fluids (CFCF) from these consortia with YR343-GFP and 

comparing them with YR343-GFP monoculture. Thus, the Populus root microbe community of a 

few hundred thousand was scaled down to a consortium of 4 isolates inside a single MRA chip. 

Such capability can aid efforts to engineer plant growth-promoting rhizobacteria. Using YR343 as 

a biocontrol agent, genome-level modification of the P.deltoides plant can be performed to 

improve lignocellulosic content, stress resistance, cell wall traits, and root development. In the 

future, this library of isolates can be associated with the rhizosphere microbiome of plants with 

high biofuel production potential.  
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The MRA workflow developed in Chapters 4 was applied in Chapter 5 to screen the Zea mays 

rhizobiome for isolates capable of enhancing the survival and colonization of the plant growth-

promoting bacteria (PGPB) A. brasilense, and in Chapter 6, to screen non-pathogenic 

Agrobacterium isolates as biocontrol agents against A. tumefaciens. In Chapter 5, Zea mays 

rhizosphere isolates were combined with A. brasilense strain Sp7-GFP in 10 µm diameter 

microwells, and seven bacteria isolate responsible for Sp7-GFP growth enhancement were 

extracted. In addition to the 96-well plate validation assays developed in Chapter 4, the Sp7-GFP 

mutualist isolates were co-inoculated with healthy maize seeds in a plant growth chamber to 

validate the enhancement of maize growth. Thus, the in vitro observations from the microwell 

studies were extended towards in vivo systems where A. brasilense, combined with the isolates, 

elicited a positive phenotypic outcome (i.e., plant growth enhancement). Demonstrating the ability 

to connect in vitro MRA observations with an in vivo environment to generate desirable phenotypic 

outcomes on a host is a major step forward for this technology, as it opens the door to many 

practical applications. 

In Chapter 6, MRA capabilities were extended towards the screening of biocontrol agents for 

pathogen inhibition. Pathogenic A. tumefaciens sp. 15955-GFP was screened against 576 non-

pathogenic Agrobacterium isolates in a "pathogen challenge mode" to identify bacteriocin gene 

clusters responsible for the inhibition of Agro 15955-GFP. The MRA challenge mode was 

achieved by sequentially reducing Agrobacterium isolates in the co-culture with Agro 15955-GFP 

in MRAs to provide the most favorable growth condition for Agro 15955-GFP the most potent 

inhibitors of Agro 15955-GFP can be discovered from the isolate collection. Using the MRA in 

pathogen challenge mode, nine of the most potent inhibitors of Agro 15955-GFP were extracted, 

validated for antagonism, and are currently undergoing bioinformatics analysis on the whole 
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genome sequence data to identify bacteriocin gene clusters responsible for Agro 15955-GFP 

inhibition. Discovery of new environmental isolates that efficiently inhibit A.tumefaciens 15955 

can help improve plant productivity by providing new biocontrol agents to protect against A. 

tumefaciens sp. 15955, the causative agent of Crown Gall disease.  

7.3.1 Future Goals 

In Chapter 5, the microwell capabilities were successfully extended towards validating phenotypic 

growth outcomes in a growth chamber environment. Since the workflow of the MRAs can be 

extended and modified for any microbiome of interest, there are many potential applications of 

MRAs for developing bio inoculants, biofertilizers,s and biocontrol agents for disease prevention, 

plant growth promotion, improvement of plant health under drought stress, and soil 

bioremediation. In the future, I would propose inoculating the Agro 15955-GFP antagonistic 

isolates in plant roots containing Crown Gall tumors and conduct in vivo assay for determining 

their inhibitory effect against A. tumefaciens. MRAs can also be extended towards ELISA-type 

immunoassays using antibodies against indole-3-acetic acid (IAA) to validate the claim that the 

Pantoea YR 343 growth-enhancing isolates extracted from the P. trichocapra rhizosphere are 

capable of improving the secretion of IAA from  Pantoea YR 343. I would propose functionalizing 

the MRAs with an anti-IAA-C-monoclonal antibody and inoculating the surface with the cell-free 

culture fluid from the co-culture of Pantoea YR 343 with a mutualist isolate, and quantify the 

release of IAA with the aid of time-lapse fluorescent microscopy. This workflow can be 

implemented to detect other metabolites influencing plant-microbe interactions and broadly extend 

to screening consortia for bioproduction of secondary metabolites. 

In recent years, global warming and the decrease of water sources near the cultivable lands have 

reduced water retention in agricultural lands. Therefore, a sustainable approach for increasing 
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water retention in the soil is necessary. Soil-dwelling bacteria such as Bacillus subtilis are known 

for their ability to alter soil wetting properties, enhancing plant drought tolerance. Specifically, B. 

subtilis produces a cyclic lipopeptide 'surfactin' that can enhance water retention in soil by 

lowering the surface tension of the surrounding fluid. In future studies, I would recommend 

screening fluorescently labeled Bacillus subtilis strain against soil microbiome in the MRAs to 

identify bacterial species capable of enhancing the survival and colonization of B. subtilis in soil 

for increased soil wetting and water retention. The B. subtilis mediated biophysical changes in the 

agricultural soil can be extended towards plant drought stress and validated in vivo with parameters 

such as soil water retention levels, hydraulic conductivity, and water evaporation.  

To prevent greenhouse gas (GHG) emission, more emphasis is being given to biofuels' production. 

Switchgrass (Panicum virgatum L.) is considered a promising source for biofuel for its potential 

for carbon sequestration, inherently high-stress resistance, low water, nutrient consumption, and 

biomass production. Similar to Populus plants, most of the interactions between Panicum virgatum 

rhizosphere isolates and biofertilizers are unknown. I want to suggest screening Panicum virgatum 

rhizosphere isolates for beneficial interactions with biofertilizer V. paradoxus sp. JM63 to identify 

the isolates capable of enhancing the colonization of V. paradoxus and enhance Panicum virgatum 

growth. Also, I recommend combining Panicum virgatum root exudates with V. paradoxus in 

MRAs to couple this workflow with an advanced metabolomics approach to determine interaction 

pathways for V. paradoxus in Panicum virgatum roots. 

And the final exciting potential application of the MRA is screening bacterial components of the 

gut microbiome. Recently the role of microorganisms in carcinogenesis has attracted much 

attention. The anti-tumor immune responses from bacteria such as Lactobacillus and 

Bifidobacterium are very well studied. Therefore, screening the gut microbiome to identify the 
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microbes responsible for tumor inhibition is essential for cancer immunotherapy. Thus, I propose 

combining Streptomycetes bacteria from the gut microbiome with a fluorescently labeled 

melanoma cell in MRAs and identifying and extracting the isolates capable of inhibiting the 

growth of melanoma cells. These screens have the potential to uncover anti-cancer bacteria 

candidates useful for cancer immunotherapy rapidly.  
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Appendix A: Supporting information from Chapter 2 

 

 

 

 

 

 

Scheme S1. (A) Reaction scheme to prepare NB-NHS and (B) photodegradable PEG 

diacrylate and (C) chemical structure of the four-arm PEG thiol. 
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Figure S1. Setup for the fabrication of A. tumefaciens-encapsulated membranes. A 

suspension of bacteria in 2X LB are mixed with solutions of the photodegradable PEG 

diacrylate and the four arm PEG thiol (pH 8, acrylate/thiol concentration 22 or 35 mM). 

The mixture is then pipetted onto a glass slide (yellow spheres) having spacers opposite 

of each other (beige). Immediately, a second glass slide is placed on top and the 

crosslinking reaction is carried out at room temperature for 25 minutes. After carefully 

separating the glass slides, the bacteria-encapsulated membranes are washed and kept 

on agar or in liquid culture medium at 28ºC. 

Figure S2. A. tumefaciens can grow inside the membrane. (A) Photograph of a 

membrane with encapsulated A. tumefaciens on an agar plate immediately after washing. 

(B) The same membrane after 24 hours at 28oC showing that the initial clear membrane 

has an opaque appearance due to growing bacteria. (C) Microscope image of the same 

membrane showing the presence of A. tumefaciens clusters 20 - 40 µm in size. 
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Figure S3. Cell viability test using triphenyltetrazolium chloride (TTC) shows that the 

bacteria inside the membrane are alive. (A) A. tumefaciens-encapsulated membrane after 

crosslinking and swelling in liquid LB medium. (B) The same membrane but 24 hours 

later. (C) The same membrane after another 24 hours cultured in the presence of TTC. 

TTC is reduced by metabolically active bacteria resulting in formation of water-insoluble 

pink crystals. 

Figure S4. TTC assay results quantifying the effect of hydrogel encapsulation on A. 

tumefaciens viability. A. tumefaciens was grown to mid-log phase and resuspended in 2X 

phosphate buffered LB. 12.5 µL of bacteria suspension was mixed with 5.6 µL of 

crosslinker and 6.9 µL of the four-arm thiol and pipetted onto the bottom of a culture tube 

(n=3). After crosslinking for 25 min at room temperature, 1.5 mL LB was added. At the 

same time 12.5 µL of the bacteria suspension in 2X phosphate buffer was added to 1.5 

mL LB directly (n=3). The tubes were placed in the shaker and incubated for 24 h at 28oC 

at 200 rpm. 150 µL of 5 mg/mL TTC in LB medium was then added to the culture and the 

tubes were shaken for 2 h at 28oC. The samples were spun down at 3000 g for 10 min 

and the supernatant careful decanted. The pellet was then suspended in 400 µL DMSO 

and the formed crystals dissolved by sonicating, vortexing and heating. The samples were 

spun down at 3000 g for 10 min and 100 µL of the supernatant transferred to a polystyrene 

96 well plate to measure the absorbance at 510 nm. 
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Figure S5. (A) Migration distance of bacteria through the membrane for the 4 wells in 

Figure 5B of the manuscript. (B) Migration distance of bacteria (red) through the 

membrane (yellow) in the x and y directions was quantified by measuring the maximum 

distance migrated from the edge of the wells in the x-z and y-z projections. Migration 

distance in z was measured as the distance migrated in the z-axis from the top of the 

silicon microarray in the x-z projection, as shown in the schematic. This data clearly shows 

that bacteria migration is favored along the z-axis 

Figure S6. Fluorescence intensity after irradiation and washing the microwells in Figure 

9, expressed as the percentage of the same microwells before irradiation. Intensity of 

“wells before” was corrected for absorbance of the membrane by measuring five different 

spots on the microarray. 
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Figure S7. Images showing a total of 72 microwells that have been opened with patterned 

light. (A) Microwells before irradiation. (B) The same microwells immediately after 

irradiation and (C) the same microwells after washing with Tween20/LB. A. tumefaciens 

was seeded at OD = 0.2 and cultured for 1 day at 28oC. 40 µm diameter (runs 1-3) and 

50 µm diameter (run 4) microwells were irradiated with 60 µm circle patterns for 5 minutes 

at 0.7 mW/mm2. 

Figure S8. Setup used for the irradiation experiments. The Polygon is attached to the 

upright microscope via an adapter. Light (365 nm) is delivered from the LED light source 

by a liquid light guide. The control modules to operate the Polygon are controlled by 

Polyscan2 software. 
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Figure S9. Seeding bacteria into the microwells. (A) Prior to cell seeding the hydrophobic 

parylene-coated microwell is layered with LB medium and (B) put under reduced pressure 

to remove air from the microwells. (C) Filling the microwells with LB increases the 

wettability of the parylene surface. (D) After removing the LB medium the bacteria 

suspension is added to seed the microwells. 

Figure S10. Sample holder used for culturing and photodegradation experiments. A 

rectangular area made from PDMS is glued onto a glass slide. By adjusting the height of 

the border, the culture volume can be controlled (1-2 mL). 
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Appendix B: Supporting information from Chapter 3 and 4 

P. aeruginosa and A. tumefaciens culture 

A model system comprised of Agrobacterium tumefaciens C58 expressing GFP (C58-GFP) and 

Pseudomonas aeruginosa PAO1 expressing mCherry (PAO1-mCherry) was used to characterize 

seeding behavior and interaction in microwell recovery arrays (MRAs). Glycerol stocks were 

prepared for both strains and stored at -80°C. C58-GFP and PAO1-mCherry were cultured on LB-

agar for 24 hrs at 28 and 37°C respectively. For liquid culture of C58-GFP and PAO1-mCherry, a 

single colony was picked using a sterile inoculation loop, inoculated in 2 mL LB media (10g 

BactoTryptone, 5g Yeast, 10g NaCl and 15g agar per 1000mL) in sterile test tubes and cultured in 

a shaker (28 and 37°C respectively, 215 rpm) for 24 hrs. 150 μg Kanamycin and 0.5 μg IPTG 

(Sigma) were added to each ml of the liquid culture for both C58-GFP and PAO1-mCherry 

cultures. The tubes were then centrifuged (Eppendorf Centrifuge 5702 Series Ea) and the media 

was changed every 24 hrs for up to 1 week to keep cells viable.  

Growth studies of Pantoea sp. YR343 monoculture 

For solid phase cultures, Pantoea sp. YR343 expressing GFP (YR343-GFP) was cultured in R2A-

agar media (pH: 7.2 ± 0.2, Thermo Fisher) at 28°C for 24 hr. For liquid culture studies, single 

colonies were picked using sterile inoculation loops and mixed in 2 mL R2A broth media (pH: 7.2 

± 0.2, Teknova) supplemented with Kanamycin (150 μg/mL) in sterile test tubes and cultured for 

24 hrs (28°C, 215 rpm). To measure growth parameters of YR343-GFP, liquid cultures were 

diluted to OD600 = 0.1 and 100µL was added to a 96 well plate (28°C, 600 rpm) and absorbance 

(OD600) readings were taken every 10 min. For YR343 monoculture, a lag phase of 2.5 hr and 

growth rate of 0.673 hr-1 were measured, the culture reached stationary phase at 8 hr.  
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16S rRNA community analysis of Populus trichocarpa rhizosphere and input samples 

The purified gDNAs of the Populus rhizosphere sample and the R2A media culture used to seed 

the microwell array were extracted using E.Z.N.A soil DNA kit (Omega Bio-tek, Norcross, GA), 

diluted to 20 ng/µl in 100 µl aliquots and sent to Integrated Genomics Facility (Department of 

Plant Pathology, Kansas State University, Manhattan, KS) for the 16S Illumina sequencing of the 

hypervariable V3 and V4 region using Nextera XT index Kit v2 (Illumina, Inc., San Diego, CA).  

16S rRNA community analysis was performed with Qiime2-2020.8 (Bolyen et al., 2019). The 

multiplexed raw sequence data with the barcodes were demultiplexed using q2‐demux plugin, 

quality filtered and denoised with q2‐dada2 (Callahan et al., 2016) plugin and aligned with mafft 

(Katoh et al., 2002). The q2-diversity plugin was used to determine alpha‐diversity metrics 

(observed OTUs [217] (Supplementary Figure 11A) and Shannon’s diversity index [218] 

(Supplementary Figure 11B) after rarefaction of the samples to 900 sequences per sample. 

Taxonomy was assigned to amplicon sequence variants using the silva-138-99-515-806 [219] 

classify‐sklearn naïve Bayes taxonomy classifier against the Silva 138 99% OTUs reference 

sequences [220].  This analysis found the Populus rhizosphere sample and the microarray input 

cultured in R2A media to contain 120 and 85 observed OTUs and to have Shannon’s diversity 

indices of 4.165 and 3.57, respectively. The q2-taxa plugin was used to explore and visualize the 

taxonomic composition of the classified sequences by creating taxa bar plots [221] 

(Supplementary Figure 11C). Raw 16S Illumina sequences were uploaded to NCBI sequence 

read archive (Accession Number: PRJNA678376). 

 

 

 



 

153 
 

Fabrication of LB-Agar coated PDMS coverslips  

To prepare LB-agar coated PDMS coverslips, a modified procedure from Hansen et al. was 

followed [85, 139]. 21 g PDMS monomer and 3 g of curing agent were mixed for 3 min, degassed 

for 30 min, then placed in a 6 in. diameter polystyrene petri dish, degassed again for 30 min and 

baked at 80°C for 2 hr. PDMS coverslips were ~2000 µm thick. Sterile 25×75mm PDMS 

coverslips were then cut from the dish, placed in a second polystyrene dish and coated with LB 

agar by evenly pouring 3 mL of boiling LB agar over the coverslips and the dish. The dish was 

cooled at 4°C for 30 min to allow the media to solidify over the coverslips and to ensure minimum 

dehydration. The thickness of the agar layer was ~100 µm. After seeding the microwell substrate 

with bacteria, microwells were immediately sealed with the coverslips and placed in the 

humidified, live cell incubator chamber to conduct growth experiments (Supplementary Figure 

8). 

Photodegradable membrane attachment 

The procedure for attaching the photodegradable hydrogel membranes to microwell arrays is 

described in van der Vlies et al. (Van Der Vlies et al., 2019) was used here. 25×25 mm clean glass 

slides (Fisher Scientific) were first functionalized with a non-reactive silane layer by incubating in 

20 mL of 0.5% v/v trichloro(1H,1H,2H,2H-perfluorooctyl) silane in toluene for 180 min (Van Der 

Vlies et al., 2019). Phosphate buffer saline (PBS) with LB solution was then prepared by adding 

NaH2PO4 to LB liquid media to reach 100mM final phosphate concentration and adjusting to pH 

8 by adding 5M NaOH (aq.). The membrane precursor solution was then obtained by mixing 12.5 

µL of PBS-LB solution with 5.6 μL of photodegradable PEG diacrylate monomer (MW 3400) and 

6.9 μL of a four-arm PEG thiol solution monomer (Tibbitt et al., 2013) (MW 10000, NOF America 

Corporation, DE-100SH). The concentrations of both PEG diacrylate monomer and four-arm PEG 
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thiol solution monomer were 22mM in the precursor solution. 15µL of the liquid pre-cursor 

solution was then quickly pipetted on top of the perfluoroalkylated glass slides, and the solution 

was placed over a seeded microwell substrate. Metal spacers were used to provide a constant 38 

µm gap between the glass slide and the microwell for the precursor solution. The substrate was 

then incubated for 25 min at room temperature to allow for membrane formation though monomer 

crosslinking and gelation (Van Der Vlies et al., 2019). The glass slide was then carefully separated 

from the membrane-functionalized microwell array and the microwell array was placed on top of 

a PDMS coverslip and added to the 3D printed scaffold for culture and imaging.  

Fabrication of 3D printed scaffolds 

A custom 3D printed scaffold was designed for imaging microwells with time lapse fluorescence 

microscopy (TLFM). The 3D printed nylon scaffold was designed using Blender software 

(Coakley et al., 2014). A seeded and membrane-functionalized microwell was placed in the 

scaffold, the scaffold was then placed over a standard glass microscope slide. The scaffold holds 

the sealed microwell substrate approximately 100 µm above the slide surface, as shown in 

Supplementary Figure 9. This allows for bacteria within the wells to receive nutrients and allows 

the microwell substrate to remain fixed within the focal plane of the 20× objective, eliminating 

drift in the x,y, and z-directions during the culture period. 

Membrane degradation and well extraction 

Extraction of cell aggregates from microwells followed the protocol recently described in van der 

Vlies et al.(Van Der Vlies et al., 2019). An Olympus BX51 upright microscope equipped with an 

Infinity 3-1 microscopy camera (Lumenera) and Infinity Analyze software was used to identify 

the location of target wells according to the on-chip well address. Greyscale images of targeted 

microwells were taken during extraction with a 20×/0.5NA objective. The Polygon400 photo-
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patterning instrument (Mightex) containing a 365 nm high-power LED source (50 W) was used to 

project UV light patterns onto the target well locations. The instrument was attached to the BX51 

microscope though an adapter containing dichoic filter cube. A BioLED light source control 

module equipped with a BioLED analog and digital I/O control module was used to control the 

light source and a liquid light guide was used to deliver light to the Polygon400. Prior to extraction, 

the Polygon400 was calibrated using PolyScan2 software and a calibration mirror. For extraction, 

a cultured microwell array substrate with the attached membrane was first submerged in 1mL R2A 

broth media to prevent membrane dehydration, then placed under the microscope. PolyScan 2 

software was then used to define the irradiation pattern, light intensity and irradiation time. Here, 

a 165×295μm rectangular working area was defined to accommodate an array of microwells. After 

a targeted microwell was located, it was exposed a 20 µm diameter circular pattern (20 mW/mm2, 

10 min) to erode the polymer matrix over the well. The opened microwell array was then washed 

with R2A broth media + 0.05% Tween20 (5×2mL) to extract cells from the opened microwell. 

The 10 mL wash solution was centrifuged at 2000g for 10 min and the supernatant was carefully 

removed leaving approximately 2 mL of solution inside the culture tube.  

96-well plate validation 

Separate CFCF from all 5 isolates were mixed together at equal volumes then added to Pantoea 

cell culture in R2A media at a volumetric ratio of 1:1 to reach an OD600 value of 0.1. 100µL of 

each treatment with 6 independent replicates were cultured overnight in 96 well plates to determine 

the influence of outlier isolates on the OD600 of Pantoea sp. YR343 growth. Wilcoxon Two-sample 

tests (Nahm, 2016) were conducted to test whether there is a significant difference between median 

values of isolate-Pantoea combinations and Pantoea monoculture.  
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Supplementary Figure 1. Qiime2 outputs for 16S community analysis of P. trichocarpa isolates 

in rhizosphere (NCBI Accession no. SAMN16795465) and R2A media (NCBI Accession no. 

SAMN16795466). Taxa bar chart was produced to visualize relative abundance of bacteria taxas 

in both conditions. Sequences in 99% OTUs were classified and grouped at the genus level. Taxa 

representing <1% of the total sequences were grouped as Others. 
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Supplementary Figure 2. MRA layout. (A) The 10µm diameter wells contained 7×7 sub-arrays, each 

sub-array contained 15×15 arrays of microwells. (B) All wells within the 15×15 sub-array were 

numbered according to their specific position in the array. Microwells were 10 µm in diameter with a 

40 µm pitch.  

Supplementary Figure 3.  Steps for microwell recovery array fabrication. Parylene N was deposited 

on top of silicon wafers. Then the parylene coated wafers were spin coated with positive photoresist 

AZ1512 and exposed with UV light though a photomask. The uncrosslinked photoresist was then 

washed by developing in MIF 300. Then Bosch etching was performed to get MRAs.   
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Supplementary Figure 5. (A) Cross section of the 3D printed scaffold on a glass microscope 

slide. (B) 3D printed Nylon scaffolds. The scaffold had 1.5×1.5cm grooves to hold up to thee 

microwell arrays. (C) The scaffold was glued to a 75×25mm glass slide then the scaffold lid was 

attached on top to firmly hold the microwell in place.  Liquid nutrient media was then added to fill 

the space between microwell array and the glass slide, keeping the microwell array fully 

submerged during culture. (D) The scaffold setup was placed inside a humidified live cell imaging 

chamber for TLFM. 

Supplementary Figure 4. Seeding and trapping of bacteria in microwell arrays with the aid of a 

PDMS coverslip. 
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Supplementary Figure 6. Maximum likelihood phylogenetic tree based on partial sequence of 

the 16S rRNA (1007 bp) from isolates obtained from microwells in which YR343 growth was 

promoted or antagonized as well as a few reference strains. The tree was constructed using the 

general time reversible substitution model (Tavaré, 1986) with a gamma distribution (GTR + G) 

in PhyML 3.3.20190909 (Guindon et al., 2010). We used Smart Model Selection (Lefort et al., 

2017) to select this substitution model. Bootstrap values (expressed as a percentage of 1000 

replications) higher than 70% are shown at nodes. A. tumefaciens C58 was included as an outgroup 

organism. The partial 16S sequences of the isolates are accessible in GenBank with unique 

accession numbers (P1E: MW251950, P3C: MW251951, P4B: MW251952, P1D: MW251953, 

P4A: MW251954, P2E: MW251955, P1B: MW251956, P3A: MW251957, P1C: MW251958, 

P5E: MW251959, P4C: MW251960, P4D: MW251961, P4E: MW251962, P3B: MW251963, 

P5A: MW251964, P1A: MW251965, P3D: MW251966, P5C: MW251967, A1A: MW251968, 

P2D: MW251969, A1E: MW251970, P5B: MW251971, P5D: MW251972, P2A: MW251973, 

A4B: MW251974, P3E: MW251975, A2B: MW251976, P2C: MW251977, P2B: MW251978, 

A4E: MW251979, A1B: MW251980, A2C: MW251981, A3D: MW251982, A4A: MW251983, 

A3E: MW251984, A3C: MW251985, A4D: MW251986, A1C: MW251987, A2A: MW251988).  
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Supplementary Figure 7.  C58-GFP - PAO1-mCherry co-culture after seeding at a 1:1 C58:PAO1 

cellular ratio. (A) Green-red fluorescence images of co-culture at various time points. (B) Scatter 

plot of end-point green (C58-GFP) and red (PAO1-mCherry) fluorescent signals (t= 36 hr), C58 

outlier wells are identified in green. (C) Individual well growth profile of a nominal well (well 

#22009 in B) and (D) individual well growth profile of an outlier well (well #120023 in B).   
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Supplementary Figure 8. Growthcurver output for analysis of growth curves generated from 96 

well-plate validation assays using isolates from microwells within which YR343-GFP growth was 

antagonized. For each condition, YR343-GFP culture was measured for a total of n=6 independent 

replicates. Carrying capacity, k (OD600) and growth rate, r (h-1) for each isolate, isolate combination 

and control and were quantified [192]. 
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Supplementary Figure 9. Growthcurver output for analysis of growth curves generated from 96 

well-plate validation assays using isolates from microwells within which YR343-GFP exhibited 

promoted population growth. For each condition, YR343-GFP culture was measured for a total of 

n=6 independent replicates. Carrying capacity, k (OD600) and growth rate, r (h-1) for each isolate, 

isolate combination and control and were quantified [192]. 
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Supplementary Figure 10. Sequential removal of microwells with nominal growth from an array 

sub-section after co-culture. (A) Microwell array before and after co-culture. This 15×15 

microwell array contained wells with no evident increases or decreases in YR343 growth (green). 

(B) Targeted removal of the microwell community in which YR343 did not see evident increases 

or decreases in end-point fluorescence (top row, green outline). Purple area denotes UV exposure 

area used for membrane degradation. (C) Left: YR343 growth curves after inoculation into 

conditioned media from the nominal isolate, isolate consortia, or unconditioned media (UCM). 

The control (green line) is conditioned media that was not inoculated with YR343 to verify that 

there was no growth carry over or contaminating microbes present. Right: Corresponding carrying 

capacity and growth rates for each growth curve. Statistical differences were identified by 

comparison of growth metrics between YR343 culture in conditioned media from each isolate or 

isolate mixture and YR343 growth in UCM (Wilcoxon two-sample test, n=6 independent 

experiments). None of the isolate mixtures showed significant differences in carrying capacities 

and growth rates compared to YR343 growth in UCM. These isolates were of Enterobacter genus, 

identified by 16S amplicon (data not shown). 

 

 

 



 

164 
 

Supplementary Figure 11. Growthcurver output for analysis of growth curves generated from 96 

well-plate validation assays using isolates from microwells within which YR343-GFP growth was 

nominal. For each condition, YR343-GFP culture was measured for a total of n=6 independent 

replicates. Carrying capacity, k (OD600) and growth rate, r (h-1) for each isolate, isolate combination 

and control and were quantified [192]. 
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Supplementary Table 1. Bacterial strains used in this study. 

Strain or Plasmid Characteristics Source or reference 

Strains   

Agrobacterium 

tumefaciens C58 

Wild-type strain C. Fuqua 

A. tumefaciens C58 

pSRKKm-sfGFP 

Wild-type strain carrying pSRKKm-sfGFP This study 

Pseudomonas 

aeruginosa PAO1 

Wild-type strain ATCC 

P. aeruginosa PAO1 

pSRKKm-mCherry 

Wild-type strain carrying pSRKKm-mCherry This study 

Pantoea sp. YR343 Wild-type strain with a constitutively 

expressed chomosomal insertion of EGFP 

(Bible et al., 2016) 

Escherichia coli S17-

1 λpir 

λpir, Tra+, cloning strain (Simon et al., 1983) 

E. coli S17-1 λpir 

pSRKKm-sfGFP 

Donor strain carrying pSRKKm-sfGFP This study 

E. coli S17-1 λpir 

pSRKKm-mCherry 

Donor strain carrying pSRKKm-mCherry This study 

P1A Isolate from microwell P1 within which 

YR343 exhibited promoted growth 

This study 

P1B Isolate from microwell P1 This study 

P1C Isolate from microwell P1 This study 
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P1D Isolate from microwell P1 This study 

P1E Isolate from microwell P1 This study 

P2A Isolate from microwell P2 within which 

YR343 exhibited promoted growth 

This study 

P2B Isolate from microwell P2 This study 

P2C Isolate from microwell P2 This study 

P2D Isolate from microwell P2 This study 

P2E Isolate from microwell P2 This study 

P3A Isolate from microwell P3 within which 

YR343 exhibited promoted growth 

This study 

P3B Isolate from microwell P3 This study 

P3C Isolate from microwell P3 This study 

P3D Isolate from microwell P3 This study 

P3E Isolate from microwell P3 This study 

P4A Isolate from microwell P4 within which 

YR343 exhibited promoted growth 

This study 

P4B Isolate from microwell P4 This study 

P4C Isolate from microwell P4 This study 

P4D Isolate from microwell P4 This study 

P4E Isolate from microwell P4 This study 

P5A Isolate from microwell P5 within which 

YR343 exhibited promoted growth 

This study 

P5B Isolate from microwell P5 This study 



 

167 
 

P5C Isolate from microwell P5 This study 

P5D Isolate from microwell P5 This study 

P5E Isolate from microwell P5 This study 

A1A Isolate from microwell A1 within which 

YR343 exhibited antagonized growth 

This study 

A1B Isolate from microwell A1 This study 

A1C Isolate from microwell A1 This study 

A1D Isolate from microwell A1 This study 

A1E Isolate from microwell A1 This study 

A2A Isolate from microwell A2 within which 

YR343 exhibited antagonized growth 

This study 

A2B Isolate from microwell A2 This study 

A2C Isolate from microwell A2 This study 

A2D Isolate from microwell A2 This study 

A2E Isolate from microwell A2 This study 

A3A Isolate from microwell A3 within which 

YR343 exhibited antagonized growth 

This study 

A3B Isolate from microwell A3 This study 

A3C Isolate from microwell A3 This study 

A3D Isolate from microwell A3 This study 

A3E Isolate from microwell A3 This study 

A4A Isolate from microwell A4 within which 

YR343 exhibited antagonized growth 

This study 
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A4B Isolate from microwell A4 This study 

A4C Isolate from microwell A4 This study 

A4D Isolate from microwell A4 This study 

A4E Isolate from microwell A4 This study 

 

Plasmids   

pSRKKm Broad-host-range Plac expression vector; 

KmR 

 

(Khan et al., 2008) 

pSRKKm-mCherry IPTG-inducible mCherry expression vector 

derived from pSRKKm; KmR 

(Van Der Vlies et al., 

2019) 

pSRKKm-sfGFP IPTG-inducible GFP expression vector 

derived from pSRKKm; KmR 

(Figueroa-Cuilan et al., 

2016) 
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Supplementary Table 2. Wilcoxon two-sample tests for differences in carrying capacities 

between YR343-GFP culture in conditioned versus unconditioned media from individual 

antagonistic isolates or from the 4-membered consortia. 

 

 

 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

A4A <0.01 Significant 

A4B <0.01 Significant 

A4D <0.01 Significant 

A4E <0.01 Significant 

4 member consortia <0.01 Significant 

Supplementary Table 3. Wilcoxon two-sample tests for differences in growth rates between 

YR343-GFP culture in conditioned versus unconditioned media from individual antagonistic 

isolates or from the 4-membered consortia. 

 

 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

A4A <0.01 Significant 

A4B <0.01 Significant 

A4D <0.01 Significant 

A4E <0.01 Significant 

4-member consortia <0.01 Significant 
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Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

P3A 0.2876 Not Significant 

P3B 0.0093 Significant 

P3C 0.4051 Not Significant 

P3D 0.0931 Not Significant 

P3E 0.1149 Not Significant 

5-member consortia <0.01 Significant 

Supplementary Table 4. Wilcoxon two-sample tests for differences in carrying capacities 

between YR343-GFP culture in conditioned versus unconditioned media from individual 

promoting isolates or from the 5-membered consortia. 

 

 

 

 

Isolates ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

P3A 0.2876 Not Significant 

P3B <0.01 Significant 

P3C 0.1490 Not Significant 

P3D 0.0656 Not Significant 

P3E <0.01 Significant 

5 member consortia <0.01 Significant 

Supplementary Table 5. Wilcoxon two-sample tests for differences in growth rates between 

YR343-GFP culture in conditioned versus unconditioned media from individual promoting 

isolates or from the 5-membered consortia. 
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Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

N4A 0.1861 Not Significant 

N4C 0.4297 Not Significant 

N4D 0.5249 Not Significant 

N4E 0.4377 Not Significant 

4-member consortia 0.3496 Not Significant 

Supplementary Table 6. Wilcoxon two-sample tests for differences in carrying capacities 

between YR343-GFP culture in conditioned versus unconditioned media from individual nominal 

isolates or from the 4-membered consortia. 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 7. Wilcoxon two-sample tests for differences in growth rates between 

YR343-GFP culture in conditioned versus unconditioned media from individual nominal isolates 

or from the 4-membered consortia. 
 

 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

N4A 0.2284 Not Significant 

N4C 0.4870 Not Significant 

N4D 0.1429 Not Significant 

N4E 0.1656 Not Significant 

4 member consortia 0.5314 Not Significant 
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Appendix C: Supporting information from Chapter 5 

Plasmid Construction for Azospirillus brasilense strain Sp7-GFP 

The plasmid pHRGFPTC (approximately 9.2 kb) [215]is a derivative of the broad host range 

plasmid pBBR1-GFP containing the gfpmut3 gene [264].  To construct this plasmid, a 1.3-kb 

BamHI/BglII fragment from pJQ200SK [265] containing the promoter (pc) and part of the 

gentamycin resistance gene (aacC1) was cloned into the BglII site of pBBR1-GFP to create 

pHRGFP3. A 1.3-kb fragment from p34S-Tc [266], which contains ampicillin, chloramphenicol, 

and tetracycline resistance genes, was cloned into the KpnI site of plasmid pHRGFP3 to create 

plasmid pHRGFPTC. This plasmid was transformed into E. coli S17-1 λpir  using calcium chloride 

heat-shock transformation and introduced to A. brasilense Sp7 (ATCC 29145) by biparental 

mating.  

Preparation and culture of Azosprillium brasilense SP7-GFP Strains 

Bacteria strains and plasmids used in this research are listed in Supplementary Table 2. A.  

brasilense SP7-GFP was created in the Alexandre lab and was used as received. A. brasilense SP7-

GFP was stored in 25% glycerol at -80 ⁰C. Sterile inoculation loops were used to pick up cells 

from the frozen stocks and culture in TY Media (5g/L Bacto-tryptone, 3g/L yeast extract, 1.2g/L 

CaCl2, pH: 7 ± 0.2), R2A broth media (pH: 7.2 ± 0.2, Teknova), or LB media (10g/L tryptone, 

5g/L NaCl, 5g/L yeast extract, pH: 7 ± 0.2), in sterile test tubes supplemented with ampicillin (100 

μg/mL) and tetracycline (5 μg/mL) for 24 hrs (28°C, 215 rpm). 

Photodegradable membrane attachment 

A previously described protocol for attaching the photodegradable hydrogel membrane to 

microwell arrays was used here [90, 214]. First, perfluoroalkylated glass slides were prepared by 

incubating 25×25 mm clean glass slides (Fisher Scientific) in 20 mL of 0.5% v/v 
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trichloro(1H,1H,2H,2H-perfluorooctyl) silane in toluene for 3 hrs [90, 214]. Then, NaH2PO4 was 

added with ATGN liquid media to obtain phosphate buffer saline (PBS) with 100mM final 

phosphate concentration, and the pH of the solution was adjusted to 8 by adding 5M NaOH (aq.). 

12.5 µL of this PBS-ATGN solution was then mixed with 5.6 μL of photodegradable PEG 

diacrylate monomer (MW 3400) and 6.9 μL of a four-arm PEG thiol solution monomer to obtain 

membrane precursor solution [141] (MW 10000, NOF America Corporation, DE-100SH) with 

equal concentrations of both PEG diacrylate (22mM) and four-arm PEG thiol solution monomer 

(22mM). The membrane precursor solution was placed on top of the microwell substrates by 

pipetting 15µL of the liquid precursor solution on top of the perfluoroalkylated glass slides and 

placing the solution over the seeded microwell substrate. Metal spacers ensured a constant 38µm 

gap between the glass slide and the microwell for the precursor solution. The membrane was then 

formed through monomer crosslinking and gelation by incubating for 25min at room temperature 

[90, 214]. After careful separation of the glass slide from the membrane-functionalized microwell 

array, the microwell array was placed inside a custom 3D printed scaffold, previously designed for 

imaging microwell arrays with time-lapse fluorescence microscopy [214].  

Time-lapse fluorescent microscopy 

Time-lapse fluorescent microscopy images were acquired with a Nikon Eclipse Ti-U inverted 

microscope equipped with a 20× objective, a motorized XYZ stage, a humidified live-cell 

incubation chamber (Tokai Hit), a DS-QiMc monochromatic digital camera, and NIS Elements 

Image acquisition software. The seeded microwell arrays were sealed with the photodegradable 

PEG membrane, and the inverted arrays were placed in a custom 3D printed scaffold to keep them 

submerged under liquid media while imaging [214]. Then the scaffold was placed inside a 

humidified live-cell incubation chamber at 28⁰C during imaging. A FITC filter was used to image 
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SP7-GFP (20×, 200 ms, 17.1× gain) with a neutral density filter with 25% standard light intensity 

to ensure imaging without photobleaching. Brightfield images were also taken at each section of 

the array after fluorescent imaging. Images of the microwell arrays were taken every 60 minutes 

during culture.  

Image Analysis 

GFP fluorescent images from the SP7-GFP and Zea mays rhizosphere isolate co-culture system 

was analyzed by the protocol described by Timm et al. [137]. Protein Array Analyzer tool in 

ImageJ was used to generate growth profiles for each organism to identify the top 2 wells with the 

highest growth levels for extraction [137]. The time-lapse fluorescent images were imported as 

image sequences corrected by subtracting darkfield images from illumination field images with 

the image calculator plugin. Then image backgrounds were removed by selecting a 125 radius 

sliding paraboloid, and illumination correction was performed using calculator plus plugin. 

Finally, the growth of each strain in the microwells was calculated using the ImageJ "Micro Array" 

plugin [137]. 

Identification with 16S rRNA sequencing 

Individual colonies of A. brasilense SP7-GFP growth-enhancing isolates were inoculated in R2A 

media to extract genomic DNA of each isolate using the DNeasy Blood & Tissue Kit (Qiagen, 

Germantown, MD). Genomic DNA samples were then diluted to 20 ng/µL in 20µL aliquots and 

sent to Genewiz (South Plainfield, NJ, U.S.A.) for 16S rRNA Sanger sequencing of the V1 to V9 

regions, enabling identification with approximately genus-level specificity. The sequences were 

aligned using MUSCLE (Edgar, 2004). They generated a maximum likelihood phylogenetic tree 

based on partial 16S rRNA sequences (1007 bp) using PhyML 3.3.20190909 (Guindon et al., 
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2010)  with 1000 bootstrap replicates and using the Smart Model Selection (Lefort et al., 2017) 

tool based on Akaike Information Criterion, a starting tree estimated using BIONJ, and the NNI 

method for tree topology improvement (Supplementary Figure 5).   

Validation using 96 well plates.  

To obtain CFCF from individual isolates, each isolate was cultured (28⁰C, 3000 rpm) in 2mL of 

R2A liquid media overnight, and then cells were removed from the media by centrifugation 

(2000g, 10 min). To obtain CFCF from combinatorial mixtures, isolate panels were instead 

inoculated together in R2A media and cultured overnight, followed by cell removal by 

centrifugation. To obtain conditioned media, separate CFCF was mixed with Sp7-GFP in 

corresponding media at a 1:1 volumetric ratio to reach an initial OD600 value of 0.2 (final volume 

= 100 µL), at which point growth was quantified with a Biotek Epoch 2 Multi-Mode Microplate 

Reader (28⁰C, 300rpm). Unconditioned media was obtained following the same procedure, except 

1X PBS was added to fresh R2A media instead of isolating CFCF. To verify, the OD600 

measurement was due to Sp7-FGP growth, CFCF from selected isolates without inoculation of 

Sp7-GFP was also measured. A total of n=3 independent replicates were calculated for each culture 

condition. Growth rates and carrying capacities of each condition were quantified using 

Growthcurver [192] (Supplementary Figure 6) and compared using the Wilcoxon two-sample 

test (Supplementary Table 3 and 4). 
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upplementary Figure 2: Inoculation and parallel tracking of A. brasilense Sp7-GFP in microwell 

arrays seeded with Sp7-GFP and maize root isolates in co-culture in LB media 

Supplementary Figure 1: Qiime2 output for the 16S diversity analysis for media selection for 

the Zea mays rhizosphere isolate MRA input. (A) Number of operational taxonomic units were 

calculated for maize rhizosphere enriched samples and MRA inputs cultured in LB, TY and R2A 

media. (B) Shannon’s Diversity Indexes were calculated for maize rhizosphere enriched samples 

and MRA inputs cultured in LB, TY and R2A media. 
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Supplementary Figure 3: Inoculation and parallel tracking of A. brasilense Sp7-GFP in 

microwell arrays seeded with Sp7-GFP and maize root isolates in co-culture in TY media 

Supplementary Figure 4: Inoculation and parallel tracking of A. brasilense Sp7-GFP in 

microwell arrays seeded with Sp7-GFP and maize root isolates in co-culture in R2A media 
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Supplementary Figure 5: Maximum likelihood phylogenetic tree based on 16S ribosomal RNA 

(rRNA) Sanger sequencing of the V1 to V9 regions from isolates obtained from Sp7-GFP 

symbiotic microwells as well as A. tumefaciens sp. C58 as reference strains. Smart Model Selection 

[191] was used to select the general time reversible substitution model [267] with a gamma 

distribution (GTR + G) in PhyML 3.3.20190909 [190] and bootstrap values (expressed as a 

percentage of 1000 replications) higher than 70% shown at nodes to construct the tree. The 16S 

sequences of the isolates are accessible in GenBank with unique accession numbers (Accession 

numbers: MZ363881.1, MZ363880.1, MZ363877.1,  MZ363879.1, MZ363878.1, MZ363871.1) 
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Supplementary Figure 6: Growthcurver output for analysis of growth curves generated from 96 

well-plate validation assays using conventionally tilled soil isolates from microwells within which 

Sp7-GFP growth was promoted. For each condition, Sp7-GFP culture was measured for a total of 

n=6 independent replicates. Carrying capacity, k (OD600) and growth rate, r (h-1) for each isolate, 

isolate combination and control and were quantified [192]. 
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Supplementary Figure 7:  Effect of isolate inoculation on the growth of axenic maize seedlings 

in growth chamber environment. (A) Growth of the axenic maize seedlings in the double-tube 

growth chamber at day 15. (B) Comparison of plant height between the treatments with Sp7-GFP 

symbiotic isolates with Sp7-GFP monoculture and no inoculation. 

 

 

Supplementary Figure 8: Verification of antibiotic resistance of extracted isolates in R2A agar 

plates. The plates were supplemented with 100 µg/ml ampicillin and tetracycline. The isolates 

were cultured in three columns in each plate. After observing the growth for 72 hrs, no microbial 

colonies were observed in all plates. 
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Sample 

Name 
Cover crops 

Carbon 

content 
Nitrogen content 

Phosphorous 

content 
pH 

Physiological 

properties 

Total 

C 

 % 

TOC 

 % 

Total 

N 

 % 

NO3-

N 

 

ppm 

NH4

-N 

 

ppm 

Total 

P 

 ppm 

P-M 

 ppm 

Sikora 

pH 

 

Sand 

 % 

Silt 

 % 

Clay 

 % 

Boyde Fields None 3.32 3.15 0.31 9.3 7.6 676 104 6.8 14 56 30 

Budke Field 
Millett/Sunflower 

in late summer. 

Grazed with cattle 

2.31 2.28 0.23 10.6 3.9 583 65 7.8 14 60 26 

Supplementary Table 1: Soil analysis report for the soil samples used in this study 
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Supplementary Table 2: Bacterial strains used in this study. 

Strain or Plasmid Characteristics Source or reference 

Strains   

A. brasilense Sp7-

GFP 

Wild-type strain carrying pHRGFPTC [215]  

A. tumefaciens C58 

pSRKKm-sfGFP 

Wild-type strain carrying pSRKKm-sfGFP [214] 

NTTY A1 Isolate from microwell A within which Sp7-

GFP exhibited promoted growth 

This study 

NTTY A2 Isolate from microwell A This study 

NTTY A3 Isolate from microwell A This study 

NTTY A4 Isolate from microwell A This study 

NTTY B1 Isolate from microwell B within which Sp7-

GFP exhibited promoted growth 

This study 

NTTY B2 Isolate from microwell B This study 

NTTY B3 Isolate from microwell B This study 

NTTY B4 Isolate from microwell B This study 

TR2A A1 Isolate from microwell A within which Sp7-

GFP exhibited promoted growth 

This study 

TR2A A2 Isolate from microwell A This study 

TR2A A3 Isolate from microwell A This study 

TR2A A4 Isolate from microwell A This study 

TR2A B1 Isolate from microwell B within which Sp7-

GFP exhibited promoted growth 

This study 

TR2A B2 Isolate from microwell B This study 

TR2A B3 Isolate from microwell B This study 

TR2A B4 Isolate from microwell B This study 

A4B Isolate from microwell A4 This study 

A4C Isolate from microwell A4 This study 

A4D Isolate from microwell A4 This study 

A4E Isolate from microwell A4 This study    

Plasmids 
  

pHRGFPTC  [215] 

pSRKKm Broad-host-range Plac expression vector; 

KmR  

[157] 

pSRKKm-sfGFP IPTG-inducible GFP expression vector 

derived from pSRKKm; KmR 

[268]  
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Supplementary Table 3: Wilcoxon two-sample tests for differences in carrying capacities 

between Sp7-GFP culture in conditioned versus unconditioned media from individual symbiotic 

isolates from Zea mays rhizobiome. 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 4: Wilcoxon two-sample tests for differences in growth rates between Sp7-

GFP culture in conditioned versus unconditioned media from individual symbiotic isolates from 

Zea mays rhizobiome. 

 

 

 

 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

Isolate A1 <0.01 Significant 

Isolate A2 <0.01 Significant 

Isolate A3 <0.01 Significant 

Isolate A4 <0.01 Significant 

Isolate B1 <0.01 Significant 

Isolate B2 <0.01 Significant 

Isolate B3 <0.01 Significant 

Isolate B4 <0.01 Significant 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

Isolate A1 <0.01 Significant 

Isolate A2 <0.01 Significant 

Isolate A3 <0.01 Significant 

Isolate A4 <0.01 Significant 

Isolate B1 <0.01 Significant 

Isolate B2 <0.01 Significant 

Isolate B3 <0.01 Significant 

Isolate B4 <0.01 Significant 
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Supplementary Table 5: Wilcoxon two-sample tests for the comparison of plant heights for each 

co-inoculation treatment at Day 15. 

 

 

 

 

 

 

 

Supplementary Table 6: Wilcoxon two-sample tests for the comparison of CFU/ml of Sp7 

between each co-inoculation treatment and Sp7 control treatment. 

 

 

 

 

 

 

 

Supplementary Table 7: Wilcoxon two-sample tests for the comparison of the abundance of Sp7 

between each co-inoculation treatment and Sp7 control treatment. 

 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

Sp7 <0.01 Significant 

Sp7 + A. bereziniae <0.01 Significant 

Sp7 + E. tabaci <0.01 Significant 

Sp7 + P. agglomerans <0.01 Significant 

Sp7 + S. marcescens <0.01 Significant 

Sp7 + S. nematodiphila <0.01 Significant 

Sp7 + S. urelytica <0.01 Significant 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

Sp7 <0.01 Significant 

A. bereziniae <0.01 Significant 

E. tabaci <0.01 Significant 

P. agglomerans <0.01 Significant 

S. marcescens <0.01 Significant 

S. nematodiphila <0.05 Significant 

S. urelytica <0.01 Significant 

Isolate ID p-value for Wilcoxon two-

sample test 

Significance of 

difference 

Sp7 <0.01 Significant 

A. bereziniae <0.01 Significant 

E. tabaci <0.05 Significant 

P. agglomerans <0.01 Significant 

S. marcescens <0.01 Significant 

S. nematodiphila <0.05 Significant 

S. urelytica <0.01 Significant 
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Appendix D: Supporting information from Chapter 6 

Figure S1: Growthcurver output for analysis of growth curves generated from 96 well-plate 

validation assays using isolates from microwells within which YR343-GFP growth was 

antagonized. For each condition, YR343-GFP culture was measured for a total of n=6 independent 

replicates. Carrying capacity, k (OD600) and growth rate, r (h-1) for each isolate, isolate combination 

and control and were quantified.[192] 
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Table S1: Bacterial strains used in this study. 

Strain or Plasmid Characteristics Source or reference 

Strains   

Agrobacterium tumefaciens 15955 Wild-type strain C. Fuqua 

A. tumefaciens 15955 pSRKKm-

sfGFP 

Wild-type strain carrying pSRKKm-

sfGFP 

This study 

Escherichia coli S17-1 λpir λpir, Tra+, cloning strain [269] 

E. coli S17-1 λpir pSRKKm-sfGFP Donor strain carrying pSRKKm-sfGFP This study 

E. coli S17-1 λpir pSRKKm-

mCherry 

Donor strain carrying pSRKKm-

mCherry 

This study 

A1 Isolate from microwell 1 within which 

A.tumefaciens sp. 15955 exhibited 

inhibited growth 

This study 

A2 Isolate from microwell 1 This study 

A3 Isolate from microwell 1 This study 

B1 Isolate from microwell 2 within which 

A.tumefaciens sp. 15955 exhibited 

inhibited growth 

This study 

B2 Isolate from microwell 2 This study 

B3 Isolate from microwell 2 This study 

C1 Isolate from microwell 3 within which 

A.tumefaciens sp. 15955 exhibited 

inhibited growth 

This study 

C2 Isolate from microwell 3 This study 
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C3 Isolate from microwell 3 This study 

   

Plasmids 
  

pSRKKm Broad-host-range Plac expression vector; 

KmR 

 

[157] 

pSRKKm-sfGFP IPTG-inducible GFP expression vector 

derived from pSRKKm; KmR 

[268] 

 

Table S2: Wilcoxon two-sample tests for differences in carrying capacities between 

A.tumefaciens sp. 15955 culture in conditioned versus unconditioned media from individual 

antagonistic isolates or from the 9-membered consortia.  

Isolate ID p-value for Wilcoxon 

two-sample test 

Significance 

of difference 

A1 <0.01 Significant  

A2 <0.01 Significant  

A3 <0.01 Significant  

B1 <0.01 Significant  

B2 0.0139 Significant  

B3 0.0134 Significant  

C1 <0.01 Significant  

C2 0.0109 Significant  

C3 <0.01 Significant  

9-member consortia  <0.01 Significant  
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Table S3: Wilcoxon two-sample tests for differences in growth rates between A.tumefaciens sp. 

15955 culture in conditioned versus unconditioned media from individual antagonistic isolates or 

from the 4-membered consortia. 

 Isolate ID p-value for 

Wilcoxon two-

sample test 

Significance 

of 

difference 

A1 <0.01 Significant  

A2 <0.01 Significant  

A3 <0.01 Significant  

B1 <0.01 Significant  

B2  Significant  

B3  Significant  

C1 <0.01 Significant  

C2  Significant  

C3 <0.01 Significant  

9-member consortia  <0.01 Significant  


