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Abstract

Connected Autonomous Vehicles are equipped with the capabilities of au-

tonomous navigation, Vehicle to Vehicle, and Vehicle to Infrastructure communica-

tion, which have the potential to improve fuel and/ or energy efficiency. Velocity

optimization is a driving technique that aims to follow a velocity profile that mini-

mizes fuel consumption, energy consumption, idling at traffic lights, and overall trip

time. Velocity optimization can be implemented in CAVs by utilizing V2I and V2V

capabilities, and optimal control techniques. As CAVs become more ubiquitous, they

are likely to interact closely with human driven cars. In such a scenario, it is im-

portant to find the right trade-off between safety and efficiency, as safety constraints

may restrict efficient actions and vice-versa. Vehicle control systems that are heav-

ily biased towards efficiency, may result in conservativeness and rear-ending effects

in CAVs, rendering their behavior unpredictable for human drivers, which may re-

sult in collisions, compromise safety and obstruct the surrounding traffic. Through

this research, we have proposed a velocity optimization strategy that optimizes the

velocity profile for fuel consumption, without significantly compromising safety and

affecting the traffic flow. A Model Predictive Controller is designed to compute the

optimal velocity profile based on fuel consumption and impact to the surrounding

traffic. A mathematical control parameter is introduced for deterministic control of

impact on traffic flow. An iterative convex optimization approach is adopted for on-
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line solution of the optimal control problem. A simulation case study is presented

to demonstrate fuel saving capability and reduced impact on the surrounding traffic

flow, of the proposed control system.
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Chapter 1

Introduction

Aggressive behaviour, characterized by higher levels of acceleration and brak-

ing, high speed driving causes an increase in fuel consumption much as 22% in con-

ventional vehicles and 32% in hybrid electric vehicles, according to a study pub-

lished by Oak Ridge National Laboratory [22]. Traffic congestion further worsens

fuel-consumption in vehicles due to excessive idling at traffic lights, and stimulating

aggressive driving to make up for the lost time. The Texas A&M Transportation

Institute attributes 3.3 billion gallons of extra fuel consumed, 8.8 billion extra hours

of travel, $1.79 billion worth of wasted time and fuel in 2017 to congestion [17]. These

statistics are expected to rise to 3.6 billion gallons, 10 billion hours and $237 billion

respectively in 2025 [17].

Although active traffic management technologies such as Real-Time Adap-

tive Signal Control [1], could potentially counter the congestion problem to some

degree [13], they have been deployed only in limited numbers in a few cities [20]. Fur-

thermore, the capital costs for large scale implementation of these technologies could

be as high as $303 million, and operating and maintenance cost as much as $ 425

million annually according to [15]. Hence there is a need to plan the driving speed at
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the vehicular level to save fuel wasted in idling at traffic lights and aggressive driving.

Connected Automated Vehicle (CAV) technology has the potential to signif-

icantly improve fuel economy along with safety and convenience, with the capabili-

ties of autonomous navigation, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I) communication [21]. Velocity Optimization, also known as Optimal Eco-driving

is a driving style that aims to follow a velocity trajectory that minimizes fuel con-

sumption and/or energy under time and distance constraints. Eco-driving is realizable

in CAVs by utilizing V2V/ V2I abilities and optimal control techniques [21].

The factors affecting the optimal velocity trajectory are traffic flow, traffic

lights, road grade, road curvature and stop signs. Considering all of these factors

makes velocity optimization a very complex problem that requires modeling these

factors and integrating them into the vehicle’s dynamic model to determine vehi-

cle response and performance. To optimize the vehicle’s trajectory, algorithms that

solve optimal control problem based on minimization of fuel consumption, energy

consumption and/or overall trip time have been developed. Optimal control theory is

the science of calculating control inputs to a dynamic system that satisfy one or more

optimality criteria. For velocity optimization in vehicles, the optimality criteria may

be minimization of time, fuel consumption, energy and/or emissions. The control

inputs to the system may be engine torque or traction force, braking torque or brak-

ing force, and gear ratio. The inputs are subject to the vehicle dynamic constraints,

limiting constraints and terminal time constraints.

As autonomous vehicles become more ubiquitous, they are likely to interact

with human driven vehicles. Hence, it will become extremely important to address

safety while driving efficiently. There is a basic trade-off between safety and effi-

ciency, as safety constraints can restrict actions that are efficient, and vice-versa. Au-

tonomous vehicle control systems that are biased towards efficiency are more likely to
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drive conservatively as compared to the human driven cars that are driving alongside,

making them unpredictable for human drivers. This can result confuse or agitate hu-

man drivers, increasing the risk of rear-end collisions, seriously compromise safety and

obstruct the surrounding traffic flow. Since 2014, 295 autonomous vehicle collisions

are reported by Department of Motor Vehicles, State of California [6], majority of

them being rear-end collisions involving human drivers. Therefore, it is required to

design optimal velocity control systems that can optimize between safe driving and

efficient driving.

Through this research, we have proposed a velocity optimization strategy that

optimizes the velocity profile for fuel consumption, without significantly compro-

mising safety and affecting the traffic flow. An online Model Predictive Controller

is designed to compute the optimal velocity profile based on fuel consumption and

impact to the surrounding traffic. A mathematical parameter is introduced for deter-

ministic control of impact on traffic flow. An iterative convex optimization approach

is adopted for online solution of the optimal control problem. A simulation case study

followed by a parametric study is presented to demonstrate fuel saving capability and

reduced impact on the surrounding traffic flow, of the proposed control system.

1.1 Velocity Optimization

A significant amount of research has been carried out to develop optimal driv-

ing algorithms that maximize fuel efficiency, minimize energy consumption, minimize

total trip time etc. A cloud-based optimal velocity planning approach is proposed

in [16]. A dynamic programming algorithm is implemented to calculate optimal veloc-

ity trajectories using vehicle and fuel consumption models. The test results reflected

significant fuel economy improvement without significantly affecting travel time. A
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distance based two-stage eco-driving strategy is designed in [14]. The two stage heirar-

chy is composed of a long term and short term velocity planning that optimizes fuel

consumption and a short term planning for safe traffic following. A predictive cruise

control system is proposed by Asadi and Vahidi [2] to control the velocity trajectory

by optimizing timely arrival at traffic lights in their green phase, while minimizing

deviations from the set speed and braking. A dynamic programming based robust

optimal control strategy is proposed by [21] to optimize fuel consumption considering

uncertain traffic signal timings. In [9] topographic information is used to determine

the fuel optimal velocity profile. In this study, we have proposed a velocity opti-

mization algorithm that minimizes fuel consumption in consideration of future state

of traffic flow and traffic lights, road grade, longitudinal vehicle dynamics, without

significantly compromising safety and causing obstruction to the traffic flow, as a

result of conservative driving. A macroscopic traffic flow model has been formulated

to predict admissible speeds over an urban route consisting of a series of signalized

intersections. The predicted admissible speeds are used as a reference to calculate

optimal velocities that reduce fuel consumption without significantly impacting the

flow of traffic using Model Predictive Control.

1.2 Model Predictive Control

Model predictive control (MPC) is an advanced control method that can con-

trol a dynamic system while satisfying an optimality criterion and a set of constraints.

MPC can handle dynamic systems with multiple inputs and outputs and having inter-

actions between inputs and outputs, and constraints on input and output variables.

With the MPC, it is also possible to optimize current states, while keeping future

states in account [8]. This is achieved by optimizing over a finite horizon, implement-
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Figure 1.1: General Scheme of Model Predictive Control [3]

ing the current states, receding the horizon, repeating the process [8]. MPC is also

capable of predicting a series of future states and planning control actions accordingly.

The other conventional controllers, such as Proportional-Integral-Derivative control,

do not have the ability. PID controllers can only plan control actions based on the

current state.

Due to the above stated advantages, we have selected MPC for solving our

research problem. The MPC is formulated as an online optimization that iterates be-

tween the traffic model and a convex optimization problem. Once admissible velocities

are calculated from the traffic model, they are used to calculate optimal velocities for

a subject vehicle present in the traffic flow, which are incorporated into the traffic

model using a set of coupled equations. The admissible velocities are recalculated

and the process is repeated.

A general schematic diagram of an MPC controller is shown in Figure 1.1. A

dynamic model is used to predict future states and control actions from past states

and control actions. The optimiser compares the predicted states with a reference

and calculates control actions that satisfy constraints and minimize a cost function.
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Chapter 2

Dynamic Models and Equations

To formulate our research problem, a mathematical model to characterize,

simulate and visualize the behavior of traffic flow is required. The longitudinal motion

dynamics and fuel consumption characteristics of the subject vehicle on which the

proposed control system is implemented are also required to be known. Coupled

equations are required to be formulated to locate the position of the subject vehicle

in the traffic flow. In this chapter, the required vehicle, fuel consumption and traffic

models and coupled equations are discussed in detail.

2.1 Vehicle Model

The subject vehicle is assumed to be a passenger vehicle equipped with a gaso-

line Internal Combustion Engine (ICE). Since the objective is to find optimal longi-

tudinal velocity trajectory, only the longitudinal dynamic equations were considered,

and the lateral dynamics are disregarded. The longitudinal dynamic equations are

determined by acceleration, velocity and position in the longitudinal direction. The

acceleration is determined using The longitudinal position and velocity are determined
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Table 2.1: Vehicle Parameters and Coefficients

Parameter Value Unit
Vehicle Mass m 1707 kg

Gravitational Acceleration g 9.81 m/s2

Rolling Resistance Cr 0.05
Aerodynamic Drag Coefficient Cd 0.29

Air Density ρa 1.18 kg/m3

Vehicle Frontal Area A 2.5 m2

by integrating the acceleration. The equations are written as:

dX

dt
= V (t) (2.1)

m
dV (t)

dt
= Ft(t)− Fr(t)− Fb(t) (2.2)

where m is the vehicle mass, Ft is the traction force, Fb is the braking force, and Fr

is the resistance force, calculated using the equation:

Fr(t) = mg(cos(θ)Cr − sin(θ))− 1

2
CdρAV

2(t) (2.3)

where g is acceleration due to gravity, θ is the road grade, Cd is the aerodynamic

drag coefficient, Cr is the rolling resistance, ρ is the air density and V (t) is the

instantaneous longitudinal speed of the subject vehicle. The resistance force is the

sum total of the rolling resistance force, road grade resistance and aerodynamic drag

force. The vehicle parameter values are depicted in table 1.
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2.2 Fuel Consumption Model

The fuel consumption in a gasoline ICE is a characteristic function of the

engine torque and engine speed. The engine torque is responsible for acceleration

of the vehicle. The engine speed is also proportional to the vehicle’s longitudinal

speed V by a factor equal to the ratio of wheel radius and gear reduction ratio.

Hence, some papers express fuel consumption as a function of vehicle acceleration

and the longitudinal vehicle speed V . The fuel consumption model developed by

[12] approximates the fuel rate as a non-linear polynomial function of speed and

acceleration as:

fv = b0 + b1V + b2V
2 + b3V

3 + a(c0 + c1V + c2V
2) (2.4)

where a is the acceleration of the vehicle. The coefficients b0 = 0.1569, b1 =

2.45 × 10−2, b2 = −7.415 × 10−4, b3 = −7.415 × 10−4 and c0 = 0.07224, c1 =

9.681× 10−2, c2 = 1.075× 10−3 are scalar constants.

2.3 Traffic Model

Traffic flow simulation models are an important tool used by traffic engineers

to characterise the behavior of complex traffic flow systems [10]. Applications of

traffic flow models are found in assessing traffic management systems, design and

testing of transport facilities, and optimization of traffic operations [10]. According

to the level of detail with which they describe the traffic flow, traffic models are

categorized as macroscopic and microscopic models. Microscopic models represent

the spatio-temporal behavior and interactions between individual vehicles [10]. The

key characteristics of a microscopic model are - acceleration of each vehicle, relative
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position of each vehicle with respect to a neighbouring vehicle, and relative velocity

of each vehicle with respect to the neighbouring vehicle. Macroscopic models on the

other hand, represent the traffic flow by considering aggregate behavior of a volume

of vehicles. The important properties of a macroscopic model are - flow rate, density

and velocity. Macroscopic models approximate a queue of vehicles as a continuum.

Owing to its low complexity, ease of formulation and computational inexpensiveness,

macroscopic modeling approach was used to simulate the flow of traffic for our research

problem.

To model the flow of traffic on an urban route comprised of a sequence of

traffic lights at fixed locations, a discretized numerical formulation of the macroscopic

model developed by Lighthill and Whitman and Richards (LWR) [4] is developed. It

manifests itself as a one-dimensional conservation equation subject to fixed initial and

boundary conditions:

∂ρ

∂t
+
∂q

∂x
= 0, x ∈ R≥0, t > 0 (2.5)

Where ρ ∈ [0, ρmax] is the density of vehicles, and q is the traffic flow characterized

by the fundamental diagram q = f(ρ), x is any location in the positive 1D space and

t is any instant in time.

2.3.1 Finite Difference Approximation

Solving the traffic model described by equation (2.5) using a finite difference

scheme was a significant challenge, as the initial and boundary conditions are discon-

tinuous. Carlos F. Daganzo [5] has presented a finite difference scheme that results

in a stable solution in the presence of shocks (disturbances) resulting out of discon-

tinuous boundary conditions and/ or initial conditions. The continuous equation is

discretized over the time interval ∆t and spacial interval ∆x. The descretized equa-
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Figure 2.1: Fundamental Diagram

tion reads as

ρi(k + 1) = ρi(k) +
∆t

∆x
(qi(k)− qi+1(k)) (2.6)

where k = 1, 2, 3, ... and i = 1, 2, 3, ... are the integer counts corresponding to

the current discrete instant in time and discrete position in space respectively.

The vehicle flow is an explicit function of the vehicle expressed by the funda-

mental diagram equation

qi(k) =


u0 ρ

i(k)(1− ρi(k)
ρj

) for ρ ∈ [0, ρc]

u0 ρc(1− ρi(k)
ρj

) for ρ ∈ (ρc, ρj]

(2.7)
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where u0 is the speed limit or maximum speed, ρc is the critical density when the flow

is maximum, and ρj is the maximum density. The flow at traffic signal locations I

during the red phase of the traffic lights Tred is forced to zero. During the green phase

Tgreen, it is equal to the flow as calculated by the fundamental diagram function f ,

described by equation (2.7).

qI(k) =


0 fork ∈ Tred

f(ρI(k)) for k ∈ Tgreen
(2.8)

The admissible speed is calculated from the flow and density as

vi(k) = minimum (
qi(k)

ρi(k)
, Speed Limit(i)) (2.9)

When the vehicle density nears zero at a any location, the admissible speed for a

vehicle is equal to the speed limit at that location.

For Finite Difference Models (FDE) to yield a stable feasible results, small

disturbances due to initial conditions or boundary conditions, must propagate for-

ward when traffic is light, backward when traffic is heavy and never faster than the

vehicles causing the disturbance [5]. To capture this phenomenon correctly, a modi-

fication is made to the fundamental diagram equation (2.7). Daganzo [5] proposes to

approximate the flow diagram by

qi(k) = min(T (ρi(k)) , R(ρj − ρi+1(k))) (2.10)

where

T (ρ) =


qc for ρ ∈ [0 , ρc]

u0ρc(1− ρ
ρj

) for ρ ∈ (ρc , ρj]

(2.11)
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Figure 2.2: Modified Fundamental Diagram

R(ρ) =


u0ρ(1− ρ

ρj
) for ρ ∈ [0 , ρc]

qc for ρ ∈ (ρc , ρj]

(2.12)

The modified fundamental diagram is shown in Figure 2.2. The cell size con-

dition for stability [5] is given by

∆x

∆t
≥ u0 (2.13)
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2.4 Coupled Equations

The subject vehicle described by (2.1)-(2.3) is travelling with a different (op-

timal) speed as compared to the other vehicles in the traffic flow, as its velocity is

determined by the proposed control system. To describe the distinct behavior of the

subject vehicle, the vehicle dynamic equations (2.1)-(2.3) are explicitly coupled with

the vehicle dynamics. This is achieved by equating the flow rate at the subject ve-

hicle’s spatial position is equal to the product of density at that location and speed

of the subject vehicle. The coupled equation for traffic flow on a single lane road is

given by:

vI(k) = ρI(k)V (k) (2.14)

where I is the position index of the subject vehicle.

The coupled equations for traffic flow on a multi-lane road is given by

vI(k) =
ρI(k)V (k)

n
+

(n− 1)qI(k)

n
(2.15)

where, n is the number of lanes.

Upon solving the traffic model, we get a space-time plot of densities (refer

Figure), flow rates and admissible velocities. The plot is depicted in the form of a

2D color plot. The color bar is a representation of the magnitude of density. Yellow

zones indicate queuing of vehicles at signalized intersections during the red phase of

the traffic lights.
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Figure 2.3: Space-time plot of vehicle density
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Chapter 3

Problem Formulation and Methods

3.1 Optimal Control Formulation

Once, the dynamic equations and coupled equations are formulated, an opti-

mal control problem is formulated to calculate optimal control inputs and generate

optimal velocity trajectory. The optimal control problem minimizes an objective

(cost) function subject to a set of constraints, and computes optimal variables. Our

objective is to minimize the total fuel consumption of the subject vehicle, and the

impact on the surrounding traffic. The impact on the surrounding traffic will be

minimum if, the subject vehicle drives as close as possible to the admissible speed i.e.

the speed of the flow of traffic. The impact is measured by the difference between

admissible speed and the subject vehicle speed. If the optimal controller is biased

towards fuel consumption, then the impact is expected to be greater and result in less

fuel consumption. On the other hand, if the controller is biased towards the impact

term, then it is expected to result in a relatively greater fuel consumption, but also

15



relatively less impact. The objective function is represented by the equation:

J =

k=N∑
k=1

[ ṁf (Ft(k) , V (k)) ] ∆t

+ W || C(k) || + W1 ||(Ft(k + 1)− Fb(k + 1))− (Ft(k)− Fb(k))||

+ W2 || V j(k)− V j−1(k) ||

(3.1)

where k = 1, 2, 3, ..., C(k) is the difference between the instantaneous speed of

the subject vehicle, V (k) and the admissible speed vi(k), expressed in equation (2.9).

||.|| is the Euclidean norm. The norm of C(k) is the impact term. It quantifies the

impact on surrounding traffic. W is the penalty weight of the impact term, which

will be referred to as ”Impact Factor”. W1 and W2 are penalty weights associated

with the comfort cost. The comfort cost is related to passenger discomfort due to the

G-forces from acceleration and deceleration of the vehicle.

The optimization is subject to the vehicle dynamic constraints

X(k + 1) = X(k) +
∆t

2
(V (k) + V (k + 1)) for k = 1, 2, .., N − 1 (3.2)

V (k + 1) = V (k) +
∆t

m
(Ft(k)− Fr(k)− Fb(k))

for k = 1, 2, ..., N − 1

(3.3)

Fr(k) = mg(cos(θ) Cr − sin(θ))− 1

2
Cd ρa A V 2(k) (3.4)

Limits are enforce on the traction force Ft, braking force Fb and the vehicle
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speed V through the linear constraints

0 ≤ Ft(k) ≤ m amax (3.5)

m amin ≤ Fb(k) ≤ 0 (3.6)

V (k) + C(k) = vi(k) (3.7)

V (k) ≥ 0

C(k) ≥ 0

(3.8)

The subject vehicle is set to reach a desired destination at distance d from its

current position X0 with a terminal velocity equal to the admissible speed at that

location.

The initial and terminal constraints are written as:

X(1) = X0 (3.9)

V (1) = v0(1) (3.10)

X(N) = X0 + d (3.11)

V (N) = vi(N) (3.12)
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The objective function is also subject to the traffic constraints (2.1)-(2.3) and

coupled equation contraints (2.14)-(2.15).

Sections 3.2 contains detailed discussion of the proposed solution method. The

possible approaches for solving the proposed problem consist of dynamic programming

and iterative convex optimization. Since trajectory optimization problems are often

non-convex, dynamic programming approach is used in many papers [2,16]. Although

dynamic programming can provide a global solution to the eco-driving problem, long

computation times make it difficult to implement in real-time [14]. Hence, other

approaches are explored by researchers to solve non-linear optimization problems.

Sequential Quadratic Programming approach is demonstrated by [14] for solving a

two-stage optimization for a distance-based ecological driving scheme. Sequential

convex optimization approach provides approximate solutions to non-linear problems

by sequentially forming convex sub-problems and converging to a local minimum

[11]. Sequential Convex Programming has been used in eco-driving problems as well

trajectory optimization in robots [11,18].

In this study, we have used iterative convex optimization approach to solve

the problem defined by equations (3.1)-(3.12).
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Figure 3.1: Graph of a convex function. The chord (i.e., line segment) between any
two points on the graph lies above the graph [19]

3.2 Iterative Convex Optimization Solution

3.2.1 Convex Optimization

Convex optimization is a commonly used approach for solving optimization

problems in the areas of automatic control systems, estimation and signal process-

ing, communications and networks, design of electronic circuits, data analysis and

modeling, statistics and finance [19]. It is a special class of problems of the form:

Minimize f0(x) (3.13)

Subject to fi(x) ≤ bi i = 1, 2, ..., m (3.14)

where, f0, f1, ..., fm : Rn → R are convex, or in other words satisfy the

condition

fi(αx+ βy) ≤ αx+ βy (3.15)

for all x, y ∈ R and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0. Interior point method

is most commonly used to solve these problems [19].
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3.2.2 Global vs Local Optimization

In global optimization, the aim is to find the optimal variable x which mini-

mizes the objective over all feasible points [19]. Local optimization on the other hand,

seeks a solution that is only locally optimal, i.e. it minimizes the objective function

among the neighbouring points, however, not guaranteed to a lower objective as com-

pared to all the feasible points [19]. Local optimization problems require an initial

guess, that greatly affect the value of the local solution, and are very sensitive to

algorithm parameters. Global optimization becomes exponentially more complex as

the size of the problem increases [19]. Local optimization problems solve relatively

faster. Thus, global optimization is suitable for problems where computation time

is not critical, and a global solution is indispensable [19]. Trajectory optimization

problems require to solve in real time, making computation time a more critical fac-

tor as compared to finding a global solution. Hence a local optimization approach is

adopted.

3.2.3 Convex Approximation and Iterative Approach

Solution to non-convex problems can be determined by finding an exact solu-

tion to an approximate convex problem. This point is then used as the starting point

for a local optimization method, applied to the original non-convex problem. For

solving our problem we propose using an iterative convex approach. To generate an

initial guess, the subject vehicle is assumed to follow the admissible speed trajectory

i.e. the subject vehicle follows the speed of the traffic flow in front of it.

Vguess(k) = vi(k) k = 1, 2, 3...N (3.16)
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Xguess(k) =


0 for k = 1

Xguess(k − 1) + Vguess(k − 1)∆t for k = 2, 3, .., N

(3.17)

The objective of the first iteration is:

J1 =
W ||V (k)− Vguess(k)|| +

W1 ||(Ft(k + 1)− Fb(k + 1))− (Ft(k)− Fb(k))||
(3.18)

The non-linear vehicle dynamic constraint (2.3) is linearized, shown in the

equation below:

Fr(k) = mg(cos(θ) Cr − sin(θ))− 1

2
Cd ρa A (2V Vguess − V 2

guess(k)) (3.19)

The optimal values obtained are passed as a guess to the next iteration. In

general, the optimal values from iteration j − 1 are passed as guesses to iteration j.

Xj+1
guess(k) = Xj

optimal(k) where j = 1, 2, 3, ...M (3.20)

V j+1
guess(k) = V j

optimal(k) where j = 1, 2, 3, ...M (3.21)

The process illustrated by equations (3.18)-(3.21) is repeated M times. The
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objective function for subsequent iterations j = 2, 3, ..M is represented by equation

Jj =

k=N∑
k=1

[ ṁf (Ft(k) , V (k)) ] ∆t

+ W || C(k) || + W1 ||(Ft(k + 1)− Fb(k + 1))− (Ft(k)− Fb(k))||

+ W2 || V j(k)− Vguess(k) ||

(3.22)

The last term ensures a stable convergent solution to the iterative convex

optimization. After M iterations, the traffic velocities are computed again using the

coupled equation

vI(k) =
ρI(k)V M

optimal(k)

n
+

(n− 1)qI(k)

n
(3.23)

The flow rates and densities are recalculated using equations (2.5)-(2.15). The

process (3.18)-(3.23) is repeated multiple times. The section illustrates the overview

of the algorithm used.

3.2.4 Quadratic Cost Modification

The fuel consumption model in equation (2.4) is based on a non-convex func-

tion. To adapt it to our problem, we have approximated the model by a convex

quadratic Function.This is achieved using curve fitting. 150,000 data points are cal-

culated using equation (2.4), and a quadratic curve represented by equation (3.24) is

fitted using MATLAB curve fitting tool. The coefficient of determination of the fit is

R2 ≈ 0.94

ṁf (t) = α1 V
2(t) + α2 V (t) Ft(t) + α3 F

2
t (t) + α0 (3.24)
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Figure 3.2: Fuel Consumption Map: The original fuel consumption map (left) is curve-
fitted into a quadratic function (center) using MATLAB curve fitting tool (right)

where ṁf (t) is the instantaneous fuel consumption rate, and α0 = 0.0078, α1 =

4.5× 10−5, α2 = 9.98× 10−8, and α3 = 0.1569 are scalar constants. The curve fitting

process is demonstrated in Figure 3.2.

k=N∑
k=1

[ṁf (Ft(k), V (k))]∆t = ZTQZ (3.25)

where Z is a vector of velocities and traction forces at all times

Z = [V (1), V (2), ..., V (N), Ft(1), Ft(2), ..., Ft(N)]

Q =



α1 0 ... 0 α2 0 ... 0

0 α1 ... 0 0 α2 ... 0

. . ... 0 . . ... 0

. . α1 . . α2

α2 0 ... 0 α3 0 ... 0

0 α2 ... 0 0 α3 ... 0

. . ... 0 . . ... 0

. . α2 . . α3
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Figure 3.3: Overview of the algorithm process flow

The coefficients α0, α1, α2 and α3 were selected such that the matrix Q is

positive definite, such that the objective function (3.22) remains convex.

3.3 Model Predictive Control and Algorithm Overview

After the optimal velocities are determined for a finite horizon of T time steps,

MPC was used to implement first h control inputs are implemented. The horizon is

shifted by h steps and the optimization process is repeated. The algorithm overview

is depicted in Fig. 3.3.
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Chapter 4

Simulation and Results

4.1 Simulation Setup

To demonstrate the capability of the proposed control strategy for fuel saving

and reduced impact on the surrounding traffic, a simulation case study was performed.

A stretch of Pleasantburg Drive located in the city of Greenville, SC was selected for

simulation, and traffic signal phase and timing (SPAT) data was acquired. Road

grade data was calculated from elevation data gathered from Google Application

Programming Interface. The speed limit was assumed to be 45 miles/hour i.e. 20

Figure 4.1: Google Earth view of the selected route
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m/s. The initial flowrates and densities were assumed to be zero. The flowrate at

starting position X = 0 was assumed to be 0.25 veh/s. The Google Earth view of

the selected route is shown in Figure. The traffic light locations are shown using

blue markers. The simulation was setup in MATLAB software. A processor of the

configuration six core Intel I-7 10750H, 2.6 GHz base frequency, 12 MB cache and

16 GB RAM. For a total simulation time of 400 seconds, the CPU processing time

recorded was 45 seconds. CVX, [7] a MATLAB-based modeling system for convex

optimization, was used to formulate optimal control in MATLAB.
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Figure 4.2: Optimal Speed vs Time

4.2 Simulation Results

Upon solving the simulation, the optimal speed trajectory was plotted against

time and distance, depicted in Figure and Figure respectively.. The optimal control

inputs i.e. traction force and braking force are shown in Figure. The maximum fuel

saving was found to be 12.38%.
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Figure 4.3: Optimal Speed vs Distance

Figure 4.4: Control inputs vs Time
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Figure 4.5: Optimal Speed vs Time for different impact factors

4.3 Parametric Study

To be able to assess the impact on surrounding traffic, fuel consumption was

calculated for different values of impact factor. Euclidean norm of the difference

between admissible Speed and optimal speed was selected as a measure of impact.

The plots of velocity profile with respect to distance and time are depicted in Figure

and Figure.
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Figure 4.6: Optimal Speed vs Distance for different impact factors

Table shows statistics of impact, fuel consumption and fuel saving for different

impact factors. The amount of fuel saved and impact are plotted against impact

factor in Figure. As anticipated it was found that as the impact factor increases, the

amount of fuel saved decreases, absolute fuel consumption increases and the impact

on surrounding traffic decreases.

30



Figure 4.7: Impact Factor Parametric Analysis

Sr.No. Impact Factor (W1) Fuel (ml) Fuel Saved (%) Norm (C(k))
1 70 559 12.38 292
2 75 565 11.44 286
3 80 572 10.35 280
4 85 580 9.09 275
5 90 590 7.52 268
6 95 598 6.27 266
6 100 638 0 259

Table 4.1: Parametric Study Statistics
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Chapter 5

Conclusions and Discussion

This study proposes a model predictive control strategy for velocity optimiza-

tion in connected autonomous vehicle to reduce fuel consumption with minimal im-

pact on the surrounding traffic. The iterative convex optimization approach provides

a rapid, but robust solution to the optimal controller, rendering it potentially feasi-

ble for real-time implementation. From the results of the simulation case study and

parametric analysis, it was ascertained that fuel consumption can be reduced by a

significant amount while remaining congruous with the surrounding traffic flow con-

sisting of human driven vehicles. By modulating the impact factor parameter it is

possible to adjust the behavior of the subject vehicle for fuel efficiency and safety.

Our future work will include simulating multiple traffic scenarios using com-

mercial mobility simulation software. The current traffic model assumes fixed phases

and timings of traffic lights. If the traffic lights are actuated, the timings will not

remain fixed. Integrating actuated traffic light behavior into the traffic model could

be a potential topic for future studies. Modeling and analysis of behavior of multiple

CAVs equipped with optimal velocity controllers could also be an interesting study.
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Appendix A MATLAB Codes

A.1 Main Code
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A.2 Velocity Optimization
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A.3 Fundamental Diagram
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[4] Michael Burger, Simone Göttlich, and Thomas Jung. Derivation of a first order
traffic flow model of Lighthill-Whitham-Richards type. IFAC-PapersOnLine,
51(9):49–54, 2018.

[5] Carlos F. Daganzo. Requiem for second-order fluid approximations of traffic flow.
Transportation Research Part B, 29(4):277–286, 1995.

[6] State of California Department of Motor Vehicles. Autonomous Ve-
hicle Collision Reports. https://www.dmv.ca.gov/portal/vehicle-industry-
services/autonomous-vehicles/autonomous-vehicle-collision-reports/.

[7] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, March 2014.

[8] Wenjian Hao. TigerPrints Data-Driven Control with Learned Dynamics Data
Driven Control with Learned Dynamics. (August), 2020.

[9] Erik Hellström, Maria Ivarsson, Jan Åslund, and Lars Nielsen. Look-ahead
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