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ABSTRACT 

Sorghum is a common feed grain globally with vast genetic and phytochemical diversity 

that may provide numerous health benefits, including its aptitude as an antimicrobial feed 

grain. This study highlights the antimicrobial potential of a collection of 384 diverse 

sorghum accessions against two prominent foodborne pathogens, Clostridium perfringens 

and Salmonella enterica. Following extensive screening, we determined that sorghum 

grain extract is more efficient at inhibiting C. perfringens than S. enterica. Antimicrobial 

activity observed against C. perfringens was not significantly correlated with either total 

phenols (r = 0.12) or tannin concentration (r = 0.12). Moreover, we mapped loci 

associated with antimicrobial activity to C. perfringens that are independent of loci 

associated with total phenols and tannins. The two most significant associations were 

determined to have an epistatic interaction and a total of 20 candidate genes were 

identified.  By sequence homology studies we found the potential functions of these 

candidates to include plant stress response (Sobic.002G083600) and phenol metabolism 

regulation (Sobic.010G222600). Additionally, we noted no relationship between 

antimicrobial activity and either grain yield or composition. These results highlight 

significant heritable variation of antimicrobial activity in sorghum that may be useful for 

breeding to improve its value as a feed source by incorporating grain-based antibiotics in 

animal production.   
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1. INTRODUCTION

Animal agriculture contributes to the global public health concern of antibiotic resistance, as 

the industry uses 73% of global distribution of clinical antibiotics to treat bacterial infection in 

animals raised for food (White et al., 2002; Matthew et al., 2007; Van Boeckel et al., 2019). 

Facilities with poor sanitation and loose veterinary regulation enable the spread of harmful 

pathogens and are overcome with copious use of antibiotics (Van Boeckel et al., 2019).  

Clostridium perfringens and Salmonella enterica are two prominent foodborne pathogens that 

regularly threaten the poultry industry and are traditionally treated with antibiotics. C. 

perfringens causes inflammation in the gut of broilers accounting for 1% of losses a day (Van 

Immerseel et al., 2005), whereas S. enterica is a threat to both human and animal health as it 

repeatedly contaminates animal products (Swartz, 2002; White et al., 2002). Prolific spread of 

these pathogens impairs the efficiency of the farm and if untreated, are detrimental to farmers. 

Antibiotic usage in agriculture could be reduced by implementing alternative solutions, such as 

incorporating feed products with antimicrobial properties into animal rations (Gyawali and 

Ibrahim, 2014). 

Sorghum [Sorghum bicolor (L.) Moench] is a cereal grain used most commonly for feed, 

food, forage and bioenergy. Though its uses are diverse, sorghum grain is economically 

prominent as a staple food supply in Africa and Asia but is most prevalently used as a feed grain 

for livestock in the United States. Sorghum was first domesticated in the Horn of Africa, where 

subsequent migration events and adaptation of early domesticates led to the establishment of the 

five major genetically distinct races within the sorghum species (Harlan & De Wet, 1972; Brown 

et al., 2011). The racial structure within sorghum largely contributes to the genetic and 

phenotypic diversity within the species; however, because of its photoperiod sensitivity (it 
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requires a short daylength to flower and produce grain), much of the available germplasm in the 

U.S. National Plant Germplasm System has yet to be exploited for crop improvement in 

temperate regions. For instance, nutritional and health related traits have traditionally been 

underexploited in breeding programs although the genetic potential may exist. To identify the 

genes that underlie these quantitative traits, the Sorghum Association Panel (SAP) is a genetic 

resource designed to be used for association mapping studies. The SAP has been created from a 

diverse collection of accessions that represents the five major cultivated races, geographic 

centers of diversity, and important United States breeding lines (Casa et al., 2008).  

Sorghum grains are phytochemically rich with phenols, which have beneficial antioxidant 

(Herald et al., 2012), anti-cancer (Hargrove, 2011), and anti-inflammatory properties (Burdette et 

al., 2010; Rhodes and Kresovich, 2016). Phenols are ubiquitously found throughout the plant 

kingdom as secondary metabolites produced in response to biotic and abiotic stresses. Because of 

their wide range in structural differences and diversity within the class, phenols contribute to 

several physiological processes and traits. One of the more prominent phenolic-based traits 

studied in plants is the antimicrobial effect (Cowan, 1999; Nitiemea et al., 2012; Alzoreky & 

Nakahara, 2001; Kil et al., 2009). Plant phenols exhibit antimicrobial activity against a number 

of bacteria, both Gram-negative and Gram-positive, and maintain these inhibitory effects in vitro 

(Nitiema et al., 2012).  Furthermore, antimicrobial activity against foodborne pathogens has 

previously been observed in sorghum through evaluation of metabolite extractions (Kil et al. 

2009). However, these tests were limited to a small collection of genotypes that were not 

representative of global diversity, and the underlying genetics and mechanisms of antimicrobial 

activity were not considered. 
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Importantly, not all phenol subclasses may be beneficial for use as a feed grain. Tannins 

are a broad class of phenols, divided into three subclasses, that are recognized for their 

antimicrobial effects (Scalbert, 1991). Specifically, the subclass of proanthocyanidins, or 

condensed tannins, are the most prominent in sorghum grain.  Condensed tannins localized in the 

testa, a layer of tissue that is located between the pericarp and endosperm of a grain, which can, 

along with other polyphenols, give pigment to the testa layer (Earp and Rooney, 1982). The 

presence of condensed tannins in sorghum grain is modulated by two loci, B1 and B2 (Dykes & 

Rooney, 2005), whose underlying genes have now been identified as Tannin1 (Tan1) and 

Tannin2, respectively (Wu et al., 2012; Wu et al., 2019).  

Though tannins are found throughout the plant kingdom and are readily available 

antimicrobial agents, tannins are not a solution to the current problem of antibiotic resistance. 

Tannins bind to a variety of nutrients and impair digestion, thus reducing the bioavailability of 

essential nutrients and nutrient efficiency (Chung et al., 1998). For this reason, tannins have 

largely been eliminated in common cereal grains such as wheat (Triticum aestivum L.), corn (Zea 

mays L.), and rice (Oryza sativa L.). Sorghum, however, has maintained non-tannin and tannin 

cultivars over time because tannin types grown by African (Wu et al., 2019) and South American 

farmers provided protection against severe bird predation.  Despite recent findings that suggest 

tannins in feed grain may replace antibiotics in poultry production as growth promoters 

(Redondo et al. 2014; Huang et al. 2018), the threshold at which tannins provide beneficial 

versus adverse effects for the animal are still unknown and therefore breeding for low tannin 

cultivars remains a priority.  

Development of nutritionally efficient, natural food products with antimicrobial activity 

may combat the continuing rise in antibiotic resistance in animal agriculture. The genetic and 
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metabolite diversity maintained in sorghum germplasm provides support that it may be a 

promising candidate for this use. Therefore, the goals of this study were: (a) to characterize 

antimicrobial activity across a globally diverse collection of sorghum germplasm, and (b) to 

identify the genetic basis associated with antimicrobial activity that is unrelated to the anti-

nutritional effects of tannins. From these experiments, we found significant variation of 

antimicrobial activity that exists in sorghum grain independent of antinutritional components 

such as tannins and total phenols. This research also highlights that antimicrobial effects did not 

have a negative impact on yield or grain macro- and micronutrient composition. Twenty 

potential candidate genes were identified through the results of the genome-wide association 

studies which may regulate antimicrobial activity, further supporting sorghums potential as an 

antimicrobial feed grain.  

 

2. MATERIALS AND METHODS 

 

Plant material and field design  

The plant material evaluated was a subset of 384 accessions, representing the sorghum 

association panel (SAP) (Casa et al. 2008; Boyles et al. 2016) (https://www.ars-grin.gov/npgs/). 

Materials were grown and sampled during the 2017 field season. The SAP was planted in a 

randomized complete block design with two replications at the Clemson University Pee Dee 

Research and Education Center in Florence, South Carolina. Plots contained two rows, 6.1 m in 

length and spaced 0.726 m apart with an average planting density of approximately 62,350 plants 

ha-1. Blocking decisions were based on both maturity and plant height, with full details described 

in Sapkota et al. 2020. Fields were irrigated when needed and adequate nutrients were supplied 

https://www.ars-grin.gov/npgs/
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to minimize abiotic stress. In detail, variable rates of N, P, and K fertilizer applications were 

applied prior to planting based on soil samples, followed by an application of 93 kg ha-1 of 

nitrogen 35 days after planting. Bicep II Magnum (S-metolachlor + atrazine; Syngenta) was 

applied prior to planting at 3.5 L ha-1. Atrazine was subsequently applied at 4.7 L ha-1 post 

emergence. To control the sugarcane aphid population, a single application of 0.5 L ha-1 of 

SivantoTM  Prime (Bayer CropScience) occurred 60 days after planting (Sapkota et al., 2020). 

Grain was collected from the primary panicle when the plant reached physiological maturity. 

Harvesting of grain from the secondary panicles, located on the tillers of the sorghum plant, was 

avoided to prevent confounding effects of maturity on grain composition. Harvested panicles 

were dried from 10-14 days in an electric dryer to a constant weight and subsequently threshed 

using a BT-14 belt thresher (Almaco; Nevada, IA). Maximum forced air was used when 

threshing to remove all glumes, foreign plant debris, and poorly filled or damaged grains.   

 

Compositional analysis 

Compositional data were collected from each genotype by near-infrared spectroscopy (NIRS), 

performed with a DA7250 NIR analyzer (Perten Instruments).  Dried and threshed grained were 

ground to a particle size of 1 mm with a Cyclotec sample mill (FOSS; Hillerod, Denmark) and 

used to evenly fill a 43 mL Teflon dish. Ground samples, as opposed to whole-kernel samples, 

have been reported to get the most efficient measurements (de Alencar Figueirido et al. 2010).  

The Teflon dish containing the ground sample was gradually rotated during NIRS analysis for 

accurate sampling. NIRS data were recorded for 29 compositional traits for each sample, 

including key macronutrients such as starch, protein, and crude fat (ether extracted lipids). A full 

list of compositional traits can be found in supplemental data (Supplemental F1). Trait 
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calibrations were previously established using a subset of 100 samples in the SAP (Boyles et al. 

2017). Harvested panicles were air dried to a constant moisture and hand threshed. The dried, 

ground samples were sent to Dairyland Laboratories, Inc (Arcadia, WI) and the Quality 

Assurance Laboratory in Murphy-Brown, LLC (Warshaw, NC) for wet chemistry. Calibration 

curves were established with a DA7250 NIR analyzer (Perten Instruments). 

 

Extraction of metabolites  

Following NIRS, metabolites were extracted from ground sorghum using an acetone extraction 

method described in Herald et al. (2012).  For each sample, metabolites were extracted by adding 

10 mL of 70% acetone to 0.5 g of representative ground grain and agitated for 2 h. Samples were 

stored at -20°C overnight. The next day, samples were centrifuged at 2970 x g, 10 mi, 4 °C and 

the supernatant was transferred to new tubes. An additional round of extraction was performed 

on the existing tissue by adding another 10 mL of 70% acetone. Samples were agitated for 10 

minutes and centrifuged (2970 x g, 10 min, 4°C). The supernatant was collected and combined 

with the previously collected supernatant. Acetone was removed from the extract using nitrogen 

evaporation with a 96-well microtiter microvaps (Fisher Scientific; Pittsburgh, PA). For long-

term storage, extracts were resuspended in 1 mL of DMSO and stored in the dark at -20°C. 

 

Quantification of polyphenols and tannins 

Total phenols were quantified using the Folin-Ciocalteu Assay (Singleton, Orthofer, and 

Lamuela-Raventos, 1999).  A standard curve was established using gallic acid concentrations 

ranging from (12.5 - 400 μg/mL in 70% acetone), following the protocol outlined in Rhodes et 

al. (2017).  In individual wells of a 96-well plate, 75 μL of Deionized water, 25 μL of Folin-
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Ciocalteu reagent (diluted 1:1 with deionized water) was mixed with either 25 μL of extract, 

standard, or 70% acetone, and left for six minutes for the reaction to complete. Subsequently, 

100 μL of 7.5% sodium carbonate was added to each well and mixed, covered and left in the 

dark for 90 minutes. Absorbance at 765 nm was measured using a Synergy H1 Multi-Mode 

Microplate Reader (BioTek Instruments, Inc.; Winooski, VT). Twenty-five microliters of 70% 

acetone were used as a control. Total phenol concentrations are reported in [gallic acid 

equivalent (GAE)/g] based on dry weight. 

Tannin data were kindly provided by Dr. Davina Rhodes (Rhodes et al., 2014). To generate these 

data, the SAP was planted and harvested at Clemson University Pee Dee Research and Education 

Center in Florence, SC in 2013 and 2014, under the same field conditions and management 

described in Section 2.1. Tannin concentrations were collected using NIRS, for which 20g of 

whole grain samples were scanned with a FOSS XDS spectrometer (FOSS North America, Eden 

Prairie, MN, USA) at a wavelength range from 400 - 2500 nm. Each sample was measured in 

duplicate, based on dry weight, and the reported tannin concentration (mg CE/g) represented the 

mean of duplicates. The calibrations curves, software, and spectrometer used were all previously 

described in Dykes et al. (2014).  

Average tannin concentration, for each year, was used in a t-test and Pearson's correlation. A t-

test was performed to determine if the two years of tannin data were statistically different. 

Previous studies have found that the tannin trait had a high broad-sense heritability estimate (H2 

= 0.80). 
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Disc-diffusion antimicrobial assay 

Antimicrobial susceptibility testing for sorghum grain extracts against C. perfringens (CP#6; 

Miller, Skinner, Sulakvekidze, Mathis, & Hofacre, 2010) and S. enterica (ATCC 30661) was 

performed using a disc-diffusion assay following Clinical and Laboratory Standards Institute 

guidelines (Clinical and Laboratory Standards Institute, 2012). Samples were prepared by 

saturating cotton discs 6-mm in diameter (Becton, Dickenson and Company) with 20 μL of 

extracts, twice, allowing sufficient time for the discs to dry in between saturations. All samples 

were prepared in triplicate. Each pathogen was appropriately prepared for the assay by following 

optimal culturing methods described by Chen and Jiang (2017) for S. enterica and Dharmasena 

and Jiang (2018) for C. perfringens. Cultures of each pathogen were washed twice and 

resuspended in 0.85% sterile saline to OD 0.5. Mueller-Hinton (S. enterica) and Brucella blood 

(C. perfringens) agar plates were inoculated and streaked to ensure an evenly distributed lawn of 

growth. Six saturated discs were placed equidistantly on the surface of the plate, ensuring the 

disc lay completely flat. Two additional discs were included in each assay plate: a positive 

control with 30 ug per disc of kanamycin (S. enterica) or tetracycline (C. perfringens), and a disc 

saturated with 30 ug per disc of DMSO as a negative control. Plates were inverted and incubated 

at 35°C for 16 to 18 h (S. enterica) or 24 h (C. perfringens). The diameter was measured to the 

nearest tenth of a millimeter for the zone of inhibition. The zone of inhibition for each sample 

was compared to the inhibition with a standard microorganism, Escherichia coli (ATCC 25922). 

Samples that had clear inhibition zones or zones with a diameter greater than 7 mm (Figure 1D) 

were considered to have a strong effect. However, samples that showed detectable inhibition yet 

maintained some bacterial growth in the inhibition zone were classified as having weak effect 

(Figure 1A-C).  
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Minimum inhibitory concentration assay  

To confirm the results of the disc-diffusion assay, a subset of sorghum extracts were tested by 

using the microbroth dilution method following Clinical and Laboratory Standards Institute 

guidelines (Clinical and Laboratory Standards Institute, 2012).  Briefly, Brucella broth and 

Mueller-Hinton broth were inoculated with C. perfringens and S. enterica, respectively, and 

incubated at 37°C with shaking anaerobically (C. perfringens) or aerobically (S. enterica) to 

establish logarithmic growth (Chen & Jiang, 2017; Dharmasena & Jiang, 2018).  Following 

incubation, each culture was pelleted by centrifugation (3,500 x g for 5 min) and resuspended in 

0.85% sterile saline solution to an OD of 0.1 measured at 625 nm.  Samples were tested in 

triplicate using 96-well microplates, yielding final bacterial concentrations of 5 x 105 CFU/ml, 

and incubated overnight at 37°C.  Following incubation, OD of each well were determined with 

a µQuant microplate spectrophotometer (BioTek Instruments, Inc.; Winooski, VT) at 625 nm. 

Escherichia coli (ATCC 25922) and Clostridium difficile (ATCC 700057) were used as quality 

control strains for S. enterica serotype enteritidis and C. perfringens, respectively.  Minimum 

inhibition concentration (MIC) was defined as the lowest concentration needed to completely 

inhibit growth as compared with the controls. 

 

Genomic analysis 

The genotypes of the SAP were collected by means of genotype-by-sequencing (GBS) (Morris et 

al., 2013; Boyles et al., 2016). Raw sequence reads were aligned to the most current sorghum 

reference genome (BTx623 v3.1, https://phytozome.jgi.doe.gov) using Burrow-Wheelers aligner 

(Li and Durbin, 2010). SNP calling was done using the TASSEL 5.0 pipeline (Glaubitz et al., 

https://phytozome.jgi.doe.gov/
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2014), and subsequent imputation was performed using the FILLINFindHaplotypesPlugin and 

FILLINImputationPlugin in TASSEL (Swarts et al., 2014). A total of 484,799 SNPs was 

generated. SNPs were filtered for minor allele frequency (>0.05), missing data (0.30) and Hardy-

Weinberg equilibrium (0) using VCFtools (Danecek et al., 2011). Subsequently, the marker set 

was pruned, using PLINK (Purcell et al. 2007). The PLINK pruning method is based on variance 

inflation factor (VIF), which recursively removes SNPs above the VIF threshold (VIF =2) within 

a sliding 50 SNP window, shifting steps at every five SNPs. The VIF is defined as 1/(1-R2), with 

R2 being the multiple correlation coefficient for the SNP being tested against all other SNPs. 

Therefore, VIF accounts for the multicollinearity in the linear regression (Purcell et al., 2007). 

Filtering and pruning resulted in 99,126 SNP markers that were used for association mapping 

analysis.  

 

GEMMA Version (v0.98, Zhou and Stephens, 2014) software was used to perform the genome-

wide association study (GWAS) on antimicrobial activity against C. perfringens by 

implementing a univariate linear mixed model (LMM), which takes population stratification and 

sample structure into account. To genetically confirm antimicrobial activity’s independence from 

Tan1, best linear unbiased predictors (BLUPs) were calculated for tannin concentrations and 

used as a covariate in a univariate linear mixed model.  The use of BLUPs instead of mean 

values accounts for environmental variation in the tannin measurements across the two years. 

Manhattan and quantile-quantile plots were generated using R software CMplot 

(https://github.com/YinLiLin/R-CMplot). The Bonferroni-corrected significance threshold 

(0.05/99,126 SNPs = 5.04 x 10-7) was used to determine significant associations (α = 0.05) in the 

Manhattan plot. Linkage disequilibrium (LD) was calculated locally within 1 MB of significantly 

https://github.com/YinLiLin/R-CMplot
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associated SNPs using PLINK. Linkage disequilibrium was considered to decay at r2 < 0.1. 

Genes found within local LD of each SNP were identified using a custom script and considered a 

potential candidate gene for antimicrobial activity in sorghum grain. Broad-sense heritability was 

calculated by R package ‘Heritability’ (Kruijer et al., 2015). Marker-based narrow-sense 

heritability (h2) was calculated using the relatedness matrix generated from GEMMA, which 

utilized the same SNPs as the GWAS. All scripts used for analysis are located at 

(https://github.com/lkshiel/ACRE) 

 

Epistatic interaction analysis 

We performed SNP-SNP interaction tests were performed on all SNPs. PLINK files generated 

for the LD analysis were used to test each SNP pair for epistasis using the following linear 

regression model implemented with PLINK --epistasis command and --set parameter. 

Y = β0 + β1gA + β2gB + β3gAgB 

where Y represents the antimicrobial activity as measured in the disc-diffusion assay, gA and gB 

are allele counts for each inspected variant pair, and β coefficients 0-3 represent the intercept, 

effect of gA, effect of gB and the epistatic interaction between the variant pair, respectively. 

Frequencies of the two locus genotypes were also calculated using PLINK twolocus function. 

Analysis was performed on un-imputed data so as to not skew frequency of a particular 

genotype. 

 

Statistical analysis 

Pearson’s correlation coefficient was determined for all relationships investigated in this study. 

Statistical significance was determined for p-values less than 0.05. Categorical values such as 

https://github.com/lkshiel/ACRE
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‘weak’ were given numerical value of 3.55, following the method described in Billard & Diday 

(2000). This numerical value was determined by averaging the lowest measured inhibition zone 

(0 mm) and the lowest ‘strong’ value (7.1 mm). Folin-Ciocalteu samples that were measured 

above 420 [GAE/g] were capped at 420 [GAE/g] for analysis. The t-test was performed using the 

Python package Pingouin (Vallat, 2018).  Tables were generated with the Python package 

pandas (McKinney, 2010) and figures were generated with the python packages seaborn and 

matplotlib (Waskom et al. 2014; Hunter, 2007). 

 

3. RESULTS 

Antimicrobial activity of sorghum grain extracts 

Approximately half of the tested germplasm (188 accessions) were found to demonstrate 

antimicrobial activity, ranging from weak to strong effect (Supplemental F2). Weak activity 

was defined as having an indistinguishable inhibition zone while still showing inhibition; 

whereas, strong effect was defined as having a clear inhibition zone or a zone with a diameter 

greater than 7 mm. Using the disc-diffusion assay, we identified 103 accessions that had 

antimicrobial activity against C. perfringens. Of which, 37 of which had a strong effect with 

inhibition zones that ranged from 6.88 to 9.45 mm in diameter. Assays tested on S. enterica 

showed 119 accessions with antimicrobial activity, however, only a weak effect was observed 

across those genotypes. 

 

Minimum inhibitory concentration analysis  

Minimum inhibitory concentrations (MIC) were determined for a subset of 12 accessions that 

were selected on the basis of a range of activity levels observed in the disc diffusion assay, 
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including both high and low extremes. The average MIC values for C. perfringens were 0.911 

mg/mL for the first replicate and 1.37 mg/mL for the second. However, the average MIC values 

for S. enterica were reported as 32.8 mg/mL in the first replication, and 24.8 mg/mL in the 

second (Table 1). The MIC values observed confirm the results of the disc-diffusion assay. We 

expected extracts with strong antimicrobial activity to require smaller concentration to inhibit 

growth than extracts with weaker or no activity. The MIC analysis of S. enterica revealed 

instances with high MIC values, but relatively strong antimicrobial activity. We would expect 

that genotypes demonstrating antimicrobial activity would have lower MIC values than 

genotypes that displayed no activity. High MIC values that were found to have weak 

antimicrobial activity in the disc-diffusion assay could be attributed to the diffusion patterns of 

the extract on the agar media, which impacts the role of these compounds in evaluations of 

antimicrobial potential (Alzoreky & Nakahara, 2003). However, because the initial 

characterization of S. enterica inhibition did not provide reliable measurements of antimicrobial 

activity, and because antimicrobial activity against S. enterica was found to be correlated with 

unfavorable traits (Supplemental Figure S1, S2, Supplemental Table S1), data regarding S. 

enterica assays were subsequently excluded from further analyses used to identify useful 

germplasm for crop improvement. 

 

Quantification of total phenol concentration 

Phenol concentrations were measured for each sample via a Folin-Ciocalteu phenolic assay. It 

was found that across samples, total phenol concentration (GAE/g) was highly variable across 

the diverse sorghum accessions, ranging from 5.38 GAE/g to 420 GAE/g, where 420 GAE/g was 

the highest value the instrument could measure on the basis of established standards 
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(Supplemental F3). Total phenol concentration across field replications were found to be highly 

correlated (r = 0.82) regardless of soil differences, pest pressure, and weather events. This is 

consistent with previous reports as total phenols were previously found to be highly heritable (H2 

= 0.82 (Pfeiffer & Rooney, 2016).  

 

Effects of total phenols and tannin concentration on food-borne pathogens  

The relationship between total phenol concentration and inhibition zone size from the disc 

diffusion assay was investigated to determine if higher total concentrations of phenols were 

correlated with greater antimicrobial activity. Samples showing positive inhibition of C. 

perfringens had striking variation in total phenol concentration, with a range of 6.91 GAE/g to 

>420 GAE/g. As a result, C. perfringens inhibition was not significantly correlated (r = - 0.12) 

with total phenol concentration at the 0.01 significance level (Figure 2a). 

The results of the t-test showed that the 2 yr of tannin data were not statistically different (p-

value = 0.34) and therefore provide support for using the 2013 and 2014 tannin data for our 

analysis with grain extracts from 2017 (Supplemental Table S2).  

 

Additionally, the correlation between the average inhibition zone diameter (mm) for each 

accession and average tannin measurement across year was calculated. The inhibition zone 

diameter did not have a significant correlation (r = 0.12) with tannin measurements at the alpha = 

0.01 significance level (Figure 2b). 

 

Identification of antimicrobial germplasm with unpigmented testa 
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Testa presence was previously identified across the SAP by cutting a thin layer of the pericarp 

from each seed and examining testa pigmentation under a dissecting microscope (Rhodes et al., 

2014). Pigmented testa may be indicative of the presence of condensed tannins, therefore 

investigation of the relationship between antimicrobial activity and pigmented testa is warranted. 

There were no observable differences between the distributions of accessions with unpigmented 

testa and pigmented testa across the C. perfringens inhibition zones (Supplemental Figure S3). 

The similar distributions and the low correlation between inhibition zone and tannin 

concentration suggests that antimicrobial activity could be achieved in the absence of tannins for 

C. perfringens (Table 2).  

 

Selection of suitable accessions containing antimicrobial activity 

To identify germplasm that maintain antimicrobial activity without condensed tannins, we 

rigorously filtered genotypes by phenotypic values. First, from the list of accessions that 

demonstrated antimicrobial activity, only the accessions that maintained strong antimicrobial 

activity across both replicates were considered. Next, accessions with detectable tannins were 

eliminated from consideration. Filtering resulted in five accessions characterized as having 

strong antimicrobial activity and little or no detectable tannin concentration (Table 3). Key 

agronomic traits, such as plant height (PH), days to maturity (DTM), and 1000-grain weight 

(TGW), were also evaluated to determine if that agronomic and compositional phenotypes of the 

identified accessions were undesirable for plant breeding. The agronomic and compositional 

traits for the accessions in the SAP were reported by Sapkota et al. (2020). 

 
Compositional and yield data of the grain sorghum accessions 
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 Near-infrared spectroscopy was used to measure 29 compositional traits spanning prevalent 

macronutrients across the 384 accessions with two replications. The quantitative variation in the 

grain compositional traits is evident in the descriptive statistics of each trait (Supplemental 

Table S3). Most importantly, the compositional data generated establishes that grain macro- and 

micronutrient composition were not compromised by the presence of antimicrobial activity. No 

significant relationships were found between individual compositional traits and antimicrobial 

activity (Supplemental Table S3). Additionally, to examine any potential trade-offs resulting 

from antimicrobial activity on grain yield components, we compared antimicrobial activity of 

grains to the grain number per panicle, 1000-grain weight and grain yield per primary panicle 

(Sapkota et al., 2020). No significant correlation was observed between antimicrobial activity 

against C. perfringens and any of the grain yield component traits (Table S4), suggesting that the 

presence of antimicrobial activity does not compromise yield. Additionally, we looked at the 

geographical and racial distribution of genotypes exhibiting antimicrobial activity against C. 

perfringens to identify any potential correlation with antimicrobial activity, though no relevant 

statistical inferences could be made concerning the role of race and/or origin. 

 

 Genome-wide association studies 

To investigate the underlying genetics of antimicrobial activity against C. perfringens in 

sorghum grain, three GWAS were conducted. First, a univariate linear mixed model was used to 

map antimicrobial activity against C. perfringens (Figure 3, Supplemental Figure S4). 

However, since the effect of Tan1 is so strong and may impact the GWAS, tannin BLUPs were 

used as a covariate for a second association analysis (Figure 4, Supplemental Figure S5). 

Comparisons between the two antimicrobial GWAS show that by adding tannin as a covariate to 
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the model, the same four SNPs on chromosomes 2, 4, and 10 were found to be significant across 

both models (Supplemental Table S5). The only difference was the singular association on 

chromosome 5 in the tannin covariate model, which failed to pass the Bonferroni-corrected 

significance threshold. To confirm that there was no statistical difference between the 

antimicrobial activity GWAS and tannin covariate GWAS, we performed a t-test comparing each 

SNP’s Wald p-values from both GWAS. The t-test showed that the two models were not 

statistically different (Supplemental Table S6; p value = 0.227), and concerns regarding the 

effect of Tan1 were disregarded. Additionally, tannin BLUPs were mapped as a genetic control 

and used to distinguish tannin peaks from novel peaks associated with antimicrobial activity 

(Figure 5, Supplemental Figure S6). The tannin GWAS contained a peak on chromosome 4, 

residing at ~62.3 MB, approximately 1 KB from the start position of Tan1 (Sobic.004G280800; 

Wu et al., 2012) (Figure 5). Significant associations found on chromosome 4 in the 

antimicrobial activity GWAS were located at ~64 MB and were not found in LD with Tan1. The 

associations on chromosome 2 (~ 8.9 MB) and chromosome 10 (~56 MB), however, are unique 

to antimicrobial activity and were the most significant loci.  

 

Epistatic interactions 

Epistatic interaction was only found between two of the four SNPs, S2_8924006 and 

S10_56476103 (p value = 1.93x10-6), which were the two most significant SNPs in the 

antimicrobial activity association analysis. Joint and marginal counts, and frequencies of the two 

locus genotypes are shown in Supplemental Table S7. Moreover, we plotted the distributions of 

accessions with both, just one, and neither favorable allele in regard to inhibition zone. 

Accessions with missing data for at least one allele were removed, therefore n =184 accession 
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were used for this analysis. We observed that accessions with favorable alleles at both 

S2_8924006 (C/C) and S10_56476103 (T/T) had the larger median inhibition zone across four 

accessions (Supplemental Figure S7). Accessions that had only the S10_56476103 allele 

maintained weak inhibition with a median inhibition zone at approximately 1 mm across six 

accessions. Whereas accessions that had only the S2_8924006 allele remained at no inhibitory 

effects with the exception of two outliers across ten accessions. Meanwhile, accessions that had 

neither of the favorable alleles largely had a no measured inhibitions across the 164 accessions 

with the exception of the 12 outliers which demonstrated a wide range of inhibition zones from 0 

– 8.55 mm. 

 

Heritability and potential candidate genes  

On the basis of local LD estimates, 20 genes were identified around significant SNPs that 

putatively regulated antimicrobial activity (Supplemental Table S8). Six potential candidate 

genes were within the LD block containing the SNP on chromosome 2.  Four of the candidate 

genes were within local LD of S4_64038743 marker on chromosome 4; six genes were within 

LD of the S4_64439967 marker. The remaining four potential candidate genes were found within 

local LD of the marker on chromosome 10. Marker-based narrow-sense heritability was 

calculated to be h2 =0.55.  

 

4. DISCUSSION 

Food-borne pathogens that infect livestock during production and post-processing, impact 

the productivity and efficiency of the animal protein industry as well as human health. These 

food-borne pathogens are frequently controlled with antibiotics which, when used in excess, may 
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lead to the evolution of resistance in pathogen populations (McEwan and Fedorka-Cray, 2002). 

Antibiotic resistance is a global issue that may be reduced through the supplement of natural 

products with antibacterial agency (Gyawali and Ibrahim, 2014). Several plant species have been 

identified that contain secondary metabolites demonstrating antimicrobial activity (Cowan, 

1999).  However, these traits have yet to be integrated into feed grain breeding programs to 

produce improved cultivars that would minimize antibiotic usage in animal production. Our 

identification of loci significantly associated with antimicrobial activity against C. perfringens is 

the first step toward the incorporation of natural health-promoting compounds for sorghum 

improvement. 

In this study, we tested the inhibitory properties of metabolite extracts from 384 diverse 

accessions of sorghum grain against two prominent foodborne pathogens, C. perfringens and S. 

enterica. Through a combination of disc-diffusion and microbroth-dilution assays, 188 unique 

lines were identified as having antimicrobial activity, constituting half of the experimental 

germplasm. The significant number of accessions with varying antimicrobial capabilities shows 

that vast genetic potential exists for antimicrobial activity in sorghum. Additionally, the results 

of the disc-diffusion assay, later confirmed with the MIC analysis on selected accessions, 

demonstrate that sorghum grain metabolite extract is a more effective antimicrobial agent against 

C. perfringens than against S. enterica. 

The influence of total phenol concentration on antimicrobial effect against C. perfringens 

was investigated and found to be insignificant. The apparent lack of a relationship between 

C. perfringens inhibition and total phenol concentration suggests that total phenol concentration 

alone cannot predict the antimicrobial effect in sorghum. However, the metabolite responsible 

for inhibiting C. perfringens may be an individual subclass of phenols, such as flavan-3-ols, 
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which has previously been reported for its antimicrobial effect on C. perfringens (Daglia, 2012). 

Relationships between antimicrobial effects on C. perfringens and the subclass of phenols could 

not be determined precisley from the data collected.  Moreover, total phenols were extracted 

using acetone, a method that is more prominently used to extract flavanols and other phenols 

with higher molecular weight (Dai and Mumper, 2010). Therefore, our correlation measures 

between total phenol and antimicrobial activity may not include effects from phenols with a 

lower molecular weight phenol.  

Importantly, we noted that the presence of antimicrobial activity against C. perfringens 

was not significantly correlated with tannin concentration, and we subsequently we identified 

five sorghum accessions that upheld strong antimicrobial activity against C. perfringens that did 

not have a pigmented testa and quantifiable tannins. Condensed tannins are a long-established 

antimicrobial; however, their negative effects on nutrient efficiency have prevented their use in 

crop improvement (Scalbert, 1991). In the same regard, there is often a carbon utilization 

tradeoff between crop yield and metabolite production (Brown, 2002).  However, our analysis 

showed there were no significant correlations found between antimicrobial activity and either 

compositional traits or yield. 

 This study used GWAS to identify novel genetic associations with sorghum grain 

antimicrobial activity against C. perfringens. We successfully identified significant associations 

that are independent of tannin and total phenols. As noted previously, antimicrobial activity has 

been associated with condensed tannins, which are regulated by duplicate recessive epistatic 

gene interaction between Tan1 and Tan2 located on chromosomes 4 and 2, respectively (Wu et 

al., 2012; Wu et al., 2019). Similarly, total phenols also have been associated with antimicrobial 

activity and were found to be associated with loci on chromosome 2 in Rhodes et al (2017). 
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However, the loci we identified on chromosomes 2 and 4 in the antimicrobial activity GWAS 

were different from the loci reported for Tan1, Tan2, and total phenols. Total phenol association 

was found at 7.5Mb (Rhodes et al. 2017) and Tan2 (Sobic.02G076600) resides nearby at ~8.2 

MB. Meanwhile, the antimicrobial activity SNP was located at ~8.9 MB. Moreover, the 

significant associations identified on chromosome 4 are located at ~64 MB while Tan1 resides at 

~62.3 MB (Wu et al., 2016).  Loci significantly associated with antimicrobial activity were not 

found in LD with either Tannin genes or total phenols, further supporting that factors other than 

tannins or phenols facilitate antimicrobial activity in sorghum grain. Moreover, we accounted for 

the effect tannin might have on our association analysis by including a tannin covariate. 

However, the antimicrobial activity GWAS with and without tannin as a covariate were not 

statistically different, which supports the results from the correlation analysis and suggest that 

the effects of Tan1 and Tan2 did not impact our mapping of C. perfringens antimicrobial 

activity. Thus, we concluded that our significant loci were neither artifacts nor artificially 

inflated by tannin-related effects. 

 The two most significant associations positioned on chromosomes 2 and 10, were also 

determined to have an epistatic interaction. This epistatic interaction suggests that their 

multiplicative effects on antimicrobial activity arise from a nonlinear combination of allele 

presence, as shown through the results of the twolocus function analysis. Moreover, SNP 

interactions indicate that the loci may interact through intermediate loci in the metabolic 

pathways, which further confirms the genetic complexity of antimicrobial activity. Furthermore, 

mean antimicrobial activity was calculated among allele combinations, which demonstrated that 

accessions that were homozygous for favorable alleles at both S2_8924006 and S10_56476103 

had the highest average inhibition zone (Supplemental Figure S7). This provides additional 
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evidence that S2_8924006 and S10_56476103 are important for regulating antimicrobial activity 

against C. perfringens in sorghum grain. There was substantial amount of missing data for SNP 

S10_56476103 preventing meaningful interpretation of the type of interaction occurring between 

the two loci. SNP markers were called from GBS data which are well-known for providing cost-

effect method for genotyping, because this method is dependent on the frequency of the ApeK1 

recognition site, some areas of the genome receive a low depth of coverage. This may explain the 

abundant missing data for S10_56476103 as well as its low minor allele frequency (MAF).  

Better sequence coverage to fill the missing SNP calls and subsequent analysis are needed to 

better understand how the interaction between these two loci regulate antimicrobial activity in 

sorghum.  

From these genomic analyses, we were able to extract several potential candidate genes.  

The genes have yet to be characterized, however orthologs identified by OrthoDb (Kriventseva et 

al. 2018) were found in corn and rice, which may provide insights into the potential function of 

these genes.  For instance, orthologs from maize and rice suggest that Sobic.002G083200 is a 

zinc transport protein. Zinc ions have been found to contribute to antimicrobial activity and are 

commonly added to food as a preservative for their antimicrobial effect in food packaging in and 

material science (Espita et al.2012; Stanic et al., 2010). Moreover, gene Sobic.002G083600, was 

found to be an ortholog to sid1, which has been characterized to play a role in inflorescence 

architecture in maize (Chuck et al., 2008). However, similarity between Sobic.002G083600 and 

sid1 was due, in part, to the presence of the AP2/ERF domain which characterizes a family of 

transcription factors that has been found to be key regulators for various stress responses (Xie et 

al. 2019, Dietz et al. 2010, Mizoi, Shinozaki and Yamaguchi-Shinozaki, 2012). Similarly, 

Sobic.010G222600 is an ortholog to Z. mays TRAF34, a transcription factor that has been found 
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involved in a gene regulatory network for phenolic metabolism (Yang et al. 2017). As such, 

Sobic.010G222600 may also transcribe a TRAF transcription factor that regulates sorghum 

phenolic metabolism. The study by Yang et al. (2017) also identified a myriad of transcription 

factor families responsible for regulating phenolic metabolism, therefore the putative TRAF and 

AP2/ERF transcription factors may work jointly to regulating antimicrobial activitiy in sorghum. 

Other potential candidate genes include two vacuolar iron transporters (VIT), which 

regulate and facilitates the accumulation of soluble sugars in the plant. Brenton et al. (2020) 

recently described a species-specific tandem duplication which resulted in the two vacuolar iron 

transporter genes accounting for higher sugar accumulation. Soluble sugars are known signaling 

modules for responses such as plant stress; specifically, sucrose has been linked to anthocyanin 

accumulation in Arabidopsis thaliana (L.) Heynh, as well as activation of pathogenesis related 

genes in rice and maize (Bolouri Modhaddam and Van den Ende, 2012; Solfanelli et al., 2006; 

Thibaud et al., 2004; Gomez-Aiza et al., 2007). Like other phenolic and flavonoid compounds, 

anthocyanins have antimicrobial effects (Cisowska et al.,2011). Higher sugar levels may amplify 

signaling for anthocyanin accumulation, resulting in antimicrobial activity. Further, soluble 

sugars, such as sucrose, control the expression of cyclins in A. thaliana (Riou- Khamlichi et al. 

2000). Sobic.004G305700, and its maize and rice orthologs, contained a cyclin domain. Proteins 

containing cyclin domains are ubiquitous, regulating the cell cycle and in turn several biological 

processes across all life. Cyclins have been found to be involved in plant stress response (Kitsios 

and Doonan, 2011). Therefore, Sobic.004G305700 may be a cyclin involved in a plant stress 

response. Sugar accumulation and signaling may play a role in regulating plant hormones that 

are responsible for stress responses such as antimicrobial activity.  Further investigation of these 

potential candidate genes is needed to better understand their functional roles in sorghum’s 
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antimicrobial activity. Importantly, although we were successful in mapping loci for 

antimicrobial activity, we emphasize that the antimicrobial effects assayed for mapping were 

specific to C. perfringens and therefore these loci may not be applicable with representative a 

broader range of pathogens. Further susceptibility testing on a wider and more diverse collection 

of bacteria is necessary to understand the genetic architecture regulating the antimicrobial 

potentials of sorghum grain. 

 

5. CONCLUSIONS 

Antimicrobial activity was identified in half of the accessions within the SAP. Although the 

inhibitory activity of sorghum extracts was demonstrated across both food-borne pathogens in 

the study, it was determined that sorghum inhibits C. perfringens more efficiently than S. 

enterica. Further, heritability estimates show that this activity is under moderate genetic control, 

and strong activity for the selected accessions was found to be reliable across field replicates. 

Antimicrobial activity was found to be insignificantly correlated with condensed tannins and 

total phenols indicating that antimicrobial activity was not entirely dependent on the 

accumulation of these antinutrients. Additionally, antimicrobial activity did not negatively 

impact yield or other compositional traits. Novel associations found in the GWAS allowed for 

the identification of 20 potential candidate genes that may regulate antimicrobial activity.  Using 

orthologs identified by OrthoDB, we characterized potential candidate genes that may be 

transcription factors known to regulate plant abiotic stress responses and phenolic metabolism. 

Subsequent studies are required to elucidate and validate the roles of the candidate genes as well 

as the putative metabolites that may be responsible for the observed antimicrobial activity to 

fully reveal the genetic and mechanistic basis of this phenotype. However, this initial phenotypic 
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and genetic evaluation of nearly 400 diverse sorghum accessions for antimicrobial potential 

provides valuable information on germplasm and genetic markers to facilitate the incorporation 

of natural antimicrobial activity via plant breeding for use in animal agriculture, which will 

provide a more healthy and sustainable feed grain for animal production systems. 

  



 26 

6. REFERENCES 
 

Alzoreky, N. S., & Nakahara, K. (2003). Antibacterial activity of extracts from some edible 
plants commonly consumed in Asia. International Journal of Food Microbiology, 80(3), 
223–230. DOI:10.1016/S0168-1605(02)00169-1 

 
Billard, L., & Diday, E. (2000). Data analysis, classification and related methods. Regression 

Analysis for Interval-Valued Data, Studies in Classification, Data Analysis, and 
Knowledge Organization, 103-124. 

 
Bolouri Moghaddam, M. R., & Van den Ende, W. (2012). Sugars and plant innate immunity. 

Journal of Experimental Botany, 63(11), 3989–3998. 
 
Boyles, R. E., Cooper, E. A., Myers, M. T., Brenton, Z., Rauh, B. L., Morris, G. P., & Kresovich, 

S. (2016). Genome-Wide Association Studies of Grain Yield Components in Diverse 
Sorghum Germplasm. In The Plant Genome (Vol. 9, Issue 2, p. 
lantgenome2015.09.0091). https://doi.org/10.3835/plantgenome2015.09.0091 

Boyles, Richard E., Brian K. Pfeiffer, Elizabeth A. Cooper, Bradley L. Rauh, Kelsey J. Zielinski, 
Matthew T. Myers, Zachary Brenton, William L. Rooney, and Stephen Kresovich. 
Genetic dissection of sorghum grain quality traits using diverse and segregating 
populations. Theoretical and applied genetics 130, no. 4 (2017): 697-716. 
DOI:10.1007/s00122-016-2844-6 

Brenton, Z. W., Juengst, B. T., Cooper, E. A., Myers, M. T., Jordan, K. E., Dale, S. M., ... & 
Kresovich, S. (2020). Species-specific duplication event associated with elevated levels 
of nonstructural carbohydrates in Sorghum bicolor. G3: Genes, Genomes, 
Genetics, 10(5), 1511-1520. DOI:10.1534/g3.119.400921 

 
Brown, J. K. (2002). Yield penalties of disease resistance in crops. Current opinion in plant 

biology, 5(4), 339-344. DOI:10.1016/S1369-5266(02)00270-4 
 

Brown, P. J., Myles, S., & Kresovich, S. (2011). Genetic support for phenotype‐based racial 
classification in sorghum. Crop Science, 51(1), 224-230. 
DOI:10.2135/cropsci2010.03.0179 

 
Burdette, A., Garner, P. L., Mayer, E. P., Hargrove, J. L., Hartle, D. K., & Greenspan, P. (2010). 

Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. Journal of 
medicinal food, 13(4), 879-887. DOI: 10.1089/jmf.2009.0147 

 
Casa, A. M., Pressoir, G., Brown, P. J., Mitchell, S. E., Rooney, W. L., Tuinstra, M. R., ... & 

Kresovich, S. (2008). Community resources and strategies for association mapping in 
sorghum. Crop science, 48(1), 30-40. DOI:10.2135/cropsci2007.02.0080 

 



 27 

Chen, Z., & Jiang, X. (2017). Thermal resistance and gene expression of both desiccation-
adapted and rehydrated Salmonella enterica serovar Typhimurium cells in aged broiler 
litter. Applied and Environmental Microbiology, 83(12). DOI:10.1128/AEM.00367-17 

 
Chuck, G., Meeley, R., & Hake, S. (2008). Floral meristem initiation and meristem cell fate are 

regulated by the maize AP2 genes ids1 and sid1. Development, 135(18), 3013-3019. 
DOI: 10.1242/dev.024273 

 
Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., & Lin, Y. (1998). Tannins and human 

health: a review. Critical reviews in food science and nutrition, 38(6), 421-464. DOI: 
10.1080/10408699891274273 

 
Cisowska, A., Wojnicz, D., & Hendrich, A. B. (2011). Anthocyanins as antimicrobial agents of 

natural plant origin. Natural product communications, 6(1). 
DOI:10.1177/1934578X1100600136 

 
CLSI. 2012. Methods for antimicrobial susceptibility testing of anaerobic bacteria, Approved 
standard, M11-A8-Eighth edition, Wayne, PA: Clinical and Laboratory Standard Institute. 
 
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology 

reviews, 12(4), 564-582. DOI: 10.1128/CMR.12.4.564 
 

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current opinion in biotechnology, 23(2), 
174-181. DOI:10.1016/j.copbio.2011.08.007 

 
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and 

anticancer properties. Molecules, 15(10), 7313-7352. DOI:10.3390/molecules15107313  
 

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... & McVean, 
G. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. 
DOI:10.1093/bioinformatics/btr330 

 
De Alencar Figueiredo, L. F., Sine, B., Chantereau, J., Mestres, C., Fliedel, G., Rami, J. F., ... & 

Courtois, B. (2010). Variability of grain quality in sorghum: association with 
polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theoretical and applied 
genetics, 121(6), 1171-1185.DOI:10.1007/s00122-010-1380-z 

 
Dharmasena, M., & Jiang, X. (2018). Isolation of toxigenic Clostridium difficile from animal 

manure and composts being used as biological soil amendments. Applied and 
environmental microbiology, 84(16). DOI: 10.1128/AEM.00738-18 

 
Dietz, K. J., Vogel, M. O., & Viehhauser, A. (2010). AP2/EREBP transcription factors are part 

of gene regulatory networks and integrate metabolic, hormonal and environmental signals 
in stress acclimation and retrograde signaling. Protoplasma, 245(1-4), 3-14. 
DOI:10.1007/s00709-010-0142-8)\ 

 



 28 

Dykes, L., Hoffmann Jr, L., Portillo-Rodriguez, O., Rooney, W. L., & Rooney, L. W. (2014). 
Prediction of total phenols, condensed tannins, and 3-deoxyanthocyanidins in sorghum 
grain using near-infrared (NIR) spectroscopy. Journal of cereal science, 60(1), 138-142. 
DOI:0.1016/j.jcs.2014.02.002 

 
Dykes, L., Rooney, L. W., Waniska, R. D., & Rooney, W. L. (2005). Phenolic compounds and 

antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and 
Food Chemistry, 53(17), 6813-6818. DOI:10.1021/jf050419e 

 
Earp, C. F., & Rooney, L. W. (1982). Scanning electron microscopy of the pericarp and testa of 

several sorghum varieties. Food Structure, 1(2), 3. 
 
Espitia, P. J. P., Soares, N. D. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., & 

Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and 
food packaging applications. Food and bioprocess technology, 5(5), 1447-1464. 
DOI:10.1007/s11947-012-0797-6 

 
Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. 

(2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. 
PloS One, 9(2), e90346. 

 
Gómez-Ariza, J., Campo, S., Rufat, M., Estopà, M., Messeguer, J., Segundo, B. S., & Coca, M. 

(2007). Sucrose-mediated priming of plant defense responses and broad-spectrum disease 
resistance by overexpression of the maize pathogenesis-related PRms protein in rice 
plants. Molecular Plant-Microbe Interactions: MPMI, 20(7), 832–842. 

 
Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food 

control, 46, 412-429. DOI: 10.1016/j.foodcont.2014.05.047 
 
Hargrove, J. L., Greenspan, P., Hartle, D. K., & Dowd, C. (2011). Inhibition of aromatase and α-

amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran 
extracts. Journal of Medicinal Food, 14(7-8), 799-807. DOI:10.1089/jmf.2010.0143 

 
Harlan, J. R., & De Wet, J. M. J. (1972). A simplified classification of cultivated sorghum 

1. Crop science, 12(2), 172-176. DOI:10.2135/cropsci1972.0011183X001200020005x 
 
Herald, T. J., Gadgil, P., & Tilley, M. (2012). High‐throughput micro plate assays for screening 

flavonoid content and DPPH‐scavenging activity in sorghum bran and flour. Journal of 
the Science of Food and Agriculture, 92(11), 2326-2331. DOI:10.1002/jsfa.5633 

 
Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as 

an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 
137-150. DOI: 10.1016/j.aninu.2017.09.004 

 
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and 

Engineering, 9(3), 99–104. DOI:10.1109/MCSE.2007.55 



 29 

 
Immerseel, F. V., Buck, J. D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. 

(2004). Clostridium perfringens in poultry: an emerging threat for animal and public 
health. Avian pathology, 33(6), 537-549. DOI:10.1080/03079450400013162 

 
Kil, H. Y., Seong, E. S., Ghimire, B. K., Chung, I. M., Kwon, S. S., Goh, E. J., ... & Yu, C. Y. 

(2009). Antioxidant and antimicrobial activities of crude sorghum extract. Food 
Chemistry, 115(4), 1234-1239. DOI: 10.1016/j.foodchem.2009.01.032 

 
Kitsios, G., & Doonan, J. H. (2011). Cyclin dependent protein kinases and stress responses in 

plants. Plant signaling & behavior, 6(2), 204-209. DOI:10.4161/psb.6.2.14835 
 
Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & 

Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, 
protist, bacterial and viral genomes for evolutionary and functional annotations of 
orthologs. Nucleic Acids Research, 47(D1), D807–D811. 

 
Kruijer, W., Boer, M. P., Malosetti, M., Flood, P. J., Engel, B., Kooke, R., Keurentjes, J. J. B., & 

van Eeuwijk, F. A. (2015). Marker-Based Estimation of Heritability in Immortal 
Populations. Genetics, 199(2), 379–398 

 
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler 

transform. Bioinformatics, 26(5), 589–595. DOI:10.1093/bioinformatics/btp698 
 
Mathew, A. G., Cissell, R., & Liamthong, S. (2007). Antibiotic resistance in bacteria associated 

with food animals: a United States perspective of livestock production. Foodborne 
pathogens and disease, 4(2), 115-133. DOI:10.1089/fpd.2006.0066 

 
McEwen, S. A., & Fedorka-Cray, P. J. (2002). Antimicrobial use and resistance in animals. 

Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of 
America, 34 Suppl 3, S93–S106. 

 
McKinney, W. (2010, June). Data structures for statistical computing in python. In Proceedings 

of the 9th Python in Science Conference (Vol. 445, pp. 51-56). 
 
Miller, R. W., Skinner, J., Sulakvelidze, A., Mathis, G. F., & Hofacre, C. L. (2010). 

Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally 
infected with Clostridium perfringens. Avian diseases, 54(1), 33-40. DOI:10.1637/8953-
060509-Reg.1 

 
Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription 

factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2), 86–96. 
 
Mizoi, J., Kanazawa, N., Kidokoro, S., Takahashi, F., Qin, F., Morimoto, K., ... & Yamaguchi-

Shinozaki, K. (2019). Heat-induced inhibition of phosphorylation of the stress-protective 



 30 

transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. Journal 
of Biological Chemistry, 294(3), 902-917. DOI: 10.1074/jbc.RA118.002662 

 
Morris, G. P., Rhodes, D. H., Brenton, Z., Ramu, P., Thayil, V. M., Deshpande, S., Hash, C. T., 

Acharya, C., Mitchell, S. E., Buckler, E. S., Yu, J., & Kresovich, S. (2013). Dissecting 
genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid 
pigmentation traits. G3, 3(11), 2085–2094. 

 
Nitiema, L. W., Savadogo, A., Simpore, J., Dianou, D., & Traore, A. S. (2012). In vitro 

antimicrobial activity of some phenolic compounds (coumarin and quercetin) against 
gastroenteritis bacterial strains. Int J Microbiol Res, 3(3), 183-7. DOI: 
10.5829/idosi.ijmr.2012.3.3.6414 

 
Pfeiffer, B. K., & Rooney, W. L. (2016). Inheritance of pericarp color, nutritional quality, and 

grain composition traits in black sorghum. Crop Science, 56(1), 164-172. DOI: 
10.2135/cropsci2015.04.0224 

 
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... & Sham, P. 

C. (2007). PLINK: a tool set for whole-genome association and population-based linkage 
analyses. The American journal of human genetics, 81(3), 559-575. DOI:10.1086/519795 

 
Redondo, L. M., Chacana, P. A., Dominguez, J. E., & Fernandez Miyakawa, M. E. D. (2014). 

Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors 
in poultry. Frontiers in Microbiology, 5, 118. DOI:10.3389/fmicb.2014.00118 

 
Rhodes, D. H., Hoffmann Jr, L., Rooney, W. L., Ramu, P., Morris, G. P., & Kresovich, S. 

(2014). Genome-wide association study of grain polyphenol concentrations in global 
sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of agricultural and food 
chemistry, 62(45), 10916-10927. DOI:10.1021/jf503651t 

 
Rhodes, D. H., & Kresovich, S. (2016). Sorghum [Sorghum bicolor (L.) Moench] genotypes 

with contrasting polyphenol compositions differentially modulate inflammatory 
cytokines in mouse macrophages. Journal of Chemistry, 2016. 
DOI:10.1155/2016/9640869 

 
Rhodes, D., Gadgil, P., Perumal, R., Tesso, T., & Herald, T. J. (2017). Natural variation and 

genome‐wide association study of antioxidants in a diverse sorghum collection. Cereal 
Chemistry, 94(2), 190-198. DOI:10.1094/CCHEM-03-16-0075-R 

 
Riou-Khamlichi, C., Menges, M., Healy, J. S., & Murray, J. A. (2000). Sugar control of the plant 

cell cycle: differential regulation of Arabidopsis D-type cyclin gene 
expression. Molecular and cellular biology, 20(13), 4513-4521. 
DOI: 10.1128/MCB.20.13.4513-4521.2000 

 



 31 

Sapkota, S., Boyles, R., Cooper, E., Brenton, Z., Myers, M., & Kresovich, S. (2020). Impact of 
sorghum racial structure and diversity on genomic prediction of grain yield 
components. Crop Science, 60(1), 132-148. DOI:10.1002/csc2.20060 

 
Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875-3883. 

DOI:10.1016/0031-9422(91)83426-L 
 
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols 

and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In 
Methods in Enzymology (Vol. 299, pp. 152–178). Academic Press. 

 
Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2006). Sucrose-specific induction of 

the anthocyanin biosynthetic pathway in Arabidopsis. Plant physiology, 140(2), 637-646. 
DOI: 10.1104/pp.105.072579 

 
Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I. B., & Raičević, 

S. (2010). Synthesis, characterization and antimicrobial activity of copper and zinc-doped 
hydroxyapatite nanopowders. Applied Surface Science, 256(20), 6083-6089. 
DOI:10.1016/j.apsusc.2010.03.124 

 
Swarts, K., Li, H., Romero Navarro, J. A., An, D., Romay, M. C., Hearne, S., ... & Buckler, E. S. 

(2014). Novel methods to optimize genotypic imputation for low‐coverage, next‐
generation sequence data in crop plants. The Plant Genome, 7(3), 1-12. 
DOI:10.3835/plantgenome2014.05.0023 

 
Swartz, M. N. (2002). Human diseases caused by foodborne pathogens of animal origin. Clinical 

Infectious Diseases, 34(Supplement_3), S111-S122. DOI:10.1086/340248 
 
Thibaud, M.-C., Gineste, S., Nussaume, L., & Robaglia, C. (2004). Sucrose increases 

pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-
dependent but NPR1-independent signaling pathway. Plant Physiology and 
Biochemistry: PPB / Societe Francaise de Physiologie Vegetale, 42(1), 81–88. 

 
Vallat, R. (2018). Pingouin: statistics in Python. Journal of Open Source Software, 3(31), 1026. 

DOI: 10.21105/joss.01026 
 
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., 

Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in 
animals in low- and middle-income countries. Science, 365(6459). 
https://doi.org/10.1126/science.aaw1944 

 
Waskom, M., Botvinnik, O., Hobson, P., Cole, J. B., Halchenko, Y., Hoyer, S., … Allan, D. 

(2014, November 14). seabornLv0.5.0 (November 2014) (Version v0.5.0). Zenodo. 
DOI:10.528/zenodo.12710 

 



 32 

White, D. G., Zhao, S., Simjee, S., Wagner, D. D., & McDermott, P. F. (2002). Antimicrobial 
resistance of foodborne pathogens. Microbes and infection, 4(4), 405-412. 
DOI:10.1016/S1286-4579(02)01554-X 

 
Wu, Y., Li, X., Xiang, W., Zhu, C., Lin, Z., Wu, Y., ... & Wang, M. L. (2012). Presence of 

tannins in sorghum grains is conditioned by different natural alleles of 
Tannin1. Proceedings of the National Academy of Sciences, 109(26), 10281-10286. 
DOI:10.1073/pnas.1201700109 

 
Wu, Y., Guo, T., Mu, Q., Wang, J., Li, X., Wu, Y., ... & Trick, H. N. (2019). Allelochemicals 

targeted to balance competing selections in African agroecosystems. Nature 
Plants, 5(12), 1229-1236. DOI:10.1038/s41477-019-0563-0 

 
Xie, Z., Nolan, T. M., Jiang, H., & Yin, Y. (2019). AP2/ERF transcription factor regulatory 

networks in hormone and abiotic stress responses in Arabidopsis. Frontiers in plant 
science, 10, 228. DOI:10.3389/fpls.2019.00228 

 
Yang, F., Li, W., Jiang, N., Yu, H., Morohashi, K., Ouma, W. Z., Morales-Mantilla, D. E., 

Gomez-Cano, F. A., Mukundi, E., Prada-Salcedo, L. D., Velazquez, R. A., Valentin, J., 
Mejía-Guerra, M. K., Gray, J., Doseff, A. I., & Grotewold, E. (2017). A Maize Gene 
Regulatory Network for Phenolic Metabolism. Molecular Plant, 10(3), 498–515. 

 
Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for 

genome-wide association studies. Nature methods, 11(4), 407-409. DOI: 
10.1038/nmeth.2848 

 
 

  



33 

FIGURES 

Figure 1. Range of antimicrobial activity observed from the disc-diffusion assay using a 6-

mm cotton disc. A) and B) show weak antimicrobial activity against S. enterica. Although 

some inhibition can be visually observed, there is still presence of growth in inhibition zone 

therefore making it difficult to measure. C) is an example of weak antimicrobial activity 

against C. perfringens and D) shows strong antimicrobial activity against C. perfringens, 

which is identified as having clear inhibition zone boundaries or an inhibition zone greater 

than 7 mm. 
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Figure 2. Relationships between C. perfringens inhibition zone (mm) and a) total phenol 

concentration (r = 0.12; p = 0.36) and b) tannin concentration (r = 0.12; p = 0.032). 

Figure 3. GWAS of antimicrobial activity in sorghum grain. An LMM was used for association 

analysis using 99,126 SNP markers. The y-axis (-log10 p-values) is plotted against the position on 

the chromosome (x-axis). The dashed line indicates the Bonferroni significance threshold. 

Regions with -log10 p-values above the threshold (dotted line) are candidates. 
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Figure 4. GWAS for antimicrobial activity with tannin as a covariate. Manhattan plot of 

association analysis using 99,126 SNP markers. The y-axis (-log10 p-values) is plotted against the 

position on the chromosome (x-axis). The dashed line indicates the Bonferroni significance 

threshold. 

Figure 5. Manhattan plot based on the GWAS for the tannin trait, using tannin BLUPs. 

Association analysis included 146,280 SNP markers from 367 individuals. The y-axis (-log10 p-

values) is plotted against the position on the chromosome (x-axis). The dashed line indicates the 
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Bonferroni significance threshold.  The distinguished peak on chromosome 4 colocalizes with 

Tan1 (~61-62 MB). 



37 

TABLES 

a MICr1, Minimum inhibitory concentration- replication 1; MICr2, Minimum inhibitory 

concentration - replication 2; Izr1, Inhibition zone - replication 1; Izr2, Inhibition zone- 

replication 2; ND= Non-detectable 

Table 2. Summary of C. perfringens samples regarding testa and antimicrobial activity 
No activity Weak activity Strong activity 

Unpigmented testa 299 51 19 
Pigmented testa 227 32 15 

Table 1. Minimum inhibitory concentrations (MIC) for C. perfringens and S. enterica 

C. perfringens S. enterica

Accession MICr1 

(mg/ml) 

MICr2 

(mg/ml) 

IZr1 

(mm) 

Izr2 

(mm) 

MICr1 

(mg/ml) 

MICr2 

(mg/ml) 

Izr1 

(mm) 

Izr2 

(mm) 

PI607931 0.2 0.08 0 0 25.16 20.16 0 0 

PI629059 1.14 0.23 0 0 36.35 29.49 0 0 

PI576376 0.14 0.16 weak weak 18.16 ND 0 0 

PI597957 0.3 0.16 weak 8.6 18.91 20.16 0 0 

PI533979 0.39 0.14 8.2 weak 49.92 9.27 weak weak 

PI576393 0.13 0.14 8.4 weak 8.56 17.59 weak weak 

PI533869 0.19 0.19 8.1 8.4 11.91 11.99 0 0 

PI656003 0.18 0.11 weak weak 46.1 58.28 weak weak 

PI656035 0.13 0.13 weak weak 16.21 16.58 0 0 

PI655995 0.1 0.09 8.53 9.45 50.71 44.29 weak weak 

PI642998 0.05 0.06 7.4 8.05 26.3 7.1 weak weak 

PI641836 7.5 12.54 7.9 weak 14.99 12.54 weak weak 
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Table 3. Accessions with antimicrobial properties and associated agronomic traits 
PI Common Name IZ (mm) PH (cm) DTM TGW (g) 

PI533869 Msumbji SB 117 8.25 129 104 19.26 
PI533871 M 1 8.43 118 101 29.78 
PI533948 Nebraska 6350 8.63 79 96 27.72 
PI534115 Akwu 8.20 78 113 31.20 
PI597957 SC1158 6.08 76 105 22.65 

113* 106* 23.34* 
aIZ, inhibition zones are reported as averages between replicates; PH, plant height; DTM, days to 
maturity; TGW, thousand grain weight. 
b*mean phenotype value across the entire SAP 
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SUPPLEMENTARY DATA 

Supplemental data contains results of the MIC analysis, descriptive statistics and correlations of 

compositional traits, correlations analysis with S. enterica, race and origin distribution graphs, 

Manhattan plots from additional GWAS and their corresponding QQ plots, and the significance 

and MAF of the top associations from the antimicrobial activity GWAS. Supplementary data files 

to this article, and scripts used for analysis are available at https://github.com/lkshiel/ACRE. 

https://github.com/lkshiel/ACRE
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SUPPLEMENTARY FIGURES AND TABLES 

Table S1 summarizes the distribution of samples having weak or no antimicrobial activity across 

unpigmented and pigmented testa. The majority of samples (350) show no antimicrobial activity 

and do not have a pigmented testa. Complemented by 165 samples that both do demonstrate 

antimicrobial activity and have a pigmented testa. The distribution of samples of these two traits 

follow expected relationships with germplasm that does not meet our criteria for breeding 

material. The 19 samples identified as having antimicrobial activity and unpigmented testa do 

meet the criteria of interest, however, only weak effect was observed and therefore was not 

considered any further.  

Table S2. t-test between 2014 and 2013 tannin data for the SAP 
T DF P-val CI (95%) Cohen-d BF10 Power 

t-test 0.954 510 0.34 [-1.1 – 
3.18] 

0.084 0.153 0.159 

aT, t-value; DF, degrees of freedom; P-val, p-value; CI, 95% confidence intervals of the 
difference in means; Cohen-d, Cohen d effect size; BF10, Bayes Factor of the alternative 
hypothesis; Power, achieved power of the test (= 1 – type II error) 

Table S1. Summary of S. enterica samples regarding testa and antimicrobial activity 
No activity Antimicrobial activity 

Unpigmented testa 350 19 
Pigmented testa 109 165 
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Figure S1. Relationship between antimicrobial activity against S. enterica (0 = no activity, 1= 
weak activity) and total phenol concentration. Pearson’s r = 0.77  
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Figure S2. Relationship between antimicrobial activity against S. enterica (0 = no activity, 1 = 
weak activity) and tannin content. r = 0. 63 

Total phenol (Figure S1) and tannin content (Figure S2) were found to correlate with 

antimicrobial activity. Findings suggest that the majority of accessions do not meet the criteria 

required to identify sorghum germplasm that can be used for its potential as an antimicrobial in 

feed grain.  
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Figure S3. Distribution of accession with unpigmented testa (0) and pigmented testa (1) as it 
relates to inhibition zone size (mm) measured from C. perfringens disc-diffusion assay.  
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Table S3. Summary statistics for compositional, yield, and metabolite data 
of sorghum grain 

Minimum Maximum Average 
ADF 3.03 9.39 5.32 
Amylopectin to Starch 75 102.33 86.33 
Amylopectin to Total Dry Matter 40.78 67.33 55.72 
Amylose to Starch 0.83 23.46 13.46 
Ash 1.38 1.93 1.64 
BTU 7146.63 8006.36 7434.27 
Cal 3922.98 4371.81 4079.62 
Calcium 0.01 0.02 0.01 
Copper 2.97 5.08 4.02 
Dry matter 86.63 89.27 87.85 
Fat 0.64 6.04 2.23 
Iron 15.75 68.06 39.99 
IVSD 38.6 56.06 46.23 
KCal 1797.73 2004.51 1870.32 
Lead 0.03 0.77 0.22 
Magnesium 1094.48 2258.23 1537.04 
Manganese 9.28 18.49 14.02 
Moisture 10.73 13.37 12.15 
Moisture for Ash 10.29 12.35 11.68 
Moisture for Fat 9.81 12.59 11.64 
NDF 4.5 23.68 9.23 
Nitrogen 0.91 2.6 1.8 
Nitrogen mg 4.53 13.46 9.22 
Phosphorus 0.28 0.46 0.36 
Prolamin 3.64 7.07 5.31 
Protein 6.27 16.43 11.38 
Sodium 0 0 0 
Starch 54.97 76.54 68.49 
Zinc 8.8 27.87 19.01 
GNP 79 3445 1085 
TGW (g) 5.73 56.2 23.3 
YPP 0.47 97.9 25.2 
Tannins (mg CE/g) 0 88.1 8.24 
Total phenols [GAE/g] 6.9 420 292 

a ADF, acid detergent fiber; BTU, British thermal unit; Cal, calorie; IVSD, in vitro starch. 
Disappearance/digestion; Kcal, kilocalorie; NDF, neutral detergent fiber; GNP, grain number 
panicle; TWG, thousand grain weight; YPP, yield primary panicle 



46 

Table S3 provides summary statistics of all 29 composition traits measured using NIRS. 

Correlation values and significant testing was determined to evaluate the relationships between 

antimicrobial activity against C. perfringens and each composition trait. All traits, with the 

exception of dry matter, moisture, and moisture for ash, were found to have insignificant 

correlations (Table S4). Due to the inevitable increase in the error during multivariate testing, a 

false discovery rate (FDR) correction was applied (q). Upon the FDR correction, all correlations 

between composition traits and antimicrobial activity were found insignificant (Table S4).  
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Table S4. Correlation and significance of compositional, yield, and 
metabolite traits to antimicrobial activitiy 

r value p value q value 
ADF  0 0.989 0.989 
Amylopectin to Starch -0.048 0.181 0.59 

Amylopectin to Total Dry Matter 
0.01 0.784 0.895 

Amylose to Starch  0.041 0.259 0.716 
Ash  -0.008 0.829 0.904 
BTU  0.047 0.193 0.59 
Cal  0.037 0.301 0.773 
Calcium  -0.059 0.103 0.59 
Copper  0.029 0.417 0.877 
Dry matter 0.078 0.03 0.361 
Fat  0.023 0.514 0.877 
Iron  0.019 0.598 0.895 
IVSD  0.022 0.538 0.877 
KCal  0.064 0.077 0.59 
Lead  0.021 0.56 0.877 
Magnesium  -0.023 0.526 0.877 
Manganese  0.011 0.763 0.895 
Moisture -0.078 0.03 0.361 
Moisture for Ash  -0.093 0.01 0.354 
Moisture for Fat  0.011 0.752 0.895 
NDF  -0.012 0.729 0.895 
Nitrogen  0.009 0.795 0.895 
Nitrogen mg  0.015 0.686 0.895 
Phosphorus  -0.061 0.088 0.59 
Prolamin  -0.025 0.491 0.877 
Protein  -0.006 0.858 0.908 
Sodium  0 0 0 
Starch  0.014 0.697 0.895 
Zinc  0.004 0.906 0.932 
GNP 0.00308 0.9353 - 
TGW (g) 0.00796 0.8334 - 
YPP 0.00201 0.9577 - 
Tannins (mg CE/g) 0.12 0.032 - 
Total phenols [GAE/g] -0.12 0.036 -
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a ADF, acid detergent fiber; BTU, British thermal unit; Cal, calorie; IVSD, in vitro starch. 
Disappearance/digestion; Kcal, kilocalorie; NDF, neutral detergent fiber; GNP, grain number 
panicle; TWG, thousand grain weight; YPP, yield primary panicle 

Figure S4. QQ plot for LMM of antimicrobial activity. 
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Figure S5. QQ plot for LMM with tannin covariate of antimicrobial activity. 
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Figure S6. QQ plot for LMM of tannin trait. 

Table S5. Top four significant associations for antimicrobial activity GWAS. P-Wald value 
was calculated and adjusted by the Bonferroni correction. 
Chromosome SNP Position allele1 allele0 MAF p_wald 

2 S2_8924006 8924006 C T 0.06 2.31E-08 
4 S4_64038743 64038743 T G 0.051 8.13E-08 
4 S4_64439967 64439967 C A 0.15 8.92E-08 
10 S10_56476103 56476103 T G 0.055 1.48E-08 
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Figure S7. Distribution and density of accessions that have both favorable alleles at SNPs 

S2_8924006 and S10_56476103 (C/C + T/T), only S2_8934006 (C/C + G/G), only 

S10_56476103 (T/T + T/T), and neither favorable allele (T/T + G/G), across inhibition zone 

(mm). Triangles represent the mean inhibition zones for each genotype. 

Table S6. T-test comparing Wald’s p-values for SNPs in antimicrobial activity and tannin covariate 
GWAS 

T DF Tail P-Val CI 95% Cohen-D BF10 Power 

T-test -1.21 198239 Two-
sided 0.227 [-0, 0] 0.00543 0.011 0.227 
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