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ABSTRACT 
 
 

Optical orbital angular momentum (OAM) describes orbiting photons, swirling 

local wave vectors, or spiraling phase distribution depending on what theory we use to 

explain light. If we consider light as a propagating electromagnetic wave, then light has the 

freedoms of frequency, magnitude, phase, and polarization. For a monochromatic light, 

expanding the later three freedoms spatiotemporally, numerous optical modes are solved 

from Maxwell’s equations and boundary conditions. OAM mode study starts from integer 

charge because it is in the integer form of the fundamental phase singularity structure. 

Fractional OAM mode is the Fourier series of integer OAM modes. The average OAM 

does not conserve along with propagation for the traditional fractional OAM modes. We 

propose a new asymmetric fractional Bessel Gaussian mode providing the average OAM 

conserving along with the propagation.  

To better understand the fractional OAM mode or integer OAM mode combination, 

we study the novel concentric vortex optics. The analytical propagation expression of the 

concentric vortex beam is derived and analyzed. The concentric vortex beam is essentially 

the OAM spectrum, with only two integer OAM components. The spectrum coefficiencies 

are real numbers and approximately power equalized in general cases. The concentric 

vortex beam is the coherent combination of incomplete Kummer beams. As the inner 

aperture tuning large, the beam evolves into the Kummer beam with the inner charge 

number. The aperture decreases, the outer charges Kummer beam dominates. 

The proposed asymmetric fractional Bessel Gaussian beam’s Fourier transform is 

azimuthal Gaussian perfect vortex. We use log-polar coordinate mapping diffractive optics 
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to transform the elliptical Gaussian beam into the desired azimuthal Gaussian perfect 

vortex beam. The generated asymmetric fractional Bessel Gaussian beam is systematically 

compared with Kotlyar’s asymmetric Bessel Gaussian beam. It’s found that the proposed 

beam has a narrower OAM spectrum, preserving average fractional OAM. Furthermore, 

the log-polar transform’s inherent output lateral shifting problem is addressed for the first 

time to our knowledge. An improved log-polar design is proposed, and we use five critical 

metrics to show the new log-polar generated asymmetric Bessel Gaussian beam’s quality 

is much improved. 

The manipulation of the high order asymmetric fractional Bessel Gaussian beam is 

critical to applications scaling from communication, sensing, filamentation, to 

micromanipulation. We propose and demonstrate acousto-optical deflector (AOD) 

HOBBIT (Higher Order Bessel Beams Integrated in Time) system. The system can 

continuously tune the OAM modes on the order of 400 kHz. This speed beats the fastest 

spatial light modulator (SLM), and even better, the proposed system could work for high 

power applications. 
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 General overview 
 

The orbital angular momentum (OAM) is a fundamental phenomenon in nature. It 

exists everywhere in daily life and research topics, from flushing toilets and laundry 

machine whirlpool to dolphin bubble ring to hurricane eye hydrodynamic vortices to spiral 

galaxies orbiting black holes to quantum vortices. In 1992, Allen first brought the optical 

OAM concept [1]. The study of the optical OAM has thrived for 28 years, and the 

researchers’ passion has never faded. Analog to the chicken or the egg causality dilemma, 

the OAM and singularity are always the inherently connected twin phenomena. Similar to 

fundamental particle’s quantization, the singularity is always quantized. Then if the 

singularity is quantized, what does fractional OAM mean?  

Berry opened the fractional charge OAM topic in 2004 [2]. He analyzed the 

fundamental fractional charge spiral phase structure using the Fourier series expansion 

method. The conclusion was the fractional OAM structure is the linear combination of 

integer OAMs. The beam propagation process will smooth the initial phase discontinuity. 

This phenomenon is also proved by following fractional OAM researches [3-8]. One can 

consider phase discontinuity, especially for the half-integer case, as a tight chain of 

singularities extending from the center of the spiral phase profile to infinity along the radial 

coordinate direction. But it is not a stable status. Once the beam propagates in space or the 

electromagnetic field oscillates with time, the singularity chain will break into several 

individual isolated singularities. And this phenomenon is a perfect physical demonstration 
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of the mathematical “Hilbert Hotel” mechanism [4]. The Kármán vortex street is a helpful 

analog and visualization of the breaking singularity chain phenomenon.  

This dissertation will focus on the generation and manipulation of a fractional OAM 

mode, namely higher-order Bessel Gaussian beams. It will show the details from analytical 

theory development to phase-only diffractive optics’ design, fabrication, optimization, to 

experimental verification of the beam’s generation and manipulation. This research can 

find its benefit in a thorough understanding of the fractional OAM modes and asymmetric 

Bessel Gaussian beam, spatial division multiplexing communication, environment 

probing, high power OAM mode propagation, filamentation generation and control, optical 

tweezer, particle manipulation, and laser-matter interaction studies. 

 
1.2 Diffractive optics 

 
We use diffractive passive phase front modulators, namely diffractive optics, to 

generate the higher-order fractional Bessel Gaussian beam. The diffractive optics have 

been extensively introduced by peer works [9-11]. In this research, we apply a collimated 

Gaussian beam to go through the diffractive optic. Then the 1st diffraction order output is 

the desired modulated beam. The diffractive optic is the thinner version of the refractive 

optic. Thanks to the periodic property of the electromagnetic field’s phase, any large value 

phase manipulation could be reduced to a single [-π, π] zone. We use the binary lithography 

method to fabricate the diffractive optics. After four rounds of binary pattern print and 

etching, a sixteen steps phase stair shape is fabricated. The first-order diffraction efficiency 

is determined by the stair numbers. The sixteen steps phase profile’s first-order diffraction 

efficiency is about 98%.  
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1.3 Log-polar optics and asymmetric fractional Bessel Gaussian beam 

 
As early as 1974, Bryngdahl [12,13] has developed a geometrical transformations 

method, which is also known as coordinate transformation [14] or coordinate mapping in 

the later relevant researches. The geometric transformations were first studied to process 

images, such as image registration, mapping, and object recognition. In 1983, the log-polar 

transformation was brought out to realize the scale and rotation invariant correlation [15]. 

Modern log-polar transform optics was used to map the OAM beam’s spiral 

phase/momentum to linear phase/momentum, then sort the OAM modes through a simple 

Fourier transform [16]. In 2013, Mirhosseini and co-workers cascaded fan-out optics after 

the log-polar elements to increase the mode sorter’s separation efficiency [17]. In 2017, 

Wan and the co-workers used the same fan-out idea but integrated the fan-out phase and 

log-polar phase to reduce the total number of the phase elements [18]. Since 2017, Ruffato 

and co-workers have made endeavors to improve the miniaturization and alignment 

simplicity [19-21]. In 2019, Ruffato redesigned the log-polar elements to expand the 

paraxial transformation to the non-paraxial region [22].  

The log-polar optical geometric coordinate transform is the technique that we use 

to generate the asymmetric Bessel Gaussian beam, a linear combination of Bessel Gaussian 

beams. Bessel Gaussian beam has non-diffraction, self-healing properties. But the well-

known asymmetric Bessel Gaussian beam was presented by Kotlyar in 2014 [23]. These 

two groups of beams have a connection but fundamentally different. The detail will be 

addressed in Chapter 3.  
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The log-polar transform optics generating OAM mode has an inherent error, which 

will affect the generated OAM modes’ quality. We first time, to our knowledge, pointed 

out and analyzed the reason and the solution of the error. The detail will be presented in 

Chapter 4. 

 
1.4 Motivation and peer works 

 
In 2004, M. Berry’s famous paper has first time evaluated the fractional charged 

plane wave’s average OAM (total singularity strength in the original paper), then 

numerically resolved the integration formula, concluded from the numerical result a 

simple, elegant form [2]. For a Gaussian beam carrying fractional OAM, the average OAM 

has been investigated from the quantum perspective [24] and the diffraction theory [25]. 

But to date, for either case, the fractional average charge number always deviates away 

from the initial SPP’s charge number. That means the average OAM conservation law has 

been challenged. We have proposed the new asymmetric fractional pseudo perfect vortex 

beam to fit in the blank. The Fourier transform of the proposed beam is an asymmetric 

fractional Bessel Gaussian beam. Which average fractional charge number always keeps 

around the initial designed fractional charge, much smaller deviation comparing state of 

the art fractional OAM modes. The OAM spectrum, the unique property, and the 

propagation expression of the proposed asymmetric fractional Bessel Gaussian beam are 

all delivered in Chapters 3, 5, and 6. 

 
1.5 Dissertation outline 
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The dissertation outline is as follows. Chapter 1 introduce the background, relevant 

concept, motivation, peer work, and the outline of the dissertation. 

Chapter 2 presents the advanced integer OAM modes, namely concentric vortices. 

The multi-harmonic design of the concentric vortices is analyzed and demonstrated. We 

derived the modulated beam’s Fresnel propagation expression for the first time to our 

knowledge. The unique property of the generated beam is discussed in detail. The lobe 

pattern rotates with the Gouy phase variation along the propagation process. 

Chapter 3 discusses the fractional OAM and asymmetric Bessel Gaussian beam 

topics. Fractional OAM is inherently the coherent combination of integer OAM modes. 

Therefore, for each specific fractional OAM mode, there is an OAM spectrum to represent 

the combination. And the fractional OAM mode’s spectrum is centered (or power 

averaged) at a fractional OAM value. Meanwhile, the OAM spectrum and the azimuthal 

distribution are a Fourier transform pair. Hence, given a uniform azimuthal distributed light 

field such as Gaussian or Gaussian rings, as long as the OAM spectrum exists, the 

propagated fractional OAM mode will eventually evolve into an asymmetric azimuthal 

distribution. The asymmetric Bessel Gaussian beam and the azimuthal Gaussian perfect 

vortex beam are a Fourier transform pair. They propagate into each other no matter the 

initial OAM spiral phase is an integer or fractional. Moreover, if the initial OAM spiral 

phase is a fractional structure, the Fourier transform of which is still centered at the adjacent 

of the initial fractional OAM setting. We will also compare our azimuthal Gaussian perfect 

vortex’s asymmetric Bessel Gaussian beam with Kotlyar’s asymmetric Bessel Gaussian 

beam in this chapter. 
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Chapter 4 presents the issue of the log-polar diffractive optics and its improvement. 

The basic optical coordinate transform theory will be introduced. The traditional log-polar 

transform design dilemma will be analyzed. Five metrics to evaluate the asymmetric 

fractional Bessel Gaussian beam’s mode quality will be proposed. Finally, a new log-polar 

design will be delivered in this chapter.  

Chapter 5 discusses the Fourier transforming fiber/collimator array method to 

generate the asymmetric fractional Bessel Gaussian beams. The diffraction limit 

relationship between the array pitch size and the OAM charge will be proposed for the first 

time to our knowledge. And two experiment shows the asymmetric fractional Bessel 

Gaussian beam’s generation and control capability. 

Chapter 6 delivers the acousto-optical deflector (AOD) based asymmetric 

fractional Bessel Gaussian beam generation and mode manipulation system. Applying a 

slight tuning on the AOD’s radio frequency signal, the first order deflection’s wave vector 

will change its direction accordingly. And this small change of the beam propagation 

direction is mapped into OAM mode change by the log-polar coordinate transform optics. 

Consequently, the generated asymmetric Bessel Gaussian beam’s charge number is 

tunable. Due to the radio frequency tuning is continuous, the resulting OAM charge number 

could take any fractional value. The only limitation is the frequency signal’s resolution. 

With this capability, the OAM spectrum, OAM’s first time variation (torque or force: the 

first time derivative of the momentum [26, 27]), or even higher time derivative of the 

momentum could be easily coded and applied in our system. 
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Chapter 7 offers the conclusion, future work, and main contributions of this 

research. 
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CHAPTER TWO 
 

CONCENTRIC SPIRAL PHASE PLATE 
 

2.1 Introduction 
 

Space-division multiplexing (SDM) is an effective method to increase the data 

capacity of optical communication links. Orbital angular momentum (OAM) modes are a 

series of orthogonal spatial modes due to the optical vortex beam's helical phase front [28]. 

Given OAM’s unique advantage of handedness and self-healing property [29-32], OAM 

beams are preferred with SDM [33, 34]. The far-field intensity distribution of an OAM 

beam is a donut-shaped pattern with phase singularity in the center. It is found that the far-

field intensity distribution of two coherently combined OAM beams with opposite charge 

number is an azimuthally arranged petal-like pattern. The concentric SPP spiral phase plate 

(SPP) has a unique design: placing two different charge number vortices with opposite 

signs in a collinear architecture. Providing Gouy phase difference of different OAM modes, 

the petal-like pattern rotates with propagation. The basic concentric SPP concept is shown 

in Fig. 2.1.  
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Fig. 2.1. A concentric SPP diffracts a Gaussian beam into a petal-like pattern. 

Vijayakumar and his colleagues have derived the multilevel OAM holograms’ 

OAM spectrum [35]. The multilevel OAM holograms have the same phase distribution as 

binary diffractive SPP. But the OAM spectrum of OAM holograms with multiple phase 

discontinuity is still an open question. And the multiple harmonic property of the binary 

OAM holograms is a valuable topic to develop. The concentric SPP is a valuable design 

because its helical filamentation [36-38], underwater communication [39], and laser mode 

amplification applications [40] have been demonstrated. Given this, introducing double 

axicon phases to a coherent combination of ±1 OAM modes, a filamentation control 

application [36-38] has been studied. Concentric SPP optics can similarly realize the 

filament control [36-38] but only by utilizing one diffractive optic rather than four. By 

dynamically moving the peak intensity location, micromanipulation could be realized 

through the use of concentric SPP optics. The multiple harmonic wavelength design is 

motivated by the applications of filamentation and directed energy. The multiple harmonic 

concentric SPP optics realize a single optic for OAM mode modulation for multiple 

wavelengths. Compared with traditional individual wavelength OAM mode modulation, 

this method reduces the number of optics and improves power efficiency, which is very 

important for high power applications. 

In this chapter, we analyzed the general form of multiple harmonic binary 

diffractive SPP’s OAM spectrum. The Fresnel propagation of Gaussian beam go through 

concentric SPP is derived base on the Bessel function’s power series expansion and the 

incomplete gamma function’s integration expression. 2090 nm and 1064 nm are selected 
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for their use as two essential transmission wavelengths in the atmospheric window, though 

any harmonic pair could be used. A 1064 nm laser source and 2090 nm laser source are 

multiplexed and allowed to pass through a single concentric SPP, which is modulo 2π 

diffractive design for 2090 nm and modulo 4π design for 1064 nm. Analytic expression 

and experimental results show that both wavelengths produce petal-like patterns in the far-

field after propagating through the concentric SPP. These petal-like patterns rotate about 

the propagation axis before, during, and after the back Fourier plane of a Fourier lens. 

 
2.2 Multiple harmonic binary diffractive SPP  

 
The concentric SPP is designed as the radial combination of two binary diffractive 

SPPs. In this sense, the binary diffractive SPP is the fundamental element of concentric 

SPPs. We are trying to explore the multiple harmonic property of the binary diffractive 

SPP by analyzing the OAM spectrum. Considering the diffractive index difference, the 

fraction of 2π phase delay of two wavelengths is given by [41] 

 
 

0

0 1
,

1

n

n













     (2.1) 

where 0  and  are the 1st harmonic wavelength and an arbitrary wavelength, respectively; 

0
n  and n  are the refractive indices of wavelength 0  and , respectively. The charge 

number of the identical SPP for wavelength  is given by 

0
,m m       (2.2) 
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where 
0

m  is the charge number of the SPP for the 1st harmonic wavelength 0 . Figure 

2.2 is a typical binary diffractive SPP phase distribution with the 1st harmonic charge 

number 2. 

 

Fig. 2.2 A 16 levels charge 2 SPP’s phase profile. The α2π phase is 

corresponding with an arbitrary wavelength. 

The diffractive designs compress phase over 2π into the [0, 2π) range to make the 

element extremely thin. In other words, over 2π phase in a singular optic forces branch cuts 

because there is a compressed representation of the desired domain into a physical 2π 

domain on the optic space. The faster the phase gradient, the more the phase branch cuts. 

For a more general description, the total number of phase branch cuts is the same as 
0

m

, the total number of step levels from the lowest to the highest as N. When the wavelength 

walks off from the harmonic wavelengths, the α parameter, Eq. (2.1), will be fractional. 

Consequently, the charge number will be fractional. The OAM spectrum could be 

represented by the Fourier series of the fractional OAM phase [2, 4, 35, 42]. For a general 

light field represented by a separable function      ,U       , the Fourier series 

of the azimuthal component    is 
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        (2.3) 

where ρ and ϕ are the polar coordinates, n is the OAM order taking integer values, the 

Fourier series coefficients are 

   
2π

0

1
exp j d .

2πnA n        (2.4) 

The combination of integer OAM modes could represent any arbitrary azimuthal 

phase. And the relationship 
2

1n
n

A  should always hold due to the power conservation 

reason. The phase branch cut is not a problem for harmonic wavelengths because of the 

optical phase’s periodic property. But the phase discontinuity will be a real phase gap for 

other wavelengths walking off from the harmonic wavelengths. The one branch cut smooth 

diffractive OAM phase’s Fourier series has been given by [2, 4]. For arbitrary integer 

branch cut binary diffractive SPP, suppose the phase delay is evenly distributed among the 

steps, the nth order Fourier series coefficients are given by 
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 (2.5) 

The normalized power ratio 
2

nA  represents the nth order OAM mode’s diffractive 

efficiency. Given a fixed total level number N = 16, the phase discontinuity number
0

m

= 2, and the first harmonic wavelength 2090 nm, the wavelength-dependent diffractive 
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efficiency plot is shown in Fig. 2.3. There are two sets of harmonics, the wavelength 

harmonic and the OAM mode harmonic. The power continuously decays along the 

wavelength axis in the sinc-squared function, but the power only exists in the harmonic 

OAM modes. The nonharmonic OAM modes are empty. In Fig. 2.3, the power only exists 

in the even OAM modes. 

 

Fig. 2.3. The N = 16 levels 
0

2m   SPPs’ wavelength-dependent diffraction 

efficiency 
2

nA . (a) The first four harmonic charge 2, 4, 6, 8, (b) the 

corresponding 16 levels binary SPP. 

The multiple harmonic binary diffractive SPP is the fundamental element of 

concentric SPPs. We define the 1st harmonic order wavelength as 2090 nm and the 2nd 

harmonic order wavelength as 1064 nm in our design. The inner SPP’s 1st harmonic charge 

number 
0in_ in_2090m m  = 1, and the outer SPP’s 1st harmonic charge number

0out_ out_2090 2m m    , the inner SPP’s radius in = 0.625 mm, the outside boundary’s 

radius out = 2.5 mm, and the total level number is N = 16. Applying Eq. (2.2), the same 



 14

concentric SPP works for harmonic wavelength 1064 nm, and the charge numbers are 

in_ in_1064m m  = 2, out_ out_1064 4m m    . The simulated phase profile and the final optic 

microscope image are shown in Fig. 2.4. 

 

Fig. 2.4. The simulated phase profile of multiple harmonic concentric SPP, 

the inner and outer SPP’s radius are ρin and ρout, respectively. 

As Fig. 2.4 illustrated, the concentric optic’s transmittance phase function is given 

by 

       

       

in

out in

, circ 1 exp j

circ circ 2 exp j

n
n

n
n

A n

A n

     

    









 

   




   (2.6) 

where ρ and ϕ are the polar coordinates, j is the imaginary unit, in  and out  are the radius 

of the inner and outer vortex phase plate. There is 
0

m = 1 branch cut for the inner SPP 

phase, and 
0

m = 2 branch cuts for the outer SPP phase. The phase expressions 
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  are representing the binary SPP phase of 

inner and outer SPP. According to Eq. (2.5), the Fourier coefficients are expressed as 
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  (2.8) 

where 
0in_ in_m m   and 

0out_ out_m m   are the charge numbers of the inner and 

outer vortex phase for input wavelength λ. Applying Eqs. (2.6)-(2.8) into the Fresnel 

transform, the diffraction of the concentric SPP is derived in the next section. 

2.3 Gaussian beam through an SPP 
 

The diffraction of the Gaussian beam by the vortex phase SPP has been well-

studied, and the generated beam is considered as a hypergeometric Gaussian or Kummer 

beam [1, 43-45]. The diffraction of plane waves by finite-radius SPPs with integer and the 

fractional topological charge has been derived by [46, 47]. From the perspective of a 

truncated Gaussian beam’s diffraction, the aperture effect has been studied by [48, 49]. To 

the best of the authors’ knowledge, the diffraction of Gaussian beams by the finite 

apertured vortex SPP is still an open question to be answered. Considering scalar paraxial 

diffraction of a collimated Gaussian beam passing through the regular vortex SPP with the 

finite radius of SPP , the resulting vector complex field is given by 
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where ŷ  defines the vertical polarization state, w  and R are the radius and the radius of 

curvature of the Gaussian beam, respectively, and m is the charge number of the vortex 

phase. 

The Fresnel transform of the modulated Gaussian  G ,U    in polar coordinates is 

given by 
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where r  and   are the polar coordinates of the transformed field, and z  is propagation 

distance. According to the general two-dimensional polar coordinate Fourier transforms 

integration method in [50], Eq. (2.6) will reduce to 
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  (2.11) 

From here, refer to the power series expansion of n-th order Bessel function of the 

first kind 

   
 

2

0

1
,

! ! 2

n kk

n
k

x
J x

k n k






      
     (2.12) 

and the integral solution 3.381.8 from [51] 
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where  ,    is the lower incomplete gamma function, Eq. (2.7) is solved  
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where
2

1 jπ 1 1

w z R



    
 

. At z R  (for a collimated beam, 0,R R z  , 
2

0

πw
z


  

is the Rayleigh range), 
2

1

w
  , from Eq. (2.10) the Fraunhofer diffraction of the 

modulated Gaussian by SPP is 
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 (2.15) 

The truncation parameter SPP

w

   determines the aperture effect. At SPP 0  , the 

0  , the aperture closes, and the beam will be stopped. At SPP SPP, w   , the 

  , then the lower incomplete gamma function turns into gamma function, the Eq. 

(2.11) turns into a hypergeometric Gaussian or Kummer beam[47]. 

 
2.4 Diffraction theory of multiple harmonic concentric SPP 

 
The diffraction of Gaussian beams by the concentric SPP phase plate is essentially 

the interference of hypergeometric Gaussian beams with an aperture effect. Considering 
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scalar paraxial diffraction of a collimated Gaussian beam passing through the concentric 

SPP, the resulting vector complex field is given by 

     2
G G1 G22

1 jπ
ˆ ˆ, exp + ( , ) , , ,U y U U y
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where w  and R are the radius and the radius of curvature of the Gaussian beam, 

respectively, the G1U  and G2U  are the collimated Gaussian beam modulated by inner and 

outer vortex SPP, respectively. The Gaussian beam diameter has been chosen as 

approximately 2.7 mm (approximately 35% of the Gaussian power passes through the inner 

SPP), which is much larger than the inner disc's 1.25 mm diameter, and all the power has 

been contained in the out2 5   mm range. Then, the outside aperture effect is 

neglectable for the input beam, and Eq. (2.14) will reduce to a simpler form 
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The Fresnel transform of the modulated Gaussian  G1 ,U    in polar coordinates 

is solved as 
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where
2

1 jπ 1 1

w z R



    
 

,  ,   is the lower incomplete gamma function. Similar to Eq. 

(2.16), the Fresnel transform of the  G2 ,U    in the polar coordinate is given by 

 

 

 
 

2
2

2

2
_ out

2
2

in
0

π 2π π
, , exp j j

j

π
exp j

,
1 π

1,
! ! 2

nn

n

k kk
n

k

z
U r z r

z z

r
A n

z

r n
k

k n k z


  

 
















    
 

  
  

  
                  




  (2.21) 

where  ,   is the upper incomplete gamma function. The final scalar and vector forms 

Fresnel transform of the input Gaussian  G ,U    in polar coordinate are 

       Fresnel Fresnel 1 2ˆ ˆ, , , , , , , , .U r z U r z y U r z U r z y         


 (2.22) 

where ŷ  defines the vertical polarization state. The derivation details are included in the 

appendix, within which the Bessel function’s power series and the incomplete gamma 

function’s integration forms are applied. This method could help with the circular apertured 

OAM mode’s diffraction analysis. To confirm the fidelity of the analytical expression of 

Eq. (2.22), the single-lens (f = 200 mm) Fourier transform of concentric SPP beam ( inm = 

1, out 2m   ) has been plotted using both the analytical expression derived above and the 
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Rayleigh-Sommerfeld (RS) diffraction propagation simulation method. As Fig. 2.5 shows, 

the far-field intensity is compared. The resulting complex field’s complex correlation 

coefficient is computed as 99%. 

 

Fig. 2.5. Far-field intensity of concentric SPP beam with charge min = 1, mout 

= -2 (a) analytical expression and (b) RS propagation method. 

 
2.5 Gouy phase caused rotation 

 
The interference between the two OAM states produces periodic interference 

fringes of constructive and destructive interference in the azimuthal direction, producing 

petal-like lobes in the intensity profile. The resulting peak intensity (bright lobes) or 

vortices (dark region) are evenly distributed. The distribution angle and the rotation of the 

peak and null intensity follow the same trend. The distribution angle can be expressed by 

[52] 
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where   is the phase difference between the inner and outer OAM beams, n = 1, ⋯,⎹ inm

– outm ⎸ is the number of the bright petals, and 
0

arctan
z

z


 
  

 
 is the Gouy phase of 

Gaussian beam, 
2

0

πw
z


  is the Rayleigh range. As the beam propagates, the azimuthal 

position of the n petals will rotate due to the Gouy phase change. 
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The rotation angle of the nth bright petal is [52] 
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  (2.25) 

The harmonic wavelength petal-like lobe’s rotation is only determined by the 

harmonic wavelength’s Gouy phase change 
2

arctan
π

z

w
          

. As long the beam 

propagates multiple Rayleigh range away, the Gouy phase change is approaching π. 

 
2.6 Device fabrication and experimental characterization 

 
We use the binary photolithography method to fabricate the concentric SPP on the 

fused silica substrate, as shown in Fig. 2.6. The SPP’s design wavelength is 2090 nm, 24 = 

16 phase levels represent the phase ramp from 0 to 2π on 2090 nm. Given the refractive 

index of fused silica operating at 2090 nm as 1.437, the SPP’s step depth is 299 μm. The 

inner and outer SPP’s charge numbers are 1 and -2, respectively. The corresponding 

diameters are 1.25 mm and 5 mm, respectively.  
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Fig. 2.6. Microscope image of the fabricated multiple harmonic concentric 

SPP optic. 

We designed an experiment to confirm the above theory. The experimental setup is 

shown in Fig. 2.7. The 2090 nm and 1064 nm lasers were combined by a dichroic mirror 

to go through the same concentric SPP with designed charge numbers of inm  = 1, out 2m    

for 2090 nm and inm = 2, out 4m    for 1064 nm. The inner and outer vortices have 

diameters of 1.25 mm and 5 mm, respectively. The Fourier lens’s focal length is f = 200 

mm. 
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Fig. 2.7. The experimental setup to multiplex the 2090 nm and 1064 nm lasers 

through a single concentric SPP. The imaging lens helps the infrared camera 

catch the diffracted patterns at different z location after the Fourier lens. 

The Fourier lens is used for the convenient observation of Fraunhofer diffraction 

patterns. The imaging lens helps image the diffraction patterns after the Fourier lens on 

the infrared camera. By translating the imaging lens back and forth, the diffracted 

patterns at different locations after the Fourier lens along the propagation direction are 

collected by the infrared camera. The focal length of the Fourier lens is 200 mm. The 

diffraction pattern of the 2090 nm laser after passing through the concentric SPP with 

topological charge numbers of inm = 1, out 2m   is a 3-petal pattern, and the 1064 nm 

counterpart yields a 6-petal pattern. As Fig. 2.8 shows, images of the diffracted patterns 

located approximately 107 mm, 157 mm, 209 mm, 259 mm, and 308 mm after the 

Fourier lens have been captured by an infrared camera with the cooperation of the 

moving imaging lens after the Fourier lens. The mean correlation coefficient between the 

simulation results of Eq. (2.22) and experimental results have been computed as 92% ± 

2%. Both simulation and experimental images are shown in Fig. 2.8. The diffraction 

patterns rotate ~
π

3
 radians azimuthally while propagating away from the Fourier lens. 
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Fig. 2.8. The simulated and experimental petal-like patterns of 2090 nm and 

1064 nm at 107 mm, 157 mm, 209 mm, 259 mm, and 308 mm after the 

Fourier lens. 

The images at 209 mm after the Fourier lens are approximately at the focus. As 

one can tell from the central column frames of Fig. 2.8, the tails of the petals have 

disappeared at this point because the parabolic phase has evolved into a plane phase. The 

measured diffraction efficiency of both 1064 nm and 2090 nm is 93% and 94% after 

compensating for Fresnel losses. 

 
2.7 Discussion 

 
We explored the multi-harmonic diffractive concentric SPP modulating the 

wavefront of 2090 nm and 1094 nm Gaussian beam in this work. Due to the diffractive 

optics design’s multi-harmonic nature, the same optic works similarly for the 532 nm beam. 
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The diffraction efficiency 
2

nA  will drop to ~81%, according to Eq. (2.5). In this research, 

we used a refractive lens to perform a Fourier transform. If we apply the multi-harmonic 

diffractive lens design, the different harmonic wavelength will see different lens phase, as 

shown in Fig. 2.9. 

 

Fig. 2.9. The simulated multi-harmonic lens (left column), concentric vortex 

(central column), and the combination phase (right column). Phase profile for 

2090 nm (a) lens, (b) concentric vortex with min = 1, mout = -2, and (c) the 

combination of (a) and (b). Phase profile for 1064 nm (d) lens, (e) concentric 

SPP with min = 2, mout = -4, and (f) the combination of (d) and (e). 

Comparing Fig. 2.9 (a) and (d), it’s obvious that the lens’ phase profile gradient of 

the 1064 nm beam is faster than that of the 2090 nm beam. When the 1064 nm beam 

encounters the same harmonic diffractive lens, the focus will be one half of the 2090 nm 
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beam’s focal length, as shown in Fig. 2.10. The z dimension’s unit is the 2090 nm beam’s 

diffractive lens’s focal length. 

 

Fig. 2.10. The iso-surface of the intensity profile in 3-dimensions of both the 

2090 nm beam and the 1064 nm beam, using the phase profile in Fig. 9 (c) 

and (f), respectively. 

The concentric SPP beam’s high peak intensity could be applied to generate helical 

filament [36]. In this multi-harmonic lens case, the filamentations are cascaded. This could 

benefit the long-range filamentation generation and control. 

 
2.8 Conclusion 

 
In conclusion, this chapter presented a unique OAM combination element, namely 

the concentric SPP. The general binary diffractive SPP’s OAM spectrum has been derived 

by using the Fourier series theory. The three essential factors affecting the OAM spectrum 

are the scaled charge number 
0

m m  corresponding with input wavelength λ, the 
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number of branch cuts 
0

m , and the number of steps between branch cuts N. The OAM 

spectrum at harmonic wavelength has the maximized efficiency. The 1st harmonic order is 

the highest. The branch cut number 
0

m  determines the empty OAM mode orders. The 

more the step number N, the tighter the OAM spectrum. The smooth SPP is the special 

case of binary SPP when N → ∞. There are two sets of harmonics in the binary SPP: 

wavelength harmonic and OAM harmonic. The diffractive efficiency centers at the 

harmonic wavelengths and continuously decays in the sinc-squared function. For the OAM 

harmonic, the diffractive efficiency only exists in the harmonic channels. The nonharmonic 

channels are all empty. By applying the multiple harmonic design, the concentric SPP's 

first two diffraction orders' diffraction efficiency has been maximized. Therefore, this 

single concentric SPP could modulate the spectrally combined laser's OAM mode. The 

propagation dynamic of a concentric SPP due to the Gouy phase has been analytically well 

predicted and confirmed by the experiment. The mathematical model of a Gaussian beam 

modulated by a concentric SPP has been theoretically analyzed and experimentally 

demonstrated. Both the Fresnel transformation and single-lens Fraunhofer diffraction have 

been derived. The resulting beam is the interference of hypergeometric Gaussian beams 

with the aperture effect represented by incomplete gamma functions. 

As a proof of concept, an experiment has been performed to demonstrate the 

simultaneous generation of vortices at two harmonic wavelengths, 2090 nm and 1064 nm, 

using a single concentric SPP. The diffraction patterns were petal-like intensity 

distributions in the far-field. The petal-like shapes rotate along the propagation direction 

after passing through a Fourier lens before, during, and after the focus. The rotation is 
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caused by the Gouy phase difference of the two OAM modes, and the rotation rate is 

derived and experimentally confirmed as inversely proportional to the interference fringes. 

The measured diffraction efficiency of both 1064 nm and 2090 nm is 93% and 94% after 

compensating for Fresnel losses. In general, the propagation dynamic research provides the 

insights of multi-harmonic concentric vortex beam, which could find applications in 

spectral-beam combination's OAM modulation, underwater/free-space communication, 

laser mode amplification, higher-order concentric vortex beam SHG, particle 

manipulation, filamentation control, and directed energy. 
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CHAPTER THREE 
 

FRACTIONAL OAM AND ASYMMETRIC BESSEL GAUSS BEAM 
 

3.1 Introduction 
 

Integer OAM is easy to understand and well-studied. Fractional OAM is a natural 

extension of the integer OAM concept but still has many debatable topics: Is the fractional 

OAM exist? What’s the nature of fractional OAM? What’s the outcoming property that 

fractional OAM has comparing with integer OAM? What applications can the fractional 

OAM develop or improve? This chapter will try to answer these questions and give more 

insight into the fractional OAM topic. 

In 2004, Berry studied the fundamental fractional charge spiral phase structure 

using the Fourier series expansion method [2]. This method is the main contribution to the 

fractional OAM research, and it is also the most commonly used tool to reveal the 

relationship between regular integer OAM and fractional OAM [3-7]. More interestingly, 

the fractional OAM beam is a physical demonstration of the mathematical “Hilbert Hotel” 

mechanism either in phase singularity [4] or polarization singularity [5]. Fractional OAM 

modes are also referred to as non-integer [3], continuous [53], successive [53], and rational 

[54] modes. It is an exciting aspect of study primarily because it is almost impossible to 

generate an entirely pure integer OAM state due to the inevitable defect of OAM generation 

elements. Secondly, it has been analytically deduced that fractional OAM Bessel beams 

could form an infinite number of orthogonal subsets of OAM modes [55], which can further 

benefit classical and quantum optical communication. Thirdly, the fractional OAM Bessel 

beams preserve the nondiffracting properties that integer OAM beams possess [53]. This 
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property is vital for beam propagation applications, including propagation through 

turbulence and turbid environments [56]. Moreover, it has been found that a group of 

fractional OAM modes generated by a synthesis of Laguerre-Gaussian (LG) modes have 

good structural stability on propagation to the far-field [57]. These LG mode-based 

fractional OAM states can be used in classical and quantum communication [58]. The 

fractional OAM structure has been used in turbulence research [56, 59]. A partially 

coherent fractional vortex beam has been studied [60]. The propagation property of these 

groups of beams has been revealed.  

There are several ways to generate fractional OAM beams, such as fractional wrap 

spiral phase modulation [2, 58, 61], continuously shift SLM’s fork-shaped hologram [62-

64], combine the phase front of several integer charged OAM beams to form an OAM 

spectrum [23, 57, 65], log-polar optical geometric transformation to transform linear phase 

into fractional OAM phase [8], introducing new singularity into the light field to weight 

the integer charge into fractional charge [54], and or shift the singularity off away from the 

beam’s axis [66]. The off-axis displaced singularity gives the charge number modulated by 

2
0
2

2
exp

r
m

w

 
 
 

, where m is the topological charge of the designed SPP, r0 is the dislocation 

of the singularity from the beam center, w is the Gaussian’s 1/e2 beam radius. The total 

charge number of the whole Gaussian beam is continuously tuned from 0 (singularity 

infinitely far away from the Gaussian’s axis, Gaussian beam only sees a slow linear phase) 

to m (singularity overlap with the Gaussian’s axis, regular integer charge Kummer beam). 

In the opposite of the case of fractional charge number always smaller than the designed 
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integer charge, always consider positive handedness at this point, Kotlyar’s asymmetric 

Bessel Gaussian beam [23] has a tunable fractional charge number always greater than the 

designed integer charge. The comparison of log-polar optical geometric transformation 

generated asymmetric Bessel Gaussian beam with Kotlyat’s asymmetric Bessel-Gauss 

beam will be addressed in section 3.6. 

3.2 Plane-wave go through SPP to generate fractional OAM 
 

The SPP is an efficient and robust way to generate optical vortices, including 

fractional OAM. The plane wave and Gaussian beam’s paraxial Fresnel and Fraunhofer 

diffraction by SPP have been studied. The most vital work of the analysis of the fractional 

OAM of a plane wave was conduction by M Berry [2]. Due to the reason of propagation 

wave must be smooth, the initial phase discontinuity caused by the fractional charge 

number m on SPP must be smooth out along the propagation. The original phase singularity 

will separate into several singularities around the original phase singularity’s transverse 

location. The original phase discontinuity evolves into a chain of singularities. The closer 

the charge number approaches to the half-integer, the obvious the chain. And more 

interestingly, this phenomenon is exact a physical demonstration of a mathematic concept 

of Hilbert’s Hotel [4]. Given the arbitrary charge number of m l   , where m is a 

continuous charge number, l is the integer part of m, and α is the fractional part. To avoid 

confusion, we define α as a positive real number 0  α 1. The decomposition of fractional 

singularity can be mathematically described as a combination or superposition of integer 

singularities. Namely, the well-known OAM phase term  exp jm  can be expressed as a 

Fourier series [2, 4]: 
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For and arbitrary scaler form a complex field  nU r  carrying integer OAM n, the 

fractional charge field can be expressed as 
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where r  is the vector form of cylindrical coordinate. Due to the most common optical 

components are circular symmetric. A finite-size plane wave can be described as a circular 

aperture function: 
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where SPP  is the finite radius of the circular aperture, ρ is the vector form of cylindrical 

coordinate in the input plane. The Fresnel transform of the charge m finite apertured plane 

wave  nU ρ  in polar coordinates is given by 
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(3.4) 

where r and θ are the polar coordinates of the transformed field, and z is propagation 

distance. According to the general two-dimensional polar coordinate Fourier transforms 

integration method in [50], Eq. (3.4) will reduce to 
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where  nJ   is the Bessel function of the first kind of the n-th order. The Eq. (3.5) has been 

solved as [46, 47, 67] 

 

 

1
20 0

Fresnel

0
2

0
1 2

0

j
, , 2exp j j

!

j
2 2 2 4

, , 1;
2 2 ! 2 2

nn

m

k

z zr
U r z r n

z n z

z
z rk n k nz

F n
k n k z

 






       
   

 
                  



 (3.6) 

where 
2

SPP
0

π
z




  is the Rayleigh range, 
SPP

r
r


  is the normalized radial parameter in 

cylindrical coordinate,  1 2 , , ;F      is a hypergeometric (HyG) function. Apparently, SPP  is 

the aperture size parameter, at SPP 0   the aperture closes, at SPP  the aperture will 

be wide open and the resulting the Eq. (3.6) reduce to [4] 
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Fraunhofer diffraction is the far-field case of Fresnel diffraction at z or the 

complex distribution in the rear focal plane of an ideal spherical lens. Considering 

removing the parabolic phase term 
2jπ

exp
z




 
 
 

 in the integral of Eq. (3.4), omitting the 

insignificant propagation phase 
2π

exp j
z


 
 
 

and parabolic phase 
2π

exp j r
z

 
 
 

, the finite 

apertured plane wave’s Fraunhofer diffraction at the rear focal plane is given [47, 67] 
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where f is the focal length of the ideal spherical lens. 

Given the integer charged scaler form diffraction expression, the fractional charge 

scaler form diffraction expression can be expressed by applying the general case equation 

Eq. (3.2). It’s noticeable that plane wave is always the most simplified ideal wave model, 

but in reality, the more practical beam is the Gaussian beam. As long as the working 

distance is smaller than the Rayleigh range, the Gaussian beam should be a proper 

approximation of plane waves.  

 
3.3 Gaussian go through SPP to generate fractional OAM 

 
The Gaussian beam is the fundamental mode of modern optical science and 

engineering, and its property has been well studied. As working in the collimated range or 

Rayleigh range, the Gaussian beam’s wavefront is approximated flat. That’s a fair 

approximation of plane wave phase front, which was mentioned in section 3.2 if the 

Gaussian intensity distribution is neglected. It’s essential to know the propagation property 

of the Gaussian beam modulated by the vortex SPP. Given the general relationship between 

the fraction charged scaler beam and integer charged scaler beam in Eq. (3.2), the fractional 

OAM mode generated by the Gaussian beam passes through fractional vortex SPP could 

be developed once having the integer charge vortex Gaussian beam’s diffraction derived.  
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Consider the scaler form paraxial Fresnel diffraction of Gaussian beam at the waist 

position as 
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(3.9) 

where 0w  is the Gaussian beam waist radius. Apply the same method, according to the 

general two-dimensional polar coordinate Fourier transforms integration method in [50], 

Eq. (3.9) will reduce to 
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Refer to the integral solution 6.631.7 from [51] 
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where  I   is the modified Bessel function of the first kind of order  . Then Eq. (3.10) 

is solved as [47, 68, 69] 
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where 
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  is the Rayleigh range,  
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The modified Bessel function form is the most commonly used solution of the diffraction 

of the vortex Gaussian beam. Moreover, this diffraction field could be expressed in 

hypergeometric function or Kummer function (confluent hypergeometric function) form, 

so vortex Gaussian beam’s diffraction field is also called hypergeometric Gaussian 

(HyGG) mode, which is also the solution of scalar Helmholtz paraxial wave equation [70]. 

At  0z z z  , the Fresnel transform Eq. (3.12) evolves into the Fraunhofer 

diffraction of the integer charged SPP modulated Gaussian beam: 
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  (3.13) 

 
3.4 Total singularity strength 

 
Due to there is no fractional singularity exist in the stable nature system, the 

fractional charge OAM always refers to the total singularity strength or total charge 

number. Because the light propagation will smooth phase step or discontinuity, the 

fractional charged vortex beam’s singularity structure is not stable along with propagation, 

including the location and the strength. Even for integer charge number vortex, if the 

beam’s azimuthal symmetry is not perfectly even, the higher charge singularity will break 
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into several ±1 singularities around the transverse optical axis. Then in this context, the 

topic of conservation of charge number or singularity strength is not applicable for the local 

fast-changing singularities. It makes more sense to talk about the total singularity strength 

conservation due to the momentum conservation law. The concept of total singularity 

strength [2] was also called by global OAM [71], normalized total OAM [25], total OAM 

[72], normalized OAM [25], average OAM [72], the mean value of OAM [24] for different 

researchers background reason. We will keep using average OAM in all the chapters for 

continuity, simplicity, and easy understanding reason. 

Average OAM, avem , is defined as the integration of the z component of OAM 

density, zj , over the transverse plane then normalized by the total power: 
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where zJ  is the OAM projection along the z-direction optical axis, W is the total power 

of the complex field, mU  and mU
 are scalar form complex field and the conjugate, ˆzj z j  

is OAM density projection along the z-direction, ẑ is the z-direction unit vector. Eq. (3.14) 

is defined in the cylindrical coordinate. The OAM density, j , is determined by the cross 

product of space vector ˆ ˆ ˆxx yy zz  r  and linear momentum density,  0 p E B , 

through 

, j r p      (3.15) 
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where ˆ ˆ,x y , and ẑare the three-dimension unit vectors, 0  is the vacuum permittivity, E  

is the electric field, B  is the magnetic field. Recall the definition of the Poynting vector 

 2
0c  S E B , where c is the vacuum light speed. We have the linear momentum density 

and the Poynting vector related as 
2c


S

p . Consider the time-average Poynting vector [73] 
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where   is the angular frequency of the electromagnetic wave. Conclude all the 

relationships above, the OAM density along z-direction is  

2
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c y x
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Substitute the Eq. (3.20) into the Eq. (3.14). The well-known average OAM defined in 

Cartesian coordinate is derived as 
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The cylindrical coordinate’s version of average OAM turns into  
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In 2004, M. Berry’s famous paper has first time evaluated the fractional charged 

plane wave’s average OAM (total singularity strength in the original paper), then 

numerically resolved the integration formula, concluded from the numerical result a 

simple, elegant form [2] 

ave

1
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2
m m m

    
 

    (3.23) 

For a Gaussian beam carrying fractional OAM, the average OAM has been investigated 

from the quantum perspective [24] and the diffraction theory [25] base on the 

aforementioned Eq. (3.21) 
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The vortex plane wave and vortex Gaussian beams’ average OAM are plotted in Fig. 3.1. 
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Fig. 3.1. A fractional vortex plane wave and fractional vortex Gaussian 

beams’ average OAM are compared with the linear relationship. 

Apparently, given any arbitrary complex field, the average OAM could be 

numerically computed based on Eq. (3.21). More importantly, by realizing the linear 

relationship between the wave vector and the linear momentum 2π
p


  , the average 

OAM could be indirectly measured by assessing the wave vector. Due to the wave vector 

and linear position are a Fourier conjugate pair, a single cylindrical lens method has been 

developed to measure the average OAM [72, 74] 
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where the  ,mI x y  is the intensity at the location  ,x y , x  is the transformed horizontal 

coordinate, y  is the vertical coordinate before Fourier transforms, and vice versa. Due to 

the cylindrical lens only do one dimensional Fourier transform, there is always one 

dimension coordinate keeps the same before and after the transform.  

 
3.5 OAM spectrum and asymmetric fractional Bessel Gaussian beam  

 

As the last two sections talked about, the average OAM, avem , of plane wave or 

Gaussian beam with initial fractional vortex phase, won’t keep a linear relationship with 

the initial fractional charge number. So, in this sense, the average OAM does not conserve 

in free space propagation. The OAM must transform into spin angular momentum or linear 

momentum. To keep the OAM conservation law work for fractional OAM beam as how it 

works for integer OAM beams, we developed a way to generate a group of innovative 

beams that have fractional average OAM preserve along with free space propagation.  

The fractional charge OAM is not conserved because the phase disconnection 

always tries to heal itself into a smooth continuous phase along with the propagation. And 

as Eq. (3.21) shows, the average OAM is weighted by the power/intensity of the local 

beam. Therefore, in the view of each local sector of the beam, the more intensity, the more 

the azimuthal phase gradient weight in the computation of average OAM and vice versa. 

We design a beam with the least power at the phase discontinuity location. The phase 

discontinuity still affects the average OAM, but not too much power support it to do so. 

Meanwhile, the intensity distribution should be as smooth as possible to avoid 

Fourier transform’s high-frequency response. Due to the Gaussian distribution’s Fourier 
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transform is Gaussian, the Gaussian azimuthal intensity distribution’s Fourier transform is 

the OAM spectrum, which is Gaussian distribution as well. The azimuthal Gaussian ring 

beam’s intensity and fractional OAM phase are shown in Fig. 3.2. 

 

Fig. 3.2. Azimuthal Gaussian ring beams’ (a) intensity and (b) fractional 

OAM phase. The red arrow indicates the azimuthal phase discontinuity. 

The horizontal polarized azimuthal Gaussian ring, az-GaussU , in polar coordinate, can 

be expressed as 
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where the  ,   is the polar coordinates, 0  is the beam radius from the center of the 

beam to the ring peak intensity location, ringw  is the ring half size from the ring peak 

intensity location to the   peakexp 2 I  boundary, 0,1   is a tuning ratio, which 

determines the Gaussian ring’s azimuthal size, it’s possible that 1  , but in this case, 

there will be more than 9% power loss. According to the angular diffraction theory [75-



 43

77], angular pattern diffracts into a discrete OAM spectrum. For the azimuthal Gaussian 

ring’s case, the angular distribution is 
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Refer to the integral solution 2.33.3 [51] 
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where the imaginary error function  
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the Fourier coefficient kA  is solved 
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From the OAM spectrum perspective, the tuning ratio factor   is inversely related 

to the OAM spectrum bandwidth. The smaller the  , the wider the spectrum. One can tell 

from Eq. (3.31) that the OAM spectrum is a discrete function, which makes sense because 

its Fourier conjugate is a periodic function. More interestingly, the discrete value Gaussian 

function is modulated by a complex error function. It broadens the OAM spectrum a little 

bit but won’t change the Gaussian envelop nature in general. Another intuitive way to 

explain the Fourier transform of the azimuthal Gaussian truncated by  π,π  aperture, it’s 
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a convolution of a Gaussian with a sinc function [78]. This is the first time (to our 

knowledge) the azimuthal Gaussian’s Fourier spectrum being solved, and more 

importantly, this exact solution works for fractional charge number’s OAM spectrum also. 

The Eq. (3.26) is the asymptotic form of the perfect vortex beam because the beam 

size is irrelevant to the charge number. Given a large degree of perfectness 0

ring

1
w

   [79], 

we apply the asymptotic relation of modified Bessel function 0 0
2 2

ring ring

2 2
expmI

w w

      
      
   

  [79, 

80], the Eq. (3.26) evolves into a more precise form of the perfect vortex 
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where  mI   is the modified Bessel function of the first kind of order m. The Fourier 

transform of Eq. (3.32) is a superposition of a group of Bessel Gaussian function with the 

OAM spectrum coefficient depicted in Eq. (3.31). The OAM spectrum makes the Bessel 

Gaussian beam’s azimuthal distribution nonuniform, so it’s called an asymmetric Bessel 

Gaussian beam. It’s worth pointing out that our asymmetric Bessel Gaussian beam is 

different from the first brought asymmetric Bessel Gaussian beam in 2014 [23], since the 

OAM spectra are designed differently. The systematical comparison will be addressed in 

section 3.6. 

Other than using SLM coded phase profile to generate Kotlyar’s asymmetric 

fractional Bessel Gaussian beam, we use log-polar optical geometric coordinate 

transformation diffractive optics to generate the angular spectrum of asymmetric fractional 
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Bessel Gaussian beam, which is a ring shape wrapped elliptical Gaussian beam into Eq. 

(3.26). Other techniques like multiplane light conversion (MPLC) can do this beam shaping 

also. In fact, the MPLC can generate more than 210 orthogonal LG modes (transformed 

from the corresponding HG modes) [81], but for efficiency consideration, the MPLC 

method utilizes too many phase elements. In contrast, the log-polar method only requires 

two elements. Spiral transform is developed base on the log-polar transform, but the mode 

symmetry and power efficiency need to be improved. 

Once the beam is successfully generated, we propagate the asymmetric Bessel 

Gaussian beam a certain distance. The average OAM plot can be easily computed by using 

Eq. (3.21). From Fig. 3.3, it’s obvious that the asymmetric Bessel Gaussian beam’s average 

OAM is more linear than both the vortex plane wave and the vortex HyGG beam. 

 

Fig. 3.3. Average OAM of vortex plane wave (red dash line), vortex HyGG 

(yellow dash line), and asymmetric Bessel Gaussian beam (solid purple line). 
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3.6 Comparison of the asymmetric Bessel Gaussian beams 

 
We have mentioned that due to the OAM spectrum coefficient reason, our 

asymmetric Bessel Gaussian beam is different from the well known asymmetric Bessel 

Gaussian beam in Kotlyar’s work [23]. We will compare these two cases in detail in this 

section. The Kotlyar version’s asymmetric Bessel Gaussian beam has an elegant expression 

[23]: 
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where asymmetry degree c is a positive real constant [65],  
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is the propagation form of Bessel Gaussian beam at any location z,  
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j
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z   is the Rayleigh range, 2 22π
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    is the wavenumber of the wavelength 

  wave, 0
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sintk k




   is the transverse wavenumber, which is also the Bessel 

beam’s scale factor, 0  is the angle of the conical wave that forms the Bessel beam, Gw  is 

the Gaussian envelop’s waist radius, and  nJ   is the Bessel function of the first kind of 

nth-order. The important parameter is the degree of perfectness 0

ringw


 , as we mentioned 

in section 3.5, which is in a perfect vortex parameter. The equivalent Bessel Gaussian 
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parameter form degree of perfectness t G

2

k w  can be obtained by applying perfect vortex to 

Bessel Gaussian parameter relationships t
0

k f

k
   and ring

G

2 f
w

kw
  (the Gaussian beam’s 

diffraction limit relation). On the contrary, the azimuthal Gaussian ring formed asymmetric 

Bessel Gaussian beam is 
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where the OAM spectrum coefficient 
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is a complex constant, the azimuthal distribution of the angular spectrum of 

 aBG_GR , , ;U r z   is a Gaussian distribution with azimuthal phase 
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2exp j
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, 

  represents the ratio of the azimuthal Gaussian distribution covering the whole  π,π

rang, m l    is a fractional charge number, l is the integer part of m, and α is the 

fractional part of m. The parameter   is similar to the  aBG_K , , ;U r z c ’s asymmetry 

degree c, which controls the asymmetry of the Bessel Gaussian beam. The greater the 

asymmetry degree, the more asymmetry. When the asymmetry degree c = 0, the 

asymmetric Bessel Gaussian beam  aBG_K , , ;U r z c  returns to the regular Bessel Gaussian 

beam  BG , ,n r z . For  aBG_GR , , ;U r z   case, the asymmetry degree   controls the 

asymmetry in a different way. The greater the   , the more symmetric the beam. When 
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asymmetry degree   , the asymmetric Bessel Gaussian beam  aBG_GR , , ;U r z   

returns to the regular Bessel Gaussian beam  BG , ,n r z . 

For the asymmetric Bessel Gaussian beams, either Kotlyar’s version 

 aBG_K , , ;U r z c  or azimuthal Gaussian ring version  aBG_GR , , ;U r z  , there is four 

fundamental beam character determining parameters:  

1) Degree of perfectness: t G

2

k w  for both cases. 

2) Degree of asymmetry: c for  aBG_K , , ;U r z c  and β for  aBG_GR , , ;U r z  . 

3) OAM spectrum coefficient: 
!

pc

p
 for  aBG_K , , ;U r z c  and pA  (Eq. 3.35) for 

 aBG_GR , , ;U r z  . 

The degree of perfectness reflects the relationship between the Bessel term and the 

Gaussian term. To make a fair comparison, we will compare the degree of asymmetry’s 

impact on intensity, phase, and OAM spectrum under the same degree of perfectness. In 

Fig. 1 of Kotlyar’s paper [23], the degree of perfectness is t G 0.5
2

k w
 . The exact 

 aBG_K , , 0;U r z c   figure is replotted by utilizing the same degree of perfectness and 

degree of asymmetry c = 0.1, 1, 10, as shown in Fig. 3.4. Additionally, the normalized 

coefficients are also plotted to show the OAM spectrum. The intensity figure shows the 

asymmetry grows with the degree of asymmetry c, and a charge one singularity move 

approaching the original charge three singularity (n = 3). The normalized OAM spectrum 

confirms the increasing degree of asymmetry c. The spectrum broadens and shifts away 
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from the designed center charge number, n = 3, for example, in Fig. 3.4 (i). When the 

degree of asymmetry is approximately 0, as Fig. 3.4 (a) shows, the intensity approximately 

symmetric, (b) phase one n = 3 singularity, (c) spectrum only one spike at n = 3.  

 

Fig. 3.4. (a), (d), (g) Intensity, (b), (e), (h) phase, and (c), (f), (i) normalized 

OAM spectrum coefficients from the Eq. 3.33  aBG_K , , 0;U r z c   at n = 3, 

and different asymmetric degree c: (a), (b), (c) 0.1; (d), (e), (f).1; and (g), (h), 

(i) 10. 
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The  aBG_GR , , 0;U r z   degree of asymmetry   works differently from Fig. 

3.4  aBG_K , , 0;U r z c   cases. Under the same degree of perfectness t G 0.5
2

k w
 , the 

asymmetry is shown in Fig. 3.5. The intensity figure shows the asymmetry grows reversely 

with the degree of asymmetry  , the origin charge three singularity (n = 3) split into 

charge two singularity and charge one singularity. As the asymmetry degree increases, the 

charge one singularity moves far away from the origin, as shown in Fig. 3.5 (e), (h), and 

(k). The charge two singularity split into two charge one singularities and departure aways 

from each other, as shown in Fig. 3.5 (h), (k), and (n). The normalized OAM spectrum 

confirms the increasing degree of asymmetry  , the spectrum broadens but keeps 

centering at the designed center charge number, n = 3, for example, in Fig. 3.5 (c), (f), (i), 

(l), and (o). When the degree of asymmetry is greater than 2, as Fig. 3.5 (a) shows, the 

intensity approximately symmetric, (b) phase one n = 3 singularity, (c) spectrum only one 

spike at n = 3. It’s worth to notice that, under the same degree of perfectness, both 

 aBG_K , , 0;U r z c   and  aBG_GR , , 0;U r z   have broad OAM spectrum with similar 

beam asymmetry. But the  aBG_GR , , 0;U r z   beam’s OAM spectrum is narrower than 

 aBG_K , , 0;U r z c   beam’s; compare Fig. 3.4 (g) and (i) with Fig. 3.5 (m) and (o). For 

asymmetric degree   > 0.5, 5 to 7 central terms could represent the whole series pretty 

well because other terms converge to zero fast, shown as Fig. 3.4 (o). Another advantage 

of the  aBG_GR , , 0;U r z   beam is the spectrum does not move with the degree of 

asymmetry  . On the contrary, the  aBG_GR , , 0;U r z   beam’s OAM spectrum shift 
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away from the initial Bessel beam’s order towards higher charges with the increasing of 

asymmetry degree c. And that’s how the  aBG_GR , , 0;U r z   beam resulting fractional 

charge numbers because the shifting is continuous.  
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Fig. 3.5. (a), (d), (g), (j), (m) Intensity, (b), (e), (h), (k), (n) phase, and (c), (f), 

(i), (l), (o) normalized OAM spectrum coefficients from the Eq. 3.35 

 aBG_GR , , 0;U r z   at n = 3, and different asymmetric degree  : (a), (b), 

(c) 2; (d), (e), (f).1; (g), (h), (i) 0.75; (j), (k), (l) 0.65, and (m), (n), (o) 0.5. 

The degree of perfectness t G

2

k w  does not contribute to the OAM spectrum of 

asymmetric Bessel Gaussian beams. As shown in Eq. 3.33 and 3.35, the OAM spectrums 

are solely determined by the degree of asymmetry either c or  . But the degree of 

perfectness does affect the Bessel Gaussian beams ringing effect,  aBG_K , , 0; 1U r z c    

is shown in Fig. 3.6, keeping the degree of asymmetry c = 1, the third-order aBG (n = 3), 

and the Gaussian envelope size Gw = 500 μm, tuning the degree of perfectness t G

2

k w  = 0.5, 

5, and 10. 
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Fig. 3.6. (a), (c), (e) Intensity, and (b), (d), (f) phase, from the Eq. 3.33 

 aBG_K , , 0; 1U r z c    at n = 3, and different degree of perfectness t G

2

k w : 

(a), (b), 0.5; (c), (d) 5; and (e), (f) 10. 

Applying the same parameters to show  aBG_GR , , 0; 1U r z    in Fig. 3.7, 

keeping the degree of asymmetry   = 1, the third-order asymmetric Bessel Gaussian (n 

= 3), and the Gaussian envelope size Gw = 500 μm, tuning the degree of perfectness t G

2

k w  

= 0.5, 5, and 10. 
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Fig. 3.7. (a), (c), (e) Intensity, and (b), (d), (f) phase, from the Eq. 3.33 

 aBG_GR , , 0; 1U r z    at n = 3, and different degree of perfectness t G

2

k w : 

(a), (b), 0.5; (c), (d) 5; and (e), (f) 10. 

Compare Fig. 3.6 and 3.7, the degree of perfectness only controls the size ratio of 

the Gaussian envelope and the Bessel beam. It won’t affect the asymmetry of the whole 

beam profile. 

Last but not least is the fractional charge OAM generation capability of asymmetric 

Bessel Gaussian beams. Due to the OAM spectrum is solely determined by the degree of 
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asymmetry either in  aBG_K , , ;U r z c  or  aBG_GR , , ;U r z  . The fractional charge OAM 

generated by  aBG_K , , ;U r z c  is approximately continuous but always greater than the 

initial Bessel beam’s order, shown in Fig. 3.4 (c), (f), and (i). On the other hand, the 

 aBG_GR , , ;U r z   beam’s spectra are always centered at the input continuous charge 

number m l   . The  aBG_GR , , ; 0.5U r z    beam’s spectrum under different 

fractional m = 3, 3.3, 3.5, 3.9, and 4 are shown in Fig. 3.8. 

 

Fig. 3.8. OAM spectrum of  aBG_GR , , ; 0.5U r z    at (a) m = 3, (b) 3.3, (c) 

3.5, (d) 3.9, and (e) 4. 

Above all, the asymmetry Bessel Gaussian beams  aBG_K , , ;U r z c  and

 aBG_GR , , ;U r z   are functionally similar to each other. Firstly, the degree of perfectness 

determines the ratio of the Gaussian envelop and the Bessel term size, shown in Fig. 3.6 

and 3.7. Secondly, the degree of asymmetry affects the beam’s asymmetry proportionally, 

shown in Fig. 3.4 and 3.5. The greater the asymmetry, the broader the OAM spectrum. 

Thirdly the  aBG_K , , ;U r z c  generated fractional charge number is proportional to the 

degree of asymmetry c and always greater than the initial Bessel beam’s order, shown in 

Fig. 3.4.(c), (f), and (i). The  aBG_GR , , ;U r z   beam’s OAM spectra are always centered 
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at the initial charge number setting m l   , and the fractional OAM is achievable 

through setting fractional m. Finally, the  aBG_K , , ;U r z c  pattern asymmetry correlates 

with unit same sign singularity moving from outside towards the origin, shown as Fig. 3.4 

(b), (e), and (h). The  aBG_GR , , ;U r z   pattern’s asymmetry correlates with unit same 

sign singularity splitting from the higher-order singularity at the origin. 

 
3.7 Contribution summary 

 
In conclusion, this chapter is the theoretical foundation of the whole asymmetric 

fractional Bessel Gaussian beam research. The main contributions are concluded as such: 

we elaborated on the fractional OAM beam’s average OAM conservation dilemma and 

systematically analyzed the vortex plane wave and vortex HyGG beam’s Fresnel 

diffraction, Fraunhofer diffraction, and the average OAM equation. We reviewed the OAM 

density and average OAM’s equation from the fundamental relation between OAM and 

linear moment. In the last section, by thoroughly analyzing the fractional OAM beam’s 

phase profile problem, we proposed a novel fractional vortex beam with exemplary average 

OAM conservation, which is an asymmetric Bessel Gaussian beam. The OAM spectrum 

of the asymmetric Bessel Gaussian beam has been analyzed. And the Fourier conjugate of 

the asymmetric Bessel Gaussian beam is azimuthal Gaussian perfect vortex beam. Our 

azimuthal Gaussian ring evolved asymmetric fractional Bessel Gaussian beam 

 aBG_GR , , ;U r z   has been systematically compared with Kotlyar’s asymmetric Bessel 

Gaussian beam  aBG_K , , ;U r z c . The two kinds of asymmetric fractional Bessel Gaussian 
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beams are similar to each other, but  aBG_K , , ;U r z c  have a broader and shifting OAM 

spectrum,  aBG_GR , , ;U r z   has relatively narrower and a center fixing OAM spectrum. 

Other than that, the generation of  aBG_K , , ;U r z c requires complex SLM coding, the log-

polar optics could be used to generate  aBG_GR , , ;U r z   beams easily with high power 

efficiency. From the OAM spectrum perspective, the fractional OAM research is necessary 

because the modern OAM based communication technology is built on the OAM spectrum 

manipulation. The fractional OAM itself is a superposition of individual integer OAM 

modes. 
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CHAPTER FOUR 
 

NEW LOG-POLAR DESIGN 
 

4.1 Introduction 
 

We generate a fractional asymmetric Bessel Gaussian beam by using a unique 

optical geometric log-polar transformation optics. To the state, the multi-plane light 

conversion (MPLC) [81] can generate a large number of orthogonal laser modes, but the 

tricky part is the more the modes involved, the more the phase elements are required. The 

number of phase elements soaring up could bring three direct puzzles. Firstly, the power 

efficiency will be hard to keep high. Secondly, the alignment will be challenged even if all 

the elements are precisely separated into two whole pieces. Thirdly, the MPLC method is 

essentially an iterative computation dense technique. The pro is that the computed phase 

elements could adaptively be refreshed according to the feedback of the input and output 

condition. Still, the con is that the phase elements are preferred to be recorded friendly, 

such as spatial light modulator (SLM), then most of the high power application is 

unavailable. High power endurable elements, such as fused-silica-based diffractive optics, 

only work for one-time design, and it could not be refreshed (here, refresh means change 

the phase design in real-time). So adaptivity and high power endurability are a pair of trade-

offs. The log-polar transform is a family member of the geometrical coordinate transforms. 

It is applicable in the optical scenario because of the Fourier transform logic embedded in 

the physical optics. In 2013, Mirhosseini and co-workers innovatively cascaded fan-out 

elements following log-polar optics. Wan and co-workers have made log-polar optics fuse 

with fan-out design to increase the OAM mode sorter’s resolution [18]. The concern of the 
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fan-out design comes from power efficiency due to the upper bound of the diffraction 

efficiency has been studied [82]. Power efficiency is a crucial aspect of the high power 

application. 2018 Wen and co-workers proposed the spiral log-polar transform [83] to 

expand the polar transform range from  0, 2π  to  0, , then the OAM mode sorting 

resolution increases accordingly. Novel transform, such as n-fold circular-sector transform, 

is also grown from the traditional log-polar transform [21]. It improved the OAM channel 

separation without the fan-out design gets involved. More importantly, Ruffato and co-

workers have pushed the log-polar transform family design from the paraxial region to the 

non-paraxial region [22]. Most of the relevant papers look at the demultiplexing or mode 

sorting part of the log-polar transform family. Few of them talk about the multiplexing or 

OAM generation part of the corresponding designs. Even a few do so, and barely any paper 

mentions power efficiently accomplish the mode generation. In this chapter, following the 

brief review of the log-polar transform, we will talk about the current popular design issue 

and find out a way to improve the design. 

 
4.2 General optical geometric transformation 

 
As early as 1974, Bryngdahl [12, 13] has developed a geometrical transformations 

method, which is also known as coordinate transformation [14] or coordinate mapping in 

the later relevant researches. The geometric transformations were first studied to process 

images, such as image registration, mapping, and object recognition.  

Following Bryngdahl’s method [12, 13], consider the Fourier transform relation 

between input inU  and output outU  light field  
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where  ,x y  and  ,u v  are the Cartesian coordinates of the input and output planes,   is 

the wavelength, f  is the Focal length, j  is the imaginary unit, and transform  is the desired 

transform phase profile. The Stationary phase approximation [84] or standard saddle-point 

method assumes the phase term in the integral is approximately a constant value in the 

 ,x y  plane. The high oscillation phase’s total contribution to the global integration will 

be zero due to a phasor is a periodic function. It means that the partial derivatives of the 

phase term should be zero: 
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The first-order partial derivatives of the desired phase are 
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For a general mapping relation from  ,x y  to  ,u v   

   transform ,
, ,

2π

x yf
u x y

x

 



    (4.5) 

   transform ,
, .

2π

x yf
v x y

y

 



    (4.6) 



 61

Once the mapping relation is clear, the desired phase  transform ,x y  can be integrated from 

the Eqs. (4.3) and (4.4). But the solution only exists if and only if the mixed second-order 

partial derivatives of the desired phase  transform ,x y  is the same (Schwarz’s theorem) 

   2 2
transform transform, ,

.
x y x y

x y y x
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Substitute the mapping relations  
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The Eq. (4.7) is an equivalence of  
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.
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y x
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The Eq. (4.10) is the coordinate transformation’s existence condition. Any 

transformation/mapping that satisfies this condition is called conformal mapping.  

In general, given any form of coordinate transformation, the first existence test 

should be assessed by Eq. (4.10). Once the existence condition is satisfied, the desired 

phase profile  transform ,x y  can be easily integrated from either Eq. (4.3) or Eq. (4.4). 
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There are mathematical intuitively basic transforms, such as the polar transform, 

which does not satisfy this conformal existence condition. Stuff and Cederquist have 

demonstrated that a two-step transformation could make any one-to-one transformation 

happen [85]. That means for any desired non-conformal transformation, a media state of 

transformation makes the input to media and media to output both possible conformal. 

Other than the existing condition, another important fact for the coordinate transformations 

is that the 2nd phase profile is always needed to cancel out the complex phase residual after 

a particular special plane. We can understand this phase element as a collimator at this 

point. Multiple complex phase element alignment is always a challenge in the lab 

realization.  

 
4.3 Paraxial optical log-polar geometric transformation 

 
In 1983, the log-polar transformation was brought out to realize the scale and 

rotation invariant correlation [15]. Modern log-polar transform optics was used to map the 

OAM beam’s spiral phase/momentum to linear phase/momentum, then sort the OAM 

modes through a simple Fourier transform [16]. In 2013, Mirhosseini and co-workers 

cascaded fan-out optics after the log-polar elements to increase the mode sorter’s 

separation efficiency [17]. In 2017, Wan and the co-workers used the same fan-out idea 

but integrated the fan-out phase and log-polar phase to reduce the total number of the phase 

elements [18]. Since 2017, Ruffato and co-workers have made endeavors to improve the 

miniaturization and alignment simplicity [19-21]. In 2019, Ruffato redesigned the log-

polar elements to expand the paraxial transformation to the non-paraxial region [22]. The 

fundamental log-polar mapping relation is shown in Fig. 4.1. 
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Fig. 4.1. The log-polar coordinates mapping from  ,x y  to  ,u v  unwraps a 

ring shape into a line, from  ,u v  to  ,x y  wraps a line shape into a ring. 

As mentioned in the general geometric transform, a practical conformal mapping 

phase should be resolved after the existence test. Let us take a look at the log-polar mapping 

relation: 

 
2 2

, ln ln ,
x y

u x y a a
b b

              
   (4.13) 

   , arctan 2 , .v x y a a y x      (4.14) 

where  ,   are the polar coordinates of  ,x y , a and b are the log-polar scaling 

parameters determining the line length and the ring size. It is worth noting that the 

azimuthal polar coordinate   has to be defined as the 2-argument arctangent because of its 

principal value in the range  π,π . The typical error that appears in most of the relevant 

log-polar papers is using the arctangent function to express the azimuthal polar coordinate, 
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which is mathematically wrong because the arctangent function’s principal value is in the 

range 
π π

,
2 2

   
. Considering the existence condition Eq. (4.10),  

   
2 2

, ,
.

u x y v x y ay

y x x y
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From here, the negative sign in Eq. (4.13) makes sense because this is the way to fulfill the 

conformal mapping requirement, though intuitively, the negative sign looks obscure at first 

sight. Substitute Eq. (4.13) into Eq. (4.11), or Eq. (4.14) into Eq. (4.12), the desired 

unwrapping phase can be integrated as 
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Considering the wrapping process in Fig. 4.1 from right to left, the mapping relations are 
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The conformal mapping existence was proven by Eq. (4.15). It’s also easy to show 
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Applying the same process, the wrapper’s phase profile could be integrated as 

W

2π
exp cos .

ab u v

f a a
         
   

    (4.20) 

The wrapping process setup and the two phases are shown in Fig. 4.2. 
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Fig. 4.2 The optical log-polar wrapping transformation setup from  ,u v  to 

 ,x y , the red arrow indicates the Fourier lens location. 

To save the red arrow pointed Fourier lens from the whole setup, one could put an 

extra parabolic phase in the resolved phases as  

 2 2
W

2π π
exp cos ,

ab u v
u v

f a a f 
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The modified wrapping process setup and the two phases depict by Eqs. (4.21) and (4.22) 

are shown in Fig. 4.3. The  W ,u v  wrapper’s fast oscillating phase is smoothed by the 

parabolic phase, which is shown in Figs. 4.2, and 4.3. This is helpful for keeping diffractive 

optic’s diffraction efficiency high. 
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Fig. 4.3 The modified setup of optical log-polar wrapping transformation from 

 ,u v  to  ,x y , the red arrow indicates the Fourier lens location. 

This operation does not break the conformal mapping criteria because the 

secondary mix partial derivatives of the parabolic phase are always the same. The wrapper 

phase and the unwrapped phase are phase residual corrector for each other. This is an 

analog of the conjugate relationship.  

 
4.4 Conventional log-polar design’s dilemma and five evaluation metrics 

 
The sorted modes distortion induced by the skew OAM phase front has been 

noticed since the 2010 paper [16]. It is agreed that the log-polar theory assumes the 

wavevector goes straight, in which case the log-polar transformation works perfectly. But 

that is just the charge zero beam; even if the higher charge OAM beam’s skew phase angle 

is small, the paraxial approximation comes into play, the distortion starts to accumulate. 

For the same reason, if we have the input as a line-shaped beam, the output will be a ring-

shaped beam. Assume the log-polar maps the complex light field distribution. We expect 

a linear phase on the line shape maps into an OAM phase on the ring. The ideal log-polar 

wrapping process is shown in Fig. 4.4. But the truth is the linear input phase won’t stay 
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there and do nothing. It will deflect the beam at a certain angle, which is agreed by both 

geometric optics and Fourier optics theory. This phenomenon is shown in Fig. 4.5. 

Eventually, this unexpected near field wrapped ring’s shift will affect the average charge 

number both in the near-field and the far-field, and the far-field Bessel Gaussian beam’s 

symmetry.  

 

Fig. 4.4 Ideal log-polar wrapping process. 
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Fig. 4.5 The wrapped ring shift away from the phase corrector’s center. (a) m 

=0 no shift, (b) m = 1.3 bare shift, (c) m = 10.6 obvious shift, (d) m = 30 very 

large shift. 

Theoretically, the linear input phase or tilted wave vector shifts the beam’s output 

location. The shift value can be readily derived from Fourier transform theory or geometric 

optics’ trigonometric relation: 

,
2π

fm
x

a


       (4.23) 
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where 2πa  is the designed line length. The rigorous phase residual of the wrapped ring 

shape beam passing through the phase corrector can be expressed as 
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In Fig. 4.4’s ideal case, the phase residual m  . This happens when the lateral shift 

is approaching zero 0
2π

fm
x

a


   . The azimuthal Gaussian transformed asymmetric 

fractional Bessel Gaussian beam in chapter 3 does not consider the lateral shift and the 

corresponding aberration or phase distortion, but only the OAM phase. In Fig. 4.5, there 

are redundant phase generated. The larger the ring shape beam size, the lesser the redundant 

phase messing up. In general, one can increase the input line zone size 2πa  (scaled by a 

parameter), the output ring shape beam size 0exp
v

b
a

  
 

 (scaled by b parameter, where 

0v  is the input line shape beam’s position), and decrease charge number, and decrease 

focal length f. Given a constant charge number, all the log-polar improvement methods 

push the log-polar design from the paraxial region to the non-paraxial region. The first 

time, to our knowledge, pointing out the non-paraxial log-polar design can improve the 

generated OAM mode’s quality or suppress the OAM mode’s distortion. 
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The lateral shift is the reason for OAM mode’s degeneration or distortion. But how 

to evaluate the OAM mode’s quality is still an open question. We propose five metrics to 

evaluate the OAM mode’s quality. The first one is the lateral shift ratio, which is defined 

as 

shift
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ab
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The smaller the ratio, the cleaner the phase residual  , the better the OAM mode quality. 

So, in this context, for a given charge number, we are looking for decreased focal length, 

increased log-polar parameters a and b to suppress the lateral shift ratio. 

The second metric is the average charge number, which is measurable by [25] 
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where the U  and U   are arbitrary complex light field and its conjugate. It is evident in Fig. 

4.5, the higher the charge number, the more deviation from the measured average charge 

number to the designed charge number. And hopefully, by reducing the lateral shift ratio, 

the charge number could be consistent with the designed value. 

The third metric is focusing on the far-field Bessel Gaussian beam’s symmetry. Fig. 

4.6 shows that the wrapped ring’s far-field has its peak intensity lobe moving away from 

the x-axis. This is another side effect of the lateral shift caused phase residual. As a 

comparison, Fig. 4.6 (b) shows a better symmetry, in which case the lateral shift ratio has 

been suppressed to less than 1%. It is pronounced the beam’s symmetry about the x-axis is 



 71

much better than Fig. 4.6 (a), in which the lateral shift ratio is about 5.3%. The far-field 

peak intensity shift can be quantized as an absolute distance value. For instance, the far-

field peak intensity shift for Fig. 4.6 (a) and (b) are -131 μm and -1 μm, respectively. The 

azimuthal Gaussian transformed asymmetric fractional Bessel Gaussian beam in chapter 3 

does not consider the lateral shift, and the corresponding aberration or phase distortion Eq. 

(4.24), Fig. 4.6 is closer to  aBG_GR , , 0; 0.66, 4U r z m    . 

 

Fig. 4.6 The far-field asymmetric Bessel Gaussian beam’s symmetry 

comparison. (a) traditional log-polar transform result, m = 4 peak intensity 

location is high above the x-axis, (b) same charge number, lateral shift 

suppressed design’s peak intensity location lands on approximately the x-axis. 

The fourth metric goes back to the lateral shift issue itself. Since the lateral shift is 

deterministic, Eq. (4.23), in numerical simulation, it is possible to shift the whole complex 

filed back to the origin and then put a corresponding desired OAM phase, which we 

consider the ideal case. Fig. 4.7 shows the ideal case in purple color and shifted the case in 

green color. The charge ten log-polar near field ring is shifting very obviously. The Dia in 

the figure is the  exp 2  intensity defined diameter. Consequently, the far-field complex 
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field is different from each other. A cross complex correlation coefficient can be 

numerically computed given the two complex fields. The closer to one the coefficient, the 

lesser the lateral shift-induced distortion, the better the mode quality. 

 

Fig. 4.7 Comparing m = 10 shifted ring (green color) and the ideal case zero 

shift ring (purple color). 

 

Fig. 4.8 The far-field of m = 10 shifted ring (a) intensity, (b) phase, ideal case 

no shift ring (c) intensity, and (d) phase. 

Finally, power efficiency is always an important parameter to evaluate the 

diffractive beam shaping, and it is the bottom line of the high-power applications. The 

novel transformations such as circular-sector transformation [21;86], azimuthal-scaling 

spiral transformation [87], and fan-out log-polar transformation [17, 18, 88] are not the 
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best for high-power applications because they are Dammann grating-based design, which 

reduces the power efficiency dramatically. 

In conclusion, the five metrics are 1) lateral shift ratio; 2) average OAM; 3) far-

field peak intensity shift; 4) complex cross-correlation coefficient; 5) power efficiency. 

The next section will discuss a new design with better OAM mode quality, which can be 

confirmed by the above five metrics. 

 
4.5 Non-paraxial log-polar transform and the new design 

 
The lateral shift is the reason for OAM mode’s degeneration or distortion. To obtain 

asymmetric fractional higher order Bessel Gaussian beam in the far field, there are several 

methods that one could apply. First of all, increase the propagation medium’s refractive 

index between two log-polar elements [89]. The more general form of Eq. 4.23 is 

,
2π

fm
x

n a


  where n  is the refractive index of the propagation medium between the two 

holograms, for conventional cases n =1, but if n  is greater than 1, the lateral shift will be 

reduced to a small value, then the far-field OAM mode quality will be improved. Secondly, 

design a separate diffractive optic to multiplicate the resulting lower-order OAM a constant 

number, such as two or three, resulting in a higher charge number OAM. The examples are 

circular-sector transformation [21, 86] and azimuthal-scaling spiral transformation [87]. 

The scaling factor of 2020 published azimuthal-scaling spiral transformation was 3/2 [87]. 

Due to its fractional phase discontinuity overlay with pseudo-azimuthal uniform intensity, 

this beam’s fractional charge global OAM follows the same yellow curve trend in Fig 3.1. 

These methods are essentially azimuthal Dammann grating design combined with general 
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polar transform, which generates multiple azimuthal copies of the original OAM mode. 

Dammann grating inevitably drops the total power efficiency dramatically, which is not 

acceptable for any high-power applications. The same issue happens in the lateral 

Dammann grating design, namely fan-out grating coupled log-polar design [17, 18, 88]. 

Finally, as section 4.4 shows, the last method should reduce the focal length and enlarge 

the log-polar parameter a and b to improve the generated OAM mode quality. Fig. 4.9 

illustrates the log-polar OAM modes generation process, which is very clear in the insect 

subplots. Increasing 0  and d are equivalent to increasing a and b. All the tuning methods 

push the log-polar design from the paraxial region to the non-paraxial region [22]. 

 

Fig. 4.9 The log-polar OAM modes generation process and the corresponding 

parameters. 
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Since paraxial approximation is one foundation of the general geometric transform 

discussed in section 4.2, we need to consider the rigorous non-paraxial propagation 

process, such as Rayleigh-Sommerfeld integral 
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where the  in ,U u v  is the input complex light field, the  out , ,U x y z  is the output 

complex light field, and the  transform ,u v  is the desired transform phase profile. For the 

same stationary phase approximation reason, the partial derivatives of the phase term 

should be zero[22]: 
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The first partial derivative of the  transform ,u v can be derived as 
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For a general mapping relation from  ,u v  to     , , ,x u v y u v , the solution 

 transform ,u v  only exists if and only if the mixed second-order partial derivatives of the 
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desired phase  transform ,u v  is the same (Schwarz’s theorem or Clairaut’s theorem on 

equality of mixed partials) 

   2 2
transform transform, ,

.
u v u v

u v v u

   


   
    (4.31) 

Unfortunately, neither log-polar transform mapping relation nor polar transform 

satisfies the Eq. (4.31) criteria. This means there is no mathematically rigorous solution to 

the desired phase  transform ,u v . The only thing that worth trying is to find an approximate 

solution. Since the first partial derivatives are provided by substituting Eqs. (4.17) and 

(4.18) into Eqs. (4.29) and (4.30), the desired phase  transform ,u v  can be reconstructed 

numerically in the least-squares sense.  

Numerically, assume the desired matrix is n × n lattice, the linear system of 

equations of size 2n2 in n2 unknowns. The linear system is overdetermined (almost always 

inconsistent, which means no solution exists). The reconstructed phase is the solution in 

the least-squares sense, which is the closed approximation. As Fig. 4.10 shows, the partial 

derivatives are approximated by numerical differences. For instance, use forward 

difference, backward difference, and central difference represent the leading edge, trailing 

edge, and interior element’s partial derivatives. 
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Fig. 4.10 Use numerical differences to approximate the partial derivatives. 

The approximation relation can be expressed as 

 transform
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The desired phase reconstruction/solving can be computed by solving 1  

  1
transform
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    (4.33) 

For a simple example to visually show the matrix equation, say 4 × 4 lattices, for example, 

the Eq. (4.32) will be 
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(4.34) 

The matrix Δ is not always invertible. One could use QR decomposition to find a least-

squares sense solution Δ-1 in Eq. (4.33). 

Considering the first wrapping phase is a numerical solution, one can find the phase 

corrector’s phase profile from the initial design requirement. This corrector’s phase is 

expected to cancel out the wrapped ring’s phase residual but the OAM phase. In other 

words, for the zero OAM phase case, the corrector should cancel out all the phase 

components. So, the corrector is designed as the conjugate of zero tilt line  in
OAM=0 ,U u v  

wrapped ring’s phase: 
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(4.35) 

Above all, the new log-polar optics are designed as 2π 5 mma  , b = 60 mm, f = 

40 mm, pixel size 1 um. By comparing the paraxial log-polar wrapper design Eq. (4.21) 

and the numerical result that Eq. (4.33) solved, the five metrics do not show an apparent 

difference between these two cases. Thus the final new log-polar wrapper is designed by 

Eq. (4.21), and the unwrapper/corrector is designed by Eq. (4.35). The wrapper and 

unwrapper’s dimensions are 10 mm  5 mm and 10 mm  10 mm, respectively. The ideal 

input Gaussian beam’s parameters are wu = 1875 um, w0 = 375 um, and v0 = -2522 um.  
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Fig. 4.11 Input Gaussian beam’s intensity and the overlapped wrapper’s phase 

(a) and the corresponding azimuthal Gaussian perfect vortex beam’s intensity 

and the overlapped unwrapper’s phase (b). 

The wrapped azimuthal Gaussian ring’s size is corresponding with the input 

Gaussian beam’s vertical position. In Fig. 4.11 (b), the outside yellow ring indicates the 

1/e2 beam size, and the inner yellow ring indicates the ring’s peak intensity location. 

Aiming to minimize the new design’s later ring shift ratio, the wrapped ring size was 

designed as large as possible. In fact, the wrapped azimuthal Gaussian ring’s outside 1/e4 

size is almost as large as 10 mm in diameter. By shifting the input elliptical Gaussian beam 

towards the origin, the wrapped azimuthal Gaussian perfect vortex ring will enlarge; shift 

away from the origin, the ring size shrinks. It’s not recommended to scale the wrapped 

Gaussian ring’s size too much, because eventually there will be a power leaking either from 

the outside boundary or the inside boundary of the unwrapper optic at the phase correction 

position. 

For comparison, the old design and the new design’s far-field beam intensity are 

plotted together in Fig. 4.12. It is pronounced that the new log-polar design’s far-field peak 

intensity is very close to the x-axis, which represents good symmetry and OAM mode 

quality. Furthermore, Table 4.1 shows the whole five metrics comparison between old and 

new designs. 
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Fig. 4.12 Comparing two versions of log-polar optics design’s far-field 

intensity under different integer charge numbers. 

Table. 4.1 Five metrics of old log-polar optics design 

Charge 10 9 8 7 6 5 4 3 2 1 

Shift Ratio/% 13.23 11.90 10.58 9.26 7.94 6.61 5.29 3.97 2.65 1.32 

OAM_total 9.6 8.6 7.7 6.7 5.8 4.9 3.9 2.9 1.9 1 

Complex Cross 
Correlation 

Coefficient/% 
52 62 69 81 86 90 93 95 96 96 

Far field Peak Intensity 
Shift/μm 

-411 -375 -321 -277 -223 -181 -131 -113 -69 -17 

Efficiency/% 93.6 95.5 96.6 98.9 97.1 97.2 97.3 97.4 97.5 97.5 

 

Table. 4.2 Five metrics of new log-polar optics design 

Charge 10 9 8 7 6 5 4 3 2 1 

Shift Ratio/% 1.18 1.06 0.94 0.82 0.71 0.59 0.47 0.35 0.24 0.12 

OAM_total 10.03 9.02 8.02 7.02 6.02 5.01 4.01 3.01 2.01 1 

Complex Cross 
Correlation 

Coefficient/% 
99.27 99.46 99.61 99.72 99.79 99.84 99.88 99.88 99.96 99.85 

Far field Peak Intensity 
Shift/μm 

-9 -5 -3 -3 -3 -1 -1 -1 -1 -1 

Efficiency/% 99.40 99.51 99.53 99.53 99.54 99.54 99.54 99.53 99.57 99.49 
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Above all, the log-polar optics generated OAM mode’s distortion is theoretically 

analyzed. A new design method is proposed and numerically computed. The proposed five 

metrics to evaluate log-polar optics generated OAM modes’ quality is applied to the old 

design and the new log-polar optics design. As Table 4.1 and 4.2 show, the new log-polar 

optics generate better OAM modes than the old version.  

 
4.6 Contribution summary 

 
In conclusion, this chapter analyzed the limitation of log-polar optics. The 

generated OAM modes’ distortion has been carefully studied. The reason for the distortion 

is the assumption of the none zero transverse wavevector is negligible in the geometric 

transformation process. In the real geometric transformation, such as the log-polar 

transform, the none zero transverse wavevector plays an essential role in both the OAM 

phase generation and the final mode lateral shifting. Hence, the distortion only could be 

suppressed but eliminated by tuning the log-polar optics design parameters, the closer to 

the non-paraxial region, the less distortion. The new log-polar design has a noticeable 

improvement, which is measurable and confirmed by the five mode evaluation metrics 

including 1) wrapped ring’s lateral shift ratio, 2) total OAM charge number, 3) complex 

cross-correlation coefficient from the idea no shift beam, 4) far-field peak intensity shift, 

and 5) far-field final mode’s power efficiency. 
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CHAPTER FIVE 
 

COLLIMATOR/FIBER ARRAY HOBBIT 
 

5.1 Introduction 
 

There are a couple of ways to generate higher-order fractional and integer laser 

modes, such as spatial light modulation (SLM), multiplane light conversion (MPLC), and 

log-polar transformation. The SLM direct phase modulation can generate any practical 

phase profile apparently, and this is the most commonly used method. Meanwhile, this 

method is pricy and dynamic computation is required. It is a good experiment realization 

but not easy to commercialize for a large number of higher-order laser modes generation. 

The MPLC, also known as unitary programmable mode converter (UPMC), was first 

brought by Morizur and co-workers in 2010 [90]. Very similar to the machine learning 

concept, the MPLC starts from the input and output mode description iteratively design a 

group of phase profiles to smoothly accomplish the light conversion. This method has 

already been successfully applied in the commercial space division multiplexing system 

by CAILabs [91]. In 2019, Fontaine and co-workers reported an MPLC based Laguerre-

Gaussian (LG) mode sorter converts 210 LG modes or HG modes [81]. The MPLC requires 

2N+1 phase profiles for the conversion between N inputs and outputs. Even applying the 

lossless phase element, the loss accumulates dramatically with the number of optical 

elements. Secondly, the MPLC method adopts an approximation instead of the full 

theoretical decomposition of unitary transform [91]. The generated mode quality is not 

perfect even after the smoothness by optimization algorithm such as the simulated 

annealing (SA) method [92]. Thirdly, for MPLC method always generate the orthogonal 
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basis of laser modes. In other words, MPLC only generates integer OAM modes. Recently 

a novel n-fold circular-sector transformation was proposed by Ruffato and co-workers [21]. 

The n-fold circular-sector transformation was developed from the basic concept of an 

optical coordinate geometrical transform. It was essentially an azimuthal fan-out design of 

log-polar geometric transform, so the power efficiency and fractional charge OAM 

operation is the primary concern of this transform.  

The log-polar geometric transform is another way to generate the higher-order 

Bessel Gaussian modes. To power efficiently generate continuous higher-order OAM 

modes, we apply an elliptical Gaussian beam as an input of the log-polar beam wrapper. 

Then an azimuthal asymmetric ring is the output of the log-polar beam phase corrector. 

There are two advantages to this beam shaping. Firstly, it’s power efficient. The elliptical 

Gaussian beam avoids power clipping by the log-polar wrapper’s acceptance aperture, and 

then almost all of the power is deflected into the 1st diffraction order. The acceptance 

aperture is defined as the azimuthal mapping range  0,2π  or  π,π , any photon outside 

the range will be deflected away along the final desired ring shape pattern’s propagation 

process. That’s because in the one to one mapping process, the phase corrector only 

corrects the phase within the acceptance aperture. Secondly, it’s average OAM conserved. 

The average OAM of the fractional Bessel Gaussian beam is approximately the same as 

the near field designed OAM charge number. That is because of the azimuthal Gaussian 

distribution assigning the least power at the fractional OAM spiral phase’s phase 

discontinuity location.  
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The log-polar optical geometric mapping method maps the linear phase tilt into an 

azimuthal spiral OAM phase. This is the foundation of the log-polar OAM mode generation. 

Several ways to generate the linear phase tilt: 1) geometrically tilted arrange the source; 2) 

Fourier transform of shifting is tilted phase or wavevector; 3) use optical modulation device, 

such as acousto-optic deflector, for example, to modulate the wavevector direction. The 

first method requires a very fine alignment of multiple sources. And due to the required 

angle is very small, one source light needs to propagate a very long path to meet the other 

source’s light, so it is not practical. The second method is the most commonly applied. The 

question is state of the art is almost translating the laser source, either single-mode fiber or 

collimator, but rare use an array to demonstrate the OAM modes generation. 

On the contrary, the array is more practical than the source translation. In this 

section, we will show fiber/collimator array log-polar OAM modes generation design. We 

will deliver the third method to generate higher-order OAM modes in Chapter 6. Two 

practical log-polar OAM mode generation methods are shown in Fig. 5.1. 
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Fig. 5.1. Two practical log-polar OAM mode generation methods (a) 

fiber/collimator array; (b) acousto-optic deflector. 

 
5.2 1550 nm fiber array HOBBIT 

 
The practical design is important because all the former researches, either published 

or unpublished, were translating a single source, such as a collimator or a single-mode 

fiber, to mimic a collimator array or fiber array. But the key is the translation pitch was 

always very small, not big enough to physically put another collimator or fiber. Thus, it’s 

crucial to know the relationship between the array pitch and the resulting charge number 

interval. The Fourier transform of shifted light source resulting in linear phase tilt is shown 

in Fig. 5.2. 

 

Fig. 5.2. Diagram of single-lens Fourier transform pair of lateral shift and 

linear phase. 

Given the wave vector tilting angle 
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where Δx is the lateral array pitch, f is the focal length of the Fourier lens. Considering the 

charge number related phase gradient angle 
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where Δm is the target OAM mode’s charge number difference, λ is the wavelength, d is 

the corresponding beam size. Due to the tilt angle is the same, the pitch size and the charge 

number relationship is 
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m f
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        (5.3) 

which is the same equation as the log-polar demultiplexing mode detection resolution 

equation. This makes sense because mode generation and mode detection are essentially 

the same things according to the principle of optical reversibility. Given the Gaussian 

beam’s diffraction limit relation 

2
1 π 1, 

w
w

f
       (5.4) 

where the w1 and 
2 2

d
w  are the Gaussian beam’s waist radius on the front and back 

Fourier plane of the Fourier lens. Substitute the Eq. (5.4) into Eq. (5.3), and we can find 

the resulting charge number is solely determined by the input array’s fill fraction 
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For example, targeting the neighboring array channel’s charge number index 1, the 

corresponding fill fraction is computed as 1.27 > 1, which is not practical. On the other 

hand, an array structure with fill fraction one results in the charge number interval 1.27. It 

won’t change the result if the input Fourier plane’s Gaussian beam has a parabolic phase 

or not because the diffraction limit is the relation between the Fourier transform pair of 

Gaussian beam waist. And the Gaussian waist is supposed to be the narrowest position of 

the whole Gaussian beam. In this context, analog with the diffraction limit equation, Eq. 

(5.5) could be considered as a charge number and pitch size diffraction limit equation. 

Applying the analytical theory of the charge number and pitch size diffraction limit, 

as shown in Fig5.3, a fiber array higher-order Bessel Gaussian beam generation system 

was set up. The elliptical Gaussian beam generation optics include a 1550 nm single-mode 

fiber array with 250 um pitch size and 10.5 um mode field diameter, a cylindrical microlens 

array with a focal length of 1.6 mm and 250 um pitch size, a cylindrical lens with a focal 

length of 45 mm and a Fourier-transforming lens with a focal length of 411 mm. The 

distancing of two log-polar optics is 47 mm. 

 



 89

Fig. 5.3. Diagram of line-generation and log-polar transformation. Ф1 – 

wrapper, Ф2 – phase corrector, L2 – Fourier lens with f=154 mm. Inset (a), 

line profile on the wrapper inset (b), ring profile on the phase corrector. 

The elliptical Gaussian beam generation part is a two-dimensional beam shaping 

system. In the x-direction, the cylindrical microlens array and the Fourier lens work as a 4f 

system; on the y-direction, the cylindrical lens and the Fourier-transforming lens work as 

a two-lens telescope system. The output beam is a 3.35 mm (L) × 300 um Gaussian line, 

as shown in Fig. 5.3 (a) incident on the wrapper. Fig.5.3 (b) offers the wrapped line-shaped 

beam right at the 2nd log-polar element and with 1.5× magnification. There are four fiber 

array ports involved in the experiment. Align the center of the boundary between port 2 

and 3 with the system’s optical axis, port 1 and 4 SMF will naturally ± 375 um away from 

the origin due to the 250 μm pitch size. The linear phase tilt introduced by the two SMF at 

the back focal plane will be ±3.9π. After the log-polar optics wrap the line with a linear 

phase into a ring, the linear phase will be wrapped into an azimuthal phase of  exp jm . 

The corresponding OAM charge number will be approximately 2m    , and the resulting 

interference pattern of these two channels is a four-petal pattern. For the evenly distributed 

array ports, the charge number interval is around 1.3, then the charge number 

corresponding with ports 2 and 3 is approximately ±0.7.  

Use a phase modulator to modulate channels 2 and 3, and encoded information 

could be detected and interpreted by the detector. To demonstrate high-speed modulation 

and detection, we applied a 1 GHz sin function code on the phase modulator, and the signal 

was detected and decoded experimentally. Meanwhile, for visual demonstration purposes, 
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a slow modulation version has been performed. The modulation rate was approximately 

half Hertz, and the experimental result agrees with the simulation very well. The 

experiment setup and resulting interference pattern are shown in Fig. 5.4. The pattern will 

rotate periodically with the frequency of the modulation signal. The resulting interference 

pattern is imaged by an imaging lens to make the detector, Thorlab DET08CL 5GHz 

InGaAs, only accepting one portion of the pattern. Then the collected photon will be 

analyzed by the scope. The red circle represents the detector aperture, which is 800 μm in 

diameter. The beam size is ~ 1700 μm in the longer diameter. 

 

 

Fig. 5.4. The interference OAM mode detection system. (a) setup, (b) 

electrical decode system, and (c) resulting interference pattern and detector 

aperture (red circle). 

On the transmitter side, we use Tektronix AWG500 series arbitrary waveform 

generator(AWG) to generate a 1 GHz sinusoidal wave with 5 G sample/sec sampling rate. 
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On the detection side, the signal is analyzed by TektronixTDS7404B digital phosphor 

oscilloscope with the same sampling rate. The transmitted signal is entirely recovered by 

the detector, as shown in Fig. 5.5. 

 

Fig. 5.5 The comparison of transmitted sinusoidal signal and the recovered 

signal. 

This experiment shows that we can dynamically control the phase of ±0.7 OAM 

mode in the 1550 nm fiber array HOBBIT system. We collect and recover the signal carried 

by the asymmetric fractional Bessel Gaussian beam as high as 1GHz. This modulation rate 

beats the fastest SLM’s modulation rate (~100MHz). With the OAM modulation ability, 

this technique can find potential applications in classic/quantum optical communication, 

dynamic beam control, imaging, directed energy, fractional OAM filamentation, particle 

manipulation, and probing. 
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As we introduced in Chapter 3, the far-field generated beams are asymmetric 

continuous OAM Bessel Gaussian beams. The propagation form of linear polarized 

asymmetric Bessel Gaussian beam is 

         
2 2
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 is the OAM spectrum 

coefficient, m  is the continuous OAM charge number,   is the ratio of input 

elliptical Gaussian beam’s length versus log-polar wrapper design acceptance line length, 

 nJ   is the Bessel function of the first kind of order n, 0
t

k
k

f


  is the transverse 

wavenumber, 0  is the near field wrapped ring’s radius, f is the focal length of Fourier 

transform lens, 
R

1 j
z

z
    is a Gaussian beam propagation scaling factor. As we can tell, 

the asymmetric Bessel Gaussian beam is a spectrum of integer Bessel Gaussian beam with 

complex spectrum coefficients. The nondiffractive property is still embedded in the Bessel 
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Gaussian beam’s character. For our HOBBIT beam generated by the setup illustrated by 

Fig. 5.3, the depth of focus was measured and compared with the general Gaussian beam. 

The measurement result is shown in Fig. 5.6. 

 

Fig. 5.6 Comparing the depth of focus measurement of Gaussian beam and 

asymmetric fractional Bessel Gaussian beam. 

The depth of focus is defined by [93] the range of the peak intensity drops to a half 

of the maximum. The more extended depth of focus of the Bessel Gaussian beam can be 

quickly concluded from Eq. (5.6). The Gaussian envelope evolvement controls the peak 

intensity. Because the Gaussian envelope has a larger size than the zeroth Bessel central 

spot, the Bessel Gaussian beam has a longer depth of focus than the standard Gaussian 

beam, the same size as the zeroth Bessel beam’s central spot. In other words, the more 

ringing effect on the Bessel Gaussian beam, the large the Gaussian envelope size, the 

longer depth of focus of the Bessel Gaussian beam. When the Gaussian envelope’s size is 

small enough, the Bessel Gaussian beam will reduce to a general Kummer beam. 
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5.3 Collimator array higher-order fractional HOBBIT generation 

 
Traditionally, researchers translate the collimator source to mimic an array of laser 

source construction [20]. That’s because the charge number and pitch size diffraction limit 

was confined by Eq. (5.5). To confirm the practical collimator array HOBBIT beam 

generation method’s validity, we have performed two collimators higher-order Bessel 

Gaussian beam generation experiments. The setup is shown in Fig. 5.7. 

 

Fig. 5.7 The setup of two collimators HOBBIT beam generation. 

The Gaussian output of collimators is shaped into an elliptical Gaussian beam on 

the input of log-polar optics; meanwhile, the collimator displacement is transformed into a 

different linear phase at the wrapper location. The charge numbers are designed as ±2 for 

each collimator, respectively, as shown in Fig. 5.8 (a) and (b). And the charge numbers are 

confirmed by the optical correlation of charge ±2 SPP. The correlation spot is shown in 

Fig. 5.8 (c) and (d). The coherent combination mode is shown in Fig. 5.8 (e). 
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Fig. 5.8 The generated charge ±2 asymmetric Bessel Gaussian beams. 

As shown in Fig. 5.8, we have applied two methods to confirm the charge number. 

Method one, we measure the beam size to ensure the charge number, the beam size of the 

asymmetric ring is defined by peak intensity location other than the 1/e2 method. Method 

2, put the conjugate charge SPP after the generated asymmetric Bessel Gaussian beam. The 

far-field correlation spots are obtained to confirm the charge number as shown in Fig. 5.8 

(c) and (d). The power in the correlation spots is measured by approximated 40% of the 

total power, confirmed by the numerical simulation result. This technique can find potential 

applications in classic/quantum optical communication, micro object manipulation, 

directed energy, fractional OAM spectrum analysis, and fractional OAM filamentation. 

This method’s collimator number could expand to a considerable value. The potential 

confinements are the Fourier lens’s aberration, collimators’ tip/tilt correction,  

 
5.4 Contribution summary 

 
In conclusion, this chapter gives the array pitch and charge number diffraction limit 

relation, Eq. (5.5). Higher-order asymmetric fractional Bessel Gaussian beams are 

generated by a 1550 nm fiber array system and a 1064 nm collimator array system. The 

depth of focus of the asymmetric fractional Bessel Gaussian beam is theoretically analyzed 

and experimentally confirmed using the 1550 nm fiber array system. The main 

contributions are concluded as follow: 

1. We dynamically control the phase of ±0.7 OAM mode in the 1550 nm fiber array 

HOBBIT system. 

2. Simulation results predict experimental results well.  
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3. This asymmetric fractional Bessel Gauss beam could be modulated above 1GHz, which 

beats the fastest SLM’s frequency (100MHz). 

4. Potential applications are communication, dynamic beam control, imaging, directed 

energy, stable fractional OAM beam.  

5. The asymmetric fractional Bessel Gaussian beams’ depth of focus is longer than the 

regular Gaussian beam’s depth of focus. 

6. According to the propagation form of the asymmetric Bessel Gaussian beam, the depth 

of focus is determined by the Gaussian envelope’s Rayleigh range.  

7. To have more extended depth of focus, the Bessel Gaussian beam needs to have a larger 

Gaussian envelope, i.e., more rings. 
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CHAPTER SIX 
 

AOD HOBBIT SYSTEM 
 

6.1 Introduction 
 

As interest in exploring orbital angular momentum (OAM) properties grows, fast 

switching between different OAM modes is crucial for exploring applications thoroughly. 

A common approach in both classical and quantum OAM communications uses different 

OAM modes as symbols or bits. The capability of switching or hopping between OAM 

modes can increase the data rate dramatically [94-98]. Studies of OAM beams in turbulent 

environments suggests that different OAM modes have various propagation performances 

through turbulence [99, 100]. Fast switching between OAM modes will benefit such 

studies by enabling the exploration of a wide range of OAM modes. Other sensing related 

applications that could benefit from rapidly-tunable OAM include beam steering through 

scattered media [101], particle manipulation using three-dimensional beams [102], object 

rotation detection [103, 104], temperature sensing [105], and motion detection [106]. 

So far, one of the most popular techniques for mode switching uses spatial light 

modulators (SLM), a device that has a very limited switching speed. Digital micro-mirror 

devices (DMD) can boost switching speeds up to tens of kHz [97], which is comparable 

with the switching speed of a direct OAM mode emitter [107]. The DMD micro-mirror 

pitch limits the spatial resolution, while the mode emitter is only capable of tuning integer 

OAM modes. Fractional OAM modes, also referred to as non-integer [3], continuous [53], 

successive [53], and rational [54] modes, are another interesting aspect of the study. This 

is primarily because it is almost impossible to generate an entirely pure integer OAM state. 



 98

Secondly, it has been analytically deduced that fractional OAM Bessel beams could form 

an infinite number of orthogonal subsets of OAM modes[55], which can further benefit 

classical and quantum optical communication. Thirdly, the fractional OAM Bessel beams 

preserve the nondiffracting properties that integer OAM beams possess [53]. This property 

is critical for beam propagation applications, including propagation through turbulence and 

turbid environments. Moreover, it has been found that a group of fractional OAM modes 

generated by a synthesis of Laguerre-Gaussian (LG) modes have good structural stability 

on propagation to the far-field [57]. These LG mode-based fractional OAM states can be 

used in both classical and quantum communication.  

The proposed fast tunable OAM generation technique utilizes an optical geometric 

transformation[12, 13, 85, 108] known as the log-polar transform [16, 17, 19, 20, 33, 97-

99, 109-113]. Refractive log-polar elements were first explored as an efficient OAM mode 

sorter in 2010 [16]. In 2013, Mirhosseini used a fan-out diffractive beam-copying method 

to increase the log-polar mode sorter separation efficiency up to 95% [17]. In 2013, 

Mhlanga successfully sorted more than forty HeNe Bessel beam OAM modes. In 2015, the 

same elements were successfully used to demultiplex OAM modes with higher mode 

selectivity and better efficiency than that of cascaded beam splitters [33]. In 2015, Morgan 

designed and fabricated a diffractive version of the log-polar elements for OAM mode 

(de)multiplexing [113]. In 2016, Srimathi used the same log-polar elements for an 

underwater communication link [110]. In 2017, Ruffato made a compact demultiplexing 

version of the log-polar elements operating at 632.8 nm [19, 20]. In 2017, Lightman 3D 

printed a log-polar mode sorter, which working for a broad-spectrum of light [112]. In 
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2018, Ruffato redesigned the log-polar diffractive elements and explored the non-paraxial 

regime property, which is a good example of diffractive device miniaturization [114]. 

The AOD is a reasonably fast modulation device that is commonly used for stable 

phase modulation and beam shaping [115]. Bessel beams have been generated using an 

AOD array [116] and a cylindrical axisymmetric AOD [117]. In this work, a novel 

technique for OAM switching and tuning using an AOD in conjunction with a log-polar 

coordinate transformation system is demonstrated. The maximum mode switching speed 

for the experimental setup is measured on the order of 400 kHz, which is determined by 

the acoustic velocity of the crystal as well as the beam diameter.  For a different AOD and 

a reduced beam size, this speed has the potential of reaching tens of MHz with sub-

microsecond response time — far higher than the kHz level switching methods mentioned 

above. Typically, AODs have a very high damage threshold and are widely used in high 

power laser systems for beam deflecting and laser pulse generation. The integration of an 

AOD also opens up high power and direct energy related applications for our HOBBIT 

system. 

 

6.2 Method 
 

The two log-polar coordinate transform optics work as a pair to perform the optical 

transformation of wrapping a linear-distributed beam into an annular-distribution. The 

mapping process involves two customized diffractive phase optics: the wrapper, which 

performs the line to ring transformation. At the same time, the phase-corrector corrects the 

phase distortion introduced by the wrapper upon propagation. Interestingly, if a length-
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wise linear phase is applied along the linear-distributed beam, this will be transformed as 

well, producing a spiral phase that has been encoded onto the wrapped-ring. Therefore, the 

far-field of this ring shape beam carries OAM. 

As the basis of this work, the optical setup used to generate OAM modes is shown 

in Fig. 1(a). In this technique, a Gaussian input beam is passed through an AOD. When a 

voltage signal with the central frequency of the AOD is applied, the 1st order deflection of 

the Gaussian input is at the Bragg condition with the Gaussian beam propagating along the 

optical axis. In this orientation, the Gaussian beam has a flat wavefront, and the designed 

system will generate an OAM mode of charge equal to zero. When the frequency of the 

acoustic wave deviates from this center frequency, the beam is instead deflected by some 

additional angle along the horizontal direction, as shown in Fig. 1(a). The deviation away 

from the Bragg condition results in the 1st order deflection with a tilted phase relative to 

the axis of propagation. The output of the AOD is then passed through a 4-f embedded line 

generator, used as a dual-axis manipulator. The output of the 4-f embedded line generator 

is an elliptical beam with an elongated length and a suppressed height with a phase tilt 

along the horizontal direction specific to the applied acoustic frequency. This elliptical 

beam then propagates through the log-polar HOBBIT optics that wrap the ellipse into an 

asymmetric annular-distribution. Overall, this results in an elliptical Gaussian beam with a 

linear phase being wrapped into an asymmetric ring with azimuthal OAM phase, which is 

the angular spectrum of the asymmetric Bessel-Gauss beams. The seminal concept of 

asymmetric Bessel beams and its physically realistic version, asymmetric Bessel-Gauss 

beams, have been proposed and studied by Kotlyar in 2014 [23, 65]. In 2018, a general 
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case of asymmetric Mathieu beams had been analytically derived and experimentally 

generated by Barcelo-Chong, who showed the recovery of asymmetric Bessel modes when 

the ellipticity parameter approaches zero [118]. Bessel-Gauss beams are well known for 

their nondiffracting behavior, but this property relies on the size of the Gaussian envelope. 

A larger Gaussian envelope produces more ringing outside of the Bessel beams, which in 

turn produces the longer Rayleigh range. In this case, a small Gaussian envelop is used, 

which will reduce the nondiffracting behavior. In addition, the azimuthal distribution of 

the angular spectrum of the asymmetric Bessel-Gauss beams is different from Kotlyar’s 

papers [23, 65], which will be discussed in detail later in this chapter. 

 

Fig. 6.1. (a) The proposed AOD concept, (b) illustration of the beam profiles 

at the AOD, after the line generator and after the log-polar optics, and (c) the 

momentum vector diagram. 
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The input to the AOD has a Gaussian distribution with the diameter of the beam 

defined as 2w0 as shown in Fig. 1(b). The momentum vector of the incident photon is ik

, 

that of the diffracted photon is dk


, and that of the phonon is K


. According to the principle 

of momentum conservation, the momentum vector of the diffracted photon should be equal 

to the sum of the momentum vectors of the incident photon and of the acoustic phonon, 

d ik k K 
  

, shown in Fig. 1(c). The notation ,0dk


 and ,d mk


is used for the diffracted 

photon’s momentum vector when the far-field beam has charge 0 and m, respectively. The 

OAM mode index m = l + α is a continuous charge number in which l is the integer part 

and α is the fractional part, which is defined as a positive real number 0 ≤ α < 1. The Bragg 

angle is greatly exaggerated in Fig. 1(a) for visual clarity, and a general Bragg angle 

equation can be represented as 

  0 0
B B

a

sin ,
22 i

K f

Vk

   



      (6.1) 

where λ0 is the electromagnetic wave Doppler-shifted wavelengths corresponding to the 

OAM charge 0, Va is the acoustic velocity, and f0 is the driving frequency of the AOD that 

results in the Bragg condition, and it’s also the frequency corresponding with charge 0 

output. The 1st order diffractive angle is 2θB. By deviating the applied frequency away 

from the Bragg condition, Δfm = |f0 - fm|, where fm is the AOD driving frequencies 

corresponding with charge m output, there is a change in the deflection angle of the beam 

for charge m as 
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where λm is the electromagnetic wave Doppler shifted wavelengths corresponding to the 

OAM charge m. Since these wavelengths are extremely close with each other, differing by 

femtometers for a 532 nm input signal, we assume λm ≈ λ0. The angle deviation after the 

line generator, m , will be scaled by the magnification of the 1st 4-f system according to  

1

2

,m m
F
F

        (6.3) 

where F1 and F2 are the focal lengths of the lenses L1 and L2, respectively, in Fig. 6.1. 

According to the paraxial approximation, this angle deviation corresponds to charge m and 

λm can be represented by  

 tan ,
2π

m
m m

m

a

           (6.4) 

where parameter a is one design parameter of the optics which controls the active area in 

which the line to ring transform is performed in the wrapping procedure. The length of the 

active area is 2πa, where any portion of a beam that exceeds this length will not be 

transformed, and therefore, the corresponding power is lost. Combining Eqs. (6.2)–(6.4) 

results in an expression for charge m as a function of the frequency change from the Bragg 

condition given by 

  1

a 2

2π
.ma f F

m
V F


      (6.5) 
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As shown in Fig. 6.1, the 1st order deflected beam exiting the AOD is a Gaussian 

distribution, which can be expressed as 
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  (6.6) 

where u and v are both Cartesian coordinates, fc is the input laser’s central frequency, 

 2πcosz m mk     and  2πsin 2πu m m m mk        are the wavenumbers along 

the z and u direction, and finally (fc + fm) and λm are the electromagnetic wave Doppler 

shifted frequency and wavelength corresponding to the OAM charge m. After passing 

through the AOD, the beam is sent to the line generator to be shaped into an elliptical 

Gaussian distribution using lenses L1, L2 and L3 with focal lengths F1, F2 and F3, 

respectively. The elliptical Gaussian beam now has diameters in both dimensions, defined 

as 2wv = 2w0F3/F2 and 2wu = 2w0F2/F1. The elliptical beam can be expressed as 

    
2 2

line c2 2
, exp exp i 2π .m z u

u v

u v
U u v f f t k z k u

w w

  
           

  
  (6.7) 

where the wavenumber along z direction is    1 22πcos 2πcosz m m m mk F F       

, and the wavenumber along u direction is 2πu m mk m a     . 

The elliptical Gaussian beam is then incident on the log-polar optics, which have 

been well studied [16, 19, 33, 119]. The HOBBIT mapping process uses two customized 

log-polar optics: the wrapper that maps the elliptical Gaussian beam to an asymmetric ring 
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profile and the phase-corrector that corrects the phase distortion introduced by the wrapper. 

Since the elliptical line has a horizontal Gaussian distribution, the HOBBIT system wraps 

it into an asymmetric ring with a ring radius, ρ0, defined from the origin to peak intensity 

location and width, 2wring, as shown in Fig. 6.1(c). Given the log-polar mapping equation 

of  arctan 2u a y x a  , the near-field output from the proposed HOBBIT system is 

given by 

   
 

  
2 2

0
near c22

ring

, exp exp i 2π ,
π

m zU m f f t k z
w

    


  
               

 (6.8) 

where ρ and ϕ are both the radial and azimuthal polar coordinates in the near-field plane, 

 0 0expb v a   is the wrapped ring’s radius defined from the origin to peak intensity 

location,    ring 0exp sinh vw b v a w a   is the wrapped ring’s half-width, v0 is the input 

elliptical Gaussian beam’s offset from the center of the wrapper, wv = w0F3/F2 is the half-

width of the input elliptical Gaussian beam, a is the log-polar optics design parameter 

which scales the transformed line length in unwrapping procedure, b is another log-polar 

optics design parameter which scales the transformed ring size in the wrapping procedure. 

This parameter is proportional to the wrapped ring radius, ρ0. And finally, β = w0F2/(πaF1) 

is the ratio of the input elliptical Gaussian line’s length to the designed input line length 

2πa. The Fourier transform of Eq. (6.8) can then be derived as 

      
2

0
far c2
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2π
, exp exp i 2π exp i ,m z n n

n m

r
U r A f f t k z B n J r

w F

 






   
        

   
 (6.9) 
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where r and θ are both the radial and azimuthal polar coordinates in the far-field plane, 

 2 5 2
ring 0π 2A w f    ,  G ringπmw F w , F is the focal length of the Fourier lens, 

      1 22 2i 2exp π 4 Im erfi i π 2
n

nB l n l n                  , erfi(x) = 

erf(ix)/i is the imaginary error function, and finally Im(z) gives the imaginary part of 

complex number z. As one can tell, the far-field of the ring shape beam in Eq. (6.9) is the 

combination of a group of Bessel-Gaussian (BG) beams carrying OAM. Intuitively, it is a 

weighted linear combination of every possible integer OAM phase carrying nth-order 

Bessel function of the 1st kind modulated by the same Gaussian envelope. The parameter 

Bn is the weighting or selection factor, which distributes the power within the central 2 to 

3 modes and decays rapidly as m approaches positive and negative infinity. When α = 0, 

then m = l, meaning an integer charge will be select as n = l, and Bl is the maximum value. 

As α increases, the central weighting factor Bn’s maximum value will move from n = l to 

n = l + 1. This means fractional-charged OAM-carrying BG beams are a linear combination 

of integer BG beams. Considering the α = 0 case, the Bn parameter has the property of 

 1 , 0, 1, 2, 
k

m k m kB B k         (6.10) 

The far-field complex amplitude described by Eq. (6.9) can be rewritten as 
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(6.11) 

This indicates that these beams are comprised of only one integer OAM phase exp(imθ), 

and the Bessel term of  02πm m mB J r F  dominates since Bm is the maximum of Bn. The 

standing wave terms  1 0 0sin 2π πm m m mm FB J r F r      and 

   1 1 0 1 0cos 2π 2πm m m m mB J r F J r F           contribute to the asymmetric 

intensity of this group of BG beams. In fact, the rest of the Bn factors are really small in 

comparison with the central term and contribute minimally to the BG beam, but still in the 

form of standing waves. As shown in Eq. (6.11), the fractional-charged OAM beams are 

essentially the combination of integer-charged OAM beams. For each of these integer 
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components, the parameter Bn works as a window to distribute the power between the 

integer charge OAMs and decays rapidly as parameter n approaches positive and negative 

infinity. 

As can be seen in Eq. (6.11), a change in β only affects the weighting factor Bn. 

Conceptually, when β is very small, very little power will be contained at the edges of the 

active zone on the log-polar elements. When this whole area is wrapped, there will be a 

highly asymmetric ring. As β approaches 1, the distribution of the wrapped ring becomes 

more azimuthally Gaussian. In fact, as β increases beyond 1, the distribution about the 

wrapped ring becomes more azimuthally uniform, and the weighting factors Bl ± 1 

decrease, but more of the power will be clipped by the log-polar optic aperture. This results 

in a lower power efficiency of the system but higher modal symmetry. Equation (6.9) 

describes not only the distribution of integer charge numbers but also fractional charge 

numbers. Fig. 2 shows the analytic intensity and phase profiles using simulation parameters 

λ = 532 nm, β = 0.66, wring = 329 µm, ρ0 = 850 µm, using 5 central terms, and for the focal 

length of Fourier lens F = 400 mm. Due to the small radius of the Gaussian envelope, only 

one faint ring of the 0th order Bessel-Gaussian beam appears in the simulations and 

experimental results. 

 

Fig. 6.2. Analytic intensity and phase profiles for m = ±3, ±1.2 and 0. 
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The log-polar coordinate transform theory assumes that the input is a rectangular 

shaped beam [12, 13, 85, 108]. This notion, in fact, reduces the translation efficiency of 

such systems due to the fact that a Fourier transform of a rectangular function contains high 

spatial frequency components. On the other hand, the Fourier transform of a Gaussian 

shape produces another Gaussian distribution. In the HOBBIT system presented above, an 

elliptical Gaussian beam is easily generated from a Gaussian input. This has the added 

benefit of a higher power efficiency compared to that of a rectangular beam input. 

 
6.3 Diffractive phase-only optics  

 
The diffractive log-polar HOBBIT elements are fabricated using a 

photolithographic method in our cleanroom facility as shown in Fig. 6.3(a), 6 row × 6 

column devices has been fabricated on a single wafer. The optics are optimized for the 

wavelength of 532 nm, and have a pixel size of 2 μm × 2 μm and 24 = 16 phase levels. The 

design parameter a is 1.8/π mm and b is 2 mm. The microscope profiles of a wrapper and 

phase-corrector are shown in Fig. 3(b) and (c). Scanning electron microscopy (SEM) 

images of the fabricated optics are shown in Fig. 3(d) and (e) with a magnification of 130×. 

The theoretical diffraction efficiency of a 4-layer lithographic process diffractive phase 

element is about 98%. After applying a 99.9% transmission anti-reflection (AR) coating 

on each surface of the HOBBIT optics, the mean transmission efficiency of both the 

wrapper and phase corrector combined has been measured to be 91% with 0.5% standard 

deviation from charge -10 to 10. 
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Fig. 6.3. (a) Multiple log-polar device fabrication on a single wafer, (b) the 

microscope image of central part of wrapper and (c) phase corrector, (d) the 

130× magnification SEM inspection of device center of wrapper and (e) phase 

corrector. 

 
6.4 Experimental setup and results  

 
The AOD couples up to 70% of the optical energy into its 1st diffraction order. This 

deflection angle is continuously tunable by adjusting the frequency of the acoustic signal. 

As mentioned above, our experimental setup applies a 4-f system to image the AOD output 

deflection angle into the line shape beam’s linear phase and another 4-f system to elongate 

the circular Gaussian beam into an elliptical Gaussian beam. The elliptical Gaussian beam 

is incident upon the wrapper and then is mapped into an azimuthally asymmetric ring 

shaped beam during propagation to the phase corrector. After phase correction at the 

second optical element, the ring-shaped beam carrying OAM phase will form a BG beam 

in the far-field. A diagram of the experimental setup is shown in Fig. 6.4. 
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Fig. 6.4. Diagram of the acousto-optic deflector, line-generator and log-polar 

transformation optics. 

The deflected beam was generated using a Gooch & Housego AODF 4120-3. This 

AOD is constructed using a tellurium dioxide (TeO2) crystal, with a Bragg angle of 2.9°, 

computed by Eq. (6.1), as shown in Fig. 6.5. The acoustic velocity is 0.65 mm/µs, typical 

for the shear mode of a TeO2 crystal. An input beam with a diameter of approximately 1.5 

mm can be deflected at a rate of approximately 434.8 kHz, corresponding to a measured 

switching speed of 2.3 µs. Higher switching speeds are achievable in other materials such 

as quartz and fused silica. The acoustic velocity of such devices can be an order of 

magnitude above the shear-mode TeO2 devices. By decreasing the beam size through a 

crystal and with a faster acoustic velocity, switching speeds could be further increased into 

the tens of megahertz. A picture of the compact experimental setup is shown in Fig. 6.5. 

The transmission efficiency of each surfaces of the 3 optics in the line generator is 99%, 

and the total transmission efficiency of log-polar OAM generator is 91%. Taking into 

account the 70% AOD’s 1st order diffraction efficiency (DE), the total system efficiency is 

approximately 60%. Given a 30 mW input power, the output BG beam is approximately 
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18 mW. Given that the AOD requires a specific linear polarized input beam, this 

experimental setup is restricted only to one linear polarization. 

 

Fig. 6.5. Picture of the continuously tunable OAM generation system. 

The focal lengths L1 and L2 are F1 = 50 mm and F2 = 100 mm respectively, 

parameter a = 1.8/π mm, and the frequency index corresponding to Δm = 1 interval is Δf1 

= 0.36 MHz. A series of rings with different OAM phases are output from the log-polar 

HOBBIT optics. The far-field of this group of ring shape OAM phase carrying beams are 

BG beams [111]. The generated BG beams are experimentally generated, imaged, and 

simulated using Eq. (6.9), as shown in Fig. 6.6. The experimental results have a good 

agreement with the simulation results. A comparison of the radius of the dark vortex to the 

corresponding charge numbers as well as driving signal frequencies is shown in Fig. 6.7 

for both the experimental and simulated beam profiles. This radius was measured by 

finding the inner radial location of the half-maximum amplitude. The simulation is an 

approximation of an infinite series. The slight dips in the curve are a result of truncating 

the infinite series to obtain this approximation. The DE of the m = -5 beam is 8.8% lower 
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than the DE of the m = 5 beam because of the deviation away from the Bragg condition 

that has the highest DE. 

 

Fig. 6.6. Comparison of analytic expression with β = 0.663 and ρ0 = 850 µm. 

 

Fig. 6.7. The simulated and experiment results of BG beams central dark 

area’s radius vary with charge number as well as AOD driving signal’s 

frequency. 

The deflection angle of the 1st order AOD output is continuously tunable. Therefore 

the OAM phase is continuously tunable as well. The intensity distributions of the fractional 

OAM modes spanning from charge -1.2 to +1.2 in steps of 0.6 are shown in Fig. 6.8. The 

charge numbers are verified by the single stationary cylindrical lens method [24, 72, 120] 

as -1.21 ± 0.03, -0.63 ± 0.03, -0.01 ± 0.08, 0.64 ± 0.02 and 1.21 ± 0.02. 
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Fig. 6.8. Experimentally generated and simulated fractional OAM BG beams. 

 
6.5 Conclusion 

 
In conclusion, we have proposed a method of cascading an AOD with the HOBBIT 

log-polar transform the optical system to rapidly and continuously tune the output OAM 

mode of a BG beam. This means the HOBBIT system has the capability of generating 

tunable fractional OAM modes. The OAM mode is controlled through the AOD driving 

frequency, which controls the amount of linear tilt to be wrapped into a ring through the 

log-polar transformation. The tuning speeds of AODs are limited by the velocity of the 

acoustic wave through the crystal, which has the potential to well exceed conventional 

mode manipulators such as DMDs, SLMs, and single electrically contacted thermos-

optical controlled vortex emitters. The scalar form of the far-field HOBBIT has been 

analytically derived, resulting in a group of asymmetric fractional BG beams. 

This technique provides a fast and continuous OAM carrying BG beam tuning 

solution. This HOBBIT system may benefit a multitude of areas not limited to 

communication from classical to quantum applications, particle optical manipulation, 

beam shaping, laser beam machining, microscopy, microlithography, direct energy, 

filamentation [36-38], as well as sensing through turbulence in the air and underwater 

environments. OAM is rapidly gaining interest in all of these areas, and the tunable 
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capabilities of this system have the potential to open up the in-depth study of these modes 

under various conditions, including environments that change slowly, such as turbulence. 

Also, the AOD can support a superposition of driving frequencies that result in multiple 

OAM modes being generated simultaneously. Because of this, future work will consist of 

exploring coherent combinations of OAM modes from this AOD based HOBBIT system. 

 
6.6 Contribution summary 

 
The whole AOD HOBBIT system is teamwork. This dissertation’s significant and 

innovative contribution is developing the imaging method instead of the original Fourier 

transform method to realize log-polar input functionality. The imaging method uses a 

minimum number of lenses, namely three, to efficiently shape the regular Gaussian beams 

into a group of overlapped tilted elliptical Gaussian beams. The log-polar optics transform 

these elliptical Gaussian beams into azimuthal Gaussian perfect vortex beam carrying 

corresponding OAM phase. Due to the OAM phase is continuously tunable, the 

asymmetric fractional Bessel Gaussian beams charge number spectrum, OAM phase, and 

transverse intensity distributions are easily manipulated at high speed. The fabricated 

diffractive log-polar optics’ diffraction efficiency is as high as 91%. 

 

  



 116

CHAPTER SEVEN 
 

CONCLUSION AND FUTURE WORK 
 

7.1 Conclusion 
 

This work deepens the understanding of the fractional OAM concept and 

asymmetric Bessel Gaussian beam. Driven by the OAM conservation law, an average 

OAM conserved fractional OAM mode is found as an asymmetric mode; namely, 

asymmetric fractional Bessel Gaussian beam. This beam is different from the well-known 

asymmetric Bessel Gaussian beam derived by Kotlyar in 2014 [23]. Because the OAM 

spectra are different, even the two groups of beams are built on the same bases, the Bessel 

Gaussian beam. Kotlyar’s asymmetric Bessel Gaussian beam’s spectrum shifts away from 

the initial setting OAM toward infinity and increase the average OAM value accordingly. 

Our asymmetric Bessel Gaussian beam’s spectrum is always centered at the initial setting 

OAM, either integer or fractional. With a similar asymmetric profile, our asymmetric 

Bessel Gaussian beam’s OAM spectrum is narrower than Kotlyar’s case. And most 

importantly, our beam conserves the average fractional OAM. 

This work starts from the introduction of regular integer OAM mode to the 

concentric OAM mode. The concentric OAM beam is the most straightforward OAM 

spectrum combination because there are only two OAM modes. The concentric SPP has 

been studied for helical filamentation [36], underwater communication [39], and high 

power amplification applications [40]. In this work, it’s the first time, to our knowledge, 

that we derive the complete propagation form of the concentric SPP beams without 

applying the stationary phase approximation. The experiment result and the simulation 
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agree with each other well. The propagation induced interference pattern rotation was 

analyzed to be the consequence of the Gouy phase change. Furthermore, the multi-

harmonic concentric SPP diffractive optics design has been well studied. 

Following the integer OAM case, we analyzed the fractional OAM and the 

asymmetric Bessel Gaussian beam. The fractional OAM is inherently the coherent 

combination of integer OAM modes. Therefore, for each specific fractional OAM mode, 

there is an OAM spectrum to represent the combination. And the fractional OAM mode’s 

spectrum is centered (or power averaged) at a fractional OAM value. Meanwhile, the OAM 

spectrum and the azimuthal distribution are a Fourier transform pair. Hence, given a 

uniform azimuthal distributed light field such as Gaussian or Gaussian rings or Laguerre 

Gaussian or Bessel Gaussian or Kummer beam or perfect vortex beam, as long as the OAM 

spectrum exists, the propagated fractional OAM mode will eventually evolve into an 

asymmetric azimuthal distribution. The asymmetric Bessel Gaussian beam and the 

azimuthal Gaussian perfect vortex beam are a Fourier transform pair. They propagate into 

each other no matter the initial OAM spiral phase is an integer or fractional. Moreover, if 

the initial OAM spiral phase is a fractional structure, the Fourier transform of which is still 

centered at the adjacent of the initial fractional OAM setting. The comparison of the beam 

with the famous asymmetric Bessel Gaussian beam is mentioned at the very beginning of 

this chapter. 

Then how to generate the beam? We use log-polar diffractive optics to map a tilted 

elliptical Gaussian beam to an azimuthally distributed ring, and the Fourier transform of 

which is the asymmetric Bessel Gaussian beam. The log-polar optical coordinate transform 
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element has been well studied. But for the higher-order OAM mode generation or 

detection, there is always an unexpected distortion. The distortion comes from the linear 

phase tilt we introduced in the elliptical Gaussian beam. It’s a dilemma because the linear 

phase is also the key to OAM mode generation. If there is no linear phase, the output charge 

will always be zero. On the other hand, the linear tilt also shifts the beam’s location after a 

specific distance propagation or Fourier transform. The shifting is negligible when the 

tilt/OAM is small, but as the required charge number increases, the shifted beam’s phase 

can not be well collimated by the second log-polar optic. The resulting junk phase distorted 

the beam tremendously. The issue becomes that the shift is there and can not be removed 

or compensated, only possibly limited or reduced to a negligible value. That means the 

ratio of lateral beam shift over beam size has to be small. The first way to reduce the shift 

ratio is to increase the refractive index between the two log-polar elements. Martin 

Lavery’s alignment-free log-polar mode sorter is a perfect example of this case. Secondly, 

bear with the shift ratio of lower charge OAM mode, then use an OAM multiplication 

element to increase the lower charge to a higher charge. The charge number relation is 

preferably multiplication other than addition (traditional SPP). Because addition only shifts 

the OAM number in the OAM spectrum, but multiplication amplifies the OAM. Some may 

concern the addition only goes to one side of the OAM spectrum, say the positive OAM 

side, but reduces the negative OAM side. This problem is the OAM handedness issue. Both 

the flipping of the SPP side and mirror reflection imaging method could flip the OAM 

handedness. The to-date OAM amplification methods are all combined with Dammann 

grating design. The drawback of these methods is power efficiency always low. The last 
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one is what we proposed in this work, design a pair of log-polar optics to have a shorter 

optics separation and larger beam size. This method will lead to a paraxial approximation 

violation issue. Then the corresponding new log-polar design is proposed. We developed 

five metrics to evaluate the asymmetric OAM mode quality. According to these five 

metrics, the new design log-polar optics generated OAM performs much better than the 

traditional log-polar optics design. 

Lastly, we demonstrated the fiber/collimator array method and the AOD method to 

generate higher-order Bessel Gaussian beams. The AOD method has the advantage of fast 

tuning OAM mode. And the OAM spectrum could be coded in the AOD’s radio frequency 

signal. Most importantly, the AOD method OAM control is quicker and more power-

efficient than SLM OAM mode tuning. 

 
7.2 Future work 

 
On the detection side, the average OAM, OAM density, OAM spectrum detection 

is the fundamental metrology in future research. Apparently, the best way is to reconstruct 

the phase front. Phase front reconstruction, such as the Shack-Hartmann wavefront sensor, 

and the phase-shifting interferometry, provide the wavefront information. All the relevant 

information, such as OAM density and spectrum, could be readily computed from it. But 

the phase front’s spatial resolution is the bottleneck of the computation precision, which 

drives the price soaring for high accuracy high precision measurement. Other than the 

optical correlation method, the two cylindrical lens method [72] is an inexpensive, medium 

complicated method. This method’s smart part is that a cylindrical lens pair transform the 

OAM into linear momentum and maps at the corresponding location at the back Fourier 
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plane. In the future, this method could be developed into a new phase front detection 

method. And also, combining with the optical correlation method, the OAM 

measurement’s precision could be improved to a higher level. 

On the generation side, high efficient low distortion OAM mode generation is 

expected. A high efficient OAM amplification mapping method, such as a high-efficient 

version of the circular sector polar transformation, will benefit the high power application. 

Geometric mapping or OAM mode shaping is easy, but high efficiently doing so is always 

a challenge. The new log-polar design generated asymmetric fractional Bessel Gaussian 

beam is a good starting point for this topic. 

The generated beam’s mathematical expression and electromagnetic property 

should be well studied. The interaction with the environment and the matter such as 

atmosphere, aerosol, water, marine water, typical conductive or dielectric particles, 

magnetic particles, should benefit a broad range of research spectrum. 

Structure light’s unique freedoms include both OAM mode and spatial polarization 

manipulation. The full Poincaré beam could be generated by a coherent (or partial 

coherent) combination of different laser modes with perpendicular polarization states. 

Polarization tailoring (full Poincaré beam) and OAM editing (fractional OAM) are two 

powerful tools to open multiple exciting applications in the future. The most exhilarating 

ones are quantum computation and quantum communication applications. 

 
7.3 Major Contributions 

 
1. We elaborated on the fractional OAM beam’s average OAM conservation dilemma. 
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2. We first time to our knowledge, proposed a novel fractional vortex beam with 

exemplary average OAM conservation, an asymmetric fractional Bessel Gaussian 

beam. 

3. We systematically compared the proposed asymmetric fractional Bessel Gaussian 

beam and the famous Kotlyar’s asymmetric Bessel Gaussian beam. 

4. We studied the fractional OAM’s spectrum nature and the Fourie transform relation 

with the azimuthal distribution. 

5. We derived the Fourier transform pair of concentric SPP beam and incomplete 

Kummer beam. We studied the complete propagation form of this group of beams. 

And we systematically analyzed the beam’s unique properties. 

6. We derived the Fourier transform pair of asymmetric fractional Bessel Gaussian 

beam and azimuthal Gaussian fractional perfect vortex beam. We studied the 

complete propagation form of this group of beams. And we systematically analyzed 

the beam’s unique properties. 

7. We first time to our knowledge, pointed out the log-polar geometric mapping 

method OAM mode generation’s beam distortion reason. We analyzed the potential 

solution and proposed a new design. 

8. We first time to our knowledge, derived the diffraction limit relation of the array 

pitch and the corresponding OAM interval. 

9. We experimentally demonstrate the fiber/collimator array and the AOD method 

generating higher-order asymmetric fractional Bessel Gaussian beams. 
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10. The whole AOD HOBBIT system is teamwork. This dissertation’s significant and 

innovative contribution is developing the imaging method instead of the original 

Fourier transform method to realize log-polar input functionality. The imaging 

method uses a minimum number of lenses, namely three, to efficiently shape the 

regular Gaussian beams into a group of overlapped tilted elliptical Gaussian beams. 

The log-polar optics transform these elliptical Gaussian beams into azimuthal 

Gaussian perfect vortex beam carrying corresponding OAM phase. Due to the 

OAM phase is continuously tunable, the asymmetric fractional Bessel Gaussian 

beams charge number spectrum, OAM phase, and transverse intensity distributions 

are easily manipulated at high speed. The fabricated diffractive log-polar optics’ 

diffraction efficiency is as high as 91%. 
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