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Abstract

An art tool is presented that utilizes a method for simulating the motion of ships in response

to hydrostatic forces on the hull from a height-field representation of an ocean surface. Other forces

modeled as a PID controller aid to steer the ship and stabilize the motion. The algorithms described

can be applied to 3D models of arbitrary shapes composed of polygons “floating” on height fields

generated from a myriad of additional spectra. The performance of the method is demonstrated in

simple and complex ships, and ocean surfaces of flat, medium, and large waveheights.
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Chapter 1

Introduction

The purpose of this thesis is to describe an art tool for physically-based boat motion. This

tool utilizes a method by which 3D models can appear to “float” on the surface of a body of water

that is generated by Fast Fourier Transform waves. Buoyancy is the principle that an object will

float in a fluid if its total mass is less than the mass of the volume of fluid it displaces. The body of

water is a deep ocean surface represented by a height field generated via the Fast Fourier Transform

algorithm and statistical analysis of ocean surfaces. Buoyant forces are generated that simulate the

forces of fluid displacement based on the properties of faces of a 3D model and the properties of

a fluid surface. Polygonal properties that affect buoyancy include surface area, orientation, depth

under the surface, and surface normal. Fluid properties that affect the buoyancy are gravity, fluid

density and wave height.

In the 2020 FX original series, DEVS, a company called Amaya develops a quantum com-

puter capable of simulating past and future events with 100 percent accuracy. This gives Forest

(played by Nick Offerman) and his team the ability to see major historical events unfold in realtime

[2]. Similarly, one of the largest motivations for this project is to gain insight into the tragic sink-

ing of the Edmund Fitzgerald. While simulating ship movement using the following demonstrated

method is far from perfect– lacking physical phenomena that exist in our real world such as fric-

tion, underwater currents, water resistance, and surface tension– records of the night the Edmund

Fitzgerald sank provide us with the information needed to observe ship movement in similar ocean

conditions to that night [1]. The purpose of this thesis is not to design a visualization of the Edmund

Fitzgerald’s sinking, but rather to create directable artistic tool by which a recreation of such an
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event can easily be made more dynamic.

The importance of the method used in the tool detailed in this thesis lays in its adaptability.

Simulated objects do not need to be shaped like ships, but can be arbitrarily shaped 3D models.

Mass can be distributed across the surface of the model with artistic control with a third-party tool

such as the Maya script demonstrated. Describing the forces acting on the hull of the ship allows for

control over the motion of the ship through the introduction of additional non-hydrostatic forces.

To demonstrate this, a Proportional-Integral-Derivative (PID) controller is implemented to animate

the ship’s position and velocity while still allowing the ship to freely bob along the ocean surface.

This PID controller is designed to eliminate error in the ship’s position and velocity, however it can

be used for other purposes such as dampening and animation.

This thesis describes the implementation of Alexadra L. Zheleznyakova’s hydrostatic force

algorithm [13], and a rigid body motion algorithm described by Dr. Donald House [4]. A Maya script

is implemented to control the distribution of mass of an object. Two models with vastly different

shapes and sizes are simulated and rendered on a series of 3 wave conditions varying from flat water

to storm surges. These results compare motion between simulations with no dampening, with a

PID controller dampening velocity, with angular velocity dampening, and with both PID controller

velocity dampening and angular velocity dampening. The PID controller is used for animation

purposes as well as dampening purposes.

1.1 Related Work

The methods described in this thesis would not be possible without Dr. Jerry Tessendorf’s

detailed notes on ocean surface height fields [8]. Large parts of this thesis are derived from the

methods of calculating hydrostatic force as described by Alexandra L. Zheleznyakova, who states

that these methods are relatively fast to compute depending on the size of the model being moved,

and can be further optimized to run in realtime [13].

Previous methods of calculating ship buoyancy and rigid body motion have often included

calculating body/water interaction using grids. In his 2014 paper, Dr. Timo Kellomäki describes a

method of defining both flow blocking and surface floating objects using such a grid-based approach

to flowing water [5]. In this paper, Dr. Timo Kellomäki also acknowledges the work of Dr. Jerry

Tessendorf and his methods of generating ship wake on interactive FFT ocean wave surfaces [9].
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Chapter 2

Research Design and Methods

A ship is described as a rigid body and the motion of this rigid body is found using existing

methods such as defined in Dr. Donald House’s book on physically-based animation [4]. In this

thesis, rigid bodies are modelled as systems of particles with fixed distances from the center of

mass that have a moment of inertia. Translation and rotation values are calculated via the sums

of forces and torque acting on each of the particles in the system. The centroid positions of the

triangular faces of a ship are used as the particles acting in this system. This means that all input

geometry must be triangulated before running the simulation. The rotation and translation values

calculated from the centroid forces are applied to the vertices in the boat’s surface which creates

visual movement.

2.1 Rigid Body Movement

The realistic movement of rigid objects can be approximated by treating points on the

surface of a model as particles that are capable of interacting with their environment. To determine

hydrostatic forces, the centroids of the triangle are used as these particles. The most important

factor in rigid body motion is the position and velocity of the center of mass, and a rotation matrix

calculated from the angular velocity and moment of inertia. The vertices’ locations are updated

every frame using the same rotation matrix and center of mass position that are calculated via the

forces acting on the centroids.

The center of mass of a rigid body is treated as a single particle in this simulation, with a
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velocity, position, and force attribute. Alone, it contains no rotation information. The forces acting

on the centroids are summed together to create the total force acting on the total mass at the center

of mass. The velocity and position are updated using Newton’s law of motion F = MA at discrete

time steps.

The center of mass is moved with an explicit solver. This solver is an equation that trans-

forms the continuous derivative of motion into a frame by frame update function using discrete time

steps. The partial solvers required to build more advanced solver systems are defined as follows:

pcm+
(∆t) = pcm− + vcm∆t (2.1)

vcm+
(∆t) = vcm− + F∆t/m (2.2)

In equations (2.1) and (2.2), the subscript minus and the subscript plus indicate values from

the last time step’s calculation and values for the current frame respectively. Mass is represented

as m, amount of time between solutions is represented as ∆t, force is represented as F , position is

represented as p, and velocity is represented as v.

Calculating the rotation matrix is accomplished by first calculating the torque and the

moment of inertia for the body. Torque is calculated as the sum of cross-products of vectors ra =

ca − pcm and the force, Fa, acting on that centroid. ra is the vector difference between the centroid

ca and pcm. The magnitude of ra remains constant for throughout the simulation.

τ =
∑
a

ra × Fa (2.3)

The moment of inertia represents the amount of rotational inertia an object has at any

given moment of the simulation. This information is useful for finding the angular velocity of an

object which is a simpler representational ”snapshot” of an objects rotation encoded in a vector.

Each element of the 3x3 moment of inertia matrix, Iij , is calculated individually by summing the

product of each particle’s mass, ma, and the difference between the product of the product of vector

components corresponding to the matrix element being processed from the Kronecker delta, δij , and

ra. Using the inverse of this moment of inertia, angular velocity ω is calculated using a constant
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delta time.

Iij =
∑
a

ma(δij |ra|2 − (ra)i(ra)j) (2.4)

ω+(∆t) = ω− + I−1 · τ∆t (2.5)

In an equation such as (2.5), the subscript minus and subscript plus indicate the values of ω at the

previous and current time step respectively.

The rotation matrix R is the sum of 3 term. The first term is a product of the identity

matrix and the cosine of the magnitude of the angular velocity, which represents an angle. This

angle is scaled by ∆t. The second term is the outer product of the direction of the angular velocity

by itself times 1 minus the cosine of the magnitude of the angular velocity. This magnitude of ω

is scaled by ∆t. The third term is the sum of the components of the Pauli matrices at index i

times the direction of the angular velocity and the sin of the magnitude of the angular velocity. The

magnitude of ω is scaled by ∆t to provide a matrix representing only the amount of rotation a body

has accomplished in the last time step.

R(ω,∆t) = 1 cos |ω∆t|+ ω̂ ⊗ ω̂(1− cos |ω∆t|) + (

2∑
i=0

τiω̂i sin |ω∆t|) (2.6)

The Pauli matrices used in equation (2.6) are defined as follows:

τ0 =


0 0 0

0 0 −1

0 1 0

 τ1 =


0 0 1

0 0 0

−1 0 0

 τ2 =


0 −1 0

1 0 0

0 0 0

 (2.7)

Each rotation matrix describes the amount of rotation the object has completed in 1 frame. To

describe the cumulative rotation Rcml of the vector ra, each matrix needs to be multiplied by the

matrix calculated the previous frame. Multiplying the cumulative matrix by ra and offsetting ra by

pcm provides a description of the final position of the centroid: ca = pcm + (Rcmlrainit) where rainit

is the initial vector between a vertex and the initial center of mass. Both the centroid and vertex

positions need to be updated using this single rotation matrix and center of mass.

Solvers represent operations that update the values of rigid body attributes at discrete time

steps. The partial solvers that generate one update for each attribute necessary for rigid body
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motion are as follows:

Sp(∆t) pcm− = pcm+(∆t) (2.8)

Sv(∆t) vcm− = vcm+
(∆t) (2.9)

SR(∆t) Rcml = R(ω,∆t) Rcml (2.10)

Sw(∆t) ω− = ω+(∆t) (2.11)

Sc()ca = pcm + (Rcmlrainit
) (2.12)

The combination of the partial solvers in equations (2.8)-(2.12) make an explicit solver called

the leapfrog solver Slf . To update the attributes of the rigid body, Slf updates attributes directly

related to position, rotation, and inertia 2 times per sub step with half the value of ∆t, and updates

velocity and angular velocity only once per time step with the full value of ∆t.

The following set of operations defines a combination of partial solvers that make up the

rigid body leapfrog solver. The center of mass position is updated with Sp, which updates pcm once

with half the value of ∆t. The rotation matrix is calculated with SR, and the centroid positions are

moved relative the new value of pcm, and rotated by the new value of R with Sc. The moment of

inertia is calculated with SI using equation (2.5) at the current moment. At this point, centroids

have been moved to a new location, and so forces are calculated before updating the velocity to

ensure the most accurate results. Velocity then updates Sv using the full value of ∆t. Angular

velocity updates with Sω using the full value of ∆t. Then the same process leading up to, but not

including, the calculation of forces prior to the velocity update is repeated to complete the update

of a single time step.

Slf (∆t) = SI Sc() SR(∆t/2) Sp(∆t/2) Sw(∆t) Sv(∆t) SI() Sc() SR(∆t/2) Sp(∆t/2) (2.13)

This leapfrog solver can be applied multiple times to form the sixth-order solver Ssix. Coefficients

A and B are defined as A = 1/(4− 41/3) and B = 1− 4A [6].

Ssix(∆t) = Slf (A∆t) Slf (A∆t) Slf (B∆t) Slf (A∆t) Slf (A∆t) (2.14)
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2.2 Ocean Surface Construction

Visually appealing oceans can be modeled using a function of position and time. A set of

random time-dependant values represented by a spectrum are used as input that gets transformed

via the Fast Forier Transform (FFT) algorithm. The application of the FFT algorithm, which is

typically used for frequency analysis, transforms the spectrum of frequencies into a grid of ampli-

tudes. Interpolating along this grid creates a reasonable and continuous approximation of the height

of an oceans surface.

A variety of frequency spectra may be transformed via FFT to generate ocean height fields.

This project implements both the TMA and the Ochi spectrums [3, 11]. Described below is the

Philip’s spectrum. The Philip’s spectrum can be constructed with the numeric constant A, a wave

vector k, a limit to the wave height L (described by L = V 2/g) and the direction of the wind, ω̂.

Ph(k) = A
exp(−1/kL)2

k4
|k̂ · ω̂|2 (2.15)

Using this spectrum the heights are found with the following method:

h0(k) =
1√
2

(ξr + ξi)
√
Ph(k) (2.16)

Where ξr and ξi are random numbers with a Gaussian distribution between 0 and 1. Amplitudes

along the position k at time t can be found as

h(k, t) = h0(k)exp{iω(k)t}+ h
∗
0(−k) exp{−iω(k)t} (2.17)

Here, i is the complex unit i2 = −1. Finally, amplitudes along the wave spectrum are transformed

via FFT where X and Y are components of the wind direction vector.

h(X,Y, t) =
∑
kxky

h(kx, ky, t) exp{i(kxX + kyY )} (2.18)

2.3 Centroid Submersion and Hydrostatic Force

Hydrostatic force is calculated for all centroids beneath the surface of the water. To deter-

mine whether a centroid is under water, the centroid’s vertical world position is compared to the
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height value stored in the height map at the location on the map that the centroid projects onto.

An offset is applied if the ocean’s sea level is not positioned on the axis-aligned horizontal plane. If

the difference between the the height of a wave and the centroid’s position relative to the wave is

negative, then the centroid is under water and the forces are applied. Otherwise, only gravity affects

the centroid. For centroids that are determined to be submerged, the hydrostatic force applied to

that centroid is described as the product of water density ρ, gravity g = 9.8m/s2, centroid depth

da, triangle surface area Aa, and triangle normal n̂a. Note, this triangle normal is likely a rotated

value at any time step beyond t = 0

Fhydro = −ρgdan̂aAa (2.19)

This force is added to the total force acting on the center of mass, and contributes to the

calculation of the torque of the rigid body. Gravitational acceleration, defined as g = 9.8 m/s2 in a

downward direction, is also applied to all of the centroids. These forces are generated just prior to

the velocity update in equation (2.14).

2.4 Weight Distribution

Problems arise if each centroid has the same mass. If the triangles in the ship model are not

approximately uniformly sized, then large, flat portions of the ship composed of fewer big triangles

don’t weigh as much as much denser portions of the model made of many small triangles. This can

cause naturally buoyant areas of the ship to sink, and naturally heavy areas of the ship to reflect

off the surface of the ocean or bounce out of the water. In the most extreme cases, the boat may

accelerate upward rapidly or perform a series of flips. A solution to this problem is to uniformly

distribute the total mass, mT , across the centroids as a factor of the rigid body’s total surface area

Atot.

ma =
mT

Atot
Aa (2.20)

Using equation (2.20), approximations of real-world ship masses can be distributed across

digital rigid body counterparts. Using this approach, boats may begin to roll onto their side as this

is not how weight is distributed in many real boats. In reality, ships are much heavier toward the

8



Figure 2.1: A screenshot of the script implemented in Maya can be seen that facilitates the exporting
of weighted influences to be used to distribute total mass.

bottom of the hull where engines and cargo may reside, and much lighter towards the top.

Third-party tools, such as a custom script for Maya, may be used to provide a level of artistic

control over the location of the center of mass of the ship and the mass of individual centroids. With

a painting tool, a floating point value between 0 and 1 is assigned to each vertex of the ship. These

values are then exported to a file. A demonstration of the interface of this script, and a visual

representation of the floating point weight values can be seen in figure 2.1. Once the weights have

been written to a file and read into an array or similar data structure, the mass of the ship is

distributed using the weighted values via the methods outlined in equations (2.21) through (2.23).

First, a coefficient, D is calculated from the sum of the products of every triangles’ vertex

weights and its area. The weights are shown as Wa,Wb,Wc and the area of the triangle is shown as

Ac. Next, each weight needs to be scaled by a factor of the total surface area of the model over D.

These adjusted weights can be used to redistribute the total mass of the ship to triangles’ centroids.

D =
∑

centroids

Ac(Wa +Wb +Wc) (2.21)

W ′v = Wv
Atot

D
(v = a, b, c) (2.22)

ma =
mT

Atot
(W ′a +W ′b +W ′c)Aa (2.23)

9



Once this has been accomplished, the ship will float in a variety of different ways depending

on how the weight is painted onto the boat. It is important to keep the center of mass low yet

centered between the bow and the stern. This will prevent the ship from sinking head-first or

tail-first into the ocean.

2.5 PID Controller and Dampening

In an environment with no friction forces, rigid body motion can become unstable. To

combat this instability with a level of control, a PID controller is used. In cases where a PID

controller is not adequate for stabilizing the motion of the rigid body, additional angular velocity

dampening factors may be added.

Sometimes, the ship may rock slightly to the side and find equilibrium there. If this is the

case, the forces may push against the side of the boat and move it sideways. A PID controller

attempts to correct this error by creating forces that counteract the ones pushing the boat sideways.

While designing ships with a shape more optimal for floating in water may mitigate this issue, the

purpose of this thesis is to describe a method in which arbitrary polygonal shapes may float on the

surface of a height field. Therefore, a PID controller proves useful in allowing less optimally shaped

objects float without accumulating error in velocity or position.

The controller is a summation of 3 terms. The first term represents a springlike force

proportional to the error, e(t), between the position of the ship and the desired position of the ship.

The second term is an integral, approximated by a running sum of the errors at every frame, which

makes the corrective force stronger every frame the ship is away from it’s intended position. The

third term is a derivative of the positional error, which represents the velocity the ship should have

at any given time. Desired positions and velocities are treated as input variables, and the strength

of each component of the force is adjusted with input parameters κp, κi, and κd.

FPID = κp e(t) + κi

∫
e(t)dt+ κd

de

dt
(2.24)

A PID controller is also used to generate a dampening force on the ship. When a ship is too

high or too low in the water when the simulation begins, the ship will oscillate up and down. These

oscillations are caused by gravitational force when centroids are unsubmerged and hydrostatic forces
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when centroids are submerged. To reduce the energy causing these oscillations and to ensure the

ship reaches a stable resting state, a desired speed of 0 kph, and coefficient values κp = 0, κi = 0,

and κd > 0 is used in the PID controller. This causes an effect that strictly reduces the velocity of

the rigid body, without attempting to navigate the ship towards a positional target. A downside of

dampening motion in this manner is that forces are only being applied to the center of mass’ position

and velocity. This means the rotation of the ship may still destabilize. To correct the instability in

the rotation, angular velocity is also dampened by subtracting a small portion of the last time step’s

angular velocity from the angular velocity calculated during the current time step.

By using a PID controller to specify target positions and velocities for a ship at varying

times during the simulation, an animation system is constructed. Similar to a keyframe animation

method, the ship will move toward its intended target at a time specified. It will react to the forces

of the water acting on its hull as it moves towards the target position.

2.6 Proxy Geometry

Geometry that is optimal for rendering purposes will differ from what is considered optimal

for the sake of simulation. Approximately evenly sized and evenly spaced triangles are preferable

for the purposes of simulating interactions between a ship and water, but geometry optimized for

rendering– particularly hard surface models such as the ones that represent ships– may have unevenly

sized triangles on large patches of flat surface area compared to highly detailed areas. A solution to

this problem is to simulate motion using a proxy model that is optimized for simulation, and apply

the translation and rotation values resulting from the simulation to a piece of geometry optimized

for rendering. Figures 2.2 and 2.3 illustrate the dramatic difference hydrostatic force has on the

motion of the ship between the two geometries. These graphs are generated by simulating 500

frames of both render geometry and proxy geometry motion on a flat, waveless ocean surface. The

first graph in each figure demonstrates the effect of much less accurate force calculations due to

less gradual centroid submersion. The second graph from each of these figures demonstrates the

expected sinusoidal motion of the ship’s rocking.

Figure 2.4 demonstrates the difference between render geometry and simulation geometry.

A model is generated by the DynaMesh operator in ZBrush. This is used to create a less visually

detailed model with more surface triangles than the original mesh. The generated triangles are of
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Figure 2.2: A comparison between the total force observed in the render geometry versus the proxy
geometry on flat water. Top: Render optimized geometry. Bottom: Simulation optimized geometry.
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Figure 2.3: A comparison between the torque observed in the render geometry versus the proxy
geometry on flat water. Top: Render optimized geometry. Bottom: Simulation optimized geometry.
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Figure 2.4: A comparison between 2 models. Top is a sparse model optimized for rendering. Bottom
is a fine, even model optimized for simulation.

approximately even size and spacing.

Simulating ship motion using proxy geometry defines a rotation matrix and a center of mass

position. To extract the rotational vector from the rotation matrix in the simulation, and to apply

this rotation vector to the rendered ship, a version of equations 20-23 from Dr. Jerry Tessendorf’s

paper on motion blurring clipped triangles is used [10]. The center of mass is taken directly from

the simulation and used as an offset to the location of the rendered geometry.
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Chapter 3

Results

The motion generated in this method of rigid body simulation with the described hydrostatic

force visually resembles the motion of a ship on an ocean surface. The forces acting on the ship differ

from the forces acting on real ships, because the forces as described are a product of factors such

as surface area and depth instead of volume, and certain properties of water such as current and

water resistance are not present in height field representations of ocean surfaces. This means that

the primary purpose for the simulation methods are of artistic visualisation opposed to precisely

accurate recreation of ship motion. As such, the results of the simulation depend on artistic control

of input parameters. The user is responsible for choosing a PID controller force and dampening

variables as well as painting mass distribution weights onto the ship. A poor selection of such

variables will lead to an unstable or unappealing simulation, while a good selection of variables may

create a variety of interesting effects on the ship. In this sense, the algorithms discussed are used as

a functional creative tool.

3.1 Ship Movement on Varying Surfaces

The algorithms and methods described are used to facilitate motion of a small torus model,

and a large ship model driven by optimized proxy geometry. Both models are simulated on 3

ocean environments: a flat water environment where wave height is a constant 0 m, a mild ocean

environment generated by an ochi spectrum [7] with average wave height of 0.54 m, and storm waves

generated by a TMA spectrum [11, 3] with an average wave height of 2.0 m and a wind speed of
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Figure 3.1: The wireframe of the torus model used in the simulations.

30 kph, a fetch of 100 km, and a bottom depth of 200 m. Fluid density is defined as 1020 kg/m3.

Animations of 500 frames are rendered at 20 fps with 100 additional solver substeps calculated by

the sixth solver between rendered frames. For each wave condition, the hydrostatic forces are applied

to the rigid body under the following conditions: with no additional dampening forces, with a PID

controller, with angular velocity dampening, and with both a PID controller and angular velocity

dampening. Simulations with an active PID controller use it in a way such that it functions as a

velocity dampening component only, having a desired speed of 0 kph, κd = 10, κp = 0, and κi = 0.

The position and integral components have no effect. Rigid body simulations containing an angular

dampening component have their angular velocity at any given time step reduced by a factor of

0.001 of the previous time step’s angular velocity.

3.2 Donuts at Sea

A simple torus shaped model is used as a ship for quickly testing the reliability of the

methods and its corresponding input parameters. The torus has a uniform distribution of mass

m = 500 kg, as defined in equation 2.20. The torus has a radius of 1 meter and a sectional radius of

0.5 meters. Once triangulated, it consists of 800 faces of approximately uniform size. A wireframe

of this model is shown in figure 3.1. Simulating with this model makes debugging problems with the

implementation more readily apparent than simulating with a complex or asymmetrical ship model.
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Figure 3.2: An up and down, and side to side rocking motion is observed on a torus when flat waters
have no dampening values introduced.

3.2.1 Flat Water

When simulating the movement a torus with no additional dampening forces on a flat ocean

surface, if the torus model does not begin at a state of equilibrium between ocean forces and gravity,

the rigid body bounces vertically on the surface of the water without ever reaching a stable state

of rest on the surface of the water. Small mathematical errors in the force calculation, or minor

asymmetries in the surface of the model, accumulate over time, causing the torus to rock side to

side with each oscillation. A series of frames demonstrating this motion is shown in figure 3.2.

Using a PID controller to control the amount of velocity a rigid body has is effective at

reducing the number of bounces a rigid body will perform on the surface of the water before reaching

a resting position. Alexandra Zheleznyakova demonstrates that with sufficiently strong dampening

forces, this rigid body position of equilibrium between gravity and hydrostatic forces can be found,

and finding it is a useful pre-processing calibration step for deciding optimal ship placement at the

beginning of a simulation [13]. In this case, a torus model beginning half submerged in the water

with κd = 10 is not enough to find the resting position within 500 frames. Similarly to when no

dampening forces are applied, the torus eventually accumulates small amounts of rotational energy

and turns towards its side. Given enough time to run, and a sufficiently strong PID, the ship will

find a point of equilibrium. This process can be fast, but in the results demonstrated, the values are

not arranged in a way that this is the case.

Simulating the rigid body motion of the torus with angular velocity dampening and no PID
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controller yields results similar to the results found when no dampening is used. Though in this

case the torus does not gain the required rotational energy necessary to rotate onto its side within

500 frames. The torus appears to bounce on the surface of the water indefinitely with little to no

change in rotation at all.

Adding a PID controller to the simulation with angular velocity dampening prevents the

torus from rolling onto its side as well as reducing the height of each successive bounce on the surface.

Simulating a model’s motion on flat water with an angular dampening term and a sufficiently strong

PID controller to reduce ship velocity is the most stable method described in this thesis to determine

the position of equilibrium for a ship model.

3.2.2 Mild Waves

Simulating rigid body motion with mild waves creates more dynamic rigid body movement

than simulations involving no waves at all. Unlike during the simulations on flat water, the rigid

body travels horizontally a small amount. This is because the rigid body could interact with the

sides of waves, and respond to them, and be pushed along.

As with the simulation on flat water, when no dampening terms are added, the torus even-

tually turns towards its side and begins to spin similar to a coin spinning on a desk. The center of

mass is not moving much, however the energy of the waves has been preserved with no friction, and

transformed into rotational energy.

Since the κd = 10 configuration of the PID controller is meant to reduce the velocity of

the rigid body’s center of mass, then once the center of mass has reached a stable state, the PID

controller stops affecting the simulation on a large scale. Once the torus begins to spin like a coin,

the center of mass position remained mostly stable. The torus reaches this spinning state faster

when using this PID controller. This is possibly because the PID controller limited the speed at

which the torus can move away from waves that will contribute to the rigid body’s rotational energy.

Horizontal movement has been reduced compared to the simulation with no dampening, because

the PID controller limits the speed at which the body may travel on this plane, at the cost of more

angular motion.

When an angular velocity dampening term is added to the simulation without a PID con-

troller, the results of the simulation began to resemble what is visually expected of a torus shaped

floating body. Because the dampening term is small, and the torus geometry naturally is very rota-
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Figure 3.3: A visualization of the torus with no PID controller and no angular velocity dampening
interacting with mild ocean waves. Frame 91.

tionally responsive to the water due to its low mass, the rigid body is still able to rotate with ease

and follow the dynamic motion of the waves. The ship moves horizontally along the surface plane

in a controlled manner in response to the waves. Adding a PID controller further stabilizes this, by

preventing the torus from moving from its intended position on the ocean surface too quickly. A

visualization of the torus on the ocean surface can be seen in figure 3.3

3.2.3 Large Waves

Simulating the torus model’s motion with no dampening on large storm waves produced

a bouncing motion. This bouncing motion appeared to be the result of fine ocean surface detail

”bumping” against the model as it moves down the slope of a large wave. The torus can be seen

moving along the surface of the water with more speed than in any other simulations run.

The PID controller slows this movement down, but does not prevent it from occurring.

When using the PID controller with no angular velocity dampening on large waves, the ship moves

much more gradually along the horizontal plane. A PID controller may be configured to prevent

large deviation from a ship’s starting position, however this is not the intent of the current configu-

ration. The purpose of the current PID controller settings is to act as a form of velocity dampening
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Figure 3.4: A torus in a small free fall. Too much rotational dampening is applied and the resulting
motion looks stiff. Frame 266.

only. Observing the movement along the plane provides meaningful insight into the interactions

between the ship and the ocean field. As observed in the simulation on mild waves, introducing a

PID controller in this fashion causes the model to begin flipping in addition to the spinning motion

seen in previous simulations. This flipping motion involved rotation over an axis tangent to the cir-

cumference of the torus. The initial bouncing motion observed in the simulation with no dampening

is not as noticeable, but the flipping motion makes this less apparent.

Applying angular velocity dampening and no PID controller prevents the torus from flipping,

but not from bouncing off the water. This produces an effect that does not look believable, as the

torus enters short periods of free-fall without following through with it’s rotations. This demonstrates

a downside to limiting the angular velocity in the manner demonstrated. As long as the ship is

in contact with the water, and the water is providing force that enabled the ship to spin, then

dampening is a useful tool to ensure the stability of the simulation. However, once the ship leaves

the water, and no force is acting on the angular velocity, the dampening action becomes too strong

for the expected rotational resistance air should provide, and the results begins to look stiff. This

short period of free fall is seen in figure 3.4. The torus also moves along the plane of the ocean much

less than in large waves simulations without an angular velocity dampening term, because the torus

spends less time in the air, and more time being directly moved by the waves.
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Figure 3.5: A demonstration of the weight distribution used in the simulations. Values range from
0 to 1 with black representing 0 and white representing 1.

3.3 Cargo Ship with Proxy Geometry

To demonstrate the methods described on a ship with a real world counterpart, simulations

featuring a model of the Maersk Arun cargo ship are computed. As described in section 2.6, proxy

geometry drove these simulations. A mass totalling 12000000 kg is painted onto the hull of the ship

as described in section 2.4 to keep the center of mass low and balanced. This is a reason for painting

the bottom of the ship with higher values than the top, as seen in figure 3.5, and for adding more

weight to the front of the ship than the back. The extra weight in the front helps offset the mass of

the cabin at the back of the ship.

3.3.1 Flat Ocean Water

Simulating the ship on a flat water surface with no PID controller or additional dampening

terms makes the ship rock back and forth while the center of mass bobs up and down with a

spring-like motion. The ship never fully leaves the water, although due to the configuration of the

distribution of mass, some parts of the ship sink lower than others. These areas react to the water

with more motion. Since this environment is frictionless, the rocking motion will not stop without

additional drag forces being applied.

Introducing a PID controller to this simulation causes the center of mass’ vertical oscillations

to slow down before the rotational energy pumps the boat back upward. Like in the previous

scenarios, even if the center of mass becomes steady, rotation needs to be dampened to stabilize

the motion. This conservation of energy is not an error but a feature of the system’s design. It
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Figure 3.6: A back and forth rocking motion can be observed in the undampened ship with no PID
controller on flat water.

is observable and expected that the forces exerted on the center of mass by the PID controller be

proportional to the mass of the object being moved. Higher coefficients may be added to the PID

controller to quicken the stabilization process.

Dampening the angular velocity without applying the PID controller greatly stabilizes the

rocking motion of the ship. In this scenario, the ship still oscillates up and down with a steady

motion. This motion will not stop or slow down without a dampening force such as a PID controller.

Comparing the motion in figure 3.7 to the motion in 3.6 reveals how this angular velocity dampening

term prevents the naturally occurring rocking almost entirely.

Adding the PID controller to a simulation with angular velocity dampening causes no imme-

diately noticeable change when compared to the simulation containing angular velocity dampening

and no PID controller. This is because the amount of inertia that a ship weighing 12000000 kg is

not easily overcome by small forces. At this scale, a PID controller with κd = 10 is a small force

relative to the hydrostatic forces being applied. The PID controller is a useful tool for stabilizing

boat motion, and can be turned on or off at any point in the simulation. It is not the goal to

completely stabilize the boat in any of these simulations, but rather to demonstrate what effects, if

any, it will have on different ship types and different ocean environments. To stabilize a ship in the

flat water environment, both the PID controller and the angular velocity dampening components

may be turned on for a short period of time, then removed from the simulation.
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Figure 3.7: An up and down oscillation with no rotation is observed on a ship with no PID controller
and added angular velocity dampening factor of 0.001 on flat water.

3.3.2 Mild Ocean Waves

Simulating rigid body motion with no PID controller and no rotational dampening on mild

ocean waves yields similar results as seen in similar simulation scenarios on flat ocean waters. This

is because the ship has enough mass and inertia to be mostly unaffected by the height of these small

waves. When comparing the first and the last frame of the simulation, however, it becomes obvious

that the forces of the waves are acting on this ship and causing it to move in a small yet noticeable

way. Most notably, the ship rocks side to side a small amount in addition to the back and forth

rocking motion that is observed on flat ocean water. Two images 120 frames apart from each other

were included in figure 3.8 to demonstrate the stability of this ship geometry on mild ocean waves.

Including the PID controller with its input values as described in section 3.1 to this simula-

tion again has little effect on the results of the simulation. The forces simply aren’t strong enough

to make a noticeable different in movement within 500 frames.

Removing the PID controller and adding angular velocity dampening results in the ship

bobbing up and down on the water with little rotational energy. While it seems as though there

is too much rotational dampening, as the ship does not react much to the waves, it is easier to

determine this when the waves are much larger as small waves have little effect on a ship this size.

Observing movement from a simulation including both the PID controller and angular ve-

locity dampening yields results similar to simulations in which angular velocity dampening and no

PID controller are calculated. Again, this is to be expected because the force of the PID controller
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Figure 3.8: The ship on a mild ocean surface with no PID controller and no angular velocity
dampening. Top: Frame 50. Bottom: Frame 170.

24



Frame 50 Frame 60 Frame 70 Frame 80 Frame 90

Frame 100 Frame 110 Frame 120 Frame 130 Frame 140

Frame 150 Frame 160 Frame 170 Frame 180 Frame 190

Figure 3.9: A ship with no angular velocity dampening or PID controller floating on large ocean
waves.

is simply not strong enough to make a clear change at this scale, but rotational dampening terms

have a much larger effect.

3.3.3 Large Ocean Waves

Simulating motion on large ocean waves with no additional dampening terms or PID con-

troller yields one of the most visually appealing simulations explored. The ship rides up and down

the waves, bobbing in response to them. At moments the ship appears to list to one side, but later

corrects itself and returned bobbing. This dynamic rocking and bobbing motion is seen in figure 3.9.

This is a demonstration of how lowering the center of mass can ensure that the ship stays upright.

The ship slowly moved horizontally in response to the waves.

Adding the PID controller to this simulation causes the ship’s center of mass to bob up and

down less, but translate horizontally with a more gradual motion. The boat also rocks with more

strength than when the simulation is run without this PID controller. Similar to results found when

simulating the torus shape with a PID controller, this is most likely because reduced bobbing causes

increased submersion and water surface contact, which lead to greater rotational forces.

Applying angular velocity dampening causes the ship to react less actively with the water.

The ship doesn’t bob as strongly, and the ship barely rocks with the waves. This is the effect of

over-dampening that subsection 3.3.2 discusses is more apparent with large waves.

Rigid body simulations on large waves with a PID controller and angular velocity dampening
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Figure 3.10: The PID controller causes the ship to accelerate slowly before rapidly causing the ship
to exit the view of the camera.

reduces the rotational energy of the ship even further. The ship gently rides over the waves, but

resists almost all rocking motions.

3.4 PID Animation

The Mearsk Arun model is animated linearly over a distance of 400 m using a PID controller

with κp = 100, κi = 200, and κd = 150. Every frame, the desired position of the ship inside

the PID controller will be updated linearly such that at frame = 0 the ship’s intended location

is pcmx = −200, pcmy = 3.0, pcmz = 0 and at frame = 500 the ship’s intended location is

pcmx
= 200, pcmy

= 3.0, pcmz
= 0. A 500 frame animation is rendered at 20 fps. The motion

generated from this process allows the ship to venture towards a target destination, and react to

the water as it moves. This method alone does not handle ship turning very well because the PID

controller only exerts force on the center of mass, and not the centroids. Force exerted on individual

centroids is necessary to contribute to a rigid body’s torque and rotation. The ship appears to

naturally follow the intended path, which demonstrates the versatility of combining a PID controller

with this rigid body simulation.

The animation resulting from applying force via a PID controller successfully demonstrates a

method for moving a ship linearly while it reacts to the water. Under the current PID configuration,

the acceptable error is too high to accelerate the ship quickly from a non-moving state. This causes

the target position to migrate away from the ship while following the intended linear path while

forces build up. As the target position moves further from the ship, and the error the PID controller

is determined to correct gets larger, the ship picks up more force than is necessary to accelerate this

ship to the target. This is demonstrated in mechanical PID controllers as overshoot. This causes

the ship to move faster over a shorter period of time, which makes the motion look unnatural. This

initial delay in acceleration followed by rapid acceleration is seen from overhead in figure 3.10. A
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solution to this problem is to increase κd, therefore controlling the velocity of the ship more. Another

solution is to increase κp and decrease κi. This will cause the PID controller to apply more initial

force to the ship, and less of a delayed response as the integral force builds up. Another solution

to this problem is to start the ship with the velocity used as PID controller input. This will ensure

that the ship doesn’t need to overcome it’s inertia and lag behind the target position.

3.5 Finding Equilibrium

As mentioned in section 3.3.1, when no dampening is added to the system, energy is con-

served forever. If the ship is dropped from a height that is too high, gravity will accelerate the ship

and the inertia will carry the ship low into the water. The force of the water then pushes the ship

back out and into the air, creating a continuous bobbing motion as gravity then pulls it back down.

Similarly, if the boat’s initial position is too low in the water, then a portion of the ship will be

pushed out of the water, and gravity will pull the ship back into the water, and this process will

repeat indefinitely. Between the highest point in this bobbing motion and the lowest point, there

exists a position of equilibrium where the ship does not bob significantly, but instead rests gently

on the surface of the water. This point of equilibrium can be found through 2 methods.

The first method to quickly approximate the height at which the ship must begin the

simulation to find stasis is to average the location of the ship at every frame for a period of motion

defined by the peak of the bobbing motion and the trough. If the simulation starts and the ship

immediately begins moving upward, the position of the ship is averaged at every frame, until the

ship begins to move back downward. If the ship immediately begins to move downward, the position

of the ship is averaged at every frame until the ship begins to move back upward. The average of

these points may not indicate precisely the position at which the ship is stationary on the water,

but this methods finds a close approximation that greatly reduces the bobbing motion.

The second method to quickly approximate the height at which the ship is stationary on

the water is to apply a PID controller with κp = 0 and κi = 0. The desired velocity is 0 kph in every

direction and κd is very high relative to the ship’s mass. κd needs to be high enough to overcome the

amount of inertia that the ship has as it moves in and out of the water. With these input parameters

the ship begins the simulation bobbing, but each successive bounce is lower to the water and closer

to the point of equalibirum. After a few bounces, the ship finds an approximate point of rest on the
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Figure 3.11: A ship that is in a state of relative rest on the surface of flat water.

water’s surface.

The results from assigning the initial position of the center of mass to the point of equilibrium

through averaging a period of center of mass positions can be seen in figure 3.11. The ship represented

by this figure has no additional dampening terms applied to it. Comparing these results to the ones

found in figure 3.6 described in section 3.3.1 makes the effect of this resting point quickly apparent.

The motion resulting from the simulation where the ship’s initial position is the point of equilibrium

contains much less bobbing and rocking than the simulation where the ship is placed too high above

the water as it is in all the simulations observed in section 3.3.1.

Figure 3.12 demonstrates the results of applying the same averaging technique to a ship with

no additional dampening that is on mild ocean waves. Unlike in the flat water example, additional

waves enact force that then ship reacts to. The ship rolls and pitches, and slides across the surface

of the water. These motions are not seen in the simulation where the ship is resting on flat water.

These motions are also less noticeable when the ship is bobbing up and down, as it is in the mild

ocean water results seen in section 3.3.2.

3.6 The Effects of Weight Painting

One of the factors that makes this tool so art directable is the ability to paint weights

onto the vertices of the ship. Changing the mass of the ship has a dramatic effect on the resulting

simulated motion. While the painting process does not require precision, as many ships will float
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Figure 3.12: A ship that is in a state of relative rest on the surface of mild waves.

Figure 3.13: The distribution of mass used to illustrate the effectiveness of painted mass distribution.

well with minor imbalances in weight, the painting tool may be used to distribute weight in a fashion

that may greatly change the way a ship floats in the water.

Below is an example of a ship that has been painted in a way such that most of the mass is

located in the front of the ship as shown in figure 3.13. Simulating with this distribution of weights

results in the ship nose sinking into the water, while the back of the ship lifts up out of the water.

After some time, the back of the ship will drop back into the water, before once again bobbing back

out.

Comparing this motion to the ship floating on mild ocean waves, at a point of rest on the

water as described in section 3.5 highlights the dramatic effect of the weight on the ship. The ship

that is painted with optimal upright flotation in mind shows no such nose-dive motion, and the ship

maintains a steady upright position on the surface of the waves. However, when the ship is painted

with a heavy nose, the ship shows an obvious nose-down bias. A comparison between a ship that

29



Figure 3.14: An illustration of how dramatic the effects of painting mass onto the ship can be. Top:
Mass painted as shown in figure 3.5. Bottom: Mass painted as shown in figure 3.13. Both images
taken from frame 57.

has been painted with flotation in mind, and a ship that has been poorly painted as seen in figure

3.13 is shown in figure 3.14.

3.7 Art Directability

The methods outlined in this thesis are demonstrated through the project results in this

chapter as a tool for creating physically-based animations. The collection of input parameters

available to the user offer art directability. Fluid density is adjusted to control the overall strength

of the hydrostatic forces. The PID controller and angular velocity dampening offer a means by

which the overall motion of the ship can be controlled beyond the forces of the waves. Painting mass

onto the ship has been shown in section 3.6 to have a large effect on the flotation of the ship. The

large effect that each of these parameters has on the ship motion, and the ease in which they can

be adjusted by the user demonstrates the accessibility and flexibility of this art tool’s capabilities.

To further demonstrate the breadth of the tool’s art directability, the simulation of the ship

on large waves with no dampening outlined in section 3.3.3 is improved. Originally, the fluid density

was 1020kg/m3. Lowering the fluid density to 900kg/m3 reduces the amount of force that the waves

enact on the ship. Applying a PID controller with a desired velocity of 0 kph in every direction,

κp = 0, κi = 0, and κd = 1000 reduces the speed and energy in which the ship bounces out of the

water. Applying angular velocity dampening of a factor of 0.0001 reduces the amount of rotation the

ship engages in, but not to a degree in which the ship stops noticeably rotating altogether. These

factors create ship motion on large waves that are much more realistic than the motion of the ship

when no additional dampening parameters are used. The motion in figure 3.15 demonstrates how
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Figure 3.15: Realistic ship motion demonstrated through the tool’s available parameters.

realistic the motion generated from this tool can be with the right set of art directed parameters.
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Chapter 4

Conclusions and Discussion

The tool described for creating rigid body dynamics on ship hulls using hydrostatic forces

is a successful at designing interaction scenarios between oceans and boats. The algorithm can

be optimized to be very fast when implemented with appropriate data organization structures.

Alexandra L. Zheleznyakova states in his paper that the methods described can run in realtime [13],

even though for the implementation of this thesis a non-realtime environment is chosen.

4.1 Strengths

This method for creating ship motion on an ocean surface proves to be stable, and customiz-

able with a useful level of art directability. Users can model ships of arbitrary design and distribute

mass onto the vertices in a manner that favors the ship design chosen. A PID controller allows the

ability to move the ship while conserving dynamic ocean movement. Additional dampening terms

may be uniquely adjusted to achieve the preferred outcome. Finally, ocean surfaces themselves are

widely customizable, with a variety of real world conditions being possible to replicate across many

available wave spectra. Due to this, the tool is not only a useful art tool, it is but potentially useful

for the purposes of ship/ocean interaction prediction.

Often, motion generated with just a few parameters produces aesthetically pleasing results.

Drag is a tool the system can employ to enhance the motion of the ship, but is not necessary in

most cases. Ship motion generated with no dampening parameters or outside forces added often

looks good without the need for further refinement.

32



The algorithm is fast and reliable, is agnostic to the shape of the ship being simulated, and

requires minimal pre-processing. It can be adapted into a variety of environments including games

engines and animation software such as Maya and Houdini. Overall, the algorithm is quite robust.

4.2 Drawbacks

The stability of the described method of rigid body ship motion is dependant upon triangle

size of the input geometry. Ideally, proxy geometry would be unnecessary in a buoyancy calculation.

A possible solution to this includes dynamically subdividing submerged triangles to determine the

forces acting on the model with higher accuracy. This would allow the program to produce better

results with less optimal input geometry.

It can be difficult controlling the dampening parameters. As seen in chapter 3, angular

velocity dampening coefficients as small as 0.001 can have dramatic effects on the movements of the

ship, often times making results look stiff. Other methods for dampening the rotational energy of

the system should be considered. Conversely, PID controllers often times may not be strong enough

to influence a ship without very large input coefficients. This makes estimating productive values

for these coefficients difficult.

4.3 Directions for Further Research

The methods of rigid body motion described in this thesis can be combined with existing

methods of altering the height field, such as the generation of a wake. These adjustments to the

height field may affect the ship movement, which may further alter the height field, creating a

feedback loop. The ship motions and wake patterns generated by this feedback loop are worth

researching further.

The methods outlined in this thesis describe buoyancy as a force generated proportional to

the submerged surface area of the ship and its depth. In the real world, buoyancy is proportional to

the mass of the fluid that an object displaces. If a real object is too heavy to float on a fluid, it will

continue to sink until it reaches the bottom of the container. In the presented methods, hydrostatic

force is proportional to the submerged depth of an object. A sinking rigid body may artificially

build up force once fully submerged and stop sinking at a depth where it reaches an equilibrium. A
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suggestion to converge on a closer approximation to real buoyancy forces is to replace the polygonal

model with a levelset. By sampling grid points in a levelset instead of centroids, and determining

whether each point is above or below the surface of the water, an estimation of the fluid mass

proportional to the submerged volume of an object may be obtained. This submerged volume may

then be used as a factor of the hydrostatic force equation (2.19) in the place of surface area, deriving

more accurate results.

The method of directly dampening a rigid body’s angular velocity is an effective means of

quickly stabilizing the motion of the body, but it does not mirror realistic drag force phenomena.

In real-world ship-water interactions of partially submerged bodies, a ship meets a drag force from

both the air and the water, however these forces differ from each other in strength. As part of

further research, drag forces generated by the water may be applied to specifically centroids that

are submerged under the height field. Similarly, if the general direction of the waves can be derived

through a process of finding the height field’s rate of change [12], an approximation of underwater

current forces may be applied.

The PID controller may be adapted to accept vector κ values. These modified κ values can

control the amount of positional error correction and velocity error correction per axis independently.

This would allow the ship to continue bobbing up and down in the water completely unhindered

by the target position on the vertical axis, and still allow for a method of target-based animation

on the horizontal plane. A PID controller may be attached to the rotation vector to help the ship

remain aligned with the direction it’s traveling in.
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