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Abstract 

As sizes, lengths, or shapes of a system grow large or shrink to zero, a system will 

approach limiting forms.  As the parameter is allowed to grow or shrink, the system could 

resemble a simpler system.  The sufficient conditions for when the equations of motion will 

morph from the original system to a target system will be presented.  The ball and arc equations 

of motion morph to those of the ball and beam as the arc’s radius is allowed to grow.  The 

equations of motion for the rotary pendulum, pendubot, and two-link robot manipulator will 

morph to the equations of motion of the inverted pendulum cart.   

The effect of a parameter growing large or shrinking to zero has on the controller for the 

original system will not be fully investigate in this work.  A case for when controller morphing 

might be possible will be examined.  A controller for the rotary pendulum will morph to a 

controller that stabilizes the inverted pendulum cart.  Next, a controller for the pendubot will be 

morphed that does not stabilize the dimensionless inverted pendulum cart.  Lastly, a controller 

for a fully actuated two-link robot manipulator will be morphed to a stabilizing controller for a 

fully actuated inverted pendulum cart.   
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Chapter 1 - Introduction 

 1.1 Research Question 

A ball on an arc, as the radius of the arc is allowed to grow without bound, will locally 

resemble a ball on a straight-line segment, once the radius is large enough.  As sizes, lengths, or 

shapes of a system change, the system will approach limiting forms.  When these limiting forms 

are reached, the original mechanical system will morph into a second or target system.  What are 

the conditions for when a system’s equations of motion will morph to a simpler system’s 

equations of motion?  

The ability to morph from a higher complexity system to a simpler one could aid in 

controller development.  A necessary but not sufficient test of the more complex system 

dynamics is to check that the more complex system morphs correctly into the simpler one.  

Should the dynamics and controller of two systems morph, there is no need for a new controller 

to be designed; it has already been done.  When will a controller designed for the original system 

morph to a controller that works for the simpler system?  

This work will present the sufficient conditions for morphing the equations of motion and 

will investigate morphing a controller that is based on the system’s energy.  Several examples 

will be presented evaluating both equations of motion morphing and controller morphing.  

 

 1.2 Previous Work 

 1.2.1 General 

Underactuated mechanical systems (UMS) are systems with more degrees of freedom 

than actuators which usually have nonlinear dynamics.  Some examples of such systems include 

gantry cranes, the inverted pendulum cart, unicycles, and rockets with gimbaled thrusters.  There 
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are many ways to design a controller for these systems.  One way is through linearizing the 

system and then the controller can be found using pole placement, LQR, gain scheduling, and 

other well-known methods.  Energy based control techniques, such as Controlled Lagrangians 

[7] and [8], the Lambda Method [5], and Interconnection Damping Assignment Passivity Based 

Control (IDA-PBC) [20], design a controller to replace the original system with an 

asymptotically stable one.  In [20], it was shown that Controlled Lagrangians and the Lambda 

Method were subsets of a general procedure. The Direct Lyapunov Approach (DLA) [29], also 

uses the control law to replace the original system with an asymptotically stable one where the 

new system is automatically Lagrangian without having to impose additional constraints.  In 

[30], it was shown that by setting part of the IDA-PBC control law to zero, DLA and IDA-PBC 

produce the same control law.  The survey paper [16] lists these methods and others in greater 

detail, and contains the equations of motion for some of the more common systems.   

 

 1.2.2 Dimensionless Parameters  

Many times, a simulation of a real or assumed system might appear in a publication, but 

there is no mechanism to compare one system to another.   One system might be harder to 

control owing to inherent dynamics and some controllers may or may not be better choices to 

stabilize a given system. Converting a system to dimensionless form, would provide insight into 

the effect of parameter changes on nonlinear terms.  A control law based on these dimensionless 

equations could be tuned for the dimensionless ratios and then utilized for different scaled 

models. 

For finding dimensionless parameters, the method that appears most in literature is the 

Buckingham-Pi Theorem [11], [23], [6], and [21].  In [11], a gain-scheduling controller is 
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designed for a dimensionless gantry system.  The dimensionless parameters in [11] have 

similarity to those used here.  Reference [23] uses a dimensionless parameter to design a rate-

limiter for a first order system.  Dimensionless parameters are utilized to reduce model 

uncertainty in the bicycle model in [6].  In [21], the dimensionless framework of a bicycle model 

is investigated to determine the impact of tire size on the model with the aim of doing smaller 

scale model testing.  Reference [9], points out that the Buckingham-Pi theorem does not mention 

what to do with complex poles.   

Some papers appearing in the literature do not explicitly use Buckingham-PI Theorem to 

arrive at their dimensionless equations.  In [25], a spring mass system is rendered dimensionless 

to classify the stable equilibrium for the system.  The effect of emergency lane change 

maneuvers is examined in [27] using a dimensionless equation for the minimum resultant vehicle 

force and an optimal state feedback control.   In [2], certain conditions are identified for when 

two systems can be governed by the same control law dependent on their time constants.  The 

system dynamics are rendered dimensionless by manipulating the equations to be independent of 

the choice of units in [10].   Reference [10] shows that the dimensionless parameters of the 

passive dynamics of a quadruped robot revealed intrinsic properties that were not observable on 

the original system. So that a comparison between systems is possible, the process used to obtain 

dimensionless equations in [15] and [32] will be utilized in this work.   

 

 1.2.3 Morphing  

The literature contains some examples that utilize morphing.   A general dimensionless 

approach is taken in [27] when looking at switching converters.  The authors of [33] consider 

topological equivalence to examine the stability of different nonlinear time-periodic systems.  In 
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[17], a diffeomorphism is presented that converts a non-straight line reference path to a straight-

line path in the transformed domain to simplify motion control for a mobile robot.  Similarly, 

[18] utilizes a feedback equivalence transformation for unmanned aerial vehicles to map curved 

paths to straight lines, simplifying the controller.  

 

 1.3 Organization of the Dissertation  

 In chapter 2, the process for rendering a system dimensionless will be presented. The 

dimensionless parameters that will be identified can be utilized for comparing systems, 

controllers, and the effect of different parameters on the output.  Then the sufficient conditions 

for when the equation of motions of the original system will morph into those of a second target 

system as a length, size, or shape is changed of the original system is presented.  

 In chapter 3, the morphing of the equations of motion of the ball and arc to the ball and 

beam will be examined.  The derived equations will be subjected to different sets of assumptions 

to compare the resulting equations of motion to those in the literature, similar to [15].  For the 

ball and beam, a math error was discovered in the equations of motion that are used extensively 

in the literature.  

The successful morphing of the equations of motion and a controller of the rotary 

pendulum to the inverted pendulum cart will be presented in chapter 4. The controllers from [19] 

for the rotary pendulum and inverted pendulum cart will be utilized because [19] presents 

sufficient information to simulate and replicate results.  

 The more complex pendubot system will be examined and morphed to the inverted 

pendulum cart in chapter 5.  The controller from [24] will be utilized to provide result replication 
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and this particular IDA-PBC controller will not successfully morph to control the dimensionless 

inverted pendulum cart.   

Chapter 6 will examine a fully actuated two-link robot manipulator to demonstrate that 

the sufficient conditions for morphing equations of motion work for a fully actuated system.  The 

equations of motion and a controller for the two-link robot manipulator will be morphed to a 

fully actuated inverted pendulum cart.  The controller comes from [28] which has sufficient 

information to allow for simulations to be performed.  

Finally, chapter 7 will present conclusions and discuss future work in this area.  
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Chapter 2 - Process Overview 

As lengths, sizes, or shapes of a system change this can cause the equations of motion of 

a system to become unwieldy especially if a length or radius becomes large.  Converting 

equations of motion and controllers to dimensionless parameters can alleviate this issue.  Once 

the system’s length, size, or shape grows sufficiently large or shrinks to zero, the system would 

start to resemble a simpler system.  

First in this chapter will be a review of the derivation of equation of motion for a general 

underactuated mechanical system. Then a process for rendering these equations of motion to 

dimensionless form will be presented. Lastly, a theory for when a more complex system will 

morph to a simpler system will be presented.  This chapter has been previously published see 

reference [32]. 

 

 2.1 Equations of Motion 

Knowing the potential energy and kinetic energy of a rigid body mechanical system and 

utilizing Lagrange’s equation, the equations of motion are derived.  Kinetic energy, T, is made 

up of the mass matrix, M(q) ∈ ℝnxn and the generalized velocities, 𝒒̇ ∈ ℝn, of the mechanical 

system and is  

( )
1

.
2

TT = q M q q      (2.1) 

The mass matrix, M(q), is a function of the generalized positions, q ∈ ℝn, due to the dependence 

of mass moments of inertia on the configuration of the mechanical system.  The potential energy, 

V(q), of a mechanical system is a function of positions and relative positions of the n bodies of 

body mass centers in conservative fields such as gravitational (a function of mass center 
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locations) or strain energy (a function of relative positions of bodies connected by massless 

springs).  The Lagrangian, L, is the difference between kinetic and potential energy, L = T – V(q).  

The motion equations are then determined by 

d L L

dt

  
− = 

  
Q

q q
                  (2.2) 

where Q is an n-vector of generalized forces acting on the n rigid bodies and includes applied 

and frictional forces and torques. The operation of (2.2) yields n equations.  This formulation 

applies to both fully actuated and underactuated systems. 

Now that the equations of motion for the system have been derived, the equation can be 

converted to dimensionless form.  The first step is to identify the units and common terms for 

each equation.  Then, divide and simplify each equation by a judiciously-chosen common term 

with an eye towards the length or shape changing.  This process results in dimensionless 

parameters which are ratios of common units, mass, length, time, etc.  These dimensionless 

parameters demonstrate the impact changing parameters could have on the system dynamics.   

The morphing of a mechanical system involves changing dimensions and shapes so that 

the original system changes into a second or target system.  Each system has different equations 

of motion, and usually, different generalized coordinates and velocities.  One result of the 

morphing is that equations of motion of the original system change into those of the target 

system.  If the equations of motion morph, then so does the Lagrangian.  The morphing of the 

Lagrangian requires the kinetic energy of the original system to morph into the kinetic energy of 

the target system and the potential energy of the original system to morph into the potential 

energy of the target system.  The kinetic energy morphing requires the mass matrix of the 

original system to morph into the mass matrix of the target system, and the generalized 
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coordinates and velocities of the original system must change into the generalized coordinates 

and velocities of the target system. 

Therefore, the conditions necessary for the successful morphing of a mechanical system 

are: 

1) The successful morphing of the generalized coordinates and velocities of the original 

system to the target system.  

2) The morphing of the original mass matrix as a function of the original generalized 

coordinates to the mass matrix of the target system where dependency is now on the 

target system’s generalized coordinates. 

3) The original potential energy expressed in terms of the original system’s generalized 

coordinates morphs into the potential energy of the target system expressed in terms 

of the target system’s generalized coordinates.  

The satisfaction of these three coordinates is necessary for the dynamics of the original system to 

morph into the dynamics of the target system.  Since the equations of motions for either system 

depends only on the generalized coordinates and velocities, the mass matrix, and the potential 

energy, then the successful morphing of these quantities constitutes necessary conditions for the 

successful morphing of the motion equations.  

 

 2.2 Control Law 

 While the morphing of equations of motion is relatively straight forward, what happens to 

a controller as the original system morphs into the target system?  Are there sufficient conditions 

for when a controller will morph? These questions will not be entirely answered here but the 

analysis will demonstrate where controller morphing might be possible.  In the control of rigid 
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body mechanical systems, if the control law utilizes the mechanical energies, controller 

morphing might be possible.    

Controllers based on IDA-PBC, [20], for underactuated systems start with the 

Hamiltonian, H(q, p), of the mechanical system where p is the generalized momenta defined as 

the mass matrix times the generalized velocities.   The Hamiltonian is the sum of the kinetic and 

potential energies.  The motion equations then are 

 ( ) ( ), mH= − +qp q p G q u  (2.3) 

where ∇q denotes the gradient with respect to q and Gm(q) ∈ ℝnxm is a map from the m inputs of u 

to the various degrees of freedom where m < n because of underactuation.  The Hamiltonian is 

 ( ) ( ) ( )11
, .

2

TH V−= +q p p M q p q  (2.4) 

Note (2.2) and (2.4) produce the same equations where Gm(q)u is the same as the generalized 

forces Q.   The IDA-PBC control law procedure solves for a new Hamiltonian 

 ( ) ( ) ( )11
, .

2

T

d d dH V− = +q p p M q p q   (2.5) 

where Md(q) is the new positive definite symmetric mass matrix and Vd(q) is the new potential 

energy function.   In deriving the new Hamiltonian, the generalized coordinates, velocities and 

momenta of the mechanical system have not changed.  The control law takes the form 

 ( ) ( ), ,es di = +u u q p u q p  (2.6) 

where ues(q, p) is the energy shaping input providing the changes in dynamics and udi(q, p) is the 

damping injection input making the system passive through the generalized inputs.  The control 

law results in the new motion equation 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1

2, , ,T

d d m v m dH H−= −  + − q pp M q M q q p J q p G q K G q q p  (2.7) 
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where J2(q,p) ∈ ℝnxn is a skew symmetric matrix and Kv ∈ ℝmxm is a positive definite, symmetric 

matrix of viscous damping coefficients.  The skew symmetric matrix J2(q,p) is termed as energy 

conserving since it vanishes from the product of the system input and output making no 

contribution to the system’s passivity or energy.  The main contribution of the matrix J2(q,p) is 

that the designer chooses the elements of the matrix to aid in the process of finding the new mass 

matrix Md(q).  The damping injection input stems from the matrix Kv and is  

( ) ( ) ( ), , .T

di v m dH= −  pu q p K G q q p     (2.8) 

To find the new mass matrix Md(q) and potential energy Vd(q), (2.3) is set equal to (2.7) and then 

(2.8) cancels the term involving Kv resulting in 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

2, , ,m es d d dH H− −=  −  +q qG q u q p q p M M q q p J M q p  (2.9) 

To eliminate the input from (2.9), (2.9) is multiplied by the left annihilator Gm
⊥(q) ∈ ℝmxn where 

Gm
⊥(q) Gm(q) = 0.  Substituting for the Hamiltonians H(q, p) and Hd(q, p) in (2.9) yields two 

equations  

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) 1 1 1 1

22 , 0T T

m d d d

⊥ − − − − + −  =q qG q p M q p J q p M q p M q M q p M q p  (2.10) 

and 

 ( ) ( ) ( ) ( ) ( )1 0m d dV V⊥ −  −  = q qG q q M q M q q  (2.11) 

each of which is a partial differential equation (PDE).  Equation (2.10) determines Md(q) and 

(2.11) provides Vd(q).  The energy shaping input then is  

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1
1

1 1

2
1

1 1

,

1
,

2
.

1

2

T T

es m m m d d

T

d

T T

m m m

T

d d

V V
−

−

− −

−

− −

=  −  +

  
 +  

   
 

  −      

q q

q

q

u q p G q G q G q q M q M q q

p M q p J q p M q p

G q G q G q

M q M q p M q p

 (2.12) 
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The above covers the methods of Controlled Lagrangians, the Lambda Method, and IDA-

PBC. For the DLA, [30] shows that requiring the term in braces in (2.10) to vanish produces a 

new mass matrix, and the energy shaping input for the kinetic energy also vanishes.   Then (2.10)

-(2.12) also applies to the DLA.  

 For (2.10)-(2.12), the solution to (2.10) depends on M(q) and J2(q,p) while the solution of 

(2.11) depends on V(q), M(q) and J2(q,p).  The matrix J2(q,p) is arbitrary for IDA-PBC, as noted 

by [20], whereas for Controlled Lagrangians, it depends on M(q) and Md(q) through 

 

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )  ( ) ( )

2

1 1 1 1

,

.
T

d d d d

− − − −

=

  − 
 q q

J q p

M q M q M q M q p M q M q p M q M q
    (2.13) 

For Controlled Lagrangians, Md(q) and J2(q,p) show a dependence on the kinetic energy of the 

mechanical system.  While morphing the equation of motion of (2.2) is clear, the influence of 

morphing on Md(q) and J2(q,p) is not.  Equation (2.2) only requires differentiation whereas 

solving for Md(q) and J2(q,p) requires solving PDEs.  The influence these derived values have on 

the control law as it is morphed from the original system to the target system is uncertain.    

 

 2.3 Conclusions 

 In summary, equations of motion can be derived, knowing a system’s kinetic and 

potential energy function, utilizing (2.2).  As a size, length, or shape changes a system will 

morph to a target system if the necessary conditions for morphing are met: 

1) The generalized coordinates and velocities of the original system morph to those of 

the target system.  

2) The mass matrix of the original system morphs to the mass matrix of the target 

system dependent on the target system’s generalized coordinates.  
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3) The potential energy function of the original system morphs to that of the target 

system expressed in terms of the target system’s generalized coordinates. 

Upon solving for the equations of motion, one can render them dimensionless to aid in 

comparison or ease of modifying the characteristics of a physical system.  The effect this 

morphing has on controllers has not been fully realized yet and a general theory is still in 

development.    

In the case of a system utilizing a control based on the Controlled Lagrangian method 

controller morphing is possible. When the equation of motion morph from the original to a target 

system, then M(q) and V(q) morph.  The controller, u, utilizes M(q), Md(q), V(q), Vd(q) and 

J2(q,p), where J2(q,p) is dependent on M(q) and Md(q), and Vd(q) depends on M(q) and Md(q) as 

well as V(q).  If it can be shown that if Md(q) successfully morphs for the original system to that 

of the target system’s Md(q), where q is now the target system’s generalized coordinates, then the 

controller u would successfully morph from the original system to the target system.  

 Chapters 3 through 5 will present underactuated systems whose equations of motion meet 

the necessary conditions for morphing to a somewhat simpler target system.  Chapter 4 will also 

present a controller which successfully morphs and then present simulations to compare the 

systems.  Chapter 5 will present a controller which upon being morphed does not successfully 

stabilize the target system.   Chapter 6 will present a fully actuated system whose equations of 

motion and a controller successfully morph. Lastly Chapter 7 will present conclusions.    
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Chapter 3 - Ball and Arc to Ball and Beam 

 Now that the sufficient condition for equation of motion to morph has been presented, 

three sets of systems will be investigated. The first example supporting the sufficient conditions 

is morphing the ball and arc system to the ball and beam system.  Control of the ball and arc has 

not been investigated to the same extent in the literature as the examples in the subsequent 

chapters, therefore this chapter will only be examining equations of motion.  The ball and beam 

systems and ball and arc systems that appear in the literature are subjected to many different 

assumptions, some incorrect, and a full set of equations of motion with few assumptions is not 

readily available.  In this chapter the equations of motion will be derived utilizing both Newton-

Euler and Lagrangian-Euler derivations and then compared to often used equations of motion in 

the literature. 

In the first section of this chapter, the ball and beam will be analyzed and equations of 

motion will be derived.  Next, these equations of motion will be compared to models existing in 

the literature. Then, the equations of motion will be rendered dimensionless. 

In the second section, the ball and arc system will be studied and equations of motion will 

be derived and then compared to the often-cited equations of motion. Lastly, the equations of 

motion will be rendered dimensionless.  

Then the equations of motion for the ball and arc system will be morphed to those of the 

ball and beam.  Lastly, conclusions will be presented about these two systems.  The contents of 

this chapter have been published in ASME Journal of Dynamic Systems, Measurements, and 

Control see reference [15]. 
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Figure 3.1: Ball and Beam with Offset 

 

 3.1 Ball and Beam Analysis 

The ball and beam first appeared, to the author’s knowledge in the literature in 1989, in 

[12].  In that work, the ball was modeled as a point mass and the beam rotated about its mass 

center.  An often-cited ball and beam paper that doesn’t have these assumptions is [13], but has 

incorrect equations of motion. In [4], the ball again is not a point mass and the beam rotates 

about a point offset from the center of mass, but they use an incorrect kinematic analysis to 

derive their equations of motion. In this section, the equations of motion for the ball and beam 

will be derived similar to [15], where the ball is not a point mass and the beam rotates about a 

point offset from the beam by a distance H.  The distance lbeam measures the length from the 

rotation point to the center of mass of the beam as shows in the free body diagram of Figure 3.2.  

Then the equations of motion will be rendered dimensionless. Lastly, the equations of motion 

will be compared to those in [12], [13], and [4]. 
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Figure 3.2: Ball and Beam Free Body Diagram 

 

 3.1.1 Equations of Motion 

 3.1.1.1 Newton-Euler Derivation 

Figure 3.2 shows a free body diagram of the ball and beam.  Summing the forces on the 

ball in the x direction, Newton’s second law shows  

    ( )sinfF mg mx− =              (3.1.1) 

and doing the same in the y direction produces 

      ( )cos .mg N my− + =        (3.1.2) 

Summing the moments about a line passing through the ball center parallel to the z axis, which 

has a positive, right hand direction out of the plane of Figure 3.2, Euler’s equation yields 

.BBfo JFR =            (3.1.3) 
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Summing the moments acting on the beam about the point of rotation using the same positive 

direction used for (3.1.3) and adding (3.1.3) shows that   

sin( ) .BB f B beam B B o f beamNr F H gm l J R F J   − + + − + =   (3.1.4)  

Referring to the ball and beam in Figure 3.2, the ball’s center location coordinates 

relative to the X-Y frame origin are 

( ) ( ) ( )cos sinc ox r R H = − +          (3.1.5)         

and 

( ) ( ) ( )sin cos .c oy r R H = + +           (3.1.6)        

The ball’s center velocity components in the X-Y frame are 

( ) ( ) ( ) ( )cos sin cosc ox r r R H    = − − +      (3.1.7) 

and 

( ) ( ) ( ) ( )sin cos sin .c oy r r R H    = + − +      (3.1.8) 

The ball’s center acceleration in the X-Y frame is found by differentiating (3.1.7) and (3.1.8) with 

respect to time to obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2cos 2 sin cos sin sin cosc ox r r r r R H          = − − − + + −  (3.1.9) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2sin 2 cos sin cos cos sin .c oy r r r r R H          = + − + − + + (3.1.10) 

Let x and y represent the ball center coordinates in the x, y frame. Referring the ball kinematics to 

the x-y coordinate system, the velocity and acceleration components of the ball center become  

 ( ) ( ) ( )cos sin ,c c ox x y r R H  = + = − +     (3.1.11) 

 ( ) ( ) ( )2cos sin ,c c ox x y r r R H   = + = − − +                  (3.1.12)           
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( ) ( )sin cos ,c cy x y r  = − + =         (3.1.13) 

and 

   ( ) ( ) ( ) 2sin cos 2 .c c oy x y r r R H    = − + = + − +    (3.1.14) 

The angular velocity and acceleration of the ball stem from the time derivatives of the 

ball orientation angle given by  

B

o

r

R
 = −      (3.1.15)     

to get 

o

B
R

r −=        (3.1.16)     

and 

.
o

B
R

r −=                  (3.1.17) 

In [4], the authors list the orientation angle of the ball, here given by (3.1.15), as just r/Ro 

neglecting to add θ, the rotation of the beam.    When the beam rotates to π/4 and the ball does 

not rotate, the kinematic equation in [4] would have the angular position of the ball as zero when 

it should be, from (3.1.15), π/4.  The time derivative of the kinematic analysis in [4],  

𝜃 = −𝑟̇/𝑅𝑜, also shows that the angular velocity of the beam is not included in the angular 

velocity of the ball. 

Substituting into (3.1.3) for the angular acceleration of the ball in terms of 𝜃̈ and 𝑟̈ by 

using (3.1.17) including the accelerations from (3.1.12) and (3.1.14), substituting Ff from (3.1.1), 

and N from (3.1.2), the equation of motion for the ball becomes 

( )( ) ( )2 sin 0.B
o o B o o o

o

J
R m R H J mR r rmR mgR

R
  

 
− + + + + − + = 

 
    (3.1.18) 
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Dividing the last result by Ro shows the ball equation is 

( ) ( )2

2
sin 0,B B

o

o o

J J
m R H m r rm mg

R R
  

   
− + + + + − + =   

   
      (3.1.19) 

a step done to eventually provide a symmetric mass matrix. Substituting into (3.1.4) using N 

from (3.1.2), Ff from (3.1.1), together with (3.1.17), the beam’s dynamic equation becomes 

( )( ) ( )

( ) ( ) ( ) ( )

2 2 2

cos sin sin 0.

B
o B beam o

o

o B beam BB

J
R H m J J mr H R m r mrr

R

rmg H R mg gm l

 

   

 
+ + + + − + + + 

 

+ − + − − =

  (3.1.20) 

The dynamic equations of motion take the form of 

( ) ( , ) ( )+ + =M q q C q q q G q τ    (3.1.21) 

where M(q) ∈ ℝnxn is a symmetric, positive definite matrix of inertial and mass terms, where n is 

the number of degrees of freedom, ( , )C q q ∈ ℝnxn is a matrix of Coriolis and centripetal 

acceleration coefficients, G(q) ∈ ℝn is a vector of gravitational forces and torques, τ ∈ ℝn is a 

vector of actuations, and q ∈ ℝn are the generalized coordinates.  Time derivatives of q provide 

the generalized velocities and accelerations, denoted as 𝒒̇ and 𝒒̈, respectively.   Using (3.1.19) 

and (3.1.20) the matrices for (3.1.21) are 

   ( )

( ) ( )

( )

2 2

2

,

B
o B beam o

o

B B
o

o o

J
R H m J J mr H R m

R

J J
H R m m

R R

 
+ + + + − + − 

 =
 

− + − + 
 

M q      (3.1.22)   

 ( ), ,
0

rmr rm

rm





 
=  

− 
C q q            (3.1.23)   

( )
( ) ( ) ( ) ( )

( )

sin cos sin
,

sin

o B beamR H mg rmg gm l

mg

  



− + + − 
=  

 
G q          (3.1.24)         

and 
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.
0

BB 
=  

 
τ                     (3.1.25)      

 

 3.1.1.2 Lagrangian Formulation 

The kinetic energy for the ball and beam is 

( )2 2 2 21 1 1

2 2 2
beam B BT J J m x y = + + +    (3.1.26) 

where 𝑥̇ and 𝑦̇ are specified in (3.1.11) and (3.1.13), respectively, and using (3.1.16), the kinetic 

energy becomes 

( )
2

2 2 2

2

2 2 2 2 2 2 2

1 1 1 1

2 2 2 2

1 1 1
.

2 2 2

beam B B B o

o o

o o

r r
T J J J J mr m R H r

R R

mr m R m R H m H

   

   

= + − + + − +

+ + + +

     (3.1.27) 

The gravitational potential energy is  

( ) ( ) ( ) ( )sin cos cos .o B beamV mgr mg R H m gl  = + + +            (3.1.28) 

Utilizing L = T – V and  (2.2), the ball position equation is 

 ( ) ( )2

2
sin 0.B B

o

o o

J J
m R H m r mr mg

R R
  

   
− + + + + − + =   

   
 (3.1.29)        

The beam position equation is  

( )( ) ( )

( ) ( )( ) ( )

2 2

2 cos sin sin .

B
B o beam o

o

o B beam BB

J
J m R H mr J m R H r

R

mrr mgr mg R H gm l



    

 
+ + + + − + + 

 

+ + − + − =

   (3.1.30) 

Equations (3.1.29) and (3.1.30) are the same as (3.1.19) and (3.1.20), respectively.   
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 3.1.2 Comparison to Models in Literature 

To compare the equations of motion of equation (3.1.29) and (3.1.30) to those of [12], the 

ball’s inertia JB, radius Ro, and offset H, are set to zero, the center of mass of the beam is moved 

to the rotation point, and the ball equation is divided through by the mass of the ball, m. Then 

(3.1.29) and (3.1.30) become 

( )2 sin 0r r g − + =            (3.1.31)        

and 

( ) ( )2 2 cos ,beam BBmr J mrr mgr   + + + =      (3.1.32) 

which match the equations of motion from [12].  The mass matrix presented in [13], has a ball of 

mass m and radius Ro rolling on a beam rotating about a point in line with the center of mass of 

the ball is 

( )

2

2

0

.
0

B beam

B

o

J J mr

J
m

R

 + +
 

=
 +
  

M q       (3.1.33) 

This matrix is using the inertia and radius of the ball together with the roll without slip 

condition but the off-diagonal terms are zero.  In an attempt of simplifying the mass matrix of 

(3.1.22), three different assumptions are examined.  First, assume a slider, moving on a 

frictionless beam surface, replaces the ball, where radius Ro, equal to half the slider thickness, is 

not zero, and the offset H is -Ro. This assumption changes the kinematics of (3.1.5)-(3.1.8) to  

( )coscx r = ,      (3.1.34) 

( )sincy r = ,       (3.1.35) 

( ) ( )cos sincx r r  = − ,               (3.1.36) 

and 
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( ) ( )sin coscy r r  = + .              (3.1.37) 

Since the slider cannot rotate, (3.1.16) becomes  

.B =           (3.1.38) 

Then the kinetic energy of (3.1.26) becomes 

( )2 2 2 21 1 1

2 2 2
beam BT J J m x y = + + +              (3.1.39) 

leading to a mass matrix of 

( )
2 0

0

B beamJ J mr

m

 + +
=  

 
M q                (3.1.40) 

which does not match the mass matrix of [13].  Next, assume the ball rotates with radius Ro, rolls 

without slip, and the offset H is -Ro, then using (3.1.34)-(3.1.37) and (3.1.16), (3.1.26) becomes  

( )
2

2 2 2 2

2

1 1 1 1
.

2 2 2 2
beam B B B

o o

r r
T J J J J m x y

R R
  = + − + + +   (3.1.41) 

The corresponding mass matrix is  

( )

2

2

B
beam B

o

B B

o o

J
J J mr

R

J J
m

R R

 
+ + − 

 =
 

− + 
 

M q ,     (3.1.42) 

which is not the same as in [13].  Lastly, solve (3.1.22) for the value of H that causes the off-

diagonal terms to be zero.  Setting H to 

2

b o

o

J mR
H

mR

+
= −      (3.1.43) 

results in a mass matrix of 
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( )

2
2

2

2

0

0

B
beam B

o

B

o

J
mr J J

mR

J
m

R

 
+ + + 

 =
 

+ 
 

M q    (3.1.44) 

which also does not match that of [13].  There is not a set of assumptions that yields the same 

equations of motion as those presented in [13].  

 

 3.1.3 Dimensionless Equations of Motion 

Now to transform the ball and beam equations from (3.1.22)-(3.1.25) into dimensionless 

equations, divide the beam (first) equation by mRo
2 and ball (second) equation by mRo.  By 

canceling like coefficients, the terms for (3.1.21) become  

( )

2 2

2 2 2 2 2

2 2

2
1 1

,

1 1

beamB B

o o o o o o o

B B
o

o o o

JJ Jr H H H

mR R R R mR mR R
r

J JH
R

mR R mR


  

+ + + + + − + +    
    

=
    
   − + + +   
   

M q q       (3.1.45) 

( ), ,

0

o o o

o
o

r r r

R R R
r

r
R

R

 



 
  
  =
  

−     
 

C q q q      (3.1.46) 

( )

( )
( ) ( ) ( )

( )

sin cos sin

,

sin

o B beam

o o o o

o

R H m lg r

R R R mR

g

R

  



 + 
− + −  

  =
 
 
  

G q   (3.1.47) 

and 

2
.

0

BB

omR

 
 =
 
  

τ        (3.1.48) 
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Table 3.1 shows the dimensionless parameters that will be utilized for this chapter.  Utilizing 

Table 3.1 and multiplying both equations by γ2 to change the time scale to unitless time, 𝑡,  

(3.1.45)-(3.1.48) become 

( )
( )

2 2

4 6 3 4 6

4 6 4

1 1
,

1 1

k k k k k

k k k





   + + + + − − −
 =    − − − +    

M q q        (3.1.49) 

( ), ,
0

  

 

     
  =     −   

C q q q     (3.1.50) 

( )
( ) ( ) ( )

( )
6 1 5cos 1 sin

,
sin

k k k  



− + + 
=  

 
G q      (3.1.51) 

and 

,
0

N 
=  

 
τ                   (3.1.52) 

where 
d

d t


  = , 

2

2

d

dt


 = , 

d

d t


 = , and 

2

2

d

d t


 = . 

 

Table 3.1: Dimensionless Ball and Beam and Ball and Arc Parameters 

Dimensionless 

Parameter 
k1 k3 k4 k5 k6 k7   2  N  

Ball and 

Beam 

Bm

m
 2

beam

o

J

mR
 

2

B

o

J

mR
 beam

o

l

R
 

o

H

R
 -- 

o

r

R
 oR

g
 

2

2

BB

omR

 
 

Ball and 

Arc 
am

m
 2

arc

o

J

mR
 

2

B

o

J

mR
 arc

o

l

R
 

o

H

R
 

o

R

R
 

( )o

o

R R

R

+
 oR

g
 

2

2

BA

omR

 
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3.2 Ball and Arc 

 

Figure 3.3: Ball and Arc 

 

The ball and arc first appeared, to the author’s knowledge, in 2007 in [3].  In that paper 

the ball is modeled having a non-zero radius rolling along a circular beam which was rotating 

about a point that was not the center of mass.  This paper has the same kinematic error for the 

ball’s rotational angle as [4].  The ball and arc of [26] modeled the ball as a point mass and 

constrained the center of mass of the arc to the rotation point.  The ball and arc model in Figure 

3.2, consists of a ball of mass m and radius Ro rolling without slip along an arc of radius R with 

mass ma.  The arc rotates about a point o that is a distance of H from the arc’s edge and a 

distance of larc from the center of mass of the arc.   In this section, the equations of motion for the 

ball and arc of Figure 3.2 will be derived using both Newton-Euler and Euler-Lagrangian 

analyses.  Then the equations of motion will be made dimensionless.  



  

25 

 

 

Figure 3.4: Ball and Arc Free Body Diagram 

 

 3.2.1 Equations of Motion 

 3.2.1.1 Newton-Euler Derivation 

For the ball and arc in Figure 3.4, the ball’s center relative to the X-Y frame origin is 

( ) ( ) ( ) ( )sin sinc ox R R R H  = + − + −    (3.2.1) 

and 

( ) ( ) ( ) ( )cos cos .c oy R R R H  = + − − −    (3.2.2) 

In the X-Y frame, the ball’s center velocity components are 

( ) ( )( ) ( ) ( )cos cosc ox R R R H     = + − − + −            (3.2.3) 

and 
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( ) ( )( ) ( ) ( )sin sin .c oy R R R H     = − + − − + −       (3.2.4)   

In the X-Y frame, the ball’s center acceleration is        

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

2

2

cos sin

cos sin

c ox R R

R H

       

   

= + − − − − −

+ − −

   (3.2.5) 

and 

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

2

2

cos sin

sin cos .

c oy R R

R H

       

   

= − + − − + − −

+ − +

  (3.2.6) 

Summing the forces in the X direction, Newton’s second law shows 

( ) ( )cos sinf cF N mx   − + − =     (3.2.7) 

and, similarly in the Y direction, produces 

( ) ( )sin cos .f cmg F N my   − − − + − =     (3.2.8) 

For a line passing through the ball, parallel to the z axis which has a positive, right hand direction 

out of the plane, summing the moments shown in Figure 3.4 and using Euler’s equation yields 

.o f B BAR F J − =            (3.2.9) 

The angular velocity of the ball, 𝜃̇BA, stems from calculating the velocity of the ball and 

the velocity of the contact point.  To do this, first the analysis finds the position vector from the 

origin to the contact point using 

/ / /d o s o d s= +r r r .            (3.2.10)               

where  

( )

( )

( )/

sin

cos

0

s o R H





 
 

= − − 
 
 

r      (3.2.11) 
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and  

( )

( )/

sin

cos

0

d s

R

R

 

 

 −
 

= − 
 
 

r       (3.2.12) 

where ru/w denotes the relative position vector to point u with respect to point w.  Next, the unit 

radial vector er is 
/

/

d s
r

d s

=
r

e
r

, where /d s R=r  and the unit tangent vector et is t r= − e k e .  The 

velocity of the contact point is ( ) /d d o= v k r  and the velocity of the ball is c x y= +v i j .  

Finally, 𝜃̇BA is 

( )
.

c d

BA t

oR


−
= − 

v v
e                (3.2.13) 

The operation of (3.2.13) produces 

( )
.

o

BA

o

R R

R


 

+
= − +              (3.2.14) 

The time derivative of (3.2.14) shows  

 
( )

.
o

BA

o

R R

R


 

+
= − +                (3.2.15) 

Integrating with respect to time (3.2.14), the orientation angle of the ball becomes 

( )
.

o

BA

o

R R

R


 

+
= − +     (3.2.16) 

Substituting the accelerations from (3.2.5) and (3.2.6) into (3.2.7) and (3.2.8), along with 

fF  from (3.2.7), N from (3.2.8), and 𝜃̇BA from (3.2.15) into (3.2.9), the equation of motion for 

the ball becomes 
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( ) ( )( )

( ) ( )( ) ( )

2 2

2

cos 1

sin sin 0.

o o B o o o B

o

o o

R
mR RR m J R H R m RR m R m J

R

R m R H g R m

  

   

  
− − − + − + + + +   

  

− − − − =

      (3.2.17) 

Multiplying the last result by (R + Ro)/Ro produces a symmetric mass matrix, where the ball 

equation is 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

2

2

2

cos

sin sin 0.

B B
o o o

o o

o o

J J
R R mR Rm R H m R R m

R R

R R m R H R R g m

  

   

   
+ − − − + − + + +   

   

− + − − + − =

       (3.2.18)    

Summing the moments acting on the arc about the fixed point of rotation using the same positive 

direction used for (3.2.9) and using Euler’s equation shows that   

( ) ( ) ( ) ( )( ) ( )sin cos sin .f a arc BA arcR H N F R R H gm l J    − − + − − + + =       (3.2.19) 

Using Ff from (3.2.7), N from (3.2.8), and adding (3.2.9) to (3.2.19) shows the arc equation of 

motion is 

( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2

2

2 cos 2 2 2

cos

2 sin sin

sin sin .

o arc o o B

B
o o

o

o o

o arc a BA

R R R H m J R HR RR R H m J

J
R R mR Rm R H m

R

R R m R H R R m R H

g R R m g R H m l m

 

 

   

   

− + − + + − + + + +

 
− + + + − − 

 

+ + − − + −

+ + − + − − =

(3.2.20) 

From (3.2.18) and (3.2.20), the matrices for (3.1.21) are  

( )
( )

2

2

1 2

2 B
o

o

M M

J
M R R m

R

 
 

=   + +    

M q     (3.2.21)  

where 
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( )( ) ( ) ( )

( ) ( ) ( )

2 2 21 2 cos 2 2 2 ,

2 cos ,

o arc o o B

B
o o

o

M m R R R H J R HR RR R H m J

J
M R R m R H mR mR

R





= − + − + + − + + + +

 
= − + − − + + + 

 

 (3.2.22) 

plus 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

sin sin
, ,

sin 0

o o

o

R H m R R R H m R R

R H m R R

    

 

 − + − − − +
=  

− − +  

C q q      (3.2.23) 

( )
( ) ( ) ( )( ) ( )

( ) ( )

sin sin
,

sin

o a arc

o

g R R m g R H m m l

mg R R

  

 

 + − + − −
=  

− + −  

G q          (3.2.24) 

and 

.
0

BA 
=  

 
τ          (3.2.25) 

 

3.2.1.2 Lagrangian Formulation 

The kinetic energy of the ball and arc is 

( )2 2 2 21 1 1
.

2 2 2
arc B BA c cT J J m x y = + + +            (3.2.26) 

With 𝑥̇c and 𝑦̇c from (3.2.3) and (3.2.4), respectively, and 𝜃̇BA from (3.2.14), the kinetic energy 

becomes 

( )( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2
4 3 2 2 2 2 2

2

2 2 2 2 2 2

2 cos

1
2 .

2

2 2 2 2

o o arc o B o

o o B o B

o

o B o B o

m R R R R H J R J R

T mR mRR J mR R J R
R

RH R H m R J mR R R J R

     

     

     

 − + − + + +
 
 

= − + − + + + +
 
 

− + + − + + − 
 

  (3.2.27) 

The potential energy is   

( ) ( ) ( ) ( )( ) ( )cos cos cos .o a arcV mg R R R H m gl   = + − − − +   (3.2.28) 

Then using (2.2), the ball position equation is  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

2

cos

sin sin 0

B B
o o o

o o

o o

J J
R R mR Rm R H m R R m

R R

R R m R H R R g m

  

   

   
− + + + − − + + +   

   

− + − − + − =

      (3.2.29) 

and the arc position equation is 

( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2

2

2 cos 2 2 2

cos

2 sin sin

sin sin .

o arc o o B

B
o o

o

o o

o arc a BA

R R R H m J R HR RR R H m J

J
R R mR Rm R H m

R

R R m R H R R m R H

g R R m g R H m l m

 

 

   

   

− + − + + − + + + +

 
− + + + − − 

 

+ + − − + −

+ + − + − − =

   (3.2.30) 

Equation (3.2.29) and (3.2.30) are the same as (3.2.18) and (3.2.20), respectively. 

 

 3.2.2 Comparison to Models in Literature 

For the ball and arc in this paper to match those of [26], change the ball to a point mass, 

m, with the ball’s inertia JB and radius Ro set to zero, and move the point of rotation to the arc 

center of mass by setting larc to zero.  Then the kinetic energy of (3.2.26) becomes  

( )2 2 21 1
.

2 2
arc c cT J m x y= + +         (3.2.31) 

and the equations for the velocities of (3.2.3) and (3.2.4) become 

( )( ) ( ) ( )cos coscx R R H     = − − + −    (3.2.32) 

and 

( )( ) ( ) ( )sin sincy R R H     = − − − + − .      (3.2.33) 

For the potential energy, let larc = 0 and then (3.2.28) becomes 

V mgy=          (3.2.34) 

where ( ) ( ) ( )cos cos .y R R H  = − − −  Then the matrices of (3.2.21)-(3.2.25) become    
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( )
( ) ( )( )

( ) ( )( ) 2

1 cos

cos

M Rm R R H

Rm R R H R m





 − − −
=  

− − −  

M q ,         (3.2.35) 

where 

( ) ( ) ( )( )221 2 cos ,arcM Rm R H J R R H m= − − + + + −          (3.2.36) 

( )
( ) ( ) ( ) ( )( )
( ) ( )

sin sin
,

sin 0

Rm R H Rm R H

Rm R H

    

 

 − − − −
=  

− −  

C q q ,             (3.2.37) 

( )
( ) ( ) ( )

( )

sin sin

sin

gRm g R H m

Rg m

  

 

− + − 
=  

− − 
G q ,   (3.2.38) 

and 

0

BA 
=  

 
τ      (3.2.39) 

which, when put into (3.1.21) and solved for q , produce the same generalized accelerations as in 

[26]. 

 

3.2.3 Dimensionless Equations of Motion 

For the ball and arc system of (3.2.21)-(3.2.25), divide the arc (first) equation by mRo
2 

and the ball (second) equation by mRo(R+Ro).   Then the terms for (3.1.21) become 

( ) ( )
2

1 2

2 1 oB

o o

M M

R RJ
M

mR R





   
   

=   +   +        

M q q      (3.2.40) 

where 
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( ) ( )
( )

( )
( )

2 2

2 2 2 2 2

2 2 2
1 2 cos 1 ,

2 cos 1 ,

o arc B

o o o o o o o o

B

o o o

R R R H J JR HR R H
M

R R mR R R R R mR

R H JR
M

R R mR





+ −  
= − + + − + + + + 

 

− 
= − − + + + 

 

   (3.2.41) 

plus 

( )

( ) ( )
( )

( )
( )( )

( )
( )

( )

sin sin

, ,

sin 0

o

o o o

o

o

o

R H R R R H

R R R
R R

R H
R

R

     


 

− + − 
− −   

  = +  −
 −   

  

C q q q      (3.2.42) 

( )

( )
( )

( )

( )

sin sin( )

,

sin

o a arc

o o o o

o

R R R H m lg

R R R m R

g

R

  

 

   + −
− + −    

   =
 
 − −
  

G q          (3.2.43) 

and 

2
.

0

BA

omR

 
 =
 
  

τ       (3.2.44) 

With the parameter definitions in Table 3.1 and multiplying both equations by γ2, (3.2.40)-

(3.2.44) become 

( )
( ) ( )4 7

1 2

2 1 1

M M

M k k





   
 =    + +   

M q q    (3.2.45) 

where 

( )( ) ( )

( ) ( )( )

2 2

7 6 7 3 7 7 6 7 6 4

7 6 7 4

1 2 1 cos 2 2 2 1 ,

2 cos 1 ,

M k k k k k k k k k k

M k k k k





= − − + + + − + + + +

= − − + + + +
        (3.2.46) 

plus 
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( )
( )( ) ( ) ( ) ( )( )

( ) ( ) ( )
7 6 7 7 6

77 6

1 sin sin
, ,

1sin 0

k k k k k

kk k

    

 

  − + − − −   
  =     +− −   

C q q q      (3.2.47) 

( )
( ) ( ) ( ) ( )

( )
7 7 6 1 51 sin sin

,
sin

k k k k k  

 

 + − + − −
=  

− − 
G q          (3.2.48)       

and 

0

N 
=  

 
τ       (3.2.49) 

where 
d

d t


  = , 

2

2

d

dt


 = , 

d

d t


 = , and 

2

2

d

d t


 = . 

 

 3.3 Morphing 

To show that as R gets large the ball and arc morphs into the ball and beam, first note that 

as R grows, ϕ becomes small.  To check the sufficient conditions necessary for morphing the 

equations of motion for the ball and arc to ball and beam first approximate ( )sin   , 

( ) 21
cos 1

2
  − , then adding and subtracting ( ) 2

71 k +  in M1, and simplifying (3.2.45)-

(3.2.49) produces 

( )
( ) ( )4 7

1 2

2 1 1

M M

M k k





   
 =    + +   

M q q    (3.3.1)  

where 

( ) ( ) ( )

( ) ( )

2 22 2

3 6 4 7 6 7 6 7

2

6 4 7 6

1 1 1 1 ,

1
2 1 ,

2

M k k k k k k k k

M k k k k

 



= + + + − + + + + +

= − + + − −
      (3.3.2)   

( )
( )( ) ( )( )

( ) ( )
7 6 7 7 6

77 6

1
, ,

10

k k k k k

kk k

    

 

  − + − − −   
  =     +− −   

C q q q  (3.3.3)       
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( )
( ) ( ) ( ) ( )

( ) ( )

7 6 1 5

2

1 cos 1 sin

,1
cos sin 1

2

k k k k  

   

 + − + +
 

=    − − −      

G q         (3.3.4) 

and 

.
0

N 
=  

 
τ          (3.3.5) 

To convert the second generalized coordinate, ϕ, to arc length, first it must be noted that  

(R+Ro)ϕ = r, then from Table 3.1 ρ = r/Ro = (k7 + 1) ϕ.  Similarly, ρ′ = (k7 + 1)ϕ′ and ρ′′ = (k7 + 

1)ϕ′′.  As R→∞, the quantities ϕ and   approach zero and k7 grows but the product k7ϕ becomes 

the constant value ρ, then (k7 + 1)ϕ → k7ϕ→ ρ, and (k7 + 1)ϕ′ → k7ϕ′→ ρ′ resulting in (3.3.1)-

(3.3.5) becoming   

( )
( ) ( )

( )

2 2

3 6 4 6 4

6 4 4

1 1
,

1 1

k k k k k

k k k





   + + + + − + +
 =    − + + +    

M q q      (3.3.6) 

( ), ,
0

    

  

      
  =      −   

C q q q              (3.3.7) 

( )
( ) ( ) ( )

( )
6 1 5cos 1 sin

,
sin

k k k  



 − + +
=  

 
G q          (3.3.8) 

and 

.
0

N 
=  

 
τ         (3.3.9) 

 As R→∞ for the ball and arc, Jarc→JBeam, ma→mB, and larc→lbeam, then (3.3.6)-(3.3.9) 

exactly match those of (3.1.49)-(3.1.52).  Since (3.3.6), (3.3.8), and the generalized coordinates 

and velocities of the ball and beam matches those of (3.1.49), (3.1.51), and the generalized 

coordinates and velocities of the ball and beam, the sufficient conditions for morphing are met. 
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 3.4 Conclusion 

In this chapter, the equations of motion were derived for both the ball and beam and ball 

and arc systems with few assumptions. Then the equations of motion were compared to existing 

models in the literature. The comparison revealed several errors occurring in other previous 

dynamic analyses.  Finally, with the conditions for morphing theory being met, the equations of 

motion for the ball and arc system successfully morph to those of the ball and beam.  
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Chapter 4 - Rotary Pendulum to Inverted Pendulum Cart 

The next example supporting the sufficient conditions for morphing is morphing the 

rotary pendulum to the inverted pendulum cart.  In this chapter, it will be shown that the 

equations of motion, as well as a controller, for the rotary pendulum cart successfully morph to 

the equations of motion and a controller for the inverted pendulum cart.  

The equations for the inverted pendulum cart and rotary pendulum cart will be derived 

and rendered dimensionless similar to [32]. Next, a controller from [19] will be presented for 

both systems and converted to dimensionless form. Lastly, simulations will be performed 

demonstrating that the process of converting to dimensionless quantities was successful. 

Then the radius of the arm of the rotary pendulum will be allowed to grow without bound 

to show that the equations of motion and controller for the rotary pendulum cart morph to the 

respective quantities for the inverted pendulum cart.  Then simulations will be performed to 

showcase the successful morphing.  Lastly, conclusion about the rotary pendulum morphing will 

be presented.  This chapter has been previously published see reference [32]. 

 

 4.1 Inverted Pendulum Cart Analysis 

The inverted pendulum cart is an often-used example in the control literature.  The 

inverted pendulum cart of Figure 4.1 from [32], is modeled with a cart of mass mc to which a 

pendulum of mass mp and length l is attached. The pendulum is modeled as a point mass at the 

end of a long slender, massless rod.  In this section, the equations of motion for the inverted 

pendulum cart will be derived using Euler-Lagrange and then the equations will be made 

dimensionless.  Next, a controller from [19] will be presented and rendered dimensionless.  

Lastly, simulations will be performed of the original system and the dimensionless system. This 



  

37 

 

controller was chosen because [19] also has a controller for the rotary pendulum.   In [19], 

simulation results are presented and that will be used as a check that the equations of motion, 

dimensionless system, and ultimately the morphed system of this work match those existing, 

accepted results. 

 

 

Figure 4.1: Inverted Pendulum Cart 

 

 4.1.1 Equations of Motion 

The kinetic energy for the inverted pendulum cart of Figure 3.1 is  

( ) ( )2 2 21 1
cos

2 2
p c p pT m l m m x m l x  = + + +   (4.1.1) 

while the gravitational potential energy is  

cos( ).pV m gl =    (4.1.2) 

Utilizing (2.2), the cart position equation is 

( ) ( ) ( ) 2cos sinc p p p IPCm m x m l m l    + + − =         (4.1.3) 

and pendulum position equation is 
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( ) ( )2cos sin 0.p p pm l x m l m lg  + − =               (4.1.4) 

For the inverted pendulum cart, where the pendulum is modeled as a point mass, the matrices of 

(3.1.21) are 

( )

( ) 2

cos
( ) ,

cos

c p p

p p

m m m l

m l m l





+ 
=  

 
M q             (4.1.5)

( )0 sin
( , ) ,

0 0

pm l   −
=  

 
C q q    (4.1.6)  

( )

0
( ) ,

sinpm lg 

 
=  

− 
G q    (4.1.7) 

and 

.
0

IPC 
=  

 
τ   (4.1.8) 

 

 4.1.2 Dimensionless Equations of Motion 

To transform (4.1.3) and (4.1.4) into dimensionless equations, divide (4.1.3) by mpl and 

(4.1.4) by mpl
2 to cancel units of mass and length from the equations, resulting in  

( )
( ) ( ) 2cos sin

c p IPC

p p

m m x

m l m l


   

+
+ − =            (4.1.9) 

and     

( ) ( )cos sin 0.
x g

l l
  + − =             (4.1.10)  

Then, multiplying (4.1.9) and (4.1.10) by l/g, having units of second2, transforms time, t, to 

unitless time, 𝑡.   Using the parameters from Table 4.1, the dimensionless equations of motion 

for the cart and pendulum are 
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( ) ( ) ( ) 2

1 1 cos sin Nk        + + − =        (4.1.11) 

and 

( ) ( )cos sin 0.    + − =                  (4.1.12)      

where 
d

d t


  = , 

2

2

d

dt


 = , and 

2

2

d

d t


 = . The resulting mass matrix is 

( )

( )
1 1 cos

( ) .
cos 1

k 



+ 
=  

 
M q         (4.1.13)    

 

Table 4.1: Dimensionless Inverted Pendulum Cart and Rotary Pendulum Parameters 

Dimensionless 

Parameter 
k1 k2   2  N  

Inverted 

Pendulum 

Cart 

c

p

m

m
 -- 

x

l
 

l

g
 

2

IPC

pm l

 
 

Rotary 

Pendulum 

a

p

m

m
 

l

R
 

R

l


 

l

g
 

2

RP

pm lR

 
 

   

 4.1.3 Controller 

The controller, designed in [19] for the inverted pendulum cart, is  

( ) ( )( )

( ) ( )

2
2

2

2 2

sin cos

1 cos

d

IPC

B D x
D Bu

 
   




  




+ − +

=
+

−

      (4.1.14) 

where α = mpl
2, β = mpl, λ = mp + mc, D = -mpgl, κ and ε are unitless constants, and  

( cos( ) ).du c x p  = +                       (4.1.15) 

With c > 0 is a constant with units of seconds-1, 
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( )2 2cos1
,B

 


 

 
= − 

 
       (4.1.16) 

and 

1
0p

 


 

 −
= +  

 
             (4.1.17) 

where ξ is a unitless constant.  

Now that an energy-based controller for the rotary pendulum cart has been identified, 

the controller will be rendered dimensionless based on τN for the rotary pendulum from Table 

4.1. 

 

 4.1.4 Dimensionless Controllers 

Utilizing the definition of τN, defined in Table 4.1, and dividing by mpl converts the 

controller of (4.1.14) to a dimensionless controller.  Making this substitution and simplifying 

yields  

( ) ( )( )
( )

2 2

2 2

sin cos

( 1)cos

N N N N N NdN
N

N

x
D B D B u

l
      



   

 
 
 

+ − +

=
− +

    (4.1.18)   

where λN = 1 + k1, DN = -1/γ2,  

( )cos .dN N N

x
u c p

l
  

 
= + 

 
                     (4.1.19)        

21 cos ( )
1 ,N

N

B


 

 
= − 

 
                 (4.1.20) 

and 

1 1
0.N

N

p



 

 −
= +  

 
         (4.1.21) 



  

41 

 

Lastly, multiply (4.1.18) by γ2 and utilizing the definition for ρ from Table 4.1, obtains the 

dimensionless control law of 

( ) ( )( )( )
( )

2 2

2

sin cos

( 1)cos

N N N dN N

N

N

B B u      


  

 − + +
=

− +
   (4.1.22) 

where 
d

d t


 =  and 

( )( )cos .dN N Nu c p     = +                (4.1.23)   

 

 4.1.5 Simulation 

Simulations of the inverted pendulum equations of motion of (4.1.3) and (4.1.4) with the 

controller of (4.1.14) were performed using as control parameters c = 0.015, κ = 20, ε = 0.00001, 

and ξ = -0.02, where c has units of seconds-1 , κ, ξ, and ε are unitless, and initial conditions of x = 

3, 𝑥̇ = 0, where x has units of  meters and θ = π/6, 𝜃̇ = 0,  where the angles are measured in radians, 

radians are dimension.   Also simulations with the same control parameters and initial conditions 

for the dimensionless equations of motion described by (4.1.11) and (4.1.12) using the 

dimensionless controller of (4.1.22) were executed.  Figure 4.2a shows cart position x and ρ 

responses of these two simulations while Figure 4.2b compares the pendulum angle θ and θN 

responses.  The axis scales in Figure 4.2, for the dimensionless quantities ρ and t are modified 

according to Table 4.1 so the responses are the same size as x and t. 
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(a)                                                                 (b) 

Figure 4.2: Simulation Results for the Inverted Pendulum Cart 

 

 4.2 Rotary Pendulum Analysis 

For the rotary pendulum of Figure 4.3, the pendulum is modeled as a massless rod of 

length l with a point mass, mp, and the arm is a point mass, ma, located a distance R from the 

rotation point.  In this section, the equations of motion will be derived and then rendered 

dimensionless.  The controller for the rotary pendulum from [19] will be presented and then 

made dimensionless.  Next simulations will be presented of the original and dimensionless 

systems. 

 

 4.2.1 Equations of Motion 

The kinetic energy for the rotary pendulum of Figure 4.3 from [32] is 

( ) ( ) ( )2 2 2 2 2 2 21 1 1
cos sin

2 2 2
p p a p pT m l m m R m lR m l     = + + + +    (4.2.1) 

while the gravitational potential energy is  

( )cos .pV m gl =       (4.2.2)      
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Figure 4.3: Rotary Pendulum Cart 

 

The position equation for the arm, found using Lagrange’s equation and (2.2), is 

( ) ( )( ) ( )

( ) ( ) ( )

2 2 2

2 2

sin cos

2 sin cos sin

p a p p

p p RP

m m R m l m lR

m l m lR

   

     

+ + + +

− =
         (4.2.3) 

and the ball position equation is 

( ) ( ) ( ) ( )2 2 2cos sin cos sin 0.p p p pm l m lR m l m gl      + − − =         (4.2.4)  

The matrices of (3.1.21) for this system are 

( ) ( ) ( )

( )

2 2 2

2

sin cos
( ) ,

cos

p a p p

p p

m m R m l m lR

m lR m l

 



 + +
=  

  

M q              (4.2.5)    

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2

sin cos sin sin cos
( , ) ,

sin cos 0

p p p

p

m l m lR m l

m l

       

  

 − +
=  

−  

C q q  (4.2.6)   

( )

0
( ) ,

sinpm lg 

 
=  

− 
G q            (4.2.7)    
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and 

.
0

RP 
=  

 
τ                    (4.2.8)      

         

 4.2.2 Dimensionless Equations of Motion 

To transform (4.2.3) and (4.2.4) into dimensionless equations, divide (4.2.3) by mplR and 

(4.2.4) by mpl
2.  Then, the dimensionless arm equation is   

( )
( ) ( )

( ) ( ) ( )

2

2

2

2

sin cos

2 sin cos sin

p a

p

RP

p

m m R l R

m l R l

l R

R l m lR

    


     

+      
+ +     

     

   
+ − =   

   

          (4.2.9) 

and the dimensionless pendulum equation is 

( ) ( ) ( ) ( )
2 2

cos sin cos sin 0.
R l R g

l R l l
      

     
+ − − =     

     
       (4.2.10) 

Letting R/lϕ = ρ, which also holds for the first and second derivatives, and multiplying (4.2.9)  

and (4.2.10) by γ2, transforms time, t, to unitless time, 𝑡.  With Table 4.1, the dimensionless 

equations of motion for the rotary pendulum are 

 ( )( ) ( ) ( ) ( ) ( )( )
22 2 2

1 2 21 sin cos 2 sin cos sin Nk k k              + + + + − =   (4.2.11) 

and 

 ( ) ( ) ( )( ) ( )
22

2cos sin cos sin 0.k        + − − =   (4.2.12) 

 

 4.2.3 Controller 

The full control law from [19] is 
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1 2RP rpu u = +      (4.2.13) 

where u1 converts the system through partial feedback linearization to cancel out the nonlinear 

terms and u2rp stabilizes the resulting system.  To convert the equations of motion so that the 

parameters morph into recognizable quantities, first define αrp = mpl2, βrp = mplR, λrp=(mp+ma)R2, 

and Drp = -mpgl. Note, κrp and εrp are unitless constants and  

( ) ( ) ( )2

1 sin cos sin .rp rpu       = − +        (4.2.14)   

Next, the stabilizing controller is  

( ) ( )( ) ( )

( ) ( )

2

2

2

2 2 2

sin cos cos

1 cos

rp rp rp rp

rp rp rp rp rp drp rp rp

rp

rp

rp rp

rp

rp

B D
D B u F

u



  
        



  




+ − + −

=
+

−

 (4.2.15) 

where crp > 0 is a constant with units of seconds-1,  

( ) ( ) 2sin cos ,rpF    =                   (4.2.16) 

1
,

rp rp

rp rp

rp rp

p
 


 

 −
= +  

 

                     (4.2.17)    

( )
2

21
cos ,

rp

rp rp

rp rp

B


 
 

 
= −  

 

                   (4.2.18)   

and 

( )( )cosdrp rp rp rpu c p   = +                                (4.2.19)   

where ξrp is a unitless constant. 
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 4.2.4 Dimensionless Controllers 

To transform the controller of (4.2.13) to a dimensionless controller, divide (4.2.13) by 

mplR and simplify using the definitions of k1 and k2.  Utilizing the dimensionless parameters λrpN 

= (1+k1) and DrpN = -1/γ2, the dimensionless controller is 

1 22
N

N rpNu u



= +               (4.2.20) 

where 

( ) ( ) ( )2 2

1 2 sin cos sin ,N

R R
u k

l l
     

    
= − +    

    
     (4.2.21) 

  

( ) ( )( )
( ) ( )

( )

( ) ( )

2

2 2

2 2

2

2

sin cos

1 cos

cos

,
1 cos

rpN rp rpN

rpN

rpN rp

rpN rpN rp rpN rpN rpN drpN rp N

rpN rp

D
u

R
B D B u k F

l


    

  

     

  

+
=

− +

  
− + −  

  +
− +

          (4.2.22) 

( ) ( )
2

sin cos ,N

R
F

l
   

 
=  

 
                 (4.2.23) 

( )cos ,drpN rp rpN rpN

R
u c p

l
   

  
= +  

  
               (4.2.24)   

11
,

rp

rpN rp

rpN rp

p



 

 −
= +  

 

            (4.2.25) 

and 

( )21 1
1 cos .rpN

rp rpN

B 
 

 
= −  

 

                            (4.2.26)       

Finally multiply (4.2.20) through by γ2 and using the definition of ρ from Table 4.1, the 

dimensionless controller is 
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1 2N N rpNu u = +                                 (4.2.27)        

where 

( ) ( ) 2sin cos ,NF   =                                 (4.2.28)     

( ) ( ) ( )( )2 2

1 2 sin cos sin ,Nu k        = − +          (4.2.29) 

  

( ) ( )( )
( ) ( )

( )( )
( ) ( )

2

2 2

2 2

2

2

sin cos

1 cos

cos
,

1 cos

rpN rp

rpN

rpN rp

rpN rpN rp rpN rpN drpN rp N

rpN rp

u

B B u k F

    

  

      

  

 −
=

− +

+ −
+

− +

                     (4.2.30) 

and  

( )( )cos .drpN rpN rp rpNu c p    = +                (4.2.31) 

 

 4.2.5 Simulation 

The analysis produced simulations of the rotary pendulum equations of motion of (4.2.3) 

and (4.2.4) with the controller of (4.2.13) together with the dimensionless equations of motion of 

(4.2.11) and (4.2.12) with the dimensionless controller of (4.2.27) to validate the dimensionless 

process was performed correctly.  For both simulations, the control gains were crp = 0.015, κrp = 

25, εrp = 0.00001, and ξrp = -0.02, the same as used in [19].  For the simulation using controller 

(4.2.13), the initial conditions were ϕ = 1, 𝜙̇ = 2, θ = 1, and 𝜃̇=2, where the angles are measures 

in radians, and for the controller of (4.2.27) ρ = R/l, ρ′ = 2𝑅√𝑙/𝑔/𝑙 , θN = 1, and θN′ = 2√𝑙/𝑔.  

Figure 4.4 compares the responses of these two simulations where Figure 4.4a compares the 

rotary pendulum arm angle ϕ and ρ while Figure 4.4b compares the pendulum angular position θ 
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and θN.  As done for Figure 4.2, the axis scale for the dimensionless quantity t was modified 

according to Table 4.1 so the responses are the same size. 

 

  

(a)                                                                 (b) 

Figure 4.4: Simulation Results for the Rotary Pendulum 

 

 4.3 Morphing 

As the radius of the rotary pendulum arm is allowed to grow without bound, do the 

equations of motion and the controller of the rotary pendulum become those of the inverted 

pendulum cart?  To check the sufficient conditions necessary for morphing the equations of 

motion for the rotary pendulum to the inverted pendulum cart, first examine the generalized 

coordinates.  The second coordinate for both systems measures the angular displacement of the 

pendulum. The first generalized coordinate for the rotary pendulum in the dimensionless system 

is ϕR/l.  As the radius of the pendulum arm base is allowed to grow without bound ϕ grows small 

to cover the same distance, then ϕR becomes a straight-line displacement and ϕR/l morphs to the 

ρ of the inverted pendulum cart. Similarly, the generalized velocities of the rotary pendulum 
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morph to those of the inverted pendulum cart. The mass matrix of the dimensionless rotary 

pendulum cart is  

( ) ( )

( )

2 2

1 21 sin cos

cos 1

k k
M

 



 + +
=  

 
    (4.3.1) 

and as R grows large, k2 goes to zero showing (4.3.1) matches the mass matrix of the inverted 

pendulum cart, (4.1.13), provided k1 is the same ratio of the cart mass to the rotary pendulum 

mass.  Lastly, the potential energy of the dimensionless rotary pendulum from (4.2.11) and 

(4.2.12) is 

( )cosV =   (4.3.2) 

which is the same as the potential energy function of the dimensionless inverted pendulum cart. 

Therefore, the sufficient conditions for morphing the rotary pendulum dynamics to that of the 

inverted pendulum cart are met. 

 

 4.3.1 Equations of Motion and Controller 

As the radius of the arm of the rotary pendulum grows R becomes large and then k2 →0.  

This transforms equations (4.2.11) and (4.2.12) to 

( ) ( ) ( ) 2

11 cos sin Nk        + + − =             (4.3.3) 

and 

( ) ( )cos sin 0.    + − =     (4.3.4) 

These equations match those of the dimensionless inverted pendulum cart (4.1.11) and (4.1.12).  

Next the controller of (4.2.27) becomes 

1 2N N rpNu u = +                      (4.3.5) 
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where 

1 0,Nu =    (4.3.6)

( ) ( )( )( )
( ) ( )

2 2

2 2

sin cos
,

1 cos

rpN rp rpN rp rpN rpN drpN

rpN

rpN rp

B B u
u

        

  

 − + +
=

− +
       (4.3.7) 

and  

( )( )cos .drpN rpN rp rpNu c p    = +                      (4.3.8) 

The dimensionless, morphed controller of (4.3.5) matches that of the dimensionless cart 

controller of (4.1.22).  

 

 4.3.2. Simulations 

A simulation of the controller of (4.3.5) applied to the morphed equations of motion of 

(4.3.3) and (4.3.4) was performed.  The simulations of the rotary pendulum cart and inverted 

pendulum cart used the same constants except for κ which was equal to 25 for the rotary 

pendulum cart and 20 for the inverted pendulum cart.  The simulation used the same constants, c, 

κ, ε, and ξ, as those used for the cart with initial conditions of ρ = 3/l, ρ′ = 0, θN = π/6, and θN′ = 0 

and produced the results of Figure 4.5.  Figure 4.5a shows the cart position for the inverted 

pendulum cart of Figure 4.2a compared to the morphed rotary pendulum’s position. Figure 4.5b 

shows the pendulum angular position of Figure 4.2b compared to the morphed rotary pendulum. 

For the morphed systems of Figure 4.5, dimensionless time was multiplied by γ to have units of 

seconds for ease of comparison. The morphed cart position, ρ, was multiplied by the length of 

the pendulum in Figure 4.5a to scale the response to compare to the cart position of the inverted 

pendulum cart.  
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(a)                                                                 (b) 

Figure 4.5: Morphed Rotary Pendulum Simulation Results 

 

 4.4 Conclusion 

In this chapter, the equations of motion for the rotary pendulum cart were successfully 

morphed to match the equations of motion for the inverted pendulum cart.  Also, an energy-

based controller for the rotary pendulum cart was successfully morphed to a controller for the 

inverted pendulum cart.  The process of morphing the controller did not cause the constants to be 

the same as the inverted pendulum cart, just the symbolic form. This chapter has shown one set 

of systems which supports the sufficient conditions for equations of motion to morph.  
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Chapter 5 - Pendubot 

As a final underactuated example supporting the conditions of morphing, the Pendubot 

will be investigated.  First, the equations of motion will be derived and then the coordinates will 

be modified to match those of the inverted pendulum cart. Next, the equations of motion will be 

rendered dimensionless and morphed to those of the inverted pendulum cart. Then a controller 

will be presented that has simulated results in the literature.  The controller will be rendered 

dimensionless and then the length of the first link will be allowed to grow large.  Lastly, the 

equations of motion and controller for the full and dimensionless systems will be simulated. 

 

 5.1 Equations of Motion 

The pendubot contains two links where the first link is subject to actuation.  For the 

system of Figure 5.1, the first link is of length L1, with mass m1, subject to actuation u, and its 

rotational displacement, q1, is measured counterclockwise from the negative Y axis.  The second 

link is pinned to the end of the first and has length L2, mass m2, and its rotational displacement, 

q2, is measured counterclockwise from a line extending out of the first link.  In this section, the 

equations of motion will be derived, rendered dimensionless, and then morphed to those of the 

inverted pendulum cart. 

 

 5.1.1 Full Equations of Motion 

For the pendubot of Figure 5.1, the kinetic energy is 

( ) ( ) ( )
22 2 2 2 2

1 1 1 1 1 2 2 2 2 1 2

1 1 1 1

2 2 2 2
c c c cT I q m x y m x y I q q= + + + + + +               (5.1.1) 

while the gravitational potential energy is  
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Figure 5.1: Pendubot Diagram 

 

 
1 1 2 2 .c cV m gy m gy= +              (5.1.2) 

The position and velocity for the center of mass of the first link are 

( )1 1 1sin ,c cx L q=              (5.1.3) 

( )1 1 1cos ,c cy L q= −              (5.1.4) 

( )1 1 1 1cos ,c cx L q q=              (5.1.5) 

and  

( )1 1 1 1sin .c cy L q q=            (5.1.6) 

The position and velocity for the center of mass of the second link are 

( ) ( )2 1 1 2 1 2sin sin ,c cx L q L q q= + +           (5.1.7) 

( ) ( )2 1 1 2 1 2cos cos ,c cy L q L q q= − − +             (5.1.8) 
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( ) ( )( )2 1 1 1 2 1 2 1 2cos cos ,c cx L q q L q q q q= + + +      (5.1.9) 

and  

( ) ( )( )2 1 1 1 2 1 2 1 2sin sin .c cy L q q L q q q q= + + +               (5.1.10) 

The position equation for the first link, found using Lagrange’s equation, (2.2), is 

( ) ( )( )
( )( ) ( )

( ) ( ) ( ) ( )( )

2 2 2

2 2 1 2 1 2 2 1 1 1 2 1

2

2 2 1 2 2 2 2 2 2 1 2 2 1 2

2

2 1 2 2 2 2 2 1 2 1 2 1 1 1

2 cos

cos 2 sin

sin sin sin

c c c

c c c

c c c u

L m L q L L m L m I I q

L m L q m L I q m L L q q q

m L L q q g m L q q L m L m q

+ + + + + +

+ + − −

+ + =+ +

        (5.1.11) 

and the second link’s position equation is 

( )( ) ( )

( ) ( )

2 2

2 2 1 2 2 2 2 1 2 2 2 2

2

2 1 2 2 1 2 2 1 2 0.

c c c

c c

m L L cos q m L I q L m I q

m L L sin q q gm L sin q q

+ + + +

+ =+ +
          (5.1.12) 

The matrices of (3.1.21) for this system are 

( )

( )( ) ( )( )

( )( )

2 2 2

2 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2

2

1 2 2 2 2 2 2 2 2

,
2 cos cos

cos

c c c c c

c c c

L L q L L m L m I I L q L m L I

L q L m L I L m I

+ + + + +



+

=


 
 

+

+ + +

M q

(5.1.13) 

( )
( ) ( )( )

( )
2 1 2 2 2 2 1 2 2 1 2

2 1 2 2 1

sin sin
,

s 0in
,

c c

c

m L L q q m L L q q q

m L L q q

 
=  

 

− − +
C q q         (5.1.14)   

( )
( ) ( ) ( )( )

( )

2 2 1 2 1 2 1 1 1

2 2 1 2

sin s
,

in

sin

c c

c

g m L q q L m L m q

gm L q q

+ + +

+

 
=  

  

G q               (5.1.15) 

and 

.
0

u 
=  

 
τ                  (5.1.16) 
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 5.1.2 Change of Coordinates 

With an eye towards this system morphing to the inverted pendulum cart, move the mass 

center of the second link to the end of a very light rod.  In doing this, set the quantity L2 equal to 

Lc2 and call it L2 for simplicity, and set I2 to zero.  Modifying the first coordinate to measure the 

angular displacement relative to the positive vertical axis changes q1 to π + δq1.  Then to convert 

the coordinate to circumferential displacement in the clockwise direction, factor out the quantity 

-L1 from terms multiplying the time derivatives of q1.  Then after simplifying, (5.1.13)-(5.1.16) 

become 

( )

( ) ( )( )

( )

22

12 1
2 2 1 2 1 1 2 2 2 2

1 1 1 1 1

222
2 2 2 2 2

1

,

2 cos cos

cos

cLL I
L q L m m L q L m L

L L L L q

qL
q m L L m

L



 
− + + − − + 

− 

 

 
 

  
=



  
  +

 
− 

  

M q q (5.1.17) 

( )
( ) ( ) ( )( )

( )( )

2 2 2 2 2 2 2 1 2 1 1

1 1

2
22 2 1 1

1

, ,
0

sin sin

sin

m L q q m L q L q L q
L q

L
qm q L q

L






 
  

− − −
−

−
=   

  
 

C q q q          (5.1.18) 

( )
( ) ( ) ( )( )

( )

2 2 1 2 1 2 1 1 1

2 1 2 2

sin s
,

in

sin

cg m L q q L m L m q

L q q gm

 



− + +


+

− +

 
= 

  

G q         (5.1.19)       

and 

.
0

u 
=  

 
τ                    (5.1.20)            

In order for the mass matrix to be symmetric, divide the first link equation by -L1, then the 

matrices are 
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( )

( ) ( )

( )

22

12 2 1 2
2 2 1 2 2 22 2 2

1 1 1 1 1 1 1

222
2 2 2 2 2

1

s

,

2 cos 1 co

cos

cLL L I L
q m m q m L

L L L L L L q

qL
q m L L m

L



   
+ + + + − +   

−   

 
− + 

 
 

  
=   

  
   

M q q  (5.1.21) 

( )
( ) ( ) ( )

( )( )

2 2
2 2 2 2 2 2 2 1 1

1 11 1

22
2 2 1 1

1

, ,

sin sin

sin 0

L L
m q q m q L q L q

L qL L

qL
m q L q

L






 
− − − 

− 

 
 

  =     
 
  

−

C q q q    (5.1.22)  

( )
( ) ( )

( )

12
2 1 2 2 1 1

1 1

2 2 1 2

sin sin
,

sin

cLL
g m q q m m q

L L

gm L q q

 



  
+ + +   

  

−  +

 
 

=  

 

G q         (5.1.23)       

and 

1 .

0

u

L

 
− =

 
  

τ                     (5.1.24)     

        

 5.1.3 Dimensionless Equations of Motion 

To convert to dimensionless equations of motion, divide the first link equation by m2L2 

and the second link equation by m2L2
2 to obtain  

( )

( ) ( )

( )

22

12 2 1 1 2
2 22 2 2 1

1 1 1 2 2 1 1 1

2

2
22

1

,

s

2 cos 1 cos

co 1

cLL L m I L
q q L

L L L m m L L q
L

L
qq

L



 
+ + + + − + 

− 

 
−



+





 
   
  =
   
  
 




M q q    (5.1.25) 

       ( )

( ) ( )

( )

2 2 1
2 2 2 2 1 1

1 1 2 1

2

2 1
22 1

1 2

, ,

0

sin sin

sin

L L L
q q q q q L

L L L q
L

L L qq q
L L








  
− − −    − 


   
   =  




    
 




 
−





C q q q     (5.1.26) 
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( )

12 2 1 1 2 1
1 2 1

2 1 1 2 1 2 1 2

2 1
1 2

2 1 2

sin 1 sin

sin

,

cLL L L m L Lg
q q q

L L L L L m L L

L Lg
q q

L L L

 



         
− − + + + − −             

         

  
−



− − + 


 
 

=  
 
 




 




G q (5.1.27)       

and 

2 1 2 .

0

u

m L L

 
− =

 
  

τ                (5.1.28)            

Multiplying (5.1.25)-(5.1.28) by L2/g, transforms time to unitless time, t. Utilizing the 

dimensionless parameters from Table 5.1, the matrices for the equations of motion of (3.1.21) 

become 

( )
( ) ( )( )

( )( )

2 2

2 2 2 9 1 8 2 2

22 2

2 c
,

os 1 cos

cos 1

k q k k k k q k

qq k

+ + + + − + 

− +

   
 =    

    

M q q                (5.1.29) 

( )
( ) ( )( )

( )
2 2 2 2 22

2 2 2

, ,
s 0

sin sin

in

k q q q k

k q

q

q

 



  −   
  =       

− 
C q q q                            (5.1.30) 

( )
( ) ( ) ( )

( )
2 2 2 9 1 2

2 2

sin 1 si
,

n

sin

k k q k k k

k q

 



− + + + −

− −


+


= 

 
G q                          (5.1.31)       

and 

.
0

N 
=  

 
τ                     (5.1.32)         

where 2
2

dq
q

d t
 =  and 

2

2
2 2

dq
q

d t
 = . 
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Table 5.1: Dimensionless Pendubot Parameters 

Dimensionless 

Parameter 
k1 k2 k8 k9   2  N  

Pendubot 
1

2

m

m
 2

1

L

L
 1

2

2 1

I

m L
 1

1

cL

L
 1 1

2

q L

L


−  2L

g
 

2

2 2 1

u

m L L


−  

 

 

 5.1.4 Morphed Equations of Motion 

To check the sufficient conditions necessary for morphing the equations of motion for the 

pendubot to the inverted pendulum cart, first examine the generalized coordinates.  The first 

generalized coordinate for the pendubot, in the dimensionless system, is δq1L1/L2.  As the length 

of the first link is allowed to grow without bound δq1 grows small to cover the same 

circumferential distance, then δq1L1 becomes a straight-line displacement and -δq1L1/L2 morphs 

to ρ which matches that of the inverted pendulum cart. The second coordinate for the pendubot 

measures the angular displacement of the second link counterclockwise whereas the pendulum of 

the inverted pendulum cart of chapter 4 is measured clockwise.  For the second coordinate to 

morph, then q2 will need to be multiplied by -1 to have the same directionality of θ.  In a similar 

manner, the generalized velocities of the pendubot morph to those of the inverted pendulum cart. 

The mass matrix of the dimensionless pendubot is  

( )
( ) ( )( )

( )( )

2

2 2 2 9 1 8 2 2

2 2

.
2 cos 1 cos

cos 1

k q k k k k q k

q k

+ + + + − +

− +

 
=  

  

M q    (5.1.33) 

As L1 grows large, k2 and k8 go to zero, and k9 goes to one, then the mass matrix can be 

simplified to 

 ( )
( )

( )
1 2

2

o
.

1 c s

cos 1

k q

q

+ −

−

 
=  

 
M q        (5.1.34) 
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Now substitute in -θ for q2 then, 2q  becomes − , and (5.1.34) is 

 ( )
( )

( )
1

.
1 cos

cos 1

k 



+

− −

 
=  

 
M q    (5.1.35) 

For a symmetric mass matrix, multiply the second row of (5.1.35) by -1, and then the resulting 

mass matrix matches the mass matrix of the dimensionless inverted pendulum cart, (4.1.13), 

provided k1 is the same ratio of masses.  Lastly, the gradient of the potential energy of the 

dimensionless pendubot from (5.1.31) is 

( )
( ) ( ) ( )

( )
2 2 2 9 1 2

2 2

sin 1 si
,

n

sin

k k q k k k

k q

 



− + + + −

− −


+


= 

 
G q                              (5.1.36) 

As L1 grows large, k2 and ρ go to zero, and then integrating (5.1.36)  results in a potential energy 

function that will morph to the potential energy function of the dimensionless inverted pendulum 

cart. Therefore, the sufficient conditions for morphing the pendubot dynamics to that of the 

inverted pendulum cart are met. 

As the length of the first link, L1, is allowed to grow, the dimensionless parameters k9 will 

go to one, and k8 will go to zero.  As the first length grows large in order to maintain the same 

circumferential displacement δq1 will become small, then using q2 equals –θ and multiplying the 

bottom row by -1, (5.1.29)-(5.1.32) become 

( )
( )

( )
1

,
1 cos

cos 1

k 

 

 +



  
 =    

  
M q q                                   (5.1.37) 

( )
( )

0
, ,

0 s n

0

i  






  
 =      

C q q q                                       (5.1.38) 

( )
( )

,
0

sin 
−

 
= 

 
G q                                    (5.1.39)       

and 
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.
0

N 
=  

 
τ                   (5.1.40) 

Putting these matrices into (3.1.21) yields equations of motion that match those of (4.1.11) and 

(4.1.12). 

 

 5.2 IDA-PBC Controller 

 5.2.1 Full Controller 

The IDA-PBC controller from [24] will be applied to the pendubot equations of motion 

since there are enough details to perform simulations.  The full controller is given by  

( )1

1 1 1 2 2 2

1 1 2 3 1 2 2 4 1

1

2

,

T

d d d

T

d v

d d

u V V V

d p d p d p d p
k

  −

−

  
=  −  +  +   

  

   − −
      + +   

    

p M p

p M α

                (5.2.1) 

where kv is a positive constant.  The desired mass matrix is  

1 2

3 4

,d

d d

d d

 
=  

 
M                 (5.2.2) 

where 1 4 2 3d d d d d = − , d1 = kφ, d2 = d2 = k(c1-c2), d4 = k(c3cos(q2)-c2), c1 = m1Lc1
2 + m2L1

2 + I1, 

c2 = m2Lc2
2 + I2, c3 = m2L1Lc2, c4 = m1Lc1 + m2L1, c5 = m2Lc2, and k is a positive constant.  

Utilizing the potential energy function of the pendubot of (5.1.2), the mass matrix of (5.1.13), 

and the desired mass matrix, the desired potential energy function is found to be 

( ) ( )( ) ( )( )
2

5
1 2 1 2 2 1 1, cos 1 2 ,

2

p

d d

kc
V q q g q q q q q

k
= + + + + − +        (5.2.3) 

where kp is a positive constant.  The derivatives of V and Vd then are 

 ( ) ( )1 4 1 5 1 2sin sin ,V c g q c g q q = + +  (5.2.4) 
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 ( ) ( )( )5
1 1 2 2 1 1sin 2 2 ,d p d

c g
V q q k q q q

k
 = − + + + − +  (5.2.5) 

and 

 ( ) ( )( )5
2 1 2 2 1 1sin 2 .d p d

c g
V q q k q q q

k
 = − + + + − +  (5.2.6) 

Next, the generalized momenta is 1

2

.
p

p

 
=  

 
p   The matrix J2 is skew symmetric and J2(1,2) is 

defined to be pTMd
-1α, where 

1

2





 
=  

 
α , with 

( )( )2

1 3 2 1 1 2sin ,c q   = +                                 (5.2.7) 

( )
( ) ( )

( )
22

2 2

3 1 2 1 2 2

2 2

3 1 2

2 3 2

2

sin
c

,
2 2 os

cos q

c c c c c c

c

q
q k

c c
c

 − − + − −

+
=

−
            (5.2.8) 

( ) ( )( )
( )

2

2 3 1 2 2

1

1 2 2

2 2

2 3 1 2

cos
,

cos

k q c c c c c c c

q c c c


− − −

−
=

+
                     (5.2.9) 

and 

( ) ( )( )
( )

2 2

3 1 2 1 2 2

2

2

2 2

3 1

2 2 cos 2

( c
.

os 2 )

k c c c q c c c

q c c c


 − − + − −

+
=

−
                 (5.2.10) 

Lastly, the derivative of pTMd 
-1p is 

 ( )
( )( ) ( )

( ) ( )( )

2

3 1 2 1 2

2
2 2

2 3 2 1 2 1

1

2 .
sin 2

cos 2

T

d

c c c p p q

q c c c c c k



 

−
− −

−
 =

+ + − + +
p M p  (5.2.11) 

 

 5.2.2 Dimensionless Controller 

Next, to convert the pendubot controller to have the second link modeled as point mass, 

let Lc2 and L2 be equal and I2 to be zero.  For the first link to measure the circumferential 
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displacement from the vertical y-axis, let q1 be equal to π –ρL2/L1.  Now to render the controller 

of (5.2.1) dimensionless, after invoking the substitutions above, multiply u by –γ2/(m2L2L1) 

which results in the dimensionless controller 

( )1

1 1 1 2 2

2 1 2 1 2 1

1 3 1 1 2 4 1 2 2
2 2

2 1 2 1 2 1

1 1 1 1

2

1 1 1
.

T

N d d

T

d d v

d d

V V
m L g m L g m L g

d p d p d p d p
V k

m L g m L g m L g

  



−

−

= −  +  + 

   − + −
+  −  +   

    

p M p

p M α

  (5.2.12) 

Simplifying the terms in (5.2.12) and factoring out m2L1
2, the cis become c1n = k1k9

2+1+k8, c2n = 

k2
2, and c3n = k2, and the dis become d1n = kφn, d2n = d3n = k(c1n - c2n), and d4n = k(c3ncos(q2) - c2n), 

where φn = φ/( m2L1
2).  Then the desired mass matrix is  

1 2

3 4

,d

n

n

n

n

n

d d

d d

 
=  

 
M                            (5.2.13) 

and the determinate of the mass matrix is 

1 4 2 3 .dn n n n nd d d d = −              (5.2.14) 

Factoring out m2L1 from c4 and c5 leaves c4n = k1k9+1 and c5n = k2.  Next the derivative of the 

potential energy function of the original system with respect to the first variable of q, can be 

rewritten as  

( ) ( )1 4 2 5 2 2sin sin ,n n nV c k c q k  = − −      (5.2.15) 

and the derivatives of the desired potential energy function are 

 ( ) ( )( )5
1 2 2 2 2 1sin 2 2 ,n

dn pn d

c
V q k k q k q

k
   = − + + − + −  (5.2.16) 

and 

 ( ) ( )( )5
2 2 2 2 2 1sin 2 ,n

dn pn d

c
V q k k q k q

k
   = − + + − + −  (5.2.17) 

with kpn = kp/(m2L1g).  The elements of αn are 
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( )( )2

1 3 2 1 1 2sinn n n n nc q   = +                              (5.2.18) 

and 

( )
( ) ( )

( ) 2

22

2 3 2

32

2 2

3 1 2 1 2 2

2 2

1

2 2 c
sin

cos
,

osn n n n n n n n

n n n

n n

c c c c c c

c c
c

c

q
q k

q


 − − + − −

+
=

−
              (5.2.19) 

where 

( ) ( )( )
( )

2

3 1 2 1 2 2 2

1 2

3 1

2

2 2

2

cos

cos

n n n n n n n n

n

n n n

c c c c c c c

c c

k

q c

q 


− + −

−
=

−
             (5.2.20) 

and 

( ) ( )( )
( )

2 2

3 1 2 1 2 2

2 2

3

2

1 2

.
s

2 2 cos 2

( co 2 )

n n n n n n n n

n n

n

n

k c c c q c c c

q c c c


 − − + − −

−
=

+
             (5.2.21) 

Finally, the generalized momenta, which are defined as pn = Mn𝒒̇, become 

( )( ) ( )( )11 23 2 2 2 32 cos cosn n n n np c q c c c qq+ + = − ++                (5.2.22)  

and 

 ( )( )32 22 2cos nn q cp k q + = − +                                        (5.2.23) 

Lastly, the derivative of pTMd
-1p simplifies as 

 ( )
( )( ) ( )

( ) ( )( )

2

3 1 2 1 2

2
2 2

2 3 2 1 2 1

1

2

sin 2

cos 2
n

n n n n n n

n n n

T

n n n n

d

c c c p p q

q c c c c c k



 

−
− −

− + + −
=

+ +
p M p  (5.2.24) 

Now (5.2.12) simplifies to 

( )1

1 1 1 2 2 2 2 2 2

1 3 1 1 2 4 1 2 2
2

1

2

.

T

N n n dn n dn n d n

T n n n n n n n n
n d n vn

dn dn

V V k V k

d p d p d p d p
k k

    −

−

= − +  +  + 

   − + −
− +   

    

p M p

p M α

               (5.2.25) 

where kvn = γkv/(m2L1
2). 
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 5.2.3 Controller Morphing 

As L1 is allowed to grow, k9 goes to one, k2 and k8 go to zero, and ρ becomes small to 

maintain the same circumferential displacement.  Then c2n, c3n, c5n are equal to zero, c1n and c4n 

are k1 +1.  This makes d1n = kφn, d2n = d3n = k(k1 +1), and d4n = 0.  The dimensionless control law 

of (5.2.25) then becomes 

 
( )

2
1 1 1

1 1

n
N n n dn vn

p
V V k

k k
 

 −
= − +  +  

+ 

                             (5.2.26) 

where 

( ) ( )1 1 1 sin 0 ,nV k = +                                 (5.2.27) 

( )1 2 12 ,dn pn dV k q q = + −                 (5.2.28) 

( )22 cosnp q = −                                  (5.2.29) 

   

and  

1 .n k = −                          (5.2.30) 

Let qdi be equal to π and q2 equal to –θ, (5.2.26) simplifies to 

( )

( )1

.
co

2
s

1
N pn vnkk

k
k

k


 


 


+

+
=                                     (5.2.31) 

 

 5.3 Simulations 

After the morphed controller was derived simulations were performed.  First the simulation of 

the original equations of motion of (5.1.11) and (5.1.12) with the controller of (5.2.1) was 

performed using initial conditions of q1 = π – 1.1, q2 = 1.1, and 1 2 0,q q= = with control gains of 
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φ = 500, k = 0.0033, kp = 30, kv = 20, and qdi = π, similar to [24].  Next, a simulation was 

executed on the dimensionless equations of motion represented by (5.1.29)-(5.1.32) with the 

dimensionless controller (5.2.25).   The dimensionless simulations had controller gains of φd = 

125, k = 0.0033, kpd = 1.5291, kvd = 1.1288, and initial conditions of ρ = 4.4, q2 = 1.1, and 

2 0.q = =   Figure 5.2 compares the results of these two simulations to validate the 

dimensionless process was performed correctly.  For both plots in this figure, the time axis for 

the dimensionless simulation was scaled by γ to compare to time in seconds.  For Figure 5.2a, the 

y-axis for the rho values was scaled by L2/L1 and then π was added to the link one position to 

compare it with the original link displacement.  Lastly, the morphed equations of motion 

represented by the matrices of (5.1.37)-(5.1.40) were simulated using the morphed controller of 

(5.2.31), utilizing initial conditions of ρ = 3/L2, q2 = π/6, and 2 0,q = =  to match the initial 

conditions of the dimensionless inverted pendulum cart system of section 4.1.5, and the same 

controller gains as the dimensionless simulation utilized.  This simulation produced unstable 

results. 

 

(a)                                                                 (b) 

Figure 5.2: Comparison of the Original and Dimensionless Pendubot Systems 
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For this IDA-PBC controller, why did the morphed control law with the morphed 

equations of motion not produce stable results when the dimensionless system did produce stable 

results? Looking at the dimensionless potential energy function of (5.2.28), once the first link is 

allowed to grow large and δq1 goes to zero the new potential energy function then morphs to 

 
2

2d pnV k q=  (5.3.1) 

which is positive for all values of q2.  Using the definition of the dis, letting the first link grow, 

the dimensionless desired mass matrix becomes  

 
( )

( )
1

1

1

1 0
d

n kk

k k

k + 
=  

+ 
M  (5.3.2) 

which is not a positive definite matrix. This is one reason why going from the dimensionless 

control law of (5.2.25) to the morphed control law (5.2.26) all the terms involving Md dropped 

out.  This controller presents the question, if the desired mass matrix successfully morphs to a 

positive definite matrix, will a simulation of the morphed controller with morphed equations 

produce a stable result? 

 

 5.4 Conclusions 

In this chapter, the equations of motion of the pendubot fulfilled the sufficient conditions 

for morphing to the inverted pendulum cart.  An IDA-PBC controller from [24] was applied to 

the pendubot and rendered dimensionless.  Simulations of the dimensionless equations of motion 

and controller were performed, demonstrating that the process of rendering a system 

dimensionless did not alter the simulations results.  The process of morphing the controller did 

not lead to stable simulation results for the morphed system.  This chapter has shown another 

underactuated system which supports the sufficient conditions for equations of motion to morph. 
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Chapter 6 - Fully Actuated Two Link Manipulator 

The examples that have been presented in the prior chapters have all been underactuated 

systems.  In this chapter, a fully actuated system will be investigated to illustrate that the 

sufficient conditions for morphing equations of motions applies to fully actuated systems.   A 

controller will also be presented that will successfully morph.  

In [28], the author presents a two-link planar robot manipulating an unknown load, 

shown in Figure 6.1.  This robot is fully actuated and as the length of the first link grows large 

this system would resemble a fully actuated inverted pendulum cart.  To test this idea, first the 

equations of motion will be presented for the model in Figure 6.1.  Then the controller from [28] 

will be presented.  Next, the equations of motion and the control law will be converted to 

dimensionless form, and then morphed.  Lastly, simulation results will be presented that verify 

the process of rendering the system dimensionless does not alter the response and the successful 

morphing of the two-link manipulator to a fully actuated inverted pendulum cart. 

 

 6.1 Equations of Motion 

For the two-link robot manipulator of Figure 6.1, the kinetic energy is 

( ) ( ) ( )
22 2 2 2 2

1 1 1 1 1 2 2 2 2 1 2

1 1 1 1

2 2 2 2
c c c cT I q m x y m x y I q q= + + + + + +               (6.1.1) 

while the gravitational potential energy is  

1 1 2 2 .c cV m gy m gy= +              (6.1.2) 

The global position and velocity for the center of mass of the first link, the link attached to the 

origin, are 

( )1 1 1cos ,c cx L q=            (6.1.3) 
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Figure 6.1: Two Link Robot Manipulator 

 

( )1 1 1sin ,c cy L q=             (6.1.4) 

( )1 1 1 1sin ,c cx L q q= −              (6.1.5) 

and  

( )1 1 1 1cos .c cy L q q=             (6.1.6) 

The global position and velocity for the center of mass of the second link are 

( ) ( )2 1 1 2 1 2cos cos ,c cx L q L q q= + +      (6.1.7) 

( ) ( )2 1 1 2 1 2sin sin ,c cy L q L q q= + +           (6.1.8) 

( ) ( )( )2 1 1 1 2 1 2 1 2sin sin ,c cx L q q L q q q q= − − + +         (6.1.9) 
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and  

( ) ( )( )2 1 1 1 2 1 2 1 2cos cos .c cy L q q L q q q q= + + +                 (6.1.10) 

The equation of motion for the first link, found using Lagrange’s equation, (2.2), is 

( ) ( )( )
( )( ) ( )

( ) ( ) ( ) ( )( )

2 2 2

2 2 1 2 1 2 2 1 1 1 2 1

2

2 2

1

1 2 2 2 2 2 2 1 2 2 1 2

2

2 1 2 2 2 2 2 1 2 1 2 1 1 1

2 cos

cos 2 sin

sin cos cos

c c c

c c c

c c c

L m L q L L m L m I I q

L m L q m L I q m L L q q q

m L L q q g m L q q L m L m uq

+ + + + + +

+ + − −

+ + + + =

        (6.1.11) 

and the second link is 

( )( ) ( )

( ) ( )

2 2

2 2 1 2 2 2 2 1 2 2 2

2

2

2

2 1 2 2 1 2 2 1 2co .s

c c c

c c

m L L cos q m L I q L m I q

m L L sin q q gm L q q u

+ + + +

+ + + =
       (6.1.12) 

The matrices of (3.1.21) for this system are 

( )
( )( ) ( )( )

( )( )

2 2 2

2 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2

2

1 2 2 2 2 2 2 2 2

,
2 cos cos

cos

c c c c c

c c c

L L q L L m L m I I L q L m L I

L q L m L I L m I

+ + + + +



+ 
 =

+

+ + +
M q  (6.1.13) 

( )
( ) ( )( )

( )
2 1 2 2 2 2 1 2 2 1 2

2 1 2 2 1

sin sin
,

s 0in
,

c c

c

m L L q q m L L q q q

m L L q q

 
=  

 

− − +
C q q       (6.1.14)   

( )
( ) ( ) ( )( )

( )

2 2 1 2 1 2 1 1 1

2 2 1 2

cos c
,

os

cos

c c

c

g m L q q L m L m q

gm L q q

+ + +

+

 
=  

  

G q            (6.1.15) 

and 

1

2

.
u

u

 
=  

 
τ                  (6.1.16) 

Lastly, if the second link is modified to be modeled as a long, massless, slender rod with a point 

mass a distance of L2 from the end of the first link, then I2 = 0 and Lc2 = L2.  The matrices for 

(3.1.21) then become 
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 ( )
( )( ) ( )( )

( )( )

2 2 2

2 1 2 1 2 2 1 1 1 1 2 2 2 2

2

1 2 2 2 2 2 2

,
2 cos cos

cos

cL L q L L m L m I L q L m L

L q L m L L m

+ + + + +

+

 
 =
  

M q   (6.1.17) 

 ( )
( ) ( )( )

( )
2 1 2 2 2 2 1 2 2 1 2

2 1 2 2 1

sin sin

s
, ,

0in

m L L q q m L L q q q

m L L q q

 
=  

 

− − +
C q q   (6.1.18) 

 ( )
( ) ( ) ( )( )

( )

2 2 1 2 1 2 1 1 1

2 2 1 2

cos c
,

os

cos

cg m L q q L m L m q

gm L q q

+ + +

+

 
=  

  

G q   (6.1.19) 

and 

 
1

2

.
u

u

 
=  

 
τ   (6.1.20) 

 

 6.2 Controller 

In [28], the first step in designing the controller is to recast the equations of motion into 

the form 

 ( ) ( ) ( ) ( ), , ,+ + = =M q q C q q q G q Y q q q σ τ   (6.2.1) 

where ( ), , ,Y q q q  for the two-link manipulator, is a 2x6 matrix of functions of the generalized 

coordinates and its derivatives, σ is a column vector of inertia parameters.   Using equations 

(6.1.11) and (6.1.12), ( ), ,Y q q q  and σ are  

 ( )
( ) ( ) ( )

( )
1 21 21 1 1

1 21 2

cos1 cos cos
, ,

cos0 2 0 0

g q qq qq Y g q g q

g q qq q Y

+ +
=  

++ 
Y q q q   (6.2.2) 

 ( )( ) ( )( )2

2 1 2 2 2 1 21 cos 2 sin 2 ,Y q q q q q q q= + − +   (6.2.3) 

 ( ) ( ) 2

2 1 2 12 cos sinY q q q q= +   (6.2.4) 

and 



  

71 

 

 
2 2 2

1 2 1 1 1 2 2 2 2 1 1 1 2 1 2 2 .
T

c cL m L m I L m m L L m L m L m L = + + σ  (6.2.5) 

Then the control law is  

 ( ) 0 2, , , ( )L= + −τ Y q q v a σ u Kr   (6.2.6) 

where ( ), , ,Y q q v a  is a 2x6 matrix of nominal functions of the generalized coordinates, 

velocities, and errors relative to a reference trajectory, σ0 is a column vector of nominal inertia 

parameters, u2L is designed to achieve robustness to the uncertainty of (σ – σ0), and K is a 

positive definite diagonal gain matrix.  The new variables are defined as   

 ,d= −v q λq   (6.2.7) 

 ,=a v   (6.2.8) 

 ,= +r q λq   (6.2.9) 

and 

 
d= −q q q   (6.2.10) 

where λ is a positive definite diagonal gain matrix and qd is a reference trajectory.  For the two-

link manipulator of Figure 6.1,  

 ( )
( ) ( ) ( )

( )
1 21 21 1 1

1 21 2

cos1 cos cos
, , ,

cos0 2 0 0

g q qa aa Ya g q g q

g q qa a Ya

+ +
=  

++ 
Y q q v a   (6.2.11) 

 ( )( ) ( )( )2 1 2 2 2 2 1 2 2 11 cos 2 sin ,Ya q a a q q v q v q v= + − + +   (6.2.12) 

 ( ) ( )2 1 2 1 12 cos sin ,Ya q a q q v= +   (6.2.13) 

 

( )
( )

( )

( )
( )

2

2

2
2

if  

,

if 

T

i Ti
LiT i

i
L

T

i Ti
LiiLi









 −
          

 
=  

 −
                

 

Y r
Y r

Y r
u

Y r
Y r

  (6.2.14) 



  

72 

 

 

( )

( ) ( )

( )( )

( )

( )( )

2 2

1 2 2 1 1 1

2

2 2 2 2

1 2 2 2 2
0

1 1

1 2 2

2 2 2 2

,

c

c

L m m L m I

L L m m

L m m L L

L m

L m m

m m L L

 +  + +
 

+  +  
 +  + 
 =
 
 

+  
 +  +  

σ   (6.2.15) 

and Ψ = σ0 – σ.  Then, after substituting and simplifying, the control law is  

 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1 0 2 1 2 0 2 0 21 1 2 2 3 3

1 0 2 1 0 24 4 5 5

1 2 0 2 1 16 6

1

cos cos

cos 1,1

L L L

L L

L

a u a a u Ya u

g q u g q u

g q q u K r u

+ + + + + + +

             + + +

            + + + − =

σ σ σ

σ σ

σ

   (6.2.16) 

and  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 2 0 2 0 2 1 2 0 22 2 3 3 6 6

2 2

2 cos

2,2 .

L L La a u Ya u g q q u

K r u

+ + + + + + +

− =

σ σ σ
    (6.2.17) 

 

 6.3 Dimensionless System 

 6.3.1 Equations of Motion 

As the length of the first link grows large, the first link can be morphed to a cart with a 

straight-line displacement measured relative to the positive y-axis.   For this purpose, redefine q1 

as π/2+δq1, then the derivatives of q1 are the derivatives of δq1.  Next, convert the first coordinate 

to measuring the circumferential displacement of the link by factoring out L1 from terms 

multiplying the derivatives of δq1.  The matrices for (3.1.21) become 
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( )

( )
( )

( )( )

( )

22
1 1 12

2 2 1 2 1 2 2 2 2

1 1

22
2

1

2

2 2

1 1

2 2

,

2 cos cos

cos

cL m IL
L q L m L q L m L

L L

L
q m L L

q L

q
m

L



+




+ + + + 

 

 
+

=

 


  
 
  


 



M q q

  (6.3.1) 

 ( )
( ) ( ) ( )( )

( )( )

2 2 2 2 2 2 2 1 1 1 2

1

2
2

1

22 1 1

1

, ,

sin sin

sin 0

m L q q m L q q L L q
L

L
qm

q

q q L
L






 
  

=   
  

 

− − +

C q q q   (6.3.2) 

 ( )
( )2 2 1 2 1 2 1 1 1

2 2 1 2

cos cos
2 2

cos
2

,

cg m L q q L m L m q

gm L q q

 
 




    
+ + + + +    

  



 

 
+


 
 =
 
 


+ 



 

G q   (6.3.3) 

and  

 
1

2

.
u

u

 
=  

 
τ   (6.3.4) 

For a symmetric mass matrix, divide the first link equation, top row, by L1.  After simplifying the 

cosine functions in the G matrix, (6.3.1) through (6.3.4) are 

 ( )

( )
( )

( )

( )

22
1 1 12 2 2

2 2 2 2 22 2

1 1

2

1 11 1

22
2 2 2 2

1

2

,

2 cos 1 cos

cos

cL m IL L L
q m q m L

L L L L

L
q m L L m

L

q L

q



+   
+ + + +   

   

 
+





 
 

  
=  

  

  


M q q  (6.3.5) 

 ( )

( ) ( ) ( )( )

( )( )

2 2
2 2 2 2 2 1 1 1 2

1 1 1

22
2 2 1 1

1

1
, ,

sin sin

s 0in

L L
m q q m q q L L q

L L L

qL
m q q L

L

q






 
 

 
 =  
 

−

 
 

− +

 

C q q q   (6.3.6) 
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 ( )
( ) ( )

( )

12
2 1 2 2 1 1

1 1

2 2 1 2

,
sin sin

sin

cLL
g m q q m m q

L L

gm L q q

 



  
− + + +   

  

 
 

=  
 
 − +

G q   (6.3.7) 

and  

 

1

1

2

.

u

L

u

 
 =
 
  

τ   (6.3.8) 

To render the equations dimensionless, divide the first link equation by m2L2 and the second link 

equation by m2L2
2.  For dimensionless coordinates the first coordinate, δq1L1, needs to be divided 

by L2.  The dimensionless matrices for (3.1.21) then are 

 ( )
( )

( )
( )

( )

22
1 1 12 2 2

2 22 2

1 1 2 1

1

1
2

2

1

2
2

1

2 cos 1 cos

co

,

s 1

cL m IL L L
q q

L L m L L
L

L
q

q

q
L

L
 

  
  =
  
  

+ 
+ + + + 

 

+  
  

M q q   (6.3.9) 

 ( )

( ) ( )

( )

2 2 1 1
2 2 2 2 1

1 1 2

2

2 1 1
22

1 2

1

, ,

sin sin

sin 0

L L q L
q q q q L

L L L
L

L q L qq
L

q

L









 
− − +


   


  

  =    
    
 
 

  

 
 
 

C q q q   (6.3.10) 

 ( )

12 2 1 1 1 2 1 1
2

2 1 1 2 1 2 1 2

2 1 1
2

2 1 2

,

sin 1 sin

sin

cLL L q L m L q Lg
q

L L L L L m L L

L q Lg
q

L L L

 



         
− + + +             

         

  
− +   

 




 
 
 

=  
 


 

G q   (6.3.11) 

 

1

2 1 2

2

2

2 2

.

u

m L L

u

m L

 
 
 =
 
 
 

τ   (6.3.12) 
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Multiplying by L2/g = γ2, transforms time to unitless time, t, and then using the dimensionless 

parameters from Table 6.1, equations (6.3.9) - (6.3.12) become 

 ( )
( ) ( )

( )

2 2

2 2 2 9 1 8 2 2

2 2 2

,
2 cos 1 cos

cos 1

k q k k k k q

q

k

q k

+ +   


+
=     

+ +

+
M q q   (6.3.13) 

 ( )
( ) ( )( )

( )
2 2 2 2 2 2

2 2 2

sin sin

s
, ,

0in

k q q q k q

k q q

 



  


− − +   
  =


  

   
C q q q   (6.3.14) 

 ( )
( ) ( ) ( )

( )
2 2 2 9 1 2

2 2

sin 1 s
,

in

sin

k k q k k k

k q

 



 
=



− + −


+

−


+ 
G q   (6.3.15) 

 
2

.
N

N





 
=  

 
τ   (6.3.16) 

 

Table 6.1: Dimensionless Two-Link Manipulator Parameters 

Dimensionless 

Parameter 
k1 k2 k8 k9   2  N  2N  

Two-Link 

Manipulator 

1

2

m

m
 2

1

L

L
 

1

2

2 1

I

m L
 1

1

cL

L
 1 1

2

q L

L


 2L

g
 

2

1

2 2 1

u

m L L


 

2

2

2

2 2

u

m L


 

 

 

 6.3.2 Controller 

Supporting the coordinate change for the q1 to be measured relative to the positive y-axis  

( ), , ,Y q q v a  becomes 

 ( )
( ) ( ) ( )

( )

2
1 22

1 1 2 22 2
1

2 22
1 2

1

sin1 sin sin
, , ,

sin2 0 0
0

L
a aL

a L g k qYa g k g k
L

g k qL Ya
a a

L

 



 
+ − +− −

 =
− + 

+ 
 

Y q q v a  (6.3.17) 

where 
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 ( ) ( )2 2 2
2 1 2 2 2 2 2 2 1

1 1 1

1 cos 2 sin ,
L L L

Ya q a a q q v v q v
L L L


   

= + − + +   
   

  (6.3.18) 

and 

 ( ) ( )2 2 2
2 1 2 1

1 1 1

2 cos sin .
L L L

Ya q a q v
L L L

= +   (6.3.19) 

To convert τ to dimensionless form, as see in Table 6.1, (6.2.16) is multiplied by γ2/(m2L2L1) and 

(6.2.17) by γ2/(m2L2
2).  Performing this operation and simplifying slightly obtains 

  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )( )

( )

0 20 2 0 2 3 31 1 2 22
1 1 22

2 1 1 2 1 2 2 1 2

0 2 0 20 2 5 5 6 64 4

2 2 2

2 1 2 1 2 1

2
1

2 1 2

1

sin sin
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LL L

L LL

N

uu uL
a a a Ya

m L L m L L m L L

u uu
k k q

m L m L m L

K L
r

m L L g

 



++ + 
+ + + 

 

 + ++
 − + − +
 
 

 
− = 

 

σσ σ

σ σσ
  (6.3.20) 

and 

 

( ) ( )( ) ( ) ( )( )

( )
( ) ( )( ) ( )

0 20 2 3 32 22
1 2 2 2

1 2 2 2 2

0 26 6 2
2 2 2 22

2 2 2 2

2

2,2
sin ,

LL

L

N

uuL
a a Ya

L m L m L

u K L
k q r

m L m L g
 

++ 
+ + 

 

+  
− + − = 

 

σσ

σ
 (6.3.21) 

where 

 ( ) ( )2 2 2
2 1 2 2 2 2 2 2 1

1 1 1

1 cos 2 sin ,
L L L

Ya q a a q q v v q v
L L L


   

  = + − + +   
   

 (6.3.22) 

 ( ) ( )2 2 2
2 1 2 1

1 1 1

2 cos sin .
L L L

Ya q a q v
L L L

= +  (6.3.23) 

The variables ai and vi are functions of unitless time and λ has been multiplied by √
𝐿2

𝑔⁄  .  Let 

K1n and K2n be the terms in brackets in (6.3.20) and (6.3.21).  Examining (6.2.14), ε2Li has the 
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same units as (YTr)i, then to render u2L dimensionless, Ψi needs to be made dimensionless.  Let 

( ) ( )2 2L i Ldi i
= −u u , where 

 ( )

( )
( )

( )

( )
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2

2

2
2

if  

,

if 

T

Ti
LiT i

i
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T

Ti
LiiLi






 
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 
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                

 

Y r
Y r

Y r
u

Y r
Y r

 (6.3.24) 

and Ψi = (σ0)i – σi, then (6.3.20) and (6.3.21) simplify to 

 

( ) ( ) ( ) ( ) ( ) ( )
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( )
( ) ( )
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1 1 22

2 1 1 2 1 2 2 1 2
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2

2 1 2 1
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1
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uu
k
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u
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

 

− −  −  
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 

−  − 
− + 
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 (6.3.25) 

and 
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1 2 2 2

1 2 2 2 2

0 2 26 6
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2
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− −  
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σσ

σ
 (6.3.26) 

Substituting σ0 from (6.2.15) and σ from (6.2.5) into (6.3.25) and (6.3.26) simplifies τN to 
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1 1 1
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Ld Ld
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k a a k dL dm u u

k k k dm u
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
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+ + + − + + + + −

+ + + + − +

− + + −

− + + + + − − =

 (6.3.27) 

and τN2 to  
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( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( )( )

( ) ( ) ( )( )( )

2

2 1 2 2 2 2 22 2

2 2 2 2 2 3

2 2 2 2 2 2 2 2 2 26

1 1 1

2 1 1

sin 1 1 ,

Ld Ld

Ld

Ld n N

k a a dL dm u u

Ya d dm dm dL dL u

k q dm dm dL dL u K r 

+ + + − +

+ + + + −

− + + + + − − =

 (6.3.28) 

where  

 ( )( ) ( )( )2 2 1 2 2 2 2 2 2 2 2 11 cos 2 sin ,Ya d q k a a q q v k v q k v  = + − + +   (6.3.29) 

 ( ) ( )2 1 2 2 12 cos sin ,Ya d q a q k v= +   (6.3.30) 

dL2=ΔL2/L2, and dm2=Δm2/m2. 

 

 6.4 Morphing 

To satisfy the sufficient conditions necessary for the equations of motion of the two-link 

manipulator to morph to a fully actuated inverted pendulum cart, the generalized coordinates 

must morph into those of the inverted pendulum cart.  The second generalized coordinate for 

both systems measures the angular displacement in a counterclockwise direction of the second 

link (pendulum) with respect to the vertical.  The first generalized coordinate for the 

dimensionless two-link manipulator is δq1L1/L2.  To maintain the same circumferential 

displacement as L1 grows large δq1 becomes small, then δq1L1 becomes a straight-line 

displacement and δq1L1/L2 morphs to the ρ of the fully actuated inverted pendulum cart.  

Similarly, the generalized velocities of the two-link manipulator morph to those of the fully 

actuated inverted pendulum cart. The mass matrix of the dimensionless two-link manipulator is  

 ( )
( ) ( )

( )

2 2

2 2 2 9 1 8 2 2

2 2

,
2 cos 1 cos

cos 1

k q k k k k q k

q k

+ + + + +


+

 
= 

 
M q   (6.4.1) 

and as L1 grows large, k2 and k8 goes to zero, k9 goes to one, showing (6.4.1) matches the mass 

matrix of the inverted pendulum cart, (4.1.13), provided k1 is the same ratio of the cart mass to 
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the two-link manipulator mass.  Lastly, the gradient of the potential energy of the dimensionless 

two-link manipulator is (6.3.15) which after letting k2 go to zero would result in 

 ( )
( )2

0

sin q

 
=  

− 
G q  (6.4.2) 

the same gradient of the potential energy function of the dimensionless fully actuated inverted 

pendulum cart. Therefore, the sufficient conditions for morphing the two-link manipulator 

dynamics to that of the fully actuated inverted pendulum cart are met. 

  After letting L1 grow large, k2 and k8 go to zero, k9 go to one, and ρ go to zero, the 

matrices for the equations of motion of (3.1.21) become 

 ( )
( )

( )
1 2

2

1 cos

c
,

os 1

k q

q

 
=  



+


M q   (6.4.3) 

 ( )
( )2 2, ,

0 sin

0 0

q q 
 =  

 

−
C q q   (6.4.4) 

 ( )
( )2

,
0

sin q

−

 
= 

 
G q   (6.4.5) 

and 

 
2

.
N

N





 
=  

 
τ   (6.4.6) 

Equations (6.4.3)-(6.4.6) are the same as the equations of motion for an inverted pendulum cart 

that is fully actuated.  The control laws of (6.3.27) and (6.3.28) simply to  

 
( ) ( )( ) ( ) ( )( )( )

( )( )( )

2 2 2 2 2 2 2 2 2 2 3

1 1 2 2 1 11

cos sin 1 1

1 1

Ld

Ld n N

q a q q v dm dm dL dL u

a k dm u r K 

− + + + −

+ + + − − =
  (6.4.7) 

and 
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( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

2

2 2 2 2 22 2

2 1 2 2 2 2 2 3

2 2 2 2 2 2 2 2 26

1 1 1

cos 1 1

sin 1 1 .

Ld Ld

Ld

Ld n N

a dL dm u u

q a dm dm dL dL u

q dm dm dL dL u K r 

+ + − +

+ + + + −

− + + + − − =

  (6.4.8) 

To check that the morphed control law produces a stable response, simulations were performed. 

 

 6.5 Simulations 

After the equations of motion and controller had been rendered dimensionless and 

morphed, simulations were performed.  The controller matrices K and λ were defined to be 

diagonal matrices with ones on the diagonals and zeros for off-diagonal terms and ε2Li = 1.  The 

unknown load parameters were defined as ΔL2 = 0.125m and Δm2 = 2kg.  For Figure 6.2, the 

initial conditions of q1 = (1.1-π/2), 𝑞1̇ = 0, θ = 0, and 𝜃̇ = 0 were used for the two-link 

manipulator comprised of (6.1.17)-(6.1.20) with (6.2.6).  The dimensionless equations of motion 

of (6.3.13)-(6.3.16) with the controllers of (6.3.27) and (6.3.28), had initial conditions of 𝜌 = 

(1.1-π/2)L1/L2, 𝜌̇ = 0, θ = 0, and 𝜃 ̇ = 0.  For both systems, and the morphed system, the desired 

trajectory was qd = [0;0], both links stabilized straight up, and 𝒒̇𝑑 = [0;0].  To easily compare the 

plots in Figure 6.2, the x-axis for the dimensionless system was multiplied by γ to have units of 

seconds.  Figure 6.2 demonstrates that converting to dimensionless form did not change the 

response of the system and was performed to validate that the dimensionless process was 

performed correctly.  The simulation of the morphed system is shown in Figure 6.3.  Figure 6.3 

uses initial conditions of ρ = (1.1-π/2), 𝜌̇ = 0, θ = 0, and 𝜃 ̇ = 0, the same desired trajectory, the 

morphed control law of (6.4.7) and (6.4.8) applied to the system of (6.4.3)-(6.4.6).  Similar to 

Figure 6.2, the x-axis was scaled by γ to have units of seconds.  To improve the response for the 

morphed system, the controller matrices K and λ could be modified.  
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(a)                                                                            (b) 

Figure 6.2: Original vs Dimensionless Two-Link Manipulator Simulations 

 

 

(a)                                                                                 (b) 

Figure 6.3: Morphed Two-Link Manipulator Simulation 

 

 6.6 Conclusions 

The two-link manipulator of Figure 6.1, is an example of a fully actuated mechanical 

system.  The equations of motion for the two-link manipulator met the sufficient conditions for 
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morphing to a fully actuated inverted pendulum cart.  The control law presented in section 6.2, 

after being converted to dimensionless form morphed to a stable controller, as demonstrated by 

Figure 6.3 showing that this approach could work for fully actuated systems.  

 A real-world application that could benefit from the morphing of the two-link robot 

manipulator would be an overhead crane or a Segway.  As the radius of the first link grows large, 

with some potential control gains modifications and coordinates changes, the resulting control 

law could be to be applied to stabilize the crane or Segway.  
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Chapter 7 - Conclusions 

 7.1 Summary 

The sufficient conditions for when equations of motion will morph as size, lengths, or 

shapes grow large or shrink to zero was presented.  The sufficient conditions are: 

1) The successful morphing of the generalized coordinates and velocities of the original 

system to the target system.  

2) The morphing of the original mass matrix as a function of the original generalized 

coordinates to the mass matrix of the target system where dependency is now on the 

target system’s generalized coordinates. 

3) The original potential energy expressed in terms of the original system’s generalized 

coordinates morphs into the potential energy of the target system expressed in terms 

of the target system’s generalized coordinates.  

These sufficient conditions were applied to, and met by, three systems that were underactuated 

and one fully actuated system. 

 To aid in morphing, dimensionless parameters were utilized.  To accomplish this, each 

equations of motion was divided by a term comprising the common units of that equation.  For 

each system, the choice of dimensionless parameters for the original system was chosen with the 

end goal of matching the dimensionless target system.  Then the process was applied to a chosen 

controller.    

In chapter 4, a controller utilizing the method of Controlled Lagrangians was successfully 

morphed from the rotary pendulum to the inverted pendulum cart.  Chapter 6, had a robust, 

sliding-mode controller successfully morphed from the two-link robot manipulator to a fully 

actuated inverted pendulum cart.  The IDA-PBC controller presented in chapter 5, where J2(q,p) 
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was arbitrarily chosen, once morphed, did not produce a stable controller for the morphed 

equations of motion for the pendubot.   

 

 7.2 Future Work 

The process of converting to a dimensionless system may seem ad hoc in the examples 

presented earlier in this work, to remedy this a general process for rendering a system 

dimensionless should be formalized.   

The further investigation of morphing equations of motion and controllers is needed for 

systems that are underactuated to a greater extent than the systems presented here, or have more 

degrees of freedom than the systems used here.  

Controller morphing needs more investigation and two major questions that result from 

the preceding analysis are:  Under what circumstances will a control law morph and produce 

desirable results? What effect does the morphing process have on non-energy-based controller?   

For energy-based controllers, one sufficient condition could be that the new (desired) 

mass matrix of the original system morphs to one that is positive definite in the target system. 

Another sufficient condition could be that the new potential energy function for the original 

system morphs to one that is positive definite in the neighborhood of the desired equilibrium.  

Are there other sufficient conditions for energy-based controller to morph? 

To increase the applicability of the morphing process, the process for morphing from a 

simple to more complex system should be investigated for the equations of motion and control 

laws. As well as the scaling for when the length or radius is considered large enough for the 

system to morph. 
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Appendix A - Ball and Beam 

This Appendix is organized in three major parts. These are:  

A.1 Derivations of Equations of Motion using Newton-Euler 

 A.2 Derivations of Equations of Motion using Lagrangian-Euler 

 A.3 Comparison of the Equations of Motion to those in the literature 

 

A.1 Derivations of Equations of Motion using Newton-Euler 

Ball and beam offset NE method.mw 
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A.2 Derivations of Equations of Motion using Lagrangian-Euler 

Ball and beam offset lagrange.mw 
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A.3 Comparison of the Equations of Motion to those in the literature 
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Appendix B - Ball and Arc 

This Appendix is organized in three major parts. These are:  

B.1 Derivations of Equations of Motion using Newton-Euler 

 B.2 Derivations of Equations of Motion using Lagrangian-Euler 

 B.3 Derivation of the Dimensionless Equations of Motion 

 

B.1 Derivations of Equations of Motion using Newton-Euler 

ball and arc NE method.mw 
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B.2 Derivations of Equations of Motion using Lagrangian-Euler 

ball and arc lagrange.mw 
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B.3 Derivation of the Dimensionless Equations of Motion 

BA dimensionless.mw 
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Appendix C - Inverted Pendulum Cart 

This Appendix is organized in four major parts. These are:  

C.1 Derivations of Equations of Motion and Controller  

 C.2 Simulink file and MATLAB code for the simulation of the Full System 

 C.3 Simulink file and MATLAB code for the simulation of the Dimensionless  

System 

 C.4 MATLAB code to produce the plot for Chapter 4 

 

C.1 Derivations of Equations of Motion and Controller 

IPC.mw 
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C.2 Simulink file and MATLAB code for the simulation of the Full System 

 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
x           = u(1);             % feedback array 
theta       = u(2); 
xdot        = u(3); 
tdot        = u(4); 
%% Generalized quantities 
q           = [x theta]';       % Generalized coordinates 
qdot        = [xdot tdot]'; % Generalized velocities 
%% Physical parameter values  
Mc          = .44;                % kg      - cart mass  
Mp          = .14;                % kg      - pendulum mass 
g           = 9.81;              % m/s^2   - gravity 
l           = 0.215;              % m       - pendulum length 
alpha       = Mp*l^2; 
beta        = Mp*l; 
gamma       = Mc+Mp; 
d           = -Mp*g*l; 
%% Linear model parameters     
c           = 0.015;%0.001; 
kappa       = 20;%50; 
epsilon     = 0.00001; 
rho         = -0.02;%1; 
%psi         = 0; 
%% The G,M,C,  P and KD matrices 
G           = [0; d*sin(theta)]; %gravity terms       
mass        = [gamma, beta*cos(theta); beta*cos(theta), alpha];%mass matrix      
C           = [0, -beta*sin(theta)*tdot; 0, 0];    %Centripetal and coriolis 

matrix 
%inclined plane 
% G           = [-sin(psi)*(Mp+Mc)*g; -Mp*l*g*sin(theta)]; %gravity terms       
% mass        = [Mc+Mp, Mp*l*cos(-theta+psi); Mp*l*cos(-theta+psi), 

Mp*l^2];%mass matrix      
% C           = [0, -Mp*l*sin(-theta+psi)*tdot; 0, 0];    %Centripetal and 

coriolis matrix 
%% Evaluate the control law 
B            = 1/rho*(alpha-beta^2/gamma*(cos(theta))^2); 
p            = (kappa+(rho-1)/rho)*(beta/gamma); 
ud           = c*gamma*(xdot+p*cos(theta)*tdot); 
tau          = (kappa*beta*sin(theta)*(alpha*tdot^2+d*cos(theta))-B*... 
               epsilon*d*gamma^2*x/beta^2+B*ud)/... 
               (alpha-beta^2/gamma*(kappa+1)*(cos(theta))^2); 
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%inclined plane 
% tau        = (kappa*Mp*l*(-Mp*l^2*sin(-theta+psi)*tdot^2-cos(-theta+... 
%              psi)*Mp*g*l*sin(theta))+(Mp*l^2-Mp^2*l^2*cos(-theta+psi)^2/... 
%              (Mc+Mp))*epsilon*g*(Mc+Mp)^2*(x+(kappa+(rho-1)/rho)*Mp*l*(-... 
%              sin(-theta+psi)+sin(psi))/(Mc+Mp))/(rho*Mp*l)+(Mp*l^2-Mp^2*... 
%              l^2*cos(-theta+psi)^2/(Mc+Mp))*c*(Mc+Mp)*(xdot+(kappa+(rho-... 
%              1)/rho)*Mp*l*cos(-theta+psi)*tdot/(Mc+Mp))/rho)/(Mp*... 
%              l^2-Mp^2*l^2*(kappa+1)*cos(-theta+psi)^2/(Mc+Mp))-... 
%              (Mc+Mp)*g*sin(psi); 
%% Evaluate the Dynamic 
qdotdot     = inv(mass)*([tau;0]-C*qdot-G); 
xdotdot     = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [xdot;tdot;xdotdot;ddtheta]; 
%% End of  

 

 

C.3 Simulink file and MATLAB code for the simulation of the Dimensionless 

System 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
x           = u(1);             % feedback array 
theta       = u(2); 
xdot        = u(3); 
tdot        = u(4); 
%% Generalized quantities 
q           = [x theta]';       % Generalized coordinates 
qdot        = [xdot tdot]'; % Generalized velocities 
%% Physical parameter values  
Mc          = .44;                % kg      - cart mass  
Mp          = .14;                % kg      - pendulum mass 
g           = 9.81;              % m/s^2   - gravity 
l           = 0.215;              % m       - pendulum length 
k1          = Mc/Mp; 
dn          = -1; 
%d           = g/l; 
gn          = 1+k1; 
%% Linear model parameters     
c           = 0.015; 
kappa       = 20; 
epsilon     = 0.00001; 
rho         = -0.02; 
%% The G,M,C,  P and KD matrices 
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G           = [0; dn*sin(theta)]; 
mass        = [gn, cos(theta); cos(theta),1]; 
C           = [0, -sin(theta)*tdot; 0, 0]; 
%% Evaluate the control law 
Bn           = 1/rho*(1-(cos(theta))^2/gn); 
pn           = (kappa+(rho-1)/rho)/gn; 
udn          = sqrt(l/g)*c*gn*(xdot+pn*cos(theta)*tdot); 
tau          = (kappa*sin(theta)*(tdot^2+dn*cos(theta))-Bn*epsilon*... 
                dn*gn^2*x+Bn*udn)*gn/(gn-(kappa+1)*(cos(theta))^2); 
%% Evaluate the Dynamic 
qdotdot     = inv(mass)*([tau;0]-C*qdot-G); 
xdotdot     = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [xdot;tdot;xdotdot;ddtheta]; 
%% End of  

 

 

C.4 MATLAB code to produce the plot for Chapter 4 

l=0.215; 
g=9.8; 
figure(1); 
plot(x.time,x.signals.values,'-k',rho.time*sqrt(l/g),l*rho.signals.values,'--

k','LineWidth',1) 
grid on 
legend('x','\rho') 
title('Position Response of the Cart for the Full vs Dimensionless Systems'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('x(m), \rho(dimensionless)*l(m)'); 

  
figure(2); 
plot(theta.time,theta.signals.values,'-k',thetad.time*sqrt(l/g), 

thetad.signals.values,'--k','LineWidth',1); 
grid on 
legend('\theta','\theta_{N}') 
title('Theta Responses for Full vs Dimensionless Equations of Motion'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('angle (rad)'); 
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Appendix D - Rotary Pendulum 

This Appendix is organized in six major parts. These are: 

 D.1 Derivations of Equations of Motion and Controller  

 D.2 Simulink file and MATLAB code for the simulation of the Full System 

 D.3 Simulink file and MATLAB code for the simulation of the Dimensionless  

System 

 D.4 Simulink file and MATLAB code for the simulation of the Morphed System 

 D.5 MATLAB code to produce the dimensionless plot for Chapter 4 

D.6 MATLAB code to produce the morphed plot for Chapter 4 

 

D.1 Derivations of Equations of Motion and Controller 

RP.mw 
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D.2 Simulink file and MATLAB code for the simulation of the Full System 

 
function y = fcn(u) 
%% Main Vectors 
phi           = u(1);             % feedback array 
theta         = u(2); 
phidot        = u(3); 
thetadot      = u(4); 
%% Generalized quantities 
q           = [phi theta]';       % Generalized coordinates 
qdot        = [phidot thetadot]'; % Generalized velocities 
%% Physical parameter values  
Md          = 0.44;                % kg      - cart mass  
Mp          = 0.14;                % kg      - pendulum mass 
g           = 9.8;                 % m/s^2   - gravity 
l           = 0.215;               % m       - pendulum length 
R           = 1; 
alpha       = Mp*l^2; 
beta        = Mp*l*R; 
gamma       = (Mp+Md)*R^2; 
D           = -Mp*g*l; 
%% Linear model parameters     
kappa       = 25; 
psi         = -0.02; 
c           = 0.015; 
epsilon     = 0.00001; 
%% The G,M,C,  P and KD matrices 
G           = [0; D*sin(theta)]; %gravity terms       
mass        = [gamma+alpha*(sin(theta))^2, beta*cos(theta);... 
               beta*cos(theta), alpha ];%mass matrix      
C           =  [alpha*cos(theta)*sin(theta)*thetadot,... 
               alpha*cos(theta)*sin(theta)*phidot-

beta*sin(theta)*thetadot;... 
               -alpha*cos(theta)*sin(theta)*phidot, 0];    %Centripetal and 

coriolis matrix 
%% Evaluate the control law 
Falpha     = alpha*sin(theta)*cos(theta)*phidot^2; 
Fa         = -alpha*sin(theta)*cos(theta)*phidot*thetadot; 
 p          = (kappa+(psi-1)/psi)*(beta/gamma); 
 ud         = c*gamma*(phidot+p*cos(theta)*thetadot); 
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 B          = (alpha-beta^2*(cos(theta))^2/gamma)/psi; 
 u2         = (kappa*beta*sin(theta)*(alpha*thetadot^2+D*cos(theta))-(B*... 
              epsilon*D*gamma^2*phi)/beta^2+B*ud-kappa*beta*Falpha*cos(... 
              theta))/(alpha-(beta^2*(kappa+1)*(cos(theta))^2)/gamma); 
 qdd         = inv(mass)*([u2;0]-C*qdot-G); 
 phidd       = qdd(1); 
 u1          = alpha*sin(theta)^2*phidd+Fa; 
 tau         = u2+u1; 
%% Evaluate the Dynamic 
qdotdot     = inv(mass)*([tau;0]-C*qdot-G); 
ddphi       = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [phidot;thetadot;ddphi;ddtheta]; 
%% End of  

 

 

D.3 Simulink file and MATLAB code for the simulation of the Dimensionless 

System 

 
function y = fcn(u) 
%% Main Vectors 
rho           = u(1);             % feedback array 
theta         = u(2); 
rhodot        = u(3); 
thetadot      = u(4); 
%% Generalized quantities 
q           = [rho theta]';       % Generalized coordinates 
qdot        = [rhodot thetadot]'; % Generalized velocities 
%% Physical parameter values  
Ma          = 0.44;                % kg      - cart mass  
Mp          = 0.14;                % kg      - pendulum mass 
g           = 9.81;                % m/s^2   - gravity 
l           = 0.215;               % m       - pendulum length 
R           = 1; 

  
k6          = Ma/Mp; 
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k4          = l/R; 
gn          = 1+k6; 
%% Linear model parameters     
kappa       = 25; 
psi         = -0.02; 
c           = 0.015; 
epsilon     = 0.00001; 
%% The G,M,C,  P and KD matrices 
G           = [0; -sin(theta)]; %gravity terms       
mass        = [1+k6+k4^2*(sin(theta))^2 cos(theta); cos(theta) 1];%mass 

matrix      
C           =  [k4^2*cos(theta)*sin(theta)*thetadot... 
                k4^2*cos(theta)*sin(theta)*rhodot-sin(theta)*thetadot;... 
               -k4^2*cos(theta)*sin(theta)*rhodot 0];    %Centripetal and 

coriolis matrix 
%% Evaluate the control law 
Falpha     = sin(theta)*cos(theta)*rhodot^2; 
Fa         = sin(theta)*cos(theta)*rhodot*thetadot; 
p          = (kappa+(psi-1)/psi)/gn; 
ud         = c*gn*(rhodot+p*cos(theta)*thetadot); 
B          = (1-(cos(theta))^2/gn)/psi; 

  
u2         = (kappa*sin(theta)*(thetadot^2-cos(theta))+... 
             B*epsilon*((1+k6)^2)*rho+B*ud*sqrt(l/g)-... 
             kappa*k4^2*Falpha*cos(theta))/... 
             (1-((kappa+1)*(cos(theta))^2)/gn); 

           
qdd         = inv(mass)*([u2;0]-C*qdot-G); 
rhodd       = qdd(1); 
u1          = k4^2*(sin(theta)^2*rhodd-Fa); 
tau         = u2+u1; 
%% Evaluate the Dynamic 
qdotdot     = inv(mass)*([tau;0]-C*qdot-G); 
ddrho       = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [rhodot;thetadot;ddrho;ddtheta]; 
%% End of  
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D.4 Simulink file and MATLAB code for the simulation of the Morphed 

System 

 
function y = fcn(u) 
%% Main Vectors 
rho         = u(1);             % feedback array 
theta       = u(2); 
rhodot      = u(3); 
thetadot    = u(4); 
%% Generalized quantities 
q           = [rho theta]';       % Generalized coordinates 
qdot        = [rhodot thetadot]'; % Generalized velocities 
%% Physical parameter values  
Mc          = 0.44;                % kg      - cart mass  
Mp          = 0.14;                % kg      - pendulum mass 
k6          = Mc/Mp;         
l           = 0.215; 
R           = 1; 
g           = 9.81; 
k4          = l/R; 
gn          = 1+k6; 
dn          = -1; 
%% Linear model parameters     
kappa       = 20; 
psi         = -0.02; 
c           = 0.015; 
epsilon     = 0.00001; 
%% The G,M,C,  P and KD matrices 
G           = [0; -sin(theta)]; 
mass        = [1+k6, cos(theta); cos(theta),1]; 
C           = [0, -sin(theta)*thetadot; 0, 0]; 
%% Evaluate the control law 
p          = (kappa+(psi-1)/psi)/gn; 
ud         = c*gn*(rhodot+p*cos(theta)*thetadot); 
B          = (1-(cos(theta))^2/gn)/psi; 
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tau         = (kappa*sin(theta)*(thetadot^2-cos(theta))+... 
               B*epsilon*((1+k6)^2)*rho+B*ud*sqrt(l/g))/... 
               (1-((kappa+1)*(cos(theta))^2)/gn); 
%% Evaluate the Dynamic 
qdothetadot      = inv(mass)*([tau;0]-C*qdot-G); 
ddrho       = qdothetadot(1); 
ddtheta     = qdothetadot(2); 
%% M-File output 
y           = [rhodot;thetadot;ddrho;ddtheta]; 
%% End of  

 

D.5 MATLAB code to produce the dimensionless plot for Chapter 4 

l=0.215; 
g=9.81; 
R=1; 
%T=t*sqrt(g/l); 
figure(3); 
plot(phi.time,phi.signals.values,'-

k',rhorp.time*sqrt(l/g),l/R*rhorp.signals.values,'--k','LineWidth',1) 
grid on 
legend('\phi','\rho') 
title('Position of Arm Responses to Full vs Dimensionless Controllers'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('Arm Position(rad)'); 

  
figure(4); 
plot(thetarp.time,thetarp.signals.values,'-k',thetarpd.time*sqrt(l/g), 

thetarpd.signals.values,'--k','LineWidth',1); 
grid on 
legend('\theta','\theta_{n}') 
title('Theta Responses to Full vs Dimensionless Controllers'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('Pendulum Position(rad)'); 

 

D.6 MATLAB code to produce the morphed plot for Chapter 4 

l= 0.215; 
g=9.81; 
figure(5); 
plot(x.time,x.signals.values,'-

k',rhorpc.time*sqrt(l/g),rhorpc.signals.values*l,'--k','LineWidth',1) 
grid on 
legend('IPC','RP') 
title('Cart Position Response for Inverted Pendulum Cart vs Morphed Rotary 

Pendulum'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('x(m), \rho(dimensionless)*l(m)'); 

  
figure(6); 
plot(theta.time,theta.signals.values,'-k',thetarpc.time*sqrt(l/g), 

thetarpc.signals.values,'--k','LineWidth',1); 
grid on 
legend('IPC','RP') 



  

124 

 

title('Pendulum Angle Response for Inverted Pendulum Cart vs Morphed Rotary 

Pendulum'); 
xlabel('time(s) and time(dimensionless)*\gamma'); 
ylabel('Pendulum Angle(rad)'); 

Appendix E - Pendubot 

This Appendix is organized in six major parts. These are: 

 E.1 Derivations of Equations of Motion and Controller  

 E.2 Simulink file and MATLAB code for the simulation of the Full System 

 E.3 Simulink file and MATLAB code for the simulation of the Dimensionless  

System 

 E.4 Simulink file and MATLAB code for the simulation of the Morphed System 

 E.5 MATLAB code to produce the plots for Chapter 5 

 

E.1 Derivations of Equations of Motion and Controller 
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Pendubot_IDAPBC.mw 
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E.2 Simulink file and MATLAB code for the simulation of the Full System 

 

 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
q1   = u(1);             % feedback array 
q2   = u(2); 
dq1  = u(3); 
dq2  = u(4);  
%% Generalized quantities 
q    = [q1 q2]';       % Generalized coordinates 
qdot = [dq1 dq2]';       % Generalized velocities 
%% Parameter values  
m1   = 2; 
L1   = 2; 
Lc1  = 1; 
I1   = 0.667; 
m2   = 1; 
%L2   = 1; 
Lc2  = 0.5; 
I2   = 0;% 0.083; 
g    = 9.81; 
c1   = m1*Lc1^2+m2*L1^2+I1; 
c2   = m2*Lc2^2+I2; 
c3   = m2*L1*Lc2; 
c4   = m1*Lc1+m2*L1; 
c5   = m2*Lc2; 
a1   = c1+c2+2*c3*cos(q2); 
a2   = c2+c3*cos(q2); 
a3   = c2; 
phi  = 500; 
k    = 0.0033; 
kp   = 30; 
kv   = 20;  
qd1  = pi; 
%% Equation of motion pieces 
M    = [a1 a2; a2 a3]; 
C    = [-c3*sin(q2)*dq2 -c3*sin(q2)*(dq1+dq2); c3*sin(q2)*dq1 0]; 
G    = [c4*g*sin(q1)+c5*g*sin(q1+q2);c5*g*sin(q1+q2)]; 
%% Evaluate the control law 
d1   = k*phi; 
d2   = k*(c1-c2); 
d3   = k*(c1-c2); 
d4   = k*(-c2+c3*cos(q2)); 
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Md   = [d1 d2; d3 d4]; 
dMd  = det(Md); 
dVd1 = -c5*g*sin(q1+q2)/k+2*kp*(q2+2*q1-pi-qd1); 
dVd2 = -c5*g*sin(q1+q2)/k+kp*(q2+2*q1-pi-qd1); 

  
p = M*qdot; 
p1 = p(1); 
p2 = p(2); 
dq1H   = c4*g*sin(q1)+c5*g*sin(q1+q2); 
dpMdp2 = (p1*(c1-c2)-p2*phi)^2*c3*sin(q2)/... 
           ((-cos(q2)*c3*phi+c2^2+(-2*c1+phi)*c2+c1^2)^2*k); 

        
lambda1 = -(c3*cos(q2)*(c1-c2)+c2*(c1-c2-phi))*k/(-cos(q2)^2*c3^2+c1*c2);  
lambda2 = k*(2*c3*(-1/2*phi+c1-c2)*cos(q2)-c2*phi+c1^2-c2^2)/... 
             (-cos(q2)^2*c3^2+c1*c2); 

  

alpha1 = c3*sin(q2)*(lambda1^2+lambda1*lambda2); 
alpha2 = c3*sin(q2)*k^2*(2*c3*(c1-c2-phi/2)*cos(q2)+c1^2-c2^2-c2*phi)/... 
         (-cos(q2)^2*c3^2+c1*c2); 

  
j2 = (p1*(d4*alpha1-d3*alpha2)+p2*(-d2*alpha1+d1*alpha2))/dMd; 

  
u = dq1H-(lambda1*dVd1+lambda2*(dVd2+1/2*dpMdp2))+j2*(-d3*p1+d1*p2)/dMd... 
    -kv*(d4*p1-d2*p2)/dMd; 
%% Evaluate the Dynamic 
qdotdot     = inv(M)*([u;0]-C*qdot-G); 
xdotdot     = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [dq1;dq2;xdotdot;ddtheta;u]; 
%% End of  

 

E.3 Simulink file and MATLAB code for the simulation of the Dimensionless 

System 
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function y = fcn(u) 
%% Main Vectors 
rho   = u(1);             % feedback array 
q2    = u(2); 
drho  = u(3); 
dq2   = u(4);  
%% Generalized quantities 
q    = [rho q2]';       % Generalized coordinates 
qdot = [drho dq2]';       % Generalized velocities 
%% Parameter values  
m1   = 2; 
L1   = 2; 
Lc1  = 1; 
I1   = 0.667; 
m2   = 1; 
% L2   = 1; 
Lc2  = 0.5; 
% I2   = 0.083; 
g    = 9.81; 
qd1  = pi; 
%% Dimensionless Parameters 
k1 = m1/m2; 
k2 = Lc2/L1; 
gamma = sqrt(Lc2/g); 
k8 = I1/(m2*L1^2); 
k9 = Lc1/L1; 
%% Equation of motion pieces 
c1n   = k1*k9^2+1+k8; 
c2n   = k2^2; 
c3n   = k2; 
c4n   = k1*k9+1; 
c5n   = k2; 

  
a1n   = c1n+c2n+2*c3n*cos(q2); 
a2n   = k2+cos(q2); 
a3n   = 1; 

  
M    = [a1n -a2n; -a2n a3n];  
C    = [-c3n*sin(q2)*dq2 sin(q2)*(-drho*k2+dq2); c3n*sin(q2)*(drho) 0];  
G    = [(c4n*sin(-k2*rho)+c5n*sin(q2-k2*rho));-sin(q2-k2*rho)]; 
%% Evaluate the control law 
phi  = 500; 
phin = phi/L1^2/m2; 
k    = 0.0033; 

  
d1n   = k*phin; 
d2n   = k*(c1n-c2n); 
d3n   = k*(c1n-c2n); 
d4n   = k*(c3n*cos(q2)-c2n); 
Mdn   = [d1n d2n; d3n d4n]; 

  
kp   = 30; 
kpn  = kp/(g*L1*m2); 

  
dVd1n = c5n/k*sin(q2-k2*rho)+2*kpn*(q2+2*(-k2*rho)+pi-qd1); 
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dVd2n = c5n/k*sin(q2-k2*rho)+kpn*(q2+2*(-k2*rho)+pi-qd1); 

  
%p = M*qdot; 
p1n = (c1n+c2n+2*c3n*cos(q2))*(-drho)+(k2+cos(q2))*dq2; 
p2n = (c2n+c3n*cos(q2))*(-drho)+k2*dq2; 

  

dq1Hn = (c4n*sin(k2*rho)-c5n*sin(q2-k2*rho)); 

  
dpMdp2n = k2*(p1n*(c1n-c2n)-p2n*phin)^2*c3n*sin(q2)/... 
          ((-cos(q2)*c3n*phin+c2n^2+(-2*c1n+phin)*c2n+c1n^2)^2*k); 

        
lambda1n = (c3n*cos(q2)*(c1n-c2n)+c2n*(c1n-c2n-phin))*k/... 
               (cos(q2)^2*c3n^2-c1n*c2n); 

  
lambda2n = -((cos(q2)*c3n+c2n)*lambda1n-k*(c1n-c2n))/c2n; 

  
alpha1n = c3n*sin(q2)*(lambda1n^2+lambda1n*lambda2n); 

  
alpha2n = c3n*sin(q2)*k^2*(2*c3n*(c1n-c2n-phin/2)*cos(q2)+c1n^2-c2n^2-... 
           c2n*phin)/(-cos(q2)^2*c3n^2+c1n*c2n); 

  
j2n = (p1n*(d4n*alpha1n-d3n*alpha2n)+p2n*(-d2n*alpha1n+d1n*alpha2n))/... 
          det(Mdn); 

  
kv   = 20;  
kvn   = gamma*kv/L1^2/m2; 

  
un = -dq1Hn+lambda1n*dVd1n+lambda2n*dVd2n+lambda2n*1/2*dpMdp2n+... 
         (-j2n*k2*(-d3n*p1n+d1n*p2n)/det(Mdn))+... 
          kvn*(d4n*p1n-d2n*p2n)/det(Mdn); 
%% Evaluate the Dynamic 
qdotdot     = inv(M)*([un;0]-C*qdot-G); 
rhodotdot   = qdotdot(1); 
ddtheta     = qdotdot(2); 
%% M-File output 
y           = [drho;dq2;rhodotdot;ddtheta;un]; 
%% End of  
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E.4 Simulink file and MATLAB code for the simulation of the Morphed 

System 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
rho   = u(1);             % feedback array 
theta    = u(2); 
drho  = u(3); 
dtheta   = u(4);  
%% Generalized quantities 
q    = [rho theta]';       % Generalized coordinates 
qdot = [drho dtheta]';       % Generalized velocities 
%% Parameter values  
m1   = 2; 
L1   = 2; 
Lc1  = 1; 
I1   = 0.667; 
m2   = 1; 
% L2   = 1; 
Lc2  = 0.5; 
% I2   = 0.083; 
g    = 9.81; 

  

%% Dimensionless Parameters 
k1 = m1/m2; 
gamma = sqrt(Lc2/g); 

  
k   = 0.0033;  
kp   = 30; 
kpn = kp/(g*L1*m2);  

  

kv   = 20;  
kvn  = gamma*kv/(m2*L1^2);  

  
%% Equation of motion pieces 
Mm    = [1+k1 cos(theta); cos(theta) 1];  
Cm    = [0 sin(theta)*dtheta; 0 0];  
Gm    = [0;-sin(theta)]; 
%% Evaluate the control law 

um = 2*k*kpn*theta+kvn*cos(theta)*drho/(k*(k1+1)); 
%% Evaluate the Dynamic 
qdotdot     = inv(Mm)*([um;0]-Cm*qdot-Gm); 
rhodotdot   = qdotdot(1); 
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ddtheta     = qdotdot(2); 
%% M-File output 
y           = [drho;dtheta;rhodotdot;ddtheta;um]; 
%% End of  

 

E.5 MATLAB code to produce the plots for Chapter 5 

g = 9.81; 
L2 = 0.5; 
L1 = 2; 
figure(1) 
plot1 = plot(q1.time,q1.signals.values,... 
            q1d.time*sqrt(L2/g),-q1d.signals.values/2*0.5+pi,'--'); 

  
plot1(2).LineWidth = 2; 
title("First Link Displacement for full vs dimensionless systems") 
xlabel("Time(s) and Time(unitless)*\gamma(s)") 
ylabel("Link Position (rad)") 
legend("q_1","\rho") 

  
figure(2) 
plot1 = plot(q2.time,q2.signals.values,... 
             q2d.time*sqrt(L2/g),q2d.signals.values,'--'); 
plot1(2).LineWidth = 2; 
title("Second Link Displacement for full vs dimensionless systems") 
xlabel("Time(s) and Time(unitless)*\gamma(s)") 
ylabel("Link Position (rad)") 
legend("q_2","q_2d") 
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Appendix F - Two-Link Manipulator 

This Appendix is organized in six major parts. These are: 

 F.1 Derivations of Equations of Motion and Controller  

 F.2 Simulink file and MATLAB code for the simulation of the Full System 

F.3 Simulink file and MATLAB code for the simulation of the Coordinated- 

Changed System 

 F.4 Simulink file and MATLAB code for the simulation of the Dimensionless  

System 

 F.5 Simulink file and MATLAB code for the simulation of the Morphed System 

 F.6 MATLAB code to produce the plots for Chapter 6 

 

F.1 Derivations of Equations of Motion and Controller 

2linkmanipulator.mw 
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F.2 Simulink file and MATLAB code for the simulation of the Full System 

 

 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
q1   = u(1);     %x1        % feedback array 
q2   = u(2);     %x2 
dq1  = u(3);     %x3 
dq2  = u(4);     %x4 
%% Generalized quantities 
q    = [q1 q2]';       % Generalized coordinates 
dq   = [dq1 dq2]';       % Generalized velocities 
%% Generalized quantities  
m1   = 10; 
L1   = 1; 
Lc1  = 0.5; 
I1   = m1*L1^2/12; 
m2   = 5; 
L2   = 1; 
Lc2  = 0.5; 
I2   = m2*L2^2/12;% 0.083; 
g    = 9.81; 

  

c1   = m1*Lc1^2+m2*L1^2+I1; 
c2   = m2*Lc2^2+I2; 
c3   = m2*L1*Lc2; 
c4   = m1*Lc1; 
c5   = m2*L1; 
c6   = m2*Lc2; 

  
a1   = c1+c2+2*c3*cos(q2); 
a2   = c2+c3*cos(q2); 
a3   = c2; 
%% Equation of motion pieces 
M    = [a1 a2; a2 a3]; 
C    = c3*sin(q2)*[-dq2 -dq1-dq2; dq1 0]; 
G    = [(c4+c5)*g*cos(q1)+c6*g*cos(q1+q2);c6*g*cos(q1+q2)]; 
%% Trajectory Tracking variables 
q1d  = pi/2; 
q2d  = 0; 
qd   = [q1d; q2d]; 

  
dq1d = 0; 
dq2d = 0; 
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dqd  = [dq1d; dq2d]; 

  
ddq1d = 0; 
ddq2d = 0; 
ddqd  = [ddq1d; ddq2d]; 

  
qt   = q-qd; 
dqt  = dq-dqd; 

  
la1 = 1;  
la2 = 1; 
lambda = [la1 0;0 la2]; 
v   = dqd - lambda*qt; 
a   = ddqd - lambda*dqt; 
r   = dqt + lambda*qt; 
%% Evaluate the control law 
ac1 = a(1); 
ac2 = a(2); 
v1  = v(1); 
v2  = v(2); 

  
Y = [ac1, ac1+ac2, cos(q2)*(2*ac1+ac2)-sin(q2)*(dq2*v2+dq1*v2+dq2*v1), ... 
      g*cos(q1), g*cos(q1), g*cos(q1+q2);... 
      0, ac1+ac2, cos(q2)*ac1+sin(q2)*dq1*v1, 0, 0, g*cos(q1+q2)]; 
rho = [5; 7.29; 6.25; 0; 5; 6.25]; 
zeta = Y'*r; 

  
epsilon = 1; 
beta = [0;0;0;0;0;0]; 
u = [0;0;0;0;0;0]; 

  
for i = 1:6 
    if zeta(i)>epsilon 
        beta(i) = abs(zeta(i)); 
    else 
        beta(i) = epsilon; 
    end 
    u(i)=-rho(i)*zeta(i)/beta(i); 
end 

  
k1 = 1;  
k2 = 1; 
K = [k1 0; 0 k2]; 
%% Evaluate the dynamics 
ddq = inv(M)*(Y*(rho+u)-K*r-C*r)-lambda*dqt+ddqd; 
ddq1 = ddq(1); 
ddq2 = ddq(2); 
%% M-File output 
y   = [dq1;dq2;ddq1;ddq2]; 
%% End of  
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F.3 Simulink file and MATLAB code for the simulation of the Coordinated-

Changed System 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
q1y   = u(1);     %x1        % feedback array 
q2   = u(2);     %x2 
dq1  = u(3);     %x3 
dq2  = u(4);     %x4 
%% Generalized quantities 
q    = [q1y q2]';       % Generalized coordinates 
dq   = [dq1 dq2]';       % Generalized velocities 
%% Generalized quantities  
m1   = 10; 
L1   = 1; 
Lc1  = 0.5; 
I1   = m1*L1^2/12; 
m2   = 5; 
L2   = 1; 
%Lc2  = 0.5; 
I2   = 0; %m2*L2^2/12;% 0.083; 
g    = 9.81; 

  

c1   = m1*Lc1^2+m2*L1^2+I1; 
c2   = m2*L2^2+I2; 
c3   = m2*L1*L2; 
c4   = m1*Lc1; 
c5   = m2*L1; 
c6   = m2*L2; 

  
a1   = c1+c2+2*c3*cos(q2); 
a2   = c2+c3*cos(q2); 
a3   = c2; 
%% Equation of motion pieces 
M    = [a1 a2; a2 a3]; 
C    = c3*sin(q2)*[-dq2 -dq1-dq2; dq1 0]; 
G    = [-g*((c4+c5)*sin(q1y)+c6*sin(q1y+q2));-c6*g*sin(q1y+q2)]; 
%% Trajectory Tracking variables 
q1d  = 0; 
q2d  = 0; 
qd   = [q1d; q2d]; 

  
dq1d = 0; 
dq2d = 0; 
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dqd  = [dq1d; dq2d]; 

  
ddq1d = 0; 
ddq2d = 0; 
ddqd  = [ddq1d; ddq2d]; 

  
qt   = q-qd; 
dqt  = dq-dqd; 

  
la1 = 1;  
la2 = 1; 
lambda = [la1 0;0 la2]; 
v   = dqd - lambda*qt; 
a   = ddqd - lambda*dqt; 
r   = dqt + lambda*qt; 
%% Evaluate the control law 
ac1 = a(1); 
ac2 = a(2); 
v1  = v(1); 
v2  = v(2); 

  
Y = [ac1, ac1+ac2, cos(q2)*(2*ac1+ac2)-sin(q2)*(dq2*v2+dq1*v2+dq2*v1), ... 
      -g*sin(q1y), -g*sin(q1y), -g*sin(q1y+q2);... 
      0, ac1+ac2, cos(q2)*ac1+sin(q2)*dq1*v1, 0, 0, -g*sin(q1y+q2)]; 

  
%rho = [5; 7.29; 6.25; 0; 5; 6.25]; 
deltam2 = 5; 
deltaL2 = 0.125; 
rho1 = L1^2*deltam2; 
rho2 = (L2+deltaL2)^2*(m2+deltam2)-L2^2*m2; 
rho3 = ((m2+deltam2)*deltaL2+deltam2*L2)*L1; 
rho4 = 0; 
rho5 = L1*deltam2; 
rho6 = (m2+deltam2)*deltaL2+deltam2*L2; 
rho = [rho1; rho2; rho3; rho4; rho5; rho6]; 

  
zeta = Y'*r; 

  
epsilon = 1; 
beta = [0;0;0;0;0;0]; 
u = [0;0;0;0;0;0]; 

  
for i = 1:6 
    if zeta(i)>epsilon 
        beta(i) = abs(zeta(i)); 
    else 
        beta(i) = epsilon; 
    end 
    u(i)=-rho(i)*zeta(i)/beta(i); 
end 

  
k1 = 1;  
k2 = 1; 
K = [k1 0; 0 k2]; 
%% Evaluate the dynamics 
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ddq = inv(M)*(Y*(rho+u)-K*r-C*r)-lambda*dqt+ddqd; 
ddq1 = ddq(1); 
ddq2 = ddq(2); 
%% M-File output 
y   = [dq1;dq2;ddq1;ddq2]; 
%% End of  

 

F.4 Simulink file and MATLAB code for the simulation of the Dimensionless 

System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
mun   = u(1);     %x1        % feedback array 
q2n   = u(2);     %x2 
dmun  = u(3);     %x3 
dq2n  = u(4);     %x4 
%% Generalized quantities 
q    = [mun q2n]';       % Generalized coordinates 
dq   = [dmun dq2n]';       % Generalized velocities 
%% Generalized quantities  
m1   = 10; 
L1   = 1; 
Lc1  = 0.5; 
I1   = m1*L1^2/12; 
m2   = 5; 
L2   = 1; 
%Lc2  = 0.5; 
%I2   = 0; %m2*L2^2/12;% 0.083; 
g    = 9.81; 

  
k3 = I1/(m2*L1^2); 
k4 = L2/L1; 
k5 = Lc1/L1; 
k6 = m1/m2; 

  
a1   = 2*k4*cos(q2n)+1+k4^2+k5^2*k6+k3; 
a2   = k4+cos(q2n); 
a3   = 1; 
%% Equation of motion pieces 
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M    = [a1 a2; a2 a3]; 
C    = sin(q2n)*[-k4*dq2n -k4*dmun-dq2n; k4*dmun 0]; 
G    = [-g/L2*(k5*k6+1)*sin(mun)-g/L2*k4*sin(mun+q2n);-g/L2*sin(mun+q2n)]; 
%% Trajectory Tracking variables 
q1d  = 0; 
q2d  = 0; 
qd   = [q1d; q2d]; 

  
dq1d = 0; 
dq2d = 0; 
dqd  = [dq1d; dq2d]; 

  
ddq1d = 0; 
ddq2d = 0; 
ddqd  = [ddq1d; ddq2d]; 

  

qt   = q-qd; 
dqt  = dq-dqd; 

  
la1 = 1;  
la2 = 1; 
lambda = [la1*sqrt(L2/g) 0;0 la2*sqrt(L2/g)]; 
v   = dqd - lambda*qt; 
a   = ddqd - lambda*dqt; 
r   = dqt + lambda*qt; 
%% Evaluate the control law 
ac1 = a(1); 
ac2 = a(2); 
v1  = v(1); 
v2  = v(2); 

  
Y = [k4*ac1, k4*ac1+ac2, cos(q2n)*(2*k4*ac1+ac2)-

sin(q2n)*(dq2n*v2+k4*dmun*v2+k4*dq2n*v1), ... 
      -L2*sin(mun), -L2*sin(mun), -L2*sin(mun+q2n);... 
      0, k4*ac1+ac2, cos(q2n)*k4*ac1+sin(q2n)*k4*dmun*k4*v1, 0, 0, -

L2*sin(mun+q2n)]; 

  
rho = [5/m2/L2; 7.29/m2/L2; 6.25/m2/L2; 0; 5/m2/L2; 6.25/m2/L2]; 

  
zeta = Y'*r; 

  
epsilon = 1; 
beta = [0;0;0;0;0;0]; 
u = [0;0;0;0;0;0]; 

  
for i = 1:6 
    if zeta(i)>epsilon*sqrt(L2/g)*L2/g 
        beta(i) = abs(zeta(i)); 
    else 
        beta(i) = epsilon*sqrt(L2/g)*L2/g; 
    end 
    u(i)=-rho(i)*zeta(i)/beta(i); 
end 
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k1 = 1/(m2*L1*L2)*sqrt(L2/g);  
k2 = 1/(m2*L2^2)*sqrt(L2/g); 
K = [k1 0; 0 k2]; 

  
tau = Y*(rho+u); 
taud = [tau(1)/L1;tau(2)/L2]; 
%% Evaluate the dynamics 
ddq = inv(M)*(taud-K*r-C*r)-lambda*dqt+ddqd; 
ddmu = ddq(1); 
ddq2 = ddq(2); 
%% M-File output 
y   = [dmun;dq2n;ddmu;ddq2]; 
%% End of  

 

F.5 Simulink file and MATLAB code for the simulation of the Morphed 

System 

 

 

 

 

 

 

 

 

 

 

 

 

 

function y = fcn(u) 
%% Main Vectors 
mun   = u(1);     %x1        % feedback array 
q2n   = u(2);     %x2 
dmun  = u(3);     %x3 
dq2n  = u(4);     %x4 
%% Generalized quantities 
q    = [mun q2n]';       % Generalized coordinates 
dq   = [dmun dq2n]';       % Generalized velocities 
%% Generalized quantities  
m1   = 10; 
L1   = 1; 
Lc1  = 0.5; 
I1   = m1*L1^2/12; 
m2   = 5; 
L2   = 1; 
%Lc2  = 0.5; 
%I2   = 0; %m2*L2^2/12;% 0.083; 
g    = 9.81; 

  
k3 = 0; %I1/(m2*L1^2); 
k4 = 0; %L2/L1; 
k5 = 1; %Lc1/L1; 
k6 = m1/m2; 
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%% Equation of motion pieces 
M    = [2*k4*cos(q2n)+1+k4^2+k5^2*k6+k3 k4+cos(q2n); k4+cos(q2n) 1]; 
C    = sin(q2n)*[-k4*dq2n -k4*dmun-dq2n; k4*dmun 0]; 
G    = [0;-sin(q2n)]; 
%% Trajectory Tracking variables 
q1d  = 0; 
q2d  = 0; 
qd   = [q1d; q2d]; 

  
dq1d = 0; 
dq2d = 0; 
dqd  = [dq1d; dq2d]; 

  
ddq1d = 0; 
ddq2d = 0; 
ddqd  = [ddq1d; ddq2d]; 

  
qt   = q-qd; 
dqt  = dq-dqd; 

  
la1 = 1;  
la2 = 1; 
lambda = [la1*sqrt(L2/g) 0;0 la2*sqrt(L2/g)]; 
v   = dqd-lambda*qt; 
a   = ddqd-lambda*dqt; 
r   = dqt+lambda*qt; 
%% Evaluate the control law 
a1 = a(1); 
a2 = a(2); 
v1  = v(1); 
v2  = v(2); 
deltam2 = 5; 
deltaL2 = 0.125; 
dm2 = deltam2/m2; 
dL2 = deltaL2/L2; 

  
Y = [a1, k4*a1+a2, cos(q2n)*(2*k4*a1+a2)-sin(q2n)*(dq2n*v2+k4*dmun*... 
                    v2+k4*dq2n*v1), 0, 0, -sin(q2n);... 
      0, k4*a1+a2, cos(q2n)*a1+sin(q2n)*dmun*k4*v1,... 
                                      0, 0, -sin(q2n)]; 

  
zeta = Y'*r; 

  
epsilon = 1; 
beta = [0;0;0;0;0;0]; 

  
for i = 1:6 
    if zeta(i)>epsilon*sqrt(L2/g)*L2/g 
        beta(i) = abs(zeta(i)); 
    else 
        beta(i) = epsilon*sqrt(L2/g)*L2/g; 
    end 
end 
u1 = zeta(1)/beta(1); 
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u2 = zeta(2)/beta(2); 
u3 = zeta(3)/beta(3); 
u6 = zeta(6)/beta(6); 

  

  
tau1 = (u3-1)*((1+dL2)*dm2+dL2)*(v2*dq2n*sin(q2n)-a2*cos(q2n))+... 
       (-u1+1)*a1*dm2; 
tau2 = (u6-1)*((1+dm2)*dL2+dm2)*sin(q2n)-((1+dm2)*dL2+dm2)*(u3-1)*a1*... 
        cos(q2n)-(u2-1)*a2*((1+dL2)^2*(1+dm2)-1); 
taud = [tau1;tau2]; 

  

  
k1 = 1/(m2*L1*L2)*sqrt(L2/g);  
k2 = 1/(m2*L2^2)*sqrt(L2/g); 
K = [k1 0; 0 k2]; 
%% Evaluate the dynamics 
ddq = inv(M)*(taud-K*r-C*r)-lambda*dqt+ddqd; 
ddmu = ddq(1); 
ddq2 = ddq(2); 
%% M-File output 
y   = [dmun;dq2n;ddmu;ddq2]; 
%% End of  

 

F.6 MATLAB code to produce the plots for Chapter 6 

g = 9.81; 
L2 = 1; 
%% full 
figure(1); 
plot(q1.time,q1.signals.values,q2.time,q2.signals.values); 
grid on 
title('time vs q link1 measured from x'); 
legend('q1','q2') 
xlabel('time(s)') 
ylabel('angular position(rad)') 

  
%% coordinate change and point mass 
figure(2); 
plot(q1y.time,q1y.signals.values,q2y.time,q2y.signals.values); 
grid on 
title('time vs q link1 measured from y link2 point mass'); 
legend('q1y','q2') 
xlabel('time(s)')  
ylabel('angular position(rad)') 

  
figure(3); 
plot(q1y.time,q1y.signals.values+pi/2,q1.time,q1.signals.values,'--',... 
     q2y.time,q2y.signals.values,q2.time,q2.signals.values,'--'); 
grid on 
title('time vs q link1 measured from x link2 point mass compared to figure 

1'); 
legend('q1new','q1','q12new','q2') 
xlabel('time(s)') 
ylabel('angular position(rad)') 
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%% dimensionless 
figure(4); 
plot(mun.time,mun.signals.values,q2n.time,q2n.signals.values); 
grid on 
title('time vs q link1 measured from y link2 point mass dimensionless'); 
legend('mu','q2') 
xlabel('time(unitless)') 
ylabel('angular position(rad)') 

  
figure(5); 
plot(mun.time*sqrt(L2/g),mun.signals.values,q1y.time,q1y.signals.values,'--

',... 
     q2n.time*sqrt(L2/g),q2n.signals.values,q2y.time,q2y.signals.values,'--

'); 
grid on 
title('time vs q link1 measured from y link2 point mass dimensionless'); 
legend('mu','q1y','q2n','q2') 
xlabel('time(unitless)') 
ylabel('angular position(rad)') 

  
%% morphed  
figure(6); 
plot(mum.time,mum.signals.values,q2m.time,q2m.signals.values); 
grid on 
title('time vs q link1 measured from y link2 point mass morphed'); 
legend('\rho','\theta') 
xlabel('time(unitless)') 
ylabel('arc length(unitless) and angular position(rad)') 

  
figure(7); 
plot(mum.time*sqrt(L2/g),mum.signals.values); 
grid on 
title('Morphed Link1 response'); 
xlabel('time(unitless)*\gamma(s)') 
ylabel('arc length(unitless)') 

  
figure(8); 
plot(q2m.time*sqrt(L2/g),q2m.signals.values); 
grid on 
title('Morphed Link2 response'); 
xlabel('time(unitless)*\gamma(s)') 
ylabel('angular position(rad)') 
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