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ABSTRACT 

This study analyzes a biology inspired approach of utilizing a compliant unit 

actuator to simplify the control requirements for a soft robotic arm. A robot arm is 

constructed from a series of compliant unit actuators that precisely actuate between two 

stable states. The extended state can be characterized as a rigid link with a high bending 

stiffness. The compressed state can be characterized as a flexible joint with a low bending 

stiffness. Without the use of an external power source, the bistable mechanism remains in 

each of the stable states. The unit actuator can demonstrate pseudo-linkage kinematics 

that require less control parameters than entirely soft manipulators. An advantage of 

using compliant mechanisms to design a robotic arm is that the bending stiffness ratio 

between the extended and compressed states is related to the frame and flexural member 

geometry. Post buckling characteristics of thin flexural members, combined with a 

cantilever style frame design gives the unit actuator versatile advantages over existing 

actuator designs like layer jamming and shape memory polymers. To achieve efficient 

movement with the optimized unit actuator design, experimental validation was 

performed, and a robotic arm prototype was fabricated. The tendon-driven robotic arm 

consisted of three modules and proved the capability of transforming and rotating in the 

eight configurations. The deformations of the robotic arm are accurately predicted by the 

kinematic model and validate the compliant mechanism arm and simple control system. 

Keywords: Compliant Mechanism, Multi-Stability, Articulation, Robotic Arm 
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CHAPTER ONE 

INTRODUCTION 

Research Motivation 

The ongoing advances in biomimicry, material science, fabrication technology, 

and control theory are enabling engineers to develop soft robots (robotic manipulators) 

that can work with humans in unstructured and changing environments [1-3]. Soft robots 

can adapt and passively deform around objects in its working environment. Elastic 

material allows mechanisms to achieve soft robotic characteristics. Material is chosen 

based on its low elastic moduli and high strain rates before failure, properties that keep 

mechanisms strong and flexible [4]. Flexible linkages are safer for human robot 

interaction because they pose less of a threat to sensitive working environments like 

surgical operating rooms [5-6]. Traditional rigid link robots can produce sharp pinch 

points, disturb sensitive object in the surroundings, and get stuck in an unpredictable 

environment. Soft robotics is bridging a gap that brings smart structures and adaptability 

to tradition robotics [7].  

Implementing compliance in robotic arms designs pose challenges in the control 

and modeling process [8]. Many scientists seek soft robotic innovation by looking 

towards nature. Nature is full of flexible bodies and reconfigurable structures that are 

made of soft skins, elastic muscles, and flexible tendons. Each new material that is 

implemented into a soft structure further complicates the controls process by introducing 

underlying material properties [9]. The neural networks in biological systems 
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continuously adapt and learn to fully utilize the complex systems in an organism. In 

designing soft robots, scientists need to design preprogrammed motion patterns for 

artificial systems that are inspired by natural autonomous systems that constantly adapt. 

Nonlinear mechanics make it complicated to predict pinpoint movement in sensitive and 

unstable environments and complex control architecture needs to reflect complex 

dynamics that are affected by changing material properties. Elastic robotic bodies can 

introduce viscoelastic material properties that increase uncertainty and predictability in a 

system. The field of soft robotics is far from safe controllable commercial use. The 

possibilities of soft robotics make the future research and development of soft robotic 

systems and simplified control techniques worth pursuing.  

 The most common approach to combating soft robotic challenges is to reduce the 

degrees of freedom in a structure to increase controllability [10]. Nature supplies us with 

ample examples of compliant structures that utilize this strategy. For example, the 

octopus achieves pinpoint movements of its arm when hunting for prey. Figure 1.1 shows 

an octopus extending its arm to snatch its prey and then compressing is back so it can 

secure the prey. All this is done in 0.82 seconds. Rather than focusing on a specific end 

effector design, researchers have been drawing inspiration of the octopus’s ability to 

adjust the length and position of each of its arm segments to deploy to a specific location 

in space and wrap around a desired object. This quasi-articulated arms structure is 

achieved by controlling the stiffness of each segment throughout the entire arm. The 
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process of stiffening and relaxing individual arm segments allows the octopus to 

transform an arm of infinite degrees of freedom, to an arm of controllable degrees of 

freedom [1]. Each arm segment when stiffened acts as a rigid link; when the segment is 

relaxed, the arm segment acts as a soft joint capable of rotational movement. Through 

this process, the octopus controls its arm that compresses, elongates, and rotates on 

demand.  

 

Figure 1.1: An octopus controlling the stiffness of its arm to catch its prey. Red lines 
show rigid links and green dots show flexible joints. [12]. 

There have been four major attempts to explore the bioinspired robotic arm design 

with tunable stiffness. Layer jamming is a technique that uses overlapping flexible flaps 

to control the stiffness of a robotic arm segment [13-14]. The more flaps in an individual 
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segment that overlap, the higher the bending stiffness will be. The bending stiffness is 

controlled by overlapping flaps create a larger contact surface that increases the internal 

friction of the segment. These layers are controlled through vacuum-pressure; when a 

specific pressure is applied, the unique interactions between the layers change the 

mechanical properties of the systems. This process requires special pumps to control the 

actuation and precise sensors to detect changing pressures, causing the fabrication of such 

arm to be complex. 

 Another design utilizes low melting point materials to manipulate robotic arm 

segments. A solder-based locking joint was used to create a small-scale series of 

segments. When the solder is below the melting point, the joint is rigid. A resistive 

heating element was designed into the arm to raise the temperature above the melting 

point, transforming the rigid link into a flexible joint [15]. The third design was 

fabricated with a shape memory polymer joint. In the robotic arm joint, a heater is used to 

transition a thin polymer link into a folded state. This allows the robotic arm to change 

the stiffness of each segment to form unique configurations [16]. These three methods of 

fabricating soft robotic arms show feasibility, but introduce problems in complex 

construction, difficult kinematics, and continuous energy to transition and maintain 

changes in stiffness.  

A more recent attempt of harnessing continuous soft robotic arm capabilities used 

Kresling origami structures. Each Kresling unit exhibited predictable bistability that 
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switched the unit from a soft state of low bending stiffness to a rigid state with a high 

bending stiffness. Here, the serially connected links remained in their preset stable states 

without an external continuous power supply [1]. The prototype robotic arm proved the 

functionality of a tendon-driven robotic and posed a suitable analytical prediction model 

for the bistable mechanism. However, the arm suffered from instability when acted upon 

by disturbance forces, causing individual units to make unwanted transitions from their 

desired stable states. The reconfigurable robotic arm reduced control efforts but created 

the need for a lockable unit structure.  

 To achieve localized stiffness tuning for soft robotics in a modular and energy-

passive manner, we look to analyze and develop the bistable mechanics of a compliant 

unit actuator mechanism. Compliant mechanisms are designed around deflections of thin 

flexural members and are fabricated as one-piece plastic frames. This reduces the part 

counts of a mechanism and further simplifies the fabrication process with 3D printing. 

Bistability can be achieved by inducing deflections upon the thin links that are accurately 

controlled by rigidity of thicker frame dimensions. Introducing bistability to a soft robotic 

design will reduce the energy consumption when at rest. By serially connecting bistable 

compliant actuators, the degrees of freedom can be controlled; and a binary control 

method can be used to reduce the complexity of controlling the kinematics. The stable 

states create joints and links at desired locations about the robotic arm. This soft robotic 

design approach is unique because the stiffness tuning each unit mechanism is controlled 
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by the material properties and geometric properties of the frame, making the compliant 

actuators easily scalable for different tasks. Overall, compliant mechanisms will solve the 

complex problems in soft manipulators by reducing part counts with additive 

manufacturing, simplifying control methods with lockable equilibrium positions, and 

reducing energy consumption with bistability.  

Research Scope and Purpose 

 Constructing a robotic arm using compliant unit actuators is a complex and 

multistep task. Robotic arms require high accuracy motion sensing, automated actuation, 

closed-loop controls, and precision designs and fabrication. This thesis will focus on two 

major aspects of the robotic arm: the design and validation of a compliant unit actuator 

and the construction of a proof-of-concept robotic arm system capable of controlled 

articulations. The objectives of the finalized design are as followed:  

1. The compliant unit actuator must have a robust difference in bending stiffness 

between the two stable states. A significant difference in the bending stiffness of 

the stable states is key to performing soft robotic articulations.  

2. The compliant unit actuator must serially connect. The number of connected unit 

actuators can change based on the task of the robotic arm. Having series 

connection allows the robotic arm to be modular and adapt to the needs of an end 

user’s tasks.  
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3. The compliant unit actuator must maximize the stroke between the two stable 

states. Deployable structures are more useful with an increased range of motion 

[17].  

4. The robotic arm must articulate in an extendable, compressible, and rotatable 

fashion. Extensions, compressions, and rotation allow the robotic arm to operate 

in a single 2D planar frame.  

5. The robotic arm must not be affected by external load disturbances. In a 2D plane, 

the robotic arm can be subject to compression, tensile, and moment loads. While 

controlled loads will cause the robotic arm to reconfigure, disturbance loads 

should not break the configurations or predicted movements of the robotic arm. 

6. The compliant unit actuator must be lockable in the rigid link state and unlock 

before transitioning to the soft joint state. Locking the rigid link state builds upon 

the advances made in the Kresling origami method.  

7. The robotic arm must be controllable in all configurations. The deformation of the 

robotic arm must be consistent with a kinematic model to prove feasibility.  

Thesis Outline 

 We begin by researching background information for compliant mechanisms, 

bistability, and robotic arm articulation in chapter 2. Chapter 3 consists of the part design 

of a compliant unit actuator including the frame, locking mechanism, flexural members, 

and spine. Next, chapter 4 will detail the fabrication and assembly of the unit actuator. 
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Chapter 5 will layout the testing plans and results for the bending stiffness test, cycle test, 

and unlocking test. Chapter 6 will detail the robotic arm design and the control method. 

Chapter 7 will layout the testing plan and results robotic arm configurations test and the 

controls test. Chapter 8 will conclude the research project and introduce future research 

opportunities. 
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CHAPTER TWO 

BACKGROUND RESEARCH 

 Variable stiffness actuators (VSAs) use elastic components to change the stiffness 

of a mechanism, usually between a rigid link of high bending stiffness, and a soft joint of 

low bending stiffness [18]. Differing the stiffness allows the actuator to control its 

degrees of freedom. Instead of simply translating back-and-forth in a longitudinal 

direction, actuators can be designed to rotate as well [19]. Rotational elements are 

designed into the soft state of the mechanism and make the VSA safer. A variable 

stiffness actuator needs to meet five key design features: 

1. A robust stiffness ratio that allows the mechanism to exhibit precision tasks in a 

completely rigid, high stiffness state and allow for safe interactions in a soft, low 

stiffness state.  

2. A functional deflection range that can handle minor disturbances like impacts and 

vibration.  

3. A compact design that allows the mechanism to be used in small areas yet 

extended to provide significant reach.  

4. A low energy consumption to maintain stiffness states, best accomplished through 

bistability.  

5. A reproduceable design that makes for an easy manufacturing process.  
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Based on these five design elements, research into related topics drive this research 

thesis. The following subsections: compliant mechanisms, stability, slender beams, and 

robot arm articulation, will review the topics that played a major role in the development 

of the multi-stable, locking compliant mechanism used for a robotic arm.  

Compliant Mechanisms  

 Compliant mechanisms are structures that transfers load, movements, or energy 

through flexible components. Traditional mechanisms are designed with rigid links and 

joints that each accomplish a specific task in the machine. A spring and a hinge are 

examples of mechanical components that are commonly incorporated into traditional 

mechanism. Compliant mechanisms are designed to reduce part counts by assigning 

multiple tasks to an individual component [5, 20]. This allows compliant mechanisms to 

be efficient at accomplishing an overall task, but it increases the difficulty of designing 

such a mechanism.  

 Nature fuels the creative design of compliant mechanisms. Figure 2.1 displays 

examples of natural and man-made compliant mechanisms. The figures on the left show 

an earth worm and an octopus. The earthworm is comprised of many soft joints that keep 

its entire structure flexible while transferring loads, movement, and energy through its 

body. The octopus arm contains the same design elements as the worm and can deploys 

its arm to pinpoint locations to snatch prey. An octopus can stiffen and relax the 

individual segments that make up its arm. The stiffened segments act like rigid links and 
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the relaxed segments act like joint. By controlling the sequence of stiffened and relaxed 

arm segments, the octopus controls the degrees of freedom in its arm and deploys it with 

pinpoint accuracy.  

The photos on the right show two man-made compliant mechanisms: a bow and a 

gripper. Ancient hunters used thin wooden sections carves into wooden bows to create a 

flexible segment in the weapon. The spring like effect allowed warriors to pull back on a 

piece of string, create a deflection in the thin section of the bow, store the energy as they 

held the string back, and finally release the string and send an arrow speeding through the 

air. The gripper is a modern example of a compliant mechanism. It mimics the design of 

a set of vice grips. Instead of the pinned joints and springs in traditional vice grips, this 

design uses thin flexural members to create displacements with the deflection energy. 

Unlike the vice grips, this compliant gripper is made of a single piece of 3D printed 

polymer and creates the same force amplification as the vice grips.   
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Figure 2.1: Examples of natural and man-made compliant mechanisms. The left section 
of the figure shows the flexible body structure of a common earthworm and an octopus. 
The right section of the figure shows an ancient bow design used throughout history and 

a modern gripper mechanism used to replace a tradition set of vice grips [5].  

 Compliant mechanisms offer high precision movement, low manufacturing cost, 

and a large scalable size range. Two main concepts are fundamental to understand for 

compliant mechanisms. First, stiffness is not the same as strength [5]. Many traditional 

structures are stiff and strong. Strength is the resistance to failure and stiffness is the 

resistance to deflection. Second, mechanisms can be designed to be strong and flexible. 

This is done by decreasing the stiffness of a structure and keeping the strength high. This 

is a complicated process and requires an engineer to design around material properties, 

geometry of a structure, and boundary loading conditions.  

Stability 

  A system experiences stability when it remains in a position without the input of 

an external force. At a stable position, a mechanism will return to that position when 
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exposed to a disturbance force. A bistable mechanism contains two stable equilibrium 

points within its range of motion. The transition between stable positions can be initiated 

through a tensile or compressive force acting upon the mechanism. If the force reaches a 

critical value, the mechanism will transition into an unstable state and snap through to the 

other stable state. Figure 2.2 displays a ball on a hill analogy used to explain stable 

positions and degrees of stability.  

 

Figure 2.2: Visual ball-on-a-hill analogy used to explain the potential energy stability 
equilibrium and a valley analogy used to explain the degree of stability [21] 

 Positions A and D show stable equilibrium 1 and 2. From these positions, the ball 

can be forced to displace up the hill and still return to the original position. Position B 

shows the unstable equilibrium. An input for from either direction will push the ball down 

the hill and into another position. Position C is visually showing a ball transitioning from 

the equilibrium A to the stable equilibrium D. The C ball must be moved up to the unstable 

equilibrium B with a critical force before can transition to the next stable equilibrium. The 

vertical distance between A and B, also D and B represent the critical value needed to make 
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the ball snap through positions. Position E displays neutral stability. Given an input force 

from either direction, the ball will roll out of the position, but remain on the stable level. 

Positions F and G visually the degrees of stability by changing the curvature of the valley. 

Position F is a more stable position because the curvature is steeper compared to the valley 

at position G. Figure 2.3 shows the graphical representation of stability through force, 

energy, and stiffness curves.  

 

Figure 2.3: Bistable mechanism graphs: (a) Critical points of a force-displacement curve 
(b) potential energy curve V, force-displacement curve F, and stiffness curve k. [22-23] 

The input force is the force required to produce a specific deformation of the 

compliant mechanism. Stability is defined as the position that requires zero input force to 

keep the system in the equilibrium position. Two types of stability are displayed in figure 

2.3a: positive and negative. A position of positive stability, such as stable position 1 and 2, 

will remain in the equilibrium position when it is exposed to a small external force. The 

stroke of a bistable mechanism is calculated using the equation:  

𝛥𝛥𝛥𝛥 = 𝛥𝛥2 − 𝛥𝛥1 (2.1) 
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where Δx is the stroke, x2 is the second stable position and x1 is the first stable position. 

The stable equilibrium positions have positive stiffness and are located at the same 

displacement position as the maximum position on the stiffness graph k.  

A position of negative stability will come out of an equilibrium position when 

exposed to a small external force. This is the unstable equilibrium position. The unstable 

equilibrium position has a negative stiffness and is located at the same displacement 

position as the minimum on the stiffness graph k [23]. The critical force is the force 

required to transition a system from one stable equilibrium to another; for compliant 

mechanisms this is known as the snap through process [snap through]. The maximum input 

force must be larger than the critical force to switch equilibrium positions. Figure 2.3b 

shows that the two critical forces, the maximum force, and the minimum force, are at the 

displacement positions as the zero on the stiffness curve k. Looking at the V curve in figure 

2.3b, the area under the curve is equal to the total energy needed to transition a system from 

one stable equilibrium position to another.  

Slender Beam Buckling  

 Structures supported by a thin, slender beam can be subject to buckling under a 

critical value. Typically, engineers design structures to resist buckling. Designing a 

structure around buckling is useful within bistable mechanisms because of the post 

buckling characteristics [24]. Buckling a beam is based on the structural dimensions of 
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the of the beam and the load exerted on the beams. Euler stated that the critical buckling 

value is determined by the equation: 

𝑃𝑃𝑐𝑐𝑐𝑐 =
𝐶𝐶𝐶𝐶2𝐸𝐸𝐸𝐸
(𝐿𝐿/𝑟𝑟)2  (2.2) 

where Pcr is the critical buckling load, E is the modulus of elasticity of the column 

material, A is the cross-sectional area of the column, L is the unsupported length of the 

column, and C is the column effective length factor. It will be assumed that the end 

conditions for this thesis are fixed-fixed, giving a theoretical C value of 4 and a 

recommended design C value of 1.2 [25-26].  

 In structural engineering, beams are considered slender or short to determine their 

failure modes. Short beams fail due to crushing and slender beams fail due to buckling. A 

beam can be classified as short or slender based on its slenderness ratio [27]. Bistable 

mechanisms need to utilize slender column buckling instead of crushing to minimize the 

plastic deformation within the column material. The slenderness ratio equation is:  

𝜆𝜆 =
𝐿𝐿
𝑟𝑟

 (2.3) 

where λ is the slenderness ratio and r is the least radius of gyration. The radius of 

gyration is calculated using the equation:  

𝑟𝑟 = �𝐼𝐼
𝐸𝐸

 (2.4) 
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where I is the area moment of inertia. When the slenderness ratio of a beam exceeds 100, 

it can be predicted to fail from buckling and is classified as a slender beam [28]. A 

structural example of this phenomenon is Figure 2.4 where a mass is supported by two 

inclined beams.  

 

Figure 2.4: A bent beam structure: (a) A slider mass is supported by two inclined slender 
beams. (b) A critical force induces a buckling failure for the two slender beams, sliding 

the mass into a post-buckled state [29]. 

Figure 2.4a shows the slender beams supporting the mass and constraining the 

vertical movement of the mass. When a load is applied to the mass, the beams will 

experience compression. Assuming the symmetry of the structure, each beam will 

experience equivalent force. The vertical force can be increased until it reaches a critical 

value that will buckle the inclined beams. It is assumed that the outer ends of the column 
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are fixed ends, and the mass is treated as a slider. The critical buckling force will cause 

the mass to experience a snap through process that displaces the mass in a linear path and 

changes the stiffness of the structure, as shown in figure 2.4b. Frames can be designed to 

hold a central mass in a post-buckled configuration. In this position, the post buckling 

behavior presents the capability of soft joint like behavior including rotational 

displacement. When a compliant frame is incorporated with the slender beams, it creates 

a bistable system. To transition the mass out of the post-buckled position, a vertical force 

must be applied causing the beams to experience tension. When the tension reaches a 

critical value, the mass will snap back to the original state and resist longitudinal and 

rotational displacements.  

Robotic Arm Articulation 

 Rigid link robotic arm articulation can be modeled by the classic Denavit-

Hartenberg frame kinematics. A continuous soft robotic arm does not follow the same 

kinematics; in fact, predicting the end effector position on a soft robotic arm is 

complicated. Through localized stiffness tuning, a robotic arm can make the transition 

from a completely rigid structure to an intermediate structure to a completely soft 

structure. Figure 2.5 displays an overview of the envisioned robotic arm articulation [1]. 

We can construct a soft robotic arm by serially connecting compliant unit actuator 

modules that create soft joints and rigid links at desired positions by switching between 

the two stable states. Figure 2.5b shows how bistability and post-buckling characteristic 
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of slender beams can be used to reconfigure a robotic arm. The mechanism will remain 

rigid in an extended stable position and become soft when it is compressed to the 

compressed stable position. The unique bistability of the unit actuator supports a method 

of binary bending stiffness tuning seen in figure 2.5c. 

 

Figure 2.5: A continuous compliant robotic arm articulation method that supports 
multiple configurations. a) The modern model of a completely rigid and completely soft 
robotic arm. b) A four-module robotic arm showing multiple articulations. Each module 
has a stiffness rigid stable state and soft stable state, making the robot capable of being 
completely rigid (left) and completely soft (right). The robot arm concept has 16 (24) 

unique configurations.[1] c) The compliant unit actuator used in this study showing the 
desired switch between a soft, low bending stiffness and a rigid, high bending stiffness.   
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The following design, testing, and results of this study will lay down the 

groundwork for constructing a new hybrid robotic arm with accurately controlled 

movement and flexible capabilities.  
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CHAPTER THREE  

COMPLIANT UNIT ACTUATOR DESIGN 

 The compliant mechanism unit actuator is divided into two major components 

designed for this research: the frame and the flexural members. The following 

subsections will discuss the importance and design decisions made for each of the 

components of the mechanism. Critical dimensions will be identified for each component 

of the frame. Material and assembly considerations will follow in the fabrication chapter. 

It is important to note that the frame is not bistable on its own, neither are the flexural 

members. When the frame is linked to the flexural members, the combined system 

becomes bistable because of the mechanical performance of the frame and the post 

buckling characteristics of the thin flexural members.  

Frame 

 The frame is setup as a planar mechanism, motion is intended for longitudinal 

extension and compression along the y axis and rotation about the z axis. The frame is 

symmetric about the y axis. A layered approach was used when designing the features of 

the frame and can be seen in figure 3.1. Three layers are stacked on the z axis: the bottom 

layer is designed for the robotic arm spine control, the middle layer is the main frame, 

and the top layer is the locking layer. Dimensional drawings of the frame are in Appendix 

A. Figure 3.1 displays a labeled diagram of the frame.   
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Figure 3.1: A labeled 3D model of the unit actuator frame. a) Labeled layers of the 
actuator frame: blue is the locking layer, red is the main frame layer, and green is the 

spine control layer. b) Labeled components of the actuator frame. 

 Starting with the bottom layer, the spine guide is where the spine for the robotic 

arm travels through the frame and controls the extension and compression modes. The 

guided hole is chamfered at the entrance to make the spine insertion easier. The spine 

guide has a main cylindrical shape for the rod-like body of the spine and a rectangular cut 

out for the integrated spine tab that locks into the spine notch. This layer is 5mm thick 

because of the radial dimension of the spine. Further explanation of the spine operations 

is detailed in following sections of the robotic arm.  

 The 5mm thick middle layer is the main layer of the frame made up of the base 

and frame arms. The base consists of the flexural slots and pinholes for fabrication. The 

flexural slots are designed to be 0.05mm thinner than the flexural members. Along with 

the integrated assembly pins, the flexural slots will keep the flexural members secured 

with a press-fit assembly that prevents slipping during the extension and compression 

cycles. The flexural slots contain an inner knurling pattern. In the event of creep, the 
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plastic flexural member will slowly deform into the knurling of the frame to create a 

secure mate between the frame and the flexural member. The angle of the flexural slots is 

45 degrees with reference to the y axis. The frame shape was inspired by multi-material 

deployable structure designed by a research lab in Switzerland [30].  The design used a 

multi-material 3D printed mechanism to perform motion as a linear actuator. The 

researchers determined that a 45-degree angle is an efficient angle for actuator 

performance [30]. An angle smaller than 45 degrees would increase the stroke, increase 

the resistance to a vertical (y axis) disturbance force, but decrease the resistance to a 

horizontal (x axis) disturbance force. An angle larger than 45 degrees would increase the 

resistance to a horizontal disturbance force but decrease the resistance to a vertical force 

and decrease the stroke.  

The frame arms consist of flexural slots, pinholes, and tendon guides. The tendon 

guide is a small hole where the robotic arm tendons are threaded through for rotational 

control. Further explanation of the tendons is described in following robotic arm sections. 

The frame arms take the shape of symmetric cantilever beams. Upon a vertical force, the 

flexural members will apply a force to the end of the arms and cause them to deflect. 

Once the critical buckling load of the flexural members has been reached, the frame arms 

will return to an undeflected position that pushes the buckled flexural members into the 

compressed position. The arms act like cantilever beams that are fixed at one end of the 

base, and free at the opposite end. The arms also act like cantilever beams that are loaded 
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at the free end. The following equation was used to determine the dimensions of the 

frame arm:  

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝐿𝐿 (3.1) 

where Mmax is the max moment at the end of the beam, F is the max horizontal (x axis) 

force of the beam, and L is the length of the beam. This equation is used to solve for the 

max deflection equation:  

𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐹𝐹𝐿𝐿3

3𝐸𝐸𝐼𝐼
 (3.2) 

where E is the elastic modulus of the beam material, and I is the area moment of inertia 

of the beam. Eighty seven percent of the of the arm deflection comes from the 45-degree 

section of the arms. This conclusion was made based on calculations found in Appendix 

B. In the beam deflection equation, the most significant geometric property is the length 

of the beam, which magnifies changes to the third power. Also, according to the moment 

of inertia equation, small changes to frame arm width magnifies the change to the third 

power. These two dimensions were analyzed as critical design dimensions for testing. 

The width of the frame arm that allows for ideal end deflection is 6mm.   

 The top layer of the mechanism is the locking layer and consists of the locking tab 

and the locking arms. Locking features of the mechanism serve two purposes. In the 

extended (1) position, the actuator can be locked in a rigid state. When the locking arm 
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notch is combined with the locking tab, they serve as a defense against moment and force 

disturbances. The shape of the locking tab is identical to the cut-out notch in the locking 

arms. Key design dimensions of the features are the notch angle and shape, the notch 

width, and the locking arm angles.   

The locking arms consist of a 90-degree beam and a 45-degree beam. As the 

frame arms deflect, the locking arms will deflect too, causing the locking arms to release 

the locking notch from the locking bars. Once unlocked, the mechanism transition from 

an unstable state to the stable compressed state. The 90-degree beam defends against 

horizontal and moment loads. When the actuator experiences a moment, the locking tab 

will distribute the force from the end of the actuator to the 90-degree beam and distribute 

it about that side of the frame arm. The same concepts applied to horizontal force. The 

45-degree beam defends against vertical forces. When the actuator experiences a vertical 

force, it will be transferred from the locking notch to the 45-degree arms and distributed 

through the that side of the frame. Decreasing the angle of this beam would allow the 

actuator to resist larger vertical loads but cause the beam to be attached to a lower section 

on the frame arm. Bringing the connection point of the locking arm closer to the base of 

the frame arm would decrease the deflection range because it shortens the lever length of 

the locking arm as it distributes force to the frame arm. This deflection range is critical 

when unlocking the notch from the locking arms. This decreased deflection would 
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increase the locking force to value that makes locking and unlocking the mechanism 

difficult.  

 

Figure 3.2: Locking arm design and load distribution. 

 The locking notch has a hexagonal shape. Average unlocking force testing for 

different locking designs can be found in Appendix C. The angle of the edges where the 

notch mates with the locking arms is 45 degrees. This decision is twofold. This allows the 

faces of the notch to transfer forces to the 45-90 degree locking arms better. Also, 

increasing this angle would create a steeper angle for the locking notch plane to interact 

with the locking arm plane. A smaller surface area would be created and less friction on 

the surfaces would decrease the unlocking force. Decreasing the angle would create a 

flatter angle for the notch plane to interact with the locking arms plane, making it harder 

for locking notch to slide out of the grips of the locking arms. This would also increase 

the surface area of the notch and create more frictional force to keep the notch in the 
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locked position. The notch thickness can change the unlocking force of the mechanism. 

Decreasing the thickness of the notch in the x direction would bring the critical point of 

the notch closer the end of the locking arm, allowing less deflection to unlock. Increasing 

the thickness of the notch would increase the amount of deflection experienced by the 

locking arms and make it harder to unlock.  

Flexural Members  

 The flexural members serve a critical role in the bistable characteristics of the 

actuator. The flexural member takes the shape of a slender beams because of its post 

buckling characteristics. The three dimensions that make up the flexural are the length, 

width, and thickness. The width of the flexural was kept constant with the 5mm width of 

the frame. The length dimension drove the testing for the actuator because of its effect on 

changing the slenderness ratio. To create the assumption of a fixed-fixed configuration of 

the flexural, the member needed to be press fit into the flexural slots. Each flexural slot is 

2.5mm long and add to the supported length of the member. The unsupported length of 

the member is that part of the beam that is not fit into the slot. The unsupported 

dimension will be referred to as the length of the flexural member. Thickness is a critical 

dimension because it significantly changes the area moment of inertia of the member. 

Thickness considerations are further explained in the material considerations section.  
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Configurations 

 The frame and flexural members are designed to serially connect modules of 

actuators that can create multiple configurations. A bistable mechanism is made when the 

flexural members are combined with the frame; the mechanism can remain in an 

extended (1) position or a compressed (0) position without the need an external force. 

This allows the configurations to be describe as a binary sequence. The extended position 

takes advantage of the structural rigidity of the straight flexural members and the 

compressed position takes advantage of the post buckling soft characteristics. The 

buckled flexural members will take a double curve shape that represents the second mode 

of buckling. The number of configurations of a robotic arm can be calculated using:  

𝑁𝑁 = 2𝑛𝑛 (3.3) 

where N is the number of configurations, n is the number of actuator modules used in the 

arms, and the 2 represents the bistability of the actuator. Figure 3.3 displays the four 

configurations of a two-module arm. The four configurations create three unique lengths 

of the two-module structure. The 11 configuration is not meant to rotate. The 01, 10, and 

00 each have a unique reach when a moment is applied to rotate the 0 joint.  
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Figure 3.3: Four configuration of a two-module robotic arm  

 Figure 3.4 displays a two-module arm in an ideal 90-degree configuration. In this 

design, each 0 module ideally allows a 0-to-45-degree rotational range. The angle of 

rotation is controlled by a changing tendon length that will be talked about in the robotic 

arm section. This is due to the changing buckling modes of the flexural members. The 

members on the inside of the 90-degree rotation remain in the second, double curve 

buckling mode, while the outer members transition back to the first buckling mode under.  

 

Figure 3.4: Max ideal rotation of a (00) two module actuator.   
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Fabrication  

One compliant unit actuator module consists of two frames, four flexural 

members, and four pins. Each component is made from a different material using 

different fabrication processes. Each module is designed to be strong and flexible. 

Material strength is defined by the yield strength or the ultimate strength. The flexibility 

is defined by material stiffness or Young’s Modulus [31]. In choosing a material for the 

frame and flexural members, the Strength to Young’s ratio was calculated for a variety of 

materials. A large value for this ratio indicates that a material can be strong compared to 

the stiffness that material possesses. Various material properties and considerations can 

be found in Appendix D [32-34]. 

 The frame of the mechanism was made of Clear V4 Resin from Formlabs. This 

provided a rigid frame that was flexible enough to create the deflections needed to unlock 

the frame and produce a snap through buckling. This material is also closest to 

polypropylene, which is the recommended compliant mechanism frame material. The 

flexural members are made of high-density polyethylene (HDPE). HDPE kept the 

flexural members sturdy in the 1 position and capable of soft movements in the 0 

position. Thickness of the flexural members was a critical dimension that drove material 

decisions. The thickness of the flexural members is 0.55mm. Increasing the thickness of 

the flexural caused significant plastic deformation in the first and second buckling modes. 

Images of the plastic deformation differences in 0.55mm, 0.63mm, and 0.80mm 



 

31 

 

thicknesses can be seen in Appendix D. The assembly pins were made of thin galvanized 

steel wire. The pin material needed to be rigid enough to push through the frame pinholes 

and keep the supported flexural member length mated to the frame.  

The frame was fabricated using a Formlabs Form 2 3D printer. Its 14.5cm by 

14.5cm printing area was capable of printing multiple unit actuator frames through the 

stereolithographic (SLA) printing process. The frame was modeled in Solidworks, laid 

out for printing in Preform. The frame was printed so that the XY plane of the frame was 

on the surface of the printer. This allowed the layers of the SLA printer to build in the Z 

direction. This layout was chosen because it prevents the layers from being printed in the 

same plane that the frame arms were bending [35]. If the printed layers were in the same 

plane as the arm, bending stresses would be magnified and the actuator frame would 

approach failure quickly.  

When each of the components are fabricated, assembly can take place. First, slide 

one side of flexural members into the slots located on the frame base. Once the flexural 

members are inserted all the way in, slide the pin into the pinhole on the frame and 

through each of the slotted flexural members. Repeat this step for the other side of the 

base. Next, slide the other end of the flexural members in the slots on the frame arm. 

Once the flexural members are fully inserted, slide the pin into the pinhole on the frame 

arm and through the two flexural members. Repeat this step for the other side. While 

sliding the flexural members into the frame arm, align the locking tab into the locking 
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notch for easier precise assembly. Figure 3.5 displays an exploded view of the assembly 

components and a fully constructed two module assembly. With the actuators fabricated 

and assembled, testing and validation procedures could occur.   

 

Figure 3.5: Assembly components a) Exploded and labeled view of single unit actuator 
and b) Two module actuator assembly.   



 

33 

 

CHAPTER FOUR  

ACTUATOR EXPERIMENTAL TESTING AND RESULTS  

 Three main tests were used to analyze and validate the compliant unit actuator: 

the cycle test, the unlocking test, and the bending test. Each of these tests were used to 

measure stroke, unlocking force, variable bending stiffness, and other design 

characteristics used in the robotic arm.  

Cycle Test  

 The cycle test was used to prove the bistability of the actuator, measure the stroke, 

and determine critical values along the hysteresis loop. It was used to analyze the flexural 

length as a critical dimension. A hysteresis loop is fundamental in describing the loading 

and unloading conditions of an actuator. The cycle test is a displacement control test. The 

actuator experiences a compressive load along the y axis that displaces the actuator until 

the loading is reversed to a tensile loading that brings the actuator back to its original 

position. This process represents one cycle. The compressive and tensile loads are 

recorded and used for analysis.  

Setup 

 The equipment used in the displacement-controlled testing was an Admet 

Material Test machine, an Admet 25lb load cell, a cycle test fixture, a unit actuator, and a 

base fixture. The experimental setup is displayed in figure 4.1.  
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Figure 4.1: Testing setup for the actuator cycle test. The actuator was attached to a load 
cell with a cycle fixture to measure the compression and extension load conditions.  

 Three actuator configurations were tested: an actuator with a 15mm flexural 

length, a 18mm flexural length, and an 21mm flexural length. The thickness of the 

flexural members was 0.55mm for each configuration. The only change in the frame for 

each actuator was an increased base width to accommodate the shorter flexural lengths. 

The length and thickness of the frame arms remained constant. A custom cycle test 

fixture was developed for each configuration. This fixture mimicked the base of a unit 

actuator and connected the actuator to the load cell. A base fixture was designed for each 

configuration. This case feature kept the unit actuator specimen in a fixed position. It was 

designed in a way such that the frame arm deflection was not affected by fixing the base 

to the ground.  
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Method 

 The unit actuator undergoing testing was assembled to the test fixture as described 

in the assembly process. The cycle test fixture was then slid onto the loadcell and secured 

with a pin and fixture nut. Once the actuator and fixture were secured, the testing 

machined was zeroed to provide accurate load measurements. The actuator was then 

lowered and pressed into the base fixture. At this point the load readout expressed a non-

zero reading because of the downward displacement of the actuator. The position of the 

actuator was adjusted until the load readout was zero. The machine was zeroed again, 

now with the correct origin position and zero load. With the actuator secured and the 

machine zeroed, the cycle test could be initiated.  

The test consisted of 10 continuous cycles. Each test displaced the actuators at a 

rate of 25.4mm/min. The 15mm configuration was displaced 20.5mm, the 18mm 

configuration was displaced 22mm, and the 21mm configuration was displaced 24mm. 

The lengths were changed because of the unique stroke value for each configuration. 

Making the cycle too short could reduce the measured stroke and influence the bistability 

and making the cycle too long could induce unwanted stress by pushing the actuator past 

its stable position and creating an increasing stress on the flexural members and induce 

failure. Critical positions along the hysteresis cycle that were calculated were locations of 

maximum force, minimum force, and zero force.  
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 With the critical values, data was calculated to find the stroke length and the total 

cycle energy. The stroke was calculate using equation 4.1. The stroke length was 

compared to an ideal stroke. The ideal stroke is calculated with based on the assumption 

that the flexural lengths remain straight in the extended and compressed position. The 

ideal stroke equation is:  

𝛥𝛥𝛥𝛥𝑖𝑖 = 2𝐿𝐿 sin𝜃𝜃 (4.1) 

where Δxi is the ideal stroke and θ is the 45° flexural angle. The ideal ratio equation is:  

𝑆𝑆𝑖𝑖 =
𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥𝑖𝑖

 (4.2) 

where Si is the unitless comparison between calculated stroke and the ideal stroke. The 

length ration equation is:  

𝑆𝑆𝑙𝑙 =
𝛥𝛥𝛥𝛥
𝑙𝑙𝑡𝑡

 (4.3) 

where Sl is the unitless comparison between stroke and lt is the total length of the unit 

actuator module, 103.7mm. 

The total cycle energy was calculated by taking the integral of the curve with the 

trapezoid method to find the total area under the cycle curve: 

𝐸𝐸 = � 𝑓𝑓(𝛥𝛥)𝑑𝑑𝛥𝛥 ≈  �
𝛥𝛥𝑛𝑛 − 𝛥𝛥𝑛𝑛−1

2
[𝑓𝑓(𝛥𝛥𝑛𝑛−1) + 𝑓𝑓(𝛥𝛥𝑛𝑛)]

𝑚𝑚𝑠𝑠2

𝑚𝑚𝑠𝑠1

 
𝑚𝑚𝑠𝑠2

𝑚𝑚𝑠𝑠1
 (4.4) 
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where E is the total energy of the cycle and f(x) is the force displacement curve.  

Results  

 A hysteresis loop was developed to show the loading and unloading conditions of 

each unit actuator. The force versus displacement curves for each flexural length is 

displays in figure 5.2. The green line represents the first cycle initial loading. The blue 

line represents the average loading for following nine cycles. The red line represents the 

average unloading for the following nine cycles. The critical points for each of the ten 

cycles were not significantly affected by the standard deviation, so the average value plot 

is an accurate representation. The four critical points measured were the local maximum 

loading, the local minimum unloading, the first zero of the loading line, and the third zero 

of the unloading line.  

 

Figure 4.2: Loading and unloading cycle values for the 15mm, 18mm, and 21mm 
actuators.  
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 The maximum loading and minimum unloading measurements are displayed in 

Table 4.1 The 15mm actuator experienced the greatest compressive load at 3.925N at the 

shortest loading displacement of 2.911. The 15mm actuator also experienced the greatest 

tensile load at 1.99N at the shortest unloading displacement. The 21mm actuator 

experienced the smallest tensile load of 1.46N at the longest displacement of 17.99mm. 

Between the 15mm and 18mm actuators, there is a 0.52N difference in compressive load, 

while there is only a 0.22N difference between the 18mm and the 21mm actuators. Both 

the 18mm and 21mm actuator have slenderness ratios over 100 and the 15mm actuator 

does not. There is a 0.065N difference between the compressive loads of the 15mm and 

18mm actuator, while there is a 0.471N difference in compressive loading between the 

18mm and 21mm actuator. The maximum compressive load, Fmax, is greater than the 

maximum tensile load, Fmin, for each actuator. This shows that the actuator is more stable 

in the extended position than it is in the compressed position.  

Table 4.1 Critical loading and unloading results from the actuator 10 cycle test.  

L [mm] λ Fmax [N] xmax [mm] Fmin [N] xmin [mm] 
15 94.48 3.92 2.91 -1.99 16.76 
18 113.37 3.20 3.60 -1.93 16.99 
21 132.27 3.42 3.97 -1.46 17.99 

 
The critical calculations for the zeros are displayed in Table 4.2. The 15mm 

actuator had the shortest stroke length at 18.62mm and the 21mm actuator had the longest 

stroke length at 20.51mm. The 15mm actuator required the most energy, 0.057 J, to 
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complete a compression and extension cycle and the 21mm actuator required the least 

amount of cycle energy, 0.041J. When comparing the differing stroke to the total length 

of the unit actuator, each configuration had a stroke around 18% of the total length. The 

ideal stroke ratio shows how much of the stroke measurement is coming from the length 

of the flexural member. The 15mm actuator has the greatest ideal stroke ratio meaning 

the buckled flexural members give a stroke that is 88% of a traditional link that does not 

buckle and does not produce a curvature. As the slenderness ratio increases, this ratio 

decreases, about 10% for every 3mm. Although the 21mm actuator has the longest stroke, 

it is not fully utilizing the entire length of the flexural member.  

Table 4.2 Critical stroke results from the actuator 10 cycle test  

L [mm] λ E [J] Δx [mm] Δxi [mm] Si Sl  
15 94.48 0.057 18.62± 0.06  21.21 0.88 0.18 
18 113.37 0.042 19.30 ± 0.23 25.46 0.76 0.19 
21 132.27 0.041 20.51 ± 0.12 29.70 0.64 0.18 

 

Discussion 

A slenderness ratio over 100 can create predicted buckling failure. The three 

actuator lengths were picked to show a slenderness ratio just under 100 and two ratios 

that exceed 100. The values with the larger slenderness ratio will buckle and create a 

larger curved shape than those of smaller slenderness ratios. When the Si is decreasing, 

this shows that the actuator is pushing the flexural members deeper into the second 

buckling mode. Figure 5.3 displays samples in the compressed stable position and the 

varying flexural curvature.  
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Figure 4.3 Unit actuators in the compressed stable position. The buckled flexural 
members highlighted for the a) 15mm actuator, b) 18mm actuator, and c) 21mm actuator. 

 One of the main weaknesses in compliant mechanism is failure due to fatigue. 

The more a flexible piece of plastic bends, the greater amount of fatigue and plastic 

deformation it will experience. This experiment showed that a critical failure position on 

the unit actuator is where the flexural members attach to the base of the frame. The 

flexural members experience the greatest deformation at this area. In figure 5.3, the 

highlighted flexural members show that the 18mm and 21mm actuators have a greater 

curvature around the base frame slots than the 21mm actuator. During experimental trials 

for the cycle test, the actuators failed mostly in this location. More of the failures 

occurred with the shorter flexural lengths. Not all the flexural members would fail at 

once, typically just one per testing cycle. Even though a flexural member may break 

during a cycle test, it was discovered that the remaining functional components of the 

actuator would exhibit bistability.  

 To reduce the fatigue on the flexural members and increase the expected cycle 

life, a radius was designed into each of the flexural slots. Figure 4.4 displays the 

difference between an edged flexural slot and a radius flexural slot. The radius was meant 
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to decrease the curvature of the flexural member at the frame base location by increasing 

the radius of the first curve in the flexural member. The radius on the frame increased the 

contact surface area between the flexural member and the frame. This helped decrease the 

curvature and reduce the stress at that location. An edged corner created too much of a 

concentrated force that increased the flexural stress at base location of the frame, 

especially during the loading and unloading cycle of the 15mm and 21mm actuators. 

After this feature was added into the design of the frame before the final cycle test was 

executed.  

 

Figure 4.4 Curvature reduction in the base of the frame design, a) the radius design 
decreases curvature by increasing the flexural bend radius and b) the edge design 

increases curvature by decreasing the flexural bend radius. 

 The cycle test also showed that a shorter flexural length will give the actuator 

greater load performance. The maximum force of the 15mm actuator made it the most 

resistance to compressive loads in the extended position. The minimum force of the 

15mm actuator made it the most resistant to tensile loads in the compressed position. 

These two features caused the 15mm actuator to consume the most energy to while 
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transitioning from the stable extended equilibrium and snapping through to the stable 

compressed equilibrium. Although the 15mm actuator had slightly better load 

performances than the others, the 21mm actuator exceeded each of the other two in stroke 

and showed that an increased flexural length may reduce the fatigue in the flexural 

members because of the decreased curvature at the base of the frame.  

Bending Test 

 The bending test was used to prove the variable stiffness tuning of the actuator by 

measuring the force and displacement through a cantilever beam setup. This test was also 

used to determine the most effective extended stiffness to compressed stiffness ratio. It 

was used to analyze the flexural length as a critical dimension. A bending moment curve 

is fundamental in describing the bending stiffness of a robotic arm module. The bending 

test is a displacement control test. The actuator experiences a compressive load along the 

x axis that displaces the actuator to create a displacement angle of rotation. The 

compressive load and displacement measurement were measured and used for analysis.  

Setup 

 The equipment used in the displacement-controlled testing was an Admet 

Material Test machine, an Admet 25lb load cell, a cycle test fixture, a unit actuator 

module, and a base fixture. The experimental setup is displayed in figure 4.5. 
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Figure 4.5: Testing setup for the actuator bending test. The actuator was pinned to a load 
cell with a fixture to accurately measure the force acting on a constant point of the 

actuator.  

 Three actuator configurations were tested: an actuator with a 15mm, 18mm, and 

21mm flexural length. The thickness of the flexural members was 0.55mm for each 

configuration. The only change in the frame for each actuator was an increased base 

width to accommodate the shorter flexural lengths. The length and thickness of the frame 

arms remained constant. A custom cycle test fixture was developed for each 

configuration. One end of the fixture attached to the load cell and another end attached to 

the side of unit actuator frame arm. The fixture attached to actuator arm with a pinned 

connection to precisely load the actuator module without the test fixture slipping along 

the side of the frame. A base fixture was designed for each configuration. This case 

feature kept the unit actuator specimen in a fixed position. It was designed in a way such 

that the frame arm deflection was not affected by fixing the base to the ground.  
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The unit actuator module was assembled according to the process in the assembly 

section. The test fixture was then pinned and secured with the fixture nut to the load cell. 

A pin was used to attach the fixture to an extruded loop on the side of the end frame arm. 

The test machine was then zeroed to accurately record load values. The base fixture was 

bolted to the test machine a specific length away from the load cell to ensure the actuator 

module was in the exact stable position. This length varied with each actuator module 

because of its overall length. The position of the base aligned the actuator module 

directly under the load cell, ensuring a central load. After this, the actuator module was 

secured into the base fixture. The position of the load cell was adjusted until the unit 

actuator was perpendicular to the test load fixture and the load reading was zero. With the 

actuator secured and the machine zeroed, the cycle test could be initiated. 

Method 

 Six configurations were used in the bending test. The 14mm flexural actuator, the 

16mm actuator, and the 18mm actuator were all tested in the 1 and 0 position. A 5mm 

downward displacement was applied to the unit actuator at a rate of 25.4mm/min. This 

process was repeated five times per configuration. Once the force and displacement 

values were recorded, the effective bending stiffness was calculated by:  

𝐾𝐾𝐵𝐵 =
𝑀𝑀
Ø

=
𝐹𝐹𝐿𝐿

tan−1(𝑦𝑦/𝐿𝐿𝐵𝐵) (4.5) 
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where KB is the effective bending stiffness, M is the applied moment, Ø is the rotation 

angle, F is the reaction force, y is the downward displacement, and LB is the lateral 

distance between the applied force and the axis of rotation. To analyze the performance 

of each unit actuator module, the bending stiffness ratio was calculated using:  

𝐾𝐾 =
𝐾𝐾1
𝐾𝐾0

 (4.6) 

where K is the bending stiffness ratio, K1 is the bending stiffness in the extended stable 

state, and K0 is the bending stiffness at the compressed stable state.  

Results  

 The applied moment versus bending angle was plotted for the compressed and 

extended position for the 15mm, 18mm, and 21mm actuators. Figure 4.6 displays the 

results for each of the bending test. The green data lines show the bending tests in the 

extended position and the yellow lines show the bending tests in the compressed position.  
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Figure 4.6: Applied Moment [N-m] vs Bending Angle plot for the 15mm, 18mm, and 
21mm actuator. Each actuator length was tested in the extended position (1) and the 

compressed position (0)  

 The largest extended bending stiffness ratio was the 15mm actuator, 6.494 

N·m/rad and the smallest compressed bending stiffness ratio was the 21mm actuator at 

0.593 N·m/rad. The stiffness trends stay consistent with the slenderness ratio: as the 

slenderness ratio increases, the KB1 stiffness will increase and the KB0 stiffness will 

decrease. Although the 21mm actuator had the smallest KB1 value, its bending stiffness 

ratio was the largest. Figure 4.4 shows that the bending results for the 21mm actuator 

with the most linear trend. Since the bending stiffness calculation, the slope of each line, 
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the bending stiffness with the smallest variance will be the most repeated linear line. The 

extended position bending results show a stronger nonlinear response compared to 

compressed position.  

 Each of the extended positions show a larger resistance to small end moment 

loads. The moment to bending angle relationship becomes less linear as the end load 

increases and the actuator deflection surpasses 0.04 Rad. The resistance to rotation 

decreases causing the bending stiffness to decrease. This proves another advantage to 

adding the locking mechanism to the actuator frame, which is discussed in the next 

subsection. One motivation is adding the locking mechanism was to add extra resistance 

to an increasing end moment load. When the stiffness of the actuator begins to decrease, 

like in figure 4.4, the locking tab will transfer part of that end lock through the locking 

arms and into the more structurally supported sections of the frame. This will take away 

stress from the flexural members and further increase the rigidity of the extended 

position.  

Table 4.3: Critical bending stiffness results for the extended and compressed positions of 
the actuator bending test. 

L [mm] λ K1 [N·m/rad] K0 [N·m/rad] K10 
15 94.475 6.494 ± 0.054 1.232 ± 0.214 5.284 
18 113.371 5.173 ± 0.380 1.052 ± 0.455 4.916 
21 132.266 3.799 ± 0.288 0.593 ± 0.070 6.403 

 



 

48 

 

Discussion 

 The advantage to having an actuator that transitions to a low bending stiffness is 

to mimic the features of a soft robot. The smaller bending stiffnesses allow the arm to be 

safer to use and easier to rotate. In the compressed state, the 21mm actuator will exhibit 

the best soft robotic features. Also, it was discovered during the experiment that the 

21mm actuator frame allows for more rotational movement than the 15mm and 18mm 

actuator. Figure 4.7 displays the rotational space difference during the experiment. The 

top row shows the actuators in the nonrotated position, and the bottom row shows the 

actuators rotated five degrees. As the actuator rotates downward, the flexural members on 

the bottom will experience tension and flexural members on the top will experience 

compression. As the actuator rotates past 5 degrees, the base frame and the frame arm 

will start to interfere with the flexural members for the 18mm actuator in figure 4.7b, and 

the 15m actuator in figure 4.7c. The 21mm actuator in figure 4.7a gives the module more 

space to rotate, which will prevent the frame from contacting the flexural members. 

When the frame contacts the flexural members, like the yellow circled area in figure 4.7b, 

this increases the force needed to rotate the module and will increase the bending 

stiffness in this configuration. The larger area in the 21mm actuator prevents the two 

connected frames from making contact during rotation. The wider base frames in figure 

4.7b and 4.7c will limit rotation because they will make contact with the connected frame 

arms, creating more friction and increasing the bending stiffness in the compressed (0) 

position.  



 

49 

 

 

Figure 4.7: Rotational space differences between the a) 21mm actuator, b) 18mm 
actuator, and c) 15mm actuator. 

 Going forward with the testing, the 21mm actuator will be used because of the 

large bending stiffness ratio and the large stroke values. Even though the 21mm actuator 

does not handle the largest loads and can be pulled out of the compressed stable position 

with less force, the stroke and bending performance outweigh these short comings. The 

locking arm layer was used to reinforce the 21mm actuator. These locking arms increased 

the maximum compressive force the module could withstand and increased the bending 

resistance under large rotations. The 21mm actuator can be held in the compressed 

position by the tendons used in the robotic arm construction. The future sections will 

discuss how some of these shortcomings were addressed and how the robotic arm was 

designed using the 21mm actuator. 
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Unlocking Test 

The unlocking test was used to measure the unlocking force and the unlocking 

position of the unit actuator locking mechanism. The unlocking force should be located 

near the same displacement position as the local maximum of the cycle test. With the 

layered approach for the mechanism design, the actuator works with and without a 

locking layer. The locking test shows that the unlocking force will only change the 

maximum compressive force of the hysteresis loop. The unlocking test was a 

displacement-controlled test. A compressive load is exerted along the y axis on the unit 

actuator until the locking arms release the locking notch. The load and displacement were 

recorded.  

Setup 

 The equipment used in the displacement-controlled testing was an Admet 

Material Test machine, an Admet 25lb load cell, a load plate, a unit actuator module, and 

a base fixture. The experimental setup is displayed in figure 4.8. 



 

51 

 

 

Figure 4.8: Testing setup for the actuator unlocking test. The actuator experienced a 
compressive force until the locking tab was released from the locking arms on the 21mm 

unit actuator.  

One configuration was tested for the unlocking test. Throughout the cycle testing, 

the frame arms were not modified in the testing. Since the unlocking force is predicted to 

be larger than the max compressive force of any of the flexural member configurations, 

one 18mm actuator configuration was tested. The load plate attached to the load cell with 

a pin and a fixture nut. The load plate evenly distributed a symmetric compressive load 

onto the locked actuator. The same base fixture from the cycle test was used to fix the 

unit actuator to the ground. The fixture did not hinder the deflection of the frame arms.  

 The unit actuator module was assembled according to the methods described in 

the assembly section. The load plate was slide onto the load cell and secured with a pin 
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and fixture nut. The test machine was then zeroed to ensure accurate load measurements. 

The actuator module was set into the base fixture and positioned directly underneath the 

load plate. The load plate was then lowered down as close to the frame arms while 

keeping a zero-load reading. Once the start position was reached, the test machine was 

zeroed again, now with the correct load and position origin. With the actuator secured 

and the machine zeroed, the cycle test could be initiated. 

Method 

 Five test cycles were collected for the individual actuator module. Figure 5.6 

displays the unlocking process of the test. As the compressive force increases, the locking 

arms will deflect outward and cause the locking notch to be released by the locking arms. 

From left to right, figure 5.6 displays the locking tab aligned with the locking notch. 

Next, a downward force is applied to the actuator module and the locking arms begin to 

deflect, breaking contact with the locking tab. As the downward force increases, the 

locking arms deflect outward, and the locking tab will slide down the incline of the 

locking notch. The combination of the locking arm deflection and the locking tab sliding 

down the incline will exceed the limits of the locking notch and release the locking tab to 

a position below the locking arms. The actuator is now able to transition into the 

compressed position. The force measurements of the test will reveal the maximum force 

the actuator experiences, the unlocking force. The displacement measurements will reveal 

the exact unstable location that the actuator snaps from an extended position to a 
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compressed position. The ratio of the unlocking force and the local maximum cycle force 

was calculated using the equation: 

𝑆𝑆𝐿𝐿 =
𝐹𝐹𝑀𝑀𝑚𝑚𝑚𝑚
𝐹𝐹𝑈𝑈𝑛𝑛𝑙𝑙𝑈𝑈𝑐𝑐𝑘𝑘

 (4.7) 

where SL is the ratio of the unlocking force to the maximum cycle force, FMax is the local 

maximum cycle force, and FUnlock is the unlocking force. The ratio of the unlocking force 

to the module weight was calculated using the equation:  

𝑆𝑆𝑊𝑊 =
𝐹𝐹𝑀𝑀𝑚𝑚𝑚𝑚

𝑊𝑊𝑀𝑀𝑈𝑈𝑀𝑀𝑀𝑀𝑙𝑙𝑀𝑀
 (4.8) 

where SW is the unlocking force to the weight ratio and WModule is the weight of an 

actuator module, 0.187N.  

 

Figure 4.9: The four-step unlocking process. First, the locking notch rests in the locking 
arm cutout. Second, a compressive downward force pushes the locking arms away from 
the locking notch. Third, the compressive force reaches a maximum where the locking 
notch is at the edge of the locking arm cutout. Lastly, the locking notch is completely 

displaced from the locking arm cutout.  

Results 

The results of the unlocking test are shown in table 4.4. The 21mm actuator will 

unlock after an 18.434N compressive load. The unstable unlocking position occurred at a 
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displacement of 3.266mm. The locking mechanism allowed the actuator module to carry 

over five times the compressive loading at a frame without the locking mechanism, tested 

in the cycle test. The locking mechanism also allows the actuator module to withstand a 

compressive load almost 100 times its own weight.  

Table 4.4 Critical force results for the 21mm actuator unlocking test. 

L [mm] FUnlock [N] xUnlock [mm] WModule [N] SL SW 
21 18.434 ± 1.854 3.266 0.187 5.384 98.676 

 

Discussion 

 The cycle maximum force was 3.424N and located at a displacement of 3.971mm. 

With this design, the actuator unlocks at a position close to the local maximum force 

which proves two critical approaches to the actuator design. During the unlocking 

process, the actuator is utilizing the dynamics of its own frame to unlocking, not just 

surface friction. If the unlocking position were at a shorter displacement, like 1.5mm, the 

unlocking transition would not be efficiently utilizing the deflection of the frame and 

transferable force of the flexural members. The locking tab would be pressed downward 

on the locking notch until the pressure increased too much or until the locking arms 

failed. The local maximum force location from the cycle test provides an ideal deflection 

location for the locking arms to release the locking tab from the locking notch. If the 

unlocking were at a larger displacement position like 5.5mm, the same failure could 

happen. The locking arms would not experience the adequate displacement and the 
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friction created between locking tab and the locking from the downward force would 

induce a frame failure.  

 The locking ratios show the advantages of using actuator modules for a robotic 

arm. A single actuator module can support almost 100 times its own weight. This allows 

an end user to have flexibility when choosing an end effector to put on the robotic arm. 

An end effector made of similar material to the actuator module may not weight 100 

times more than the actual arm module, but this also increases the load capacity of the 

arm module.  
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CHAPTER FIVE 

ROBOTIC ARM DESIGN 

Construction 

The robotic arm fabricated in this study was comprised of three compliant 

mechanism unit modules. The modules utilized the 21mm actuator frames. This frame 

size was chosen because of the large stroke length and the high bending stiffness ratio. 

This ratio is critical for a robotic arm that functions like a soft robot. Figure 5.1 displays 

the proof-of-concept robotic arm. The arm was mounted to a quarter inch thick plexiglass 

plate, where a frame actuator fixture provided a base that bolted the robotic arm to the 

plexiglass plate. On top of the plexiglass plate, two 12-volt Tsiny gearbox motors were 

powered by a power supply set to 12V and 0.1A. Braided thread was woven through the 

frames of each actuator module, this type of thread was assumed to be inextensible so 

that the tendon control would be precise. There are two sets of tendons, one on the left 

side of the robot and one on the right side of the robot. A spine is used to manipulate the 

three modules. The spine can be pushed through each of the spine guides, where the tab 

of the spine can rotate into the notch of the frame.  
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Figure 5.1: Robotic arm construction: a) Front view of the three-module arm in the 101 
configuration. b) Top view of the experimental setup plexiglass top mount 

Configurations  

The robotic arm is set in the designated configuration by a user who manipulates 

the spine. The arm is constructed in the 111 configuration and all other configurations 

must originate from this initial configuration. Table 5.1 displays the transformation map. 

A module going from 0 to 1 is an extension and a module going from 1 to 0 is a 

compression. The first digit is the module at the base of the arm and the last digit is the 

module at the end of the arm.  
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Table 5.1 Configuration transformation map for a three-module robotic arm 

Configuration Sequence 
111 Initial Configuration 
100 111→011→001→000→100 
110 111→011→001→000→100→110 
101 111→011→001→101 
000 111→011→001→000 
001 111→011→001 
011 111→011 
010 111→011→001→000→100→110→010 

 The act of compressing a module is easier done when there is a compressed 

module in front of it. For example, 011 to 001 shows that the second module is 

compressed, while the first module stays compressed. Trying to compress a module with 

an extended module before it may cause both the modules to compress. For example, 110 

to 100 may introduce error because of the possibility of the increased compressive force 

compressing the first two modules, 110 to 000. Likewise, the act of extending a module is 

easier done when there is an extended module in front of it. For example, 100 to 110 

shows that the second module is extended, while the first module stays extended. Trying 

to extend a module with a compressed module before it may cause both the modules to 

extend. For example, 001 to 011 may introduce error because of the possibility of the 

increased tensile force to extending the first two modules, 001 to 111. These two factors 

make the transformation of the first module important in each of the transformations. 

Once the robotic arm is set in the desired configuration, the tendons can be manipulated 

to rotate the arm. Figure 5.2 displays the transformation and rotation of the 101 

configuration.  



 

59 

 

 

Figure 5.2 Transformation and rotation of the 101-configuration: a) The robotic arm 
starts in the initial 111 configurations. b) The spine compresses the first module into the 

011 configuration. c) The spine compresses the second module into the 001 
configuration. d) The spine extends the first module into the 101 configuration. e) The 

left tendon becomes longer, and the right tendon is pulled shorter as the arm rotates to the 
right. 

 The robotic arm begins in the 111 configurations. The user then manipulates the 

spine by hand through the first frame. A detailed figure of the spines notch and frames 

can be found in Appendix A. Once the notch of the spine is level with the notch cut out in 

the frame, the user rotates the spine 90 degrees counterclockwise to lock the spine notch 

into the frame. The user then pulls the spine up, compressing the module that the notched 

frame is attached to. After the desired module is compressed, the user rotates the spine 90 

degrees clockwise to release the spine notch from the frame’s notch cut out. This process 

is repeated for the second compressed module. For the extension of the first module, the 
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user manipulates the spine the same way as before. Instead of pulling to compress the 

module, the user will push down on the spine to extend the notched module. Once the 

module is extended the user rotates the spine clockwise 90 degrees to unnotched the 

frame. Now the spine can be retracted to the first extended module to increase the rigidity 

of the arm base. Once the arm is in the 101 configurations, the tendon lengths are 

changed to rotate the arm.  
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CHAPTER SIX  

ROBOTIC ARM EXPERIMENTAL TESTING AND RESULTS  

Configurations Test  

Eight configurations were tested in the configurations test. The robotic arm had 

three-unit actuator modules. Throughout the test, five significant locations were measured 

by putting high visibility markers on the arm and taking photos at each configuration. 

The changes in configuration were controlled manipulating the spine by hand. Once the 

arm was in the desired configuration, rotation was controlled by changing the length of 

the two tendons. When both tendons change at the same distance, the tendons lengths 

remain in sync with the spine configuration change. When one tendon changes to become 

longer and the other changes to become shorter, this controls the rotation of the robotic 

arm. The tendon that becomes shorter will define the direction the arm will rotate.  

Setup  

 Figure 6.1 displays the robotic arm configuration test setup. A unit actuator base 

was used to mount the robotic arm to the testing surface. Three more frame elements 

were connected in series to create three-unit actuator modules. Marker A is the origin and 

was placed at the base of the robotic arm. Markers B, C, and D were placed on the frame 

at the center of the locking notch. This location is closest to the geometric axis of rotation 

for each of the individual frame. Marker E was placed at the end of the robotic arm. This 

position represents the mounting position of an end effector. The robotic arm started in 
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the 111 position. A user needs to manipulate the spine into the desired location before the 

rotational transformation can occur.  

 

Figure 6.1: The starting 111 position of each actuator configuration. Each critical position 
was marker with a bright green marker.  

Methods  

  The main control input for the configuration tests was the change in tendon 

length. The tendons will change according to the function:  

𝛥𝛥𝑙𝑙𝑡𝑡 = 𝑛𝑛0𝛥𝛥𝑙𝑙 (6.1) 
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where Δlt is the total change in tendon length, n0 is the number of compressed modules, 

and Δl is the change in tendon length to rotate one compressed module. The right tendon 

will shorten, and left tendon will lengthen by the same length; this will cause the 

compressed modules of the arm to rotate to the right. The change in tendon length for a 

single compressed module was calculated using the geometry of the frame. A main line 

of the tendon is threaded through the frame arm. Pulling the tendon through the frame 

arm generated the required moment to rotate a compressed module. Figure 6.2 displays 

the rotation progression according to the changing tendon lengths.  

 

Figure 6.2: Rotation progression of a (0) module, red lines show the tendons and blue 
lines show critical frame dimensions. a) A compressed module with no change in tendon 

length. b) A rotated module where the left red tendon is shortened, and the right red 
tendon is lengthened. c) The triangle and rotation angle create by the tendon actuation  

 The critical dimensions of the frame, blue lines in figure 6.2, and the tendon 

length connecting the two frames, red line in figure 6.2, create a triangle that can be used 

to predict the angle of rotation. The law of cosine was used to solve for the angle of 
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rotation. It was assumed that the blue line dimensions remained constant during rotation, 

this allowed the calculation to be controlled by a single input, change in tendon length.  

The angle of rotation was calculated using the equation: 

ψ = cos−1 �−
𝑙𝑙𝑖𝑖
2 − 𝑡𝑡12 − 𝑡𝑡12

2𝑡𝑡12
� (6.2) 

where ψ is the angle of rotation, l1 is the non-rotated length of the tendon, 11.18mm, t1 is 

distance between the point of rotation and the tendon hole in the side of the frame arm, 

31.39mm. This length acts as a radius because it is assumed that the (0) module will 

rotate with a constant curvature. To allow for clearance between the two frames as the 

module rotates, the tendon length was set to change by 10mm. This change predicted that 

the actuator module will rotate 20.5 degrees. The change in tendon length, Δl, controls 

the angle of rotation. To rotate an actuator module by a smaller angle, input a smaller 

change in tendon length. To rotate an actuator module by a larger angle, input a larger 

change in tendon length. The actuator module does have a rotation limit of 25 degrees. 

When the limit is reached, the flexural members will experience increasing tension 

instead of compression, which will force the actuator out of the compressed, buckled 

stable state. To remain in a stable position, rotation must not exceed 25 degrees per 

module.  
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The transformation and rotation process were tested for all 7 rotational 

configurations. The position of each colored markers was accurately measured using a 

image processing software. These positions were compared to the kinematic model of the 

robotic arm. The kinematic model in this experiment utilizes the Denavit-Hartenberg 

(DH) convention, which represents the transformation of coordinates from the reference 

frame attached from one unit actuator module to another [36]. The transformation of 

reference frame A to frame B is calculated with the matrix:  

𝐻𝐻𝐵𝐵𝐴𝐴 = �𝑅𝑅𝐵𝐵
𝐴𝐴 𝑜𝑜𝐵𝐵𝐴𝐴

0 1
� (6.2) 

where 𝐻𝐻𝐵𝐵𝐴𝐴 is the transformation matrix from A to B, 𝑅𝑅𝐵𝐵𝐴𝐴 is the 3 x 3 representing the 

rotational transformation from A to B, and 𝑜𝑜𝐵𝐵𝐴𝐴 is the 3 x 1 column vector representing the 

translational transformation from A to B. Both the R matrix and the o vectors are 

formulated with respect to reference frame A. Since the arm is designed with planar 

mechanisms, the translational and rotational transformation occur in a single plane. A 

series of transformations describing the total configuration from the base to the end 

effector by:  

𝐻𝐻𝐸𝐸𝐴𝐴 = 𝐻𝐻𝐵𝐵𝐴𝐴𝐻𝐻𝐶𝐶𝐵𝐵𝐻𝐻𝐷𝐷𝐶𝐶𝐻𝐻𝐸𝐸𝐷𝐷 (6.3) 

where the result of this calculation is a matrix describing the final position of the position 

of reference frame E with respect to frame A.  
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 When a module is in the (0) state, a kinematic model based on the Jones 

kinematic model is used to describe the shape of the soft modules. It is assumed that 

rotation of the soft modules follows the path of a simple arc with a constant curvature 

[37-39]. The transformation matrix used for the (0) state is: 

H(0) =

⎣
⎢
⎢
⎡cos(𝜓𝜓) −sin(𝜓𝜓) cos(𝜑𝜑) sin(𝜓𝜓) sin(𝜑𝜑) −𝜅𝜅−1(sin(𝜓𝜓)(1 − cos(𝜑𝜑)))
sin(𝜓𝜓) cos(𝜓𝜓) cos(𝜑𝜑) − cos(𝜓𝜓) sin(𝜑𝜑) −𝜅𝜅−1(cos(𝜓𝜓)(1 − cos(𝜑𝜑)))

0 sin(𝜑𝜑) cos(𝜑𝜑) 𝜅𝜅−1 sin(𝜑𝜑)
0 0 0 1 ⎦

⎥
⎥
⎤
 (6.4) 

where H(0) is the transformation matrix for a compressed (0) state module, κ is the 

curvature, ψ is the angle of curvature, and φ will be zero because there is only arm 

motion in a single plane. It is assumed during the experiment that there is not out of plane 

motion, so this zero φ will simplify the (0) state transformation matrix. Also, the planar 

translation of the actuator frames can be represented by a modified fourth column that 

describes the translational movement with a relationship of the curvature and rotation 

angle.  

The modified (0) transformation matrix is:  

H(0) = �

cos(𝜓𝜓) −sin(𝜓𝜓) 0 −𝜅𝜅−1sin (𝜓𝜓)
sin(𝜓𝜓) cos(𝜓𝜓) 0 −𝜅𝜅−1cos (𝜓𝜓)

0 0 1 0
0 0 0 1

� (6.5) 

The curvature of the rotation is calculated using:  

𝜅𝜅 =
1
𝑟𝑟

 (6.6) 
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where r is the constant radius of the curve, 31.38mm. For an actuator module in the (1) 

state, it is assumed that the link will not rotate, and the corresponding matrix will 

represent the transformation:  

H(1) = �

1 0 0 0
0 1 0 L(1)
0 0 1 0
0 0 0 1

� (6.7) 

where H(1) is the transformation matrix for a module in the (1) state and L(1) is the 

extended resting length of the module, 51.83mm. 

Results  

 Overall, the kinematic model agrees with the deformations of the robotic arm. 

Figure 6.3 displays the seven rotated configurations and the predicted kinematic model. 

Configurations with one compressed module experienced a 10mm tendon change, 

configurations with two compressed modules experienced a 20mm tendon change, and 

the configuration with three compressed modules experienced a 30mm tendon change.  
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Figure 6.3: Proof of concept test for the compliant locking robotic arm with 
reconfigurable articulation. a) The initial resting position of the 110 configuration. b) The 

rotated 110 configuration, where the tendon length was changed by 10mm. Green 
markers are used for length measurements and red lines show the predicted kinematic 

model. c) Similar transformation images showing the rotated configuration and the results 
of the theoretical kinematic model.  

 Figure 6.4 displays the error analysis of the predicted kinematic model and the 

actual experimental data. All the error for markers A through D, except for the D marker 

for 100, had errors of less than 5mm. When compared to the fully extended length of the 

robotic arm, 187.01mm, that is a 2.7% error. When compared to the fully compressed 

length of the robotic arm, 126.01mm, that is a 4.0% error. Each of the configurations 

follows an increasing error trend: as the distance from the origin increases, the error will 

increase. Each of the different tendon length changes had a configuration with an error 

exceeding 10mm. The maximum error occurred at the E marker for the 101 

configurations, 11.98mm. When compared to the fully extended length, this is a 6.4% 



 

69 

 

error and compared to the fully compressed length, this is a 9.5% error. All the markers 

for the zero-load configuration were within 10% error of the total compressed robotic 

arm length.  

 

Figure 6.4: Position error for each of the marked position in for the seven configurations. 
Blue lines show the error for configurations with a single compressed module, red lines 

show the error for configurations with two compressed modules, and the green line shows 
the error for the configuration with three compressed modules.  

Loading Test 

 The compliant mechanism robotic arm provides a method of moving an end 

effector to a user’s desired location. Many end effectors exist in the robotics market, 
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which makes it necessary to test the weight capacity of the robotic arm. The robotic arm 

should be able to move an end effector with varying loads like unloaded position 

predictions. The loading test is meant to show that the compliant robotic arm can carry 

varying loads without compromising predicted kinematic values. The test will also be 

used to test the loading limits of the three-module robotic arm.  

Setup  

 The robotic arm is setup in the same as the configurations test. The 011 

configuration was examined in this test because each marker position was predicted with 

less than 5% length error maximum load capability will be determined for the minimum 

change in tendon length. The accuracy from the configuration test will help judge the 

capability of handling varying load. Figure 6.5 displays the load testing setup. The load 

was increased by adding small weight to an elastic balloon. The balloon was attached to 

the end of the robotic arm, marker E, to mimic an end effector with a load.  
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Figure 6.5 Experimental setup for the load testing  

Methods  

 To rotate the 011 configuration to the right, the right tendon was shortened 10mm 

and the left tendon was lengthened 10mm, according to equation 6.1. The kinematic 

predictions were calculated using the coordinate transformations in equation 6.3. High 

resolution pictures were taken during the rotation of the robotic arm to capture each of 

the position markers. The experimental results were measured using the same process as 

the configurations test. The test started with a load that was the same weight as the 

robotic arm, 19.5g. The load increased by a factor of the robotic arms own weight. After 
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these results were collected, the weight was increased until to find the maximum load 

until failure.  

Results  

 The robotic arm was able to safely articulate with a load that was ten times its 

own weight. Figure 6.6 displays the position error analysis as the end loads on the robotic 

arm increased. When the load factor was below three, the arm visibly rotated with the 

ease it exhibited without a load. Once the load factor exceeded 3, there was a visible 

disturbance as the arm rotated into position. Despite the decline smooth rotation, the 

robotic arm was able to transfer increasing loads with varying accuracies. After the load 

factor reached five, the E marker experienced an error range of over 10mm. The D 

marker experienced an error range of 5.0mm, the C marker experienced an error range of 

1.1mm and the B marker experienced an error range of 1.2mm. With the increasing 

variance in the E marker, it was time to test the maximum load capacity of the arm. The 

load was increased until the arm had visible trouble lifting the load to the correct position. 

When the load factor reached ten, the test concluded, and the arm could not lift larger 

loads without the failure.  
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Figure 6.6: Error analysis of the loading test 

 The loading error was compared to the unloaded condition by finding the error 

ratio. Marker B had a maximum error that was 6.2 times the unloaded error. Marker C 

had a maximum error that was 2.5 times the unloaded error. Marker D had a maximum 

error of 2.7 times the unloaded error. Marker E had a maximum error that was 3.2 times 

the unloaded error. Overall, the robotic arm could move an end load that was ten times its 

own weight to an end predicted value with an error of 10.4mm. That is a 5.3% of the 

fully extended arm length and 8.3% of the fully compressed arm length. When the load 

factor was 3, the E marker experienced large amount of error. While reviewing the 

rotation videos for each configuration, it was realized that the 3-load factor test had slack 

in the right tendon line. The tendons were tight for each of the other rotation test, but a 

small amount of slack decrease the angle of rotation in the 3-load factor test. So, this 
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error is end user error because after the 2-load factor test, the actuator arm and tendons 

were not properly reset and checked before proceeding to the next load factor.  

Discussion  

 A major problem in the field of soft robotics is modeling and controlling a system 

that continually adapts to its environment. It is necessary to simplify the control methods 

of a soft robotic manipulator without risking mechanical performance. The compliant 

locking robotic arm proved its capability of predicting the deformations of the arm with a 

kinematic model. The discrepancies between the experimental results and theoretical 

results could derive from fabrication defects, gravity, and other small actuator 

deformations due to the compliant nature. Test conducted on the robotic arm did not 

utilize any feedback control. The Arduino took a change in tendon length value and 

rotated the arm to its desired location. With a feedback system, the arm would be able to 

adjust the change in tendon length to maintain a more precise end location [40].  
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CHAPTER SEVEN 

CONCLUSION 

 This study plans a new compliant locking mechanism design that utilizes 

bistability to achieve stiffness tuning used articulate a robotic arm into unique 

configurations. The degrees of freedom of the manipulator were reduced by switching the 

actuator module between a stiff, link-like stable state (1), and a soft, joint like stable state 

(0). A bending stiffness ratio of 6.4 was achieved and helped reduce the control 

requirements by introducing bistability. The actuator module produced a stroke length of 

20.5mm, which increased the range of motion for the deployable structure. An integrated 

locking mechanism was designed into the frame. The geometry of the structure allowed 

the mechanism to unlock from the extended stable state under the natural deflection of 

the frame arms. In the extended (1) stable position, the actuator can withstand a 

compressive force almost 100 times its own weight. End users can use the modular 

design to serially connect the actuator modules to form a robotic arm.  

  A proof-of-concept robotic arm was constructed from three actuator modules that 

were tendon-driven. The robotic arm successfully validated the reconfigurable concept 

through a spine-controlled process that reconfigured the arm modules into different stable 

states. The motor-controlled tendons allowed the arm to rotate in a single plane for all 

seven of the configurations. A kinematic model predicted the movements for five critical 

points along the arm, including the end position. End positions for the seven 
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configurations were calculated and predicted by controlling that changing length of the 

tendons. Finally, the robotic arm was able to displace loads up to ten times its own 

weight, while agreeing with the kinematic model. This shows that the compliant locking 

robotic arm concept is feasible for soft robotic applications and can manipulate an end 

effector with a load accurately.  

Future Work 

 There are two ways to advance the future of this study: automating the spine 

manipulation process and developing a 3D prototype and kinematic model of the robotic 

arm. Automating the spine further develops the control process of the robotic arm. By 

designing a way to manipulate the spine through each of the actuator frame, the robotic 

arm will become fully automated. Eliminating the necessity of human interaction with the 

robot will increase the safety and performance of the robotic arm.  

 A three-dimensional design would allow the arm to deform in the XYZ direction 

instead of a single XY plane. This would increase the versatility of the robotic arm. 

Figure 7.1 displays the start of a 3D design that uses similar structural features of the 2D 

model. The model still has a base that allows the entire frame to connect to another frame 

through flexural members. The frame consists of three arm and base elements that are 

evenly arrayed, 120 degrees around a center axis. A three-prong design was chosen to 

incorporate the DH and Jones kinematic model. Three tendons, like the 3D Kresling 

robotic arm [1] can be threaded through each arm and manipulated to rotate in a three-
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dimensional space. A locking mechanism needs to be integrated into this design to further 

increase the rigidity of the mechanism. Also, further development in the implementation 

of a spine is needed to control the extension and compression configuration process.  

 

Figure 7.1 The beginning of a 3D compliant actuator design. a) The design exhibits 
bistability and can be transformed to all 8 configurations. b) The design exhibits a high 
bending stiffness in the compressed stable position and a lower bending stiffness in the 

compressed stable position.  
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Appendix A 

Dimensional Drawings  

 The critical dimensions for the unit actuator frame are displayed in figure A.1. 

These dimensions were used throughout the fabrication of the robotic arm. The SLA 

printing process was able to keep these dimensions very precise during each of the prints.  

 

Figure A.1: Frame drawing displaying key dimensions. 

 The manipulation process of the spine is displayed in figure A.2. This process was 

performed by the user manipulating the robotic arm into each of the eight configurations.  
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Figure A.2: Manipulation of the spine: a) Align the spine with the spine guide in the 
frame and push spine through. b) Align the notch with the frame spine notch and rotate 

the spine 90 degrees to lock the spine tab in the spine notch.  
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Appendix B 

Cantilever Beam Analysis 

 Figure B.1 displays the problem setup for the cantilever beam analysis. The force 

on each of the flexural member slots is assumed to be equivalent for all four slots. The 

actuator frame is symmetric and there are four critical points.  

 

Figure B.1: Cantilever beam analysis diagram 

 

Figure B.2: Decomposition of the cantilever beam frame arm. a) Cantilever beam 
diagram. b) Decomposed cantilever beam in three sections 
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 Figure B.2 displays the decomposed diagram of the forces and moment for each 

member of the cantilever beam. Assuming zero net force in the X and Y direction, the 

moment at point B is equivalent to:  

�𝑀𝑀𝐵𝐵 = −𝐹𝐹𝛥𝛥1 sin(45°) − 𝐹𝐹𝛥𝛥2 sin(45°) = −
𝐹𝐹√2

2
(𝛥𝛥1 + 𝛥𝛥2) (B.1) 

where MB is the moment at point B, F is the force transferred from the flexural members, 

x1 is the distance the force acts from point B and x2 is the distance the force acts from 

point B. The moment about point A can be calculated using the equation:  

�𝑀𝑀𝐴𝐴 = −2𝐹𝐹𝑙𝑙𝐴𝐴𝐵𝐵 (B.2) 

where MA is the moment about point A and lAB is the distance between point A and point 

B. The moment about point O is calculated using the equation:  

�𝑀𝑀𝑂𝑂 = −2𝐹𝐹𝑙𝑙𝑂𝑂𝐴𝐴 sin(45°) = −𝐹𝐹𝑙𝑙𝑂𝑂𝐴𝐴√2 (B.3) 

where MO is the moment about point O and lOA is the distance between point O and A. 

The deflection of the BC section can be calculated using the equation: 

𝜕𝜕𝐵𝐵𝐶𝐶 =
𝑑𝑑𝑈𝑈𝐵𝐵𝐶𝐶
𝑑𝑑𝐹𝐹

=
1
𝐸𝐸𝐼𝐼
� 𝑀𝑀𝐵𝐵

𝑙𝑙𝐵𝐵𝐵𝐵

0
𝛥𝛥𝑑𝑑𝛥𝛥 (B.4) 
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where δBC is the deflection of the BC section, E is the Youngs modulus of the frame 

material, and I is the area moment of inertia of the arm section. The deflection of the AB 

section was calculated using the equation: 

𝜕𝜕𝐴𝐴𝐵𝐵 =
𝑑𝑑𝑈𝑈𝐴𝐴𝐵𝐵
𝑑𝑑𝐹𝐹

=
1
𝐸𝐸𝐼𝐼
� 𝑀𝑀𝐴𝐴

𝑙𝑙𝐴𝐴𝐵𝐵

0
𝛥𝛥𝑑𝑑𝛥𝛥 (B.5) 

where δAB is the deflection of the AB section. The deflection of the OA section was 

calculated with the equation:  

𝜕𝜕𝑂𝑂𝐴𝐴 =
𝑑𝑑𝑈𝑈𝑂𝑂𝐴𝐴
𝑑𝑑𝐹𝐹

=
1
𝐸𝐸𝐼𝐼
� 𝑀𝑀𝑂𝑂

𝑙𝑙𝑂𝑂𝐴𝐴

0
𝛥𝛥𝑑𝑑𝛥𝛥 (B.6) 

where δOA is the deflection of the OA section. The max deflection was calculated by 

combining all the section deflection:  

𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜕𝜕𝑂𝑂𝐴𝐴 + 𝜕𝜕𝐴𝐴𝐵𝐵 + 𝜕𝜕𝐵𝐵𝐶𝐶 (B.7) 

where δmax is the maximum deflection for the frame arm. Each section was then compared 

to the maximum deflection using the equation: 

𝐷𝐷𝑖𝑖 =
𝜕𝜕𝑖𝑖
𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚

 (B.8) 

where Di is the ratio of the section deflection to the maximum deflection and δi is the 

corresponding deflection of the OA, AB, or BC section. Table B.1 displays the results of 

the calculation when the dimensions from Appendix A were substituted.  
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Table B.1 Deflection Ratio Results 

DOA [%] DAB [%] DBC [%] 
0.7 86.7 12.6 
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Appendix C 

Locking Notch Designs and Results 

 The average unlocking forces for the tested notch designs are displayed in Table 

C.1. These values were dependent on the geometry of the notch, the geometry of the 

locking arms, and the location that the locking arms attached to the frame.  

Table C.1 Average unlocking values for locking designs 

Design Average Unlocking Force [N] 
a 4.48 
b 6.45 
c 5.69 
d 18.41 
e 18.43 

 
The locking designed are displayed in picture C.1. Designs d and e were similar, but 

design was better at resisting moment loads. The notch difference between a-c and e is 

the width of the notch. Each one still used a 90-degree angle on the inside. The width of 

the notch could be adjusted to tune the unlocking force.  

 

Figure C.1 Five different locking designs   
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Appendix D 

Material Considerations 

 Table D.1 displays the material properties and the ratios used to make material 

decisions. Clear resin was chosen for the frame material and HDPE was chosen for the 

flexural member data. HDPE was available in the sheet thickness that was needed. This 

material also had a high flexural strength to flexural modulus ratio. Since the frame 

required less deflection, the strength to Youngs ratio had less of an impact but was still 

important. Even though clear did not have the highest strength to weight ratio, the 

material made up for this by having similar modulus values to Polypropylene, which is 

the recommended frame material for compliant mechanisms.  

Table D.1 Material properties and ratio results  

Material Sult [MPa]  E [GPa] Sflex [MPa] Eflex [GPa] Sult/E Sflex/Eflex 
PP  79.7 1.46 36.4 1.39 0.055 0.026 
HDPE 26.9 0.959 51.9 1.19 0.028 0.044 
Clear 38 1.6  1.3 0.024 0 
Durable 13 0.24 1 0.04 0.054 0.025 
Tough 1500 26 0.94 15 0.44 0.028 0.034 
Tough 2000 29 1.2 17 0.45 0.024 0.038 
Rigid 4000 33 2.1 43 1.4 0.016 0.031 
Rigid 10k 55 7.5 84 6 0.007 0.014 

 

 The flexural member thickness was 0.55mm because thicker flexural members 

experienced plastic deformation during the buckling cycle. Figure D.1 displays the 

testing results for differing length flexural members after a cycle test. After the testing, it 

is obvious that the 0.80mm flexural member in figure B.1c experience plastic 
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deformation at each of the two curve peaks. The flexural member no longer stayed 

straight when at a relaxed state. The 0.63mm flexural thickness experienced less plastic 

deformation, but a slight curvature was still permanently shaped into the member after 

the test. The 0.55mm flexural thickness remained straight after the cycle testing, leaving 

no signs of plastic deformation. This thickness was chosen because it would allow the 

actuator to have an increased cycle life.  

 

Figure D.1: Flexural member plastic deformation analysis for: a) the 0.55mm, b) the 
0.63mm, and c) the 0.80mm.  
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