
Clemson University Clemson University 

TigerPrints TigerPrints 

All Theses Theses 

August 2021 

A System for Programming Anisotropic Physical Behaviour in A System for Programming Anisotropic Physical Behaviour in 

Cloth Fabric Cloth Fabric 

Abhinit Sati 
Clemson University, asati@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses 

Recommended Citation Recommended Citation 
Sati, Abhinit, "A System for Programming Anisotropic Physical Behaviour in Cloth Fabric" (2021). All 
Theses. 3621. 
https://tigerprints.clemson.edu/all_theses/3621 

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for 
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact 
kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3621?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


A System for Programming Anisotropic Physical
Behavior in Cloth Fabric

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Science

by

Abhinit Sati

August 2021

Accepted by:

Dr. Victor Zordan, Committee Chair

Dr. Ioannis Karamouzas

Dr. Yin Yang



Abstract

We propose a method to alter the tensile properties of cloth in a user defined and purposeful

manner with the help of computer controlled embroidery. Our system is capable of infusing non-

uniform stiffening in local regions of the cloth. This has numerous applications in the manufacturing

of high performance smart textiles for the medical industry, sports goods, comfort-wear, etc where

pressure needs to be redistributed and the cloth needs to deform correctly under a given load. We

make three contributions to accomplish this: a decomposition scheme that expresses user-desired

stiffness as a density map and a directional map, a novel stitch planning algorithm that produces

a series of stitches adhering to the input stiffness maps and an inverse design based optimization

driven by a cloth simulator that automatically computes stiffness maps based on user specified

performance criteria. We perform multiple tests on physically manufactured cloth samples to show

how embroidery affects the resultant fabric to demonstrate the efficacy of our approach.

ii



Acknowledgments

I would like to sincerely thank Dr. Victor Zordan and Dr. Ioannis Karamouzas for their

constant support, for giving me this wonderful opportunity and introducing me to the exciting field of

computational fabrication. Their guidance and encouragement is what has made this work possible.

I would also like to thank them for the countless hours they spent in helping me understand difficult

concepts and all the amazing innovative discussions we have had over the last 1.5 years.

I also thank my parents for supporting me through thick and thin, and encouraging me to

pursue studies away from home.

iii



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Algorithm Design and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Stitch Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Map optimization with Inverse Design . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Stiffness tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Visual validation of anisotropic stitching . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Embroidery machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Future Work and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



List of Figures

1.1 Direction and density combine to create final embroidered cloth with rotational stretch
patterns and unique tensile properties across the resulting fabric surface. . . . . . . . 2

1.2 Potential real-world examples of the proposed technology. (Top) Concept example
for customized insole from foot impression. (Middle) Example of director’s chair
that supports pressure profile shown. (Bottom) Shoe example where stitches create
a comfortable slick and low cost upper that is also supportive like a lace or buckle. 5

3.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 A sample density map and its corresponding Floyd Steinberg dithered image . . . . 10
3.3 Left: Adaptive sampling. Centre: Sampling with FS dithering. Right: Aliasing

artifacts produced by FS dithering. Diagonal stitches are closer to each other than
the vertical and horizontal ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Left and Centre: Stitch plans generated after sampling with CVT and Adaptive
Stratified Sampling respectively. Right: Sampled points generated using CVT . . . . 13

3.5 Top: Anisotropic, Bottom: Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Left: RGB image representation of a normal map. Centre: A rough estimate of stitch

directions. Right: Normal map visualized as a vector field. . . . . . . . . . . . . . . . 15
3.7 Left: Stitch plan produces anisotropic stiffening. All stitches are biased to be horizon-

tal, Right: Stitch plan produces isotropic stiffening. Equal balance of stitches going
in all directions, totally unbiased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 Greedy TSP without 2-opt (notice the long jump stitches) . . . . . . . . . . . . . . . 17
3.9 Greedy TSP with 2-opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Greedy TSP applied to solve anisotropic stitching . . . . . . . . . . . . . . . . . . . . 18
3.11 Example paths between two vertices a and b . . . . . . . . . . . . . . . . . . . . . . 19
3.12 The stitch plan rendered with Dijkstra’s algorithm. . . . . . . . . . . . . . . . . . . . 20
3.13 A typical iteration of the cleanup procedure . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Left: Stitch plan rendered with modified TSP. Right: Stitch plan rendered with

Dijkstra’s algorithm and the post-processing cleanup routine. . . . . . . . . . . . . . 22
3.15 Top: Stitch plan. Bottom: Reversed Map of normal map from Figure 3. Left: Stitch

plan rendered with TSP. Right: Stitch plan rendered with Dijkstra’s. The reversed
map on the left has more dark pixels than the one on the right. . . . . . . . . . . . . 23

3.16 Each circle in the normal map behaves in the opposite way as the one in Figure
3. A typical direction goes normal to the surface of the circle, in contrast to the
tangential direction we saw before. The blue region does not represent any specific
stitch directions, indicating uniform stiffening. . . . . . . . . . . . . . . . . . . . . . . 24

3.17 Enforcement of no-go boundaries yields results that are consistent throughout the
stitch plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.18 Maps used to generate stitch plans shown in Figure 3.19 . . . . . . . . . . . . . . . . 26
3.19 ω values ranging from 0.0 to 1.0. Top left - 0.0 (completely anisotropic), Top right -

0.3, Bottom Left - 0.5, Bottom Centre - 0.7, Bottom Right - 1.0 (completely isotropic) 27

v



3.20 DCT basis functions from x = 0, y = 0 (no gradient change in both directions) to x
= 8, y = 8 (every consecutive pixel has a different color, maximum gradient change
for an 8X8 image) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.21 A weighted combination of these leads to a variety of 4×4 greyscale images. 3 greyscale
images can be combined together to form a normal map . . . . . . . . . . . . . . . . 30

3.22 Evolution of the optimization process for the uneven table scenario shown in Fig-
ure 3.24. At each CMA-ES iteration, we plot the final objective value when the cloth
reaches its equilibrium state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.23 Inverse design - Cube. The goal is to ensure that the cube stays upright on the edge
of the fabric. Cloth at equilibrium with (left) and without (right) optimization. . . 34

3.24 Inverse design - Uneven table. The goal is to control the stiffness of the fabric so
that the table remains balanced. Cloth at equilibrium with (left) and without (right)
optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.25 Cube optimization - Density and normal maps produced by the inverse design opti-
mization. The corresponding stitch plan is shown on the right. . . . . . . . . . . . . 35

3.26 Table optimization - Density and normal maps produced by the inverse design opti-
mization. The corresponding stitch plan is shown on the right. . . . . . . . . . . . . 35

4.1 Testing apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Left - fully isotropic planning, Right - fully anisotropic planning . . . . . . . . . . . 38
4.3 Stiffness comparison of the two extremes . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Stiffness comparison by blending omega . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Stiffness comparison for omega = 0.25, and omega = 0.75 . . . . . . . . . . . . . . . 42
4.6 Stitch plans generated with omega = 0.25 and 0.75 respectively. The normal map

enforces preferred direction to vertical for these examples. The sampling of density is
uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Left - Dijkstra’s algorithm with the post processing cleanup routine, Right - TSP with
anisotropic cost function. Red segments indicate off-directional stitches. Made with
a uniform density sampling with the cone normal map. . . . . . . . . . . . . . . . . . 43

4.8 Left - Dijkstra’s algorithm with the post processing cleanup routine, Right - TSP with
anisotropic cost function. Green segments indicate off-directional stitches. Made with
a uniform density sampling with the polka dot normal map. . . . . . . . . . . . . . . 43

4.9 The embroidery machine in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 Left - Polka dot plan, Right - Cone plan . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 This example shows an anisotropic stitched fabric under a loaded condition. This

image, and the video, show that the 3D shape of this tiny “tent” is affected by the
stitching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Chapter 1

Introduction

Advancements in textile manufacturing technology have reduced a lot of manual labour

that went into the textile production process and promise a future where entire garments can be

produced by a single machine. These whole garment knitting machines are computers that read in

knit instructions to fabricate garments and look identical to how a designer chooses to visualize them

on their desktop computer or laptop. They also reduce the need for complex sewing of flat fabric

panels to produce the final 3D garment and a host of other post processing steps which require skilled

human intervention. Soon, all functional textiles consumed globally might be manufactured with

this process. Despite all these major advances, virtually all manufactured fabric products exhibit

the same mechanical properties throughout their surface. This is a byproduct of the manufacturing

process itself, since all of them (to the best of our knowledge) are woven/knitted with the same

yarn material along both the warp and weft directions. Variations in stretch can be introduced

but they remain constant along the respective axis, e.g a 4 way stretch fabric can be more flexible

along the horizontal direction and less along the vertical direction or vice-versa. In this work, we

introduce a series of techniques for altering tensile properties of fabric and provide a solution that

gives flexibility over how those properties can be controlled precisely over local regions of the fabric

surface. The result is a piece of fabric that stretches arbitrarily in arbitrary directions across it’s

surface (Figure 1.1). Our aim with this work is to build next generation ”smart-stretch” fabric that

can be programmed to adhere to desired physical properties specified by a user.

Our work is based of off [24] and colleagues approach to solving a similar set of problems,

whose work was only concerned with modifying isotropic properties of the fabric surface. The

1



Figure 1.1: Direction and density combine to create final embroidered cloth with rotational stretch
patterns and unique tensile properties across the resulting fabric surface.

2



solution we have developed aims to extend their work to also incorporate anisotropic properties

into the cloth. [24] model the problem of producing isotropic properties as a graph problem where

every vertex sampled on the fabric needs to be visited exactly once, akin to solving the Travelling

Salesmen Problem in conventional graph theory. An embroidery machine is employed to put down

stitches connecting these vertices on the fabric surface, altering its properties in the process, where

every stitch made impedes stretching when pulled. A series of stitches being embroidered on the

fabric surface can thus produce fabric samples that can stretch with variable stiffness in different

regions. The stretch along the shear direction can also be altered. [24] use a density map to control

stiffness of local regions. A density map is a grayscale image specifying how stiff a region needs

to be. Darker regions imply more stiffness (Figure 1.1). When discretizing the fabric to sample

vertices, more vertices are added to the regions containing a darker shade. Because all vertices need

to be touched at least once in order to cover the whole surface, more stitches are put down in darker

regions, which makes the area occupying those regions more stiff than others.

The path planner designed by [24] is optimized for producing stitches that make 90 degree

angles with each other. This helps distribute stitches uniformly in all directions and prevents any

kind of bias towards a specific direction. The result is a stitch plan that produces uniform stiffening

in all directions on the fabric surface. It is important to note that the stiffening can change from

region to region, but the stiffness at a certain point is the same when pulled in any direction. Hence,

this strategy produces isotropic cloth samples. To move to a solution that produces anisotropic

samples, it is imperative to control stitch direction with maximum precision. This means certain

stitches need to be biased in a specific direction, thus promoting more stiffness along those directions

leading to the formation of anisotropic samples. We encode preferred stitch direction information in

an RGB image called a normal map or direction map and interpret it as a vector field of directions

(Figure 1.1). The direction map shown in Figure 1.1 encodes a vector field that looks like a series of

concentric circles, giving the corresponding stitch plan a similar look. This extra piece of information

about preferred directions and the density map from before are the inputs our path planner is given.

There are quite a few differences between our solution and the one proposed by [24] and these will

be highlighted in greater detail in Section 3. Our solution also has the ability to smoothly move

between complete anisotropy to complete isotropy.

We also introduce an inverse design based map optimization into the pipeline. Generating

density and direction maps by hand isn’t very intuitive for most practical use cases, because it is

3



difficult to predict the behaviour of the cloth given a stitch pattern. We will showcase two simple

examples to demonstrate the process of automating map making. The approach is driven by the

following philosophy - the user specifies how the cloth should behave based on given external forces

acting on it, the algorithm then computes the best density and direction maps needed to produce

the desired behaviour. We describe how a density and direction map affect the simulated cloth

in Section 3. Possible use cases of this technique include designing an ergonomic chair where the

cushion deforms such that the person sitting on it has their back upright. Designing custom shoe

insoles that respond appropriately based on a persons gait or how they run is another possible use

case (Figure 1.2).

4



Figure 1.2: Potential real-world examples of the proposed technology. (Top) Concept example for
customized insole from foot impression. (Middle) Example of director’s chair that supports pressure
profile shown. (Bottom) Shoe example where stitches create a comfortable slick and low cost upper
that is also supportive like a lace or buckle.

5



Chapter 2

Related Work

There has been a considerable amount of progress in computational techniques employed to

alter physical properties of objects made of various materials. The work of [27] demonstrates how to

obtain user-desired Poisson ratio and Young’s modulus of 3D printed micro-structures, allowing the

creation of both isotropic and an-isotropic structures. [29] and [30] demonstrate something similar,

but with rod networks forming aesthetically pleasing patterns. The work of [35] can alter mechanical

properties at the macroscopic level by doping silicone with liquid using a filament-based 3D printer.

We also see how [20] use procedural Voronoi foams to control the isotropic rigidity/flexibility of

their fabricated models. They extend this idea in [21] to fabricate orthotropic models by employing

graph algorithms to optimally orient procedural micro-structures. In the domain of textiles, other

researchers have solved a series of similar problems, including smart embroidery [31], textiles covering

3D shapes [19], 3D printing using felted fabric [28], user-assisted 3D knitting [15, 16], and 3D weaving

[34]. McCann and colleagues [22, 25, 26, 17] have formalized machine knitting by developing knit

compilers and several other techniques that convert 3D meshes to knit patterns that can be executed

by industrial knitting machines. The visual knitting programming interface proposed by them lets

non experts design custom patterns on the surface of knitted fabric produced by the machine.

However, none of these techniques have the ability (or intend to) to control stiffness of the resulting

fabric to the extent that our method can. Closest to our work is [10], whose aim was to create 3D

shapes out of flat pretensioned material embedded with frustum shaped tiles which snap and meet

at the right positions on actuation. The base pretensioned material wasn’t modified purposefully in

their work (is uniformly stretched), and the focus instead was to optimize the locations, shape and

6



orientations of the tiles for the best possible match of the input target 3D shape upon actuation.

In the past, [24] have been successful at producing patterns that control fabric stiffness

uniformly at the stitch level by solving a path planning problem modelled as a Travelling Salesman

Problem (TSP). Our work on the other hand, tries to tackle the non-uniform or anisotropic stitch

planning problem that was unexplored in the previous work. A piece of fabric subject to certain

forces and stretching can thus acquire a desired deformation more efficiently, similar to the work of

[36] where flat fabric panels are generated from a 3D shape and sewn together for casting.

[24] and colleagues, inspired by [27] and [30] developed a solution using similar metamaterial

altering techniques. The idea was to stack a series of embdroidered blocks (EB) on the fabric surface

with different densities. For low density regions, the EB would have fewer horizontal and vertical

accordian patterns to reduce stiffness. The number of horizontal and vertical stitches is set to be

equal to produce isotropic stiffening. An immediate drawback of this approach is the inflexibility

of the EB. Since the EB size has to be fixed before the embroidery process begins (10X10 was the

chosen size for the example) the discretization becomes extremely coarse and occupies a fixed area on

the fabric surface. To remedy these issues, [24] came up with the alternate stitch planning approach.

The stitch planning approach to embroidery provides more granular control at finer resolutions which

produces more robust designs.

7



Chapter 3

Algorithm Design and Methods

We divide the problem statement into two different parts (refer to Fig 3.1 for an overview

of the approach), each of which are described separately in the following sections. The first section

covers the stitch planning aspect of the system followed by a detailed description of the inverse

design based optimization.

3.1 Stitch Planning

We model the stitch planning problem as a variant of the Travelling Salesman graph problem,

where each sampled point on the fabric needs to be visited at least once in order to create a network

of stitches. Note that this modelling differs from the traditional definition of the problem in graph

theory, as we want to visit every point at least once and not exactly once (akin to the Minimum

Spanning Tree problem). This gives us flexibility to generate a network (a graph or a tree) as input

to the embroidery machine in contrast to a path where every point can be touched exactly once.

We will see in the following sections how this benefits the stitch planning algorithm and helps solve

some of the issues faced by the stitch planner in the previous work [24].

3.1.1 Sampling - Discretizing the fabric

This step of the process generates the vertices of the graph or stitch plan we produce as

output. These points are strategically placed according to a density map (Fig 3.2).

The density map is a grayscale image, where darker (channel values that are smaller) regions

8



Figure 3.1: Overview of the approach

9



Figure 3.2: A sample density map and its corresponding Floyd Steinberg dithered image

are interpreted as being more dense than others. The denser a region, the more points sampled in

that region with the effect of stitching being highest. They are regions that will be influenced the

most by the embroidery made on top of them, because more points equates to more stitches.

The simplest way to sample points is by dithering the input density map. Dithering with

exactly two colors - black and white (which converts the image to a bitmap image) produces the

image seen in Fig 3.3. We make use of the Floyd Steinberg dithering algorithm for this example

[32]. In trying to approximate the best representation of the image with just 2 colors, the algorithm

produces more black pixels in regions with higher density. We interpret these black pixels as the

vertices for the stitch planner.

The dithering approach to sampling is susceptible to aliasing artifacts (Fig 3.4). All points

sampled end up being mapped to the centre of a pixel in the density map image, which leads to the

formation of straight or diagonal lines when these points are joined together by the stitch planner

(Fig 3.4). Some other patterns like the reverse-L shaped staircase can be seen in the less dense

regions.

10



To solve this problem, we employ an approach that adaptively samples points in a region

based on the average density requirements of that region. We try to avoid any kind of bias by

sampling point(s) in a random location within a pixel. The density map grid (100X100, since that’s

the max our embroidery machine can support) is divided into a coarser one (eg. 10X10 - we call

this a sub-grid), average the intensity values in the sub-grid, and determine based on that, how to

scale the sub-grid. So a scale of 1.0 (which preserves the original size of 10X10 - 100 jittered points)

would be ideal for a region that is completely black (intensity 0), and a scale value of 0.7 (would

turn into 7X7 now - 49 jittered points) would be ideal for a region that is grey (intensity 128). We

compute the sub-grid size after scaling as follows,

Let p =
(255− a)

255
(3.1)

We want

s ≤ pg2 =⇒ s = bg√pc (3.2)

s represents the sub-grid size after scaling, g is the sub-grid size before scaling, and a

represents the average intensity of the region of interest. We can extend the same idea to cram in

even more points into a single pixel, by modifying the formula as follows,

s = k · bg√pc (3.3)

k is referred to as the inflation constant. We set k = 1 in the example in Fig 3.4. It can be

set to values larger than 1 for higher density requirements.

The adaptive sampling approach solves the aliasing issue, but has a tendency to sample

points in clusters too close to each other some times. When the stitch planner connects these points

by making edges between them, some edges end up crossing over each other. Ideally, we want to

sample points in a uniformly random fashion keeping the relative spacing between them equal. We

turn to using the Centroidal Voronoi Tesselation (CVT) technique to sample points [8]. Sampling

11



Figure 3.3: Left: Adaptive sampling. Centre: Sampling with FS dithering. Right: Aliasing artifacts
produced by FS dithering. Diagonal stitches are closer to each other than the vertical and horizontal
ones.

with CVT produces stitch plans where consecutive distance between stitches in a region stays roughly

the same, which helps avoid stitch crossings (Fig 3.5 and Fig 3.6). CVT can be formally described

as follows,

Given a set of voronoi regions {Vi}ki=1, the centroid of the region ci is computed using a

weighted average of the density values for the voronoi vertices given by ρ(x), where x is a voronoi

vertex forming a voronoi region of interest.

ci =

∫
Vi
xρ(x) dx∫

Vi
ρ(x) dx

(3.4)

For k generators {zi}ki=1, we need to ensure ci = zi, for all k, which means all of our sampled

points need to be close to the centre of mass of the voronoi regions. The density function ρ(x) can be

computed from the pixel values of the density map. There has been considerable progress in making

algorithms that generate CVT’s quickly and efficiently [18, 12]. We employ a simple implementation

of Lloyd’s algorithm to generate the final CVT [7]. We stop after ‖ci − zi‖2 becomes sufficiently

small.

3.1.2 Path Planning

The path planner developed by [24] produces a path as output. In conventional graph

theory, a path touches every vertex exactly once. This decision was made because the embroidery

machine used doesn’t have the ability to jump from one point to another on the fabric without

making a stitch. On the other hand, the planner we developed produces a tree as output. A tree

12



Figure 3.4: Left and Centre: Stitch plans generated after sampling with CVT and Adaptive Stratified
Sampling respectively. Right: Sampled points generated using CVT

has several advantages over a path as we will see later. Since the embroidery machine can’t make a

tree, we convert it into an Euler walk (a path where a vertex or edge can be used more than once).

A simple depth first traversal can be performed on the tree to produce a walk. This also means

that we end up making a stitch between two points twice - once while going down in the search

(exploration phase) and once while going up (during the unwinding of the recursion). This has the

positive consequence of making individual stitches stronger, since they have a tendency to break

under greater loads.

3.1.3 Cost functions and Material Properties

Before we take a look at the core planning algorithms, it is important to understand the

role of cost functions and the physical changes they bring about. The previous work [24] was solely

concerned with developing a planner that could infuse isotropic changes to the cloth in varying

degrees across the fabric surface. We offer a solution that can inject isotropic as well as anisotropic

properties in the fabric and also mix the two if required. We will now describe the differences

between the two different types of stitching.

Isotropic or uniform stitching enables equal stretching in all directions at any given point

on the fabric. Anisotropic stitching enables non uniform stretching in different directions at any

given point on the fabric. Fig 3.6 shows these concepts in pictorial form. A good balance between

horizontal and vertical stitches gives us uniform stiffening, since there is no real bias in stitch direction

13



(Fig 3.6). We choose a cost function that promotes 90 degree turns between stitches. The following

cost function does the job for us,

cost(u, v,w) = −α−|w−v|β−|(v−u)·(w−v)| (3.5)

(v, w) is the stitch we want to make, with (u, v) being the predecessor stitch to (v, w). As

can be seen in the cost function, these two stitches forming a straight line or close to forming one

will be penalized. α and β control the importance of the two cost terms.

For anisotropic stitching, we introduce the concept of a direction or normal map (Section

3.1.4). This map is an RGB image that encodes a vector field which is used to lookup preferred stitch

direction at a given point on the fabric (Fig 3.7). For most cases where a normal map is employed,

we get some sort of bias in stitch direction, giving us non uniform or anisotropic properties (stretch

along all directions is not the same at every point). The following cost function is employed to

produce this effect,

cost(u, v, n) = −α−|v−u|β|(v−u)·n| (3.6)

(u, v) is the stitch we want to make, and n is the preferred direction at point u, computed

from the normal map. We flip the sign of the exponent on β this time, to encourage (u, v) to align

with n. Results can be seen in Figure 6 (left).

3.1.4 Normal maps

We make use of normal maps to encode directional information [3]. Every point we sample

on the fabric gets mapped to a direction that needs to be followed at that point, or the direction

a stitch made from that point needs to head toward. Note that this is just a preference, and the

planner may not always be in a position to follow the preferred direction exactly as is. We use the

following formulas to convert RGB values to 2D direction vectors.

Direction vector ~n is given by,

14



Figure 3.5: Top: An example of an anisotropic pattern. Bottom: An example of an isotropic pattern.
The length of the arrows denote magnitude of stiffness along the direction pointed to by the arrow

Figure 3.6: Left: RGB image representation of a normal map. Centre: A rough estimate of stitch
directions. Right: Normal map visualized as a vector field.

~n =

 nx

ny



nx =
2 · r
255
− 1, ny =

2 · g
255
− 1

r and g represent the red and green channel values respectively. This formula maps pixel

values [0, 255] to direction values [-1, 1]. Note that these formulas do not make use of the blue color

channel.

15



Figure 3.7: Left: Stitch plan produces anisotropic stiffening. All stitches are biased to be horizontal,
Right: Stitch plan produces isotropic stiffening. Equal balance of stitches going in all directions,
totally unbiased

We will refer to these directions as normals in the future. Figure 3.7 shows a visualization

of how the normals look for the given normal map.

3.1.5 Planning with TSP

In this section, we setup the path planning problem as a typical Travelling Salesman Prob-

lem, where every sampled point on the fabric needs to be visited exactly once. Specifically, we opt

for the greedy TSP technique based on the work of [4] as the previous authors did [24]. In the

greedy TSP algorithm, we try to find a ”good enough” solution, effectively making it an approxi-

mate algorithm (1.5 approximate to be precise) since finding an exact solution for tens of thousands

of vertices isn’t feasible [14].

We start by picking a vertex at random, and try to find potential candidate vertices that

can be used to make a stitch. The quality of these connections is evaluated using the cost functions

described in Section 3.1.3. We pick the vertex for which the cost value is the least at every iteration,

and repeat this process until we run out of vertices to visit. Figure 3.9 shows a stitch plan produced

with this method.

Because we are limited to only making a path, this strategy tends to produce stitch plans

with quite a few undesirable long stitches, which we also call jump stitches. Long stitches aren’t

desirable for two reasons; one - the embroidery machine we employ is limited to making stitches

at most 15 mm long and two - long stitches break more easily since majority of the load is at the

16



Figure 3.8: Greedy TSP without 2-opt (notice the long jump stitches)

centre of the stitch when it is pulled outwards. We introduce another technique to deal with long

stitches - the 2-opt algorithm. The core idea behind the 2-opt technique is if there are two pairs of

edges crossing each other in a path, the algorithm will swap them so as to get rid of the crossing.

A jump stitch is a crossing that can be resolved using this approach. The result in Figure 3.9 is

post-processed with the 2-opt algorithm to produce the result in Figure 3.10

The examples in Figures 3.9 and 3.10 produce fully isotropic cloth samples. A post-

processing solution like 2-opt is hence useful to resolve jump stitches, since the resulting swap

doesn’t bias stitches to be in a certain direction. This strategy of path planning doesn’t generalize

very well to anisotropic stitching. Figure 3.11 demonstrates this, as multiple violations of the desired

stitch direction can be seen on the fabric surface which can affect the overall quality of the samples

we physically manufacture. Resolving these issues will be our primary motivation for coming up

with the techniques described in the next section.

3.1.6 Planning with Shortest Path Trees

As we saw in the previous section, the TSP approach has a tendency to generate off-

directional and long stitches (in the case where no 2-opt is employed) we would like to avoid, even

if there are only a few of them (Figure 3.11). These stitches are difficult to resolve without adding

17



Figure 3.9: Greedy TSP with 2-opt

Figure 3.10: Greedy TSP applied to solve anisotropic stitching

18



Figure 3.11: Example paths between two vertices a and b

an extra degree of freedom - the freedom to stop at a point and continue exploration from another,

a kind of flexibility a path doesn’t offer. The best data structure for this purpose is a graph. We

continue using cost functions from section 3.1.3 to define the weight of an edge in our graph.

We would like to generate a graph that is minimal in it’s structure, and one that covers all

sampled points on the fabric, whilst keeping stitches directional and reasonably short. From the

description provided, opting for a Minimum Spanning Tree (MST) [5] approach seems ideal. We

go with a slightly different variant that goes by the name of Shortest Path Tree (SPT), for reasons

that will be elaborated later in the section. Our problem can then be formulated as a classic single

source shortest paths search, which can be solved using Dijkstra or Bellman Ford [6, 2].

Let us first try to justify negative edge weights, and then move on to the proposed solution.

In the example shown in Figure 3.12, there are two different paths going from vertex ’a’ to vertex

’b’. Let’s assume that the black colored path (composed of exactly two stitches) is shorter than the

red one. The red path might be longer in length, but if it satisfies directionality better than the

black one, we’ve got to pick it. Now, if the edge weights were positive, we would most likely opt

for the black path - it will be extremely hard to penalize stitches (a, c) and (c, b) with big positive

numbers so as to not pick the route from ’a’ to ’b’. This is where negative edge weights prove to be

useful, since they let us do the following - create arbitrarily long stitch paths that follow direction

extremely well, whilst doing so in a more ”continuous” fashion, which gives our stitch plans more

19



Figure 3.12: The stitch plan rendered with Dijkstra’s algorithm.

of a path like feel and reduce the possibility of making too many small ”branch stitches” - singular

stitches that poke out to form leaf nodes (these can be seen in the low density regions of our stitch

plans). These requirements point towards a greedy search, so we choose Dijkstra’s algorithm to

generate the SPT. The difference between Dijkstra’s algorithm and ours can be resolved with an

additional condition check in the relaxation step, where we do not update the cost of a node if it is

already a part of the SPT we are building (since the cost will only get smaller due to negative edge

weights). We opt for an even simpler approach - filtering out nodes that are part of the SPT from

the set of neighbor nodes we would like to relax in every iteration.

The algorithm does produce a reasonable looking stitch plan where both direction is followed

and stitch length is kept in check, while faking a continuous looking stitch plan. It does however,

produce some off-directional stitches, as can be seen in Figure 3.13. This isn’t a shortcoming of

our approach. A shortest path may have certain stitches that might go off-direction, since the cost

function is dependent on both the length and direction of the stitches.

The stitch plan being a tree is something we will take advantage of to get over this issue.

Unlike paths, a tree isn’t very sensitive to the removal/addition of a single edge. The core idea is

simple - remove a bad (off-directional) stitch and replace it with a good one. It is important to note

we perform this post-processing clean-up only when fully anisotropic solutions need to be produced,

since that is when directionality requirements are the most stringent.

20



Figure 3.13: A typical iteration of the cleanup procedure

Consider the example shown in Figure 3.14. In the leftmost graph, the arrow at ’f’ represents

the preferred direction. The stitch (f, e) goes orthogonal to this direction and will be flagged as

an off-directional stitch. If we were to remove stitch (f, e), we would be left with 2 connected

components, as can be seen in the centre diagram. This is because a tree does not contain any

cycles and connects all nodes to each other without any extraneous edges. Each and every edge

hence, becomes important for connectivity. The only way to restore connectivity is to make an edge

from any node in the first connected component to any other in the second. We make a stitch/edge

between the two components that gives us the least cost (refer to the getBestNode() procedure in

Algorithm 2). One of the sub-problems we need to solve to achieve this, involves labelling connected

components. There exist a variety of algorithms for connected component labelling [13]. Luckily,

we have only two of them at any given point in time, so we opt for the simplest one - a depth first

traversal. Results of the cleanup procedure can be seen in Figure 3.15 (right).

We also design a simple test to gauge the efficacy of the two proposed solutions for non-

uniform stitching. We generate a stitch plan with one of the two algorithms, and reverse the

directions of the stitches to get back the colors in the normal map to produce a “reversed map”.

The closer this reversed map is to the original normal map, the better. The colored pixels in this

reversed map correspond loosely to the sampled points on the fabric. We compute these pixel values

by comparing the similarity of the stitch direction vector at a given point with the preferred direction

21



Figure 3.14: Left: Stitch plan rendered with modified TSP. Right: Stitch plan rendered with Dijk-
stra’s algorithm and the post-processing cleanup routine.

in the normal map corresponding to that point, and use that result (ranging from 0.0 to 1.0) as

a scale factor to multiply the corresponding color in the normal map to get the final color in the

reversed map. A single point might have multiple stitches going out from it (since we have a tree

now) and these will have to be averaged out to get a final direction vector for that point. Examples

of these maps can be seen in Figure 3.16.

Algorithm 1 Stitch Planner

1: procedure plan(start, points, normal)
2: // Run Dijkstra’s to generate the SPT
3: spt← generateSPT (start, points, normal)
4: stitches← offDirection(spt)
5: // fix the off-directional stitches
6: cleanup(spt, stitches, normal)

3.1.7 SPT Implementation

In our Dijkstra implementation, we start from a random vertex as the source, sample neigh-

bors around it on a user-defined radius set to 5 units typically, and insert them into a priority queue

by assigning each of them an appropriate cost value from the cost functions described above. The

lowest cost vertex is chosen at the start of every iteration for processing, followed by the relaxation

of it’s neighbors if need be. The process terminates when there are no more vertices left to pro-

22



Figure 3.15: Top: Stitch plan. Bottom: Reversed Map of normal map from Figure 3. Left: Stitch
plan rendered with TSP. Right: Stitch plan rendered with Dijkstra’s. The reversed map on the left
has more dark pixels than the one on the right.

cess. While other approaches such as best first search can be used to generate a tree, our Dijkstra

approach produces a more continuous looking stitch plan and avoids making too many branches.

3.1.8 No go boundaries

The result produced in Figure 3.17 induces some inconsistencies in the stitch plan on the

circular regions. Ideally, the circular regions should have more or less the same patterns woven over

the area they occupy on the fabric. However, when observed closely, we find out that the two circles

at the top and one at the center have stitches crossing over their centres, an artifact not seen in

the bottom two circles. This leads to the formation of soft spots at the centres of the two circles

at the bottom - it’s easy to push the fabric up, if a force were applied to it. The remaining three

circles on the other hand, would resist any kind of force applied to their centres due to the stiffness

introduced by the stitches going through them. We try to enforce certain constraints the planner

has to adhere to, and propose the usage of a ”no-go boundary” in order to obtain consistent results.

A no-go boundary/boundaries define a set of segments on the fabric, that no stitch can cross over.

Figure 3.18 shows an example where we specify no-go boundaries visually over a normal map. This

23



Algorithm 2 Cleaning up off-directional stitches

1: procedure cleanup(spt, stitches, normal)
2: for all e ∈ stitches do
3: u← e.u
4: v ← e.v
5: spt.remove(e)
6: // Label the connected components with numbers 1 and 2
7: spt.dfs(u, 1)
8: spt.dfs(v, 2)
9: // Select best from other connected component

10: ub← getBestNode(u, c1, 1)
11: vb← getBestNode(v, c2, 2)
12: if c1 < c2 then
13: nu← u
14: nv ← ub
15: else
16: nu← v
17: nv ← vb
18: // Compare costs between the old and new edge
19: w1← cost(nu, nv, normal[nu])
20: w2← cost(u, v, normal[u])
21: if w1 < w2 then
22: spt.add(edge(nu, nv))
23: else
24: spt.add(edge(u, v))

Figure 3.16: Each circle in the normal map behaves in the opposite way as the one in Figure 3.
A typical direction goes normal to the surface of the circle, in contrast to the tangential direction
we saw before. The blue region does not represent any specific stitch directions, indicating uniform
stiffening.

24



Figure 3.17: Enforcement of no-go boundaries yields results that are consistent throughout the stitch
plan

is a semi-automatic approach to solving the problem, since these segments need to be chosen by the

user via a line/segment drawing interface. We can guarantee that there wouldn’t be any stitches

going over the centres of the circles, producing soft spots in each of the circle centres.

3.1.9 Mixing Material properties and cost functions

Another advantage of using a tree structure to produce stitch plans is the generalization

capability it offers. We can seamlessly move from complete anisotropy to complete isotropy by

changing a single number ω. We use ω as an interpolation constant that can be dialed from 0.0

to 1.0 - fully anisotropic to fully isotropic respectively. Mathematically, this can be represented as

follows,

costtotal = (1− ω) · cost1 + ω · cost2. (3.7)

where cost1 and cost2 are given by equations 3.5 and 3.4 respectively. The new edge weight

will then be given by costtotal

Figure 3.19 shows some results when applying this formula to modify the cost functions

25



Figure 3.18: Maps used to generate stitch plans shown in Figure 3.19

for maps described in Figure 3.19. The pink normal map is interpreted as horizontal stitching

everywhere. The density map used is flat (no gradient change) and sampled using stratified uniform

sampling.

3.2 Map optimization with Inverse Design

As we saw in the previous sections, the density and normal map form the main constraints

our stitch planning algorithms need to adhere to. The density map specifies how many stitches need

to be made in local regions of the fabric and the normal map specifies the direction those stitches need

to head toward. These maps can become increasingly tricky to design by hand, since the resulting

outcome they have on the stitch plan being made and how they might affect different properties

of the cloth are very hard to predict. In this section, we will look at techniques for automating

the process of generating these maps based on a user defined performance criteria. The user of the

system can specify external forces being applied on the cloth and the desired deformation of the cloth

in response to those forces. An optimization algorithm then computes density and normal maps that

give a solution producing the target cloth behaviour. At the heart of this optimization algorithm is

a cloth simulator, which helps us predict how different estimations of the density and normal map

26



Figure 3.19: ω values ranging from 0.0 to 1.0. Top left - 0.0 (completely anisotropic), Top right -
0.3, Bottom Left - 0.5, Bottom Centre - 0.7, Bottom Right - 1.0 (completely isotropic)

27



affect the cloth. These estimates are iteratively tuned until the target performance on the cloth is

achieved. In the following sections, we will dive into the details of how this is accomplished.

3.2.1 Cloth Simulator

We employ a spring mass based cloth simulator for our experiments, although the optimiza-

tion technique we describe can generalize to other simulators as well by tweaking how the density

and normal maps are mapped to the cloth surface. For example, when mapping onto a spring mass

system, we change the stiffness constants of the springs that make up the cloth surface. If we were

to use a continuum based model instead, we would alter energy functions associated with different

condition functions for stretching, shearing and bending as described in [1].

The simulated cloth is a 2D lattice of points (can be thought of as a 2D grid), with each

point/vertex connected to its 8 nearest neighbors with a spring. The internal forces on a spring in

our system are governed by Hooke’s law. The force experienced by a vertex i from the influence of

vertex j in this system is given by:

fi(x) =
−k(‖xi−xj‖−L)(xi−xj)

(‖xi−xj‖)

xi, xj are the positions of vertices i and j respectively. L is the rest length (the length before

simulation starts) and k is the spring stiffness constant. As mentioned earlier, the spring stiffness

constant is the most important thing we care about for optimization. By estimating the right values

for the spring stiffness for every spring in the system, we can make the cloth behave in interesting

ways, and eventually approximate a pose that matches our target.

The 2D lattice we use for the experiments has dimensions of 30X30. For an nXn dimensional

structure we will have exactly 4n2−6n+2 springs or roughly of the order n2. Estimating a different

spring coefficient for so many springs is extremely difficult. This is the reason we turn to using basis

functions to approximate the density and normal maps and devise a scheme to map them to the

springs to estimate spring values.

3.2.2 Basis functions

A density map is a grayscale image that can be parameterized or decomposed in the fre-

quency domain using many different techniques (Wavelets, DFT, DCT, etc.). We can convert these

frequency representations to spatial ones easily to get most (if not all) grayscale images. We make

28



Figure 3.20: DCT basis functions from x = 0, y = 0 (no gradient change in both directions) to x =
8, y = 8 (every consecutive pixel has a different color, maximum gradient change for an 8X8 image)

use of the Discrete Cosine Transform representation for this task [9], a frequency decomposition

technique used heavily in JPEG image compression (Fig 2). The core idea is to break an image

down into a series of low and high frequency components and eliminate most of the high frequency

components, since the contributions made by them are more often than not insignificant. Each basis

function can be thought of as an image, and have a weight/parameter associated with it, which

signifies the contribution of that image to the final density map. These images are then combined

together linearly to produce the density map which is then mapped onto the lattice representing the

cloth in the simulator.

We apply the same procedure described above to normal maps as well. A normal map is

an RGB image specifying a vector field for stitch direction. We use the same basis functions three

times for normal maps - one for red, one for green and one for blue.

Let D ∈ [0, 255]k×k be the greyscale density map that we would like to generate. We use

the Discrete Cosine Transform (DCT) and express D as a weighted sum of k × k sinusoidal basis

images (functions) with weights wD ∈ Rk×k as follows:

D =
∑k−1
i=0

∑k−1
j=0 w

D
ijBij , where Bij = cos( (2x+1)iπ

2k ) cos( (2y+1)jπ
2k ).

Bij denotes the (i ·k+j)th basis image where 0 ≤ x, y < k, and wDij ∈ R is its corresponding

weight.

We employ a similar decomposition approach for the RGB normal map N ∈ [0, 255]3×k×k,

29



Figure 3.21: A weighted combination of these leads to a variety of 4×4 greyscale images. 3 greyscale
images can be combined together to form a normal map

where we treat each channel as a greyscale image. The weights of the corresponding bases are

wR,wG ,wB ∈ Rk×k for the red, green, and blue channel, respectively.

The DCT decomposition allows for a more confined and structured space of input maps as

compared to naively searching for pixel values of the corresponding maps.

3.2.3 Defining Performance Criteria

We define an error function to be equal to the sum of squared differences between the

estimated positions of a point on the cloth at equilibrium and the target/user defined position of

the corresponding point. The smaller this value, the better. Our objective hence, is to estimate

parameters that minimize this error function.

Etarget = min
∑
i(xi − x

′

i)
2

xi, x
′

i ∈ R3. xi - expected position, x
′

i - predicted position. It is important to note that these

positions can be for the cloth or for an object resting on a cloth for coupled simulations. The later

sections will make this idea more clear.

In summary, our design problem is defined by the following components:

• A physical system with m points having positions x ∈ R2m.

• User-defined target criteria expressed as a function Etarget : x→ R.

• An unknown greyscale density map D ∈ [0, 255]k×k expressed as a weighted combination of

k × k basis functions.

30



• An unknown normal map N ∈ [0, 255]3×k×k expressed as a weighted combination of k × k

basis functions.

3.2.4 Embroidered Cloth Simulation and Optimization

In order to estimate the stitch plan within the optimization cycle, we modify our cloth

simulator to account for the impact of the embroidery on the local tensile strength of the fabric.

We can incorporate stretch and shear forces within the simulation, computed through Hookean

springs that connect the node masses. The physical system consists of m particles organized in

a quadrilateral mesh having positions x ∈ R2m, velocities v ∈ R2m, and inertia matrix M. The

cloth is constrained in the examples we present in various configurations along the boundary. It

also experiences a gravitational force. We couple the cloth with a rigid body simulator with penalty

forces that account for self-collisions and inter-penetrations. The system evolves through a discrete

set of time samples with constant time step h according to Newton’s laws of motion.

The goal of our system is to obtain a user-specified target design. We formulate this goal

as an optimization problem

minimize
wD,wR,wG ,wB

Etarget + θfreqEfreq + θstitchesEstitches (3.8)

subject to static equilibrium,

where static equilibrium is expressed as the condition of the particles being at rest (average particle

speed is less than a small ε away from 0), and Etarget : x→ R denotes user-specified target criteria

expressed at the equilibrium state (see below for specific examples). Efreq is an energy term that

penalizes the use of high-frequency DCT basis functions as follows:

Efreq = (i+ j + 1)wij (3.9)

The constant θfreq defines the tradeoff between satisfying the target design and promoting more

compact representations (lower frequency basis images). Finally, Estitches denotes a regularization

term that penalizes large number of stitches, with the weight θstitches controlling its importance.

The fewer the number of stitches, the faster the embroidery machine prints the cloth sample. While

there are different ways to capture this objective term, here we focus on decreasing the magnitude

31



of the density map weights:

Estitches =

k−1∑
i=0

k−1∑
j=0

(wDij)
2 (3.10)

We note that the DCT decomposition allows for a more confined and structured space of

input maps as compared to seeking to minimize the objective in Equation 3.8 by directly searching

for the pixel values of the maps. Given any set of weights, the main idea of our our inverse design

formulation is to use the resulting density and normal maps to control the stiffness of the springs.

Let particles p and q be the endpoints a spring. According to Hooke’s law, the spring

potential is defined as:

1

2
k(‖xq − xp‖ − r)2, (3.11)

where xp,xq, denote the positions of the particles, r ≥ 0 is the rest length, and k is the spring

stiffness. We express the stiffness as k = kb + km, where kb ≥ 0 denotes a minimum stiffness value,

which is the same for all springs in the system, and km is the stiffness value inferred by combining

the two input maps. In particular, given the density map D, we first use bilinear warping to map xp

to D and infer a density value ρp using bilinear interpolation. After retrieving the red, green, and

blue values of particle p from the corresponding R, G, and B maps, we use the equation described

in Section 3.1.4 to determine the preferred direction np. The contribution of p to the km stiffness

value is then based on the computed density ρp and the degree of alignment of the spring’s (xq−xp)

direction with np, with less alignment leading to a stiffer spring:

kpm = ωρp + (1− ω)

∣∣∣∣ xq − xp)

‖xq − xp‖
· np

∣∣∣∣ , (3.12)

where ω regulates the randomness as communicated by the blue channel in the normal map.

We similarly compute the contribution of particle q to the km stiffness value and average the two to

get the final km value.

Given the above mapping from input maps to spring coefficients our goal is to find the

density map and normal map that meet the objective in Equation 3.8. We use CMA-ES (covariance

matrix adaptation evolution strategy) [11], which is a derivative-free optimization approach, to solve

the underlying optimization problem and find the set of weights w = {wD,wR,wG ,wB}. In our

setup, we assume that the weights can be sampled from a multivariate Gaussian distribution with

mean vector µ ∈ Rd and diagonal covariance σ2I, where σ ∈ Rd+ and d = (k×k)4. At each CMA-ES

32



Figure 3.22: Evolution of the optimization process for the uneven table scenario shown in Figure 3.24.
At each CMA-ES iteration, we plot the final objective value when the cloth reaches its equilibrium
state.

iteration we generate n candidate solutions, i.e. n combinations of density map and RGB normal

maps, by sampling n parameters from the Gaussian. We use each input map to modify the stiffness

of the cloth and run the simulation until the the physical system reaches its static equilibrium. After

assessing each solution according to Etarget, we retain the top-λ% and fit a new diagonal Gaussian

obtained from the covariance matrix by updating µ and σ based on the selected population.

3.2.5 Design Optimization

We showcase our proposed inverse design formulation on two problems, the uneven table

scenario shown in Figure 3.24 and the cube scenario shown in Figure 3.23. Since each problem

involves a coupled simulation between a rigid body and cloth, we specify the target design cost

Etarget (cf. Equation 3.8) as a function of the position of the rigid body at equilibrium.

We refer to Figure 3.22 for the convergence plot of CMA-ES in the table scenario. The goal

here is to control the tensile properties of the cloth so that the table can stay balanced even though

two of its legs are shorter than the other two. Geometrically, this means that the table top must be

parallel to the surface of the cloth at static equilibrium. This is analogous to saying that the 4 corner

points of the table need to be at the same height from the surface of the cloth. Mathematically, we

33



Figure 3.23: Inverse design - Cube. The goal is to ensure that the cube stays upright on the edge of
the fabric. Cloth at equilibrium with (left) and without (right) optimization.

Figure 3.24: Inverse design - Uneven table. The goal is to control the stiffness of the fabric so that
the table remains balanced. Cloth at equilibrium with (left) and without (right) optimization.

can describe this as follows:

Etable
target = ‖x1.y − x4.y‖2 + ‖x2.y − x3.y‖2 (3.13)

where x1, x4 and x2, x3 are adjacent to each other and represent the 4 corners of our table top.

As seen in the figure, CMA-ES quickly converges to a solution. After only 20 iterations, the target

design criteria as defined above is already met but the algorithm continues in order to find a solution

that will result in promoting low frequency basis and fewer stitches (compare the density map at 25

iterations and the one at 50 iterations where the smallest possible error is achieved).

34



Figure 3.25: Cube optimization - Density and normal maps produced by the inverse design opti-
mization. The corresponding stitch plan is shown on the right.

Figure 3.26: Table optimization - Density and normal maps produced by the inverse design opti-
mization. The corresponding stitch plan is shown on the right.

We repeat the same exercise for the second design optimization example, where the goal

is to ensure that the cube sits sturdy and upright on the edge of the cloth and doesn’t slide down

(Fig 3.23). The target function for the chair remains the same as Equation 3.13. As shown in the

figure, the CMA-ES optimization is able to generate an input stitch map that is very stiff at the

very front edge of the cloth where the box gets in contact with the fabric (Figure 3.24), with the

density being minimal in most of the other locations of the fabric. We note that such design criteria

is hard to be attained without our proposed anisotropic stiffness model that provides a localized and

precise way to control the stiffness of a fabric.

35



Chapter 4

Results and Validation

In this section, we will look at the physically manufactured versions of the digital results

presented in the previous sections. We will also show the physical tests conducted to demonstrate

the different anisotropic properties our algorithm was able to produce. The stress-strain curves of

various stitch patterns will further prove the efficacy of our approach. The embroidery machine

employed to fabricate stitch plans will also be explored briefly.

4.1 Stiffness tests

We design a simple setup to test all possible stiffening criteria. A metric we introduce for

this purpose is called Stitch Count Ratio (SCR). The SCR measures the number of stitches not

aligned in the preferred direction to stitches aligned in the preferred directions (given by the normal

map). SCR also loosely corresponds to the ω parameter we saw in Section 3 in mixing cost functions.

When ω = 0.0, we have complete anisotropy since all stitches follow the preferred direction from the

normal map. The SCR value hence should also be close to 0.0, because the number of unaligned

stitches is roughly 0. In the case of complete anisotropy, ω = 1.0 and SCR is also roughly 1.0 because

the number of unaligned and aligned stitches is equal.

We make use of a reverse lookup table to perform a simple line search to find the appropriate

alphas and betas for our cost functions. We run the stitch planner with different values for alpha, beta

and ω generated by performing an exhaustive search. Then, we handpick 3 different configurations

of these parameters (the handpicked examples are also chosen based on visual appeal), one for when

36



Figure 4.1: Testing apparatus

37



Figure 4.2: Left - fully isotropic planning, Right - fully anisotropic planning

SCR ≈ ω ≈ 0.0, the other for SCR ≈ ω ≈ 0.5 and finally for SCR ≈ ω ≈ 1.0. The intermediate

values for SCR can be computed by performing a simple linear interpolation between the parameter

vectors, which also work well in practice as our experiments here will show.

Results of our first experiment can be seen in Figure 4.3. The stitch plans used for compar-

ison can be seen in Figure 4.2. The ω values for the two plans were set to be 0.0 and 1.0 (complete

anisotropy and complete isotropy). The results show that the completely anisotropic stitch plan

resists stretching in the horizontal X direction, whereas stretches the most in the vertical Y. For the

completely isotropic plan, the stretch in the X and the Y is roughly the same, giving us the results

we expected.

In our second set of experiments, we blend ω values smoothly from 0.0 to 1.0. The target

SCR our stitch plans produce also coincides with the value of ω. We impose a condition of a

fixed number of horizontal stitches the stitch plans need to have, which we set to 1000, with the

expectation of getting the same horizontal stiffening for all plans, but a variable stiffening in the

vertical Y direction. To accomplish this, we augment the number of points sampled as we go from

complete anisotropy to complete isotropy. The rationale for this is that for complete anisotropy, all

stitches will be aligned with the preferred direction, giving us maximum stiffening in that direction.

On the other hand, for complete isotropy, roughly half the stitches will be aligned with the horizontal

38



Figure 4.3: Stiffness comparison of the two extremes

39



direction and the other half would not, which implies a need to sample double the number of points

in order to ensure the same horizontal stitch count of a 1000.

Let x be the number of points sampled for complete anisotropy. The formula for augmenting

points is given by x
′

= (ω + 1.0) · x. Figure 4.4 shows the difference in the stress-strain curves for

different values of ω used. The solid lines denote stretching along the horizontal direction, which

are roughly constant for all plans. The reason for them not being closer to each other is the noise

introduced while performing the statistical analysis of the stitch counts. In our program, every stitch

at a 45 degree angle or less with the preferred direction is classified as a horizontal stitch.

The test apparatus shown in Figure 4.1 consists of a variable set of weights attached to a

hook connecting to the piece of fabric to be tested. The fabric used in these examples is 100 mm X

100 mm. A measuring scale on the left is used to gauge the displacement of the fabric induced by

the weight.

4.2 Visual validation of anisotropic stitching

The reversed normal map described in Section 3 is a handy tool to visualize how well the

stitch planner followed direction. An important thing to note is that this validation approach can

only be used for qualitatively gauging fully anisotropic stitch plans when ω = 0.0. Figures 4.7 and

4.8 demonstrate another visualization of the two approaches employed for stitch planning. We mark

off-directional stitches with a different color (green and red).

4.3 Embroidery machine

We employ a Brother SB7900E professional embroidery machine to produce the embroidered

stitch plans. Our experiments use a medium weight 4-way elastane fabric with 50 weight poly

embroidery thread used to make the individual stitches. Based on the machine instructions, we

tension both the material and thread before commencing the embroidery process. Using a water-

soluble film backing to hold the fabric in place lead to reduction in knotting, as per our observations.

The average time for embroidery of the different examples shown in this work runs between 15-30

mins depending on complexity and topology of the print.

The machine expects a .dst file as input, a well known embroidery file format. We employ

40



Figure 4.4: Stiffness comparison by blending omega

41



Figure 4.5: Stiffness comparison for omega = 0.25, and omega = 0.75

Figure 4.6: Stitch plans generated with omega = 0.25 and 0.75 respectively. The normal map
enforces preferred direction to vertical for these examples. The sampling of density is uniform.

42



Figure 4.7: Left - Dijkstra’s algorithm with the post processing cleanup routine, Right - TSP with
anisotropic cost function. Red segments indicate off-directional stitches. Made with a uniform
density sampling with the cone normal map.

Figure 4.8: Left - Dijkstra’s algorithm with the post processing cleanup routine, Right - TSP with
anisotropic cost function. Green segments indicate off-directional stitches. Made with a uniform
density sampling with the polka dot normal map.

43



Figure 4.9: The embroidery machine in action

a program from the EmbroiderModder project on github, to convert the CSV file produced by our

stitch planning program to a dst file. The CSV file our program generates consists of a series of

points interpreted by the machine as instructions on what points to visit for making stitches. Figure

4.5 shows the machine in action.

44



Figure 4.10: Left - Polka dot plan, Right - Cone plan

45



Figure 4.11: This example shows an anisotropic stitched fabric under a loaded condition. This
image, and the video, show that the 3D shape of this tiny “tent” is affected by the stitching.

46



Chapter 5

Conclusions and Discussion

This work presented a framework for altering tensile properties of general purpose cloth

fabric in a purposeful fashion. We demonstrated a novel path planning scheme for custom embroidery

and an inverse design approach driven by optimization to assist users in their quest for finding the

optimum designs for precisely specified performance criteria. We were also successful in generalizing

the stitch planner from the previous work by [24] to produce a full range of material properties,

all the way from fully isotropic to fully anisotropic. We believe these contributions will open up

many exciting possibilities for applications in a variety of areas including healthcare, personalized

smart clothing, construction, etc and look forward to making improvements and updates to our

current work described in the following section. We will also look at the shortcomings of the present

approach and potential solutions for enhancing them.

5.1 Future Work and Limitations

5.1.1 Stitch planning limitations

The stitch planning techniques described in this work have the ability to alter tensile prop-

erties of the underlying fabric material, but only with limited precision. The Stitch Count Ra-

tio approach introduced to accomplish this task used a linear model to control the amount of

anisotropy/isotropy. From our observations, it is clear that a series of consecutive stitches oriented

in the same direction induce more stiffening than if they were disjointed. However, the SCR model

47



assumes same stiffness for both cases.

In our experiments, we also observed the formation of long straight rows of stitching at the

boundaries of the sample and in low density regions. The boundary problem arises due to the CVT

sampling technique, where points in some regions are pushed out of bounds (outside the 100X100

pixel square) to make them coincide with the centroids of the Voronoi regions. These points then

have to be clamped so that they remain in bounds and end up forming unwanted collinear patterns.

Straight long series of stitches are also more prone to snapping under bigger loads since a single stitch

bears the entire load, although the double stitching made because of the tree does help alleviate

this problem to some extent. If this artifact is found in a low density region, it induces unnecessary

stiffening in that region, a property not desirable from a low density region.

5.1.2 Performance criteria specification

We specified performance criteria for the 2 examples shown in Section 3.2.5, by asking the

optimizer to minimize distance between the top corners of the two rigid bodies (the table and cube)

residing on the surface of the cloth. The optimizer would have given us a similar result, had we

tried to minimize the angle between the top surface and the surface of the cloth (i.e parallel to the

cloth surface). These criteria were hard-coded into the program we used for optimization. In the

future, we would like to make it easier for the user to choose between different options and add more

flexibility to the process. Features such as specifying a precise Young’s modulus the cloth needs to

have in the horizontal/vertical/shear direction would also be great additions.

5.1.3 Coherence between virtual and physical reality

One of the great challenges Computer Graphics researchers have faced ever since the incep-

tion of the field is to bridge the gap between the virtual and physical. While the requirement for

most graphics applications is to be interactive and real time, accurate physics computations aren’t

always a must and can be faked using clever mathematical trickery. Computational fabrication ap-

plications pose another challenge altogether, since the simulations have to be very closely grounded

in physics so they can be replicated with precision in the real world. The cloth simulator we used

for our inverse design experiments was not calibrated with the physical cloth fabric we used for the

stitch planning experiments and although we haven’t yet fabricated physical examples yet, it is safe

48



to say that they will most likely not behave like their simulated counterparts. They do however

produce intuitive results (Section 3) that at least visually seem correct (refer to the cube stitch plan

in Section 3). An interesting future work would be to capture real cloth behaviour and replicating it

in a simulator by fitting an elastic model, for predicting deformations on arbitrary forces applied to

the surface of the cloth [23, 33]. Capturing the effect of embroidery on the cloth surface is another

challenging and (probably the most important) task, which once solved, will truly help us bridge the

gap between the virtual and physical. Measuring the corresponding Young’s modulus and Poisson

ratio’s and storing them in a material browser to enable users to discover aesthetically pleasing stitch

plans that produce desired mechanical behaviour similar to the work of [30] is another interesting

path that can be taken moving forward.

49



Bibliography

[1] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages 43–54, 1998.

[2] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

[3] James F Blinn. Simulation of wrinkled surfaces. ACM SIGGRAPH computer graphics,
12(3):286–292, 1978.

[4] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976.

[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

[6] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[7] Qiang Du, Maria Emelianenko, and Lili Ju. Convergence of the lloyd algorithm for computing
centroidal voronoi tessellations. SIAM journal on numerical analysis, 44(1):102–119, 2006.

[8] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications
and algorithms. SIAM review, 41(4):637–676, 1999.

[9] Rafael C Gonzalez, Richard E Woods, and Barry R Masters. Digital image processing third
edition. Pearson Prentice Hall, pages 743–747, 2008.

[10] Ruslan Guseinov, Eder Miguel, and Bernd Bickel. Curveups: Shaping objects from flat plates
with tension-actuated curvature. ACM Trans. Graph., 36(4):64:1–64:12, July 2017.

[11] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation, pages 75–102, 2006.

[12] James C Hateley, Huayi Wei, and Long Chen. Fast methods for computing centroidal voronoi
tessellations. Journal of Scientific Computing, 63(1):185–212, 2015.

[13] Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, and Yuyan Chao. The connected-
component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition,
70:25–43, 2017.

[14] Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied mathematics, 10(1):196–210, 1962.

[15] Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. Knitting a 3d model. In Computer
Graphics Forum, volume 27, pages 1737–1743. Wiley Online Library, 2008.

50



[16] Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. Knitty: 3d modeling of knitted animals
with a production assistant interface. In Eurographics (Short Papers), pages 17–20. Citeseer,
2008.

[17] Jenny Lin, Vidya Narayanan, and James McCann. Efficient transfer planning for flat knitting.
In Proceedings of the 2nd ACM Symposium on Computational Fabrication, pages 1–7, 2018.

[18] Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and Chenglei
Yang. On centroidal voronoi tessellation—energy smoothness and fast computation. ACM
Transactions on Graphics (ToG), 28(4):1–17, 2009.

[19] Ali Mahdavi-Amiri, Philip Whittingham, and Faramarz Samavati. Cover-it: An interactive
system for covering 3d prints. In Proceedings of the 41st Graphics Interface Conference, GI ’15,
pages 73–80, Toronto, Ont., Canada, Canada, 2015. Canadian Information Processing Society.

[20] Jonàs Mart́ınez, Jérémie Dumas, and Sylvain Lefebvre. Procedural voronoi foams for additive
manufacturing. ACM Trans. Graph., 35(4):44:1–44:12, July 2016.

[21] Jonàs Mart́ınez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. Orthotropic k-nearest
foams for additive manufacturing. ACM Transactions on Graphics (TOG), 36(4):1–12, 2017.

[22] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. A compiler for 3d machine knitting. ACM Trans. Graph.,
35(4):49:1–49:11, July 2016.

[23] Eder Miguel, Derek Bradley, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik,
Miguel A Otaduy, and Steve Marschner. Data-driven estimation of cloth simulation models. In
Computer Graphics Forum, volume 31, pages 519–528. Wiley Online Library, 2012.

[24] Ella Moore, Michael Porter, Ioannis Karamouzas, and Victor Zordan. Precision control of tensile
properties in fabric for computational fabrication. In Proceedings of the 2nd ACM Symposium
on Computational Fabrication, pages 1–7. ACM, 2018.

[25] Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann. ACM
Trans. Graph., 37(4), July 2018.

[26] Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. Visual knitting machine pro-
gramming. ACM Transactions on Graphics (TOG), 38(4):1–13, 2019.

[27] Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin.
Elastic textures for additive fabrication. ACM Trans. Graph., 34(4):135:1–135:12, July 2015.

[28] Huaishu Peng, Scott Hudson, Jennifer Mankoff, and James McCann. Soft printing with fabric.
XRDS: Crossroads, The ACM Magazine for Students, 22(3):50–53, 2016.

[29] Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert
Sumner, and Miguel A. Otaduy. Design and fabrication of flexible rod meshes. ACM Trans.
Graph., 34(4):138:1–138:12, July 2015.

[30] Christian Schumacher, Steve Marschner, Markus Gross, and Bernhard Thomaszewski. Mechan-
ical characterization of structured sheet materials. ACM Transactions on Graphics (TOG),
37(4):1–15, 2018.

[31] Georgi Stoychev, Mir Jalil Razavi, Xianqiao Wang, and Leonid Ionov. 4d origami by smart
embroidery. Macromolecular rapid communications, 38(18), 2017.

51



[32] Spencer W Thomas and Rod G Bogart. Color dithering. In Graphics Gems II, pages 72–77.
Elsevier, 1991.

[33] Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. Data-driven elastic models for cloth:
modeling and measurement. ACM transactions on graphics (TOG), 30(4):1–12, 2011.

[34] Rundong Wu, Claire Harvey, Joy Xiaoji Zhang, Sean Kroszner, Brooks Hagan, and Steve
Marschner. Automatic structure synthesis for 3d woven relief. ACM Transactions on Graphics
(TOG), 39(4):102–1, 2020.

[35] Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. Metasilicone: de-
sign and fabrication of composite silicone with desired mechanical properties. ACM Transactions
on Graphics (TOG), 36(6):240, 2017.

[36] Xiaoting Zhang, Guoxin Fang, Mélina Skouras, Gwenda Gieseler, Charlie Wang, and Emily
Whiting. Computational design of fabric formwork. 2019.

52


	A System for Programming Anisotropic Physical Behaviour in Cloth Fabric
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Related Work
	Algorithm Design and Methods
	Stitch Planning
	Map optimization with Inverse Design

	Results and Validation
	Stiffness tests
	Visual validation of anisotropic stitching
	Embroidery machine

	Conclusions and Discussion
	Future Work and Limitations

	Bibliography

