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Abstract

The work in this dissertation explores interfacing, modeling, and automation of continuum

manipulators. In particular, we work to build a bridge between continuum robots and new areas

of research through haptic interfacing, and explore how established and popular methods in the

broader robotic community apply to continuum robots and their applications.

First, we describe a novel haptic interface designed specifically for the teleoperation of

extensible continuum manipulators. The proposed device is based off of, and extends to the haptic

domain, a kinematically similar input device for continuum manipulators called the MiniOct. The

work in this dissertation describes the physical design of the new device, the method of creating

impedance-type haptic feedback to users, and some of the requirements for implementing this device

in a bilateral teleoperation scheme for continuum robots. We report a series of experiments to

validate the operation of the system, including simulated and real-time conditions. The experimental

results show that a user can identify the direction of planar obstacles from the feedback for both

virtual and physical environments. Further, we discuss the challenges for providing feedback to an

operator about the state of a teleoperated continuum manipulator.

Next, we explore methods for approximating continuum robot dynamics through rigid bodies

connected together via compliant joints. The nature of the joints are designed to capture the material

properties of continuum robot backbones, while the rigid links approximate the inertia and shape of

the actual continuum robot’s body. In evaluating the models, we formulate a state estimator based

on energy minimization methods and compare the estimated state of a physical robot to ground truth

values provided by external sensors. Finally we evaluate the model through a series of experiments

testing the step response of the model and an experiment to observe the model throughout dynamic

motion. The results show a good match between predicted motion of the simulated robot and the

physical robot’s state estimator.
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Continuum robots have long held a great potential for applications in inspection of remote,

hard-to-reach environments. In future environments such as the Deep Space Gateway, remote de-

ployment of robotic solutions will require a high level of autonomy due to communication delays and

unavailability of human crews. Further work in this dissertation explores the application of policy

optimization methods through Actor-Critic gradient descent in order to optimize a continuum ma-

nipulator’s search method for an unknown object. We show that we can deploy a continuum robot

without prior knowledge of a goal object location and converge to a policy that finds the goal and

can be reused in future deployments. We also show that the method can be quickly extended for

multiple Degrees-of-Freedom and that we can restrict the policy with virtual and physical obstacles.

These two scenarios are highlighted using a simulation environment with 15 and 135 unique states,

respectively.

Finally, given the challenging nature of continuum robot modeling in comparison with tra-

ditional rigid-link robots, we consider the Kinematic-Model-Free (KMF) robot control method, pre-

viously shown to be extremely effective in permitting a rigid-link robot to learn approximations of

local kinematics and dynamics (“kinodynamics”) at various points in the robot’s task space. These

approximations enable the robot to follow various trajectories and even adapt to changes in the

robot’s kinematic structure. In a final work in this dissertation, we present the adaptation of the

KMF method to a three-section, nine degrees-of-freedom continuum manipulator for both planar

and spatial task spaces. Using only an external 3D camera, we show that the KMF method allows

the continuum robot to converge to various desired set points in the robot’s task space, avoiding the

complexities inherent in solving this problem using traditional inverse kinematics. The success of

the method shows that a continuum robot can “learn” enough information from an external camera

to reach and track desired points and trajectories, without needing knowledge of exact shape or

position of the robot.
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Chapter 1

Introduction

1.1 Continuum Robots

Continuum, or continuous backbone, robots [1] manifest as a cross between traditional

rigid-link robots (given their ability to maneuver in, sense, and interact with their environment)

and applied materials and compliant mechanism design, as the choice of material and actuation

modality can prove to be as influential to the function of a continuum robot as the arrangement of

joints is to a traditional rigid-link robot. The “continuum” element of this class of robots draws

many parallels to the biological world, ranging from vertebrates with continuum appendages such

elephant trunks and prehensile tails to invertebrates such as cephalopods whose entire body is made

up of compliant, soft material capable of extreme dexterity and manipulation [2–5]. Continuum

robots also draw inspiration from plants, with works exploring plant locomotion [6, 7], nutrient

and environment driven growth [8, 9], and mimicking of unique plant structures to aid in task

execution [10, 11]. The diversity of biological inspiration for this class of robots also creates one of

the core subclass divisions, that of extensible and non-extensible continuum robots. As the name

suggests, extensible continuum manipulators, such as in [12, 13], have the ability to extend and

retract their length as desired, where non-extensible continuum robots have a fixed length from the

time of construction, though the effective length of some continuum robots built from inextensible

materials can be adjusted using concentric, constraining tubes [14,15].

Along with drawing inspiration from a different biological source than the standard an-

thropomorphic robots, continuum robots have a number of function related characteristics that
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distinguish them from traditional rigid-link robots. One such characteristic is their ability to change

shape (bend) at any point along their structure, allowing them to manifest a theoretically infinite

number of Degrees-of-Freedom (DoF) and exhibit hyper-redundancy within their work-space [16].

This ability allows continuum robots to conform to obstacles and perform maneuvers such as whole-

arm manipulation where they use a portion of their length to manipulate an object directly instead

of just the end-effector or tool-end [5,17,18]. The hyper-redundancy also presents a high dimension

of self-motion [19], in which the robot can alter its backbone shape without changing the location

of the end-effector, a useful task for conforming to changes in the environment while performing a

task.

Another distinguishing characteristic of continuum robots is fact that the source of actuation

is generally located away from the core structure of the manipulator [20], transferring actuation

through a variety of actuation types, including tendons, pneumatic or hydraulic pressure, or synthetic

muscles that rely on external power sources to drive local locomotion, among others. This absence

of the actuation source in the length of the manipulator makes continuum robots very scalable, with

solutions ranging from robots that are a couple centimeters in length [21] for non-invasive surgery

to multiple meters [22] for inspection and manipulation in hard-to-reach environments.

1.1.0.1 Applications for Continuum Robotics

The scalability and remote actuation aspects of continuum manipulators together bring

a plethora of application spaces to these systems. One popular field for application is the use of

continuum robots in the medical field [21], where we can find several examples of medical procedures

[23–26] that benefit from small tool arms that are well suited for the curving paths of various

structures in human anatomy. The applicability of continuum robots in medicine draws in part

on the ability of continuum robots to perform follow-the-leader maneuvers [27, 28], ideal for small

insertion points.

Also benefiting from the follow-the-leader aspect of continuum robots is the exploration

and inspection of hard-to-reach environments [29–32], both structured and unstructured. Combined

with the natural compliance of these robots, this also lends to continuum robots being ideal for

cluttered environments [33, 34] that could cause rigid-link robots to become trapped. In particular,

the introduction of growing robots, as related in [9,35] and which share many similarities with tradi-

tional continuum robots, showcases the ability of soft growing structures to explore highly restricted
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environments and take advantage of the soft structure to conform and react to the environment,

giving even greater access restricted, traditionally non-navigable spaces.

One application area of particular interest in this work is the use of continuum robots in

assisting Space exploration and extending mission life. In particular, their suitability for inspection

and movement in cluttered environments has shown potential for application in Space applications

[36,37] aboard the International Space Station, and could similarly be useful the future Deep Space

Gateway [31]. Other application spaces for continuum robots include underwater exploration [38],

search and rescue [39], and hazardous waste material handling [10,40,41].

1.1.1 Modeling and Control Literature

1.1.1.1 Continuum Robot Kinematics

Kinematic modeling of continuum robots has been the subject of extensive research, produc-

ing everything from practical but approximate models to complex but geometrically exact solutions.

A modal approach was presented in [16], where the authors describe the robot shape using easily

formulable modal functions specified as the product of a Bessel function with sines and cosines.

The work presented in [42] employed a similar approach but instead used wavelet decomposition.

The discrepancy between the shapes achievable by the finite number of proposed model curves and

those of the continuum robot’s backbone curve limited the applicability of this approach. Perhaps

the most commonly adopted approach to modeling constant curvature continuum robot kinematics

to date is that of [43], which introduced models for forward and inverse kinematics. The result,

by relating backbone shape to actuator variables, extends that obtained in [44] which used virtual

rigid-link kinematics and conventional D-H parameters to relate backbone shape to task coordi-

nates [20, 45–47], which in turn can be shown to produce the same results as the approach taken

in [48–50] which treats the robot backbone as a curve in space, and utilizes Frenet-Serret frame

floating along the curve to characterize it. However, all of these models suffer from numerical

(algorithmic, i.e. numerical instabilities at configurations where there is no corresponding physi-

cal limitation) singularities and demand special numerical treatment when close to straight (zero

curvature) section configurations. In response to the above limitations, an alternative stable yet

computationally intensive approach was presented by Godage et al. [51,52] using mode shape func-

tions, wherein the configuration space variables are approximated using multivariate Taylor series.

3



This approach has until recently been established as the most numerically stable currently in the

literature. However, recently a new singularity-free analytical approach for modeling constant cur-

vature kinematics has been introduced [53] and further detailed in [54], which derives inspiration

from screw theory.

In other work in continuum kinematic modeling, the use of exponential coordinates to define

kinematics has also appeared in the literature [46, 55, 56], and is shown to lead to essentially the

same results as other constant curvature kinematic models. When assuming non-constant curvature,

the theory of Cosserat Rods has been particularly useful in deriving geometrically exact kinematic

models which account for external and gravitational loading, but are harder to implement and

complex in nature [57–59].

1.1.1.2 Continuum Robot Dynamics

Considering the diversity of methods used to model continuum robot kinematics, it is no

surprise that continuum robot dynamics has also received notable attention, especially of late as

computers become more powerful and able to better aid in calculating the complex dynamics of these

systems. Early continuum dynamics characterized continuum manipulators as infinite serial chains

projected onto established robotic structures [60], where later expansions of this idea characterized

the chains using Frenet-Serret frames [49] and added extensibility [61].

More recent dynamics work for continuum robots has approached the problem from the

material and structure view, using continuum mechanics to relate continuum robots to beams under-

going large deflection [62] or a combination of beam mechanics and the Euler-Lagrange method [63].

Similarly, a popular foundation theory for continuum dynamics of late has been Cosserat rod the-

ory [64–66], which provide for large deflections and can provide geometrically exact solutions (though

not fit for extensible continuum robots).

Other dynamic models related to continuum robots have utilized approximations coupled

with traditional dynamics formulations. In [67] and [68], the models used simplified, small mechanical

elements combined with the Newton-Euler method to produce approximate simulations of continuum

bodies without creating closed-form equations that could be used for control formulation. Conversely,

[69] uses the Euler-Lagrange formulation to produce closed form dynamics for a single section,

non-extensible continuum robot based on ideal, constant curvature kinematics. In [70], the Euler-

Lagrange method is also used to produce a planar dynamic model for a multi-section continuum
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robot. Finally, the principal of virtual power is used in [71] to derive dynamics of a continuum rod

with high accuracy, but it is not clear how usable this model is in real-time and is not accompanied

with inverse mechanics model.

Among these various models the complexity of the inherent mechanics, especially when

applied to multiple sections, often proves to be unwieldy without making numerous simplifying

assumptions. Indeed, our own recent approximate models [72,73] are still computationally intensive

even after removing the complexity of continuum mechanics and settling for approximate rigid-link

models. Coupled with the effects of gravity, achieving motion along a desired path is dependent on

reliable modeling and sufficient feedback. With respect to continuum robots in practical applications,

the states of such solutions are often inherently unobservable, under-actuated, or both, without

the implementation of computationally expensive sensor arrays or a suite of external cameras to

extract full robot shape while avoiding occlusion. Given these challenges, it is no surprise that the

development of continuum dynamic models and control using those models remains active and open

areas of interest and research.

1.1.2 Literature on Continuum Interfacing

Teleoperation, the idea of remotely operating a deployed system through some form of

human to machine interface, is an area of robotics that is fundamental for the development and

use of robotic systems in remote environments. The ability to interact with a remote environment

through a robotic system remains a major advantage when dealing with hazardous situations and

unstable surroundings [74]. Despite extensive research in the topic of teleoperation [75], the subject

is still open to innovation, especially when concerning less conventional continuum robots.

In the literature, there have been various investigations into the teleoperation of extensible

continuum manipulators [76–78]. These particular works demonstrated useful capabilities in tele-

operating continuum robots but each had shortcomings in various aspects, especially concerning

intuitive interfacing. However, these works also relied on complex mappings and control schemes in

order to bridge a mismatch in kinematics and degrees-of-freedom which do not necessarily present

clearly to users. There have been three recent works particularly focused at developing kinematically

similar interfaces for this class of robots. In [79], a 3-section, 9 Degree-of-Freedom (DoF) continuum

interface was introduced specifically for the teleoperation of continuum manipulators. The high DoF

allowed for 1:1 mappings between the device, termed the MiniOct, and 3-section extensible contin-
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uum robots. The MiniOct was also shown to be a versatile tool that could serve as an interface for

a variety of continuum robots that varied in both scale and actuation type. The continuum inter-

face presented in [80] is a 4 DoF interface capable of mapping to non-extensible 4 DoF continuum

robots. The works shows an intuitive correlation between the shape of the master device and the

slave device. In [81], a continuum interface geared towards the teleoperation of growing-vine robots

is introduced. In addition to the soft nature of the interface, a unique feature of this device is the use

of IMUs to measure the curvature of the device, independent of orientation. The interface itself has

2 DoF, with an additional linear potentiometer that controls the growth rate of vine robots. While

unidirectional teleoperation has clearly been explored for continuum manipulators, there appears

to be no literature on the design or use of haptic interfaces for teleoperating extensible continuum

manipulators.

A natural step forward for the teleoperation of continuum robots would be the introduction

of bilateral teleoperative modes, one example of which would be to provide information from the

deployed secondary system to the user through haptic feedback. Haptic feedback is the method

of providing sensory feedback through touch [82]. Haptic feedback has been repeatedly used in

teleoperated surgery in order to provide surgeons with additional insight about tissues and patient

vitals [83], [84]. Other work has studied human perception and lessons that can be learned from

psychology in order to maximize the information that can be perceived through auxiliary senses [85].

While many haptic interfaces exist and have found practical applications [86], these solutions exhibit

a mismatch in DoF and kinematics to multi-section extensible continuum manipulators.

1.1.3 Simulating Continuum Interaction with the World

Given the complexity of continuum robot modeling, especially any attempts to capture the

nature of the compliant materials comprising these devices, it is not surprising that the options for

standardized simulators is limited or non-existent. In designing systems for future deployment and

integration, the ability to plan and simulate deployment scenarios can be crucial to mission success

and save both time and resources prior to implementation. There are few examples of software simu-

lations of continuum robots that present both visual simulations and incorporate physical properties

of these systems.

In [87], a virtual user interface is created to drive the OctArm continuum robot and pro-

vide a visual approximation of the ideal robot shape based on continuum kinematics. While the
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interface is customizable and able to potentially connect to various continuum systems, it does not

relay information about the actual robot or simulate the physics of the real-world. Likewise, various

simulation models have been presented across numerous works that convey continuum robot con-

figuration throughout execution of a dynamic response, but are largely one-off simulations [88, 89]

or are merely visible representations of previously executed/solved dynamic model simulations (i.e.

the visual elements are only defined for the duration of the experiment).

Not reported directly in the literature, but relevant to the simulation work introduced

herein, are examples of continuum robot simulation models that fill some of the gaps in literature.

For example, the work in [90] creates and presents a continuum library that establishes a visual

model of a continuum robot using with multiple sections based on the Jones kinematic model. This

model is notable also because of its compatibility with the popular ROS architecture. Where this

model stops short is in providing a viable model for physics simulation. Conversely, the package

in [91] introduces a custom physics simulation of continuum robots that includes a basic visualizer

and customizable robot parameters. However, the package does not include simulations with other

models or a direct way to connect with other platforms or tools. Similarly, [92] introduces a custom

physics simulation for testing and modeling continuum robots in Matlab based on beam mechanics,

but without the ability to simulate complex motions and interactions with the environment and

other systems.

In considering a general purpose package for simulating continuum robots in various envi-

ronments, communicating with off-the-shelf tools and systems, the aforementioned ROS architecture

presents a widely utilized framework that provides for relatively simple system integration. There

are many systems already supported with custom ROS packages such as KUKA, Kinova, and ABS,

as well as more custom and unique systems such as Robonaut [93]. The work in this dissertation will

explore integrating continuum robots into the ROS architecture in a generalized form, focusing on

the physics simulator Gazebo and the visual tool RVIZ. Basic tools that highlight the functionality

of the package will also be discussed, before some use cases of the package are presented.

1.1.4 Motion planning and automation Literature

There have been a number of explorations into motion planning methods for continuum

robots, which often can help avoid the challenges that redundancy and complex configuration spaces

bring to solving problems like inverse kinematics. Configuration space exploration and exploration
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through sample-based methods such as Rapidly-exploring Random Tree (RRT) methods have been

deployed for maneuvering continuum manipulators through various task spaces [94–98], even adap-

tively updating the knowledge and trajectory during execution [34]. Once configuration space driven

methods are implemented to locate points of interest in the continuum manipulator’s task space,

kinematics driven methods such as visual servoing [33] can be used to refine the manipulator’s

interaction with the environment.

Reinforcement learning (RL) provides an attractive alternative where a robot/agent learns

to take actions that maximize its cumulative reward through interactions with the environment.

Many early success stories exist, from training robots to compete in RoboCup competitions to

enabling robots to acquire advanced manipulation skills [99–102]. More recently with the rise of

deep learning, impressive results have been obtained on physical articulated robots for a wide range

of motor and manipulation tasks [103–106]. In the continuum robotics domain, a number of works

have explored the use of reinforcement learning to improve motion planning methods and improve

upon various control schemes [107,108]. Most relevant to this work is the use of a Soft Actor-Critic

(SAC) method in [89] to optimize a continuum manipulators policy for reaching a point in space

with the robot’s end-effector. In that work, the authors employ a Random Network Distillation

(RND) method to train a series of neural networks and then use the SAC algorithm to maximize

the return of the policy designed to capture a known object in space. They report a dependency on

sparse reward and a need for the RND method in order to promote adequate exploration. Of these

works, many rely on a need of a priori knowledge of the environment or of a specific goal state.

Herein, we investigate the feasibility of using a RL framework to train policies on continuum

manipulators. In particular, this dissertation explores the application of reinforcement learning for

continuum manipulators with the aim of automating continuum robots being used for inspection. An

actor-critic policy gradient method is applied with the purpose of locating a goal object and creating

a global policy that determines how the robot behaves when deployed with the task of observing

various points of interest in its task space. The method can be expanded for encompassing extra

DoF, as well as be used to develop policies simultaneously for different points of interest within the

robot’s workspace.

Rigid-link robots are, as the name suggests, traditionally comprised of rigid bodies connected

through a finite series of joints. While this makes for tractable dynamics and permits reasonable

controllability, this form of structure does not lend itself well to cluttered environments or scenarios
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in which collisions, even minor, can result in damage to the robot and environment. Conversely,

continuum robots, which can bend at any point along their continuous backbones, are designed to be

compliant, and in cluttered environments are able to experience contacts without causing damage.

The compliant nature of continuum robots makes them ideal for inspection and sensing in restricted

environments, such as cluttered cargo areas and hard-to-reach areas of interest. Unfortunately, this

increase in compliance also carries an increase in the complexity of the robot’s dynamics and inverse

kinematics, especially in the case of a redundant continuum manipulator. In this paper, we propose

the use of a model learning algorithm to replace the use of dynamics and kinematics in guiding a

continuum robot’s end-effector through space.

Continuum manipulators manifest a theoretically infinite number of Degrees-of-Freedom

(DoF), distinctly different from even hyper-redundant rigid-link robots, such as snake robots [16].

There is by now a fairly extensive literature on continuum robot kinematics, many of which con-

strain these infinite DoF to ideal assumptions about the robot and its environment. Given these

ideal conditions, the constant curvature based kinematic models [43, 53] have proven effective for

approximating the shape of continuum systems and the location of end-effectors in open space. Fur-

ther works have expanded into modeling non-constant curvature bending of continuum robots that

are subject to internal and external loads [16,109,110], or collisions with the environment [57,111].

These more realistic models, while better at approximating shape and predicting output under load,

require significantly more information about the continuum system and do not lend themselves well

to invertibility or the added complexity of implementation on multi-section continuum manipulators.

Neither of these classes of kinematic models have proven trivial for the execution of task space path

planning and following.

In considering the complexity of kinematic and dynamic models for continuum robots, it is

easy to see why the relatively few works that explore motion planning with continuum manipulators

have relied on simplification of these models or reduction in the number of DoF. This simplification

allows implementation of some of the popular motion planning methods used for rigid-link robots,

such as RRT [96,97] and reinforcement learning methods [107,108].
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1.2 Dissertation Preview

This section previews the content and contributions of the remaining chapters, which will

explore various aspects of continuum robots and robotics research.

In Chapter 2, Section 2.1, we briefly review continuum kinematics as they will be used

to relate the work presented throughout this dissertation. In Section 2.2, we introduce the first

haptic continuum interface, as reported in [112], designed for the bilateral teleoperation of extensible

continuum robots. The novelty of this work expands on a previous novel interface for continuum

robots that is kinematically similar to their intended secondary devices. The work introduces for the

first time an ability to achieve bilateral teleoperation of continuum robots in kinematically identical

interfacing and the use of haptics to relate error between actual and desired states in deployed

continuum systems. Section 2.3 then explores continuum robot simulation using physics simulators

and the applicability of ROS to continuum robots, a useful tool for the practical testing and use of

the haptic continuum interface. Previous simulation of continuum robots has largely used custom

physics simulations, not universally compatible packages, or in the case of previous works with

ROS, has ignored physics altogether and only simulated ideal kinematics. The work in this section

therefore presents a simulation model that is compatible with simulators in industry and with ROS,

to capture a functional approximation of continuum robots without the need for custom physics

engines.

In Chapter 3, we introduce a piece-wise constant curvature dynamic model for continuum

manipulators based on a rigid-link approximation of continuum robot sections. The novelty of this

model is to provide real-time dynamics approximation of continuum robots while also capturing an

approximation of the compliance, and subsequent manifestation of non-constant curvature, of con-

tinuum robots. Section 3.3 presents a method for approximating the piece-wise constant curvature

of the model with the physical robot without the need for measuring the full state of the robot.

Finally, Section 3.4 compares the response of the model to that of a real continuum robot to various

stimuli, followed by discussion and suggestions for model expansion.

Chapter 4 explores two novel contributions investigating the automation of continuum robot

tasks. The first work, in Section 4.1 and first reported in [113], applies reinforcement learning meth-

ods to the task of searching a workspace for points of interest. The method improves upon previous

state-of-the-art visual servoing for continuum robots by creating a global policy that functions when
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the robot is in aliased states. The second automation related work, presented in Section 4.2 and

first reported in [114], explores using a model-free control method to automate the motion of a

continuum robot’s end-effector about its workspace while knowing no information about the struc-

ture or state of the robot itself. The work enables convergence to points in the workspace with

error equivalent to the state-of-the-art in continuum modeling and control, while greatly reducing

the complexity of information known about the robot and the amount of calculations necessary to

choose the appropriate inputs to drive the system.

Final conclusions and predictions for the future direction of these collective works is pre-

sented in Chapter 5.
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Chapter 2

Interfacing with the Continuum

World

In this chapter, we give a brief review and discussion of the kinematic models that ap-

pear throughout this dissertation and briefly review the intuitions different parameterizations of

continuum kinematics can provide. Following this, we introduce a novel continuum interface with

the capability of providing haptic feedback to users and enable bilateral teleoperation between the

interface and a deployed secondary system. Later in the chapter we introduce a ROS compatible

continuum robot simulation model that is useful for simulating continuum robot deployment and

provides a path towards system integration and communication with the broader robotic community.

Finally, we discuss considerations for both the haptic interface and ROS package.

2.1 Kinematic Preliminaries

This section serves to review continuum robot kinematic models as later referenced through-

out this work. Two models, found in the literature and reproduced here, offer equivalent mathe-

matical descriptions of continuum robots but present unique physical interpretations and intuitions

for continuum robot motion. Both of the following models are presented as constant curvature

kinematic models, in which continuum sections are assumed to bend at a constant rate along their

backbone, forming perfect circular segments.
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The first model, introduced in [43] and henceforth denoted in this work as the “Jones”

model, describes a 3 DoF continuum robot section via a section’s backbone arc-length (s), curvature

(κ), and direction of bending relative to the base frame (φ), as visually presented in Figure 2.1a.

This model originally draws inspiration from rigid-link robot kinematics, whereby the orientation

of the plane of bending is related by the rotation of a revolute joint at the base of the section (φ)

and both curvature and arc-length are related through a RPR (Revolute-Prismatic-Revolute) joint

configuration. The two revolute joints of the virtual RPR configuration are constrained to represent

the rotation between the base and end-point of the section and the prismatic joint is constrained to

match the chord length of the arc formed by the physical continuum section.

The second model heavily referenced throughout this thesis is first introduced in [53] and

later expanded in [54], and in this thesis is denoted as the ”Allen” model. Similar to the Jones model,

the Allen model uses three parameters to describe a single continuum section in three dimensional

space, represented visually in Figure 2.1b. The first two parameters, denoted u and v, are part of

an angular velocity vector ω(t) = [u(t), v(t), 0]T that describes the movement to the section’s end

frame relative to the section’s base frame. The value u can be inferred to be the rotation around the

X-axis in the base frame and v describes the rotation about the Y-axis. The rotation component

about the Z-axis is always zero. These values equate to a total rotation θ =
√
u2 + v2 about the

unit vector ω/‖ω‖. The third parameter is the section length, or arc-length, similarly defined as in

the Jones model but originally denoted h. For simplicity, we continue to use the variable s to denote

the central length of the section. The Allen model draws inspiration from Screw theory [115], in

which the configuration and motion of the continuum arm can be described through the rotation of

a point about a defined axis in space. The Allen parameterization is unique from the Jones model in

that it provides for stability and continuity of the kinematic parameters when a section is straight

or exhibits zero curvature, a discontinuity that plagues most other ”constant-curvature” kinematic

models.

While the two kinematic models present different parameterizations of a continuum section,

they are geometrically identical, allowing one to convert between the models at will. Both models also

provide for methods of calculating the kinematic parameters through the measurement of tendons

placed at intervals of 120◦ around the outside of a continuum section, as illustrated in Figure 2.2.

These equations, and the equations that allow one to convert between the two kinematic models, are

presented in Table 2.1. When comparing the equations side-by-side, it can appear as though the two
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(a) Continuum section described through arc-
length (s), curvature (κ), and direction of
bending (φ)

s

u

v

ω

(b) Continuum section described through
arc-length (s), and orthogonal rotation ele-
ments (u and v)

Figure 2.1: A comparison of kinematic parameters describing the same geometric configuration of a
continuum robot section with constant curvature.

models do not align perfectly when observing the relating equation for φ, but this is explained by

the fact that the initial reporting of the Jones model assumes tendon 1 is located along the Y-axis of

the base plane as opposed to along the X-axis as in the Allen model and depicted in Figure 2.2. This

creates an artificial 90◦ phase shift between the two models, but is easily remedied by introducing

the proper shift in either model when converting.
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Figure 2.2: Demonstration of tendon placement at 120deg intervals around a continuum section,
with the first tendon placed along the X-axis. The value d is the radial distance of the tendons from
the central backbone of the continuum section.

Jones Model Allen Model

1s = (l1+l2+l3)nd√
l21+l22+l23−l1l2−l2l3−l1l3

· sin
(√

l21+l22+l23−l1l2−l2l3−l1l3
3nd

) u = l2−l3
d
√

3
(2.1.1)

κ = 2

√
l21+l22+l23−l1l2−l2l3−l1l3

d(l1+l2+l3) v = s(t)−l1
d (2.1.2)

φ = tan−1
(√

3
3
l3+l2−2l1
l2−l3

)
s = l1+l2+l3

3 (2.1.3)

Relating Models

θ =
√
u2 + v2 = sκ

φ = tan−1
(−u
v

)
[u, v] = [−θ sinφ, θ cosφ]

Table 2.1: Comparison of Kinematic Model Parameters

The relative transformation matrix associated with each model is given below. It is left as

1One can also use equation 2.1.3 to approximate arc-length for the Jones model.
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an exercise for the reader to note that the relating equations in Table 2.1 can be used to convert

from each transformation matrix to the other and back without loss of information when accounting

for the phase shift of φ. The transformation matrix for the Jones kinematic model is:

H(s, κ, φ) =



c2(φ)(c(sκ)− 1) + 1 s(φ)c(φ)(c(sκ)− 1) −c(φ)s(sκ) c(φ)(1−c(sκ))
κ

s(φ)c(φ)(c(sκ)− 1) c2(φ)(1− c(sκ)) + c(sκ) −s(φ)s(sκ) s(φ)(1−c(sκ))
κ

c(φ)s(sκ) s(φ)s(sκ) c(sκ) s(sκ)
κ

0 0 0 1


, (2.2)

where c(·) and s(·) represent the functions cos(·) and sin(·), respectively, and c2(·) denotes cos2(·).

The transformation matrix for the Allen model is given as:

H(u, v, s) =



γv2 + 1 −γuv ζv −γsv

−γuv γu2 + 1 −ζu γsu

−ζv ζu cos(θ) ζs

0 0 0 1


, (2.3)

where ζ(θ) = sin(θ)/θ and γ(θ) = (cos(θ) − 1)/θ2. As noted in Table 2.1, the value θ in the case

of the Allen model is defined to be θ =
√
u2 + v2. It is noted in the original reporting of the Allen

model that the functions ζ(θ) and γ(θ) can be shown to still be defined when θ is zero using the

Taylor series expansions of sine and cosine.
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2.2 Haptics in the World of Continuum Interfaces: The Hap-

tOct

In this section we introduce the HaptOct, a haptic continuum interface capable of providing

a one-to-one kinematic mapping between the user interface and a 9 DoF extensible continuum

manipulator, the first known haptic display targeted directly at continuum manipulators. The core

of this design is based on a previously reported interface called the MiniOct, but with the added

ability to oppose user input based on the state of a deployed secondary system located in a remote

environment.

The novelty of this work is found in using error between the primary continuum interface

and the deployed secondary system to convey somatosensory input to the user, in addition to the

visual information conveyed by the kinematically similar interface. The use of such systems is widely

available in rigid-link robot teleoperation, where it is a relatively simple matter to calculate motor

torques on the secondary system and apply similar torques to an interface that is identical or similar

to the remote robot. With respect to continuum robots, it is not a trivial matter to calculate exerted

torques, interactive forces from the environment, or even sense internal deviation from an ideal state

without relatively large amounts of information and detailed, computationally expensive models.

The following subsections will explore the construction of the HaptOct, the underlying

process for generating the virtual impedance display, and experiments using virtual environments

and using a physical remote robot to test the efficacy of the system.

2.2.1 The MiniOct: A Kinematically Similar Interface

In [79], a novel continuum robot interface was introduced in the form of the MiniOct, a

9 DoF interface capable of the same motions and configurations as a 9 DoF extensible continuum

robot. The device, pictured in Figure 2.3a, consisted of a passive continuum interface (labeled as

region ‘A’ in the image) and a tendon storage and measurement portion (labeled region ‘B’). The

continuum interface comprised of three continuum sections, each of which a user could manually

extend and bend in any direction, independent of the other sections. Each individual section is

comprised of a parallel set of extension springs and steel cables that allow an operator to extend

and curve each section into a desired configuration. Plastic spacers (9 per section) are distributed

evenly along the length of a section and keep the springs and cables uniformly, radially, spaced.
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The spacers cause any imposed curvature to divide evenly along the length of the section. A spring

loaded tab connected to each structural steel cable and housed within the section divider at the

base of each section holds the section shape until the operator changes the shape by pressing one

of the tabs, releasing the cable, and then extending or shortening the length of the cable. When a

tab is released by the operator, the shape is held by friction. An illustration of the operation of this

mechanism is given in Figure 2.4 The continuum interface is supported via 3 aluminum rods. These

rods can be extended or shortened to allow for the storage of longer structural cables.

The MiniOct detected shape of the continuum section through a passive series of spring

loaded string potentiometers. The changes in tendon length measured by the string pots were

converted to kinematic values using constant curvature kinematics such as found in Section 2.1. The

continuum sections of the input device measured 10cm in length at rest and were capable of extending

approximately 100% of the default length. The overall device was 71.59 cm in height (including the

cable measurement region), with the continuum section able to extend an additional 30 cm when

at maximum extension for all 3 sections. The range of bending angle θ was approximately π, or

180◦, forming a perfect semi-circle. Demonstrations of this device teleoperating various continuum

robots displayed good shape matching between the interface and the secondary system in open-

loop schemes. The shape match could also be improved by a simple closed-loop controller on the

secondary system.

2.2.2 HaptOct Continuum Interface (A)

The continuum section of this device–the part handled by the user–was selected to be a

continuation of the continuum interface described for the MiniOct. The MiniOct’s design was

chosen as the basis for this new device because of the kinematic and visual similarity between the

master device and potential secondary systems. Additional design details of the original continuum

interface are described in [79].

An example of multi-section teleoperation using the continuum interface as it is implemented

for the HaptOct can be seen in Figure 2.5. One addition made to the continuum interface for this

new device was to include a funnel running through the center of the device directly below the

continuum element (labeled in Figure 2.3b). This funnel serves to protect the electronics and device

internals in the lower sections of the HaptOct by guiding the excess structural cable away from

potential snag points or positions that could short electrical components. The guide funnel also
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(a) MiniOct: a 9 DoF extensible continuum interface

A

B

C

D

Support  Rod

Future 

Interface

PanelFan

Cable Guide

Funnel

(b) HaptOct: a haptic continuum interface

Figure 2.3: Upgrading the passive MiniOct interface (left) to the haptic feedback capable HaptOct
(right).

prevents the user from being injured by the moving steel cables.

2.2.3 Configuration Sensing (B)

As with the original MiniOct, we use the measured length of three cables (per section) to

determine the length and shape of each section. As an upgrade to the passive and noisy string

potentiometers in the original device, we have replaced each string pot with a combination of an

HEDS-5540 series optical encoder and a 25.4mm diameter spool that stores excess cable. The

encoders are capable of providing 2000 counts per rotation of the spool, giving a granularity of

39.9µm for each cable. In addition to the spools, a pulley located near each spool helps route the
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Figure 2.4: Basic Operation of Continuum Section

Figure 2.5: Teleoperation Between HaptOct (left) and OctArm Manipulator (right)

cables from the horizontal orientation of the spool to the extending vertical motion of each section.

One advantage of this overall arrangement is the elimination of a maximum extension restriction for

the overall device (previously 30cm).

The use of the optical encoder and spool also removes the passive, but increasingly opposing,

force of the original spring loaded potentiometers that beneficially removed slack on the measurement

cables but also made it harder to extend the MiniOct to full length (a noted issue in [79]). In order

to replace the slack collection, we used a solution inspired by slack line detection in industry [116].

As seen in Figure 2.6, the solution involves placing a micro-limit switch with a roller in line with

each measurement tendon just above the routing pulleys. The cover on the switch keeps the tendon
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pressed against the roller when there is excessive slack and prevents the tendon from falling away

from the pulley or out of alignment. When the switch opens, the resulting signal causes the device

to take in slack, using the motors described in Section 2.2.4, until the switch closes. Important to

the development was the release force of the switches (8.15 grams-force), as a higher release force

could potentially turn the spool and open the switch when no actual slack existed on the line. This

solution to use limit switches to detect and avoid slack is similarly implemented in [117]. Other

recent solutions in continuum robotics to avoid slack such as [118] and [119] require considerably

more complex hardware and foot print than the implemented solution herein.

The changes in length recorded by the encoders are then converted via kinematics [120] to

shape values that can be used as input for a slave device as with the MiniOct.

Spool

Routing

Pulley

Limit

Switch

Switch

Cover

Figure 2.6: Limit Switch and Cover for Slack Detection

2.2.4 Actuation (C)

The HaptOct acts as an impedance-type haptic device by reflecting opposing forces to an

operator in response to extensions of the continuum interface. The medium for these opposing forces

is the individual measurement cables in the interface, but the forces themselves are generated by

DC motors connected to the measurement cable spools. Each spool is connected to the output shaft

of a Maxon Brushless DC Motor (series 273753) by a 6mm Pololu mounting hub. Connected to

the opposite end of the motor shafts are the encoders for the measurement cables. All nine motors

lack a gearbox connected to the output of the motor, thereby allowing the cable spools to easily

turn by hand when unpowered, which is critical for allowing the operator to easily manipulate the

continuum interface without unintended resistance. These motors are readily available and have

a desirable current-to-torque relationship for our needs. The DC motors are driven by a series of
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Pololu G2 high power motor drivers, which require a Pulse Width Modulated (PWM) signal and a

binary direction signal. Each Maxon motor is mounted to a custom motor mount that encases the

entire motor and provides an outlet for the shaft, power cables, and the encoder port.

2.2.5 Processing (D)

The core processing of the HaptOct is executed by an Arduino Due which has an Atmel

SAM3X8E ARM Cortex-M3 CPU [121]. The board features an 84MHz clock, 12 PWM pins, 42

GPIO pins, and 12 analog input pins. The Due is capable of communication via serial USB, Inter-

integrated Circuit (I2C) protocol, and Serial Peripheral Interface (SPI). We primarily utilize the

serial communication and Bluetooth communication through an external Bluetooth module. The

Due was ultimately chosen for use because it enabled the HaptOct to achieve an on-board refresh

rate of approximately 2.5kHz when interacting with simple virtual obstacles such as virtual surfaces.

The refresh rate for bilateral teleoperation between the HaptOct and a slave device is largely limited

by the communication protocol, primarily serial USB communication in this case, and the size of

communication packets. The refresh rate for the experiments here averaged around 26Hz.

The device is powered by a 40W AC-to-DC converter that supplies an output voltage of

5V. The 5V output directly powers the Due and 2 DC computer fans that help ventilate the lower

sections of the HaptOct. In order to power the motors and motor drivers, the 5V is stepped up to

7.5V using a DC-to-DC converter.

2.2.6 Impedance Display

The logic and theory that drive the HaptOct are detailed in this section. The device is

designed to be an impedance display, which measures movement provided by the operator and

exerts a force that can be sensed by the operator [82]. Figure 2.7 contains the logic flow for the

bilateral teleoperation of a three-section continuum manipulator. The vector value lm represents the

lengths of measurement cables of the master device and ls defines the actuator lengths of the slave

device as measured locally by the slave system. These measurements are used to approximate the

kinematic values (qm,s) for both the master and slave device, respectively, by each system’s local

controller. The slave controller sends the vector input τs to the slave device as calculated by the

controller in order to achieve the designated configuration. The vector value Fm is the opposing
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force experienced by the operator corresponding to an error vector, es, produced by the slave system.

The error between the master device and tracking slave device is only one component of the total

opposing force felt by an operator. The central block, Tdelay, represents the lag in time experienced

between the master and slave device due to transmission over various networks and physical distance

between the two devices. In this work, we do not explore the impact of time lag on user experience

and assume a negligible round trip delay in our network.

Figure 2.7: Teleoperation Scheme for HaptOct

2.2.7 Master System

As described in Section 2.2.3, the HaptOct is capable of sensing the lengths of the measuring

cables through optical encoders. These lengths are converted to the forward kinematic values (as in

Section 2.1) used for the slave system and scaled to the kinematic range of the slave. Due to the

master device having the same kinematic structure as the slave, we are able to map one-to-one the

kinematics of the HaptOct to a slave device during this process. The scaled values are then relayed

to the slave system controller.

As previously mentioned, the master system receives the current error seen by the slave

system controller. The error values are then used to calculate an error force component which, in

addition to other force components, determines the final force experienced by the operator. The

reported error can be with respect to either the kinematic values or the actuator level errors (i.e.

lengths of tendons/actuators), but the computed output force to the operator is calculated with

respect to each individual measurement cable. An example of the relationship between the error,
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additional force values, and final output force is given by the equation:

Fl = Cee + C∆e∆e + C max
length

f max
length

(l) + ... (2.4)

f max
length

= (l − lmax) ·H(l − lmax) (2.5)

where the scalars Ce and C∆e are the force coefficients for the slave state error (e ∈ <9x1) and

change in error (∆e ∈ <9x1), respectively. The equation for the overall opposing force, Fl, for a

cable l can be expanded to incorporate additional force terms. For example, f max
length

defined in Eq.

2.5, and its corresponding coefficient C max
length

, exists to prevent the extension of a tendon beyond a

predetermined maximum length and thus adds to the overall opposing force Fl only when a cable on

the HaptOct is extended beyond a set maximum (as conveyed by the Heaviside step function H(·)).

This maximum length enforcing term is also smoothed by scaling the force by the extension beyond

the maximum length. Additional terms could include forces exerted by a known environment (i.e.

an a priori simulated obstacle), or internal forces/dynamics known about the slave device.

In order to provide an example for how the error in configuration between the master and

slave device contributes to individual tendon forces, we exploit the Allen kinematic model as reviewed

in Section 2.1. We have reported previously in [120] the 3-actuator based equations that relate s(t),

u(t), and v(t) to tendon or actuator lengths, reproduced here:

l1 = s(t)− d · v(t) (2.6)

l2 = s(t) +
d · v(t)

2
+

√
3d · u(t)

2
(2.7)

l3 = s(t) +
d · v(t)

2
−
√

3d · u(t)

2
(2.8)

In observing these equations, we find a unique relationship between each of the three length values

and the values s(t), u(t), and v(t), as expected. This can serve as the basis for forces due to arc-

length and bending in our system. By extension of these equations, we can calculate unique error

values for each individual tendon by comparing the master configuration with that of the slave. An
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example of the error term for tendon l2 is:

el2 = (sm(t)− ss(t)) +
vm(t)− vs(t)

2
+ (2.9)

√
3(um(t)− us(t))

2

where (sm,um,vm) is the master configuration and (ss,us,vs) is the slave configuration for a single

section. The change in error term (∆e) can be computed as the time derivative of this error, relating

whether or not the slave is converging to the configuration of the master device. The output force

computed from combining the various terms is then converted to a torque exerted by each DC motor

as a function of current supplied by an individual motor driver.

2.2.8 Slave System

The flow of logic shown in Figure 2.7 assumes the slave system in this scheme has the ability

to converge to a desired configuration through closed-loop control and can monitor and communicate

error as the system converges or diverges. As in [79], potential slave systems for this scheme can

have a variety of actuation methods (pneumatic, tendon, etc.) and different proportions or range-of-

motion. This flexibility in types of hardware capable of being teleoperated represents an advantage

of the proposed device.

2.2.9 Experimental Validation

We completed a series of experiments to validate both the hardware and the teleoperation

scheme. The following subsections describe the experiments and results. The OctArm manipulator

[12], illustrated in Figure 2.8, serves as an excellent example slave device in a bilateral teleoperation

scheme. The OctArm is a 3-section, 9 DoF continuum robot, actuated by pneumatically driven

McKibben actuators. Pressuring the McKibben muscle creates extension along the length of an

individual muscle. By connecting three of these muscles (or sets of them at equal pressures) in parallel

to form a continuum section, we can extend said section by pressurizing all muscles simultaneously

by the same amount or create bending by differentially pressurizing the muscles. The OctArm is

then comprised of three of these serially connected sections, with each section actuated by three

independently controlled pressures, and capable of independent extension and two DoF of spatial
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bending, providing the OctArm 9 DoF overall.

z 

Proximal Cross-section Muscle 

Muscle 
Group 1 

Group 3 

Distal Cross-section 

Muscle 1 

X 

End-effector - - -

Base Section 

Mid Section 

Tip Section 

Figure 2.8: OctArm Continuum Manipulator
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The OctArm can also be seen in Figure 2.5 where it is being teleoperated using the HaptOct.

In the following experiments, the OctArm is laying on top of a horizontal surface.

2.2.9.1 Maximum Length Enforcement

The first experiment tests the ability of the system to limit the operator from over extending

a section (i.e. the impact of f max
length

in Eq. 2.4). As a default, the function prevents the master device

from extending beyond 100% of the initial length, a feat that most continuum manipulators are

incapable of. When designated to drive a particular slave device, the max extension can be scaled

to match the range of motion of the slave. For example, OctArm sections can nominally extend an

additional 30% beyond their initial lengths.

In this experiment, we constrained the distal section of the master device to match the

proportional maximum extension of the OctArm. Given the initial section length of 10cm for

the HaptOct (as described in [79]), we set a virtual maximum length of 13cm for each individual

measurement cable. We then attempted to extend the section to this threshold and beyond while

recording the resulting force exerted by the interface. Figure 2.9a shows the lengths of the three

measurement cables and is marked with a vertical dashed line when the lengths first pass the

maximum length threshold. Figure 2.9b shows the force exerted, calculated in Newtons, for each of

the cables. It can be seen that all three cables react proportionately to their individual displacements

beyond the maximum and produce sufficient force to be noticed by the operator (>3N per cable).

The difference in time for each cable exceeding that maximum and the difference final maximum

between cable tensions can be contributed to the motion by the operator not being pure extension

(i.e. the user is lengthening at a slight bending angle). This results in cable 2 in this particular

experiment being extended slightly more (between 1 and 2mm) than cables 1 and 3, also resulting

in a greater force from the HaptOct.

2.2.9.2 Known Obstacle in Slave Task Space

In the second experiment, we evaluated the ability of the HaptOct to oppose invalid con-

figurations given a priori knowledge of the slave system’s environment. In particular, we simulate a

scenario in which the slave system is known to be laying on a planar surface, restricting the valid

motions of the robot to configurations curving or extending away from the plane or moving parallel

to the surface.
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Figure 2.9: Experiment 1, Force output due to extension.

For this experiment, we introduced a new term to the force equation that describes our

virtual obstacle. As with Eq. 2.5, we use the Heaviside step function (H(·)) to define simple

boundaries and use more complex functions for harder to define boundaries. An example equation

for describing a virtual obstacle seen by l2 is:

f2virt = Cu · u(t) ·H(u(t)− ub) + Cv · v(t) ·H(v(t)− vb) (2.10)

where Cu and Cv are the coefficients for the bending displacements u(t) and v(t), respectively, and

scalars ub and vb serve as simple bounds for u(t) and v(t). The final term f2virt can be added to the

total force value defined in Eq 2.4 for tendon 2. Similar terms are also added to the force equations
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for tendons 1 and 3.

Now that we have a force expression for bending, we can simulate a planar obstacle for the

slave device. We set the bound to be the yz-plane, which correlates to setting a bound on u(t) such

that u(t) ≥ 0. Figure 2.10a shows the values of u(t) and v(t) as the operator attempts to bend and

rotate the distal section of the HaptOct in all directions. Figure 2.10b shows the three force values

corresponding to the changes in u(t) and v(t). As predicted in Eq. 2.10, we see a noticeable increase

in force response as the operator tries to bend in the positive u(t) direction. Cable 1 does not apply

an opposing force to the operator because it is independent of u(t) and there is no restriction on

v(t). Cable 3 does have dependency on u(t), but is not permitted to apply negative forces. This

shows the HaptOct is capable of opposing operator motion for basic virtual obstacles.
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Figure 2.10: Experiment 2, Force output due to bending.

2.2.9.3 Real-time Unknown Obstacle in Slave Task Space

We repeated the previous experiment concerning a slave system placed against a planar

surface but removed the a priori knowledge of the surface from our scheme. In this case, we perform

real-time bilateral teleoperation and rely on the error between the slave device and master device to

convey the planar obstacle to the operator.

As seen in Figure 2.11a, the operator in this experiment rotates the HaptOct section in all

directions over 4 distinct periods. We can see the relationship between u(t) and v(t) given this plot.

In Figure 2.11b, we see the corresponding forces experienced by the operator during this repeated

motion. At an initial glance, it is difficult to determine the obstacle by the reaction forces alone.

However, in Figure 2.11c, we see the original motion plot overlaid by the scaled generated forces.
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As marked by the vertical bars in the plot, it is easy to now see that the periods of time when we

have the largest force exerted by each tendon align with the periods when the magnitude of v(t) is

positive or nearly positive. The value of u(t) during these same periods spans the entire range of

u(t) used by the operator. The operator can conclude from this result that the slave robot is laying

in the xz-plane and oriented such that values of v(t) ≥ 0 result in collision with the plane.

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
ot

at
io

n 
V

al
ue

 [-
]

u(t)

v(t)

(a) Kinematic values u(t) and v(t) during rotation of
distal section.

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

0

2

4

6

8

10

12

F
or

ce
 [N

]

Cable 1 Force

Cable 2 Force

Cable 3 Force

(b) Generated forces corresponding to bending of dis-
tal section with unknown planar obstacle.

0 5 10 15 20 25 30 35 40 45 50 55

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(t)

v(t)

Cable 1 Force

Cable 2 Force

Cable 3 Force

(c) Combined scaled plot of positions and forces.

Figure 2.11: Experiment 3 Results, Observing unknown obstacles.
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2.3 Virtual Environments for Exploration and Deployment

of Continuum Solutions

When considering remote teleoperation and deployment of continuum manipulators, the

ability to plan and simulate potential interactions and tasks can greatly assist the process of cre-

ating effective solutions. It is also useful to give consideration to collaboration between continuum

robots and other robotic platforms. This section explores the establishment and use of a universal

continuum robot package designed to be compatible with the Robot Operating System (ROS), a

framework for communicating between robotic platforms and various tools, sensors, and software

solutions.

2.3.1 Simulating the physics of Continuum Robots in Gazebo

SDF model description language used in order to incorporate the use of universal joints in

the physics enabled body. The trade-off here is a more physically accurate model for software like

Gazebo, but the need for a second, kinematically similar model for tools such as RVIZ, which do

not recognize universal joint types.

Thankfully, it is a simple matter to map between the two types of models using the set of

equations in Table 2.1. For convenience, the equations of note are reproduced here:

θ = sκ =
√
u2 + v2 (2.11)

φ = arctan
−u
v

(2.12)

u = −sκ sin(φ) (2.13)

v = sκ cos(φ) (2.14)

The following elements form the base components of the physics enabled model for a con-

tinuum manipulator in Gazebo. First is the universal joint, defined to have two orthogonal axes

of rotation, one about the local x-axis and the second about the local y-axis, corresponding to the

kinematic values u and v, respectively.
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<joint name=’RJB0’ type=’universal’>

<parent>base_link</parent>

<pose frame=’’>0 0 -0.0435 0 0 0</pose>

<child>bSeg0</child>

<axis>

<xyz>1 0 0</xyz>

<limit>

<lower>-0.314</lower>

<upper>0.314</upper>

<effort>10</effort>

<velocity>0.5</velocity>

</limit>

<dynamics>

<damping>0.002</damping>

</dynamics>

</axis>

<axis2>

<xyz>0 1 0</xyz>

<limit>

<lower>-0.314</lower>

<upper>0.314</upper>

<effort>10</effort>

<velocity>0.5</velocity>

</limit>

<dynamics>

<damping>0.002</damping>

</dynamics>

</axis2>

<physics>

<ode>

<limit>

<cfm>0</cfm>

<erp>0.2</erp>

</limit>

<suspension>

<cfm>0</cfm>

<erp>0.2</erp>

</suspension>

</ode>

</physics>

</joint>

Following each universal joint is at least one ”rigid” element chosen to represent the backbone

of the continuum element. Fitting with the typical appearance of continuum robots, the backbone is

approximated via cylinders, linked serially. The following SDF excerpt approximates the backbone

to appear as a incremental element of a carbon fiber tube, inspired by the backbone of the Tendril
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robot. Segment elements are defined to have visual, collision, and inertia volumes. In the case of

the cylindrical element, all three volumes are chosen to have the same dimensions.

<link name=’bSeg0’>

<pose frame=’’>0 0 0.1685 0 0 0</pose>

<visual name=’visual’>

<geometry>

<cylinder>

<length>0.087</length>

<radius>0.002</radius>

</cylinder>

</geometry>

<pose frame=’’>0 0 0 0 0 0</pose>

<material>

<ambient>0.1 0.1 0.1 1.0</ambient>

<diffuse>0.1 0.1 0.1 1.0</diffuse>

<specular>0.01 0.01 0.01 1</specular>

<emissive>0 0 0 1</emissive>

</material>

</visual>

<collision name=’collision’>

<geometry>

<cylinder>

<length>0.087</length>

<radius>0.002</radius>

</cylinder>

</geometry>

<pose>0 0 0 0 0 0</pose>

</collision>

<inertial name=’inertial’>

<pose frame=’’>0 0 0 0 0 0</pose>

<mass>0.0005</mass>

<inertia>

<ixx>3.6e-4</ixx>

<ixy>0</ixy>

<ixz>0</ixz>

<iyy>3.6e-4</iyy>

<iyz>0</iyz>

<izz>1.9e-5</izz>

</inertia>

</inertial>

</link>

Finally, in this model, we add an second rigid element to the mode for each sub-segment

to approximate the spacers placed along the backbone of tendon driven continuum robots. In
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anticipation of model inclusions, the spacer element is connected to the backbone segment via a

”fixed” joint, rigidly connecting the two elements. Future work will explore replacing the fixed joint

with a prismatic joint in order to enable extension of continuum sections.
<joint name=’FJB0’ type=’fixed’>

<parent>bSeg0</parent>

<child>bDisk0</child>

<pose>0 0 -0.0015 0 0 0</pose>

</joint>

<link name=’Spacer0’>

<pose frame=’’>0 0 0.2135 0 0 0</pose>

<visual name=’visual’>

<geometry>

<cylinder>

<length>0.003</length>

<radius>0.008</radius>

</cylinder>

</geometry>

<pose frame=’’>0 0 0 0 0 0</pose>

<material>

<ambient>0 1.0 1.0 1.0</ambient>

<diffuse>0 1.0 1.0 1.0</diffuse>

<specular>0 0.01 0.01 1</specular>

<emissive>0 1.0 1.0 1</emissive>

</material>

<cast_shadows>1</cast_shadows>

</visual>

<collision name=’collision’>

<geometry>

<cylinder>

<length>0.003</length>

<radius>0.008</radius>

</cylinder>

</geometry>

<pose>0 0 0 0 0 0</pose>

</collision>

<inertial>

<pose>0 0 0.0 0 0 0</pose>

<mass>0.0054</mass>

<inertia>

<ixx>7.0e-4</ixx>

<ixy>0</ixy>

<ixz>0</ixz>

<iyy>7.0e-4</iyy>

<iyz>0</iyz>

<izz>1.3e-3</izz>

</inertia>

</inertial>

</link>

Figure 2.12: Continuum element
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The body and joint elements thus far work to convey the physical appearance of the con-

tinuum robot and capture the basic motion and shape. In order to further reflect the nature of

continuum manipulators, we introduce a custom plugin for Gazebo that goes one step further to

also approximate the material properties of a continuum robot’s backbone. In a relatively simple

model, conveyed in Figure 2.13, the plugin exerts opposing torque to both axes of each universal

joint in direct proportion to the displacement of the axes. This approximation of the material “stiff-

ness” can be adjusted during the setup of simulation and customized for each section of a continuum

robot.

Figure 2.13: Illustration of “jointSpring2” plugin that simulates torsional springs placed on each of
the axes of the universal joints. This plugin simulates the material stiffness by opposing bending.

2.3.2 Creating a Visual Simulation of Continuum Robots for ROS: RVIZ

RVIZ, short for ROS Visualizer, is the central visual tool associated with ROS for simulating

robot state based on feedback from a physical robot platform or from physics simulators such as
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Gazebo [122]. RVIZ also provides for depicting sensor data such as encoder positions converted to

robot configuration or point clouds and image data from a robot’s environment. RVIZ utilizes a

different descriptor language from Gazebo which does not allow for universal joints. The Unified

Robot Descriptor Format (URDF) language used in RVIZ only allows for basic revolute, prismatic,

and fixed joints (URDF also recognizes planar and floating joints, but these are not useful to us).

Instead, we utilize the Jones kinematics to create a visual continuum robot for RVIZ, much like that

which is created in [90]. Since this solution is not unique, we skip the details of its creation and

only note that when communicating between the physics enabled model and RVIZ, we can utilize

the mapping from Jones to Allen kinematics to allow the models to collaborate.

2.3.3 RVIZ and MoveIt

In conjunction with RVIZ, the tool MoveIt can be used to perform basic motion planning

of a continuum manipulator. Using the URDF model, MoveIt can incrementally plan steps between

two desirable configurations. The solution/tool can deploy a multitude of variations in mapping

between two states, but commonly hosts flavors of Rapidly-exploring Random Trees (RRT) to bridge

between the two states. Using RVIZ, this planned trajectory can then be sent to the physical robot

or the physics based simulation in Gazebo. Examples of MoveIt performing RRT stepping between

configurations in shown in Figure 2.14.

With the ability to connect to the various tools available to ROS, a final goal for this

package will be the planning and execution of a collaborative task alongside other robotic platforms

in simulation. One such concerted effort could be the exploration and inspection of a virtual ISS

alongside Robonaut [123] (see Figure 2.15).

2.4 Discussion

The underlying goal of this work was to design and construct a continuum device capable

of providing intuitive haptic feedback to an operator while teleoperating a wide range of continuum

manipulators. Much of the design work has been completed and presented here but further testing

remains necessary to validate the long term success of this strategy.

There were numerous constraints that influenced the design of the mechanism. First, the

system needed to minimize resistance to motion seen by the operator when there is no acting force
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Figure 2.14: An example of MoveIt coupled with RVIZ to plan and visual an RRT selected path
between two configurations.

Figure 2.15: Simulating collaboration with ROS enabled platforms to complete tasks aboard the
International Space Station.

from the device. This led to the use of DC motors without a gear system. This reduces the maximum

opposing force the system can exert but gives the least inherent resistance. Second was the desire

to develop a compact device that did not have an overly bulky actuator package. As depicted in

Figure 2.3b, the complete actuator package, logic, and power supply measures 20.3cm in diameter

and 30.9cm in height. Another constraint was the desire for intuitive feedback, both visual and
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haptic, which led to the use of the kinematically similar three section MiniOct design as the base

for developing a haptic device.

In the initial stages of developing this device, choosing the mode of feedback for developing

a new haptic device was a cost and reward driven process. As mentioned in [82], tactile and

vibrotactile feedback are common modes. We determined that for an initial investigation, the process

of creating a synthetic skin for the continuum device, while intriguing, would likely be very difficult

to realistically achieve and keep the device portable and relatively simple. The tactile interface

would likely be very useful for conveying contact between the slave system and the environment, but

would also require a significant amount of information about the slave system in order to accurately

portray points of contact. Vibrotactile feedback was much easier to envision as the actuators are

relatively small and would likely only require simple error models. A drawback of a vibrotactile

mode would be the need to run wires through continuum sections and it could prove difficult to

localize the vibration to a single side of the device or single section for a multi-section system. An

admittance feedback device was not investigated in detail, but could prove to be an area of future

exploration.

Through initial testing of the device and observations about the design of the system, there

are some improvements that can be made to the current design. As with many bilateral teleoperation

schemes, the performance of the operator and their ability to perceive mismatches between the master

and slave device can depend on the refresh rate and lag experienced by the operator. Initial tests

on a local system using serial communication has achieved a round trip refresh rate of 26Hz, the

delay from which will likely be noticed by the user. A proposed solution to this will be to use

a faster mode of communication, such as SPI or I2C for local communication. As mentioned in

Section 2.2.5, the HaptOct as a standalone device has an average refresh rate above 2.5kHz, which

provides opportunity for the development of more complex virtual environments that do not rely on

communication lags while maintaining smooth operation. When performing the experiments over a

distance of hundreds of miles (performed from Houston, Texas to Clemson, South Carolina in the

U.S.A.) we experienced a lag of approximately 0.1 seconds. We did not analyze the impact of this

delay on performance, though it was negligible enough to perform the experiments and collect the

results presented in Sections 2.2.9.2 and 2.2.9.3. Future work can now explore appropriate means

for addressing lag of varying severity.

Another limitation is that the device can only oppose the operator when extending any one
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of the three sides of the device. The limitation arises from the fact that the device always inherently

assumes that the slave system can retract or straighten from an extended or curved configuration.

This assumption is not that disruptive in a static environment, but could prove erroneous for dynamic

environments in which a slave system might become trapped.

The largest challenge for this haptic device (and any haptic device with regards to continuum

manipulators) is the conclusion that the feedback is only as informative and accurate as the error

model that is available for the slave system. One example of this could be a scenario in which a

distal section of a slave system has come in contact with an object, but is able to bend or extend

normally. However, the proximal sections begin to curve due to the compliant nature of continuum

robots. The operator may not perceive this deformation until attempting to later manipulate the

proximal section. Another scenario particular to pneumatically actuated continuum manipulators is

the increase in stiffness of a muscle as it is extended. This internal stiffness may be difficult to detect

through error modeling, but would be useful feedback for the operator to know that the system is

approaching its physical limits.
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Chapter 3

Continuum Robot Modeling

The following chapter will explore continuum robot dynamics as approximated as a serial

chain of rigid bodies. First, we will briefly review previous work that approximates a continuum

section as a single rigid body representing the chord of the arc formed by a constant-curvature

continuum section. We then introduce a new model that extends this approximation to also partially

capture non-constant curvature within a continuum section. The model is derived using both the

Euler-Lagrange method and the Newton-Euler recursive method, and considers gravitational effects

and material properties. In order to approximate the full state of the introduced model, we present

a energy minimization method for estimating the unobservable model states and verify the method

using a series of static samples and external measurements. Finally, we apply a set of simple inputs

and compare the predicted behavior of the simulation to the actual response of the OctArm robot

and discuss the results and implications.

3.1 Approximating Continuum Robots Through Rigid Bod-

ies

In considering continuum kinematics, some of the most well-known early models for con-

tinuum robots drew inspiration from traditional rigid-body kinematics to relate continuum DoF to

those of standard revolute and prismatic joints. Similarly, in [72], it was shown that the traditional

and well-established topic of rigid-body dynamics can also provide insight and approximate models
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Figure 3.1: Constant-curvature approximate kinematics for a single continuum section as conveyed
by an RRPR rigid-link robot.

for the dynamics of continuum manipulators.

3.1.1 Constant-curvature Approximate Dynamics

In [72] and [73], a dynamic model is introduced that expands the concept introduced in [124],

whereby the shape and motion of continuum robots are approximated through a virtual rigid-link

robot. In the kinematic model, the shape of a continuum section curve is approximated as the

chord formed by a curving continuum section, stretching from the section’s base to its end-point.

Orientation and direction of the chord are approximated by revolute joints located at the base of

the robot section. The dynamic model in [73] expands this idea by assigning mass and inertia to

the chord in the form of a uniform cylinder, as conveyed in Figure 3.1. The cylinder’s orientation,

length, and direction of bend is related to the rigid-link kinematics through the Jones kinematic

model and subsequent dynamics are derived to approximate this system based on the virtual rigid-

link kinematics. This work was novel from the aspect of approximating a continuum robot by rigid

bodies on a large scale (previous works approximate continuum robots as a series of infinitesimally

small rigid elements). The results of the model combined with a basic dynamics cancelling controller

showed potential for the method in controlling general continuum motion for multiple sections.
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3.2 Piece-wise Constant Curvature Approximate Dynamics

In considering the work presented in [73], a desirable refinement would be to further the

approximation of dynamics for continuum manipulators to produce a more accurate, but still com-

putationally tractable model. In particular the following model, introduced in this dissertation,

will be used to approximate the non-constant curvature manifest in continuum sections through a

piece-wise constant curvature approximation, as well as to introduce new material property terms.

Figure 3.2 demonstrates a simple interpretation of what a piece-wise constant curvature can do to

approximate the continuum dynamics versus the constant curvature model. As seen, the piece-wise

constant model will contain two discrete elements per section; the first approximates the curvature

between the base and mid-point of a section and the second approximates the curvature between

the mid and end-point of each section.

In [73], the model accounted for extensible continuum robots by modeling all three DoF for

a section. In the parameterization presented in the following, we have effectively doubled the DoF

present in a single section. In order to keep the number of DoF per continuum section to be more

reasonable, we model the continuum manipulator to be a non-extensible section, resulting in a fixed

arc-length and restricting the DoF per section to 4 DoF, two values of u and two values of v.

3.2.1 Rigid-Link Kinematics

In using a rigid-link approximation, we reap the benefit of well established kinematics for

rotations about single axes in rigid-link robots. For this model, we use the Allen kinematic pa-

rameterization which will translate to two orthogonal rotation axes at the base of each segment,

demonstrated in Figure 3.3. The standard Denavit-Hartenberg method for describing the trans-

formation matrix for each DoF is applicable here, but for the sake of keeping unique, identifiable

transformation matrices, we use a global coordinate system translated along the length of the robot.

Using the global coordinate frame, we can use the standard rotation matrices Rx and Ry to repre-

sent the rotations u and v with no translation component and then add a pure translation along the

Z-axis to represent the length of each rigid segment. Thus the transformation matrices of interest

are:
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Figure 3.2: Comparing Approximate Models. The OctArm (left) approximated as a constant-
curvature series of chord lengths (middle) and as piece-wise constant-curvature 2 segment curves
(right).

Hu(i) =

Rx,ui 03

0T3 1

 =



1 0 0 0

0 cos(ui) − sin(ui) 0

0 sin(ui) cos(ui) 0

0 0 0 1


(3.1)

Hv(i) =

Ry,vi 03

0T3 1

 =



cos(vi) 0 sin(vi) 0

0 1 0 0

− sin(vi) 0 cos(ui) 0

0 0 0 1


(3.2)

Hs(i) =



1 0 0 0

0 1 0 0

0 0 1 dsi

0 0 0 1


(3.3)
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where dsi is the chord length that approximates the arc-length of the section, approximately half of

the length of a full continuum section. The matrices Rx,u ∈ R3×3 and Ry,v ∈ R3×3 are the standard

rotation matrices Rx at angle ui and Ry at angle vi, respectively. While the order of the rotations

conveyed by u and v can be set arbitrarily (so long as the order is consistent along the robot), for

consistency and for dynamics derivation, we establish that the order of rotations is u and then v,

followed by the translation along the length of the segment. This gives the total transformation

matrix for each segment to be:

H(i) = Hu(i)Hv(i)Hs(i) (3.4)

Figure 3.3: Joint kinematics and physical properties. The u-approximated joints (red) are coincident
with the local Y-Axis and v-approximated joints are coincident with the X-axis. Vector p∗i+1 points
from origin Oi to origin Oi+1. Vector ŝi+1 points from origin Oi+1 to the center of mass of link i.

3.2.2 Euler-Lagrange Dynamic Model

In deriving a series of closed form equations for the dynamic model, we first use the well-

established Euler-Lagrange mechanics, in which the Lagrangian in Eq. 3.5, relates the total kinetic

energy (K) and total potential energy (P) of the system. We obtain the equations of motion for the

approximate model according to Eq. 3.6.
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L = K − P (3.5)

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi (3.6)

The vector q, representing the position of joints of the system, is comprised of the alternating

approximate joint angles ui and vi for segment i as follows:

q = [u1 v1 u2 v2 . . . un vn]T (3.7)

3.2.2.1 Kinetic Energy

The kinetic energy of the approximate robot consists of the energy due to linear velocity

and angular velocity, as conveyed for a single body by:

K =
1

2
mvT v +

1

2
ωTIω (3.8)

where m is the mass of the body, v is the linear velocity of the body, ω is the angular velocity, and

I ∈ R3×3 is the inertia tensor of the body. In this model, all bodies in the approximate model are

described as cylinders with radius r and height h, where rotation occurs about the end-points of the

cylinder, resulting in the inertia tensor matrix:

I =


1
12m(3r2 + h2) 0 0

0 1
12m(3r2 + h2) 0

0 0 1
2mr

2

 . (3.9)

The kinetic energy of the full, multi-body system is represented by the inertia matrix

(M(q) ∈ R2n×2n), calculated using the Jacobian and mass/inertia tensor:

K =
1

2
qTM(q)q (3.10)

M(q) =

n∑
i=1

JTi (q)MiJi(q) (3.11)
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where Ji ∈ R6×2n is the Jacobian corresponding to segment i of the robot, n is the total number of

discrete segments, and Mi ∈ R6×6 is defined as:

Mi =

miI3 . . .

. . . Ii

 (3.12)

with I3 ∈ R3×3 defined to be the identity matrix and Ii is the inertia tensor for segment i. The

standard Jacobian for segment i is composed as Ji = [JTviJ
T
ωi ], in which Jvi ∈ R3×2n is the linear

Jacobian, found by taking the partial derivatives of the position of the body’s center of mass with

respect to q, and Jωi ∈ R3×2n is the angular Jacobian, composed as follows:

Jω =

[
x0 y1 x2 y3 . . . x2i−2 y2i−1 0 0 . . . 0 0

]
.

u1 v1 u2 v2 . . . ui vi ui+1 vi+1 . . . un vn

(3.13)

The angular Jacobian in this model is composed of alternating axes of rotation just as the kine-

matic model, based in global frames, alternates between rotations about the x-axis for u-related

joints and about the y-axis for v-related joints. This differs from the Denavit-Hartenberg method

in which all rotations occur about the z-axis, causing the angular Jacobian to have the form

Jω = [z0 z1 . . . z2n]. The particular vectors x0,y1,. . . are found from the robot’s kinematics as

follows:

H1
0 = Hu(1) =

x0 y0 z0 p0

0 0 0 1

 (3.14)

H2
0 = H1

0Hv(2)Hs(2) =

x1 y1 z1 p1

0 0 0 1

 (3.15)

H3
0 = H2

0Hu(3) =

x2 y2 z2 p2

0 0 0 1

 (3.16)

... (3.17)
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Note that the placement of Hs after Hv in 3.15 does not impact the values of xi and yi and purely

serves to preserve the accuracy of the overall kinematics.

After finding the inertia matrix M , the Centripetal-Coriolis matrix is found using the stan-

dard Christoffel symbols such that for C(q, q̇) ∈ R2n×2n:

ckj =

2n∑
i=1

cijk(q)q̇ (3.18)

=

2n∑
i=1

1

2

{
∂mkj

∂qj
+
∂mki

∂mqj

− ∂mij

∂qk

}
q̇i (3.19)

where ckj is the value in the k-th row, j-th column of C(q, q̇) and similarly mkj is the value in the k-

th row, j-th column of M(q). This definition of C(q, q̇) provides for the skew-symmetric relationship

between M(q) and C(q, q̇) such that:

N(q, q̇) = Ṁ(q)− 2C(q, q̇) (3.20)

is skew-symmetric, which is an important property for the study of stability in future control appli-

cations.

3.2.2.2 Potential Energy

There are two potential energy terms to factor in for this model, the gravitational potential

energy and the elastic potential energy due to bending. The gravitational potential energy, denoted

Pg is calculated as the change in height of each center-of-mass (CoM) as returned by the kinematics

multiplied with the gravitational constant g. The basic definition of Pg can be given as:

Pg =

n∑
i

mighi(q) (3.21)

for the CoM of each segment, where hi(q) is the change in height for the CoM as a function of the

joint angles q.

The elastic potential due to bending is approximated as a virtual torsion spring, as conveyed

in Figure 3.3, where the stored energy is the product of the displacement of each discrete joint (the

values u, v per segment) and the torsional stiffness of each respective joint: ku and kv. The total
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energy due to bending is:

Pe =
1

2
qT [ku1 , kv1 , ku2 , kv2 , . . . , kun , kvn ]Tq (3.22)

One final term for the model is energy dissipation due to damping, a property inherent to

the material properties of continuum robots. Similar to the material stiffness, the damping effect is

approximated as a linear rotational damper placed at each revolute joint in the model, with damping

coefficients bu and bv for u and v related joints, respectively. The total energy dissipation due to

damping is related through the Rayleigh dissipation function [125]:

Pd =
1

2
q̇T [bu1 , bv1 , bu2 , bv2 , . . . , bun , bvn ]T q̇ (3.23)

3.2.2.3 Equations of Motion

Using equations 3.12, 3.21, 3.22, and 3.23, we can update the Lagrangian as:

L = K − P = M − Pg − Pe − Pd, (3.24)

giving the equations of motion through Lagrange’s equation in 3.6, to be:

d

dt

∂M

∂q̇i
− ∂M

∂qi
+
∂Pg
∂qi

+
∂Pe
∂qi

+
∂Pd
∂q̇i

= τi (3.25)

M(q)q̈ + C(q, q̇)q̇ +G(q) + E(q) +R(q̇) = τ (3.26)

where τ is the input torque vector composed of the input torque for each joint. For a two section

continuum robot, the components of equation 3.26 will have the form:
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M(q)
∆
=



M11 M12 M13 M14 M15 M16 M17 M18

M21 M22 M23 M24 M25 M26 M27 M28

M31 M32 M33 M34 M35 M36 M37 M38

M41 M42 M43 M44 M45 M46 M47 M48

M51 M52 M53 M54 M55 M56 M57 M58

M61 M62 M63 M64 M65 M66 M67 M68

M71 M72 M73 M74 M75 M76 M77 M78

M81 M82 M83 M84 M85 M86 M87 M88



(3.27)

C(q, q̇)
∆
=



C11 C12 C13 C14 C15 C16 C17 C18

C21 C22 C23 C24 C25 C26 C27 C28

C31 C32 C33 C34 C35 C36 C37 C38

C41 C42 C43 C44 C45 C46 C47 C48

C51 C52 C53 C54 C55 C56 C57 C58

C61 C62 C63 C64 C65 C66 C67 C68

C71 C72 C73 C74 C75 C76 C77 C78

C81 C82 C83 C84 C85 C86 C87 C88



(3.28)

G(q) =

[
∂Pg
∂u1

∂Pg
∂v1

∂Pg
∂u2

∂Pg
∂v2

∂Pg
∂u3

∂Pg
∂v3

∂Pg
∂u4

∂Pg
∂v4

]T
(3.29)

E(q) = [ku1
u1 kv1v1 ku2

u2 kv2v2 ku3
u3 kv3v3 ku4

u4 kv4v4]T (3.30)

R(q̇) = [bu1 u̇1 bv1 v̇1 bu2 u̇2 bv2 v̇2 bu3 u̇3 bv3 v̇3 bu4 u̇4 bv4 v̇4]T (3.31)

3.2.3 Newton-Euler Dynamics

In evaluating the dynamics of continuum robots with three or more sections, and con-

sequently higher DoF, the closed form equations resulting from the Euler-Lagrange method can

quickly become computationally expensive and impractical for real-time implementation, also ren-

dering control via the dynamic model untenable. In order to assess the proposed approximate
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Figure 3.4: Newton-Euler Dynamics

dynamics introduced above for higher DoF, we derive the equivalent model using the recursive

Newton-Euler method. In particular, we take advantage of the algorithm presented in [126]. We

review the algorithm below, and introduce the relevant matrices for the approximate continuum

model.

There are two parts to the Newton-Euler recursion, a forward iterative process in which

linear and angular accelerations for each body’s CoM are calculated, and a backward iterative process

in which the forces and moments experienced by each body are calculated. In addition to the forces

and moments acting on each body, the backward recursion also calculates the corresponding torques

that are being applied at each joint in order to produce the previously calculated accelerations and

forces. In [126] , the values needed for the two processes, namely angular velocity (ωi), angular

acceleration (ω̇i), linear velocity (vi), and linear acceleration (v̇i) in the forward iterations, and

total force (Fi) and moment (Ni) in the backwards iterations, are calculated with reference to each

link’s local (fixed in the link) coordinate frame. This eliminates the need to transform inertia matrix

values to a global base frame instead of the more easily defined local frame or the need to track

coordinate changes along the length of the robot.
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Using the following matrix definitions and properties:

Ri
0 = R1

0R
2
1 . . .R

i
i−1 (3.32)

(Ri
i−1)−1 = (Ri

i−1)T = (Ri−1
i ) (3.33)

in which Ri
i−1 is the rotation matrix relating the change in orientation from coordinate frame i− 1

to frame i, one can directly calculate the velocities and accelerations in the local link frames using

the following equations:

R0
iωi =

Ri−1
i (R0

i−1ωi−1 + z0q̇i) , if joint i is rotational,

Ri−1
i (R0

i−1ωi−1) , if joint i is translational,

R0
i ω̇i =

Ri−1
i [R0

i−1ω̇i−1 + z0q̈i + (R0
i−1ωi−1)× (z0q̇i)] , if joint i is rotational,

Ri−1
i (R0

i−1ω̇i−1) , if joint i is translational,

R0
ivi =

 (R0
iωi)× (R0

ipi
∗) + Ri−1

i (R0
i−1vi−1) , if joint i is rotational,

Ri−1
i (z0q̇i + R0

i−1vi−1) + (R0
iωi)× (R0

ipi
∗) , if joint i is translational,

R0
i v̇i =



(R0
i ω̇i)× (R0

ipi
∗) + (R0

iωi)×

[(R0
iωi)× (R0

ipi
∗)] + Ri−1

i (R0
i−1v̇i−1) , if i is rotational,

Ri−1
i (z0q̈i + R0

i−1v̇i−1) + (R0
i ω̇i)× (R0

ipi
∗)

+2(R0
iωi)× (R0

i z0q̇i)

+(R0
iωi)× [(R0

iωi)× (R0
ipi
∗)] , if i is translational,

R0
i v̂i = (R0

iωi)× (R0
i ŝi) + R0

ivi

R0
i

˙̂vi = (R0
i ω̇i)× (R0

i ŝi) + (R0
iωi)× [(R0

iωi)× (R0
i ŝi)] + R0

i v̇i

(3.34)

where z0 = [0, 0, 1]T , and q̇i and q̈i is the rotational velocity and acceleration of joint i, respectively.

The values R0
iωi and R0

i ω̇i are the angular velocity and acceleration of the CoM of link i with

respect to the local frame. The values R0
i vi and R0

i v̇i are the linear velocity and acceleration of end
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point of each section, respectively, while R0
i v̂i and R0

i
˙̂vi are the linear velocity and acceleration for

the CoM of the link, again in the local frame. Finally, p∗i is defined as the vector pointing from the

origin of frame i to the origin of frame i+ 1,as depicted in Figure 3.3. Similarly, ŝi is defined as the

vector from the center of frame i+ 1 to the CoM of link i with respect to frame i. We will wait to

explicitly define p∗i and ŝi until after we introduce the specific equations used in this model.

A consequential note concerning these and future Newton-Euler equations in this section:

the matrices R0
i and R0

i−1 are never explicitly calculated, instead they are compounded with each

iteration and become inseparable from their partner, be it ωi, ω̇i, etc., which is why R0
i−1 is always

surrounded with parentheses anytime the pair is multiplied with another term.

Once linear and angular accelerations are calculated, the total moment and force acting on

each link of the robot can be calculated using the following equations:

R0
iFi = miR

0
i

˙̂vi (3.35)

R0
iNi = (R0

i IiRi
0)(R0

iωi) + (R0
iωi)× [(R0

i IiRi
0)(R0

iωi)] (3.36)

where mi again represents the mass of the segment and R0
i IiRi

0 is the equivalent of the inertia

tensor for the rigid body, defined in Eq 3.9.

R0
i fi = Ri+1

i (R0
i+1fi+1) + R0

iFi

R0
ini = Ri+1

i [R0
i+1ni+1 + (R0

i+1pi
∗)× (R0

i+1fi+1)] + (R0
ipi
∗ + R0

i ŝi)× (R0
iFi) + R0

iNi

= Ri+1
i [R0

i+1ni+1 + (Ri
i+1(R0

ipi
∗))× (R0

i+1fi+1)] + (R0
ipi
∗ + R0

i ŝi)× (R0
iFi) + R0

iNi

τi =

(R0
ini)

T (Ri+1
i z0) + biq̇i + kiqi , if link is rotational,

(R0
i fi)

T (Ri+1
i z0) + biq̇i + kiqi , if link is translational.

(3.37)

Given the equations for both the forward and backward recursions for the model, and using

the knowledge that the model introduced herein for continuum robots only consists of revolute joints,

we can narrow down the equations we need and provide the form of equations for joints related to
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the bending values u and v separately. The subsequent equations and various definitions will be

used for the final realization of the recursive algorithm introduced in this dissertation.

R0
iωi =

RT
x,qi [R

0
i−1ωi−1 + x0q̇i] , if i is odd (u-designated joint),

RT
y,qi [R

0
i−1ωi−1 + y0q̇i] , if i is even (v-designated joint),

(3.38)

R0
i ω̇i =

RT
x,qi [R

0
i−1ω̇i−1 + x0q̈i + (R0

i−1ωi−1)× (x0q̇i)] , if i is odd,

RT
y,qi [R

0
i−1ω̇i−1 + y0q̈i + (R0

i−1ωi−1)× (y0q̇i)] , if i is even,
(3.39)

R0
ivi =

 RT
x,qi(R

0
i−1vi−1) , if i is odd,

(R0
iωi)× (R0

ipi
∗) + RT

y,qi(R
0
i−1vi−1) , if i is even,

(3.40)

R0
i v̇i =


RT
x,qi(R

0
i−1v̇i−1) , if i is odd,

(R0
i ω̇i)× (R0

ipi
∗) + (R0

iωi)×

[(R0
iωi)× (R0

ipi
∗)] + RT

v (qi)(R
0
i−1v̇i−1) , if i is even,

(3.41)

R0
i v̂i =

 R0
ivi , if i is odd

(R0
iωi)× (R0

i ŝi) + R0
ivi , if i is even

(3.42)

R0
i

˙̂vi =

 R0
i v̇i , if i is odd

(R0
i ω̇i)× (R0

i ŝi) + (R0
iωi)× [(R0

iωi)× (R0
i ŝi)] + R0

i v̇i , if i is even
(3.43)

R0
iFi =

[0 0 0]T , if i is odd

miR
0
i

˙̂vi , if i is even
(3.44)

R0
iNi =

 [0 0 0]T , it i is odd

(R0
i IiRi

0)(R0
iωi) + (R0

iωi)× [(R0
i IiRi

0)(R0
iωi)] , if i is even

(3.45)

where x0 = [1 0 0]T and y0 = [0 1 0]T . The vectors p∗i and ŝi that we neglected to define

earlier are p∗i = [0, 0, dsi ] and ŝi = [0, 0,−dsi/2]. As there is no displacement when traveling from

joint u to joint v, the terms connected to p∗i and ŝi disappear. Finally, we update the backward
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recursion equations to identify the equations used for u and v specified joints:

R0
i fi =

Ry,qi+1
(R0

i+1fi+1) + R0
iFi , if i is odd

Rx,qi+1
(R0

i+1fi+1) + R0
iFi , if i is even

(3.46)

R0
ini =


Ry,qi+1 [R0

i+1ni+1] + R0
iNi , if i is odd

Rx,qi+1
[R0

i+1ni+1 + (RT
x,qi+1

(R0
ipi
∗))× (R0

i+1fi+1)]+

(R0
ipi
∗ + R0

i ŝi)× (R0
iFi) + R0

iNi

, if i is even
(3.47)

τi =

(R0
ini)

T (Rx,qix0) + biq̇i + kiqi , if i is odd,

(R0
ini)

T (Ry,qiy0) + biq̇i + kiqi , if i is even,
(3.48)

3.2.3.1 Newton-Euler Recursive Algorithm

The Newton-Euler recursive dynamic model uses equations 3.38-3.48 and follows the steps

below in order to calculate both the linear and rotational motion of the robot and the input torques

driving the motion.

1. Set constants and initial conditions:

nj = 2n (number of joints, 2 per segment)
R0ω0 = R0ω̇0 = 0
R0v0 = 0
R0v̇0 = [0 0 g]T (linear acceleration of base towards earth)

2. Joint variables are qi, q̇i, and q̈i for i=1,2,. . . ,nj

3. Link-wise variables are i, Fi,Ni, fi,ni, and τi

4. For no load at end-effector, initialize R0
i+1fi+1 = 0 and R0

i+1ni+1 = 0.

5. Execute Algorithm 1.
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Algorithm 1 Newton-Euler Recursive Dynamics

1: Initialize i = 1

2: Compute R0
iωi, R0

i ω̇i, R0
i vi, R0

i v̇i by Eq. (3.38), (3.39), (3.40), and (3.41).

3: Compute R0
i

˙̂vi by Eq. (3.43).

4: Compute R0
iFi and R0

iNi by Eq. (3.44) and (3.45).

5: if i=nj , continue. Otherwise, set i=i+1 and return to Step 2.

6: Compute R0
i fi and R0

ini by Eq. (3.46) and (3.47).

7: Compute τi by Eq. (3.48)

8: If i=1, stop. Otherwise, set i=i-1 and return to Step 5.

3.3 State Estimation

In order to approximate the missing state information (i.e. the distribution of curvature

within a given section), we employ the relatively common method from finite element analysis of

determining the minimum energy state of the system that satisfies the boundary conditions of the

state. Before proceeding, we establish the following assumptions:

1. For a given continuum section, all curvature occurs within a single plane (i.e. the system

does not experience torsion along the backbone), where the plane of bending is coincident with the

value φ for a given section.

2. Mass is uniformly distributed along each continuum section, resulting in two equal

cylinders with the CoM located halfway along the center length line of each cylinder.

3. Materials properties such as spring stiffness and damping coefficients are uniform within

a given section.

The basic case, depicted in Figure 3.5, exhibits a single continuum section, approximated

as two rigid bodies with single-axis revolute joints forming the connection between the bodies and

between the proximal segment and the anchor point. In visualizing the potential energy of this

system (and in considering the energy equations proposed in the Euler-Lagrange model) it is fairly

simple and reasonable to state that the potential of the system is composed of the potential due to

gravity and the energy stored due to the torsion springs. Thus, the total potential energy can be
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θi1

θi2

(a) Single approximate
continuum section at
equilibrium

θi-1

(b) Rotation at base of single section

Figure 3.5: Single continuum section approximated via two segments of equal length

shown to be:

Π =
1

2
kθ2
i1 +

1

2
kθ2
i2 +

mgL

2

[
1− cos(θi1)

]
+

mgL

[
1− cos(θi1)

]
+
mgL

2

[
cos(θi1)− cos(θi1 + θi2)

]

=
1

2
kθ2
i1 +

1

2
kθ2
i2 +

3mgL

2

[
1− cos(θi1)

]
+
mgL

2

[
cos(θi1)− cos(θi1 + θi2)

]

where θi1 and θi2 are the bending magnitudes of the first and second joint, respectively, and the

total rotation of the section’s end-point is θi = θi1 + θi2. The value Π is the total potential energy

of the system, with components Pe and Pg being the potential energy due to spring displacement

and the potential energy due to gravity, respectively, as with the Euler-Lagrange Model.

In considering more complex planar examples, where we might have multiple sections, we can

expand the potential energy equation to a generalized form for n
2 continuum sections, approximating
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by a total of n continuum segments:

Π = Pe + Pg (3.49)

Pe =
1

2

n∑
i=1

kiθ
2
i (3.50)

Pg =

n∑
i=1

(2(n− i) + 1)migLi
2

cos

i−1∑
j=0

θj

− cos

 i∑
j=0

θj


 (3.51)

where ki is the spring stiffness of each section, mi is the mass of segment i, and Li is the chord

length of the segment. This form also provides the ability to adjust for rotations at the base of the

robot as depicted in Figure 3.5b.

When leaving the plane, the equation for the gravitational potential energy alters slightly

for non-distal sections. Given a two section, four segment approximation (n=4), the total potential

energy for the proximal section is:

Pgi =

2∑
i=1

(2(n− i) + 1)migLi
2

cos

i−1∑
j=0

θj

− cos

 i∑
j=0

θj


+ (eTz pi+1 − eTz Ry,θiRz,∆φpi+1)

(3.52)

where ez = [0, 0, 1]T and Ry,θ and Rz,∆φ are the base rotation matrices about the y and z-axis,

respectively. The vector pi+1 is the location of the CoM of the distal segment in the segment’s

local coordinate frame. The new terms represent the projection of distal sections onto the plane of

bending of section i. When considering travel in the opposite direction to determine the amount

of rotation occurring before a given section, it is useful to break down the magnitude of a section’s

curvature into two values:

θ0
i−1 = [θNi−1, θ

∗
i−1] (3.53)

= [θ0
i−1 sin(φi−1 − φi), θ0

i−1 cos(φi−1 − φi)]. (3.54)

The value θ∗i−1 represents the curvature along the direction of θi of the proximal sections and θNi−1

represents the curvature component that is normal to the plane of bending for section i, as related

by the difference between φi and φi−1.
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The total potential energy for distal sections is impacted by the configuration of the proximal

sections using this definition of θNi−1 and θ0
i−1:

Π = Pe + cos(θNi−1)Pg (3.55)

= Pe + cos(θ0
i−1 sin(φi−1 − φi))Pg (3.56)

The intuition of this result is that when ‖θNi−1‖ = π
2 , the distal section is parallel to the

ground and the potential energy due to gravity is eliminated. This results in the total potential

energy only comprising of the energy stored in the virtual springs, which at its minimum would

return the result θi1 = θi2, or exhibiting constant curvature.

3.3.1 Finding Minimized State

Once we obtain the expression for determining the systems total potential energy in 3.55,

we can iteratively solve for the angles θi1 and θi2, working from the distal section to the proximal

section, by finding the angles that minimize the energy in a given section. This is possible given the

assumption that we can measure the total bend present in a section at a given time (either through

string encoders or other sensors that provide relative orientation of a section’s end-point to its base

frame). Thus, we are merely minimizing the distribution of curvature in a section, using known

information (total bend in the section, material properties, and orientation of the section).

The actual minimization was carried out herein via the fminsearch in MATLAB, a function

from the Optimization Toolbox which is a derivative free method for minimizing single or multi-

variable functions. We seed the minimizer with a guess at the minimum state, in this case the guess

is based on constant curvature. Since we know the total bend of a section, measured as θi, and that

θi1 + θi2 = θi, we can rewrite the equations to be optimized for each section as:

Π =
1

2
ki[θ

2
i1 + (θi − θi1)2] + Pg (3.57)

3.3.2 Validating Non-constant Curvature Approximation

We verify the minimization by comparing the results from “fminsearch” to external mea-

surements of orientation along a section. External measurements are provided by a series of 3 inertia

measurement units (IMUs) placed along the length of a section. The first sensor is placed at the base
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of the section in order to relate the base orientation. The remaining sensors are placed at the mid-

point and end-point of the section, to measure the midpoint orientation and end-point orientation

relative to the section’s base. It is worth noting that as with the potential energy optimization, this

method is only truly reflective of the state when the section is stationary and acceleration measured

by the IMU is merely the distribution of acceleration due to gravity across the 3 Cartesian axes.

For verification, we sample a series of static configurations of the continuum robot, taking first mea-

surements and approximations of the distal section, and then measurements and approximations of

the middle section. Figures 3.6 and 3.7 plot the results of these measurements. As we can see from

both sets of data, there is a strong correlation between the trend of the results returned by both

the approximation and the measurements returned by the accelerometers. Where we see the largest

divergence of the methods is around the time that the sections are under-actuated, and thus able to

have “S” shaped curves, where the base of the section bends one direction due to gravity and the

later portion of the section bends in the opposite direction due to applied pressures.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

θ
1

0

0.5

1

1.5

2

θ
2

Distal Section Approximation along U axes

Ground truth

Below k
nominal

Nominal k

Above k
nominal

(a) Kinematic values u(t) and v(t) during rotation of
distal section.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

θ
1

-1

-0.5

0

0.5

1

1.5

2

2.5

θ
2

Distal Section Stiffness Approximation along V axes

Ground truth

Below k
nominal

Nominal k

Above k
nominal

(b) Generated forces corresponding to bending of dis-
tal section with known planar obstacle.

Figure 3.6: Evaluating state estimation of proximal section and impact of stiffness on curvature
distribution.

3.4 Experimental Evaluation of Piece-Wise Model

In order to model the OctArm as a non-extensible continuum robot, each of its sections

is initialized to halfway between its maximum and minimum length. Due to imperfections in the

OctArm’s construction, this also results in the OctArm not starting out “perfectly straight” in the
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Figure 3.7: Evaluating state estimation of distal section and impact of stiffness on curvature distri-
bution.

following experiments. In these experiments, since the OctArm is originally a three-section robot,

the proximal section will refer to what is introduced as the mid section previously and the distal

section will be the tip section of the OctArm. The base section of the OctArm is clamped and

restricted from moving for the duration of these experiments. The list of model parameters used in

the following simulations are summarized in Table 3.1.

Table 3.1: Dynamic Model Simulation Parameters

Parameter Proximal Section Distal Section

Mass [kg] 0.60 0.25

Length [m] 0.19 0.19

Section Radius [m] 0.045 0.03

Stiffness ku [N·m/rad] 2.4 1.13

Stiffness kv [N·m/rad] 2.4 1.13

Damping bu [N·m·s/rad] 0.6 0.15

Damping bu [N·m·s/rad] 0.6 0.15

We appraise the efficacy of the model by analyzing a series of simulation results and exper-

iments on physical hardware (the OctArm manipulator introduced in section 2.2), comparing the

side-by-side reactions of the simulation and physical hardware to various inputs. Along with the

following experimental descriptions below, a summary of the input signals for each experiment are

given in Table 3.2, where the function u5(t) represents a heaviside step function with delay t = 5s.

The first experiment applied a heaviside step signal to the distal section to the u-corresponding

joints with a magnitude of τ = 1, and a start time of t = 5s. From the plots in Figure 3.8, it can
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Table 3.2: Experiment Summary

Experiment τum τvm τut τvt
Distal Actuation 0 0 u5(t) 0
Proximal Actuation (u-axes) u5(t) 0 0 0
Proximal Actuation (v-axes) 0 u5(t) 0 0
Two-section Motion (v-axes) 0 u5(t) 0 u5(t)
S-bend (opposing v-axes) −2 · u5(t) 0 u5(t) 0
Orthogonal bending planes 0 u5(t) u5(t) 0
Dynamic two-section motion 2 sin(2t) · u5(t) 2 sin(2t+ π/2) · u5(t) 0 u5(t)

be seen that the simulated model and the physical robot have very similar responses to the signal

and settle to similar distributions of curvature. There is a slight drop in magnitude in observing

the total bend of the physical robot against the simulation. The simulation model also predicts the

reactionary bend in the proximal section that results from the CoM of the distal section moving

significantly away from the initial Z-axis. The physical robot exhibits similar behavior, but again at

a reduced magnitude compared to the simulation.
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(b) Distal actuation on OctArm

Figure 3.8: Experiment 1: A comparison of simulation model and physical OctArm robot with a
unit step signal of magnitude τ = 1 applied to U-designated joints in the distal section.

The second experiment applies the same signal from before, but now only to the proximal

section’s u-corresponding joints. Again we see a nice match between the reaction of the simulation

and the physical robot. We also see a closer match in oscillations and magnitude of the settled state

in this experiment, likely due in part to the better match in stiffness seen in 3.3.2.

The third experiment again applies the heaviside function to the proximal section, this time

along the v-corresponding joints. In observing the simulation results, we see an identical reaction
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(b) Proximal actuation on OctArm

Figure 3.9: Experiment 2: A comparison of simulation model and physical OctArm robot with a
value of τ = 1 applied to U-designated joints in the proximal section.

to the previous simulation, albeit along the v-axes. In observing the response of the physical robot,

we can observe a difference between this response and that seen in Figure 3.9b. This difference can

partially be attributed to the fact that the OctArm is not symmetric about both axes of rotation

and likely has a difference in stiffness between the u-axis and the v-axis.
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(a) Proximal section actuation along V-axes in simu-
lation
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tArm

Figure 3.10: Experiment 3: A comparison of simulation model and physical OctArm robot with a
value of τ = 1 applied to V-designated joints in the proximal section.

The remaining experiments actuate both sections simultaneously. In the first, a heaviside

signal with magnitude τ = 1 is applied to the v-axes of both sections, ideally leading to a planar

curve. The results in Figure 3.11, again provide a good correlation between the simulation and
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physical system. While there is a slight variation in magnitudes, the model accurately predicts that

the proximal section will exhibit significantly less curvature, despite receiving the same input, as it

is supporting the mass of the distal section.
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(b) Proximal and distal actuation of V-designated
joints on OctArm

Figure 3.11: Experiment 4: A comparison of simulation model and physical OctArm robot with a
value of τ = 1 applied to V-designated joints in both the proximal and distal sections.

In experiment 5, we again exhibit planar bending, but this time with the two sections

bending in opposing directions, giving an “S” curve. The inputs for this experiment were τ = −2

for the proximal section u-axes and τ = 1 for the distal section u-axes. Interestingly, as seen in

Figure 3.12, both the physical robot and the model predicted near constant curvature in the distal

section as a result of the initial orientation caused by the proximal section. The proximal section

has a good match in overall bend between both systems, while the proximal section shows a small

magnitude than predicted by the simulation.

The last experiment utilizing unit step functions in this series actuated both sections at

orthogonal planes of bending, i.e. the proximal section is actuated along the v-axes and the distal

section is actuated along the u-axes. The magnitude for both inputs is again τ = 1. Again we see

a good match between the response predicted in simulation and the physical system response, with

a slight mismatch in magnitudes of the desired motion and in the reactionary displacements of the

unactuated axes.

Finally, we look at the response of the model to a dynamic motion, highlighted in Figure

3.14. In this test, sinusoidal torques are applied to the proximal section axes with a phase shift of

π
2 between the u-axes and the v-axes, inputs that should cause the proximal section to execute a
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(a) Opposing “S” actuation of proximal and distal
sections in simulation.
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(b) Opposing “S” actuation of proximal and distal
sections on OctArm.

Figure 3.12: Experiment 5: A comparison of the simulation model and physical OctArm robot
with a value of τ = −2 applied to U-designated joints in the proximal section and τ = 1 to the
U-designated joint in the distal section, causing two sections to bend in opposite directions in the
same plane.
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(a) Proximal and distal section actuation at orthog-
onal bending planes in simulation. Proximal section
actuated about V-designated joints, and the distal
section about U-designated joints.
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(b) Proximal and distal section actuation at orthog-
onal bending planes on OctArm. Proximal section
actuated about V-designated joints, and distal sec-
tion about U-designated joints.

Figure 3.13: Experiment 6: A comparison of simulation model and physical OctArm robot with a
value of τ = 1 applied to V-designated joints in the proximal section and τ = 1 to U-designated
joints in the distal section.

circular motion with its end-point. The distal section is actuated using a heaviside step function

as before, applied to the v-axes with magnitude τ = 1. The result of this experiment provides

numerous insights while still exhibiting many of the behaviors from the previous experiments. As

with the previous experiments, we observe a nice match in overall behavior between the idealized
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model in simulation and the physical robot’s state estimation.

One insight gained from this experiment was the observation of hysteresis in the proximal

section about the vaxes. In simulation, we see a vertical shift in the sinusoid corresponding to

proximal v-joint values (v1 and v2) relative to the values of the u-axes. This was expected as the

proximal section rotated into and out of phase with the distal section. However, in the physical

robot’s response, we see this shift exists when v of the proximal section is positive (i.e. bending

in phase with the distal section), but does not exist when the proximal section is bending in the

opposite direction of the distal section (when v1 and v2 are negative). This suggests that the stiffness

of the physical robot changes between rotating in the positive v direction and rotating in the negative

v direction, a conclusion that is supported by the fact that the physical construction of the OctArm

has two muscles in tandem opposing a single muscle when bending about the virtual v-axes.

Another insight this experiment provided concerns the mismatch of the distal section’s u-

axes, which are not actively actuated but are able to deflect due to internal loads and changing

orientation with respect to gravity. In the simulation, we observed these values to exhibit beam

mechanic tendencies, in which the proximal joint of the section deflects at greater magnitudes. In

the physical robot, we observe the opposite effect, where the value u4, corresponding to the distal

u-related axis of the distal section reports, greater rotation than the joint value u3. We concluded

that this mismatch in distal u value trends comes from the state estimator for the physical robot

not allowing for non-planar bending, meaning that u and v values within a section must trend in the

same way (i.e. increasing or decreasing along a section’s length). In this experiment, the actuation

of the v-related joints outweighs the beam related deflections predicted in simulation.

3.5 Discussion

The initial results of the dynamic model in showed an excellent match between the simulation

of the robot dynamics and the physical device. The largest deviations seen were in the overall

bending magnitude of each section and the amount of oscillation in the simulation about the static

equilibrium. In addressing the difference in oscillations, it is possible to experimentally adjust the

damping coefficients in the model to better match the physical system. An example of this is shown

in Figure 3.15, where the simulation from experiment 5 is performed again after increasing the

damping coefficient for both sections. This produces a much more accurate approximation of the
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(a) Simulation of executing a circular motion via the
proximal section using sinusoidal torque inputs.
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(b) State estimation of physical robot while executing
circular motion of proximal section.

Figure 3.14: Experiment 7: Circular motion of the proximal section through sinusoidal torques
applied to the proximal continuum section. The distal section is actuated with a value of τ = 1
applied to V-designated joints.

oscillations in the physical robot.

In considering the slight difference in magnitude between simulation and the physical system,

there are a couple of factors that could be responsible. The first would be an imperfect tuning

between what a value of τ = 1 means in the simulation versus on the physical robot. In the physical

system, τ is applied differentially to each muscle as designated by the kinematics, specifically the

relationships between the actuator lengths and the kinematic parameters as in equations 2.6–2.8.

Thus, τu and τv are distributed to the OctArm’s muscle according to the relationship between l1, l2, l3

and u, v when arc-length s is held constant. The τ applied to the physical robot is scaled by a single

constant for each section and each direction of bending. These constants were found experimentally

by actuating the simulation model with a known τ and then adjusting the scalar multiplier for the

physical robot until the shape of the physical robot matches closely with the simulation. In adopting

this approach, it is possible that the scalar needs to vary with the state of the robot or possibly

that the estimation of this scalar should be based on several samples of τ to the physical system

and simulation.

Another possible cause for the difference in the magnitude in bending is unmodeled dissi-

pating forces such as friction between the OctArm’s muscles and the outer mesh that constrict their

motion. One solution could be to introduce model elements that address the hysteresis of pneumatic

muscle braiding and observe if this improves the predicted magnitude of bending. There are already
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(a) Opposing “S” actuation of proximal and distal
sections on OctArm.
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(b) Adjusted damping coefficient in simulation to bet-
ter match with the physical robot response.

Figure 3.15: Comparison of experiment 5 after adjusting the damping coefficient for both the prox-
imal and distal sections.

works in the literature that explore such models, [127,128], that could potentially address this error.

In considering the high number of approximated parameters in this model and the abstract

meaning of many of the parameters, it is almost certain to contain inaccurate model parameters.

A desirable result would be to minimize the error in parameter estimation and reduce the number

of “guesses” made about parameters. While it is unlikely to handle the high number of unknown

parameters, adaptive control could be a good candidate for estimating the mass of the robot during

execution, which can then adjust the relevant parameters such as stiffness in order to maintain

the previously established relationship between these values that produces a good match between

simulation and physical device.

We did not show extensive study of the model’s performance during highly dynamic motions,

but we can see from the initial results that the simulation model predicts greater reactionary motion

in the proximal section whenever the distal section is actuating. The design of a controller that can

cancel out the reaction of the proximal section to motion in the distal section, i.e. reduce the impact

of the dynamics, could be very useful when testing more dynamics motions.

In considering the state estimation provided in section 3.3, the method has been shown

to be adequate for slow moving motions and when settled in static configurations, but at higher

velocities it is unknown how the estimate will behave, though we can be certain that the estimate

will lose accuracy. This problem could benefit from the application of filtering methods to relate state

velocities and momentum to actual distribution of curvature. Alternatively, sensor fusion methods
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could prove helpful in increasing the accuracy of state estimates during high velocity motions. An

example scenario could be a camera system providing intermediate information with high accuracy

and the string encoders providing fast but low accuracy information. The IMUs used to calibrate the

state estimator could also be used in a sensor fusion methodology in order to capture the rotational

velocities of points along the robot’s length.
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Chapter 4

Promoting Automated Tasks for

Continuum Robots

The following chapter presents two separate contributions towards the automation of con-

tinuum robots. The first presents the application of a reinforcement learning method in order to

optimize a continuum robot’s task to search its workspace for points of interest. The novelty of

this effort is to automate continuum robot navigation in space through aliased states and without

a priori knowledge of its environment, desired state, or optimal path. The second contribution

automates the motion of a continuum robot’s end-effector through its workspace without knowledge

of the robot’s kinematics or dynamics, providing a model free approach that also requires very little

sensor information. Additionally, the method is able to achieve accuracy on the order of the state-

of-the-art kinematic and dynamic models for continuum robots. Discussion for both contributions

is given at the conclusion of the chapter

4.1 Policy Optimization for Search Tasks

A model-free policy optimization method is proposed in this work in order to shape a

continuum robot’s search policy for objects of interest. This method allows us to develop a global

policy quickly while removing potential problems that redundancy and aliased states cause for

deterministic methods.
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4.1.1 Formulation

We formulate the control problem of a continuum robot section as a discounted Markov

Decision Process [129] defined by the tupleM = {S,A, P, r, γ}, where S denotes the state space, A

is the action space available to the robot, P : S×A → S is the state transition function, r : S×A → R

is the reward that the environment emits on each transition, and γ ∈ [0, 1] is the discount factor.

Regarding S, for a single continuum section, we define two DoF: κ, the curvature of the continuum

section, and φ, the plane of bending for each section. Traditionally, many continuum robots also

have the ability to extend and retract along their backbone; we assume fixed backbone length in this

work. We create a discrete set of all states by describing each DoF as spanning nκ ∈ N and nφ ∈ N

discrete values, distributed evenly over a defined range for each value. Given i number of sections,

the total number of states is (nκ × nφ)i, giving Snκ×nφ×.... In this work, we limit our actions to a

single step transition along one DoF at a time in order to simplify the list of available actions and

create simple connections between states. For each DoF, we increment the DoF up (a = +1) or

down (a = −1) along their discrete set of values, or remain at the current value (a = 0). Given i

sections as before, the total number of actions is 3 × i × nDoF , where nDoF is the number of DoF

available to the section.

As is common among reinforcement learning methods, we empirically define a series of

rewards and penalties associated with actions taken by the robot in order to shape the final policy.

The reward function is primarily designed to promote actions that lead to a state that can view

the goal object. Equally, it penalizes actions that leave such states in order to return to states that

are not able to see the goal. We design the largest penalty to occur when a chosen action leads to

an invalid state or invalid state transition. Examples of this would be trying to bend a continuum

section beyond the physical limits of the robot or attempting to transition to a neighboring state

that is blocked by a physical object. For all other actions, the algorithm issues a step penalty in

order to encourage reaching the goal state in a finite number of steps. Thus, the reward structure,
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Ras we employ is as follows:

Ras =



−100 , if s′ is invalid

5 , new state sees goal

−5 , leaves state that sees goal

−0.05 , general movement cost

(4.1)

4.1.2 Actor-Critic Policy Optimization

We assume a model-free reinforcement learning setup, where the robot does not have direct

knowledge about the transition function, P , and reward, r, and can only experience them through

interacting with the environment. In particular, at a given time step t, the robot observes the current

state st ∈ S and samples an action at ∈ A from a policy π : S → A. This leads to a new state

st+1 that rewards the robot with rt. Our goal is to solve for the policy that optimizes the robot’s

expected sum of discounted rewards.

Policy gradient methods allow us to maximize the expected cumulative reward by directly

searching in the policy space, reducing the amount of memory needed to store quality of states

and actions information as with Value Iteration and Q-learning methods, while they are also the

preferred class of methods for learning controls in continuous state-action spaces. Here, we con-

sider parameterized policies πθ(a|s) and hence the objective of the learning process is to find the

parameters θ that maximize

J(θ) = EM,πθ [

∞∑
t=0

γtrt|πθ] (4.2)

where EM,πθ [·] denotes the expected value of the Markov Decision process for a given policy πθ.

Given the above objective function, J(θ), we adjust θ through gradient ascent where the

gradient of the expected reward can be determined according to the policy gradient theorem [130]:

∇θJ(θ) =

Eat∼πθ(·|st)

[∑
t

∇θ log πθ(at|st)Qπθ (s,a) | st

]
(4.3)

where Q(st,at) = Ea∼π(·|st),M
[∑

l=0 rt+l
]

denotes the action-value Q function. To reduce the

variance of the policy gradient estimate and increase stability, we consider an actor-critic policy
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gradient framework [130]. In particular, we replace the estimate of the Q-value provided by the

cumulative reward in Eq. 4.3 with a function approximator (critic) which is learned in tandem

with the policy (actor). The critic evaluates the quality of the policy for a current set of policy

parameters. The actor then shapes the policy parameters in response to the output from the critic.

It is important to note that the vector value θ is of the same dimension as our state-action feature

vector, which we define when implementing the solution in Section 4.1.3.

In the problem we are exploring in this work, our continuum manipulator is capable of

assuming a discrete number of states and to perform a discrete set of actions in order to transition

between these states. As such, we have chosen to use the Softmax policy [130] which states that

the probability of an action is proportional to the exponential of a linear combination of features

Φ(s, a):

πθ(s, a) ∝ eΦ(s,a)T θ (4.4)

Using this policy, our learned policy parameters θ are defined to be coefficients for each of our

features.

Given the well-defined nature of the Softmax policy, the relevant score function is:

∇θ log πθ(s, a) = Φ(s, a)− E[Φ(s, ·)] (4.5)

where E[Φ(s, ·)] is the expected feature vector at state s.

Regarding the critic that evaluates our policy, we consider a linear approximation of the

value function, Qπ(s, a), by linearly combining the features via a weight vector w:

Qw(s, a) = Φ(s, a)Tw ≈ Qπθ (s, a) (4.6)

The critic is updated at each time step using linear Temporal Difference (TD) learning

that adjusts the parameters w of the Q-function based on the TD error, delta, and the state-action

features. We refer the reader to Algorithm 1 for an overview of our actor-critic framework for learning

an optimal policy. Here, each learning iteration generates sample(s) from the current policy, uses

these samples to update the critic function, and updates the policy parameters based on the critic

and the gradient of the objective function. Learning rates α and β adjust step size for learned
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parameters, and the discount factor γ determines the impact of future rewards.

Algorithm 2 Actor-Critic Policy Gradient

1: function QAC

2: Initialize s, θ

3: Sample a ∼ πθ

4: for each step do

5: Sample reward r = Ras , get transition s′ ∼ P as

6: Sample action a′ ∼ πθ(s′, a′)

7: δ = r + γQw(s′, a′)−Qw(s, a)

8: θ = θ + α∇θ log πθ(s, a)Qw(s, a)

9: w ← w + βδΦ(s, a)

10: a← a′, s← s′

11: end for

12: end function

4.1.3 Simulation Validation

We verify the functionality of the algorithm using a simulation model of the Tendril robot

[131] placed in the Gazebo physics simulator environment [122]. The Tendril is a continuum robot

comprising of a backbone made using a carbon fiber tube, plastic spacers for the routing actuating

tendons, and an actuator package that pulls on the tendons to create bending. The physical Tendril

is long and thin, with either 2 or 3 independent continuum sections. The Tendril is simulated in

Gazebo using a series of small, rigid linkages connected in series that approximate the continuum

shape of the actual Tendril. The end-effector of the simulated manipulator is fitted with a camera

that is oriented in line with the tendril’s backbone, much like an endoscope. In order to simplify

the image processing task and focus on the policy optimization, the Tendril is placed in an empty

simulation world with a single object that represents the goal we wish to locate with the robot’s

camera. An example of the empty world scenario and the viewpoint of the simulated Tendril is given

in Figure 4.1, where the view of the Tendril is seen in the lower left corner.
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Figure 4.1: Empty World Simulation with Tendril Robot
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4.1.4 Defining Features

Necessary to the implementation of our formulation is the definition of the feature vector.

As this solution is designed for inspection purposes, our state feature vector Φ(s) is defined based

on feedback from a camera and low-level image processing:

Φ(s) = [Iavg, Sobj ] (4.7)

where Iavg is the average intensity of the image and Sobj indicates if a goal object is present and the

size of the object relative to the camera frame size. Both feature values are normalized to the closed

range [0, 1], and the size of goal object is saturated to a threshold equivalent to occupying 1/10th

the area of the camera view.

In order to simplify the execution of the method around edge states (i.e. the boundaries of

our state space), we preserve the same action set for all states and instead apply an action-based

feature, and corresponding penalty in our reward function, for state-action pairs that attempt to

assume an invalid state. The feature, represented as B in equation 4.8, exists as a binary feature:

1 when the chosen action crosses a boundary (such as exceeding bending limits), and 0 when the

chosen action leads to another valid state.

Φ(s, a) = [∆Iavg,∆Sobj , B] (4.8)

The remaining features in our state-action feature vector (∆Iavg,∆Sobj) are the changes

in the state features Iavg and Sobj , respectively, between state s and the state s′ reached upon

performing action a.

In analyzing the algorithm given this feature definition, it can be seen that the nature of

our state-action feature vector will always produce a non-zero probability of staying in a arbitrary

state at any given time. In other words, Φ(s, a) = [0, 0, 0] when the action is a = 0 across all DoF,

giving e[0,0,0]T θ = 1. Therefore, we modify the policy for these actions in each state as:

πθ = Sobje
Φ(s,a)T θ (4.9)

This modification to the policy removes the probability of choosing actions that stay in a state for

any configuration that does not see the goal object and scales the probability of staying in a goal
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state according to how well the state “sees” the goal, as designated by Sobj .

4.1.5 Planar Task Space Exploration

In this first experiment, we start with a two-section continuum manipulator capable of

independent planar bending in each section (i.e. nDoF = 1). For clarity of visualizing the states, we

indirectly provide curvature values (κ) as bending angles, which can then be converted to curvature

for a fixed length backbone using κ = bending angle
arc-length . We allow the proximal section three bending

values: bending angle of zero (straight backbone), and ±90°(i.e. bending left and right at 90°).

Separately, we allow the distal section five values: straight, and bending angles of ±90°, ±180°.

Therefore, the total number of possible states is 15. Examples of physical meaning for these states

can be seen depicted in Figure 4.2. In evaluating the ability to locate an object of interest, we placed

the singular goal object 0.8m left of the base of the robot and 1m vertically up from the base, which

is conveyed by the blue orb in the upper left corner of each state image in Figure 4.2. Finally, for

this experiment, we set the learning and discount rates to: α = 0.1, β = 0.3, and γ = 0.95, which

we experimentally found to work well for solution convergence.

We ran the algorithm 10 times while initialized at each of the possible configurations for

a total of 150 executions. Each execution was allowed to run for 1500 iterations with the learning

rates given above. The average of the policies obtained from each of the 150 runs is described in

Table 4.1, where the numbers given per action per state are the percent chance that the action will

be taken when in that state. The actions listed in the table (Up/Down/Left/Right) refer to the

transitions seen in the visual interpretation of the final policy in Figure 4.2. For each depicted state,

the arrows flowing from the state represent the possible action transitions and are shaded according

to the likelihood of that action being taken and transitioning to a neighboring state. All action

transitions appearing as grey have a probability of either zero or near zero (<0.5%) of being chosen.

The three states capable of seeing the goal are highlighted in the figure (States 5, 9, and 12), and

are the only states that contain action transitions indicating a probability of staying in the present

state.

As can be seen in the results of our simplified example, in the states where the goal object is

well seen (States 9 and 12), we see a greater chance of staying in those states. In states neighboring

the goal states (i.e. one action step), we also observe a markedly high percent chance (>75%) of

taking the action that get us directly to a goal state. In states more than a step away, we see nearly
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Figure 4.2: Optimized Search Policy for Planar Two-section Continuum Manipulator: Colors cor-
respond to probability of state-action transition occurring. Grey transitions indicate probability of
zero.

Table 4.1: State Action Probabilities According to Policy for Planar Search

Action S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

Up 0.1 0.0 0.0 0.0 0.0 33.1 0.3 9.0 25.8 13.3 0.7 0.3 0.8 80.0 49.9

Stay 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 21.9 0.0 0.0 49.6 0.0 0.0 0.0

Down 49.9 33.7 47.5 77.0 8.5 33.2 98.8 9.0 2.3 9.6 0.0 0.0 0.0 0.0 0.1

Left 0.1 33.2 4.9 9.7 87.3 0.0 0.3 9.2 25.7 77.2 0.0 0.3 98.8 10.1 49.9

Stay 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 21.9 0.0 0.0 49.6 0.0 0.0 0.0

Right 49.9 33.1 47.6 13.2 0.0 33.7 0.7 72.7 2.3 0.0 99.3 0.3 0.4 9.9 0.1
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uniform distribution among the valid actions, which is to be expected in an aliased state that does

not provide much feedback to the system. Also, as designed in the feature set, in all edge states, any

actions that lead to states beyond the limitations of the robot converge to zero or near zero percent

chance of begin chosen. Overall, this is the expected optimal policy.

4.1.6 Spatial Task Space Exploration

We extend the above example by adding two additional DoF: direction of bending for the

proximal section (φprox) and for the distal section (φdis), giving nDoF = 2. The number of states

quickly extends beyond the amount that can be reported here in detail. Instead, we report the total

number of states, location of the goal, and the convergence to a stable policy. To start, we define

our state set. In this experiment, we allow φprox and φdis to have 3 values: 0°, 120°, and 240°. We

keep the same range of bending angles for the proximal and distal sections as the planar experiment.

Given this, our total number of states is: 3 · 3 · 3 · 5 = 135. We can see a visual expression of these

states in Figure 4.3, where we have also placed an example goal object at [x, y, z] = [−1, 0.5, 1.25].

We use the same learning rate α and discount value γ from before. We modify the learning rate β

to be 0.2, which we found slightly improved performance on our hardware.

Figure 4.3: Task Space of Tendril in Open space

Given that our state space in this example is too large to reproduce visually here, we instead

track the convergence of our policy parameters θ to a stable set of values. We ran the optimization
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algorithm 5 times from randomly selected starting states. Figure 4.4 depicts the average change in

the three θ values over 2000 iterations of the policy optimization algorithm and includes the standard

deviation of the 5 trials as shaded regions.
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Figure 4.4: Convergence of Policy Parameters for 4 DoF (Solid lines denotes the average and shaded
regions the standard deviation of policy parameter values over 5 trials.)

As can be seen, values θ1 and θ3 settle around approximately 800 iterations. The value of θ2

increases slightly after this point, but generally begins to plateau enough to consider it a sufficient

condition to exit the learning process. In practicality, we can design exit conditions (such as no

change in policy for x iterations) to exit the learning process.

From our knowledge of the features that describe the state of our robot, we can draw

conclusions from the relative magnitude and sign of the three θ values and their impact on our

policy. It can be seen that any action that crosses a boundary (B=1), simulated or physical, will

have a large negative component in the exponent, giving a probability approaching zero of that

action being chosen. Even in the event that a goal state is on the other side of the boundary, the

magnitude of the boundary associated parameter is generally higher than that of the goal. This is

in part due to the penalty associated with crossing a boundary being significantly higher than the

reward for reaching the goal.

In evaluating values θ1 and θ2, we can see a positive association with both the average

intensity of the image (Iavg) and the feature indicating the size of the goal object (Sobj). Clearly,
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seeing the goal is more impactful on our policy as indicated by the difference in magnitude of the

parameters. However, because our goal is a bright object in a dark environment, there is still a

positive association between increased light intensity and reward for finding the goal. Seeing this

behavior, we can potentially draw parallels to the policy slightly favoring an increase in brightness.

4.1.7 Impact of Learning Rates

Following our observations with the convergence of policy parameters in the previous ex-

periment, we conducted an empirical study of the impact of varying the learning rates, α and β, on

the solution. For each learning rate, we adjusted the values independently and averaged 10 samples

at each of the selected test values. For varying α, these values were: 0.001, 0.01, 0.1, 0.5, and 1.0.

For β, we tested β values: 0.002, 0.02, 0.2, 0.3, 0.6, and 1.0. When varying α, we set β = 0.2, and

when varying β, α = 0.1. Figures 4.5 and 4.6 show the result of varying α and β, respectively on all

three of the policy parameters while using the same experimental setup as the previous experiment.
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Figure 4.5: Impact of learning rate α on solution convergence (β = 0.2)

As can be seen in Figure 4.5, we generally see an increase in the rate of convergence as α

increases, with some instability when α = 1. With respect to the α value used in our experiments,

α = 0.1, we see that this choice of α shares desirable characteristics with both the smaller and larger

α values. At α=0.1, the solution has a relatively smooth convergence, similar to the small α values,

while having a faster rate of convergence like the higher values.
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Figure 4.6: Impact of learning rate β on solution convergence (α = 0.1)

In observing the impact of β on our solution, it is clear that the value of β does not an

impact solution convergence with the same distinction when observing policy parameters θ1 and θ2.

However, in observing parameter θ3, we see a trend similar to that of α, in that higher β values cause

faster, less smooth convergence, and lower values have smooth curves, but are slower to converge.

The one value that breaks this trend for this example is β = 0.3, which acts closer to the small

values of β than values of a similar magnitude.

4.1.8 Real-world experiments

4.2 Kinematic Model Free Robot Control

In this section, we explore the application of Kinematic-Model-Free (KMF) robot control

as a potential solution for the many challenges facing task space path planning and automation of

continuum robots, while simultaneously reducing the need for complex sensors or extensive knowl-

edge about the continuum robot. In previous works by the authors [132–134], the KMF method

has been shown to be extremely effective in permitting a rigid-link robot to learn approximations of

local kinematics and dynamics (termed ”kinodynamics”) at various points in the robot’s taskspace.

These approximations then enabled a robot to follow various trajectories and even adapt to changes

in the robot’s kinematic structure. The approach learns the local kinodynamics through a series of
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exploratory actuation primitives and a k-Nearest Neighbor algorithm. The algorithm can predict

what inputs to the robot’s actuators will result in a motion towards a desired set point. A major

advantage of this approach is the simplification of the feedback system: only a camera is needed to

track the location of the end-effector relative to the location of the desired set point.

This section gives an overview of the established KMF method, detailing the overall struc-

ture of the algorithm and the specific details we utilize in our realization. Further, we present a

series of mappings that convert actuation primitives from KMF into universal actions for continuum

manipulators by exploiting ideal kinematics.

4.2.1 KMF Algorithm

As detailed in [132], [133], and [134], KMF operates on a learn-as-you-go premise by provid-

ing a robot with test motions, or actuation primitives, and then recording the resulting motion of

the end-effector after the primitives are applied. A collection of these exploratory primitives across

the robot’s work-space can then be used to approximate the local kinematics and dynamics of the

system and provide a best-fit approximation of what actuation would provide desired motion. After

the conclusion of each motion, the resulting movement is compared to the anticipated motion of the

end-effector in order to evaluate the accuracy of the approximated ”kinodynamic” model. If sig-

nificant difference exists between expectation and reality, the algorithm triggers a new exploratory

phase in order to better sample the local space. In this work, we use a slightly modified implemen-

tation of that proposed in the original KMF works. First, we start with the premise of actuation

primitives: a control signal τ(t), in this case either a voltage or pressure, that varies as a function

of time:

τ(t) =

{
τp if t ∈ [t0, t0 + dp)

0 if t ∈ (−∞, t0) ∪ (t0 + dp,∞)
, (4.10)

where τp is defined to be the magnitude of the actuation primitive and dp is the duration of the

primitive. The value t0 denotes the start time of the action. In this implementation, the value dp

is constant at 1s throughout execution, and all individual actuation primitives share the same start

value t0 for each separate motion. Throughout the execution of KMF, the controller is recording

the set pi of all meaningful actuation primitives executed on the robot, including primitives from
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both exploration behavior and model predicted behavior.

Next, we describe the process of using the collected data set pi to produce desirable ac-

tuation primitives that will drive the end-effector to a goal location. In this implementation, we

will generalize the dimension of our actuator primitives, and subsequent results, to match our later

implementation on hardware. To begin, let p̂ be an actuation primitive whose parameters τ(p̂) will

cause the end-effector to move towards a desired goal. We assume no knowledge about the robot’s

kinematics or dynamics, and given this, we must estimate the values τ(p̂) that will give us the desired

motion. The desired primitive consists of n elements – one for each DoF:

b1 =



τ1
p (p̂)

τ2
p (p̂)

...

τnp (p̂)


. (4.11)

For traditional rigid-link robots, the number of elements in the primitive is also equivalent to

the number of actuators. In this implementation, as with the initial implementation, the estimation

of p̂ is to be determined as a linear combination of the k-nearest neighbor (k-NN) primitives previ-

ously executed and saved in the controller’s memory. These k-NN primitives are selected according

to the distance between the current end-effector location and the starting position of each primitive

executed in memory. The resulting k-NN primitives are labeled as p1. . . pk. The linear combination

of these k-NN primitives can be expressed in the matrix form:

A1x = b1 (4.12)

where x = [x0, x1, . . . , xk]T , is an as yet unknown weight vector. The matrix A1 contains the

parameters of the k-NN primitives:

A1 =



1 τ1
p (p1) τ1

p (p2) . . . τ1
p (pk)

1 τ2
p (p1) τ2

p (p2) . . . τ2
p (pk)

...

1 τnp (p1) τnp (p2) . . . τnp (pk)


n×(k+1)

, (4.13)
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where τp(pi) is the magnitude of the i-th actuation primitive. We solve for the unknown coefficients

xi using readily available information concerning the results of our previously experienced k-NN

actuation primitives. We thus describe the matrix:

A2 =



1 ∆x(p1) ∆x(p2) . . . ∆x(pk)

1 ∆y(p1) ∆y(p2) . . . ∆y(pk)

...

1 ∆z(p1) ∆z(p2) . . . ∆z(pk)


3×(k+1)

, (4.14)

in which [∆x(pi)∆y(pi)∆z(pi)]
T is the relative displacement experienced by the end-effector upon

execution of the primitive pi. Utilizing knowledge of both the manipulator’s current end-effector

location and the location of the goal destination, we can choose a simple desired displacement for the

end-effector to move towards the goal. If the distance between the end-effector is sufficiently small,

we can choose the next desired motion to move directly to the desired goal or take an incremental

step towards our goal. Regardless, the desired motion is summarized as a relative displacement of

the end-effector in global coordinates:

b2 =


∆x(p̂)

∆y(p̂)

∆z(p̂)

 (4.15)

After designating our desired motion, we can calculate the coefficients {xi} by solving for x

in the equation:

A2x = b2 (4.16)

As discussed in [132], the rank of matrix A2 is not guaranteed to be full, allowing variability in

the solution for x. We once again solve this problem using least squares regression to find a best-

fit approximation for x. Once calculated, we can use equation 4.13 to find the desired primitive

parameters τp(p̂) in b1. One final adjustment is the weighting of the k-NN primitives according to

the distance between the current end-effector location and the starting location of each primitive.

By adding this set of weights, wi. . .wk, we obtain a weighted least squares solution when solving
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4.16. Thus, equations 4.13 and 4.16 are adjusted as follows:

{
A1Wx = b1

A2Wx = b2

, (4.17)

where W = diag(1,w1, w2, . . . , wk).

4.2.2 Continuum OctArm Implementation

In this work, we once again choose to model the continuum kinematics using the Allen

kinematic parameterization mentioned in Section 2.1. We choose this kinematic description from

among the other valid models due to the simplicity of mapping from kinematic values to actuator

values, as provided in [112] and reproduced below:

l1 = s(t)− d · v(t) (4.18)

l2 = s(t) +
d · v(t)

2
+

√
3d · u(t)

2
(4.19)

l3 = s(t) +
d · v(t)

2
−
√

3d · u(t)

2
(4.20)

4.2.3 KMF for continuum manipulator

As outlined in the initial development of KMF, the action primitives, τ(t), supplied by the

method are not limited by action type or actuation method. When adapted to continuum robots,

there are two main types of actuation to be considered: tendon driven devices actuated through

electric motors and pneumatically driven artificial muscles. The cases of both extensible and non-

extensible manipulators also need to be taken into account. In considering non-extensible, tendon

driven robots, one cannot simply pull on a single tendon and achieve desired motion without first

or simultaneously letting all opposing tendons go slack or at least reduce tension in an amount

proportional to the tendon being pulled on. This means that for fixed length robots, we need to

address coupling for the robot by applying differential actuation.

Following from this idea of differential actuation, we make use of the kinematics mentioned in

equations 4.18-4.20 to relate individual actuator values to KMF primitives. Here, for both extensible

and non-extensible continuum robots, we can map one primitive to the kinematic value u to cause

differential bending along the local Y-axis, as related by the sign change of the coefficient for u
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in actuators 2 and 3. Likewise, we can map another primitive to the value v to drive differential

bending along the local X-axis. Exclusively for extensible continuum manipulators, a final primitive

can be mapped to the arc-length value s that is present for all actuators. More explicitly for the

OctArm, we can increase and decrease pressure to respective muscles using the following equations:

p1 =

∫
τs(t)dt− d

∫
τv(t)dt (4.21)

p2 =

∫
τs(t)dt+

d

2

∫
τv(t)dt+

√
3d

2

∫
τu(t)dt (4.22)

p3 =

∫
τs(t)dt+

d

2

∫
τv(t)dt−

√
3d

2

∫
τu(t)dt (4.23)

where pi is the pressure value for muscle i in a section, and τu, τv, and τs are the primitives

mapped to the kinematic values u, v, and s, respectively.

4.2.4 Mapping KMF to OctArm DoF

In order to implement KMF for the 9 DoF OctArm and observe the efficacy of the method,

we began with a simplified mapping of KMF primitives to OctArm DoF. Here, we present 3 mappings

of KMF primitives to OctArm DoF, gradually increasing the complexity and redundancy of the

system in order to assess KMF.

4.2.4.1 Mapping 1: 3 DoF

In this first mapping, we treat the OctArm as a single continuum section, providing identical

inputs to muscle 1 of each section, and the same setup for muscles 2 and 3. Given that the OctArm is

extensible by design, we can use the primitive mapping described for the basic extensible continuum

section:

[τ1, τ2, τ3] = [τu, τv, τs] (4.24)

This mapping accentuates the under-actuated nature of continuum robots by displaying

non-constant curvature. Non-constant curvature will be especially prevalent in the proximal (base)

section, which must support the load of both the middle and distal sections. Even in this reduced

number of DoF, traditional task-space planning and control methods potentially suffer from modeling

and sensing errors.

As noted when first reporting KMF, the order in which the primitives are arranged in this
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mapping, and subsequent mappings, is not important to the method. The order provided is simply

for reporting purposes and for clarity of the mapping.

4.2.4.2 Mapping 2: 4 DoF

For the second mapping, we treat the OctArm as a non-extensible, 2 section continuum

manipulator. We accomplish this by treating the base and mid-sections of the OctArm as one sec-

tion, receiving matching inputs to each of the muscle groups as in the first mapping. To simulate

non-extensibility, we initialize each OctArm section to their respective mid-range extension value,

essentially half-way between their minimum and maximum pressure. After initialization, only dif-

ferential inputs utilizing u and v are given to the system. This provides the system with 4 DoF,

with the primitive vector:

[τ1, τ2, τ3, τ4] = [τub , τvb , τut , τvt ] (4.25)

The second mapping serves to demonstrate using KMF in the non-extensible class of con-

tinuum robots. It also serves to introduce redundancy into the system.

4.2.4.3 Mapping 3: 6DoF

The final mapping makes use of each section of the OctArm independently of the others.

As with the second mapping, we model the sections as constant length and provide only differential

inputs to each section, giving the system a total of 6 DoF. Our primitive vector for this case is:

[τ1, τ2, τ3, τ4, τ5, τ6] = [τub , τvb , τum , τvm , τut , τvt ] (4.26)

This mapping represents a 3-section non-extensible continuum robot, and implements the

largest degree of redundancy explored in this work.

4.2.5 Experimental Validation

In evaluating the efficacy of KMF across the different mappings, we consider two paths in

the OctArm’s taskspace for the end-effector to follow. As part of a class of robots whose hardware

naturally traces curves and bending motions, one of the most difficult motions for a continuum robot

to perform for the end-effector is a straight line. Consequently, the first path we test is a straight
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Figure 4.7: Nominal Trajectories for End-effector tracing

line that runs through the taskspace, parallel to the x-axis. The path can be seen in Figure 4.7a.

The exact path is a series of 9 points spaced evenly between [x,y,z] = [-0.2m,0.95m,-0.85m] and

[0.2m,0.95m,-0.85m] in the camera’s coordinate frame. In executing the path, the OctArm must

travel to the start point (x=0.2m) then follow the full length of the path and back again to the start

of the line.

The second path considered is a planar lemniscate path sitting a plane that is parallel, but

offset, from the OctArm’s local XZ-plane. The path consists of 19 discrete points (the start and stop

point are the same), shown in Figure 4.7b, and spaced approximately 5cm apart. For both paths,

the end-effector must arrive within 2cm of error (as depicted in the plots by the green region) of the

current goal point before moving to the next. An example of the OctArm executing both the line

and lemniscate path can be seen in Figure 4.8.

Tracking of the OctArm end-effector along the desired trajectories is achieved through the

use of a Microsoft Kinect [135] to track the center of the OctArm end-effector using hue filtering.

We then use the Kinect API to map color pixel coordinates to depth values and consequently to

real-world coordinates. Goal points along the desired paths are provided through a MATLAB script,

with the coordinates themselves set with respect to the Kinect coordinate system. Kinect tracking

is implemented in C++ using Visual Studio 2015, and the same program also sends the end-effector

coordinates to a Simulink model via network socket. A second Simulink model is responsible for

integrating the actuation primitives into pressure values that drive the pressure regulators controlling

the OctArm. Finally, the MATLAB script that provides the goal locations as the end-effector

moves through the task space also hosts the core KMF algorithm by receiving end-effector location,

calculating and recording primitives and motions, and providing primitives to the Simulink model

driving the OctArm.
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(a) OctArm following line path through task space

(b) OctArm following lemniscate path in task space.

Figure 4.8: OctArm Manipulator tracing paths in work space.

4.2.5.1 Results: 3 DoF Mapping

In implementing the first mapping, the KMF method was tasked with solving what would

ideally be a relatively simple mapping of 3 DoF to 3 dimensions of movement for the end-effector.

In reality, and as mentioned briefly when introducing the mapping, the compliance of the OctArm

and the fact that the system is under the effects of gravity makes this a difficult problem to model,

much less solve. In observing robot performance under KMF, seen in Figures 4.9 and 4.10, it can

be seen that with sufficient exploration time the method is able to track both test trajectories in

Figure 4.7 well and in reasonable time.

For the line trajectory, as seen in Figure 4.9a, starting from the time of arrival at the first

point, KMF actuates the robot to step along the remaining 16 consecutive points with little to no

error outside of the 2cm limit in under 3 minutes. This value is more impressive when considering

that the system is paused (not a result of KMF) 3 seconds between reaching each goal point and

starting to move to the next point on the path (1 second to ensure that system is settled, 2 seconds

of clarity of the result).
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Figure 4.9: 3DoF OctArm line following

The 3 DoF mapping also proves capable of completing the lemniscate path, which requires

additional motion compensating against gravity. Here, we see more travel outside of the nominal

path we expect between consecutive points, but still have eventual recovery and convergence to each

point. The travel outside the nominal path could potentially be improved either through smaller

steps along the path or providing further exploration in this region of the taskspace.
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Figure 4.10: 3DoF lemniscate path following

4.2.5.2 Results: 4 DoF Mapping

In implementing the second mapping, there was uncertainty about how introducing redun-

dancy would impact the performance of the algorithm. In observing the results in Figures 4.11 and

4.12, we can clearly see that, at least for these two paths, the addition of another DoF did not
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greatly hinder the performance. While not shown in these snapshot results, it was noticeable during

training that it took longer for the 4 DoF mapping to obtain enough experience to traverse the

space intentionally. This is due in part to the fact that the 4-dimensional exploration primitives,

even when orthogonal, could not guarantee a diverse set of motion in the task-space. The same can

be said for the previous 3 DoF mapping given the non-linearity of the system, but the extra degree

of redundancy does not appear to help exploration.

When comparing the results of the 3 and 4 DoF mappings at following the line path, there is

little discernible difference between the two performances. In general, we observe that both mappings

can still make inaccurate predictions at times, depending on the closest neighbor candidates at each

given point, but both have similar completion time.
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Figure 4.11: 4DoF line following

Likewise for the lemniscate path, we see similar times of completion and accuracy of per-

formance between the 3 and 4 DoF mappings. It is worth noting for later discussion that both

mappings appear to deviate less from the acceptable region of error in the left loop of the path.

93



0 50 100 150 200 250 300

Time [s]

-1

-0.5

0

0.5

1

P
os

iti
on

 [m
]

ee
x

ee
y

ee
z

goal
x

goal
y

goal
z

(a) 4DoF Mapping tracking of line path

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

1.5

-0.65

Z
-A

xi
s 

[m
]

Y-Axis [m]

1

X-Axis [m]

0.20.10.5 0-0.1-0.2-0.3

(b) Measured end-effector location while following line path (4DoF)

Figure 4.12: 4DoF lemniscate following

4.2.5.3 Results: 6 DoF Mapping

As with the 4 DoF mapping, it was unknown exactly what impact the extra redundancy

would have on the performance, though it was anticipated that 6 DoF would be a greater challenge

in generating a solution than the 4 DoF mapping, as is the case with most cases in motion planning
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involving increased degrees of freedom. As can be seen in Figure 4.13a, the first notable impact is on

completion time. The result seen here is one of faster examples we recorded using this mapping, but is

still 4-5 times slower than the 3 and 4 DoF mappings. In observing Figure 4.13b, it becomes apparent

that a large portion of that time difference is spent re-exploring and miscalculating primitives in an

already explored region.

The 6 DoF mappings suffers from the same issue observed in the 4 DoF mapping in that

there is no guarantee of sufficient taskspace exploration to use for predictions when given a diverse,

or even orthogonal, set of actuation primitives. Predictably, where the 6 DoF mapping appears

to suffer more than the 4 DoF mapping relates to the extra increase in redundancy. The extra

redundancy increases the chance that two neighboring primitives could have been sampled from

very different and relatively remote regions of the robot’s configuration space.

Fortunately, KMF has already been shown to be able to adapt to changes in kinematics

while actively tracking and learning. This is evidenced by the fact that the 6 DoF mapping is still

able to converge to each point along the path, even if taking a different path between each point.

Given the difficulty of solving the line path after several learning trials in this example, we

forgo attempting to trace the lemniscate path with the 6 DoF mapping for this reporting.
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Figure 4.13: 6DoF line following
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4.3 Discussion

4.3.1 Reinforcement Learning Discussion

As we expand the DoF and range of motion, we quickly arrive at a scenario where the

state-space contains a multitude of local states that are able to “see” the goal object. The algorithm

presented here does not guarantee that the robot will arrive at exactly the “best state” that has

the closest view of the object. However, the method can arrive to one of the local “best states”

distributed throughout the state-space.

Indeed, when also taking into account our modification in Eq. 4.9, we can see an example of

the policy settling in “good enough” states in our simple scenario. States 5, 9, and 12 are candidates

for acceptable states by simply seeing the goal object. In purely quantitative reasoning, state 12

is the “best” goal state in that it has the best view of the goal (Sobj = 1), followed by state 9

(Sobj = 0.36), and then state 5 (Sobj = 0.05). The uniform random policy in aliased states prevents

the system from settling in, or oscillating between, two non-goal states, and the remaining states

clearly have an eventual path to either state 12 or 9. Even in state 5, in part receiving help from our

modification, the policy has greater chance of moving to state 4 and then to state 9 over staying in

5. However, there is not an overwhelming likelihood of the system leaving state 9 in order to settle

at state 12.

In order to address scenarios in which the continuum robot is given a higher number of

states, we could able to add additional features and reward values that could encourage the robot

to converge to states that have a “better” view of the goal. For example, if the planar robot has

multiple, neighboring states in which the goal is visible, we could add a feature and related reward

based on the distance of the object from the center of the camera. This could drive the robot to

take actions that align the object in the middle of the camera for a better view.

In presenting this material, we simplify the image processing method of recognizing our goal

object. In practical application, we can substitute our goal related features with those corresponding

to the location of an actual feature of interest. Examples could be the results from a template

matching algorithm that returns confidence values and locations, among other details.

Another design choice was the use of configuration space over actuation space. By using the

configuration space, we have a meaningful interpretation of the system states that can be applicable

to a variety of continuum manipulators. In converting to actuation space, we can rely on closed-
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loop controllers adapted to individual continuum robots to convert values such as curvature and

orientation to physical values such as tendon lengths or pneumatic pressures.

As a function of using a simulation model, we make the assumption in this work that our

state space and actions are well within the defined configuration space of our system. We also

assume that transitions between neighboring states are guaranteed and deterministic. In practice,

and subsequently the scope of future application, we will have to rely on control methods to achieve

state transitions, and relax the guarantee of expected state transition. The need for reliable control

methods in spatial motion is still a topic of research in continuum robotics [3], but it will not be

necessary to require methods dependent on complex dynamic models to perform state transitions

for a set of static states.

The simulation model in Gazebo enables us to quickly test multiple scenarios and extend

the size of the robot’s state-space. The simulation results presented here also offer a path to using

detailed simulations to complete offline training in simulation followed by online execution of the

learned policy on a physical robot. In [133], the authors explored how KMF is capable of overcoming

various unknown kinematic constraints and adjustments. In this work, we did not actively pursue

adding unmodeled constraints to our assessment, but during our final testing the OctArm developed

a considerable leak in muscle 1 of the distal section. The leak results in a considerable curve in

the section when prior to the leak the section would be straight. Normally, such a leak would be

catastrophic to control systems and models and prevent proper function, but in the case of KMF,

this leak did not prove detrimental to the performance.

With regards to increasing redundancy in our results, KMF proved to be able to enable the

OctArm manipulator to arrive at points in the task space regardless of the number of DoF. Where

redundancy does become a factor is in the transitioning between two consecutive points, which can

vary depending on the configuration of the OctArm at the start of the motion. In the case of 3 DoF

and 4 DoF, we observe desirable motion between discrete points in both paths, generally staying

within the desired error. For 6 DoF, we observe greater variation in the motion between points

and the configurations themselves at each point in time. While this trend is to be expected for

more complex scenarios, we still observe the ability of KMF to improve performance as the system

explores more of the taskspace. This is another example of KMF adapting to new changes in the

local kinodynamics of the OctArm, as a new arrival at the same point in the task-space no longer

means the same kinematic structure of the OctArm.
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One challenge to this work, and to tracking end-effectors from a single camera in general,

was the need to avoid occlusion of the end-effector from the Kinect camera. We accomplish this

by implementing artificial bending limits at the actuator level, while still allowing KMF to be

unaware of the system state. The limit itself is created by applying a dynamic saturation level for

the maximum and minimum pressure for muscles 2 and 3, respectively. Since muscles 2 and 3 are

responsible for bending towards and away from the camera, this dynamic saturation limit essentially

prevents muscle 2 from being pressurized significantly greater than muscle 3 and likewise prevents

muscle 3 from reducing pressure to be significantly below that of muscle 2. In future applications,

this challenge of occlusion could be solved by using an array of cameras to track the end-effector.

As alluded to when introducing the respective mappings for the OctArm, part of the aim

of this work is to display the applicability of KMF to continuum robotics beyond the OctArm.

The results here show that KMF is capable of handling both the theoretical hyper-redundancy of

continuum robots as well as designed redundancy of continuum manipulators with multiple sections.

These results also lend credit to the idea that KMF primitives could be used as torque inputs to

tendon driven continuum robots that only have the ability to bend and thus any inputs must be

simultaneously pulling and releasing tendon.

4.3.2 Benchmarking KMF for Continuum Robots

In providing comparison for KMF performance to more traditional methods for closed-loop

control of continuum robots, we discuss a collection of results from the literature that highlight both

the success of KMF robot control in this paper and the difficulty of trying to directly compare the

success with other methods on both the OctArm and similar hardware. To begin, we look at two

works that explore the accuracy of forward kinematic models with respect to end-effector location

explicitly performed on the OctArm manipulator. In [120], a series of forward kinematic models

based upon constant curvature assumptions are directly compared for accuracy relative to real-world

measurements of the OctArm’s end-effector. The results here show that while some models perform

better than others, the greatest accuracy seen across the samples of the robot workspace was in excess

of 5% (as measured with respect to the OctArm’s overall length), or over 5cm. These models also

rely on the internal measurement of the OctArm’s shape, giving no direct way to accurately relate

assumption based measurements to real-world coordinates. In [58], the work compares the accuracy

of constant curvature kinematics to statics-based models that are derived to be geometrically exact
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and provide a relationship between input pressure and end-effector location for the OctArm. In this

work, the geometrically exact models prove to be better at predicting gravity related deflections for

the OctArm than constant curvature models, but still provides approximately 5% error between the

predicted and actual end-effector locations, and does not provide a means for mapping real-world

coordinates to actuator inputs for control.

Next, we discuss a series of works that explore predicting and controlling end-effector lo-

cations of continuum robots, both in static and dynamic experiments. The works utilize various

continuum robots with a variety of material and dynamic model related parameters. In [66], a

combination of variable curvature Cosserat-rod based static and Lagrange dynamic models are pre-

sented to provide control for a two-section continuum manipulator that is similar in composition

to the OctArm, containing a mixture of rigid and soft materials and using pneumatic actuation.

While reporting much improved accuracy for their model in comparison to the previous state of the

art, they report 6-8% error in static experiments and excess of 16% error in dynamic motions of

the manipulator’s end-effector. Another relevant work, [64], describes the statics and dynamics of a

tendon driven robot with a flexible backbone through a combination of Cosserat-rod and Cosserat-

string models. This work reports a 1.7% error between the predicted and measured end-effector

location in static experiments for a single-section continuum robot, but does not provide a method

for predicting actuator inputs for a desired end-effector location, which is likely not a unique so-

lution for multi-section continuum robots. Finally, in [136], a non-dynamic model based approach

based on forward and inverse kinematics coupled with an adaptive neural network control is tested.

The combination of forward kinematics and the adaptive neural control provide for approximately

1% error in end-effector location when tracking multi-point paths. The paths are created using

the robot’s forward kinematics and are well suited for a continuum robot’s inclination for following

curved paths.

In all, these results from the literature, among others, show various results below a 10%

error margin with respect to robot length but also carry higher computational, sensing, and modeling

costs. Thus, KMF robot control presented here establishes that reasonable tracking error for notably

difficult motions and static end-effector location control (≤2% error) can be obtained with this class

of robot with a simple input-output framework and end-effector tracking through a 3D camera or

network of standard cameras.
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4.3.3 Expanding KMF to Space Deployment

One of the many potential advantages of KMF with respect to continuum robot automation,

and robot automation in general, derives from the simplicity of the system required to implement

it. Traditional robot control and planning relies on sensing, often on-board, to close the control

loop and provide the system state to various models. In long-term deployment environments such

as the International Space Station (ISS), the future Lunar Gateway, or even extra-planetary bodies,

critical sensor malfunctions can be catastrophic to a mission.

In the case of our ongoing research, the previously mentioned Tendril robot [137], is designed

for applications concerning inspection and monitoring in Space operations. One of the target sce-

narios for this robot is deployment on the ISS for automated inspection of hard-to-reach locations

and commensurately reducing astronaut workload. An example simulation of this scenario with

Tendril deployed in and looking around the ISS can be seen in Figure 4.14. The simulated Tendril

actuation has been driven by the KMF approach reported herein. Both aboard the ISS and the

future Lunar Gateway, there are potential times when a deployed robot cannot be serviced, even for

a faulty sensor, endangering mission success. KMF offers an alternative loop for maintaining these

automated systems.

Figure 4.14: Tendril Continuum Manipulator in Simulated Inspection Task on ISS
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Chapter 5

Conclusions and Future Work

The work presented in this dissertation has covered a number of areas of continuum robot

research, spanning interfacing, modeling, and automation. In Chapter 2, a novel hardware interface

for the bilateral teleoperation of continuum manipulators was presented, along with an expansion of

software that enables continuum robots to coordinate and collaborate with various robotics platforms

and systems. The creation of a bilateral haptic interface for continuum robots opens a new area of

research to explore the impact of lag and round-trip delay on teleoperation of continuum robots, a

field already currently explored in more traditional robotic platforms. In Chapter 3, we introduced

an approximate dynamic model for continuum robots based on well-established theory for rigid-

link robots, expanding previous approximate models in order to include non-constant curvature and

relate inherent materials properties present in continuum robots to rigid-link related mechanisms

and ideas. Finally, Chapter 4 explored automation of continuum robot tasks through two novel

approaches to learning, in one case a reinforcement learning paradigm to optimize search, and in

another exploring the ability to perform tasks without complex models or sensing.
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5.1 Theoretical Implications and Recommendations for Fur-

ther Research

5.1.1 Interfacing

The introduction of a continuum haptic interface in Chapter 2 of this dissertation presents

several opportunities for expanded research. The full expanse of new research opportunities is diffi-

cult to predict, but one of the keys areas open to investigation is the impact of lag in the bilateral

teleoperation of continuum robots, both in mental workload for a user and in studying what infor-

mation can be predicted by the interface or lag mitigation techniques. One example of critical need

for studying the impact of lag is tied to continuum robot compliance. As mentioned previously, the

compliance of continuum robots is useful for environment interaction and consequently can prevent

robot damage during collision. However, even continuum robots have limitations on unintended de-

formation. The lag in perception of a collision with the environment can be the difference between a

tolerable collision and a collision in which the robot cannot extract itself or is permanently damaged.

Other potential research could explore evaluating off-the-shelf haptic interfaces, or different

haptic modalities applied to the HaptOct, against the work presented herein in order to see which

best conveys information to the user. This would require re-evaluation of the modes described briefly

in Section 2.4 and the creation of mappings between standard haptic interfaces and continuum robots,

but would be an engaging exploration of the human factor in continuum interfacing.

5.1.2 Continuum Robot Simulation

Missing from the physics-enabled simulation model developed and described in Chapter

2 is the impact of collisions on a continuum shape. As visually, compellingly reported in [138],

the application of constant tendon displacement vs constant tendon tension can greatly alter the

impact of collisions or external loads on the backbone shape. We anticipate the development of

additional tools similar to the “jointSpring2” plugin to detect and redistribute internal forces in

correspondence to where collisions occur along the length of the manipulator. This would present

a challenging research question and could be another helpful tool during the design process of new

continuum robots.

The expanded availability of the Gazebo simulation and ROS for continuum robots can also
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allow us to develop and test life-like scenarios aboard the ISS for the continuum Tendril robot and

in collaboration with current platforms such as Robonaut [123].

5.1.3 Dynamic Modeling

In observing the initial results comparing the piece-wise constant curvature model introduced

in Chapter 3 of this dissertation against the response of the physical robot, we see strong correlation

between the predicted reaction to the motion of the physical robot. While this is a promising

result, it was also evident that the model over estimated the displacement in the proximal section

as a result of bending in the distal section, likely a result of either incorrect parameter estimation

of the stiffness and mass, or due to unmodeled dissipative forces like friction. Future work into

approximate modeling could explore further unmodeled elements, or look to improve parameter

estimation through learning methods.

Another element from this model that could be improved in future work is the estimation

of the robot’s state during motion. While the current minimum energy method works well for static

states and functions as an approximation during motion, it does not fully capture the effects of

momentum on the distribution of curvature within a section. Potential research for resolving this

could include filtering methods that predict the actual shape of the robot given state variables.

Alternatively, the application of sensor fusion between information from IMUs or external cameras

and the internal string encoders could provide improved prediction of the full system state.

Finally, more testing of the model’s effectiveness is of immediate interest for future research.

This include exploring controllers that best utilize the model and adjust for unmodeled effects such

as friction or potentially incorrectly modeled parameters such as mass. One candidate for control

research would be an adaptive controller that can correct for approximated parameters within the

model. Model predictive controllers could also prove useful for correcting against the errors between

the simulation and physical robot reaction to distal section motion.

5.1.4 Automation

In applying reinforcement learning to continuum robots in Chapter 4 of this work, we

simplified many of the assumptions made about the robot, including guaranteeing the arrival of

the robot to discrete states in its configuration space. A natural progression for future work will
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be to introduce a more continuous state-space as well as a continuous action space, consequently

introducing uncertainty in transitioning between states and in state perception. The expanded

work could then explore the refinement of a Gaussian distribution based policy. Upon moving to

continuous action spaces, future work could also test high-capacity function approximators such as

neural networks to represent the policy and value function where raw pixel data from the robot’s

camera be used as state inputs. Such ideas will require a more robust policy optimization approach

such as the Proximal Policy Optimization [139] that uses a modified objective to the MDP problem

to estimate the expectation of the current policy. Future work could also explore how maximum

entropy RL frameworks such as the recent Soft Actor-Critic model [140] can extend to the continuum

domain, as they are known to be sample efficient and more robust to hyper-parameter tuning which

will be needed when training neural network-based Gaussian policies.

The research considering model-free control methods introduced in Chapter 3 also has great

potential for expansion in future research. The KMF control method explored here only partially

expands the work already developed in [132–134], to the specific case of continuum robots. With

respect to continuum robots, KMF could be used in conjunction with multiple tracking points along

the length of the robot for attempting whole-arm manipulation or for controlling higher DoF as in

the 6 DoF mapping experiments. Future work could also explore different memory management

methods in order to reduce the constant exploration that was observed in the 6 DoF mapping. One

such method could be evaluating memory based on the success of each motion, where primitives

that repeatedly skew predictions from reality are reduced in priority or forgotten altogether, allowing

more accurate primitives to drive motion instead of just nearest neighbors.

5.2 Concluding Remarks

While the field of continuum robotics is young relative to the broader robotics field, contin-

uum robotics research greatly benefits from the discoveries and methods made across the spectrum

of robotics. We hope the work presented in this dissertation serves in part to show the applicability

of general robotics concepts to continuum manipulators while also highlighting some of the niche

advantages and capabilities of this unique class of manipulators. As we expand the capabilities of

continuum robots, such as introducing bilateral teleoperation research opportunities, we can expect

that discoveries made in this field can in turn contribute back to the broader robotics community.
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