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Abstract

Dynamical systems modeling is used to describe di�erent biological and physical systems

as well as to predict the interactions between multiple components of a system over time. A

dynamical system describes the evolution of a given system over time using a set of math-

ematical laws, typically described by di�erential equations. There are two main methods

to model the dynamical behaviors of a system: continuous time modeling and discrete-time

modeling. When the time between two measurements is negligible, the continuous time

modeling governs the evolution of the system, however, when there is a gap between any

two consecutive measurements, discrete-time system modeling comes into play. Di�erential

equations are used to model continuous systems and iterated maps represent the generations

in discrete-time systems. In this dissertation, we study some dynamical systems and present

their applications to di�erent problems in biological systems, physiology, and neuroscience.

In chapter one, we study the local dynamics of some interesting systems and show the

local stable behavior of the system around its critical points. Moreover, we investigate the

local dynamical behavior of di�erent systems including the Hénon-Heiles system, the Du�ng

oscillator, and the Van der Pol equation. Furthermore, we discuss about the chaotic behavior

of Hamiltonian systems using two di�erent and new examples.

In chapter two, we consider some models in computational neuroscience. Due to the com-

plexity of nerve systems, linear modeling methods are not su�cient to understand the various

phenomena in neuroscience. We use nonlinear methods and models, which aim at capturing

certain properties of the neurons and their complex dynamics. Speci�cally, we explore the

interesting phenomenon of �ring spikes and complex dynamics of the Morris-Lecar model.

We consider a set of parameters such that the model exhibits a wide range of phenomenon.

We investigate the in�uences of injected current and temperature on the spiking dynamics

of Morris-Lecar model. In addition, we study bifurcations, and computational properties of



this neuron model. Moreover, we provide a bound for the membrane potential and a certain

voltage value or threshold for �ring the spikes. Studying the two co-dimension bifurcations

demonstrates more complicated behaviors for this single neuron model. Furthermore, we

describe the phenomenon of neural bursting and investigate the dynamics of Morris-Lecar

model as a square-wave burster, elliptic burster and parabolic burster.

Pharmacokinetic models are mathematical models, which provide insights into the in-

teraction of chemicals with certain biological processes. In chapter three, we consider the

process of drug and nanoparticle (NPs) distribution throughout the body. We use a tri-

compartmental model to study the perfusion of NPs in tissues and a six-compartmental

model to study drug distribution in di�erent body organs. We perform global sensitivity

analysis by LHS Monte Carlo method using Partial Rank Correlation Coe�cient (PRCC).

We identify the key parameters that contribute most signi�cantly to the absorption and

distribution of drugs and NPs in di�erent organs in the body.

In chapter four, we study two infectious disease models and use nonlinear optimization

and optimal control theory to help in identifying strategies for transmission control and

forecasting the spread of infectious diseases. We analyze the e�ect of vaccination on the

disease transmission in these models. Moreover, we perform global sensitivity analysis to

investigate the key parameters in these models.

In chapter �ve, we investigate the complex dynamics of two-species Ricker-type discrete-

time competitive model. We perform local stability analysis for the �xed points of the

system and discuss about its persistence for boundary �xed points. This system inherits

properties of the dynamics of a one-dimensional Ricker model such as the cascade of period-

doubling bifurcation, periodic windows, and chaos. We explore the existence of chaos for

the equilibrium points for a speci�c case of this system using Marotto theorem and show the

existence of snap-back repeller.

In chapter six, we study the problem of chaos synchronization in certain discrete-time

dynamical systems. We introduce a drive-response discrete-time dynamical system, which is

coupled using convex link function. We investigate a synchronization threshold, after which,

the drive-response system uncouples and loses its synchronized behaviors. We apply this



method to the synchronized cycles of the Ricker model and show that this model displays a

rich cascade of complex dynamics from a stable �xed point and cascade of period-doubling

bifurcation to chaos. We numerically verify the e�ectiveness of the proposed scheme and

demonstrate how this type of coupling a�ects the synchronization of the system.

In chapter seven, we study the synchronized cycles of a generalized Nicholson-Bailey

model. This model demonstrates a rich cascade of complex dynamics from a stable �xed

point to periodic orbits, quasi periodic orbits and chaos. We introduce a coupling of these

two chaotic systems with di�erent initial conditions and show how they synchronize over a

short time. We investigate the qualitative behavior of Generalized Nicholson-Bailey model

and its synchronized model using time series analysis and its long-time dynamics by using

its bifurcation diagram.
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Abstract

Dynamical systems modeling is used to describe di�erent biological and physical systems

as well as to predict the interactions between multiple components of a system over time. A

dynamical system describes the evolution of a given system over time using a set of math-

ematical laws, typically described by di�erential equations. There are two main methods

to model the dynamical behaviors of a system: continuous time modeling and discrete-time

modeling. When the time between two measurements is negligible, the continuous time

modeling governs the evolution of the system, however, when there is a gap between any

two consecutive measurements, discrete-time system modeling comes into play. Di�erential

equations are used to model continuous systems and iterated maps represent the generations

in discrete-time systems. In this dissertation, we study some dynamical systems and present

their applications to di�erent problems in biological systems, physiology, and neuroscience.

In chapter one, we study the local dynamics of some interesting systems and show the

local stable behavior of the system around its critical points. Moreover, we investigate the

local dynamical behavior of di�erent systems including the Hénon-Heiles system, the Du�ng

oscillator, and the Van der Pol equation. Furthermore, we discuss about the chaotic behavior

of Hamiltonian systems using two di�erent and new examples.

In chapter two, we consider some models in computational neuroscience. Due to the com-

plexity of nerve systems, linear modeling methods are not su�cient to understand the various

phenomena in neuroscience. We use nonlinear methods and models, which aim at capturing

certain properties of the neurons and their complex dynamics. Speci�cally, we explore the

interesting phenomenon of �ring spikes and complex dynamics of the Morris-Lecar model.

We consider a set of parameters such that the model exhibits a wide range of phenomenon.

We investigate the in�uences of injected current and temperature on the spiking dynamics

of Morris-Lecar model. In addition, we study bifurcations, and computational properties of



this neuron model. Moreover, we provide a bound for the membrane potential and a certain

voltage value or threshold for �ring the spikes. Studying the two co-dimension bifurcations

demonstrates more complicated behaviors for this single neuron model. Furthermore, we

describe the phenomenon of neural bursting and investigate the dynamics of Morris-Lecar

model as a square-wave burster, elliptic burster and parabolic burster.

Pharmacokinetic models are mathematical models, which provide insights into the in-

teraction of chemicals with certain biological processes. In chapter three, we consider the

process of drug and nanoparticle (NPs) distribution throughout the body. We use a tri-

compartmental model to study the perfusion of NPs in tissues and a six-compartmental

model to study drug distribution in di�erent body organs. We perform global sensitivity

analysis by LHS Monte Carlo method using Partial Rank Correlation Coe�cient (PRCC).

We identify the key parameters that contribute most signi�cantly to the absorption and

distribution of drugs and NPs in di�erent organs in the body.

In chapter four, we study two infectious disease models and use nonlinear optimization

and optimal control theory to help in identifying strategies for transmission control and

forecasting the spread of infectious diseases. We analyze the e�ect of vaccination on the

disease transmission in these models. Moreover, we perform global sensitivity analysis to

investigate the key parameters in these models.

In chapter �ve, we investigate the complex dynamics of two-species Ricker-type discrete-

time competitive model. We perform local stability analysis for the �xed points of the

system and discuss about its persistence for boundary �xed points. This system inherits

properties of the dynamics of a one-dimensional Ricker model such as the cascade of period-

doubling bifurcation, periodic windows, and chaos. We explore the existence of chaos for

the equilibrium points for a speci�c case of this system using Marotto theorem and show the

existence of snap-back repeller.

In chapter six, we study the problem of chaos synchronization in certain discrete-time

dynamical systems. We introduce a drive-response discrete-time dynamical system, which is

coupled using convex link function. We investigate a synchronization threshold, after which,

the drive-response system uncouples and loses its synchronized behaviors. We apply this



method to the synchronized cycles of the Ricker model and show that this model displays a

rich cascade of complex dynamics from a stable �xed point and cascade of period-doubling

bifurcation to chaos. We numerically verify the e�ectiveness of the proposed scheme and

demonstrate how this type of coupling a�ects the synchronization of the system.

In chapter seven, we study the synchronized cycles of a generalized Nicholson-Bailey

model. This model demonstrates a rich cascade of complex dynamics from a stable �xed

point to periodic orbits, quasi periodic orbits and chaos. We introduce a coupling of these

two chaotic systems with di�erent initial conditions and show how they synchronize over a
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Chapter 1

Application of Stability Theory in

Studying the Local Dynamics of

Nonlinear Systems
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Abstract

In Chapter One, we study the local dynamics of some interesting systems and show the

local stable behavior of the system around its critical points. Moreover, we investigate the

local dynamical behavior of di�erent systems including the Hénon-Heiles system, the Du�ng

oscillator, and the Van der Pol equation. Furthermore, we discuss about the chaotic behavior

of Hamiltonian systems using two di�erent and new examples.



1.1 Introduction

A dynamical system describes the evolution of a system over time using a set of mathemat-

ical laws. Moreover, it can be used to predict the interactions between di�erent components

of a system1;2. There are two main methods to model the dynamical behaviors of a system,

continuous time modeling, discrete-time modeling1�3. When the time between two mea-

surements is negligible, the continuous time modeling governs the evolution of the system,

however, when there is a gap between two measurements, discrete-time system modeling

comes to play. Ordinary di�erential equations are the tool to model a continuous system

and iterated maps represent the discrete generations4;203.

In this paper we will be concerned with continuous dynamical systems which are de�ned by

di�erential equations. Indeed, some famous examples of dynamical systems can be written

in terms of di�erential equations: the harmonic oscillator, the pendulum and double pendu-

lum, or the N-body problem4;6�8;41;203. A dynamical system is a triple (M,Φt, K) whereM is

called the phase space and is usually a smooth manifold or a subset of Rn, Φt : M×K →M ,

called the evolution, is a smooth action of K in M and K is either a subset of R in the

case of a continuous time dynamical system or a subset of Z in the case of a discrete time

dynamical system. The smooth action Φt(x) describes the evolution with time t ∈ K of a

point x in the phase space M 4;6;7;203.

Stability of a system is one of the most important parts of the studying the dynamical be-

havior of a system. Generally speaking, an unstable and moreover a chaotic system are not

useful and we like to work with a system with stable and or periodic behavior (although

chaos is a known behavior for many systems and sometimes people look for di�erent strate-

gies for chaoti�cation of a system for di�erent purposes10�12).

There are di�erent de�nitions for stability, however, all they have this common fact that a

system is stable if perturbation, external inputand or intentionally applied signals can not

make the system get away from the equilibrium point13;14. There are three possibilities for

dynamical behavior of a system after applying a perturbation203:

1. The system state would return to the equilibrium state.
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2. The system state would not return to the equilibrium state but stays near to that state.

3. The system state diverges from the equilibrium state.

Mathematically speaking, the equilibrium state x∗ is stable if for each initial conditions x(0)

close enough to x∗ , the corresponding trajectory x(t) remains near x∗ for all t ≥ 0.

∀ε > 0 ∃δ > 0 : ||x(0)− x∗|| < δ ⇒ ||x(t)− x∗|| < ε, ∀t ≥ 0

In this paper, we present some results regarding the study of local dynamics of non-linear

continuous time dynamical systems. We provide di�erent examples to display stable and

unstable limit cycles and we demonstrate the numerical results for each case. In addition,

we study the local dynamics of three well known physical systems, Henon-Heiles system,

Du�ng oscillator and Van der pol equations and we display the evolution of solutions of the

system in time. Finally, we discuss about the chaos in Hamiltonian systems and we provide

two examples to show chaos in Hamiltonian systems.

1.2 Dynamical systems theory

When we start to analyze the local dynamics of non-linear systems, the �rst step is �nding

the critical points and then exploring how the trajectories of the system evolving in the

neighborhood of critical point. This analysis helps us to �nd out how other solutions or

trajectories of the system behave when they get close to the critical points. Another step

to analyze a dynamical system is studying the trajectories which trace out a limit cycle or

a closed curve. In this case, the solution x(t) of the system will go around and create a

closed curve C with a certain period T . Therefore, the solutions x(t) = (x(t), y(t)) of the

system when it becomes periodic change to be x(t+T ) = x(t), y(t+T ) = y(t) for all t. Any

trajectories which are close to the limit cycle C, follow the same behavior as the limit cycle

C. For instance, they can get spiral in toward C, or they can spiral away from C, which

demonstrates if the closed curve C is stable or unstable. See Figure (1.1). The root point
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Figure 1.1: F1(X, Y ) = (−X2 − Y 2) exp(−X2 − Y 2), local dynamics

for F1(X, Y ) = (−X2 − Y 2) exp(−X2 − Y 2) is (X, Y ) = (0, 0). The Taylor expansion for

F1(X, Y ) at (X, Y ) = (0, 0) has the following form:

Tn(X, Y ) = −Y 2e−Y
2

+X2e−Y
2

(Y 2 − 1)− 1

2
X4e−Y

2

(Y 2 − 2) +O(X5) (1.1)

From Figure (1.1), the point (0, 0) is a stable �xed point and moreover the maximum of

F1(X, Y ) occurs at (X, Y ) = (0, 0) and it is:

max{(−X2 − Y 2) exp(−X2 − Y 2)} = 0 (1.2)

In Figure (1.2), we see F2(X, Y ) = (X2 + Y 2) exp(−X2 − Y 2). The root for F2(X, Y ) is

(X, Y ) = (0, 0). The Taylor expansion for F2(X, Y ) at (X, Y ) = (0, 0) has the following

form:

Tn(X, Y ) = Y 2e−Y
2 −X2e−Y

2

(Y 2 − 1) +
1

2
X4e−Y

2

(Y 2 − 2) +O(X5) (1.3)

The minimum of F2(X, Y ) happens for (X, Y ) = (0, 0) which is equal to:

min{(X2 + Y 2) exp(−X2 − Y 2)} = 0 (1.4)
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Figure 1.2: F2(X, Y ) = (X2 + Y 2) exp(−X2 − Y 2), local dynamics

For F2(X, Y ) the point (X, Y ) = (0, 0) is unstable.

Another example, F3(X, Y ) = X exp(−X2− Y 2) which has been displayed in Figure (1.3).

Figure 1.3: F3(X, Y ) = X2 exp(−X2 − Y 2), local dynamics

The maximum of F3(X, Y ) occurs at (X, Y ) = (−1, 0) and (X, Y ) = (1, 0) and it equals

to:

max{X2 exp(−X2 − Y 2)} =
1

e
(1.5)

4



In addition, the Taylor expansion for F2(X, Y ) at X = 0 has the following form:

Tn(X, Y ) = X2e−Y
2 −X4e−Y

2

+
1

2
X6e−Y

2 − 1

6
X8e−Y

2

+O(X9) (1.6)

As we can see in Figure (1.3), (X, Y ) = (−1, 0) and (X, Y ) = (1, 0) are stable.

In Figure (1.4), we can see for F4(X, Y ) = Y 2 exp(−X2−Y 2), (X, Y ) = (0,−1) and (X, Y ) =

(0, 1) are stable.

Figure 1.4: Z = Y 2 exp(−X2 − Y 2), local dynamics

The maximum of F4(X, Y ) occurs at (X, Y ) = (0,−1) and (X, Y ) = (0, 1) and equals to

max{Y 2 exp(−X2 − Y 2)} =
1

e
(1.7)

Moreover, the Taylor expansion for F4(X, Y ) at X = 0 has the form

Tn(X, Y ) = Y 2e−Y
2 −X2e−Y

2

Y 2 +
1

2
X4e−Y

2

Y 2 +O(X5) (1.8)

For F5(X, Y ) = (X2 Y 2) exp(−X2 − Y 2) (Figure (1.5)),

(X, Y ) = (0, 0) is a root and Taylor expansion for F5(X, Y ) at X = 0 has the form

Tn(X, Y ) = X2e−Y
2

Y 2 −X4e−Y
2

Y 2 +
1

2
X6e−Y

2

Y 2 − 1

6
X8e−Y

2

Y 2 +O(X9) (1.9)
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Figure 1.5: F5(X, Y ) = (X2 Y 2) exp(−X2 − Y 2), local dynamics

Here, (X, Y ) = (−1,−1) and (X, Y ) = (−1, 1) give the maximum of F5(X, Y ) which is

max{X2 Y 2 exp(−X2 − Y 2)} =
1

e2
(1.10)

Finally, in Figure (1.6),

Figure 1.6: F6(X, Y ) = −(X2 Y 2) exp(−X2 − Y 2), local dynamics

F6(X, Y ) = −(X2 Y 2) exp(−X2−Y 2) has a root at (X, Y ) = (0, 0) and Taylor expansion

for F6(X, Y ) at X = 0 has the form

Tn(X, Y ) = −X2e−Y
2

Y 2 +X4e−Y
2

Y 2 − 1

2
X6e−Y

2

Y 2 +
1

6
X8e−Y

2

Y 2 +O(X9) (1.11)
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Here, (X, Y ) = (−1,−1) and (X, Y ) = (−1, 1) give the minimum of F6(X, Y ) which is

min{−X2 Y 2 exp(−X2 − Y 2)} = − 1

e2
(1.12)

1.3 Application of continuous dynamical systems model-

ing

1.3.1 Hénon-Heiles system

The Hénon-Heiles potential is one of the simplest examples of classical mechanics and Hamil-

tonian systems15�18. The Hénon-Heiles Hamiltonian demonstrates the emotion of stars

around a galactic center. In 1964, Michael Hénon and Carl Heiles simpli�ed the problem of

the emotion of stars around a galactic center by using a Hamiltonian to describe the motion

of stars near the equilibrium16. The Hénon-Heiles system has a wide application is studying

chaotic dynamics in a system. If the energy of the motion becomes close to the bounding

energy of the potential sink which is surrounding the center of the potential, this system

displays chaotic dynamics15.

Consider the following nonlinear system of ordinary di�erential equations


dx

dt
= y

dy

dt
= x− x2

(1.13)

The Hamiltonian function for this system has the form

H(x, y) =
y2

2
− x2

2
+
x3

2
(1.14)

For any x, y satisfying (1.13), we have
dH

dt
= 0. For any solution (x(t), y(t)) of system

(1.13), the Hamiltonian H(x(t), y(t)) is constant, it means
d

dt
H(x(t), y(t)) = 0. This is a

very nice property of Hamiltonian function which is a conserved quantity for a system of
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ordinary di�erential equations and it is constant along all solution curves of the system.

The solution curves are given by H(x, y) = C. Here, there are two non degenerate critical

points (0, 0) and (−1, 0). The critical point (0, 0) is a saddle point and the eigenvectors

corresponding to this critical points are (1,−1)T and (1, 1)T . The critical point (−1, 0) is

a center. Figure (1.7) displays the level curves or contours of four di�erent Hamiltonian

functions.

Figure 1.7: Hénon-Heiles system phase portraits

Consider the following Hamiltonian functions

H1(x, y) = −y
2

2
+
x2

2
+
x3

2
(1.15)

H2(x, y) =
y2

2
− x2

2
+
x3

2
(1.16)

H3(x, y) =
y2

2
+
x2

2
+
x3

2
(1.17)

H4(x, y) =
y2

2
+
x2

2
− x3

2
(1.18)

These Hamiltonian functions (1.15)-(1.18), are corresponding to a system of ordinary dif-

ferential equations. The Hamiltonian function H1(x, y) has a critical point at (1, 0) and
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the Hamiltonian function H2(x, y) has a critical point at (−1, 0). As we can see in Figure

(1.7), the stable and unstable manifolds from the origin for H1(x, y) and H2(x, y) form a

homoclinic orbit which we can not see this property in Hamiltonian functions H3(x, y) and

H4(x, y). This homoclinic loop connects the critical point (0, 0) to itself and it takes in�nite

amount of time to make connection. For Hamiltonian functions H1(x, y) and H2(x, y), the

critical point (0, 0) is called a saddle-node equilibrium and the Jacbian matrix of the system

has a zero eigenvalues at this equilibrium point. However, the critical point (0, 0) for the

Hamiltonian functions H3(x, y) and H4(x, y) demonstrates another kind of dynamics and it

is called the Bogdanov-Takens equilibrium point and the Jaobian matrix in this case has two

zero eigenvalues. As it can be seen in Figure (1.7), the critical point (0, 0) is unstable which

is the property of Bogdanov-Takens equilibrium point.

1.3.2 Du�ng oscillator

The Du�ng oscillator is a single ordinary di�erential equation which represents a nonlinear

damped driven oscillator. This simple nonlinear system displays di�erent kinds of dynamical

behaviors from periodic and regular behaviors to chaos. When we add a driving force and

friction, we can see this simple equation exhibit chaotic behavior19�21. The Du�ng oscillator

equation has the following form

y′′ + α y′ + β y + γ x3 = 0, y(0) = A, y′(0) = B (1.19)

The law of energy conservation states that this is impossible to see chaotic motion in a

single degree of freedom. Therefore, with adding a driving force and damping, the energy

conservation would be eliminated. Then, the equations of motion has the form


dy1

dt
= y2

dy2

dt
= −b y2 − α y1 − β y3

1 + amp sin(w t)
(1.20)

We have demonstrated di�erent dynamical behaviors of (1.20) in Figures (1.8)-(1.10).
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Figure 1.8: Chaotic solutions of Du�ng oscillator (1.20) for amp = 0.42, b = 0.5, α =
−1.0, β = 1.0, w = 1.0, Periodic solutions of Du�ng oscillator (1.20) for amp = 0.35,
b = 0.75, α = −1.0, β = 1.0, w = 1.0

The Du�ng oscillator can be used to model di�erent physical phenomenon such as sti�-

ening springs, beam buckling, nonlinear electronic circuits, superconducting Josephson para-

metric ampli�ers, and ionization waves in plasmas22.

1.3.3 The Van der Pol equation

Van der Pol equation which is a well known second order ordinary di�erential equations

with cubic nonlinearity have attracted many researchers in di�erent �eld of science. This

self oscillatory system, Van der Pol oscillator, has been considered as a useful mathematical

model for may complicated systems.23�25. Mathematical representation of the Van der Pol

system has the form

x′′ + µ (x2 − 1)x′ + x = 0 (1.21)

where the constant µ is a positive parameter depending on the tube constants. This equation

represents the current x(t) in a certain type of vacuum tube. We can write (1.21) as a �rst
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Figure 1.9: Periodic solutions of Du�ng oscillator (1.20) for amp = 0.45, b = 0.45,
α = −1.0, β = 1.0, w = 0.75, Chaotic solutions of Du�ng oscillator (1.20) for amp = 0.4,
b = 0.49, α = −1.0, β = 1.0, w = 1.1

order system of di�erential equations:


dx

dt
= y

dy

dt
= −µ (x2 − 1)y − x

(1.22)

The numerical integration of equation (1.22) has been represented in Figs. (1.11)-(1.14).

As we can see, depending on di�erent values for µ, solutions look like periodic motion.

When µ has small values, this motion is nearly sinusoidal, however for larger values of µ,

the solutions seem to be relaxed oscillations which means solutions are similar to a series of

step functions and jump twice per cycle between the positive and the negative values.

1.4 Chaos in continuous dynamical systems

In this section, we assume that there is a Hamiltonian function with two degrees of freedom

and it is given by H = H0 + εH1. Here, we consider ε to be a very small parameter, H0 an

integrable Hamiltonian system and H1 a non-integrable Hamiltonian system (H is a non-
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Figure 1.10: Periodic solutions of Du�ng oscillator (1.20) for amp = 0.43, b = 0.51,
α = −1.0, β = 1.0, w = 1.05, Chaotic solutions of Du�ng oscillator (1.20) for amp = 0.39,
b = 0.47, α = −1.0, β = 1.0, w = 0.9

integrable Hamiltonian system). For ε = 0 and moreover for 0 < ε � 1, there exist quasi

periodic cycles which are known as KAM tori. However, under perturbation, these quasi

periodic cycles will be deformed and KAM tori will be dissolved gradually as we increase ε.

This phenomenon can be observed in Figures (1.15) and (1.16).

According to, KAM theory when x is irrational, then the torus is preserved for small

perturbation ε. But, proportional tori and adjacent irrational tori would be destroyed. In

addition, the stable manifold and unstable manifold of the saddle point which are intersecting

transversely, create the Smale horseshoe and chaotic motion. As ε increases gradually, these

chaotic layers grow and they envelope larger area in phase space26;27.

1.5 Conclusion

Dynamic systems modeling has been frequently used to describe di�erent physical systems

and has a very important role in predicting the interactions between multiple components of

a system over time. In the present study, we explored di�erent dynamical behaviors of some

continuous dynamical systems, from stable and regular motions to periodic and limit cycles,
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Figure 1.11: Solutions of Van der Pol equation (1.22) with µ = 0.75 and µ = 5

and then chaotic and irregular oscillations. We started with studying the local dynamics

of some vector �elds and we demonstrated the local stable behavior of the system around

its critical points. We continued this paper with studying the well known problems which

have been used a lot for di�erent physical purposes. Hénon-Heiles system, Du�ng oscillator

and Van der Pol equation are three important dynamical examples which have been widely

studied numerically. We demonstrated the stable and unstable manifolds from the origin

form a homoclinic orbit in Hénon-Heiles system and we discussed about the local dynamical

behaviors of its critical points. We showed that the critical point (0, 0) is a saddle point and

critical point (−1, 0) is a center. For Du�ng oscillator, which can be used to model di�erent

physical phenomenon, we showed the periodic and chaotic motions of the system using time

series. Moreover, for Van der Pol equation, we presented the limit cycle solutions and periodic

behavior of the system. We concluded that depending on di�erent values for µ, solutions

look like periodic motion. When µ small values, this motion is nearly sinusoidal, however

for larger values of µ, the solutions seem to be relaxation oscillations which means solutions

are similar to a series of step functions and jump twice per cycle between the positive and

the negative values. Finally, we discussed about the chaos in Hamiltonian systems and we

provided two interesting and di�erent examples which exhibit chaotic behaviors. We assumed

13



Figure 1.12: Solutions of Van der Pol equation (1.22) with µ = 0.5 and µ = 3

a Hamiltonian function with two degrees of freedom and it can be obtained by adding an

integrable Hamiltonian system and a non-integrable Hamiltonian system. We showed that

for ε = 0 and in addition, for 0 < ε� 1, there exist quasi periodic cycles which are known as

KAM tori. However, under perturbation, these quasi periodic cycles will be deformed and

KAM tori will be dissolved gradually as we increase ε.
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Figure 1.13: Solutions of Van der Pol equation (1.22) with µ = 0.25 and µ = 10

Figure 1.14: Solutions of Van der Pol equation (1.22) with µ = 0.1 and µ = 15
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Figure 1.15: Dissolving the KAM tori caused by perturbation, H1(x, y) = −((1/2)x2) +
ε(sin((π/2)y) + sin((π/2)(y − β)))

Figure 1.16: Dissolving the KAM tori caused by perturbation, H2(x, y) = −((1/2)x2) +
ε(cos((2π)y) + cos((2π)(y − β)))
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Chapter 2

Neural Bursting and Spiking in Neurons:

the Morris-Lecar Model
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Abstract

In Chapter Two, we consider some models in computational neuroscience. Due to the com-

plexity of nerve systems, linear modeling methods are not su�cient to understand the various

phenomena in neuroscience. We use nonlinear methods and models, which aim at capturing

certain properties of the neurons and their complex dynamics. Speci�cally, we explore the

interesting phenomenon of �ring spikes and complex dynamics of the Morris-Lecar model.

We consider a set of parameters such that the model exhibits a wide range of phenomenon.

We investigate the in�uences of injected current and temperature on the spiking dynamics

of Morris-Lecar model. In addition, we study bifurcations, and computational properties of

this neuron model. Moreover, we provide a bound for the membrane potential and a certain

voltage value or threshold for �ring the spikes. Studying the two co-dimension bifurcations

demonstrates more complicated behaviors for this single neuron model. Furthermore, we

describe the phenomenon of neural bursting and investigate the dynamics of Morris-Lecar

model as a square-wave burster, elliptic burster and parabolic burster.



2.1 Introduction

During recent decades, understanding the brain function and exploring its molecular and

cellular mechanisms were one of the greatest challenges in di�erent �elds of science. Histor-

ically, most of the researches in neuroscience focused on only neuronal circuits and synaptic

organizations. Indeed, the neurons without considering their electrophysiological properties

were divided into excitatory and inhibitory neurons, and sometimes they had been counted

to be identical to those in Hodgkin-Huxley's squid axon28�31. In 1948 Hodgkin injected a dc-

current of varying amplitude, and discovered that some preparations could show repetitive

spiking activities with arbitrarily low frequencies, while the others discharged in a narrow

frequency band28;32�34. However, this �nding was widely ignored by the scientists until 1989

when Rinzel and Ermentrout published a seminal paper and showed that the di�erence in

behavior is because of di�erent bifurcation mechanisms of excitability28;35;36.

Non-linear dynamical system theory has a very important role in the computational neuro-

science research28�32;37. Izhikevich in28 explains how the transition in behavior of a neuron

corresponds to a bifurcation from equilibrium to a limit cycle attractor. If we consider the

injected current as a bifurcation parameter, when it is small, the cell remains quiescent. How-

ever, when the injected current increases, the cell switches to �re repetitive spikes28�32;37;38.

In dynamical system theory, the qualitative change in the behavior of a system is called

bifurcation. Indeed, when we change the amplitude of the bifurcation parameter (which in

this case is the injected current), the cell undergoes a transition from quiescence to repet-

itive spiking. According to the type of bifurcation which happens for a neuron model, we

can divide the neurons into di�erent classes such as the class of excitability, and or we can

discuss about the existence of threshold, all-or-none spikes, post-inhibitory rebound spikes,

subthreshold oscillations, bistability of rest and spiking states28. For example, the neurons

with supercritical and subcritical Hopf bifurcations are called resonator and the neurons with

saddle-node bifurcation or SNLC bifurcations are integrator28.

In this chapter, we study the interesting dynamics and �uctuations of spiking patterns of

Morris-Lecar model which is a reduced version of Hodgkin-Huxley neuron model. For a
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certain range of parameters value, Morris-Lecar model exhibits di�erent types of local bi-

furcations such as Hopf bifurcation, saddle node on invariant limit cycles and homoclinic

bifurcation. Moreover, we demonstrate a temperature bound and injected current range for

spiking activity of the neuron. Also, we study co-dimension two bifurcations such as Bautin

or generalized Hopf and Bogdanov-Takens bifurcations and we present the normal form of

these bifurcations as well. At the end, we look at the complicated dynamics of Morris-Lecar

model as a burster.

2.2 Description of model equations

In 1981, Kathleen Morris and Harold Lecar introduced a simple model to generate the action

potentials39. The Morris-Lecar model describes the electrical activities of neurons with a

system of two non linear ordinary di�erential equations and includes di�erent channels.

This model is a reduction version of the four dimensional Hodgkin-Huxley model keeping

the main properties of spike generations with much simpler mathematical and computational

analysis39;40. The Morris-Lecar model consists of three channels a potassium channel, a leak

and a calcium channel and has the following form


CM

dV

dt
= Iapp − gL(V − EL)− gKn(V − EK)− gCam∞(V )(V − ECa) = Iapp − Iion(V, n),

dn

dt
= φ(n∞(V )− n)/τn(V ),

(2.1)

where

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)], (2.2)

τn(V ) = 1/ cosh((V − V3)/(2V4)), (2.3)

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)]. (2.4)
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and

Iion(V, n) = gL(V − EL) + gKn(V − EK) + gCam∞(V )(V − ECa) (2.5)

where V demonstrates membrane potential, and n the activation variable of the persistent

K+ current, so it is a two-dimensional vector (V, n). EK , ECa, and EL denote the Nernst

equilibrium potentials. Iapp demonstrates the injected current and Iion the ionic current.

Parameter φ is a temperature factor. gL is leak membrane conductance, gK is potassium

membrane conductance and gCa is calcium membrane conductance. Moreover, CM is the

total membrane capacitance. Also, the voltage-sensitive steady-state activation function

m∞(V ) and n∞(V ), and the time constant τn(V ) can be measured experimentally. A useful

way to demonstrate the electrical properties of a neuron is using an equivalent circuit as we

can see in Figure (2.1)28. In this case, the total current has the form

I = CV̇ + ICa + IK Kirchho�'s Law

where, Ik = gk(V − EK), ICa = gCa(V − ECa) are the major ionic currents. Therefore

CV̇ = I − ICa − IK

Also, EK < V < ECa where ICa (inward current) is negative and also IK is positive. Basically,

the inward currents depolarize the neuron and outward currents hyperpolarize it.

This simple model shows di�erent types of dynamics such as Hopf bifurcation, saddle

node on invariant limit cycles and homoclinic bifurcation. In table (2.2), we can see a list

of parameters that cause three types of dynamics in Morris-Lecar model37. As we see, in

table (2.1), Iapp has not been included since we consider it as a bifurcation parameter for

bifurcation diagrams.
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Figure 2.1: Equivalent circuit for model (2.1). EK, ECa, and EL the Nernst equilibrium
potentials. Iapp the injected current, gL leak membrane conductance, gK potassium membrane
conductance, gCa calcium membrane conductance, CM the total membrane capacitance.

2.3 The Hopf case

For the case of Hopf parameters, the model (2.1) has one equilibrium point which is intersec-

tion point of V nullcline and n nullcline. Indeed, it is not possible to �nd the explicit solution

for any of the cases in table (2.1). In Figure (2.3), we have demonstrated the nullclines of

system (2.1) for Iapp = 0, 25, 50, 100 and it shows that there is only one solution for the

Hopf case.

In Figure (2.4), we can see di�erent behaviors of the neuron from resting to spiking (the

stable constant solutions are corresponding to the resting state and spiking state shows the

existence of periodic solutions). Figure (2.5) displays the occurrence of limit cycle corre-

sponding to Hopf bifurcation with increasing Iapp. As it has been exhibited in Figure (2.6),

some trajectories come back to the stable �xed point or resting state after a big counter

clockwise excursion but there are some other trajectories that return to the resting state
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Figure 2.2: Morris-Lecar parameters37.

Figure 2.3: Nullclines of model (2.1) with Iapp = 0, 25, 50, 100.

without �ring a spike. In neuroscience point of view, this kind of behavior is called threshold

for �ring spike. As a result, model (2.1) has an evident threshold for �ring spikes and it has

been obtained numerically equals to V = −20mv . Also, depends on the initial values of

membrane potential, the size of the excursion is di�erent.

Using continuation software Matcont and choosing Iapp as a bifurcation parameter, we

could detect numerically Hopf bifurcation points. For Iapp = 93.857569 and (V, n) =
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Figure 2.4: Time series of model (2.1) with Iapp = 20 left, and Iapp = 40 right.

(−25.270122, 0.139673) we have the �rst Hopf point with the �rst Lyapunov coe�cient

5.220161, and for Iapp = 212.018818 and (V, n) = (7.800664, 0.595491) we can see the second

Hopf point with the �rst Lyapunov coe�cient 5.451163. Here, the �rst Lyapunov coe�cients

for two Hopf points are positive. Thus, there should exist an unstable limit cycle, bifurcating

from the equilibrium and it indicates the appearance of subcritical Hopf bifurcation. When

the value for injected current Iapp is small we have a stable equilibrium point. When, we

increase the value of injected current, the behavior of system changes and for Iapp = 90, we

can see a limit cycle appears. This qualitative changing that causes producing a limit cycle

attractor from a stable equilibrium point is called Hopf bifurcation41;203. In model (2.1) the

equilibrium point is a stable focus that has a pair of complex conjugate eigenvalues with neg-

ative real part. With increasing the injected current, the real part of the eigenvalues changes

from negative to zero and with further increasing, to positive. It means that the stable focus

loses its stability and a limit cycle appears. With further increasing of the injected current,

the amplitude of the limit cycle also increases.

For (V, n) = (7.800664, 0.595491) the eigenvalues are λ1,2 = 4.65764± i(0.148602). Because

the real part of eigenvalues are positive, it implies that equilibrium point is unstable and

with further steps we obtain the second Hopf point (V, n) = (−25.270122, 0.139673) with

eigenvalues λ1,2 = −8.58989 ± i(0.0797799). Since, the real part is negative, it means that

the equilibrium point is stable.
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Figure 2.5: Trajectories of model (2.1) with Iapp = 87 (up,left), Iapp = 88.25 (up,right),
Iapp = 88.3 (down,left), Iapp = 90 (down,right).

The topological normal form for Hopf bifurcation has the form:

ṙ = αr + ar3 (2.6)

θ̇ = ω0 + βr2 (2.7)

Here, β does not have any dynamical e�ect. The normal form for �rst Hopf point (V, n) =

(7.800664, 0.595491) has the form below:

ṙ = (4.65764)r + (5.451163)r3 (2.8)

θ̇ = 0.148602 (2.9)
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Figure 2.6: Threshold for �ring a spike in model (2.1).

Moreover

ṙ = (4.65764)r + (5.451163)r3 (2.10)

θ̇ = −0.148602 (2.11)

In normal form (2.8), θ̇ > 0. θ is the angle of oscillations which is positive and increasing

because the frequency of damped or sustained oscillations around this point ω0, is positive.

But for normal form (2.10), θ̇ < 0 which means that the frequency of damped or sustained

oscillations around this point ω0, is negative.

To analysis the normal form (2.8), we have

r((4.65764) + (5.451163)r2) = 0

Therefore,

r = 0, (4.65764) + (5.451163)r2 = 0 (2.12)
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Here, r = 0 is an equilibrium and because for r = 0, d
dr

[(4.65764)r + (5.451163)r3] =

4.65764 > 0, as a result, this equilibrium is unstable. The equation (4.65764)+(5.451163)r2 =

0 does not give us any periodic solutions or oscillatory behaviors.

For other Hopf point (V, n) = (−25.270122, 0.139673), the normal form can be written as

ṙ = (−8.58989)r + (5.220161)r3 (2.13)

θ̇ = 0.0797799 (2.14)

Here, θ̇ > 0 means that the frequency of damped or sustained oscillations around this point

,ω0, is positive and increasing. But for the othe normal form:

ṙ = (−8.58989)r + (5.220161)r3 (2.15)

θ̇ = 0.0797799 (2.16)

θ̇ < 0 which implies that the frequency of damped or sustained oscillations around this point

ω0, is negative and decreasing.

To analyze the normal form (2.13):

r((−8.58989) + (5.220161)r2) = 0

Therefore

r = 0, (−8.58989) + (5.220161)r2 = 0 (2.17)

Here, r = 0 is an equilibrium and because for r = 0

d

dr
[(−8.58989)r + (5.220161)r3] = (−8.58989) < 0

As a result, this equilibrium is stable. The equation (−8.58989) + (5.220161)r2 = 0 gives us
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the unstable periodic solution with amplitude:

r =

√
8.58989

5.220161
(2.18)

2.4 The SNLC case

Fold bifurcation of limit cycle or SNLC happens when with increasing the injected current two

limit cycles, one stable that is associated to the stable node and another one unstable limit

cycle that is associated to a saddle point close to each other, collide and at the bifurcation

moment, we only have one limit cycle. With further increasing the injected current, this

limit cycle also disappears. Figure (2.7) exhibits the nullclines of system (7.15) using SNLC

parameters value in table (2.2). As we see, with increasing the injected current, the numbers

of equilibrium point change from 3 to only one �xed point.

Figure (2.8) demonstrates the trajectories of system (2.1) with the SNLC parameters in

Figure 2.7: The Nullclines of model (2.1) in the case of SNLC bifurcation.

table (2.2), and for di�erent values for injected current Iapp.

When we do the continuation of equilibrium point of SNLC case, we detect the �rst Hopf

point for Iapp = 97.646159 and (V, n) = (8.334122, 0.396190) and �rst Lyapunov coe�cient
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Figure 2.8: Trajectories of model (2.1) in the case of SNLC bifurcation for (up,left) Iapp = 5,
(up.right) Iapp = 30, (down,left) Iapp = 42, (down, right) Iapp = 100 .

5.317042 and two complex conjugate eigenvalues λ1,2 = (6.13675)±i(0.252728). Here, similar

to the Hopf case, Hopf bifurcation is subcritical since the �rst Lyapunov coe�cient is positive

and its normal form has the following form

ṙ = (6.13675)r + (5.317042)r3 (2.19)

θ̇ = −0.252748 (2.20)

Since, θ̇ < 0, the frequency of damped or sustained oscillations around this point ω0, is

negative and decreasing.

However, the analysis of normal form is just limited to the �rst equation of normal form

(2.19):

r((6.13675) + (5.317042))r2) = 0
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Therefore,

r = 0, (6.13675) + (5.317042))r2 = 0 (2.21)

Here, r = 0 is an equilibrium and because for r = 0, d
dr

[(6.13675)r + (5.317042)r3] =

6.13675 > 0, this equilibrium point is unstable. The equation (6.13675) + (5.317042))r2 = 0

does not give us any periodic solutions or oscillatory behaviors.

Also, the continuation of equilibrium point gives a limit point bifurcation for Iapp = −9.949039

and at the point (V, n) = (−4.048524, 0.136501) with the normal form coe�cient a =

4.772860 and the eigenvalues (λ1, λ2) = (−5.61265, 0.359026). The normal form for this

bifurcation can be written as:

V̇ = a± V 2 (2.22)

and for this case, we can write the following normal form:

V̇ = 4.772860− V 2 (2.23)

Thus, V = ±
√

4.772860. Here, we �nd an equilibrium manifold which is the parabola

(4.772860) = V 2 and gives the appearance of two equilibria. The same analysis can be done

for other normal form and it gives the parabola −4.772860 = V 2 but in this case, we have a

singularity of the fold type.

The third point which has been detected by continuation is a Neutral saddle corresponding to

λ1+λ2 = 0 for Iapp = 36.639168 at (V, n) = (−23.5341020.016555) with eigenvalues (λ1, λ2) =

(−0.0792728, 0.0792728). Further continuation gives us another limit point bifurcation for

Iapp = 39.963153 and at the point (V, n) = (−29.389788, 0.008514) for which a stable and

an unstable limit cycle collide and create a non hyperbolic cycle. The real eigenvalues are
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(λ1, λ2) = (−0.0990488,−(1.10511)). For this fold bifurcation, the normal form would be

V̇ = −(5.212474) + V 2 (2.24)

Thus, V = ±
√

(5.212474). Here, we have an equilibrium manifold which is the parabola

(5.212474) = V 2 and it implies to the appearance of two equilibria. The same analysis can

be done for the second normal form and we get the parabola −(5.212474) = V 2 which gives

a singularity of the fold type.

2.5 The Homoclinic case

Saddle-Homoclinic bifurcation happens when a saddle point and a limit cycle collide as we

are increasing the control parameter. At the moment of bifurcation, we have a periodic

orbit such that its period goes to in�nity and �nally, this periodic orbit disappears. The

trajectories of system (2.1) for homoclinic case have been demonstrated in Figure (2.9). Also,

as we can see in Figure (2.10) the numbers of �xed points of model (2.1) with increasing

Iapp = 0 to Iapp = 100, reduce from 3 equilibrium point to one equilibrium point. Indeed,

changing the numbers of �xed point means that a qualitative changes or bifurcation happens

in the system.

When we do continuation of equilibrium points, we detect a Hopf point for Iapp = 36.316266

and (V, n) = (4.410760, 0.294770) with the �rst Lyapunov coe�cient 3.765575. For this Hopf

point the eigenvalues are complex conjugate:λ1 = (−1.3955) ± i(0.378861). Therefore, this

is a subcritical Hopf bifurcation. The normal form of this bifurcation would be

ṙ = (−1.3955)r + (3.765575)r3 (2.25)

θ̇ = −0.378861 (2.26)

Since, θ̇ < 0,the frequency of damped or sustained oscillations around this point ω0, is

negative and decreasing.
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Figure 2.9: Trajectories of model (2.1) in the case of Saddle-Homoclinic bifurcation for
(up,left) Iapp = 0, (up.right) Iapp = 40, (down,left) Iapp = 50, (down, right) Iapp = 70 .

Analysis of normal form gives us

r((−1.3955) + (3.765575))r2) = 0

Therefore

r = 0, (−1.3955) + (3.765575))r2 = 0 (2.27)

Here, r = 0 is an equilibrium and because for r = 0, d
dr

[(−1.3955)r + (3.765575)r3] =

−1.3955 < 0, this equilibrium point is stable. The equation (−1.3955) + (3.765575))r2 = 0

gives us periodic solution or oscillatory behaviors with amplitude:

r =

√
1.3955

3.765575
(2.28)
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Figure 2.10: Nullclines of model (2.1) with Iapp = 0, 25, 50, 100.

When we continue along the curve of equilibrium points, we detect a limit point bifurcation

for Iapp = −9.949039 and at the point (V, n) = (−4.048518, 0.136501), with the normal form

coe�cient a = 3.297636. In this case, the eigenvalues are (λ1, λ2) = (−1.3742, 0.178384).

The normal form for this limit point bifurcation has the following form

V̇ = (3.297636)− V 2 (2.29)

Consequently, V = ±
√

(3.297636). The equilibrium manifold would be the parabola (3.297636) =

V 2. The same analysis can be done for other normal form and it gives us the parabola

−(3.297636) = V 2, but in this case, we have a singularity of the fold type.

We can de�ne the type of the saddle homoclinic bifurcation by looking at the sign of the sum

of the eigenvalues which is called saddle quantity. If λ1 +λ2 < 0, then the saddle homoclinic

bifurcation is called supercritical which is corresponding to the appearance or disappearance

of a stable limit cycle, and if λ1 + λ2 > 0, we have the subcritical saddle homoclinic orbit

bifurcation and it is corresponding to the appearance or disappearance of a unstable limit

cycle. As a result, since here λ1 + λ2 < 0, we have a supercritical saddle homoclinic bifurca-

tion.
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By further continuation the equilibrium curve, we obtain a limit point bifurcation for Iapp =

39.963153 and at the point (V, n) = (−29.389788, 0.008514), with normal form coe�cient

a = −4.526064. The eigenvalues are (λ1, λ2) = (−0.391585, 1.96656). Also, the normal form

would be

V̇ = (−4.526064) + V 2 (2.30)

and we have V = ±
√

4.526064. Therefore, we have an equilibrium manifold which is the

parabola (4.526064) = V 2 and two equilibria appear. The same analysis gives the parabola

−(4.526064) = V 2 but in this case, we have a singularity of the fold type.

Because here λ1 + λ2 > 0, we have the subcritical saddle homoclinic orbit bifurcation. In

neuroscience point of view, the saddle homoclinic bifurcation implies to the appearance or

disappearance of spiking behavior.

2.6 Two co-dimension bifurcations

In this section, we focus on co-dimension two bifurcations with Iapp and φ as bifurcation

parameters. The purpose is exploring the in�uences of temperature and injected current si-

multaneously on neuron model (2.1). At �rst, we discover Bautin or generalized Hopf (GH)

points for which the �rst Lyapunov coe�cient vanishes. Then, we study another type of

co-dimension two bifurcation which is called Bogdanov-Takens (BT) for which the system

has an equilibrium with a double zero eigenvalue41.

We start with the continuation of Hopf curve that bifurcates from the BT point and con-

tinues to reach a Bautin point named GH. With further continuation, we can see another

BT point after the second GH. Here, two GH points are non degenerate because the second

Lyapunov coe�cients l2 are non zero, l2 = −1.556360.

Here, for (V, n) = (−11.785736, 0.285152), and parameters value (φ, Iapp) = (0.306345, 124.470639),

we have the �rst Bautin point. In generalized Hopf (Bautin) bifurcation, the equilibrium has

a pair of complex conjugate eigenvalues and also at generalized Hopf point the �rst Lyapunov
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coe�cient for the Hopf bifurcation becomes zero. The bifurcation point separates branches

of subcritical and supercritical Hopf bifurcations. For the parameter values near bifurca-

tion, the system demonstrates two limit cycles that collide and disappear via a saddle-node

bifurcation. Basically, in Bautin bifurcation we have changing the type of bifurcation from

subcritical to super critical Hopf bifurcation. It means that the sign of the �rst coe�cient

Lyapunove changes from positive to negative. When the �rst Lyapunov coe�cient becomes

zero, the bifurcation becomes degenerate and the dynamics of system satis�es the following

topological normal form41:

ż = (λ+ iω)z + l1z|z|2 + l2z|z|4

Here, z ∈ C is a complex number, l1 called the �rst Lyapunov coe�cient and l2 called the

second Lyapunove coe�cient, and λ is the real part of eigenvalues and ω demonstrates the

imaginary part of eigenvalues. At the moment of Bautin bifurcation λ = l1 = 0 and l2 6= 0.

Likewise, when l2 > 0, we have subcritical Bautin bifurcation and when l2 < 0, we have

supercritical Bautin bifurcation. To begin bifurcation analysis, at �rst when λ = 0, we have

a Hopf bifurcation and depending on the sign of l1 we have supercritical or subcritical Hopf

bifurcation. Also, when the �rst and the second Lyapunov coe�cients have di�erent sign, the

solutions branch collide and disappear at the half parabola l21 − 4λl2 = 0 and they undergo

the fold limit cycle.

Here, for (V, n) = (−11.785736, 0.285152) and parameters value (φ, Iapp) = (0.306345, 124.470639),

we have a Bautin point with eigenvalues λ1,2 = (−5.0307) + i(0.156687) and the system sat-

is�es the following normal form:

V̇ = ((−5.0307) + i(0.156687))V + (−1.556360)V |V |4 (2.31)

Because, l2 < 0, we have supercritical Bautin bifurcation. The other Bautin point happens

for (V, n) = (2.472096, 0.507868), and (φ, Iapp) = (0.253856, 165.685695) with eigenvalues
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λ1,2 = (−2.67147)± i(0.28612) and the system satis�es the following normal form

V̇ = ((−2.67147) + i(0.28612))V + (−3.920527)V |V |4 (2.32)

Because, l2 < 0, we have supercritical Bautin bifurcation.

Generalized Hopf (Bautin) bifurcation in polar coordinates has the following normal form41:

ṙ = r(l1 + l2r
2 − r4),

φ̇ = 1

In our simulation, the curve LPC corresponds to the saddle-node bifurcation of periodic

orbits. As we can see in Figure (2.11), for φ = 0.30634507, we have Limit point cycle with

Normal form coe�cient = 1.604795.

Moreover, from Figure (2.12), it can be easily observed that, Bogdanov-Takens bifurcation

Figure 2.11: Continuation of equilibrium point in generalized Hopf bifurcation with φ =
0.30634507.

can be located along a Hopf bifurcation curves, and as we approach to Bogdanov-Takens

point, two purely imaginary eigenvalues collide and we have a double zero eigenvalue41;203.

Bogdanov-Takens bifurcation occurs when an equilibrium undergoes Hopf bifurcation and
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Figure 2.12: Continuation of equilibrium point in generalized Hopf bifurcation with φ =
0.30634507.

saddle-node bifurcation simultaneously and also it occurs when we have at least a two-

dimensional system. In this case, the Jacobian matrix of an equilibrium has these properties:

det(J) = 0 corresponding to saddle-node bifurcation, and tr(J) = 0 corresponding to Hopf

bifurcation and it has the form:

J |(k,0) =

0 1

0 0


Because of these two conditions, Bogdanov-Takens is a codimension two bifurcation that has

the following normal form

u̇ = v

v̇ = a+ bu+ u2 + σuv

where, a, b are the normal form coe�cients, and the parameter σ takes the values 1 and -

1, negative shows that it is supercritical and positive, when it is sub critical Bogdanov-Takens

bifurcation. Two Bogdanov-Takens points in Figure (2.12) are: (V, n) = (−28.744348, 0.114090),

(φ, Iapp) = (0.000000, 83.645532) with (a, b) = (−5.341083,−1.363867) and the second
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Bogdanov-Takens bifurcation happens at (V, n) = (8.717678, 0.610127), with the parame-

ter values (φ, Iapp) = (−0.000000, 222.452534) with (a, b) = (−1.185987, 3.751062). Finally,

we compared the e�ect of injected current and temperature in Figures (2.13) and (2.14). In

Figure (2.13), we can easily �nd a lower bound and upper bound for injected current and

a maximum and minimum voltage bound corresponding to spiking activity of this single

neuron. Also, Figure (2.14) gives us a range for temperature and a maximum and minimum

voltage bound corresponding to �ring spike for Morris-Lecar model.

Figure 2.13: Continuation of limit point cycles. In�uence of injected current on neuron
activities, maximum and minimum voltage bound.

2.7 Bursting behaviors of the Morris-Lecar model

For some neurons that have spiking behavior, by applying some changes, they may also

exhibit bursting behavior. For a neuron with ability to �re the spike, by adding a slow

resonant current or gating variable we can change the neuron state to be a burster. The

reason for this type of behavior is modulating the spiking and slow activity by the help of a

slow negative feedback. Using the slow parameters, a burster can control the fast subsystem

that has spiking state. Classi�cation of bursters depends on the type of bifurcation of
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Figure 2.14: Continuation of limit point cycles. In�uence of temperature on neuron activ-
ities, maximum and minimum voltage bound.

equilibrium points and limit cycles37.

2.7.1 Morris-Lecar model as a Square-Wave burster

The �rst type of bursting is square wave bursting which has two important properties37:

1. The repetitive spikes at membrane potential is more depolarized than the silent state.

2. The frequency of spiking decreases during the spiking state.

Bursting occurs for systems with at least three dimension. For Morris-Lecar model, we

consider Iapp decreases during the repetitive �ring state process and increases during the

silent state. Then, this burster demonstrates slow negative feedback together with hysteresis

in the fast dynamics which speci�cally happens for square-wave bursting. In this case, we
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add a calcium dependent potassium current and the system obtains the form37:



CM
dV

dt
= Iapp − gL(V − EL)− gKn(V − EK)− gCam∞(V )(V − ECa)− IKCa,

dn

dt
= φ(n∞(V )− n)/τn(V ),

d[Ca]

dt
= ε(−µICa −KCa[Ca]).

(2.33)

where

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)],

τn(V ) = 1/ cosh((V − V3)/(2V4)),

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)].

where, IKCa demonstrates the calcium dependent potassium current and equals IKCa =

gKCaz(V − EK). Here, gKCa is the maximal conductance for IKCa and z is a gating vari-

able with a Hill-like dependence on the near membrane calcium concentration, [Ca], and

z = [Ca]p

[Ca]p+1
. Without loss of generality, we assume p = 1. The last equation of system (2.33)

is a balance equation for [Ca]. The parameter µ has been used to convert current into a

concentration �ux and includes the ratio of the cell's surface area to the calcium compart-

ment's volume. The parameter KCa implies to the calcium removal rate and ε represents

the ratio of free to total calcium in the cell. Because calcium is highly bu�ered, ε is small

and the calcium dynamics is slow. The two �rst equations in of system (2.33) are called the

fast subsystem and the third equation is called the slow equation37.

Here, IKCa called outward current. If conductance gKCaz is large, the cell has hyper-

polarization state which is corresponding to resting behavior. Conversely, if gKCaz is small,

the cell �res spikes. We have demonstrated the model (2.33) as a circuit in Figure (2.15)).

Also, we have the required bursting parameters for di�erent types of bursters in table

(2.16))37. Moreover, we have demonstrated the dynamics of this burster for di�erent Iapp in
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Figure 2.15: Equivalent circuit for model (2.33). EK, ECa, and EL the Nernst equilibrium
potentials. Iapp the injected current, gL leak membrane conductance, gK potassium membrane
conductance, gCa calcium membrane conductance, CM the total membrane capacitance.

Figure (2.17).

2.7.2 Morris-Lecar model as an Elliptic burster

For Morris-Lecar model as an elliptic burster, we used the model (2.33) with parameters for

Elliptic bursting as we have in table (2.16). Also, we have demonstrated the dynamics of

Morris-Lecar model as an elliptic burster for di�erent Iapp in Figure (2.18).

2.7.3 Morris-Lecar model as a Parabolic burster

Unlike two previous bursters which we need only one slow variable for bursting behavior

and the occurrence of the bistability in time series for fast subsystem, in parabolic burster,

we need at least two slow variables and the bursting is not because of the bistability and
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Figure 2.16: Bursting parameters37.

hysteresis loop. In parabolic burster, the model has the form:



CM
dV

dt
= Iapp − gL(V − EL)− gKn(V − EK)− gCam∞(V )(V − ECa)− IKCa

dn

dt
= φ(n∞(V )− n)/τn(V )

d[Ca]

dt
= ε(−µICa −KCa[Ca])

ds

dt
= ε(s∞(V )− s)/τs

(2.34)

where

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)]

τn(V ) = 1/ cosh((V − V3)/(2V4))

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)]

s∞(V ) = 0.5(1 + tanh(V − 12)/24)
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Figure 2.17: Continuation of equilibrium points for Iapp = 0, 50, 100, 150, 200 and occur-
rence of cusp bifurcation with considering 2 free parameters, the horizontal curve correspond-
ing to co-dimension two bifurcation and the vertical curves are corresponding to co-dimension
one bifurcation with increasing Iapp from left to right. Morris-Lecar model as a Square-Wave
burster.

and calcium dependent potassium current IKCa is IKCa = gKCaz(V − EK) and also a new

calcium current ICass(V −ECa) that is depending on the gating variable s, and considering

the parameters in table (2.16) for parabolic bursting. Here, V, n are two fast variables and

[Ca], s are two slow variables. The circuit corresponding to this neuron is presented in

Figure (2.19). Finally, we have demonstrated the dynamics of this burster for di�erent Iapp

in Figure (2.20).

2.8 Conclusion

Understanding of the structure of the brain and its dynamics has been facilitated using

computer simulations. During the recent decades, our understanding about brain dynamics

and the mechanisms of di�erent neuron cells has been greatly improved. Indeed, the �eld of

computational neuroscience has been started with the work of Hodgkin and Huxley in 1952
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Figure 2.18: Continuation of equilibrium points for Iapp =
−50, 0, 45, 100, 150, 200, 250, 300, the horizontal curve corresponding to co-dimension two
bifurcation and the vertical curves are corresponding to co-dimension one bifurcation with
increasing Iapp from left to right. Morris-Lecar model as an Elliptic burster.

using nonlinear partial di�erential equations. The Hodgkin-Huxley model and its reduction

related models developed and improved many di�erent areas in mathematics. Recently,

dynamical systems theory and computational methods have been used frequently to study

neuron activities in a many of neuronal models. The collaboration between experimentalists

and theoreticians in analysis of neuronal models provides many progresses in the area of

neuroscience43�45. In this chapter we studied spiking dynamics of a single neuron model which

is a reduction of well-known Hodgkin-Huxley model and consists of a system of ordinary

di�erential equations. Depending on the di�erent parameters value, the model reproduces

quiescent, spiking and bursting activities. We numerically discovered the Hopf bifurcation,

SNLC bifurcation and homocinic bifurcation and we presented their normal form for each

case separately. Through bifurcation analysis and continuation of equilibrium point, we

explored the complicated dynamics which happened by changing the injected current or

changing the temperature in this neuron model. We could �nd a range for spiking activities
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Figure 2.19: Equivalent circuit for model (2.34), Morris-Lecar model as a Parabolic burster.
EK, ECa, and EL the Nernst equilibrium potentials. Iapp the injected current, gL leak mem-
brane conductance, gK potassium membrane conductance, gCa calcium membrane conduc-
tance, CM the total membrane capacitance.

of the neuron for injected current Iapp and temperature φ. We also discovered co-dimension

two bifurcations such as Bautin or generalized Hopf, Bogdanov-Takens and limit point cycles

and we demonstrated their normal forms. We also described the phenomenon of neural

bursting, and we used the continuation method to discover di�erent bifurcations for three

types of bursting behaviors. We have found new two co-dimension bifurcations compared

to two dimensional Morris-Lecar model, cusp bifurcation and zero-Hopf bifurcation. We

presented the Morris-Lecar bursting model for square-wave, elliptic and parabolic burster

and we displayed the circuit model corresponding to each type of burster. Finding other

types of bursting for Morris-Lecar model can be a new research project which needs to

further study about the phenomenon of neuronal bursting.
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Figure 2.20: Continuation of equilibrium points for Iapp = 0, 50, 100, 150, 200 and oc-
currence of the zero-Hopf and Bogdanov-Takense and cusp bifurcation with considering 2
free parameters for model (2.34), the horizontal curve corresponding to co-dimension two
bifurcation and the vertical curves are corresponding to co-dimension one bifurcation with
increasing Iapp from left to right. Morris-Lecar model as a Parabolic burster.
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Chapter 3

Global Sensitivity Analysis in

Physiological Systems
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Abstract

Pharmacokinetic models are mathematical models, which provide insights into the in-

teraction of chemicals with certain biological processes. In Chapter Three, we consider the

process of drug and nanoparticle (NPs) distribution throughout the body. We use a tri-

compartmental model to study the perfusion of NPs in tissues and a six-compartmental

model to study drug distribution in di�erent body organs. We perform global sensitivity

analysis by LHS Monte Carlo method using Partial Rank Correlation Coe�cient (PRCC).

We identify the key parameters that contribute most signi�cantly to the absorption and

distribution of drugs and NPs in di�erent organs in the body.



3.1 Introduction

Nanotechnology is the study of materials, devices, and systems at the nanometer scale.

Nanotechnology and nanoscience have been used widely in many areas of research and ap-

plications46�50. One of the most important advantages of nanotechnology is that the drug

can be targeted to a precise location which would make the drug much more e�ective and

it also reduces the possible side e�ects. The application of nanotechnology in the �eld of

nanomedicine and health care has grown a huge attention in recent times. Nanomedicine is

a branch of nanotechnology. Basically, we can de�ne nanomedicine as the medical applica-

tion of nanotechnology46;47;51. Nanomedicine has many advantages over conventional drug

delivery approaches and has been used frequently in anticancer research. There are some

techniques which help in the detection of tumors in the body and nanoparticles are one of

them51. Nanoparticles (NPs) help us to see cells and molecules that cannot be otherwise

detected through conventional imaging. The abilities to understand what happens inside

the cell and to observe therapeutic intervention and or to see when a cancer cell is lethally

injured or is stimulated are important to the e�ective diagnosis and then better treatment

of the disease51;52. Nanoparticles (NPs) have unique physicochemical properties, such as

small size, large surface area to mass ratio, and high reactivity, which are di�erent from bulk

materials of the same composition46. Indeed, because of these unique properties, NPs have

very important role in anticancer therapy47.

Mathematical and statistical modeling helps us to understand the interaction between the

components of systems biology and prediction of the future of di�erent biological mod-

els56;112�114;215. Basically, building a mathematical and computational model needs to per-

form di�erent experiments and obtain di�erent data which depicts the evolution of sys-

tem48;49. To understand the process of drug distribution through di�erent body organs, we

need to develop a comprehensive model which covers completely the experimental data58�60.

These models transform all the information into a system of ordinary di�erential equations

to do more analysis based on some mathematical useful tools and are �exible to analysis,

updates and modi�cations of pharmacology and physiology of agents and drugs. A mathe-
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matical model for drug or NP distributions is a structural model, consisting of compartments

such as adipose, tissues, brain, gut, heart, kidney, liver, lung, muscle, spleen, skin, and bone

and gastrointestinal tract including mouth, esophagus, and abdomen which are connected

by the cardiovascular system. In mathematical perspective, they describe biological systems

by converting into mathematical and theoretical equations and parameters and then using

computer code to solve the model system computationally.

To check the accuracy of any mathematical model, we need to use di�erent methods and

because of existence of uncertainty in experimental data, it can be often complicated. Uncer-

tainty and sensitivity analysis are useful techniques which help us to identify these uncertain-

ties in data and then control them113;114;116;117. Sensitivity analysis allows us to identify the

parameter or set of parameters that have the greatest impact on the model output. It then

provides useful information about which parameter or input makes the most variability in

the model output. Generally, local sensitivity analysis allows us to clarify the impact of each

parameter on model outputs individually. However, global sensitivity analysis overcomes the

limitations which the local sensitivity analysis creates by examining the sensitivity of model

output over the entire range of parameters at the same time.

Current work studies the process of drug distribution throughout the body which consists of

a system of ordinary di�erential equations. There are several biological parameters related

to distribution of drug through di�erent body organs. We start with a simple three compart-

mental model to demonstrate NP distribution from capillary to tissue. Globally sensitivity

analysis LHS Monte Carlo method using Partial Rank Correlation Coe�cient (PRCC) has

been performed to investigate the key parameters in model equations. Also, we study a six

compartmental system for which we assume the speci�c drug has been distributed through

di�erent rout of drug administrations, such as intravenous injection, intramuscular injection,

water and or feed. We have used the same global sensitivity analysis PRCC method to com-

pare di�erent physiological parameters. We have used the parameters variations based on

di�erent studies49;63�65.
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3.2 A simple three compartmental model example for NP

distribution

There are some e�orts to develop physiologically based pharmacokinetic models for nanopar-

ticles distribution through the body, which will be useful tools for predicting nanoparticle

distribution in di�erent organs to assist with extrapolation of responses from in vitro and in

vivo66. However, since the blood-�ow limited model which have been used for chemicals67

cannot be used for nanoparticles, we need to explain the distribution of the nanoparticles in

the tissues to develop a model66;68;69. There are many studies about the e�ects of Nanoma-

terials on biological procedures like isolated in vitro cell system and or in vivo e�ects. But,

there are only a few studies about vascular e�ects of Nanomaterials of di�erent composi-

tions49;70�72. In some studies, researchers have considered Endothelial cells (EC) as in vitro

model system for di�erent physiological processes73�76. According to these works, primary

EC have a limited life span and demonstrate distinct characteristics that are di�erent from

each other. All vessels in body are covered with a line of Endothelial cells and these cells

have di�erent rolls based on their size and location in blood vessels. Some of their important

tasks in our body are transporting small molecules and hormones like insulin, and degrading

lipoprotein particles. Moreover, they a�ect blood pressure regulation and transport in�am-

matory cells into target tissue. Also, they have key role in blood coagulation and �brinolysis.

Endothelial cells are like barriers between blood cells and tissue cells72. They may help to

some disorders like bleeding disorders, autoimmune disorders, or in pathological processes.

As we can see in Figure (3.1), EC or endothelial cells have covered blood vessels and they

transport NPs from capillary to target tissue. We have used a tri compartmental model for

NPs infusion to tissue. For NPs that move from blood vessels into di�erent tissues this tri-

compartmental model is needed to characterize NPs infusion in the body. For simplicity, we

have supposed that there is no interaction between Endothelial cells and their surrounding

cells.

As we can see in Figure (3.2), NPs enter from artery to the second compartment by a con-
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Figure 3.1: Endothelial cells as barriers between blood vessels and target tissue.

stant rate k12, we call this rate as absorption rate constant to capillary bed. After this step,

NPs distribute to the third compartment by a constant rate k23. Then, we have distribution

of NPs into �xed or deep tissue compartment by the constant rate k34. So far, we have

�nished two phases, absorption and distribution, and the last phase would be NPs leakage

or NPs elimination. If we apply the mass balance laws to this tri-compartmental model, we

have:


dACap
dt

= k12AArt − k23ACap − k25ACap + k32AEC

dAEC
dt

= k23ACap − k34AEC − k32AEC

dADT
dt

= k34AEC

(3.1)

We have two possible routes for NPs in compartment two. First possibility, they can dis-

tribute to compartment 3 and or they leave compartment two via venous e�ux. Here, also

we have assumed that the uptake depends on NP concentration in compartment two and

it does not depend on perforate blood �ow49;77. For the �rst compartment, we can easily

obtain the following equality:

J25 = J12 − k23ACap + k32AEC (3.2)
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Figure 3.2: Structure of the tri-compartment pharmacokinetic model for nanoparticle dis-
position with considering NPs infusion, where k23 , k32 and k34 are transfer rate constants,
k25 describes the rate of mass transfer from vascular (2) compartment to the venous e�uent,
J12 is the infusion drug �ux, which is the product of �ow (Q) and concentration (C12).

Where J25 = k25ACap and J12 = QC12 (k25 is a variable rate function).

Physiologically speaking, we have considered that at starting time t = 0 NPs enter from

artery to compartment 2 and then they leave capillary bed to shallow tissue. Before the

time for the venous e�uent, venous e�ux of NPs is zero, and at this moment, t = τ , and

then after that the sum of NPs �uxes to shallow tissue compartment and venous e�uent

should be equal to arterial �ux or J12. By this assumption that τ is small at steady state, we

can compute the initial mass M2 for capillary bed compartment that would be M2 = C12V2.

Here, C12 is the concentration of infused NPs, and V2 is the vascular volume. Also, we can

calculate the capillary transit time by the following equality τ = V2/Q, where, Q is perfusate

�ow through skin �ap and we consider it as a constant approximately equal 1 mL/min. The

value of k25 as a variable rate function after the time that �ux k32AEC reaches to compartment

two increased and we will prove it by some computations later49. After solving model (3.1)
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for ACap and AEC we have,

ACap = M2 (3.3)

AEC =
M2 k23

k32 + k34

(1− e−(k32+k34)t) + AEC(0) e−(k32+k34)(t−Γ) (3.4)

ADT =
M2k23k34

k32 + k34

(
t− 1− e−(k32+k34)t

k32 + k34

)
+
k34AEC(0)

k32 + k34

[
1− e−(k32+k34)t(t−Γ)

]
+ ADT (0) (3.5)

where we consider Γ as the beginning time of washout phase that is zero during dosing

phase77. Also, AEC(0) is the initial mass of compartment three and ADT (0) is the initial

mass of compartment four. During dosing phase, AEC(0) = 0 and ADT (0) = 0. During

washout phase, the initial mass of NPs in all compartments and Γ are non-zero. In decay or

washout phase, we can calculate k25 at t = 0 by the following equation77:

k0
25 =

J12 + k32AEC(0)

ACap(0)
− k23 (3.6)

Because at t = 0, AEC(0) = 0 and ACap(0) = M2, so we have:

k0
25 =

J12

M2

− k23 (3.7)

Therefore, k25 at steady-state has the following value:

kss25 =
J12 + k32AEC(ss)

ACap(ss)
− k23 (3.8)

such that AssCap = M2 and

AssEC = lim
t→∞

AEC(t) =
k23M2

k32 + k34

(3.9)

If we substitute the value of AssCap and A
ss
EC into kss25, then we have:

kss25 =
(k32 + k34)J12 + k32 k23M2

(k32 + k34)M2

− k23 (3.10)
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and because we have,
J12

M2

= τ−1, so;

kss25 = τ−1 +
k32 k23

k32 + k34

− k23 (3.11)

and when k34 = 0, we have kss25 = τ−1. Moreover, we can write k0
25 = τ−1 − k23. When we

compare k0
25 and kss25, we see that k

0
25 is less than kss25 by the following result:

kss25 = k0
25 +

k32 k23

k32 + k34

(3.12)

During dosing phase ACap = 0. At t = Γ , ACap changes from M2 to 0, and also AEC(0)

from 0 to AEC(Γ). During decay phase J12 is non-zero. Figure (3.3) displays the evolution

of the solutions of (3.1) in time and also with respect to other solutions in separate plots.

Figure 3.3: ACap, AEC and ADT in model (3.1).
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3.3 A six compartmental model example for drug distri-

bution through body organs

Physiological and pharmacokinetic models are useful to determine drug distribution into

di�erent target tissues, which helps for the evaluation of drug e�cacy and drug safety. We

study a six-compartmental pharmacokinetic model with application in food safety and we

use the physiological parameters variations based on di�erent studies63;64.

Cardiac output and blood �ows to tissues (L/h):



QC = QCC ×BW , Cardiac output

QL = QLC ×QC , Liver

QK = QKC ×QC , Kidney

QLu = QLuC ×QC , Lung

QF = QFC ×QC , Fat

QM = QMC ×QC , Muscle

QR = QRC ×QC , Rest of body

(3.13)

where, QCC = 4.944 is cardiac output (L/h/kg), QLC = 0.2725 is fraction of blood �ow

to the liver (unitless), QKC = 0.12 is fraction of blood �ow to the kidneys (unitless),

QFC = 0.1275 fraction of blood �ow to the fat (unitless), QMC = 0.251 is fraction of blood

�ow to the muscle (unitless), QLuC = 1 is fraction of blood �ow to the Lung (unitless),

QRC = 1−QLC −QKC −QFC −QMC;−QLuC is fraction of blood �ow to the rest of

body and BW is body weight63.
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Tissue volumes (L):



V ven = V venC ×BW ,

V art = V artC ×BW ,

V L = V LC ×BW , Liver

V K = V KC ×BW , Kidney

V Lu = V LuC ×BW , Lung

V F = V FC ×BW , Fat

VM = VMC ×BW , Muscle

V RB = V RC ×BW , Rest of body

(3.14)

where, V LC = 0.0245 Fractional liver tissue (unitless), V KC = 0.004 fractional kidney

tissue, V FC = 0.32 fractional fat tissue (unitless), VMC = 0.4 fractional muscle tissue

(unitless), V LuC = 0.010 fractional Lung tissue (unitless), V venC = 0.044 venous blood

volume, fraction of blood volume (unitless), V artC = 0.016 Arterial blood volume, fraction

of blood volume (unitless) and V RC = 1−V LC−V KC−V FC−VMC−V LuC−V venC−

V artC fractional rest of body tissue (unitless).

Permeability surface area coe�cients:

 PAF = PAFC × V F ,

PAM = PAMC × VM ,
(3.15)

where, permeability constants (L/h/kg tissue) (Permeation area cross products) are: PAFC =

0.012 fat tissue permeability constant, PAMC = 0.225 muscle tissue permeability con-

stant63.

Volume of tissue as blood: V Fb = FV BF × V F , Fat compartment blood volume

V Ft = V F − V Fb , Fat compartment tissue volume
(3.16)
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where, FV BF = 0.02 blood volume fraction of fat65.

Muscle:  VMb = FV BM × VM , Muscle compartment blood volume

VMt = VM − VMb , Muscle compartment tissue volume
(3.17)

where, FV BM = 0.01 blood volume fraction of muscle65.

Dosing:



DOSEoral = PDOSEoral ×BW , (mg) Oral dose

DOSEiv = PDOSEiv ×BW , (mg) IV dose

DOSEim = PDOSEim×BW , (mg) IM dose

DOSEoralw = PDOSEoralw ×BW , (mg) Oral through water dose

DOSEoralf = PDOSEoralf ×BW , (mg) Oral through feed dose

(3.18)

where, PDOSEoral, PDOSEiv, PDOSEim, PDOSEoralw and PDOSEoralf are pa-

rameters for exposure scenario.

Intramuscular (IM) injection equations:



Rim = Kim× Amtsite
d

dt
(Absorb) = Rim

Rsite = −Rim+Kdiss×Doseimremain
d

dt
(Amtsite) = Rsite

Rdoseimremain = −Kdiss×Doseimremain
d

dt
(Doseimremain) = Rdoseimremain

(3.19)

where, Kim = 0.15 or Kim = 0.3 IM IM absorption rate constant (/h), Kdiss = 0.02 IM

absorption rate constant63.
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Intravascular (IV) injection to the venous equations:


IV R = DOSEiv/T imeiv

Riv = IV R× (1− heaviside(T − Timeiv))

d

dt
(Aiv) = Riv

(3.20)

where, Timeiv is IV injection/infusion time (h).

Urinary elimination rate constant:

Kurine = KurineC ×BW (3.21)

Liver compartment:



RL = QL× (CA− CV L) +RAO ,

d

dt
(AL) = RL ,

CL = AL/V L ,

CV L = AL/(V L× PL) ,

d

dt
(AUCCL) = CL ,

(3.22)
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Blood compartment:



RV = (QL× CV L+QK × CVK +QF × CV F +QM × CVM +QR× CV RB +Riv +Rim)−

−QC × CV , (mg) RV the changing rate in the venous blood (mg/h)
d

dt
(AV ) = RV , AV the amount of the drug in the venous blood (mg)

CV = AV/V ven , CV drug concentration in the venous blood (mg/L)

RA = QC × (CV Lu− CA) , RA the changing rate in the arterial blood (mg/h)
d

dt
(AA) = RA , AV the amount of the drug in the venous blood (mg)

CA = AA/V art

d

dt
(AUCCV ) = CV , AUCCV AUC of drug

ABlood = AA+ AV

Kidney compartment:



RK = QK × (CA− CVK)−Rurine ,
d

dt
(AK) = RK ,

CK = AK/V K ,

CV K = AK/(V K × PK) ,

d

dt
(AUCCK) = CK ,

Rurine = Kurine× CVK ,

d

dt
(Aurine) = Rurine ,

(3.23)
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Muscle compartment:



RMB = QM × (CA− CVM)− PAM × CVM + PAM × CMt/PM ,

d

dt
(AMB) = RMB ,

CVM = AMB/VMB ,

RMt = PAM × CVM − PAM × CMt/PM ,

d

dt
(AMt) = RMt ,

CMt = AMt/VMt ,

AMtotal = AMt+ AMB ,

CM = AMtotal/V M ,

d

dt
(AUCCM) = CM ,

(3.24)

Lung compartment:



RLu = QLu× (CV − CV Lu) ,

d

dt
(ALu) = RLu ,

CLu = ALu/V Lu ,

CV Lu = ALu/(V Lu× PLu) ,

d

dt
(AUCCLU) = CLu ,

(3.25)

13



Fat compartment:



RFB = QF × (CA− CV F )− PAF × CV F + PAF × CFt/PF ,
d

dt
(AFB) = RFB ,

CV F = AFB/V FB ,

RFt = PAF × CV F − PAF × CFt/PF ,
d

dt
(AFt) = RFt ,

CFt = AFt/V Ft ,

Aftotal = AFt+ AFB ,

CF = Aftotal/V F ,

(3.26)

Rest of body:



RRB = QR× (CA− CV RB) ,

d

dt
(AR) = RRB ,

CR = AR/V RB ,

CV RB = AR/(V RB × PR) ,

d

dt
(AUCCR) = CR ,

(3.27)

Mass balance equation:


Qbal = QC −QL−QK −QM −QF −QR ,

Tmass = Ablood+ AL+ AK + AMtotal + AFtotal + AR + Aurine+ ALu ,

Bal = AAO + Aiv + Absorb− Tmass, Permeability-limited model mass balance

(3.28)

3.4 Global sensitivity analysis

Global sensitivity analysis allows us to change all parameters simultaneously over the entire

parameter interval. This is a way to evaluate the relative e�ects of each input parameter

and also to identify the interactions between parameters to the model output. In global
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sensitivity analysis we determine that with variation of input parameters in a certain range,

which parameters and interactions have the most in�uential impact on the overall behavior

of our model56;112�114;116;117.

There are several types of global sensitivity analyses, such as weighted average of local sen-

sitivity analysis, partial rank correlation coe�cient, multi parametric sensitivity analysis,

Fourier amplitude sensitivity analysis (FAST) and Sobol's method, which can be used for

systems pharmacology models112. The Latin hypercube sampling (LHS) method has been

used frequently for global sensitivity analysis. There are also some other methods for calcu-

lating main e�ect and total e�ect sensitivity indices and one of the most important one is

the method of Sobol116.

LHS method is a sampling method and requires fewer samples compare to simple random

sampling to achieve the same accuracy112. In LHS method, we divide the random parameter

distributions into N equal probability intervals. Here, N is the sample size. The choice for

N should be at least k + 1, where k is the number of parameters which are varied. For the

case that the interval of variation for some parameter is very large, the sampling can be done

on a log form.

In LHS method, sampling is independent for each parameter and can be done by randomly

selecting values from each pdf . We may sample each interval once for each parameter with-

out any replacement. The LHS matrix is consisting of N rows corresponding to the number

of simulations or sample size and also it includes k columns corresponding to the number of

varied parameters. Then, N model solutions may be simulated, using each combination of

parameter values which they represent each row of the LHS matrix112.

3.4.1 Partial Rank Correlation Coe�cient (PRCC) results for tri-

compartmental model (3.1)

Here, a parameter sensitivity analysis has been conducted to identify the pharmacokinetic

parameters that have the most signi�cant e�ect on our model system by the LHS Monte Carlo

method using PRCC with uniform distributions for the 95 percent con�dence intervals. The
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global sensitivity results with p- values corresponding to capillary compartment, endothelial

cell compartment and deep tissue compartment have been demonstrated in Figure (3.4),

Figure (3.5) and Figure (3.6) respectively.

Figure 3.4: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for capillary compartment of model (3.1).

3.4.2 Partial Rank Correlation Coe�cient (PRCC) results for six-

compartmental model (3.1)-(3.25)

According to LHS, we simulated the responses of the model for each organ by randomly

selecting values for the parameter set from the 95 percent con�dence intervals. These analyses

were done by developing a LHS/PRCC method with uniform distributions for the 95percent

con�dence intervals. We found that some parameters illustrate signi�cant performance in

terms of sensitivity of the output to the variations of these parameters in some organs while

they do not have this e�ect for other organs. These results have been depicted in Figure

(3.7) for kidney tissue, Figure (3.8) for liver tissue, Figure (3.9) for lung tissue, Figure (3.10)

for fat tissue, Figure (3.11) for muscle tissue and Figure (3.12) for plasma, are statistically

signi�cant with p- values much smaller than 0.01.
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Figure 3.5: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for endothelial cell compartment of model (3.1).

3.5 Conclusion

Recently, nanoparticles have a growing use in industry specially medicine. There are some

studies about applications of NPs in therapeutic areas, however, the number of these studies

is not a lot. Increasing the importance of studies about tumors and concentration of drugs

and NPs in tumors or other tissues has enhanced the role of in vitro models to simulate

absorption process of drugs and NPs. Pharmacokinetic and physiological models are useful

means to demonstrate the relationships between di�erent drug administrations, and drug

exposure or concentration.

An uncertainty analysis may be applied on the physiological and pharmaceutics models to

investigate the uncertainty in system output that is generated from uncertainty in parameter

inputs. Sensitivity analysis assesses how variations in model outputs can be apportioned,

qualitatively or quantitatively, to di�erent inputs.

In this research we reviewed two physiological systems which have been reported by di�erent

authors and we have used the presented physiological parameters from di�erent published

works. In the �rst case, we presented a three compartmental model which can be used to

exhibit the distribution of drug and or NPs from capillary compartment to endothelial cells
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Figure 3.6: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for deep tissue compartment of model (3.1).

compartment and then tissue compartment. The objective of this study was to determine the

key parameters in NPs infusion from blood vessels to target tissue in the ex vivo tissue per-

fusion system using sampling-based method (Partial Rank Correlation Coe�cient-PRCC).

As we have seen, some parameters have positively and some others negatively a�ected NPs

infusion process.

We have presented another physiological model with six compartments, such as kidney, liver,

lung, fat, muscle and plasma compartment. We identi�ed the key parameters that contribute

most signi�cantly to the absorption and distribution of drugs in di�erent organs in body us-

ing PRCC. Our �ndings imply that this identi�cation is clearly dependent upon the dose

and target tissues but not on the exposure route.
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Figure 3.7: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for Ck (concentration of drug in kidney).
The PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.

Figure 3.8: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for CL (concentration of drug in liver). The
PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.
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Figure 3.9: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for CLu (concentration of drug in lung). The
PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.

Figure 3.10: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for CF (concentration of drug in fat). The
PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.
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Figure 3.11: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for CM (concentration of drug in muscle).
The PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.

Figure 3.12: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for kidney. Analysis based on parameter e�ects for CV (concentration of drug in plasma).
The PRCCs are compiled within the pharmacokinetic parameters ranges obtained from63�65.
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Chapter 4

Impact of Vaccination Strategies and

Key Parameters on Infectious Disease

Models
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Abstract

In Chapter Four, we study two infectious disease models and use nonlinear optimization

and optimal control theory to help in identifying strategies for transmission control and

forecasting the spread of infectious diseases. We analyze the e�ect of vaccination on the

disease transmission in these models. Moreover, we perform global sensitivity analysis to

investigate the key parameters in these models.



4.1 Introduction

Recently, due to the fast spread of pandemic diseases, mathematical modeling in the �eld

of epidemiology has attracted many scientists in di�erent areas. Many mathematical mod-

els have been developed to describe the transmission of communicable diseases93�95. These

mathematical models describe the mechanisms of infectious diseases as well as they are help-

ful to analysis the e�ect of public health interventions to control the spreading of diseases.

In mathematical perspective, we describe biological systems by converting them into mathe-

matical and theoretical framework with biological parameters and then using computer code

to solve the model system computationally To predict the future of infectious diseases, one

needs to study the behavior of each individual which plays a key role to understand the

behavior epidemiology of infectious diseases96.

One of the new approaches in modeling dynamic systems is the theory of optimal control.

For the �rst time, R. E. Bellman introduced a new method to solve dynamic systems by

using the principle of optimality which reduces signi�cantly the computation of the optimal

controls97. In optimal control (OC) theory, for a dynamic system we de�ne a control problem

and its state trajectories over a period of time to minimize a performance index98. In optimal

control theory, the problem of determining the control would be turned to an extension of

the calculus of variations99. One of the most interesting applications of the calculus of

variations was in the Hamilton's principle or the Principle of Least Action. The Russian

mathematician Lev S. Pontryagin and his colleagues V. G. Boltyanskii, R. V. Gamkrelidz

and E. F. Misshchenko generalized the the calculus of variations to optimal control theory

by proposing the Pontryagin Maximum Principle100 which de�nes appropriate conditions

for optimization problems with di�erential equations as constraints. OC can be used for

the problems where the calculus of variations is not applicable, such as the problems which

include constraints on the derivatives of functions101. With increasing the number of variables

and parameters of system, optimal control problems can not be solved analytically and one

may need to apply numerical methods.

To model a dynamic system, we usually use a set of ordinary di�erential equations. A system
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of ODEs for t0 ≤ t ≤ tf can be described by

ẏ =



ẏ1

ẏ2

...

ẏn


=



f1(y1(t), . . . yn(t), t)

f2(y1(t), . . . yn(t), t)

...

fn(y1(t), . . . yn(t), t)


Based on how the conditions at the endpoints of the domain are speci�ed, we classify an ODE

solving problem into initial value problems (IVP) and boundary value problems (BVP). For

an initial-value problem, all the conditions are speci�ed at the initial point. For a boundary-

value problem the conditions are needed for both initial and �nal points. There are many

numerical methods to solve initial value problems such as Euler, Runge-Kutta or adaptive

methods and boundary value problems, such as shooting methods102;103.

Euler method is the most common used single-step method. In this discretization technique,

for di�erential equation ẋ = f(x(t), t), we can make make a convenient approximation of

this:

xn+1 ' xn + h f(x(tn), tn) :

The approximation xn+1 of x(t) at the point tn+1 has an error of order h2. There exists

a trade-o� between accuracy and complexity of calculation which depends heavily on the

chosen value for h. As h is decreasing, the calculation would be longer however more exact.

One of the disadvantages of this method is for many higher order systems, it is very di�cult

to have an e�ective Euler approximation. Thus, we need to use more accurate and elaborate

methods and one of them is the Runge-Kutta method.

Runge-Kutta method is a multiple-step method. In this technique, we obtain the solution

at time tk+1 from a the values tj−k, . . . , tk and j is the number of steps. To approximate a

di�erential equation of the form ẋ = f(x(t), t), we can use the second order Runge-Kutta
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method

xn+1 ' xn +
h

2
[f(xn(t), tn) + f(xn+1(t), tn+1)];

or the fourth order Runge-Kutta method

xn+1 ' xn +
h

6
(k1 + 2 k2 + 2 k3 + k4)

where

k1 = f(x(t), t)

k2 = f(x(t) +
h

2
k1, t+

h

2
)

k3 = f(x(t) +
h

2
k2, t+

h

2
)

k4 = f(x(t) + h k3, t+ h)

For the second and fourth order Runge-Kutta method, the approximation xn+1 of x(t) at

the point tn+1 has an error of order h3 and h5.

In this research, we study the most basic epidemiological models S-I-R model (com-

posed by Susceptible-Infected-Recovered) and S-E-I-R model (Susceptible-Exposed-Infected-

Recovered). For these models, we develop some analytical results that are useful in under-

standing of simple epidemic diseases. We continue this study by proposing the equivalent

optimal control problems of the mentioned epidemic models and we numerically solve them

using the backward-forward sweep method with fourth order Runge-Kutta. Finally, we per-

form global sensitivity analysis by LHS Monte Carlo method using PRCC to identify the

key parameters that contribute most signi�cantly to the spread or control of the infectious

diseases.
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4.2 Kermack-McKendrick SIR epidemic model (S-I-RModel)

Recently, due to the fast spread of pandemic diseases, mathematical modeling in the �eld of

epidemiology has attracted many scientists in di�erent areas. Many mathematical models

have been developed to describe the transmission of communicable diseases and among these

models, the classical Kermack-McKendrick SIR epidemic model builds the basic skeleton of

all of them104.

S:=Susceptible (People who could potentially catch the disease)

I:= Infective (People who currently have the disease)

R:= Removed (People recovered or have died)

Assumptions:

1. Total population remains constant;

2. Rate of increase in the infectives is proportional to the contact between susceptible

and infective;

3. Removal rate (death rate) is constant;

Using these assumptions, the classical S-I-R model has the following form:



dS

dt
= −β I S + δ R

dI

dt
= β I S − γ I

dR

dt
= γ I − δ R

(4.1)

Where, β demonstrates rate of infection, γ implies to rate of recovery and δ represents rate

of immunity loss. If δ = 0 we assume a model without immunity loss. In the �rst equation of

system (4.1), susceptible S decreases according to the number of contacts between infective

I and susceptible S. Therefore, because of decreasing the rate of change of susceptible over

time, in the �rst equation we get −β I S. The rate of change of infective I inncreases by
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I S and decreases by γ I. The term β I S has been added to the second equation of system

(4.1) which is due to the increasing the contact between S and I. The negativity of γ I is

showing decreasing the rate of change in infective I by moving to the next stage which is

recovered or died. The term γ I has been added t the third equation which means that the

rate of changing the recovered R is increasing by this factor. The time-evolution of system

(4.1) over 300 days have been demonstrated in Figures (4.1)-(4.4).

Figure 4.1: The SIR schematic model for system (4.1). S:=Susceptible Compartment, I:=
Infective Compartment, R:= Removed Compartment.

Figure 4.2: The time-evolution of disease over 300 days β = 5× 10−9, γ = 0.12, δ = 0.016.
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Figure 4.3: The time-evolution of disease over 300 days β = 5× 10−9, γ = 0.12, δ = 0.0.

Figure 4.4: The time-evolution of disease over 300 days β = 5× 10−9, γ = 0.07, δ = 0.0.
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4.2.1 Will the disease spread? What is the max number of infec-

tives Imax? How many people catch the disease?

To answer these questions consider the following general S-I-R model:



dS

dt
= −β I S

dI

dt
= β I S − γ I

dR

dt
= γ I

(4.2)

At the start of outbreak we have S = S0, I = I0 and R = 0. Total population size remains

constant during epidemic, therefore, the rate of change of S + I +R0 must be zero:

d

dt
(S + I +R) = 0, S + I +R = S0 + I0 (4.3)

To �nd out if the disease will spread, we need to check that

dI

dt
= I (β S − γ) < 0, S ≤ S0

Therefore, if S0 >
γ

β
=

1

q
, then disease will spread. Here,

1

q
is the contact ration which is the

fraction of population that comes to contact with individual during the period of infectious.

However, if the reproductive number or the ratio number R0 =
β S0

γ
> 1, we have epidemic.

This ratio represents the number of secondary infection in the population caused by initial

primary infection, i.e. how many other people get the disease.

To �nd the maximum number of infectives or Imax, we combine
dS

dt
and

dI

dt
:

dI

dS
=
β I S − γ I
−β I S

= −1 +
γ

β S
= −1 +

1

q S
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Assuming

I + S − 1

q
lnS = I0 + S0 −

1

q
lnS0 (4.4)

Then

Imax = I0 + S0 −
1

q
(1 + ln(q S0))

Here, Imax represents the maximum number of people who have the disease at a given time.

For COVID-19, or similar worldwide diseases the value for q (contact parameter) is high since

disease easily transmits. When q is large,it means that the number of people get infected is

a lot.

To reduce the reproduction rate, one can reduce the number of susceptible, S0. One way to

decrease the number of susceptible is using vaccination which is a common method to erad-

icate of infectious diseases. Vaccination can go further than being used for just individuals,

but it can be bene�cial in large scale communities by preserving the e�ective reproduction

rate below the level which would allow an epidemic to spread. However, an epidemic can

start and spread very quickly if the reproduction rate rises beyond the critical value for an

epidemic105.

To �nd out how many people catch the disease, based on the �rst assumption, the total

population is constant and to end the disease, the number of infected need to go down to

zero (end of out break):

S + I +R = S0 + I0

and

R(end) = −S(end) + I0 + S0
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Here, S(end) is unknown. From (4.4), we have

S(end)− 1

q
ln(S(end)) = I0 + S0 −

1

q
lnS0

The graph of S(end) is decreasing and shows at small value of S(end) and larger q, we have

larger value for R(end).

4.3 The S-E-I-R model

An SIR model is an epidemiological model that represents the number of people infected

with a contagious illness in a closed population over time. In other word, there are some

other important infections which include a signi�cant latency or incubation period during

which individuals have been infected but are not yet infectious themselves (for example this

latency period is zero for cold). During incubation period the individual is exposed. See

Figure (4.5).

Here, we write the total population as N = S +E + I +R. So, the S-E-I-R model has the

Figure 4.5: The transport diagram for S-E-I-R model (7.15). S:=Susceptible Compartment,
E:= Exposed Compartment, I:= Infective Compartment, R:= Removed Compartment.
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form 

dS

dt
= Λ− β I S − δ S

dE

dt
= β I S − εE − δ E

dI

dt
= εE − γ I − δ I

dR

dt
= γ I − δ R

(4.5)

where

S:=Susceptible (People who could potentially catch the disease)

E:= Exposed (People who are infected but are not yet infectious)

I:= Infective (People who currently have the disease)

R:= Removed (People recovered or have died)

δ:= Constant death rate

Λ = µ×N := Constant in�ux of new susceptible (µ Constant birth rate)

ε:= Latency transfer rate to infectious

γ:= Recovery rate of infectious

β I S:= The bilinear (mass action) incidence.

For simplicity, we assume that the death rates are equal δS = δE = δI = δR.

If we have S > 0 and E = I = R = 0, we have a disease free population or disease free

equilibrium, which means that there is no disease. To �nd disease or endemic equilibrium

point, we look for a feasible region Σ such that:

dN

dt
> 0 → d(S + E + I +R)

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
> 0
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Therefore, from (4.5) we have

(Λ− β I S − δ S) + (β I S − εE − δ E) + (εE − γ I − δ I) + (γ I − δ R) =

Λ− δ S − δ E − δ I − δ R = Λ− δ (S + E + I +R) = Λ− δ N > 0

Thus

dN

dt
= Λ− δ N ≥ 0 ⇒ Λ ≥ δ N ⇔ Λ

δ
≥ N = S + E + I +R

Therefore, the feasible region Σ would be:

Σ = {(S,E, I, R) ∈ R4 |S + E + I +R ≤ Λ

δ
}

From equation three we have,

ε = (δ + γ) I ⇒ I∗ = (
ε

δ + γ
)E

From equation four,

γ I − δ R = 0 ⇒ R∗ =
γ

δ
(

ε

δ + γ
)E

1. Case 1: If E∗ = 0 No Exposed. So, I∗ = 0 and R∗ = 0.

From equation one,

0 = Λ− δ S∗ ⇒ S∗ =
Λ

δ

Therefore, the diseases free equilibrium would be:

P0 = (
Λ

δ
, 0, 0, 0)
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2. Case 2: If E∗ 6= 0, then I∗ 6= 0 and R∗ 6= 0.

(β I∗ S∗ − εE∗ − δ E∗) + (εE∗ − γ I∗ − δ I∗) = 0 + 0 = 0

⇒ β I∗ S∗ − (δ + γ) I∗ − δ E∗ = 0

⇒ β I∗ S∗ − (ε+ δ)E∗ = 0

⇒ β (
ε

δ + γ
)E∗ S∗ − (ε+ δ)E∗ = 0

⇒ [β (
ε

δ + γ
)S∗ − (ε+ δ)]E∗ = 0

⇒ (
ε β

δ + γ
)S∗ − (ε+ δ) = 0

⇒ S∗ =
(ε+ δ) (δ + γ)

ε β

General replication number R0 is the number of new cases any single infected individual is

going to create and produce or infect susceptible. To �nd R0, at equilibrium we have S∗ ≥ Λ
δ
.

For S∗ = (ε+δ) (δ+γ)
ε β

, we have:

(ε+ δ) (δ + γ)

ε β
≥ Λ

δ
⇐⇒ 1 ≥ Λ ε β

δ (ε+ δ) (δ + γ)
= R0

1. R0 ≤ 1 ⇒ Disease Free equilibrium P0 = (
Λ

δ
, 0, 0, 0); we can control and there is no

disease.

2. R0 > 1 ⇒ Endemic equilibrium P ∗ = (S∗, E∗, I∗, R∗) > 0 .

The time-evolution of system (4.5) over 300 days have been demonstrated in Figure (4.6).
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Figure 4.6: The time-evolution of system (4.5) over 300 days β = 5 × 10−9, γ = 0.07,
δ = 1/60 and µ = 1/50.

4.4 Optimal control problem

A general optimal control (OC) problem needs a cost functional (J [x(t), u(t)]), a set of state

variables (x(t) ∈ X), a set of control variables (u(t) ∈ U) in a time t, with t0 ≤ t ≤ tf . The

main goal is �nding a piecewise continuous control u(t) and the associated state variable

x(t) to maximize a given objective functional.

De�nition 4.4.1 (Basic optimal control Problem in Lagrange formulation). An OC problem

is in the form

max
u

= J [x(t), u(t)] =

∫ tf

t0

f(t, x(t), u(t))dt

s.t ẋ(t) = g(t, x(t), u(t))

x(t0) = x0

x(tf ) could be free, which means that the value of x(tf ) is unrestricted, or could be �xed, i.e,

x(tf ) = x106.

We consider f and g to be continuously di�erentiable functions. We suppose that the
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control set U is a Lebesgue measurable function. Therefore, as long as the controls will

always be piecewise continuous, the associated states will be piecewise di�erentiable.

We can change the maximization problem to a minimization problem by making the cost

functional negative:

min{J} = −max{J}

De�nition 4.4.2 (Bolza formulation). The Bolza formulation of the OC problem can be

de�ned as

max
u

= J [x(t), u(t)] = Φ((t0, x(t0), tf , x(tf ))) +

∫ tf

t0

f(t, x(t), u(t))dt

s.t ẋ(t) = g(t, x(t), u(t))

x(t0) = x0

where Φ is a continuously di�erentiable function107.

De�nition 4.4.3 (Mayer formulation). 108 The Mayer formulation of the OC problem can

be de�ned as

max
u

= J [x(t), u(t)] = Φ((t0, x(t0, tf , x(tf ))

s.t ẋ(t) = g(t, x(t), u(t))

x(t0) = x0

4.4.1 Pontryagin's Maximum Principle

Pontryagin proposed the idea of adjoint functions to append the di�erential equation to the

objective functional which was one of the most important results of Mathematics in the

20th century and illustrates the necessary conditions to �nd the optimal control. Similar to

Lagrange multipliers in multivariate calculus, Adjoint functions append constraints to the
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function of several variables to be maximized or minimized99.

De�nition 4.4.4 (Hamiltonian). Consider the OC problem in de�nition (4.4.1). The func-

tion

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

is called Hamiltonian function and λ is the adjoint variable.

Theorem 4.4.5 (Pontryagin's Maximum Principle). 100;109 Let u∗(t) and x∗(t) be optimal

for problem in de�nition (4.4.1), then there exists a piecewise di�erentiable adjoint variable

λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where H is the Hamiltonian previously de�ned and

λ′(t) =
∂H(t, x∗(t), u∗(t), λ(t))

∂x

λ(tf ) = 0

The last condition, λ(tf ) = 0, called transversality condition, is only used when the OC

problem does not have terminal value in the state variable, i.e., x(tf ) is free.

This Pontryagin's Maximum Principle converts the problem of �nding a control which maxi-

mizes the objective functional subject to the state ODE and initial condition into the problem

of optimizing the Hamiltonian pointwise. Therefore, with this adjoint equation and Hamil-

tonian, we have

∂H

∂u
= 0

at u∗ for each t, meaning that the Hamiltonian has a critical point and we call this condition

as optimality condition. Therefore, to �nd the necessary conditions, we do not need to
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calculate the integral in the objective functional and we only use the Hamiltonian.

4.4.2 Existence of a �nite objective functional value at the optimal

control and state variables

Theorem 4.4.6. 110;111 Consider

max
u

= J [x(t), u(t)] =

∫ tf

t0

f(t, x(t), u(t))dt

s.t ẋ(t) = g(t, x(t), u(t))

x(t0) = x0

Suppose that f(t, x, u) and g(t, x, u) are both continuously di�erentiable functions in their

three arguments and concave in x and u. Suppose u∗ is a control with associated state x∗, and

λ a piecewise di�erentiable function, such that u∗, x∗ and λ together satisfy on t0 ≤ t ≤ tf :

fu + λ gu = 0,

λ′ = −(fx + λ gx),

λ(tf ) = 0,

λ(t) ≥ 0.

Then for all controls u, we have J(u∗) ≥ J(u)

Based on how the conditions at the endpoints of the domain are speci�ed, we classify

an ODE solving problem into initial value problems (IVP) and boundary value problems

(BVP). For an initial-value problem, all the conditions are speci�ed at the initial point. For

a boundary-value problem the conditions are needed for both initial and �nal points. There

are many numerical methods to solve initial value problems such as Euler, Runge-Kutta or

adaptive methods and boundary value problems, such as shooting methods102;103.

Numerical methods for solving OC problems started from the 1950s with the works of
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Bellman102. We can divide these method into two major groups: direct methods and indirect

methods. Indirect methods indirectly solve the problem by converting the optimal control

problem to a boundary-value problem, using the PMP. However, direct method solves the

OC by transcribing an in�nite-dimensional optimization problem to a �nite-dimensional

optimization problem.

4.5 An optimal control problem for S-I-R model

In this section, we present an optimal control (OC) problem to study the dynamics of S-I-R

model, using a vaccination process (u) as a measure to control the disease. Let x1 represents

the susceptible population, x2 represents the proportion of population that is infected and

x3 represents the proportion of population that is recovered or dead. The optimal control

problem can be de�ned as:

min
u

= J [x(t), u(t)] =

∫ tf

t0

(x2 + u2) dt (4.6)

s.t
dx1

dt
= −β x1 x2 + δ x3 − ux1 (4.7)

dx2

dt
= β x1 x2 − γ x2 (4.8)

dx3

dt
= γ x2 − δ x3 (4.9)

x(t0) = (x1(0), x2(0), x3(0)) (4.10)

With x(t) = (x1(t), x2(t), x3(t)) and λ(t) = (λ1(t), λ2(t), λ3(t)), with initial conditions

x1(0) = 0.0555, x2(0) = 0.0003, x3(0) = 0.0004 and the parameters β = 5× 10−9, γ = 0.12,

δ = 1/60.

Let consider the problem (4.6) and constraints (4.7)-(4.9). With x(t) = (x1(t), x2(t), x3(t))
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and λ(t) = (λ1(t), λ2(t), λ3(t)), the Hamiltonian of this problem can be written as

H(t, x(t), u(t), λ(t)) =Ax2 + u2

+ λ1 (−β x1 x2 + δ x3 − ux1)

+ λ2 (β x1 x2 − γ x2)

+ λ3 (γ x2 − δ x3)

A is a weight parameter describing the comparative importance of the two terms in the

functional. Using the PMP the optimal control problem can be studied with the state

variables

ẋ1 = −β x1 x2 + δ x3 − ux1

ẋ2 = β x1 x2 − γ x2

ẋ3 = γ x2 − δ x3

The adjoint variables are:

λ̇1 = λ1 (u+ β x2) + λ2 β x2

λ̇2 = −A+ λ1 β x1 − λ2 (β x1 − γ)− λ3 γ

λ̇3 = λ3 δ − λ1 δ

with transversality conditions λ(tf ) = 0. Figure (4.7) demonstrates the optimal curves for

the states variables and optimal control corresponding the to S-I-R model (4.1).
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Figure 4.7: Solutions of optimal control problem for S−E− I−R model (4.1). u:= Vacci-
nation related variable, S:=Susceptible Population, I:= Infective Population, R:= Removed
Population.

4.6 An optimal control problem for S-E-I-R model

In this section, we present an optimal control (OC) problem to study the dynamics of S-

E-I-R model, using a vaccination process (u) as a measure to control the disease. Let x1

represents the susceptible population, x2 represents the proportion of population that is

in the incubation period, x3 represents the proportion of population that is infected and

x4 represents the proportion of population that is recovered or dead. The optimal control
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problem can be de�ned as:

min
u

= J [x(t), u(t)] =

∫ tf

t0

(x3 + u2) dt (4.11)

s.t
dx1

dt
= Λ− β x1 x3 − δ x1 − ux1 (4.12)

dx2

dt
= β x1 x3 − ε x2 − δ x2 (4.13)

dx3

dt
= ε x2 − γ x3 − δ x3 (4.14)

dx4

dt
= γ x3 − δ x4 (4.15)

x(t0) = (x1(0), x2(0), x3(0), x4(0)) (4.16)

With initial conditions x1(0) = 0.0555, x2(0) = 0.0003, x3(0) = 0.0004, x4(0) = 1 and the

parameters β = 5× 10−9, γ = 0.12, δ = 1/60.

Let consider the problem (4.11) and constraints (4.12)-(4.15). With x(t) = (x1(t), x2(t), x3(t), x4(t))

and λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)), the Hamiltonian of this problem can be written as

H(t, x(t), u(t), λ(t)) =Ax3 + u2

+ λ1 (Λ− β x1 x3 − δ x1 − ux1)

+ λ2 (β x1 x3 − ε x2 − δ x2)

+ λ3 (ε x2 − γ x3 − δ x3)

+ λ4 (γ x3 − δ x4)

A is a weight parameter describing the comparative importance of the two terms in the

functional. Using the PMP the optimal control problem can be studied with the state
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variables

ẋ1 = Λ− β x1 x3 − δ x1 − ux1

ẋ2 = β x1 x3 − ε x2 − δ x2

ẋ3 = ε x2 − γ x3 − δ x3

ẋ4 = γ x3 − δ x4

The adjoint variables are:

λ̇1 = λ1 (u+ β x3 + δ)− λ2 β x3

λ̇2 = λ2 (ε+ δ)− λ3 ε

λ̇3 = −A− λ4 γ + λ3 (γ + δ)− λ2 β x1 + λ1 β x1

λ̇4 = λ4 δ

with transversality conditions λ(tf ) = 0. Figure (4.8) displays the optimal curves for the

states variables and optimal control corresponding to the S-E-I-R model (4.5).

4.7 Global sensitivity analysis

Global sensitivity analysis allows us to change all parameters simultaneously over the entire

parameter interval. This is a way to evaluate the relative e�ects of each input parameter

and moreover to identify the interactions between parameters to the model output. In global

sensitivity analysis we determine that with variation of input parameters in a certain range,

which parameters and interactions have the most in�uential impact on the overall behavior

of our model56;112�117.

There are several types of global sensitivity analyses, such as weighted average of local

sensitivity analysis, partial rank correlation coe�cient, multi parametric sensitivity analysis,

Fourier amplitude sensitivity analysis (FAST) and Sobol's method, which can be used for

21



Figure 4.8: Solutions of optimal control problem for S-E-I-R model (4.5). u:= Vaccination
related variable, S:=Susceptible Population, E:= Exposed Population, I:= Infective Popula-
tion, R:= Removed Population

systems pharmacology models112. The Latin hypercube sampling (LHS) method has been

used frequently for global sensitivity analysis. There are some other methods for calculating

main e�ect and total e�ect sensitivity indices and one of the most important one is the

method of Sobol116.

LHS method is a sampling method and requires fewer samples compare to simple random

sampling to achieve the same accuracy112. In LHS method, we divide the random parameter

distributions into N equal probability intervals. Here, N is the sample size. The choice for

N should be at least k + 1, where k is the number of parameters which are varied. For the

case that the interval of variation for some parameter is very large, the sampling can be done

on a log form.

In LHS method, sampling is independent for each parameter and can be done by randomly

selecting values from each pdf . We may sample each interval once for each parameter without

any replacement. The LHS matrix is consisting of N rows corresponding to the number of

simulations or sample size and moreover it includes k columns corresponding to the number

of varied parameters. Then, N model solutions may be simulated, using each combination

of parameter values which they represent each row of the LHS matrix112.
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4.7.1 Partial Rank Correlation Coe�cient (PRCC) results for S-I-

R model (4.1)

Here, a parameter sensitivity analysis has being conducted to identify the biological param-

eters that have the most signi�cant e�ect on our model system by the LHS Monte Carlo

method using PRCC with uniform distributions for the 95 percent con�dence intervals. The

global sensitivity results with p- values corresponding to S compartment, I compartment

and R compartment have been demonstrated in Figure (4.9).

Figure 4.9: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for S-I-R model (4.1).

4.7.2 Partial Rank Correlation Coe�cient (PRCC) results for S-E-

I-R model (4.5)

According to LHS, we simulated the responses of the model for each organ by randomly

selecting values for the parameter set from the 95 percent con�dence intervals. These analyses

were done by developing a LHS/PRCC method with uniform distributions for the 95percent

con�dence intervals. We found that some parameters illustrate signi�cant performance in

terms of sensitivity of the output to the variations of these parameters in some compartments
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while they do not have this e�ect for others. These results have been depicted in Figure

(4.10), are statistically signi�cant with p- values much smaller than 0.01.

Figure 4.10: Global uncertainty and sensitivity analysis of calculated di�erent parameters
for S-E-I-R model (4.5).

4.8 Conclusion

Infectious diseases can be de�ned as diseases that can be transmitted from human to human,

from human to animal, or from animal to animal. The mathematical modeling of infectious

disease spread has been studied for many years and recently it has been widely discussed

due to the spread of the COVID-19 pandemic. To build up an appropriate infectious disease

dynamic model we may need to use a system of ordinary di�erential equations that cover

the spread process, spread law, and spread trend of infectious diseases.

In this chapter we considered the S-I-R and S-E-I-R models and for these, we could develop

some analytical results which can be useful in studying the simple epidemics. We displayed

the evolution of these two compartmental models over time, Susceptible-Infected-Recovered

and Susceptible-Exposed-Infected-Recovered for interesting values of parameters. We fol-

lowed the optimal control perspective to study these models and because of the complexity
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of the presented optimal control problems, we could no longer solve them analytically and

we ended up looking at the numerical solutions. The optimal curves for the states variables

and optimal control were obtained and demonstrated for each control problem separately.

An uncertainty analysis can be applied on the epidemiological models to investigate the

uncertainty in system output that is generated from uncertainty in parameter inputs. Sen-

sitivity analysis assesses how variations in model outputs can be apportioned, qualitatively

or quantitatively, to di�erent inputs. The �nal objective of this study was to determine

the key parameters in spread of infectious diseases using sampling-based method (Partial

Rank Correlation Coe�cient-PRCC). In this research we applied LHS/PRCC method with

uniform distributions for the 95percent con�dence intervals on the model equations (7.15)

and (5.7). As we have seen, some parameters have positively and some others negatively

a�ected the spread of disease.
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Chapter 5

Chaos Induced by Snap-Back Repeller in

a Two Species Competitive Model
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Abstract

In Chapter Five, we investigate the complex dynamics of two-species Ricker-type discrete-

time competitive model. We perform local stability analysis for the �xed points of the

system and discuss about its persistence for boundary �xed points. This system inherits

properties of the dynamics of a one-dimensional Ricker model such as the cascade of period-

doubling bifurcation, periodic windows, and chaos. We explore the existence of chaos for

the equilibrium points for a speci�c case of this system using Marotto theorem and show the

existence of snap-back repeller.



5.1 Introduction

When we study the evolution of population dynamics, two major types of mathematical mod-

elings can be used, the continuous-time dynamical systems and the discrete-time dynamical

systems. For the purpose of modeling small size population and non overlapping genera-

tions, the discrete time systems are the appropriate model118. There are so many studies

that have been worked on discovering complex behaviors of discrete competitive model dur-

ing the last decades119�122. There are not many of these studies which are concerning about

the existence of chaos in higher dimensional discrete dynamical systems. Chaos and chaos

synchronizations have attracted many researchers for many years123;124. In 1975, Li and York

provided a simple criterion for chaos in one dimensional discrete dynamical systems, "period

three implies chaos"125. This de�nition is the �rst description of chaos. Although, a precise

de�nition of chaos was presented by their work, however, F.R. Marotto mentioned that the

essential properties of chaos are the following: (i) there exist an in�nite number of peri-

odic solutions of various periods (ii) there exists an uncountably in�nite set of points which

exhibit random behavior and (iii) there is a highly sensitivity to initial conditions126�128.

Marotto extended Li-York's chaos in one-dimension to multi-dimension through introducing

the notion of snapback repeller by his famous theorem in 1978 a few years after Li and

York de�nition for chaos. To explain more we have mentioned the Marotto's de�nition for

"Snap-back rappeler" and then his theorem126:

De�nition 5.1.1 (Marotto-1978). Let f be di�erentiable in Br′(z). The point z ∈ Rn is an

expanding �xed point of f in Br′(z), if f(z) = z and all eigenvalues of Df(x) exceed 1 in

norm for all x ∈ Br′(z).

De�nition 5.1.2 (Marotto-1978). Assume that z is an expanding �xed point of f in Br′(z)

for some r′ > 0. Then z is said to be an snap-back repeller of f if there exists a point

z0 ∈ Br′(z) with z0 6= z and fM(z0) = z and |DfM(z0)| 6= 0 for some positive integer M 126.

Figure (5.1) demonstrates the schematic diagram of snap-back repeller point.

Under the assumptions for de�nitions (5.1.1) and (5.1.2), the following theorem by Marotto
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Figure 5.1: Snap-Back repeller schematic diagram.

holds.

Theorem 5.1.3 (Marotto-1978). If f possesses a snap back repeller, then f is chaotic in

the following sense: There exist (i) a positive integer N , such that f has a point of period p,

for each integer p ≥ N , (ii) a scrambled set of f , i.e., an uncountable set S containing no

periodic points of f , such that

1. f(S) ⊂ S,

2. lim supn→∞ ||fn(x)− fn(y)|| > 0, for all x, y ∈ S, with x 6= y,

3. lim supn→∞ ||fn(x)− fn(y)|| > 0, for all x ∈ S and periodic point y of f ,

(iii) an uncountable subset S0 of S, such that lim infn→∞ ||fn(x)− fn(y)|| = 0, for every

x, y ∈ S0
126.

However, there was a minor technical �aw in his work128�130. Although he wanted to

apply his theorem to any repelling �xed point, some of the conditions that he considered in

the proof of his theorem were associated with only expanding �xed points. He incorrectly

mentioned that if the absolute value for all eigenvalues of Df(z) is larger than 1, then the

�xed point z is an expanding �xed point of f . As we know all expanding �xed points are
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repelling and its converse is not true. Therefore, Marotto de�nition for snap-back repeller

and then his proof about existence of snap-back repeller implies chaos had a minor error.

Chen et al., 1998; Lin et al., 2002; Li and Chen, 2003a; discussed about the �aws of Marotto's

theorem and some of them provided several counterexamples to say that if all eigenvalues of

the Jacobian Df(z) at the �xed point z are greater than one in norm, we can not say always

there exists some s > 1 and r′ > 0 such that for all x, y ∈ Br′(z), ||f(x)− f(y)|| > s||x− y||.

Then they rede�ned the Marotto's Theorem as the following form130:

Theorem 5.1.4 (Marotto-Li-Chen Theorem (2003)). Consider the following n-dimensional

discrete dynamical system:

xn+1 = f(xn), xn ∈ Rn, n = 0, 1, 2, . . .

Where f : Rn → Rn and z is a �xed point. Moreover, assume that

1. f(x) is continuously di�erentiable in Br′(z) for some r′ > 0,

2. All eigenvalues of (Df(z))TDf(z) are greater than 1,

3. There exists a point z0 = {x | ||x − z|| ≤ r′ and all eigenvalues of (Df(x))TDf(x)

are larger than 1}, with z0 6= z, such that fM(z0) = z where f i(z0) ∈ Br′(z), i =

0, 1, 2, . . . ,M , and the determinant |DfM(z0)| 6= 0, for some positive integer M .

Then, the system is chaotic in the sense of Li-York130.

Marotto re�ned his theorem in 2005 and he explained that a �xed point z is called a

repelling �xed point under di�erentiable function f : Rn → Rn if all eigenvalues of Df(z)

exceed 1 in magnitude, but z is expanding only if

||f(x)− f(y)|| > s||x− y||

Where s > 1, for all x, y su�ciently close to z with x 6= y (for x, y ∈ Br′(z)). This implies

that f is a 1-1 function in Br′(z)128.
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De�nition 5.1.5 (Marotto-2005). Suppose z is a �xed point of f with all eigenvalues of

Df(z) exceeding 1 in magnitude and suppose that there exists a point z0 6= z in a repelling

neighborhood of z and an integer M > 1, such that xM = z and det(Df(xk)) 6= 0 for

1 ≤ k ≤M where xk = fk(z0) .Then z is called a snapback repeller of f 128 .

He claimed that since det(Df(xk)) 6= 0 for all 1 ≤ k ≤ M , then the homoclinic orbit is

transversal in the sense that f for all k ≤M is 1-1 map in a neighborhood of xk.

As Marotto explained in 1978, the condition det(Df(xk)) 6= 0 guarantees the existence of the

inverse of fM in Br′(z). He mentioned that functions exhibit chaos and complex behavior

when they possess snap-back repeller.

But what will happen that existence of a transverse homoclinic map convince us that we have

chaos? As it is mentioned by many authors, a point which is in intersection of stable manifold

and unstable manifold of a hyperbolic �xed point is called homoclinic point127;131;132;134;135;203.

If stable manifolds and unstable manifold of the hyperbolic �xed point, intersect transver-

sally, then we have transverse homoclinic point in the intersection of both manifolds. In a

neighborhood of a transverse homoclinic point, our map possesses an invariant cantor set on

which it is topologically conjugate to a shift map. Shift map acting on the space of bi-in�nite

sequences of 0's and 1's and it has the following properties:

A countable in�nity of periodic orbits consisting of orbits of all periods.

1. An uncountable in�nity of non-periodic orbits.

2. A dense orbit.

Although, Wiggins in203 mentioned that understanding the orbit structure of a map in that

invariant Cantor set is impossible, he could show that the map in that invariant set behaves

the same as shift map.

There are some researches which have more details about small neighborhood of a point

on the homoclinic orbit136�139;203. The homoclinic orbits and homoclinic bifurcations which

occur in continuous time dynamical systems has been studied widely by140;141 are using in

discrete time systems by de�ning the Poincare map132. In 2011, L. Gardini et al. showed
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that critical homoclinic orbits lead to snap-back repellers and chaos too132.

As Gardini. et al discussed, in non-invertible maps homoclinic orbits may be associate with

expanding �xed points and or expanding cycles. In addition, they mentioned that in the

neighborhood of such homoclinic orbits, there exists an invariant set on which the map is

chaotic. They even for the case that They proved that even if det(Df(xk)) = 0 , there

are some situations in which the map is chaotic although Marotto theorem does not work.

Laura. et all, provide a de�nition for non-critical expanding �xed points and then they

de�ned when a homoclinic orbit is critical. They used those de�nitions to prove a gener-

alization of Marotto theorem in the case that we do not need the homoclinic orbit to be

non-degenerate132:

Theorem 5.1.6 (L. Gardini. et. all, (2011)). Let f be a piecewise smooth non-invertible

map, f : X → X, X ∈ Rn. Let p be an expanding �xed point of f and O(p) a noncritical

homoclinic orbit of p. Then in any neighborhood of O(p), there exists an invariant cantor

like set Λ on which the f is chaotic132.

In131, Gardini. studied the homoclinic bifurcations in n dimensional endomorphisms

(maps with a nonunique inverse) which are associated to expanding periodic orbits. The

study of chaos for these kinds of map in one dimension was studied by Mira in 1987142.

Since, this topic is out of the discussion for this chapter, so we avoid going through that. In

this chapter, we study the local dynamics of a two-species Ricker competitive model with four

biological parameters. We will conduct a local stability analysis to study the local dynamics

of the steady states of the system. We will use the persistence theory to study the global

dynamics of the system. To study the chaotic dynamics of the system, we focus on a speci�c

case with only three biological parameters. We provide the condition under which Marotto

theorem works for positive �xed points of this new system. Furthermore, this model does

not have a Neimark-Sacker bifurcation and inherits the same dynamics as one dimensional

Ricker model. We will numerically demonstrate the local and qualitative dynamics of the

system using several dynamical system tools.
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5.2 The two-species Ricker competitive model and its lo-

cal dynamics

The Ricker model is a well known population model which demonstrates stable, periodic and

non-periodic and complex nonlinear dynamics214;215. Here, we consider a two-species Ricker

model which is a special case of model (2) in120 and has the following form:

f1 = X1(n+ 1) = X1(n) e
r1

1−
X1(n)

k
−X2(n)


(5.1)

f2 = X2(n+ 1) = X2(n) e
r2

1−
X2(n)

l
−X1(n)


(5.2)

Here, X1 demonstrates the population size of the �rst species, X2 represents the population

size of the second species, r1 and r2 are the intrinsic growth rate, k and l the carrying

capacity of the environment.

The Jacobian matrix for (5.1)-(5.2) has the form

J :=


∂f1

∂X1

∂f1

∂X2

∂f2

∂X1

∂f2

∂X2

 (5.3)

where

∂f1

∂X1

=

(
1− r1X1

k

)
exp

(
r1

(
1− X1

k
−X2

))
∂f1

∂X2

= −r1X1 exp

(
r1

(
1− X1

k
−X2

))
∂f2

∂X1

= −r2X2 exp

(
r2

(
1− X2

l
−X1

))
∂f2

∂X2

=

(
1− r2X2

l

)
exp

(
r2

(
1− X2

l
−X1

))
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Then, at the origin we have

J |(0,0) =

er1 0

0 er2


and for the�xed point (k, 0) we have

J |(k,0) =

1− r1 −k r1

0 er2 (1−l)


and for the �xed point (0, l) we have

J |(0,l) =

er1 (1−k) 0

−l r2 1− r2



and for the positive �xed point (X∗1 , X
∗
2 ) = (

k (1− l)
1− k l

,
l (1− k)

1− k l
), we have

J |(X∗1 ,X∗2 ) =


−1 + k l + r1 − r1 l

−1 + k l

−k (−1 + l) r1

−1 + k l

−k (−1 + k) r2

−1 + k l

−1 + k l + r2 − r2 k

−1 + k l

 (5.4)

Proposition 5.2.1. The local stability analysis results for the �xed points (0, 0), (k, 0), (0, l)

of (5.1)-(5.2) are summarized as below:

1. The equilibrium point (0, 0) is always an unstable �xed point.

2. The equilibrium point (k, 0) for l < 1 and 0 < r1 < 2, has a stable manifold in X1

direction and an unstable manifold in X2 direction and is a saddle point. Moreover,

(k, 0) for l > 1 and 0 < r1 < 2, has a stable manifold in X1 direction and a stable

manifold in X2 direction and is a stable node. Moreover, (k, 0) for l < 1 and r1 > 2,

has an unstable manifold in X1 direction and an unstable manifold in X2 direction and

is an unstable node. Finally, (k, 0) for l > 1 and r1 > 2, has an unstable manifold in

7



X1 direction and a stable manifold in X2 direction and is a saddle point.

3. The equilibrium point (0, l) for k < 1 and 0 < r1 < 2, has a stable manifold in X2

direction and an unstable manifold in X1 direction and is a saddle point. In addition,

(0, l) for k > 1 and 0 < r2 < 2, has a stable manifold in X1 direction and a stable

manifold in X2 direction and is a stable node. Moreover, (0, l) for k < 1 and r2 > 2,

has an unstable manifold in X1 direction and an unstable manifold in X2 direction and

is an unstable node. Finally, (0, l) for k > 1 and r1 > 2, has an unstable manifold in

X2 direction and a stable manifold in X1 direction and is a saddle point.

5.3 Global stability analysis using persistence theory

5.3.1 Boundedness of the system solutions

To study the global stability of the equilibrium points of system, at �rst we prove that all

solutions in the �rst quadrant R2
+ are eventually bounded.

Theorem 5.3.1. For r1 , r2 > 0 , k , l > 0 and initial conditions in the �rst quadrant

R2
+, i.e. X1(0) > 0 and X2(0) > 0, for the system of (5.1)-(5.2) we have: X1 > 0 and

X2 > 0 for all n ∈ Z+. In addition, we can �nd some positive number M , such that

maxn∈Z+ {X1(n), X2(n)} ≤M .

Proof. By induction.

Since X1(0) > 0 we have exp
(
r1

(
1− X1(0)

k

))
> 0, hence

X1(1) = X1(0) e
r1
(

1−X1(0)
k
−X2(0)

)
< X1(0) e

r1
(

1−X1(0)
k

)
> 0

Assume that for n ≤ j, we have X1(j) > 0. Then for n = j + 1 we have

X1(j + 1) = X1(j) e
r1
(

1−X1(j)
k
−X2(j)

)
> 0
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Therefore X1(n) > 0 for any n ∈ Z+. Similarly, since X1(0) > 0 and X2(0) > 0, we

automatically have exp
(
r2

(
1− X2(0)

j

))
> 0 is positive. Hence,

X2(1) = X2(0) e
r2
(

1−X2(0)
j
−X1(0)

)
< X2(0) e

r2
(

1−X2(0)
j

)
> 0

Assume that for n ≤ j, we have X2(j) > 0. Then for n = j + 1 we have

X2(j + 1) = X2(j) e
r2
(

1−X2(l)
j
−X1(j)

)
> 0

Therefore X2(n) > 0 for any n ∈ Z+.

To �nd an upper bound, we know,

X1(n+ 1) = X1(n) e
r1
(

1−X1(n)
k

)
≤ max

x∈R+
{f(x)}

If we de�ne f1(x) = x er1(1−x
k

) , then f ′1(x) = (1 − r1 x
k

)er1(1−x
k

) and f1(x) has critical points

at x = k
r1
. Since f ′1(x) > 0 if x < k

r1
and f ′1(x) < 0 if x > k

r1
, then x = k

r1
is the maximal

point of f1(x), i.e. maxx∈R+{f1(x)} = f1( k
r1

). Hence,

x1(n+ 1) = X1(n) e
r1
(

1−X1(n)
k
−X2(n)

)
≤ f1(

k

r1

) =
k er1−1

r1

= M1

Similarly, we de�ne f2(x) = x er2(1−x
l
) , then f ′2(x) = (1− r2 x

l
)er2(1−x

l
) and f2(x) has critical

points at x = l
r2
. Since f ′2(x) > 0 if x < l

r2
and f ′2(x) < 0 if x > l

r2
, then x = l

r2
is the

maximal point of f2(x), i.e. maxx∈R+{f2(x)} = f2( l
r2

).

X2(n+ 1) = X2(n) e
r2
(

1−X2(n)
l
−X1(n)

)
≤ f2(

l

r2

) =
l er2−1

r2

= M2

Therefore, we can �nd some positive numberM = max{M1,M2}, such that maxn∈Z+ {X1(n), X2(n)} ≤

M .
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5.3.2 Persistence of the species

To work on global stability, we need to study the persistence theory146;182. Here, we consider

two cases:

1. Persistence of system corresponding to (k, 0).

2. Persistence of system corresponding to (0, l).

Case 1: Persistence of system corresponding to (k, 0)

For the �rst case, we have:

P = {(X1, X2) : X1 ≥ 0, X2 ≥ 0}

Pk,0 = {(X1, X2) ∈ P : X1 > 0}

∂Pk,0 = P\Pk,0

Proposition 5.3.2. The system is uniformly persistent with respect to (Pk,0, ∂Pk,0).

Proof. Here, ∂Pk,0 is closed in P . For any positive solution of (X1(n), X2(n)) of the system,

as we proved in theorem (6.3.2), we have

X1(n+ 1) ≤ X1(n)er1(1−X1(n)
k

) ≤ max
X1∈R+

{f1(X1)} =
k er1−1

r1

= M1

And for large enough n

X2(n+ 1) ≤ X2(n)er2(1−X2(n)
l

) ≤ max
X2∈R+

{f2(X2)} =
l er2−1

r2

= M2

Therefore, system (5.1)-(5.2) is point dissipative. Assume for all n ≥ 0

Y∂ = {(X1(0), X2(0)) : (X1(n), X2(n))satis�es the system equations and(X1(n), X2(n)) ∈ ∂Pk,0}
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We see that

Y∂ = {(0, X2) : X2 ≥ 0} = ∂Pk,0

Moreover, (0, 0) is the unique equilibrium in Y∂. De�ne W s(0, 0) to be the stable manifold

for (0, 0). We show that

W s(0, 0) ∩ Pk,0 = ∅

Assume that in contradiction, there exist a solution (X1(n), X2(n)) of system with X1(n) > 0

such that

(X1(n), X2(n))→ (0, 0) as n→∞

Then, for large n we have

X1(n+ 1) > X1(n)er1/2

Since r1 > 0 , it follows that X1(n) → ∞ as n ∈ ∞ and contradiction. Moreover, every

orbit in Y∂ tends to (0, 0) as n → ∞. It means that (0, 0) is an isolated invariant set in

P and acyclic in Y∂. Note that Y∂ repels uniformly the solution of systems with positive

X1(n)147;148. It follows that there is s1 > 0 such that X1(n) > s1 for large enough n.

Theorem 5.3.3. There exists s1 > 0 such that for any X1(0) > 0 we have

s1 < X1(n) <
k er1−1

r1

Proof. By proposition (5.3.2).

Theorem 5.3.4. All solutions {(X1(n), X2(n))} of system with X1(0) > 0 and X2(0) ≥ 0,
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for l > 1 and 0 < r1 < 2, are decreasing to the �xed point (k, 0), i.e.

lim
n→+∞

X1(n) = k, lim
n→+∞

X2(n) = 0

Proof. By proposition (5.3.2) and theorem (5.3.3).

Case 2: Persistence of system corresponding to (0, l)

For this case, we have:

Q = {(X1, X2) : X1 ≥ 0, X2 ≥ 0}

Q0,l = {(X1, X2) ∈ Q : X2 > 0}

∂Q0,l = Q\Q0,l

Proposition 5.3.5. The system is uniformly persistent with respect to (Q0,l, ∂Q0,l).

Proof. Here, ∂Q0,l is closed in Q. Similarly, for any positive solution of (X1(n), X2(n)) of

the system (5.1)-(5.2), similar to theorem (6.3.2), we can write

X1(n+ 1) ≤ X1(n)er1(1−X1(n)
k

) ≤ max
X1∈R+

{f(X1)} =
k er1−1

r1

= M1

For large enough n

X2(n+ 1) ≤ X2(n)er2 (1−X2(n)
l

) ≤ max
X2∈R+

{f(X2)} =
l er2−1

r2

= M2

Thus, system (5.1)-(5.2) is point dissipative. Now, for all n ≥ 0, we set

L∂ = {(X1(0), X2(0)) : (X1(n), X2(n))satis�es the system equations and(X1(n), X2(n)) ∈ ∂Q0,l}
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for which

L∂ = {(X1, 0) : X2 ≥ 0} = ∂Q0,l

Moreover, (0, 0) is the unique equilibrium in L∂. Set W s(0, 0) to be the stable manifold for

(0, 0). We prove that

W s(0, 0) ∩Q0,l = ∅

By contradiction, there exist a solution (X1(n), X2(n)) of system with X2(n) > 0 such that

(X1(n), X2(n))→ (0, 0) as n→∞

For large n we have

X2(n+ 1) > X2(n)er2/2

Since r2 > 0 , it leads to X2(n) → ∞ as n ∈ ∞ which is a contradiction. In addition,

every orbit in L∂ tends to (0, 0) as n → ∞. It implies that (0, 0) is an isolated invariant

set in Q and acyclic in L∂. Here, l∂ repels uniformly the solutions of system with positive

X2(n)147;148. It follows that there is s2 > 0 such that X2(n) > s2 for large enough n.

Theorem 5.3.6. There exists s2 > 0 such that for any X2(0) > 0 we have

s2 < X2(n) <
l er2−1

r2

Proof. By proposition (5.3.5).

Theorem 5.3.7. All solutions {(X1(n), X2(n))} of system with X1(0) ≥ 0 and X2(0) > 0,
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for k > 1 and 0 < r2 < 2, are decreasing to the �xed point (0, l), i.e.

lim
n→+∞

X1(n) = 0, lim
n→+∞

X2(n) = l

Proof. By proposition (5.3.5) and theorem (5.3.6).

Finally, we have the following result

Theorem 5.3.8. If there are positive constants s1, s2 > 0 and M1, M2 > 0 such that the

solution (X1(n), X2(n)) of system satis�es

0 < s1 ≤ lim
n→+∞

inf X1(n) ≤ lim
n→+∞

supX1(n) ≤M1 =
k er1−1

r1

0 < s2 ≤ lim
n→+∞

inf X2(n) ≤ lim
n→+∞

supX2(n) ≤M2 =
l er2−1

r2

Then, system (5.1)-(5.2) is persistent. If system is not persistent, it is called non-persistent182.

5.4 Application of snap-back repeller and Marroto chaos

in study of chaotic dynamics of system

In this section, we explore analytically chaos in the sense of Marotto for a speci�c case of

model (5.1)-(5.2). Without loss of generality, we consider k = l, then we have

F :=

 g1(X1(n), X2(n)) = X1(n) exp
(
r1

(
1− X1(n)

k
−X2(n)

))
g2(X1(n), X2(n)) = X2(n) exp

(
r2

(
1− X2(n)

k
−X1(n)

)) (5.5)

The Jacobian matrix for (5.5) has the form

J :=


∂g1

∂X1

∂g1

∂X2

∂g2

∂X1

∂g2

∂X2

 (5.6)
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where

∂g1

∂X1

=

(
1− r1X1

k

)
exp

(
r1

(
1− X1

k
−X2

))
(5.7)

∂g1

∂X2

= −r1X1 exp

(
r1

(
1− X1

k
−X2

))
(5.8)

∂g2

∂X1

= −r2X2 exp

(
r2

(
1− X2

k
−X1

))
(5.9)

∂g2

∂X2

=

(
1− r2X2

k

)
exp

(
r2

(
1− X2

k
−X1

))
(5.10)

For this speci�c case, we have four �xed points (0, 0), (k, 0), (0, k) and (X∗1 , X
∗
2 ) = (

k

k + 1
,

k

k + 1
).

At (0, 0) we have

J |(0,0) =

er1 0

0 er2


and at (k, 0) we have

J |(k,0) =

1− r1 −k r1

0 er2 (1−k)


Furthermore, for the �xed point (0, k) we have

J |(0,k) =

er1 (1−k) 0

−k r2 1− r2



and �nally for the positive �xed point (X∗1 , X
∗
2 ) = (

k

k + 1
,

k

k + 1
), we have

J |(X∗1 ,X∗2 ) =


k + 1− r1

k + 1

−k r1

k + 1

−k r2

k + 1

k + 1− r2

k + 1

 (5.11)
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where

det(J |(X∗1 ,X∗2 )) = −k r1 r2 − r1 r2 − k + r1 + r2 − 1

k + 1
(5.12)

tr(J |(X∗1 ,X∗2 )) =
2 k + 2− r2 − r1

k + 1
(5.13)

In addition, characteristic polynomial has the form

P (X) := X2 − 2 k + 2− r2 − r1

k + 1
X − k r1 r2 − r1 r2 − k + r1 + r2 − 1

k + 1
(5.14)

Proposition 5.4.1. The local stability analysis results for the �xed points (0, 0), (k, 0), (0, k)

of (5.5) are summarized as below:

1. The equilibrium point (0, 0) is always an unstable �xed point.

2. The equilibrium point (k, 0) for k < 1 and 0 < r < 2, has a stable manifold in X1

direction and an unstable manifold in X2 direction and is a saddle point. Moreover,

(k, 0) for k > 1 and 0 < r < 2, has a stable manifold in X1 direction and a stable

manifold in X2 direction and is a stable node. Moreover, (k, 0) for k < 1 and r > 2,

has an unstable manifold in X1 direction and an unstable manifold in X2 direction and

is an unstable node. Finally, (k, 0) for k > 1 and r > 2, has an unstable manifold in

X1 direction and a stable manifold in X2 direction and is a saddle point.

3. The equilibrium point (0, k) for k < 1 and 0 < r < 2, has a stable manifold in X2

direction and an unstable manifold in X1 direction and is a saddle point. Furthermore,

(0, k) for k > 1 and 0 < r < 2, has a stable manifold in X1 direction and a stable

manifold in X2 direction and is a stable node. Moreover, (0, k) for k < 1 and r > 2,

has an unstable manifold in X1 direction and an unstable manifold in X2 direction and

is an unstable node. Finally, (0, k) for k > 1 and r > 2, has an unstable manifold in

X2 direction and a stable manifold in X1 direction and is a saddle point.

Proposition 5.4.2. The local stability analysis results for the �xed points (X∗1 , X
∗
2 ) =

(
k

k + 1
,

k

k + 1
) of (5.5) are summarized as below:
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1. The equilibrium point (X∗1 , X
∗
2 ) is an unstable �xed point if and only if

r1 r2 (1− k) + 2 (k + 1) < (r1 + r2) , 4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k) > 0 , k < 1

or

k <
r1 r2 − r1 − r2

r1 r2

, 4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k) > 0 , k < 1

2. The equilibrium point (X∗1 , X
∗
2 ) is a stable �xed point if and only if

k >
r1 r2 − r1 − r2

r1 r2

, 4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k) > 0 , k < 1

3. The equilibrium point (X∗1 , X
∗
2 ) is a saddle point if and only if

4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k) < 0 , k > 1

Proof. Using Theorem 1.1.1 (Linearized Stability) in149.

The equilibrium point (X∗1 , X
∗
2 ) is an unstable �xed point if and only if | det(J)| > 1 and

|tr(J)| < |1 + det(J)|. tr(J |(X∗1 ,X∗2 ))− det(J |(X∗1 ,X∗2 ))− 1 < 0 gives us:

r1 r2 (k − 1)

k + 1
< 0 → k < 1 (5.15)

Moreover, tr(J |(X∗1 ,X∗2 )) + det(J |(X∗1 ,X∗2 )) + 1 < 0 gives us:

4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k)

k + 1
> 0 (5.16)

and det(J |(X∗1 ,X∗2 )) > 1 gives us

r1 r2 (1− k)− (r1 + r2)

k + 1
< 0
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that is to say

k >
r1 r2 − r1 − r2

r1 r2

Moreover, det(J |(X∗1 ,X∗2 )) < −1 gives us

r1 r2 (1− k) + 2 (k + 1)− (r1 + r2)

k + 1
< 0

The positive �xed point of system (5.5) is asymptotically stable if and only if

|tr(J)| < 1 + det(J) < 2 (5.17)

We check (5.17) using (5.12) and (5.13). tr(J |(X∗1 ,X∗2 ))−det(J |(X∗1 ,X∗2 ))−1 < 0 and tr(J |(X∗1 ,X∗2 ))+

det(J |(X∗1 ,X∗2 )) + 1 < 0 give us (5.15) and (5.16). and det(J |(X∗1 ,X∗2 )) < 1 gives us

r1 r2 (1− k)− (r1 + r2)

k + 1
< 0

that is to say

k >
r1 r2 − r1 − r2

r1 r2

Finally, The equilibrium point (X∗1 , X
∗
2 ) is a saddle point if and only if tr2(J)− 4 det(J) > 0

and |tr(J)| > |1 + det(J)|. The �rst condition gives us

(r1 − r2)2 + 4 k2

(k + 1)2
> 0

which is always true. Another conditions to check are: tr(J |(X∗1 ,X∗2 ))− det(J |(X∗1 ,X∗2 ))− 1 > 0

gives us:

r1 r2 (k − 1)

k + 1
> 0 (5.18)
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and, tr(J |(X∗1 ,X∗2 )) + det(J |(X∗1 ,X∗2 )) + 1 < 0 which gives us:

4 (k + 1)− 2 (r1 + r2) + r1 r2 (1− k)

k + 1
< 0 (5.19)

Numerical simulations, including bifurcation diagrams and time series display that this

model demonstrates chaotic oscillations after a cascade of period-doubling bifurcations. As

we can see in Figure (5.2), there are chaotic regions which are embedded in periodic windows

regions. The periodic behaviors which appear alternately in the chaotic area, contain a copy

of bifurcation diagram and it is repeating when we are changing the bifurcation parameter

r. The bifurcation diagram for system (5.5) with respect to r displays the same qualitative

dynamics for di�erent values of k. Moreover, we have run bifurcation analysis with respect

to k with di�erent r values in Figure (5.3).

In addition, if we look at Figure (5.4), at �rst, the equilibrium point is stable, when we

increase r, it loses stability, from one cycle to two cycles, and produces a �ip bifurcation.

As r continues to increase, periodic oscillations are observed with periods 4, . . . , which

eventually leads to chaos.

To prove the existence of chaos for the map (5.5) in the sense of Marotto, we need to

�nd the conditions under which the �xed point Z∗ = (X∗1 , X
∗
2 ) of the system is a snap-back

repeller. According to de�nition (5.1.5) and Figure (5.1), we need to �nd a neighborhood

Br′(Z
∗) of Z∗ in which all eigenvalues have absolute value more than one. Now, we give the

following lemma which we need that to prove chaos in the sense of Marotto for positive �xed

point Z∗ = (X∗1 , X
∗
2 ) of map (5.5).

Lemma 5.4.3. Assume that the conditions of the �rst part of the proposition (5.4.2) are

satis�ed. The �xed point Z∗ = (X∗1 , X
∗
2 ) of map F is called snap-back repeller if there

exists a point Z0 = (X1, X2) in the neighborhood of Z∗ such that Z0 6= Z∗, F (Z0) = Z∗,∣∣det(J |(X1,X2))
∣∣ 6= 0, that is to say, at �rst, the following system of equations has a unique
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Figure 5.2: Bifurcation diagram of system (5.5) when k = 10 and r1 = r2 = r.

solution  X∗1 = X1 exp
(
r1

(
1− X1

k
−X2

))
X∗2 = X2 exp

(
r2

(
1− X2

k
−X1

)) (5.20)

and

k2 − k (r2X2 + r1X1 + r1 r2X1X2) + r1 r2X1X2 6= 0 (5.21)

Then Z∗ for some parameter values (r1 , r2) and k, is a snap-back repeller for map (5.5).

Proof. From
∣∣det(J |(X1,X2))

∣∣ 6= 0, we have:

∂g1

∂X1

∂g2

∂X2

− ∂g1

∂X2

∂g2

∂X1

6= 0

which

((1− r1X1

k
)(1− r2X2

k
)− r1 r2X1X2) e(r1 (1−X1

k
−X2)+r2 (1−X2

k
−X1)) 6= 0
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Figure 5.3: Bifurcation diagram of system (5.5) when r1 = 2.75 and r2 = 2.5.

and it gives us

k2 − k (r2X2 + r1X1 + r1 r2X1X2) + r1 r2X1X2 6= 0

Therefore, any solution Z∗ = (X∗1 , X
∗
2 ) 6= (X1, X2) = Z0 of system (5.20) which satis�es the

�rst part of the proposition (5.4.2) and (5.21), is snap-back repeller for system (5.5).

Theorem 5.4.4. Under the assumptions of the �rst part of proposition (5.4.2) and lemma

(5.4.3), the map (5.5) is chaotic in the sense of Li-York, which means that: There exist (i)

a positive integer N , such that map (5.5) has a point of period p, for each integer p ≥ N ,

(ii) a scrambled set of F , i.e., an uncountable set S containing no periodic points of F , such

that

1. F (S) ⊂ S,

2. lim supn→∞ ||F n(x)− F n(y)|| > 0, for all x, y ∈ S, with x 6= y,

3. lim supn→∞ ||F n(x)− F n(y)|| > 0, for all x ∈ S and periodic point y of f ,

(iii) an uncountable subset S0 of S, such that lim infn→∞ ||F n(x)−F n(y)|| = 0, for every

x, y ∈ S0.
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Figure 5.4: Evolution of host population X1 and its coupled X2 in time for system (5.5)
when k = 10.

Proof. By theorem (5.1.3).

5.5 Conclusion

Studying the evolution of population models and complex dynamics of competitive models

has attracted many researchers during several past decades. In this chapter, we studied the

complex dynamics of a two-species Ricker model which consists of four di�erent biological

parameters. We explored the stability of the origin and two other boundary �xed points using

local stability theorem. Furthermore, we provided the condition under which the solutions

are bounded. We have seen that this model undergoes period doubling bifurcation but it

does not show Neimark-Sacker bifurcation. We used the persistence theory to reveal the

global behavior of system and we discovered the persistence of the system for two boundary

�xed points. Afterward, we changed the model to a speci�c case with only three biological

parameters and we discussed about the local stability of extinction and boundary �xed

points of the system. Moreover, we discovered the chaotic dynamics of the new model using

Marotto theorem. As we discussed, Marotto theorem is a rigorous theorem to study chaotic

dynamics for systems with higher dimensions and can be used to study the chaotic dynamics
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of competitive models. We presented the conditions under which the new system undergoes

snap-back repeller and as a result, it is chaotic in the sense of Li-York. Finally, we used

bifurcation diagram to demonstrate the interesting dynamics of new system and the role

of biological parameters r and k in appearance of di�erent types of complicated dynamics.

The new system has the same number of �xed points as the �rst system and the bifurcation

analysis displayed the same qualitative dynamics for both species as we expected.
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Chapter 6

Chaos Synchronization in Population

Dynamics
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Abstract

In Chapter Six, we study the problem of chaos synchronization in certain discrete-time

dynamical systems. We introduce a drive-response discrete-time dynamical system, which is

coupled using convex link function. We investigate a synchronization threshold, after which,

the drive-response system uncouples and loses its synchronized behaviors. We apply this

method to the synchronized cycles of the Ricker model and show that this model displays a

rich cascade of complex dynamics from a stable �xed point and cascade of period-doubling

bifurcation to chaos. We numerically verify the e�ectiveness of the proposed scheme and

demonstrate how this type of coupling a�ects the synchronization of the system.



6.1 Introduction

Population dynamics can be modeled through the continuous-time system and the discrete-

time system. However, when population size is small or that population does not overlap,

discrete-time systems are more appropriate to use. Discrete-time population models are

widely used to describe the dynamics of hosts and parasitoids interactions150�152. There

are many simple nonlinear discrete-time biological models which create rich and complex

spectrum of dynamics from coexistence of species through periodic cycles to irregular and

chaotic behaviors153�157. Chaos and synchronization are two widespread phenomenons with

application in many disciplines which have been considered as a central topic in nonlinear

dynamics158�160. The presence of chaos in population models has been extensively reported

by di�erent researchers153�157. The main property of chaotic dynamics is its critical sensitiv-

ity to initial conditions, which is responsible for initially neighboring trajectories separating

from each other exponentially in the course of time. Synchronization implies that there is a

strong correlation between coupled systems and intuitively, it refers to a phenomenon which

makes the systems have the same dynamical behavior. Traditionally, synchronization was

based upon periodic signals. However, after coming to the chaotic signals, more possibilities

and �exibilities have been entered in this area.

Chaos synchronization has been started by the work of Fujisaka and Yamada191 in 1983. Af-

ter 1990, when the possibility of chaos synchronization was understood by researchers, this

idea has received many attractions by people in di�erent areas162;164�166;193. Synchronized

chaos means that for any two chaotic systems for which any two nearby initial points in

phase space quickly diverge and become unpredictable, it is possible that these two converge

toward each other and evolve with each other in time. Complete synchronization takes place

if there is a perfect linking of the chaotic solutions such that they remain in step with each

other in time. In 1990, L.M. Pecora and L. Carroll, described a coupling method which

constructs a real set of chaotic synchronization circuits162. They have applied this com-

mon signal to several well-known continuous-time dynamical systems such as Lorenz and

Rossler and they claimed that it is possible to use this method with a slight variation for
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discrete-time dynamical systems. Chaos synchronization has great interest and application

in di�erent disciplines like physics158 and biology159, and it has been observed in a huge va-

riety of phenomena in nature160. Synchronization has an important role in self-organization

of organisms' groups in various biological systems,167. There are several types of synchro-

nization, such as complete synchronization193, generalized synchronization168,169,170, phase

synchronization171, lag synchronization172, antisynchronization and projective synchroniza-

tion173 and174.

This study proposes a new way to couple of discrete-time dynamical systems. We study

three di�erent types of synchronization for this new coupled system and we present the re-

sults related to the local stability of drive response system and we �nd the attractive set

of this novel coupled system. This chapter moreover studies the interesting dynamics of a

drive-response Ricker model which has been coupled by convex link function. Our goal is to

build an appropriate response system which traces the drive system and �nally they evolve

in time even in chaotic regime. We explain that how this coupling method can be applied

on a general discrete-time dynamical system to get a complete synchronization. Finally,

the long term analysis through bifurcation diagrams and in addition, time-series analysis

exhibit that this drive-response system which reveals complex dynamics including cascade of

period doubling to chaotic solutions, for smaller synchronization threshold, get completely

synchronized.

6.2 Description of the coupling method

In this section, we study the complete synchronization in a general discrete-time drive-

response system. Here, we use a convex function to build the proposed drive-response system.

To begin with, consider the following discrete-time dynamical system:

Xn+1 = f(Xn) (6.1)
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Where X ∈ Rn is the state vector of drive system at time n, f is a mapping from Rn to

itself and is continuously di�erentiable. Next step is to �nd a perfect linking such that the

system (6.1) and new coupled one remain in step with each other in time. To model the

response system or coupled system, we use a convex link function as the form H(X, Y ) :=

(1−s)X+s Y where H : R2n → Rn and X, Y ∈ Rn are the state vectors of response system

at time n, and 0 < s ≤ 1 is synchronization threshold. Therefore, for Hn := (1−s)Xn+s Yn,

the response system has the form:

Yn+1 := f(Hn) = f((1− s)Xn + s Yn) (6.2)

and we demonstrate the error between the solutions of the drive system (6.1) and the response

system (6.2) by e(n) = ||Yn −Xn||.

6.2.1 Complete synchronization using contraction mapping theo-

rem

To explain the complete synchronization between two systems (6.1) and (6.2), we need to

recall some known concepts which are crucial part of the proposed coupling method:

De�nition 6.2.1. We say that the drive system (6.1) and response system (6.2) are in

complete synchronization if

lim
n→∞

e(n) = lim
n→∞

||Yn −Xn|| = 0 (6.3)

means that two systems eventually evolve identically in time.

De�nition 6.2.2. Let E be a Banach space. Then, the map F : E → E is called a con-

traction mapping if there exists a constant 0 ≤ α < 1 such that for every pair of points

X, Y ∈ E, we have ||F (X)− F (Y )|| ≤ α||X − Y ||, where α is called a contraction constant

of F on E 202.
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The error between the drive and response system (6.1) and (6.2) has the following form:

e(n+ 1) = Yn+1 −Xn+1 = f((1− s)Xn + s Yn)− f(Xn) (6.4)

We can easily see that for 0 < s ≤ 1:

||((1− s)Xn + s Yn)−Xn|| ≤ s ||Yn −Xn||

Here, we assume that f is a contraction mapping. Then, for the equation (6.4) we can write:

||e(n+ 1)|| = ||f((1− s)Xn + s Yn)− f(Xn)|| ≤ β||Yn −Xn|| = β||e(n)||

where, β is a contraction constant.

As we de�ned before, to get complete synchronization, we need to have limn→∞ ||e(n)|| = 0.

Therefore, for contraction constant 0 ≤ β < 1,

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||Yn+1 −Xn+1|| = 0

which means that the drive-response system (6.1)-(6.2) satis�es the complete synchronization

properties. We will �nd β in theorem (6.2.3).

Theorem 6.2.3. Given the non-linear coupled dynamical system (6.1) and (6.2), where the

map f : R2n → Rn, and for the values s < s̃ =
1

ρA + α
, we get

lim
n→∞

||Yn+1 −Xn+1|| = 0

means that passing the synchronization threshold s̃ makes the drive-response system (6.1)

and (6.2) lose the complete synchronization properties.
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Proof. Suppose the following Cr maps which have a �xed point at the origin:

Xn+1 = AXn + F (Xn), (6.5)

Yn+1 = A((1− s)Xn + s Yn) + F ((1− s)Xn + s Yn), (6.6)

where the contraction mapping F (Xn) = F2(Xn) + · · ·+Fr−1(Xn) +O(|(Xn)|r), includes the

vector-valued homogeneous polynomials of degree 2 , . . . , r. Consider the following equation

for the error:

e(n+ 1) = Yn+1 −Xn+1 = (1− s)AXn + sAYn − AXn + F ((1− s)Xn + s Yn)− F (Xn)

= sA (Yn −Xn) + F ((1− s)Xn + s Yn)− F (Xn)

Since, we assumed that F is a contraction mapping, it satis�es the following inequality:

||F (Y )− F (X)|| ≤ α ||Y −X||

where, α is a contraction constant. By triangular inequality we can write:

||e(n+ 1)|| = ||sA (Yn −Xn) + F ((1− s)Xn + s Yn)− F (Xn)||

≤ s ρA ||Yn −Xn||+ s α ||Yn −Xn|| = s ρA ||e(n)||+ s α ||e(n)||

where, 0 < s ≤ 1 and ρA is the spectral radius of A which is equal to ρA = max |λi| where λ

is the root of characteristic polynomial or eigenvalue for A. Since, 0 ≤ α < 1, therefore

||e(n+ 1)|| ≤ s ρA ||e(n)||+ s α ||e(n)|| = s (ρA + α) ||e(n)||

We know that for complete synchronization, the error between the solutions should converge

toward zero. Thus, limn→∞ ||e(n)|| = limn→∞ ||Yn−Xn|| = 0. As a result, for s (ρA +α) < 1
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we have

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||Yn+1 −Xn+1|| = 0

for which, s <
1

ρA + α
= s̃. Here, s̃ = β, which we discussed in the beginning of this section.

After passing s̃, we lose the complete synchronization between (6.1) and (6.2).

Remark 1. Consider the drive system (6.1) becomes periodic with period `, i.e, Xn+` = Xn.

Then, for the values s <
1

ρA + α
, the non-linear coupled dynamical system (6.1) and (6.2)

become completely synchronized. In other word,

lim
n→∞

||Yn+1 −Xn+1|| = 0

Here, similar to the proof of theorem (6.2.3), we decompose the nonlinear dynamical

system (6.1) and (6.2) into linear and non-linear part. In this case, using triangular inequality

we have:

||e(n+ 1)|| ≤ (s (ρA + α))` ||e(n)||

We know that

lim
n→∞

||e(n)|| = lim
n→∞

||Yn −Xn|| = 0

Therefore, for (s (ρA + α))` < 1 we have

lim
n→∞

||e(n+ 1)|| = 0

for which, s <
1

ρA + α
= s̃.
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6.2.2 Local dynamics, attractors and attracting set of drive-response

system

We continue this section by seeking appropriate closed subset Ω ∈ Rn in which for drive and

response system (6.1) and (6.2); where X = (X0, X1, . . . , Xn) and Y = (Y0, Y1, . . . , Yn), the

following conditions hold:

1. for all X, Y ∈ Ω, then f(X) ∈ Ω , f(H) ∈ Ω× Ω.

2. f is a contraction on Ω.

The Jacobian matrix for drive-response system (6.1)-(6.2) has the following form:

J :=


∂f(X)

∂X
0

∂f(H)

∂X

∂f(H)

∂Y

 (6.7)

We can immediately obtain the following result:

Proposition 6.2.4. Given Jacobian matrix (6.7), for which the following inequality holds:

|| J || := ρJ = max |λi| ≤ β < 1 (6.8)

where β is the contraction constant, ρJ is the spectral radius of J and λi for i = 1, ... , n

are the eigenvalues of Jacobian matrix J . Then, the mapping f is a contraction and the

drive-response system (6.1)-(6.2) satis�es the complete synchronization properties, i.e.

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||Yn+1 −Xn+1|| = 0

Proof. By contraction mapping theorem. Assume that the eigenvalues of the Jacobian matrix

(6.7) have absolute values less than one. Then, using the contraction mapping theorem, f

satis�es the contraction properties and would be a contraction mapping. Therefore, for the
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equation (6.4) we can write:

||e(n+ 1)|| = ||f((1− s)Xn + s Yn)− f(Xn)|| ≤ β||Yn −Xn|| = β||e(n)||

where, β is a contraction constant. Thus, for contraction constant 0 ≤ β < 1,

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||Yn+1 −Xn+1|| = 0

which means that the drive-response system (6.1)-(6.2) satis�es the complete synchronization

properties.

The schematic representation for this type of coupling to obtain complete synchronization

has been demonstrated in Figure (6.1).

Figure 6.1: The schematic diagram for complete synchronization in a discrete-time drive-
response dynamical system.

Recall from the theorem (6.2.3) that the linearization of a given autonomous drive-

response problem discrete dynamical system can be written as the form:

Zn+1 := h(Zn) = J Zn + h̃(Zn), (6.9)

where, Z = (X , Y ) and h : R2n → R2n is a su�ciently smooth governing transition function.

Remark 2. For drive-response system (6.9), the following hold:
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1. For all Z ∈ Ω× Ω, then h(Z) ∈ Ω× Ω.

2. h is a contraction on Ω× Ω.

Therefore, we have the following statements for system (6.9).

Proposition 6.2.5. Consider the drive-response system h : R2n → R2n which is de�ned on

a closed subset Ω×Ω ⊂ R2n and satis�es the conditions in remark (2). Then, there exists a

unique Z∗ with h(Z∗) = Z∗. In another word, if (6.8) holds, then the drive-response system

(6.9) has a unique �xed point.

Remark 3. According to the well known contraction mapping theorem, the converse of propo-

sition (6.2.5) does not necessarily hold.

For drive-response system (6.9), we can establish notions of sequential convergence and

hence of stability for drive-response system (6.9). We now provide a general theorem which

is the result of proposition (6.2.4).

Theorem 6.2.6. Let h : R2n → R2n be a continuously di�erentiable map de�ned on a

closed subset Ω × Ω ⊂ R2n and let J satisfying the form (6.8) be the Jacobian matrix of

drive-response system (6.9) with

∣∣∣∣∂f(X)

∂X

∣∣∣∣ < 1 and

∣∣∣∣∂f(H)

∂Y

∣∣∣∣ < 1. Then, the following hold:

1. The solutions Z = (X , Y ) ∈ Ω×Ω of drive-response system (6.9) completely synchro-

nized.

2. Equilibrium Z∗ of drive-response system (6.9) is stable; i.e.

for any ε > 0, there exists δ > 0 such that ||Z∗−Z|| < δ implies that ||h`(Z)−Z∗|| < ε

for ` > 0.

Proof. The proof is straightforward.

Remark 4. In theorem (6.2.6), hyperbolicity is a robust property and it is one of the most

important assumptions.
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It has been experimentally observed that there may be some situations in which the

response system is stable but the response system has complex dynamics and the reason

is using non di�erentiable link function or any non-di�erentiable transport system. In this

study, we take the advantages of using a continuous convex link function which can com-

pletely control over the behavior of response system and we will numerically show that the

response system inherits the same qualitative dynamics as its drive system and even for

smaller synchronization threshold, the response system and drive system are almost com-

pletely equivalent.

6.3 Application of chaos synchronization in population

dynamics

The chaotic behavior may be observed experimentally in natural systems in many scienti�c

areas. Chaos can be de�ned as irregular and unpredictable time evolution of non linear

systems. Main characteristic of chaos is sensitivity on initial conditions and that system does

not repeat its past behavior. Despite the fact that chaotic systems are sensitive to initial

conditions, it has been experimentally shown that the chaotic oscillators could be coupled.

Chaos synchronization occurs when a chaotic oscillator drives another chaotic oscillator and

is a very important phenomenon which has been occurred widely in ecological systems176�179.

Because of importance of synchronization and its consequences on population dynamics, we

study Ricker model and its synchronized system and we present their qualitative dynamics

using di�erent dynamical system tools.

The Ricker model is one of the most widely-used ecological models which displays regular

and irregular complex nonlinear dynamics214;215 and its coupled system as the following form:

R1 := x1(n+ 1) = x1(n) e
r
(

1−x1(n)
k

)
(6.10)

R2 := x2(n+ 1) = H er(1−H
k ) (6.11)
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where

H(x1, x2) := (1− s)x1 + s x2 (6.12)

Here, x1 demonstrates the population size of drive system, x2 represents the population size of

response system, r is the intrinsic growth rate, k is the carrying capacity of the environment,

s ∈ (0, 1] is synchronization threshold and H(x1, x2) : R2 → R is a link function which has

been used to couple (6.10) and (6.11). Thus, if drive system R1 : R→ R, the corresponding

response system would be R2 : R2 → R, where H is a function of x1 and x2.

For drive-response (6.10)-(6.11), the steady states are (0, 0), (0, x∗2), and (k, k). The Jacobian

matrix for (6.10)-(6.11) has the form

J :=


∂R1

∂x1

0

∂R1

∂x1

∂R1

∂x2

 (6.13)

where

∂R1

∂x1

=
(

1− r x1

k

)
exp

(
r
(

1− x1

k

))
∂R1

∂x1

= (1− s) exp

(
r

(
1− (1− s)x1 + s x2

k

))(
1− ((1− s)x1 + s x2) r

k

)
∂R1

∂x2

= s exp

(
r

(
1− (1− s)x1 − s x2

k

))(
1− (1− s)x1 + s x2

k

)

Then, at the origin we have

J |(0,0) =

 er 0

(1− s) er s er
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and for the positive �xed point (k, k) we have

J |(k,k) =

 1− r 0

1− s− r + r s s− r s


Furthermore, for (0, x∗2),

J |(0,x∗2) =

 er 0

(1− s) exp
(
r
(

1− x∗2
k

))(
1− x∗2 r

k

)
s exp

(
r
(

1− x∗2
k

))(
1− x∗2

k

)


Proposition 6.3.1. The local stability analysis results for the �xed points of (6.10)-(6.11)

are summarized as below:

1. The equilibrium point (0, 0) for r < − ln s is a saddle point, and for r > − ln s is an

unstable �xed point.

2. The equilibrium point (k, k) is a stable point in the interior of positive quadratic if

s < 1/(1 − r), 0 < r < 1 and s > 1/(1 − r), 1 < r < 2, or s < 1/(r − 1), 0 < r < 1

and s < −1/(1 − r), 1 < r < 2. (k, k) is a saddle point if s > 1/(1 − r), r > 2 or

s < −1/(1− r), r > 2.

3. The equilibrium point (0, x∗2) for s > k exp[r(x∗2 − k)/k]/(k − x∗2) or s < k exp[r(x∗2 −

k)/k]/(x∗2−k) is an unstable point, and for |s| < k exp[r(x∗2−k)/k]/(k−x∗2) is a saddle

point.

To study the global stability of the equilibrium points of both systems, at �rst we prove

that all solutions in the �rst quadrant R2
+ are eventually bounded.

Theorem 6.3.2. For r > 0, k > 0 and initial conditions in the �rst quadrant R2
+, i.e.

x1(0) > 0 and x2(0) > 0, for system of (6.10)-(6.11) we have: x1 > 0 and x2 > 0 for all n ∈

Z+. In addition, we can �nd some positive number M , such that maxn∈Z+ {x1(n), x2(n)} ≤

M .
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Proof. By induction.

Since x1(0) > 0 we have exp
(
r
(

1− x1(0)
k

))
> 0, hence

x1(1) = x1(0) e
r
(

1−x1(0)
k

)
> 0

Assume that for n ≤ l, we have x1(l) > 0. Then for n = l + 1 we have

x1(l + 1) = x1(l) e
r
(

1−x1(l)
k

)
> 0

Therefore x1(n) > 0 for any n ∈ Z+. Similarly, since x1(0) > 0 and x2(0) > 0, we have

e
r
(

1− ((1−s) x1(0)+s x2(0))
k

)
is positive. Hence,

x2(1) = ((1− s)x1(0) + s x2(0)) e
r
(

1− ((1−s) x1(0)+s x2(0))
k

)
> 0

Assume that for n ≤ l, we have x2(l) > 0. Then for n = l + 1 we have

x2(l + 1) = ((1− s)x1(l) + s x2(l)) e
r
(

1− ((1−s) x1(l)+s x2(l))
k

)
> 0

Therefore x2(n) > 0 for any n ∈ Z+. To �nd an upper bound, we know,

x1(n+ 1) = x1(n) e
r
(

1−x1(n)
k

)
≤ max

x∈R+
{f(x)}

If we de�ne f(x) = xer(1−
x
k

) , then f ′(x) = (1 − rx
k

)er(1−
x
k

) and f(x) has critical points at

x = k
r
. Since f ′(x) > 0 if x < k

r
and f ′(x) < 0 if x > k

r
, then x = k

r
is the maximal point of

f(x), i.e. maxx∈R+{f(x)} = f(k
r
). Hence,

x1(n+ 1) = x1(n) e
r
(

1−x1(n)
k

)
≤ max

x∈R+

{
x er(1−

x
k

)
}

= f(
k

r
) =

k er−1

r
= M
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Similarly,

x2(n+ 1) = ((1− s)x1(n) + s x2(n)) e
r
(

1− ((1−s) x1(n)+s x2(n))
k

)
= H er(1−H

k )

≤ max
H∈R+

{
H er(1−

H
k

)
}

=
k er−1

r
= M

Therefore, we can �nd some positive numberM , such that maxn∈Z+ {x1(n), x2(n)} ≤M .

Theorem 6.3.3. If there are positive constants m > 0 and M > 0 such that the solution

(x1(n), x2(n)) of system satis�es

0 < m ≤ lim
n→+∞

inf x1(n) ≤ lim
n→+∞

supx1(n) ≤M =
k er−1

r

0 < m ≤ lim
n→+∞

inf x2(n) ≤ lim
n→+∞

supx2(n) ≤M =
k er−1

r

Then, system (6.10)-(6.11) is persistent. If system is not persistent, it is called non-persistent182.

Theorem 6.3.4. Given r > 0, k > 0 and initial conditions x1(0) > 0 and x2(0) > 0 in

system (6.10)-(6.11), if the following conditions hold:

1.
∣∣∣(1− r x1

k

)
exp

(
r
(

1− x1

k

))∣∣∣ < 1

2.

∣∣∣∣s (1− (1− s)x1 + s x2

k

)
exp

(
r
(

1− (1−s)x1−s x2
k

))∣∣∣∣ < 1

Then for drive-response system (6.10)-(6.11) for (x1, x2) ∈ Ω× Ω we have,

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||x2(n+ 1)− x1(n+ 1)|| = 0

where

Ω× Ω =

{
(x1, x2)

∣∣∣∣∣ max
n∈Z+

{x1(n), x2(n)} ≤ k er−1

r

}
(6.14)

Proof. Using theorem (6.2.6), since Ω×Ω is closed and the conditions of proposition (6.2.4)
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are satis�ed, therefore the solutions of drive-response system (6.10)-(6.11) are completely

synchronized and the error between the solutions converges toward zero.

6.3.1 Phase and amplitude synchronization in population dynamics

We begin with two important concepts in theory of synchronization of chaotic systems:

(a) mean phase di�erence, (b) mean amplitude di�erence. We analyze these two types of

synchronizations for drive-response population model (6.10)-(6.11) which have been coupled

using the proposed link function. We consider the oscillations of this discrete-time population

system as being synchronized if their phases coincide repeatedly and they have identical mean

amplitude. These two types of synchronization have been studied widely in science, nature,

engineering, or social life183�188 and before using them,we brie�y de�ne them.

De�nition 6.3.5. We call two systems are in phase synchronization if they have equivalent

mean phase or they have a constant di�erence in phase. We de�ne mean phase for two

oscillators as

Φn ≡ ||Xn+1 −Xn|| ⇒ < Φτ >=

∑Nτ
n=1 Φn

Nτ

(6.15)

where, Nτ is the number of cycles within a time τ .

In fact, for two non identical oscillators, phase synchronization happens when their phases

evolve in synchrony but their amplitude remain unsynchronized.

De�nition 6.3.6. We call two systems are in amplitude synchronization if they have iden-

tical mean amplitude. We de�ne mean amplitude for two oscillators as

< A >=

∑Nτ
n=1 An
Nτ

(6.16)

Remark 5. The mean amplitude and mean phase are qualitatively similar with each other.

Figure (6.2) demonstrates the mean phase di�erence, i.e. |ΦR2 − ΦR1| and the mean

amplitude di�erence, i.e. |AR2 − AR1| corresponding to Ricker model and its synchronized
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model (6.10) and (6.11). As we can see, using these two tools, we can numerically catch

the threshold at which the systems (6.10) and (6.11) satisfy the phase synchronization and

amplitude synchronization properties.

Figure 6.2: The mean phase di�erence and the mean amplitude di�erence for drive-response
system (6.10)-(6.11) when r = 3.

6.3.2 Complete synchronization in population dynamics

In this section, we study the complete synchronization for drive-response system (6.10)-(6.11)

using some qualitative methods which have been used frequently to detect chaos. In order

to understand some dynamical behaviors of systems including period doubling bifurcations

and chaotic oscillations, we picked a single parameter bifurcation, which can demonstrate

how dependence is the dynamics of the systems on a certain parameter.

Figure (6.3) demonstrates the solutions of drive system (6.10) (red color) and response

system (6.11) (black color) with di�erent initial conditions and some interesting r values

while s = 0.5.

For r = 1.3 and s = 0.5 both drive and response system (6.10)-(6.11) evidently, exhibit

16



Figure 6.3: Evolution of host population x1 and its coupled x2 in time with two di�erent
initial conditions for drive-response system (6.10)-(6.11) when s = 0.5 and k = 10, drive
system (red color) and response system (black color).

the sigmoidal approach to carrying capacity reminiscent of the logistic model. For r = 1.9,

we have damped oscillations toward steady state which is because of two biological phe-

nomenons: at �rst, the population which started below carrying capacity does not smoothly

approach steady state through a phenomenon called as overcompensation and then this fol-

lows by the second phenomenon called undershooting, which is due to further overshooting.

If we increase r further, for the value r = 2.1 we see that these damped oscillations follows

by a 2-cycle pattern and they are diverging from the steady states. Similarly, for r = 2.2

and r = 2.4, the oscillations follow a 2-cycle pattern. Finally, for r = 3.8 we can see the

occurrence of unpredictable, irregular and chaotic oscillations.

In Figure (6.4) and for the case s = 0.95, we have almost the same dynamics as we

had for s = 0.5. As we can see, for larger values of threshold s, we do not get completely

synchronized cycles.

Indeed, displayed dynamics in Figures (6.3) and (6.4) are not special to the Ricker model,

but are common features of discrete time population models.

17



Figure 6.4: Evolution of host population x1 and its coupled x2 in time with two di�erent
initial conditions for drive-response system (6.10)-(6.11) when s = 0.95 and k = 10, drive
system (red color) and response system (black color).

For the Figure (6.5), we explain some general properties which have been shared between

the drive-response system (6.10)-(6.11) in common. As we can see, with increasing r the

value of carrying capacity k is increasing. However, for r ≈ 2 the branch corresponding to

stable steady states bifurcates through period-doubling bifurcation into a 2-cycle. As we

increase r further, the interval over which we have a new period reduces, and as we know

this smaller and smaller windows are called Feigenbaum cascade which after them the dy-

namics become aperiodic. As we expected, the bifurcation diagram of drive-response system

(6.10)-(6.11) for greater values of s, shows the same types of dynamics for drive and response

system, but not completely synchronized.

The Poincare section and power spectrum of drive-response system (6.10)-(6.11) have been

displayed in Figure (6.6) for the case s = 0.95, r = 3 and k = 10. Basically, the Poincare

section can be constructed by sampling the phase portrait which helps to simplify the com-

plicated dynamical systems. It is known that periodic behavior corresponds to a �xed point

in Poincare section and any chaotic dynamics can be detected by set of distinct points in

Poincare map. Moreover, the wideband chaotic signals and periodic signals can be easily

distinguished from each other using the frequency spectra. Therefore, as we understood
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Figure 6.5: Bifurcation diagram of Ricker model and its coupled with the error between
their attractors for s = 0.95 and k = 10, drive system (red color) and response system (black
color).

from bifurcation diagram, drive-response system (6.10)-(6.11) experiences the chaotic dy-

namics for r = 3 and as we expected for large values of s we can not establish a complete

synchronization.

6.4 Conclusion

Synchronization in population dynamics can lead to arising complex dynamics and under-

standing the synchronization of oscillations is crucially important in this area. In this study,

we developed a new drive-response system by de�ning a convex continuous link function

which maps the orbits of the drive system keeping the same qualitative properties such as

stability and periodicity into the orbits of its coupled system. As has been shown by n

L. M. Pecora and T. L. Carroll showed, in 1990, two Lorenz systems with the property of

sensitive dependence on the initial conditions could be synchronized starting from di�erent

initial states. We extended this result into discrete-time dynamical systems and we have

shown that by using the concept of convex function, we can force the orbits of a discrete-

time drive-response system starting from di�erent initial conditions get synchronized and we
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Figure 6.6: Poincaré section and spectrum for Ricker model and its coupled with corre-
sponding error for s = 0.95, r = 3 and k = 10, drive system (red color) and response system
(black color).

observed that this coupling method can be successful for drive-response system (6.10)-(6.11)

to get a complete synchronization when the synchronization threshold has smaller values,

closer to zero. In addition, we changed the values of synchronization threshold s in its range

between (0,1) and we observed that the response system (6.11) for larger values of synchro-

nization threshold s is not completely synchronized with its original drive system (6.10) and

when we increased the values of synchronization threshold s, we noticed that the qualitative

behaviors of both systems remain the same, even though, we do not get a complete synchro-

nization between the solutions of drive and response system (6.10)-(6.11). In chaotic regime,

for larger values of synchronization threshold s, closer to one, we could not get a complete

synchronization. But, for smaller synchronization threshold s, closer to zero, we have shown

that two systems are in complete synchronization even though the dynamics is chaotic.
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Chapter 7

Synchronized Cycles of Generalized

Nicholson-Bailey Model
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Abstract

In Chapter Seven, we study the synchronized cycles of a generalized Nicholson-Bailey model.

This model demonstrates a rich cascade of complex dynamics from a stable �xed point to

periodic orbits, quasi periodic orbits and chaos. We introduce a coupling of these two

chaotic systems with di�erent initial conditions and show how they synchronize over a short

time. We investigate the qualitative behavior of Generalized Nicholson-Bailey model and

its synchronized model using time series analysis and its long-time dynamics by using its

bifurcation diagram.



7.1 Introduction

Traditionally, the study of long time behavior of a dynamical systems was based on the

examples of ordinary di�erential equations with regular solutions and those solutions which

remained in a bounded region of the phase space could be divided into two di�erent types

based on their local behavior: �rst a stable equilibrium point and second a periodic (or

quasi-periodic) oscillation. Edward Lorenz in 1961, by working on a simpli�ed version of

atmospheric transfer model which was consisting of three nonlinear ordinary di�erential

equations, numerically observed that a very small changing in the initial conditions of the

system equations makes a huge di�erence on the long term behavior of their solutions189.

Indeed, his �nding was due to one of the major properties of chaotic dynamical systems

which later called as sensitive dependence on initial conditions or butter�y e�ect.

Chaos is a complex nonlinear phenomenon that has been increasingly studied in the last

three decades. During those years, many �elds of science and engineering have been a�ected

by chaos studies. One of the most important achievements in nonlinear and complex dynam-

ics is the discovery of synchronized chaos. Synchronization happens when two events take

place in synchrony at the same time and when time approaches in�nity, the error between

solutions of the �rst system and its synchronized one vanishes and approaches to zero. The

synchronization between two dynamical systems is a well known phenomena occurring in

Physics, Biology or Engineering and refers to a phenomenon that may occur when two or

more oscillators are coupled. For the �rst time, Christiaan Huygens discovered synchro-

nization of coupled pendulum clocks in 1665190. Occurrence of synchronization in coupled

chaotic system composed of identical chaotic oscillators has been detected for the �rst time

by Fujisaka and Yamada191 and192 and after that it has been reported by Pecora and Car-

roll193.

The dynamics of coupled chaotic systems show properties which we cannot detect in the

behavior of the individual elements194. Someone can �nd the same spatial synchronized

�uctuations in biology, ecology and epidemiology195�199. Synchronization of complex pop-

ulation oscillations in natural systems has been examined widely by some researchers200.

1



Bernd Blasius and Lewi Stone worked on a chaotic UPCA foodweb model and they claimed

that the spatio-temporal structures associated with phase synchronization have important

implications for conservation ecology. They proposed that even though perturbation of a

local patch population can bring them to the brink of extinction, however, the periodicity

of spatial phase synchronization can help to bu�er the endangered population by colonizers.

They moreover asserted that unlike this thought that population synchronization can cause

global population extinction201, however, phase synchronization can be useful for maintaining

species persistence. Their �nding indicated that synchronization can shape the distribution

and abundance of species even in continental scale.

As we have already discussed, there are many varieties of synchronization. In this research,

instead of exploring all of these di�erent types of synchronization which have been pro-

posed for di�erent purposes and with various applications, we simply focus on the most

fundamental case, and we will develop our new approach based on a basic mathematical

concept. Indeed, the purpose of this chapter is that after de�ning and setting the funda-

mental concepts which we need to establish the basis of our study, to demonstrate that

such con�gurations under a suitable coupling method is possible. Moreover, we explore the

dynamical and ecological e�ects of synchronization of a host-parasitoid model which is a

generalization of Nicholson-Bailey model (GNB). The GNB model demonstrates regular and

irregular or chaotic oscillations. We de�ne a lift function which is technically a convex func-

tion and maps the orbits of the drive system into the orbits of the response system. Using

this convex function, we drive the response system which inherits all the complex qualitative

dynamics of GNB model and mimics that certain properties of the motion which is shared

between them. We investigate numerically that this method of coupling, synchronizes com-

pletely the stable and periodic cycles and even the chaotic motions of GNB model and to do

that, we need to adjust the synchronization constant to be closer to zero. We demonstrate

the complex dynamics of GNB model and its coupled system by conducting some time series

and bifurcation analysis.

2



7.2 Drive-response system derivation

In this section, we derive the coupled system corresponding to the drive system by de�ning

a convex link function. We consider the following drive system:

Xn+1 = g(Xn), (7.1)

where Xn ∈ Rn is the state vector of a general discrete-time drive system and g : Rn → Rn is

continuous. To �nd an appropriate response system, we provide the following de�nition123:

De�nition 7.2.1. Assume X, Y ∈ Rn are the state vectors of two non-linear discrete-time

dynamical systems and a constant 0 < s ≤ 1. Then, a continuous function h(X, Y, s) :=

(1− s)X + s Y where h : R2n+1 → Rn is called a link function which maps the orbits of �rst

system keeping the same qualitative dynamics to the orbits of second system.

Using the de�nition (7.2.1), we develop a new system which inherits the qualitative

features of the system (7.1) and has the following form

Yn+1 = g((1− s)Xn + s Yn) (7.2)

and it is called response system. Now, for the following non-linear discrete-time dynami-

cal system, we are going to develop a theorem which helps us to �nd the synchronization

threshold. We consider the following drive-response system:

 Xn+1 = g(Xn),

Yn+1 = g((1− s)Xn + s Yn).
(7.3)

Where Xn, Yn ∈ Rn are the state vectors of drive system (7.1) and response system (7.2)

respectively, g is a mapping from Rn to itself and a constant 0 < s ≤ 1. The Jacobian matrix
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for drive-response system (7.3) has the following form:

J :=


∂g(X)

∂X
0

∂g(h)

∂X

∂g(h)

∂Y

 (7.4)

De�nition 7.2.2. We say that the drive system (7.1) and response system (7.2) are in

complete synchronization if

lim
n→∞

||Yn −Xn|| = 0 (7.5)

Here, we imply to a general de�nition in synchronization theory which is crucial for

proposed coupling method.

De�nition 7.2.3. Let E be a Banach space. Then, the map g : E → E is called a contraction

mapping if there exists a constant 0 ≤ α < 1 such that for every pair of points X, Y ∈ E,

we have ||g(X)− g(Y )|| ≤ α||X−Y ||, where α is called a contraction constant of g on E 202.

Now, we have the following result for drive-response system (7.3).

Proposition 7.2.4. For drive-response system (7.3) if g is a contraction function, then the

solutions eventually evolve identically in time and

lim
n→∞

||e(n+ 1)|| = 0

where e(n+ 1) = ||Yn+1 −Xn+1|| is the error between the solutions of the system (7.3).

Proof. For drive-response system (7.3), we have:

e(n+ 1) = Yn+1 −Xn+1 = g((1− s)Xn + s Yn)− g(Xn)
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We can easily see that for 0 < s ≤ 1:

||((1− s)Xn + s Yn)−Xn|| ≤ s ||Yn −Xn||

for 0 ≤ α < 1 and since g is a contraction mapping, we can write:

||e(n+ 1)|| = ||g((1− s)Xn + s Yn)− g(Xn)|| ≤ α||Yn −Xn|| = α||e(n)||

That is to say

||e(n+ 1)|| ≤ α||e(n)||

It is obvious that

lim
n→∞

||e(n)|| = lim
n→∞

||Yn −Xn|| = 0

Therefore;

lim
n→∞

||e(n+ 1)|| = 0

To obtain our rigorous results for complete synchronization, we need to �nd the normal

form for drive-response system (7.3), we need to perform a few linear coordinate transfor-

mations that will put (7.3) into a form which is easier to work with203. First we transform

the �xed point (X∗, Y ∗) of the system (7.3) to the origin by the translation X = X∗ + X̄

and Y = Y ∗ + Ȳ under which drive-response system (7.3) becomes

F :=

 X̄n+1 = g(X̄n +X∗)−X∗ ≡ G(X̄n),

Ȳn+1 = g((1− s) (X̄n +X∗) + s (Ȳn + Y ∗))− Y ∗ ≡ G(X̄n, Ȳn).
(7.6)
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The Jacobian matrix for drive-response system (7.6) has the following form:

J̃ :=


∂G(X̄)

∂X̄
0

∂G(X̄, Ȳ )

∂X̄

∂G(X̄, Ȳ )

∂Ȳ

 (7.7)

Then, we split o� the linear part of the system (7.6) and write

X̄
Ȳ

 =


∂G(X̄)

∂X̄
0

∂G(X̄,Ȳ )

∂X̄

∂G(X̄,Ȳ )

∂Ȳ


X̄
Ȳ

+

 G̃(X̄)

G̃(X̄, Ȳ )

 =

 ∂G(X̄)

∂X̄
X̄ + G̃(X̄)

∂G(X̄,Ȳ )

∂X̄
X̄ + ∂G(X̄,Ȳ )

∂Ȳ
Ȳ + G̃(X̄, Ȳ )


(7.8)

where

 G̃(X̄)

G̃(X̄, Ȳ )

 =

 G(X̄)

G(X̄, Ȳ )

−


∂G(X̄)

∂X̄
0

∂G(X̄,Ȳ )

∂X̄

∂G(X̄,Ȳ )

∂Ȳ


X̄
Ȳ

 (7.9)

Let Q be the matrix that transforms the matrix J̃ into (real) Jordan canonical form

which has the following form

Q =


∂G(X̄,Ȳ )

∂Ȳ
− ∂G(X̄)

∂X̄
0

∂G(X̄,Ȳ )

∂X̄
1

 , Q−1 =



1
∂G(X̄,Ȳ )

∂Ȳ
− ∂G(X̄)

∂X̄

0

∂G(X̄,Ȳ )

∂X̄
∂G(X̄)

∂X̄
− ∂G(X̄,Ȳ )

∂Ȳ

1
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Then, under the transformation

X̄
Ȳ

 =


∂G(X̄,Ȳ )

∂Ȳ
− ∂G(X̄)

∂X̄
0

∂G(X̄,Ȳ )

∂X̄
1


U
V

 (7.10)

(7.8) becomes

U
V

 = Ĵ

U
V

+Q−1

 G̃(U)

G̃(U, V )

 (7.11)

where Ĵ = Q−1 J̃ Q. We remark that the transformation (7.10) has simpli�ed the linear

part of (7.8) as much as possible. One can continue the task of simplifying the nonlinear

part. However, for our purpose, we only need to focus on the linear part of the system. The

schematic representation of the procedure of complete synchronization in a general discrete-

time drive-response dynamical system has been demonstrated in Figure (7.1).

Figure 7.1: The schematic diagram for complete synchronization in a discrete-time drive-
response dynamical system.
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Hartman [1960] and Grobman [1959] proved that the orbit structure near a hyperbolic

�xed point has the same qualitative structure of associated linearized system204�206. Accord-

ing to Hartman-Grobman theorem, the dynamical systems behave similar to their lineariza-

tion part around the �xed point. However, this theorem needs the linearization part without

eigenvalues with real part zero for continuous-time system and for discrete-time systems, it

needs the absolute value of the eigenvalues of linearized part not become one.

Remark 6. Because of the nature of the contraction mapping theorem and therefore the

proposed coupling method, the Hartman-Grobman theorem can be applied directly into our

problem.

Lemma 7.2.5. Using Hartman-Grobman theorem, to �nd the condition under which the

drive-response system (7.11) achieves complete synchronization, we only need to look at the

linear part of (7.11) which is

L(U, V ) ≡ Q−1 J̃ Q (7.12)

Theorem 7.2.6. Given Jacobian matrix Ĵ = Q−1 J̃ Q, for which the following inequality

holds:

|| Ĵ || := ρĴ = max |λi| ≤ α < 1 (7.13)

where α is the contraction constant, ρĴ is the spectral radius of Ĵ and λi for i = 1, ... , n

are the eigenvalues of Jacobian matrix Ĵ . Then, the mapping G is a contraction and the

drive-response system (7.11) satis�es the complete synchronization properties, i.e.

lim
n→∞

||e(n+ 1)|| = lim
n→∞

||Ȳn+1 − X̄n+1|| = 0

Proof. Using the contraction mapping theorem207.

In dynamical system point of view, it is possible for a point arbitrarily close to �xed

point Z∗ = (U∗, V ∗) of system (7.11) to generate an orbit which stays arbitrarily close to Z∗.
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An orbit which could circle around the equilibrium Z∗ staying within the proposed bounded

region, for initial conditions su�ciently close to Z∗, could eventually approach Z∗. In this

case, Z∗ and all invariant set of points which demonstrating the same attractive property

called attractor. Using this statement, we de�ne an attractor of drive-response system (7.11):

De�nition 7.2.7. Let Λ ⊂ Rn such that Λ is invariant under the function G; i.e, G(Λ) ⊆ Λ

. We de�ne the distance between Λ and a point Z, as d(Λ, Z) = minz∈Λ||Z − z||. If there

exists an ε > 0 such that d(Λ, Z) < ε implies lim`→∞ d(Λ, G`(Z)) = 0, then Λ is called an

attractor for drive-response system (7.11).

For a stable �xed point, it is of special interest to determine the set of initial conditions

whose subsequent orbits end up at this �xed point and we call this set as the basin of

attraction of stable �xed point which achieves by the following de�nition:

De�nition 7.2.8. Given G : R2n+1 → R2n a continuously di�erentiable map, then, the

compact and invariant set Γ is called the attracting set of drive-response system (7.11) if

there exists an open neighborhood B of Γ such that G(B) ⊂ B and ∩∞`=0G
`(B) = Γ. The

largest such B is called the basin of attraction for system.

7.2.1 Stable threshold for synchronization in discrete-time dynam-

ical systems

We continue this section by de�ning a new concept in synchronization theory of discrete-time

dynamical systems. The concept of stability in this study is similar to the one that we have

in contraction mapping theorem which is di�erent from the relative stability of equilibrium

point and some nominal motion. We say that a system is stable if the �nal state of the

system is independent on initial conditions and we call a system is attracting if the orbits

of that system get pulled in or converge towards each other208. In general, stability can

be interpreted as a property of solutions of a dynamical systems which means all solutions

converge towards each other209.
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De�nition 7.2.9. A variable response system to the dynamical system X̄0, X̄1, . . . , X̄n,

with the map Φ : D ⊆ Rn → D ⊆ Rn with respect to the sequence s = (s0, s1, . . . , sn) where

0 < si ≤ 1 is the sequence Ỹ0 = (Ȳ1, . . . , Ȳn), . . . , Ỹn+1 = Φ(Contsn
X̄n

(Ȳn)) where the map

Contsu : Rn → Rn can be represented via Contsu(v) = (1− s)−→u + s−→v .

De�nition 7.2.10. The threshold for the coupled dynamical system with drive system X̄0, X̄1, . . . , X̄n,

with the map Φ : D ⊆ Rn → D ⊆ Rn is s if given any s̃ < s and any Ȳ0, there exists a

sequence s = (s0, s1, . . . , sn) with 0 < si ≤ 1 and si = s̃ for i� 0 such that

lim
n→∞

||Ȳn − X̄n|| = 0 (7.14)

Using the de�nitions (7.2.9) and (7.2.10), we state the main results of this section.

Theorem 7.2.11. Consider a linear discrete-time dynamical system (drive-response system)

as following form:

Xn+1 = AXn. (7.15)

Yn+1 = A ((1− s)Xn + s Yn). (7.16)

where matrix A is similar to a diagonal matrix. For the values s < s̃1 =
1

ρ(A)
where s̃1

represents the synchronization threshold, we have

lim
n→∞

||Yn −Xn|| = 0

and passing this threshold decreases the stability of synchronization and consequently, the

drive-response system (7.15) and (7.16) lose the complete synchronization properties.

Proof. Considering the drive system (7.15) and (7.16), we have

||Yn+1 −Xn+1|| ≤ sA ||Yn −Xn||. (7.17)

To have a complete synchronization, at �rst we need to clarify the concept of the norm of a
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matrix. To �nd the behavior of the sequence of {A}, we need to look at the modulus of the

largest eigenvalue of A. But, for the initial value X0 = 0̄, we have X0 = X1 = X2 = · · · =

Xn = 0̄. So, (7.16) can be written as Yn+1 = A (s Yn). Thus, for Rn to be the direct sum of

Rn = Vλ1⊕Vλ2⊕ . . . Vλn where λi are the eigenvalues of the matrix A, we have Yn+1 = sAYn.

For the sequences Y1, Y2, . . . , Yn, we have:

Y1 = sAY0

Y2 = sAY1 = sA (sA)Y0 = (sA)2 Y0

...

Yn = (sA)n Y0

we need to �nd minimal k where Y0 ∈ Vλi1 ⊕ Vλi2 ⊕ . . . Vλik . So, for Y0 =
∑k

j=1 vj and for all

vj ∈ Vλij , we have Yn =
∑k

j=1(s λij)
n vj. So, for Avi = λij vi , we can write, limn→∞ Yn = 0

if and only if limn→∞(s λij)
n vj = 0 which gives us |s λij | < 1 if and only if s ≤ 1

|λij |
. If Y0 is

generic, we get s ≤ 1

|λ|
for all λ which gives s <

1

ρ(A)
, where, ρ(A) is the spectral radius of

A and can be written as ρ(A(n)) = max |λi|. Therefore, the threshold for (7.15) and (7.16)

to be completely synchronized is s <
1

ρ(A)
= s̃1. When we pass this threshold, two systems

(7.15) and (7.16) cannot be completely synchronized anymore.

Now, for the non-linear discrete-time dynamical system, we are going to develop a theo-

rem which helps us to �nd the synchronization threshold.

Theorem 7.2.12. Given the non-linear coupled dynamical system (7.3), where the map

g : D ⊆ Rn → D ⊆ Rn, for the values s < s̃2 =
1

(ρA + α)
, we get

lim
n→∞

||Yn −Xn|| = 0

means that passing the synchronization threshold s̃2 makes the drive-response system (7.3)

lose the complete synchronization properties.
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Proof. Suppose the following Cr maps which have a �xed point at the origin:

Xn+1 = AXn + F̂ (Xn), (7.18)

Yn+1 = A((1− s)Xn + s Yn) + F̂ ((1− s)Xn + s Yn), (7.19)

and the F̂ (Xn) = F̂2(Xn) + · · ·+ F̂r−1(Xn) + O(|(Xn)|r), which including the vector-valued

homogeneous polynomials of degree 2 , . . . , r. Consider the following equation for the error:

e(n+ 1) = Yn+1 −Xn+1 = (1− s)AXn + sAYn − AXn + F̂ ((1− s)Xn + s Yn)− F̂ (Xn)

= sA (Yn −Xn) + F̂ ((1− s)Xn + s Yn)− F̂ (Xn)

By triangular inequality we can write:

||e(n+ 1)|| = ||sA (Yn −Xn) + F̂ ((1− s)Xn + s Yn)− F̂ (Xn)||

≤ s ρA ||Yn −Xn||+ s α ||Yn −Xn||

= s ρA ||e(n)||+ s α ||e(n)||

where, ρA is the spectral radius of A which is equal to ρA = max |λi| where λ is the root of

characteristic polynomial or eigenvalue for A and 0 ≤ α < 1 and 0 < si ≤ 1 (to �nd the

behavior of the sequence of {A}, we need to look at the modulus of the largest eigenvalue

of A). So,

||e(n+ 1)|| ≤ s ρA ||e(n)||+ s α ||e(n)||

We know that

lim
n→∞

||e(n)|| = lim
n→∞

||Yn −Xn|| = 0

12



Therefore,

||e(n+ 1)|| ≤ s (ρA + α) ||e(n)||

Thus, for s (ρA + α) < 1 we have

lim
n→∞

||Yn −Xn|| = 0

for which, s <
1

(ρA + α)
= s̃2. Here, s̃2 = β, which we discussed in the beginning of this

section. After passing s̃2, we lose the complete synchronization in system (7.3).

Lemma 7.2.13. If drive system (7.15) becomes periodic. Then, for the values s <

(
1

ρA + α

) 1
k

:=

s̃3, where s̃3 implies to the synchronization threshold, the non-linear coupled dynamical sys-

tem (7.3) becomes completely synchronized. In other word,

lim
n→∞

||Yn −Xn|| = 0

7.3 Synchronized cycles in Generalized Nicholson Bailey

(GNB) model: Description of the Model

Generalized Nicholson Bailey (GNB) model is a generalization of the work presented by

Beddington, Free and Lawton in 1975210. They have investigated the complex dynamics of

a host-parasitoid model which was an extension work of Nicholson-Bailey model in 1935211.

This model depends on three biological parameters a, k and r and has the following form

H(n+ 1) = H(n) er (1−H(n)
k )−aP (n) P (n+ 1) = H(n)

(
1− e−aP (n)

)
(7.20)

Where H(n) presents the host population after being attacked by the parasitoid and P (n)

implies to the parasitoids population before they die because of biological reasons like short-

13



age of food and or some other natural biological reasons at the end of the season n. k is the

carrying capacity and shows maximum population size that can be supported by availability

of all the potentially limiting resources. It is usually limited by the intensity of light and

space. The fractions of hosts not parasitized is exp(−aP (n)) where a is called the searching

e�ciency which is the probability that a given parasitoid confronts a host whole of the life-

time.

Here, we focus on the above model including a new parameter b which has the following form

H(n+ 1) = H(n) er(1−H(n)
k )−b P (n) P (n+ 1) = H(n)

(
1− e−aP (n)

)
(7.21)

Without loss of generality, we assume b = r and follow the same model assumptions as

Asheghi in 2014212. Therefore, (7.21) can be written as the form:

H(n+ 1) = H(n) er(1−H(n)
k )−r P (n) P (n+ 1) = H(n)

(
1− e−aP (n)

)
(7.22)

The local dynamics of system (7.22), have been studied by di�erent authors numerically and

analytically212;213. We replace H,P in(7.22) with x, y respectively and re wright (7.22) as

the following form

x(n+ 1) = x(n) er(1−x(n)
k )−r y(n) y(n+ 1) = x(n)

(
1− e−a y(n)

)
(7.23)

Now, we apply this coupling method on the system (7.23). Consider the following drive-

response system:

x1(n+ 1) = x1(n) e
r
(

1−x1(n)
k

)
−r y1(n) (7.24)

y1(n+ 1) = x1(n)
(
1− e−a y1(n)

)
(7.25)

x2(n+ 1) = p er(1− p
k)−r q (7.26)

y2(n+ 1) = p
(
1− e−a q

)
(7.27)
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where

p = (1− s)x1(n) + s x2(n) (7.28)

q = (1− s) y1(n) + s y2(n) (7.29)

Here, p : R2 → R and q : R2 → R are two continuous functions. So, if we consider the drive

system G1(x1, y1) : R2 → R2, the synchronized system would be G2(p, q) : R4 → R2, where

p = (x1, x2) and q = (y1, y2). The local stability results for the drive system (7.24)-(7.25)

and (7.26)-(7.27) are the same. To investigate the qualitative dynamics of the solutions of

system (7.24)-(7.27), we use several dynamical systems tools.

7.3.1 Synchronized cycles in GNB model without parasitoid

Here, we show that in system (7.23), when the parasitoid populations go extinct (because of

severe intraspeci�c competition or due to external factors), the dynamics of (7.23) inherits

all di�erent behaviors of Ricker curves from stable �xed point to cascade of period doubling

bifurcations and then chaos214;215. We rewrite the drive-response system (7.24)-(7.27) in one

dimension as the following form:

x1(n+ 1) = x1(n) e
r
(

1−x1(n)
k

)
(7.30)

x2(n+ 1) = p er(1− p
k) (7.31)

where

p = (1− s)x1(n) + s x2(n) (7.32)

Here, p : R2 → R is a continuous function. So, if we consider the drive system R1(x1) : R→

R, the synchronized system would be R2(p) : R2 → R, where p is a function of x1 and x2.

We have demonstrated the time-series corresponding to the solution of the drive-response

system (7.30)-(7.31) in Figure (7.2). As we can see, with increasing the growth rate r, the
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behavior of system changes from stable equilibrium point to periodic behavior and then to

irregular and chaotic dynamics which was expected since the system (7.30)-(7.31) has the

same form and so dynamics of Ricker model.

Figure 7.2: Evolution of host population x1 and its coupled x2 in time for for drive-response
system (7.30)-(7.31) when s = 0.95, k = 10.

Furthermore, we performed a one co-dimensional bifurcation analysis for system (7.30)-

(7.31) with respect to growth rate r in Figure (7.3)-a to discover the long term behavior

of the system and we have compared the solution of drive system (7.30) with the response

system (7.31) by showing the error between the solutions in Figure (7.3)-b. As we will

discuss in section (7.4), when synchronization constant s is larger, the drive-response system

can not be synchronized completely. Moreover, we have shown the Lyapunov Exponent

corresponding the drive-response system (7.30)-(7.31) in Figure (7.3)-c which is the best

place to investigate the stability or chaotic behavior of system (7.30)-(7.31). As we know,

the negative Lyapunov Exponent implies to stable behavior and when it is positive, we expect

to see chaotic behavior.
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Figure 7.3: (a): bifurcation diagram for drive-response system (7.30)-(7.31) when s = 0.95,
k = 10, red (drive system) and black (response system), (b): the error between the solutions
of drive system and response system receptively, (c): the Lyapunov Exponent corresponding
to drive-response system (7.30)-(7.31) when s = 0.95, k = 10, red (drive system) and black
(response system).

7.4 Numerical simulations

In chaotic systems, it seems to not being possible to reproduce exactly the same initial

conditions and parameters and force the orbits converge. However, in this section, we will

numerically show that by using a su�ciently strong coupling method, we can change the

track of the orbits to converge. Therefore, there exists a possible way to get a complete

synchronization in chaotic systems whereas they have been coupled by a suitable coupling

method.

In this section, we demonstrate some numerical simulation to describe the qualitative be-

havior of drive-response system (7.24) - (7.27). The orbits of the system (7.24) - (7.27) in

chaotic regime can be considered as chaotic oscillations. Now we want to study the evolution

of the dynamic variables x1, x2 corresponding to the host population of drive system and

response system, and y1, y2 which are corresponding to the parasitoid population of drive

system and response system respectively. All analysis and numerical simulations which have

been conducted in this section, are expected to reveal the type of attractor from equilibrium
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point, periodic and quasi-periodic orbits, and chaotic attractors for which the dynamics will

eventually settle down and remain forever.

In Figure (7.4), we can see the evolution of the attractors of drive system (red color) and

response system (black color) when we change the growth rate r. As we see, as long as

we are increasing r, the dynamics of the system change from the stable equilibrium point

which loses stability and arises to a limit cycle. This Figure demonstrates that the drive and

response system with di�erent initial conditions, and for the smaller value of the synchro-

nization constant s, become completely synchronized.

Figure 7.4: Attractors for drive-response system (7.24)-(7.27) when s = 0.5, a = 40, k = 10,
from up left side r = 1.08, 1.087, 1.095, and from down left side r = 1.099, 1.1, 1.15.

In Figure (7.5), we increase the value of the synchronization constant s and we notice

that two systems keep the same qualitative behavior from stable equilibrium point to limit

cycle but they are not completely synchronized.

In Figure (7.6), we demonstrated the evolution of host population for drive-response

system (7.24)-(7.27) (The interested parameters values have been selected from the given bi-

furcation diagram). For �xed parameter values s = 0.5, a = 40, k = 10, and di�erent growth

rate r, we can easily see how the time series for x1, x2 change from stable and periodic
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Figure 7.5: Attractors for drive-response system (7.24)-(7.27) when s = 0.99995, a = 40,
k = 10, from up left side r = 1.08, 1.087, 1.095, and from down left side r = 1.099, 1.1, 1.15.

oscillations to chaotic motions. However, as we discussed before, for smaller synchronization

constant s, both x1 and its coupled x2 are completely synchronized. With previous illustra-

tion about the chaotic synchronization, we conclude that using this method of coupling, we

can expect to get a complete synchronization in chaotic regime for smaller synchronization

constant s which this has been demonstrated for growth rate r = 3.8 in Figure (7.6).

However, when we compare Figure (7.6) with Figure (7.7), the coupling method which

has been explained in section (7.2), is successful when the synchronization constant s has

smaller values and is closer to zero. With increasing the synchronization constant s, we

noticed that two convex functions (7.28) and (7.29) which we introduced in section (7.2) can

not make a complete synchronization between the drive and response systems (7.24)-(7.27).

For di�erent growth rate r, bifurcation diagrams for drive system (7.24), (7.25) and

response system (7.26), (7.27), have been demonstrated for �xed synchronization constant

s = 0.5 in Figure (7.8) and for �xed synchronization constant s = 0.95 in Figure (7.9).

The one- co-dimensional bifurcation diagram helps us to know about the dependence of the

19



Figure 7.6: Evolution of host population x1 and its coupled x2 in time for drive-response
system (7.24)-(7.27) when s = 0.5, a = 40, k = 10.

drive-response dynamical systems (7.24)-(7.27) on the certain parameter which here is the

growth rate r.

Here, we are expecting to get completely synchronization for s = 0.5 (Figure (7.8)) and

we do not expect to get a complete synchronization phase for s = 0.95 (Figure (7.9)).

As it can be easily seen in Figure (7.8) and Figure (7.9), the dynamics of host popula-

tion for drive-response system (7.24)-(7.27), for some range of parameter values r and when

(y1, y2) = (0, 0) (without parasitoid), is similar to classical bifurcation diagram of Ricker

model where the routes to chaos happen through the cascade of period-doubling bifurca-

tions and crisis corresponding to the extinction of parasitoid for drive and response system.

However, for smaller values of growth rate r, the host and parasitoid in both systems can

coexist through the periodic and quasi-periodic cycles of the Neimark-Sacker bifurcation

of interior steady states. In addition, we can easily observe that the sudden changes of

attractors (crisis) happens frequently when we increase the parameter values of r.

20



Figure 7.7: Evolution of host population x1 and its coupled x2 in time for drive-response
system (7.24)-(7.27) when s = 0.95, a = 40, k = 10.

7.5 Conclusion

In this chapter, we developed a drive-response system by de�ning a convex continuous link

function which maps the orbits of the drive system into the orbits of its coupled system

and keeps the same qualitative dynamics. We found an appropriate normal form for drive-

response system and we obtained the conditions under which the solutions of drive and

response system become completely synchronized. We provided a new concept in chaos

synchronization, called, synchronization threshold, means that the solutions of drive and

response system diverge from each other and lose the complete synchronization properties

when they pass the threshold. Furthermore, we studied a coupled discrete-time two dimen-

sional host-parasitoid model which is a generalization of famous Nicholson-Bailey model.

One of our objectives in this chapter was to investigate the rich dynamics of drive-response

system (7.24)-(7.27) around its equilibrium points and achieving the chaos synchronization.

We developed a new drive-response system by de�ning a convex continuous link function

which maps the orbits of the drive system keeping the same qualitative properties such as

stability and periodicity into the orbits of its coupled system. We observed that this cou-

pling method can be successful for drive-response system (7.24)-(7.27) to get a complete
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Figure 7.8: Up: bifurcation diagram for drive-response system (7.24)-(7.27) for a = 40,
s = 0.5, k = 10. Down: the error between the solutions of drive system and response system
receptively

synchronization when the synchronization constant has smaller values, closer to zero. More-

over, numerical veri�cation is performed to show the existence of wide range of dynamics of

drive-response system (7.24)-(7.27) around the positive equilibrium point. In addition, we

changed the values of synchronization constant s in its range between (0,1) and we observed

that the response system (7.26)-(7.27) for smaller values of synchronization constant s is

completely synchronized with its original drive system (7.24)-(7.25) and when we increased

the values of synchronization constant s, we noticed that the qualitative behaviors of both

systems remain the same, however, we do not get a complete synchronization between the

solutions of drive and response system (7.24)-(7.27). In chaotic regime, for larger values of

synchronization constant s, closer to one, we could not get a complete synchronization. But,

for smaller synchronization constant s, closer to zero, we have shown that two systems are

in complete synchronization when the dynamic is chaotic.
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Figure 7.9: Up: bifurcation diagram for drive-response system (7.24)-(7.27) for a = 40,
s = 0.95, k = 10, red (drive system) and blue (response system). Down: the error between
the solutions of drive system and response system receptively

More Numerical Results

We have demonstrated di�erent types of attractors of drive-response system (7.24)-(7.27) in

Figure (7.10)-(7.13) when we are changing the threshold s.
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Figure 7.10: Attractors for drive-response system (7.24)-(7.27) when s = 0.94, a = 5,
k = 1.5, from up left side r = 2.0, 2.2, 2.3, and from down left side r = 2.5, 2.7, 2.8.

Figure 7.11: Attractors for drive-response system (7.24)-(7.27) when s = 0.95, a = 5,
k = 1.5, from up left side r = 2.0, 2.2, 2.3, and from down left side r = 2.5, 2.7, 2.8.
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Figure 7.12: Attractors for drive-response system (7.24)-(7.27) when s = 0.96, a = 5,
k = 1.5, from up left side r = 2.0, 2.2, 2.3, and from down left side r = 2.5, 2.7, 2.8.

Figure 7.13: Attractors for drive-response system (7.24)-(7.27) when s = 0.99, a = 5,
k = 1.5, from up left side r = 2.0, 2.2, 2.3, and from down left side r = 2.5, 2.7, 2.8..
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