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ABSTRACT 

 In this thesis, nanofluidic diodes were studied theoretically using fundamental 

physics as a basis. A comprehensive theory was constructed for ion current rectification 

(ICR) in nanofluidic systems, written from an engineering and physics perspective. The 

primary goal of this work was to clarify the fundamental theory of ICR through the inter-

pretation and consideration of various literature sources on the topic, which often use 

contradictory definitions and simplifications. New figures were created for this research 

to more effectively convey and clarify vital concepts such as electric double layers 

(EDL), and included multiple definitions to compare different theoretical approaches. 

Lastly, a simulation was written to apply our developed theory by numerically modeling 

the electric potential profile in a nanofluidic diode of asymmetric ion concentration. The 

simulation results were interpreted to help visualize the formation of EDL in the system, 

and to conceptualize the mechanisms producing ICR. 

 Three main types of nanofluidic diodes were identified by their characteristic 

asymmetries and studied in-depth: asymmetry in fixed wall charge, asymmetry in ion 

concentration, and asymmetry in channel diameter. Foundational electrostatic physics 

equations, such as the Poisson-Boltzmann equation and Ohm’s law, were derived and 

manipulated to produce important equations describing electric potential and ion current 

conductivity in nanofluidic systems. Several of these – the Debye-Hückel approximation 

of the Poisson-Boltzmann equation, the Debye screening length equation, and the Gra-

hame equation – were later used in the simulation of electric potential profiles. Building 

!ii



on fundamental concepts, the Poisson-Nernst-Planck (PNP) equations were shown to de-

scribe the sources of ion movement in nanofluidics in the form of a self-consistent set of 

coupled mean-field equations. Utilizing these equations and employing electric potential 

and ion current conductivity relationships, the three main types of nanofluidic diodes 

were analyzed to examine their sources of ICR, and each was explained through molecu-

lar-level behavioral considerations at different applied voltages. 

 Based on the theory developed to explain ICR, a theoretical causal chain for ICR 

was identified. To visualize asymmetrical electrostatic impact, which is the foundational 

requirement for ICR to be present in a nanofluidic system, electric potential profiles were 

simulated for a nanofluidic diode of asymmetric ion concentration. Using the Grahame 

equation and the Debye length equation to substitute values into the Debye-Hückel ap-

proximation, the electric potential was numerically calculated for the example system in 

equilibrium, forward bias and reverse bias. The simulation results qualitatively agreed 

with similar models from the literature which were obtained through PNP and analytical 

methods.  

 Analysis of our simulation results using the theory we developed revealed the im-

portance of an electric potential well which forms near one opening of the nanochannel. 

This “trench” causes ion accumulation, which increases that ion’s conductivity. Applying 

forward voltage bias results in this high conductivity at the ions’ entrance, while reverse 

bias results in the high conductivity at the ions’ exit. Thus, forward bias is characterized 

by greater ion flux into the channel than out of it, increasing overall ion concentration in 
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the channel and promoting higher ion current through the system. Reverse bias is charac-

terized by greater ion flux out of the channel than into it, decreasing overall ion concen-

tration in the channel and suppressing ion current through the system. Asymmetry in elec-

trostatic impact is therefore sufficient to explain ion current rectification in nanofluidic 

diodes, and the simulation results were used to illustrate this theoretical discussion. 
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CHAPTER 1 

Introduction 

 A nanofluidic diode is a system filled with an electrolyte solution which features a 

nano-scale channel with charged inner walls that connects two micro-scale reservoirs 

containing electrodes. One polarity of applied voltage across the electrodes produces a 

conductive path for ion current, while the opposite voltage polarity restricts ion current. 

This ion current rectification shares behavioral characteristics with semiconductor diodes, 

and is of interest to engineers and scientists, due to its ability to control the flow of ions.  

 Nature is a major source of inspiration for nanofluidics, because all cell mem-

branes contain channels that pass biologically important ions and molecules. Controlling 

the transport of ions and other types of matter in the methods observed in biological sys-

tems has wide-reaching applications in not only biology, but chemistry, medicine, and 

more. From an engineering standpoint, it would be valuable to understand how nanoflu-

idic mechanisms operate so that new technology can be developed. There is active re-

search being conducted all around the globe, including the synthesis of biological 

nanochannels in artificial environments and the design and testing of fabricated nanoflu-

idic systems, but there are still many ion transport mechanisms not yet fully understood.  

 The field of nanofluidics is immensely complicated and multidisciplinary, making 

it difficult to navigate the literature at times. There is limitless detail into the biological 

inspiration, chemistry, and physics of nanofluidics, and therefore it is a challenge to nar-

row the topics down to their fundamental basics. The purpose of this thesis research is to 
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build a well-structured, physics-based theory that explains nanofluidic diodes for engi-

neering purposes. Also, through our discussion of ion transport theory in nanofluidics, we 

will uncover and identify the causal chain for ion current rectification, as well as model 

the electric potential profile in one type of nanofluidic diode. The organization of this 

thesis will now be summarized so that the reader can understand and anticipate the 

arrangement of topics which construct our theoretical research.  

 Chapter 2 presents background information about the biological inspiration for 

nanofluidics and nanofluidic diodes. This chapter also examines some examples of bio-

logical nanochannels and how their structures are theorized to enable such highly specific 

functionalities.  

 Chapter 3 discusses main motivating factors that drive research in the field of 

nanofluidics. Biological and synthetic nanochannels are compared, and then the concept 

of mass transport through these nanochannels is introduced. The chapter ends with a 

summary of some prominent applications of mass transport using nanofluidics for the de-

velopment of future technology. 

 Chapter 4 sets the stage for our theoretical investigation by introducing three pri-

mary types of nanofluidic diodes. Diagrams of example systems which each exhibit a dif-

ferent structural source of ion current rectification are presented. These illustrations give 

context to the descriptions of nanofluidic diodes, and also provide useful references 

around which to consistently frame the theory in future chapters. Lastly, the meanings of 
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diode-like current-voltage behavior, ion current rectification (ICR), and the rectification 

factors used to quantify ICR are defined. 

 Chapter 5 focuses on fundamental nanofluidic theory that applies to any nanoflu-

idic system, not just nanofluidic diodes. It begins by presenting the conceptual descrip-

tions of charge screening, electric double layers (EDL) and the Debye length before delv-

ing into the quantitative models of these topics. Electrokinetic transport mechanisms are 

introduced next, which describe electrophoresis, electroosmosis, and diffusion. Lastly, 

this chapter presents the mean-field approximation models for ion transport in nanoflu-

idics, with a particular focus on the Poisson-Nernst-Planck model, building their equa-

tions from fundamental concepts and explaining their relevance.  

 Chapter 6 embarks on developing the theory specific to ion current rectification in 

nanofluidic diodes. Important topics include charge selectivity, ionic conduction, and sys-

tem dependences are explained, applying fundamental nanofluidics theory from chapter 

5. This chapter then analyzes, in detail, the three types of nanofluidic diodes using the 

example systems presented in chapter 4, and takes a molecular-level approach to under-

standing the “off” and “on” modes of each diode. Finally, it draws parallels between 

nanofluidic diodes and semiconductor diodes to supplement the theory of operation. De-

scriptions of how these nanofluidic and semiconductor systems are analogous and how 

they contrast give insight into their possible applications. 

 Chapter 7 focuses on the numerical simulation aspect of theoretical modeling, 

now that mathematical models have been constructed. Common approaches to simulating 
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nanofluidic systems are summarized. Lastly, a novel application of fundamental theory is 

simulated, presented, and analyzed, to evaluate the accuracy of the causal chain for ion 

current rectification that we developed.  

 Chapter 8 provides an overview of the conclusions we can draw from the theory 

which we developed and tested in this research. Since the intent behind this thesis was to 

foster an intuitive understanding of nanofluidic diodes for engineering purposes, there are 

numerous research paths that can apply this work. Therefore, this chapter ends with some 

possible future research directions which would expand upon the material we have com-

piled.
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CHAPTER 2 

Biological Relevance 

 To preface this study of ion rectification in nanochannels, and to give perspective 

to the field of nanofluidics, we will begin with a discussion of the biological inspiration 

behind nanofluidics. This section will start by introducing biological examples of 

nanochannels to demonstrate mechanisms we could one day harness, and will continue 

on to show some of the motivations and applications for research of nanofluidic devices. 

Understanding the broader field will contextualize the specific phenomenon of ion recti  

fication, building a strong foundation for the study of these complex systems. 

 Although the nanofluidic systems we will focus on are complicated, their biologi-

cal counterparts are far more intricate, thanks to their highly specific purposes. Organ-

isms are compartmentalized in many ways, and membranes enclose such sections to dis-

tinguish separate environments. Membranes are found around organelles within single 

cells, around cells themselves, and even around organs in the body [1]. But life cannot 

function when completely sealed off from the world, and some substances are vital to 

pass in and out to maintain the processes necessary to life. So membranes feature special 

proteins that form pores or channels which allow only specific ions, molecules, or other 

mass to pass through. These channels serve as gateways between one side to the other 

side of the membrane.  

 A quick note about terminology in this paper should be made before launching 

into discussion. There is technically a difference between a nanochannel and a nanopore 
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for structures with nano-scale critical dimensions that connect two sides of a membrane 

or barrier, distinguished by the ratio between the length and diameter of the open tube. If 

the length and diameter are commensurate in size, the opening is referred to as a 

nanopore. If the length is much larger than the diameter, the opening is known as a 

nanochannel or nano-capillary. However, there is no official universal definition for 

where the cutoff is for this dimensional ratio, and many sources in the field of nanoflu-

idics use these terms somewhat interchangeably. For simplicity, in this work we will refer 

to all of these structures, regardless of their dimensional ratios, as nanochannels.  

 In figure 2.1, we depict three examples of biological nanochannels. These 

nanochannels are each shown from the side view and the top view, to better show the 

structures formed by the proteins. Structural dimensions are labeled in nanometers to 

convey the tiny scale of these biological nanochannels. The complex protein structure 

that forms each channel has sections with different types of amino acids, which help to 

finely tune the nanochannel’s mass transport capability and allow it to precisely perform 

its needed function. The following colors distinguish between some such types in figure 

2.1: the acidic amino acids, which can be neutral or negatively charged, are colored red; 

the basic amino acids, which can be neutral or positively charged, are colored blue; and 

all other (non-acidic and non-basic) amino acids are colored white.  

 The biological nanochannels in figure 2.1 are most commonly studied for DNA 

translocation and sensing purposes. Figure 2.1 (A) depicts α-hemolysin, which is a toxin 

released by Staphylococcus aureus (a bacterium in the family of staph infections) that 
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binds to a susceptible cell and creates a channel in its outer membrane. The channel it 

creates allows rapid uncontrolled permeation of water, ions, and small organic molecules, 

damaging the cell and possibly leading to its death [2]. Yet, α-hemolysin has emerged as a 

very useful protein-formed nanochannel for research purposes, due to its small, selective 

size and resistance to pH and temperature fluctuations. It is commonly studied to assist 

DNA sequencing and other biotechnological purposes [3]. 
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Figure 2.1: Structure of three biological 
nanochannels (nanopores). Side and top 
views of (A) heptameric α-hemolysin 
toxin from Staphylococcus aureus; (B) 
octameric MspA porin from Mycobac-
terium smegmatis; (C) dodecameric 
connector channel from bacteriophage 
phi29 DNA packaging motor. In the 
figures, acidic (red), basic (blue), and 
other (white) amino acids are shown 
[4]. Image credit: [4]. In their neutral 
forms, acidic amino acids can donate 
protons and become negatively 
charged, while neutral basic amino 
acids can accept protons and become 
positively charged [5].



 Figure 2.1 (B) depicts MspA, which is a major pathway for diffusion in a species 

of bacteria known as Mycobacterium smegmatis. Like α-hemolysin, MspA is very robust, 

and its structure remains stable when the solution’s pH or temperature changes. MspA is 

also of interest to researchers for DNA sequencing, and it offers a higher signal-to-noise 

ratio of current fluctuations than α-hemolysin, indicating that it is well-suited to be used 

as a sensor [6].  

 Figure 2.1 (C) depicts a phi29 connector, which functions as a DNA translocation 

channel in the phi29 bacteriophage [7]. All linear double-stranded DNA or RNA viruses, 

phi29 included, package their genomes using a DNA-packaging motor, and each motor 

contains a central nanochannel known as a connector. This connector’s morphological 

structure is seen in many different viruses, though the individual protein sequences vary 

greatly between species [7]. Just like the previous two biological nanochannels, the phi29 

connector is being researched for DNA sequencing and other sensing purposes, as it is 

efficient and robust, and can be artificially synthesized in the lab.  

 This discussion of biological nanochannels was intended to demonstrate some of 

the many different functions carried out by biological nanochannels, and how they are 

being repurposed for humanity’s use. Among the many varieties and purposes of biologi-

cal nanochannels are channels specifically structured to translocate ions of biological sig-

nificance, and they are known as ion channels. Ion channels are structured to meticulous-

ly allow only certain ions to permeate. There have been hundreds of types of natural ionic 

nanochannels discovered, and each type has a precise job to carry out. Evolution has fine-
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ly tuned the structure of each type, granting them excellent abilities to regulate ion flow, 

which is important for many basic biological processes, such as excitation, gene regula-

tion, secretion, absorption, and signaling [8]. Mechanisms for controlling ion flow in-

clude conditional “open/closed” states, high selectivity, and preferential direction of ion 

flow (known as ion current rectification). 

 Some ion channels are voltage-gated or chemical-gated channels, which allow or 

prevent permeation depending on the external voltage applied or the bonding of certain 

chemicals, respectively. Gated nanochannels usually have distinct open and closed states 

that they can exist in, triggered by some form of external stimulation. An ion pump is a 

type of gated biological nanochannel that actively transports certain ions into and/or out 

of the cell, and can pump against the concentration gradient by altering its structure when 

activated and deactivated. Other nanochannels remain in a single state, maintaining a stat-

ic structure that passively carries out its function.  

 One of the most common features of all biological ion channels is selectivity, 

which is when a channel demonstrates strong preference towards the chemical identity of 

the translocating ion [1]. The biological nanochannel often gets its selective ability from 

certain types of ions that attach to bonding sites on proteins within the channel [9]. The 

location of these binding sites and the type of ions that can bind to them are dependent on 

the protein structure, and since there are a near-infinite amount of ways to fold proteins of 

different sizes and sequences, evolution has developed countless structures to carry out 

various specific tasks.  
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 In this study, we are most interested in nanochannels that exhibit ion current recti-

fication, so we will briefly look at one biological nanochannel which is highly selective 

towards potassium ions (K+), and permits the flow of those ions only in one direction of 

flow – into the cell. This protein-formed channel is known as the inward-rectifier potassi-

um channel, or KIR for short, and is found in many types of cells’ membranes [1]. KIR 

channels can be 3 or 4 orders of magnitude more selective towards K+ ions than Ca+ ions, 

which is impressive, considering those ion species have the same valence charge. For this 

precise selectivity to work, the channel’s smallest diameter must be similar to the ion’s 

diameter so that each ion that passes through is strongly affected by the makeup of the 

channel walls. In KIR channels, this selective ability is attributed to carbonyl oxygen 

atoms in the channel’s selectivity filter [1]. The mechanisms enabling preferential flow 

direction in KIR channels, like most nanobiological functions, are still not fully under-

stood, but research points to the adsorption of ions and polyamines, which cause an 

asymmetrical chemical profile across the length of the channel, as a likely cause. Addi-

tionally, the solutions inside and outside the cell are highly asymmetric, as the contents of 

the cytoplasmic environment differ greatly from that of the extracellular matrix [1]. As 

we will discuss in later sections, asymmetry with respect to the plane of the membrane is 

required to produce ion rectification, so these sources of asymmetry mentioned for the 

KIR channel are likely sources for its rectification ability. 

 The asymmetric ionic concentrations inside and outside of the cell sets up a po-

tential difference across the cell’s membrane, known as the membrane potential [5]. It is 

!10



the task of the membrane’s protein-formed nanochannels, including KIR channels, to 

maintain the resting membrane potential at a constant value by controlled flux of particu-

lar ions through the cell’s membrane.  

 This membrane potential is especially important for cells that transmit signals, 

such as neurons, to be triggered at the correct potential difference. Once the potential dif-

ference reaches a specific threshold value, known as the action potential, which is high 

enough to indicate a meaningful signal must be passed, voltage-gated channels open up 

and allow ions to rapidly diffuse into the cell, in turn triggering the biological response 

for transmitting the signal [5]. After the signal is passed to the next neuron, the cell must 

return to its resting membrane potential to be ready for the next signal. Ion pumps are the 

primary method used for returning the ion concentration inside the cell to values lower 

than outside, creating the potential difference required.  

 Unlike gated channels which open or close depending on external stimuli (exter-

nal voltage value or chemical bonding and unbonding), and unlike ion pumps which ac-

tively push ions against the potential gradient (and are fascinating and complicated in 

their own right), KIR channels are always open [5]. They continue to passively screen ions 

and only allow a steady, albeit slow, diffusive flux of potassium ions into the cell to com-

pensate for the ion pumps’ activity and maintain the resting membrane potential [5]. 

Without KIR channels, the solution within the cell, known as the cytoplasmic environ-

ment, would become too depleted of potassium ions for the cell to function properly. 
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 KIR channels conduct K+ ions better in the inward direction because they possess 

ion-binding sites along their pore structure that are both conductive and inhibitory. At in-

ternal negative membrane voltages (the potential difference across the membrane is more 

negative inside the cell compared to outside), K+ ions are transported into the cell. When 

the internal membrane voltage becomes more positive than on the outside, K+ ions are 

blocked by intracellular multivalent ions [5]. This preferential flow is achieved without 

the nanochannel changing shape, and is therefore one of the primary inspirations for fab-

ricating nanofluidic diodes. 

 Through these examples and brief discussion, we can better appreciate how highly 

specialized biological nanochannels are, and can more easily extend our conceptual un-

derstanding to the immensely vast range of applications within even just a single organ-

ism. Knowing that cells feature nanochannels in their membranes, and understanding that 

cells themselves are highly specialized (and can be classified into broad categories such 

as muscular, structural, protection, and communication), it is clear that biological 

nanochannels have needed to evolve efficient ways to fulfill their small yet vital roles in 

the functions of the cell. The cell, in turn, serves its own small role in the functions of the 

organism itself. The most efficient and effective methods often result in incredibly intri-

cate structures of precise protein makeup and folding, since they have been refined 

through natural selection over hundreds of millions of years. As such, humanity’s pursuit 

of uncovering them and the mechanics they utilize for our own understanding is only just 

beginning. 
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CHAPTER 3 

Technology Applications 

 Now that we have glimpsed some of the many natural functions of biological 

nanochannels, let us explore the applications that humanity would benefit from if we 

were able to replicate those abilities. There are hundreds of published articles and re-

search papers which present ideas for applications across the fields of medicine, biology, 

chemistry, electrical engineering, and more. In this section, we will review some of the 

main themes of these applications, to provide motivation for the study of nanofluidic 

channels. But first, the distinction between biological nanochannels and synthetic 

nanochannels should be clarified to provide a sense of how technology utilizing human-

made nanochannels will be inherently different than naturally-occurring biological 

nanochannels. 

3.1: Comparing Biological and Synthetic Nanochannels 

 As discussed in the previous section, biological nanopores and nanochannels are 

composed of proteins, with specific composition and geometry that allow for immaculate 

precision. Even though the capabilities to create human-made nanochannels have ex-

panded in recent decades, synthetic nanochannels created in the lab today are very simple 

in comparison to their natural counterparts.  

 The most significant differences are in the typical dimensions and charge profiles: 

ionic nanochannels in biology are 1-2 orders of magnitude smaller than most synthetic 

!13



nanochannels. Typical diameters for synthetic nanochannels are around 5-50 nm, with 

lengths commonly in the tens of micrometers. For biological ion channels, the most con-

stricted parts of the channel are usually on the order of 0.1-1 nm in diameter, and 1-2 nm 

in length [5, 10]. The positions of charges are more controlled in biological ion channels 

than the methods researchers currently use to produce surface charge in the walls of syn-

thetic channels. 

 Since this study of nanofluidic ion channels aims to focus on the physics of opera-

tion and methods of theoretical modeling, we will not cover the details of fabrication 

methods. Instead, we will briefly mention the most prevalent ones that appear in pub-

lished works for how nanochannels are created and how fixed charge is embedded in the 

walls. 

 The most promising methods we know of to minimize the differences in size and 

precise structure between biological and fabricated nanochannels are through the use of 

carbon nanotubes and graphene pores [1], but methods using thicker, more solid sub-

strates are more prevalent in the experimental research field of nanofluidics. One such 

common method of fabricating both microchannels and nanochannels is etching the 

length of channels into a substrate, such as a polymer or glass, to form 3 sides of a nano-

scale rectangular cross-section, then affixing a flat sheet of substrate over it to form the 

4th side [1, 11]. Lithographic methods, similar to those used to fabricate semiconductor 

devices, are also commonly used [12]. Another method is irradiating a substrate with 

large ions such as bismuth, producing a conical nanopore from the impact of each ion [1]. 
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  Methods of affixing desired surface charge profiles rely heavily on chemistry top-

ics which fall outside the scope of this research, but the main takeaway is that it is possi-

ble to create nearly-uniform fixed surface charges on fabricated nanochannel walls, and 

some methods allow the formation of areas of different polarity or density of applied sur-

face charge. Among these methods is diffusion-limited patterning and other modifications 

of surface chemistry. Surface chemical modifications become less ideal as the system di-

mensions shrink due to the finite sizes of the applied molecules [13]. An alternative 

method, which interferes less with channel geometry and can provide more ideal and 

abrupt transitions in charge density, is through the use of different oxide materials joined 

together, connecting nanochannels of inherently different surface charge characteristics 

[13].  

 Creating nanochannels by these methods produces much smoother channel walls, 

as their atomic structures are more compact and rigid than proteins. Proteins are com-

posed of chains of atoms forming coils, helixes, or sheets, which are then folded or coiled 

upon themselves [5]. Larger sizes and smoother, more solid substrates make modeling 

synthetic nanochannels easier than modeling biological ion channels. There are many 

more complex effects introduced by the scale and nonuniformity of protein channel struc-

tures, including more pronounced quantum effects, complex chemical interactions, and 

irregular charge profiles. With so many quantities involved in the function of biological 

systems, and the fact that they are nonlinearly linked, biological systems are exceedingly 

difficult to model [5]. 
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 In practice, fabrication methods for creating nanofluidic systems are not perfect 

and the level of precision is nowhere close to that of biological nanochannels, but the rel-

ative uniformity of the resulting geometry and surface charge simplifies the system great-

ly for modeling. Therefore, the approach we will take is to model simple systems that 

have characteristics commonly found in fabricated nanofluidics. 

3.2: Mass Transport Using Nanofluidics 

 A common theme in nanofluidic applications is the utilization of mass transport, 

so a cursory understanding of the major effects and variations is important to establish 

before launching into examples of specific nanofluidic applications. Mass transport facili-

tated by nanofluidics is a very important and applicable function of nanochannels, and it 

is also the most similar function to biological examples of nanofluidics. Types of trans-

portable mass includes ions, molecules, proteins, and more; virtually anything that is 

small enough to occupy the channel can be transported [14]. 

 There are 3 major mechanisms of mass transport: the volume exclusion effect, 

hydrophobic interactions, and electrostatic interactions [15]. In the field of biochemistry, 

the excluded volume effect is also known as “hard interactions”. It describes the effect 

that one ion, molecule, protein, or any type of mass in an aqueous solution has on other 

mass due to the volume it occupies, effectively displacing solution and excluding any 

other matter from existing in that volume [16]. When suspended in water, mass with a 

nonzero charge attracts water molecules, which are polar due to the bent shape of H2O. 
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Positive matter suspended in an aqueous solution will attract the oxygen side of water 

molecules, which is slightly negative, while negative matter will attract the hydrogen side 

of water molecules, which is slightly positive. This describes the “hydration” of mass, 

and will increase its effective volume, thus increasing the exclusion effect.  

 Hydrophobic interactions occur between nonpolar matter in aqueous solution. 

Nonpolar matter, which has no net charge, will not attract water molecules, but will tend 

to adhere to other nonpolar molecules in aqueous solution. The “hydrophobic bonds” that 

cause the interactions are not actually chemical bonds, but they describe the spontaneous 

tendency of nonpolar groups to cluster together in water to minimize contact with the wa-

ter molecules [17].  

 While the volume exclusion effect and hydrophobic interactions are very impor-

tant to the stability of proteins and have important effects in biochemical applications and 

other sub-nanometer scale structures, the third and final major mechanism for mass 

transport is much more familiar to physicists and engineers. This mechanism is known as 

electrostatics, and as it is relevant to electronics technology, it is more relevant to this 

study. Electrostatic interactions are the interactions of fixed surface charges in the 

nanochannel with charged matter suspended in the solution. This is another important ef-

fect for biochemical systems because proteins usually have sections of embedded charge, 

but it stands out as the most important effect for the systems we will focus on. In our re-

search, electrostatic effects are the forces that the permanent surface charges exert on ions 
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in the electrolyte solution flowing through the nanochannel [15], and are the primary 

mechanisms enabling charge selectivity and ion rectification. 

3.3: Future Technology Under Development 

 Now that we are cognizant of the main differences between fabricated and biolog-

ical nanochannels, and the main mechanisms for mass transport through nanochannels 

have been introduced (with emphasis on electrostatic interactions), we will explore some 

of the most promising applications of synthetic nanochannels from a device perspective. 

These applications represent some of the main nanofluidic research areas being investi-

gated around the world, showing the diversity of fields which could make use of nanoflu-

idic technology.  

 A broad category of applications is nanofluidic sensors, giving hope to the future 

of nanofluidic devices. Biosensing, especially DNA sequencing, is a huge area of interest 

for researchers, due to the demand for a fast, accurate, cheap method to record DNA 

chains and to analyze other biological material. Recall figure 2.1, which contains dia-

grams of three biological nanochannels that are often used in DNA sequencing ap-

plications. These biological protein-formed channels are one type of confinement that 

ensures the DNA strand is not tangled or overlapped as it moves through the sensing sys-

tem, but synthetic substrate-formed nanochannels could be used as well. Whether the 

nanochannels are biological or fabricated from a substrate, the hypothesis for nanofluidic 

application is that DNA sequences can be recorded by measuring the current modulations 
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as a DNA strand passes through the channel [18]. Small fluctuations in the current can be 

attributed to the different bases in the sequence, since these bases have characteristic 

charges that would interact with the nanochannel’s surface charge differently and there-

fore affect the flow. 

 Extending this concept, many types of matter passing through a nanochannel 

could be detected through various methods. A popular device goal which integrates ion 

transport technology with microfluidics and nanofluidics is known as lab-on-a-chip 

(LOC) systems. The devices currently in active development will ideally be portable and 

powerful sensors which can analyze samples more conveniently than in a traditional lab 

setting. LOC systems are anticipated to be very useful in biomedical and biochemical 

fields, and in any application that would benefit from the fast analysis of a small quantity 

of sample, such as polluted substances, to obtain characteristics of its composition [19]. 

 Another category of device applications is energy conversion. There are a large 

variety of applications in this category, and they can be grouped by the main force that 

drives their mass transport. Driving forces include concentration/diffusion, pressure, 

light, and temperature [20]. An example of how concentration-driven energy harvesting is 

conducted is by setting up a salinity gradient across nanochannels between two reser-

voirs, forming a system that can harvest Gibbs free energy of mixing as the concentra-

tions diffuse [20]. Nanofluidic channels have also been shown to allow for elec-

trochemomechanical energy conversion, which uses applied pressure gradients to move 

ions of only one polarity through the channel between two reservoirs. This migration 

!19



triggers chemical reactions in the solutions contained in the reservoirs, which then move 

electrons through an electrical load from one reservoir to the other in response to the mi-

gration of one polarity of ions through the nanochannel [21]. 

 While the previous application’s function utilized chemical reactions in the reser-

voirs, there are applications that benefit from containing the reactions within the 

nanochannels themselves. The nano-scale confinements inherent to nanochannels are use-

ful for manipulating chemical reactions, so chemical reaction modification is another mo-

tivation for developing nanofluidic technology. It provides a tool for confining chemical 

species and controlling what interacts with it and how much, effectively enhancing the 

catalytic activities [20]. By immobilizing and encapsulating the catalysts, the nanofluidic 

channels confine chemical reactions much like a reactor does, and so they are well-suited 

for chemistry applications. 

 Because nanochannels can, under certain setups, selectively pass desired mass 

types while preventing others from traveling through, nanofluidics shows promise for 

separation purposes, such as water desalination, drug delivery, and gas filtration [20]. Re-

search is being conducted into designing membranes which contain nanochannels that 

regulate what substances can permeate through, and this nanofiltration technology would 

be useful in many different fields. 

 Understanding channel diffusion can lead us to control the transfer of ions for 

purposes such as the delivery of medications. Chemical delivery nanochannels placed 

between two ionic solutions of different concentration exhibit easier flow from high to 
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low concentration than from low to high [11]. Researching the mechanics of ion transport 

would lead to more sophisticated methods of medicine delivery that apply to more situa-

tions than just concentration diffusion. Control of flow rate is vital for medicine, and ad-

vancing nanofluidic technology would be ideal for rapid, targeted, easily adjustable de-

livery of drug doses [20]. There is also evidence that ions can be pumped against a con-

centration gradient by applying a periodic, time-dependent potential difference across a 

nanochannel, which expands the situations nanofluidic mass transport can be applied to 

in the medical field and beyond [22]. 

 A specific category of ion transport in nanofluidics is rectified ion transport. Ion 

current rectification is the focus of this research, and such control over the direction of 

ion flow finds applications not only to the medical field, but it is also analogous to the 

electrical concept of rectified current – a vital phenomenon for all kinds of electronic de-

vices. Instead of electron current being rectified, however, rectifying nanochannels do so 

with ion current, by allowing ion flow in one direction and suppressing ion flow in the 

opposite direction.  

 Due to this functional similarity to semiconductor diodes, there is interest in de-

veloping other electronic components that normally use semiconductor diode technology, 

such as transistors. A nanofluidic triode which functions as a switch was constructed by 

Cheng and Guo [13], and inspires the possibility of a nanofluidic bipolar junction transis-

tor. Voltage-gated nanochannels that resemble MOSFETs have been demonstrated by 

Guan, Li, and Reed [12], and logic gates constructed out of nanofluidic diodes have been 
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demonstrated by Gomez, Ramirez, et al. [23]. In particular, AND, OR and NOR logic 

functions were demonstrated through nanofluidic diodes, using electrical input and output 

signals [23].  

 This translation of signal between “wet” and “dry” electronics shows fascinating 

potential for applications of controlling ion current with the more familiar electron cur-

rent, or vice versa. Clearly, there is value in understanding how nanofluidic diodes can be 

engineered to rectify ion current, and this intriguing analogous behavior to semiconductor 

electronics begs the question of how far the similarities go.
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CHAPTER 4  

Introduction of Systems to be Studied 

 Now that we have introduced nanofluidic diodes and the broader perspective of 

nanofluidics research, we will direct our attention to the systems at the focus of this 

research before we begin our investigation of the theory. This section will also review ion 

current rectification (ICR), which will come up very often in this research as it is what 

nanofluidic diodes are supposed to exhibit. 

4.1: General System Explanation 

 As we develop the theory, we will see that an asymmetry in electrostatic impact, 

achieved through a physical asymmetry in the nanofluidic system, is required to produce 

ion current rectification. In this research, we chose three of the most highly-studied types 

of asymmetries to focus on, and to isolate and clarify these types, we will present each 

using an example system with its own diagram. In figure 4.1, we will present a general 

system with no asymmetries that will not rectify current, as a way to define a “default”, 

symmetric system. Then, we will use figures 4.2, 4.3 and 4.4 to introduce each type of 

asymmetry individually, essentially modifying the default system from figure 4.1 in three 

different ways.  

 Figure 4.1 shows a 2-dimensional length-wise cross-section of a general system 

for the purpose of labeling the main components and establishing the default system. This 
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figure and the ones to follow are not to scale; the channel is vertically enlarged to better 

show the characteristics of and behaviors within the nanofluidic structure.  

 As seen in figure 4.1, the nanochannel connects two square reservoirs, sometimes 

called baths, which are usually micrometers in scale, and so the reservoir widths are 

usually 2-3 orders of magnitude larger than the diameter of the channel connecting them. 

The purpose of the two reservoirs is to contain the bulk of the ion solutions of known 

concentrations, which can flow between them by traversing the nanochannel. In figure 

4.1, the concentrations are uniform, so the gray shading is also uniform to convey this.  

 The electrolyte solution used for these systems is potassium chloride, which is a 

1:1 electrolyte because each ion is singly-charged, one species being positive and the 

other negative. The molar concentration of the solution quantifies the number of moles of 

KCl per unit volume, while the ionic concentration quantifies the number of ions per unit 

volume. This is important to clarify because each mole of KCl contains two moles of 
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Figure 4.1: A symmetric nanofluidic system (not to scale), with main components labeled. 



ions: one mole of K+ ions and one mole of Cl– ions. There are an equal number overall of 

both ion types, and a property called electroneutrality holds in equilibrium so that the 

ions are uniformly distributed. So unless specified by species, ion concentration here 

refers to the concentrations of both types of ions, since their distributions within a single 

unit volume is approximately equivalent. Low ion concentration means there are fewer 

K+ and Cl– ions per unit volume, while high ion concentration means there are more K+ 

and Cl– ions per unit volume.  

 Throughout this research, we will regularly refer to the concentrations of either 

ion species, to paint the picture of how they differ from each other in nanofluidic diodes, 

as well as to quantify relationships. To maintain consistency, we will use units of number 

density, as opposed to molar density, in the equations presented. The relationship between 

number density (symbol: n, units: number/m3) and molar density (symbol: c, units: mol/

m3) is simply expressed using Avogadro’s number, NA, as n = NA c [24]. Molarity (M) is 

also a commonly-used unit, and quantifies the number of moles per liter (equivalently, 

moles per cm3). If c is in units of M, then the conversion to number density is simply n = 

1000⋅NA c. 

 The nanochannel’s walls hold a fixed surface charge, which in the symmetric case 

is uniform in density along the length of the channel. This charge density is embedded 

within the substrate itself when the nanochannel is fabricated and, in the systems 

presented here, cannot change. It is important to distinguish the fixed surface charge from 

the ions in the electrolyte solution; the ions only exist in the fluid and the the fixed 
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surface charge only exists in the solid wall. Often, we will refer to the surface charge as 

the “wall charge”, as it is not to be confused with the ions that are electrostatically held to 

the surface, against the solid-liquid interface. 

 Lastly, there is one electrode in each reservoir, to apply the external electric field 

across the channel and drive the ion current through the nanochannel. The left electrode is 

grounded, and the right electrode is given an applied voltage, which can vary in 

magnitude and polarity, allowing for control of the electric field magnitude and direction 

across the system.  

4.2: Three Main Types of Asymmetry  

 The three diagrams below present the three main types of asymmetry that can 

cause ion current rectification. These are the modifications to the general system from 

figure 4.1 that we will study in our research on nanofluidic diodes, and so it is important 

to lay them out clearly. Doing so will give context to later chapters, where we will cover 

the fundamental theory behind mechanisms at play within these nanofluidic systems. 

 Each of the three cases features one type of asymmetry: figure 4.2 has fixed 

surface charge asymmetry, but symmetric ion concentration and geometry; figure 4.3 has 

ion concentration asymmetry, but symmetric fixed surface charge and geometry; figure 

4.4 has geometry asymmetry, but symmetric fixed surface charge and ion concentration. 

These three cases are separate device designs, they are not able to transform from one to 

another. For the cases of surface charge asymmetry and geometrical asymmetry, the 
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Figure 4.2: Asymmetry in fixed surface charge. The left half of the nanochannel has a 
uniform positive surface charge density, while the right half has a uniform negative 
surface charge density.

Figure 4.3: Asymmetry in ion concentration. The left reservoir holds a high ion 
concentration, while the right holds a low ion concentration. The shade gradient across 
the channel corresponds to the resulting concentration gradient between the two 
reservoirs.

Figure 4.4: Asymmetry in geometry. The channel diameter is at a minimum on the right 
opening, and at a maximum on the left opening, with a smooth slope along the channel 
between them. The result is a conical nanochannel.



structure is locked in during device fabrication. Asymmetry in bulk ion concentration is 

enacted by filling the reservoirs with the same electrolyte solution of different 

concentrations. 

4.3: Ion Current Rectification (ICR) and Diode-Like Behavior 

 It is prudent to review the meaning of “ion current” and “rectification” so that it is 

clear what we are referring to when we build the theory behind nanofluidic diodes. Ion 

current is simply the measure of charge movement, with the charge carriers taking the 

form of cations (positive ions) and anions (negative ions) that flow in a solution. Current 

points in the direction that cations flow, since they are positive. Anions also contribute 

their transport of charge to the total current, but anion current is in the opposite direction 

of its movement. So, cations and anions flowing in opposite directions will both 

contribute current in the same direction.  

 Rectification occurs in a system when one direction of current is preferred over 

the other, and devices that exhibit this behavior are known as diodes. When the applied 

voltage that induces current is in “reverse bias”, denoting the direction of the electric 

field it produces, the system experiences repressed current flow. Increasing the voltage 

difference farther into the reverse bias mode will not produce significant increases in 

charge transport. When the applied voltage is in “forward bias”, the system strongly 

conducts current flow. Increasing the voltage farther into forward bias produces a rapid, 

usually nonlinear, increase in current. We show a basic plot for a current-voltage 
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relationship that exhibits current rectification, also known as diode-like behavior, to 

emphasize the distinction between forward bias and reverse bias.  

 Figure 4.5 features the two regions of operation for diodes: reverse bias and 

forward bias, separated by the point where applied voltage equals zero. We compare the 

diode-like behavior (red line) to linear, ohmic behavior (orange line), which follows 

Ohm’s law: I = ∆V/R [25]. It is common knowledge that Ohm’s law describes how 

current, I (A), through a wire of resistance, R (Ω), depends directly on the electric 

potential difference applied across the wire, ∆V (V). In ohmic behavior, the current-

voltage trend is linear, with a constant slope of 1/R. This raises an interesting implication 
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Figure 4.5: Comparison of general current vs. voltage trends for linear ohmic behavior 
and nonlinear diode-like behavior.



about diode behavior for our study of nanofluidic diodes: resistance must vary with 

applied voltage. As we will uncover throughout this research, conductivity (the inverse of 

resistivity) must be asymmetrical across a nanochannel in order for ion current to show 

rectification. This asymmetrical conductivity is obtained through asymmetrical 

electrostatic impact, induced by a physical asymmetry in the system, as mentioned 

previously. 

 The rectifying factor, or degree of rectification, appears commonly in the 

literature and defines the ratio of the magnitude of forward-bias current to the magnitude 

of reverse-bias current [26]. This factor is a useful way to quantify the rectification ability 

of a system. The acronym ICR can also refer to this ratio for ion current. Since 

nanofluidic diodes are created to rectify ion current, we usually want this degree of 

rectification to be as high as possible. 

 Now that we have familiarized ourselves with the systems targeted for this 

research and the general concept of ion current rectification, we will be able to better 

frame our theory around them. Figures 4.2, 4.3, and 4.4 serve as central diagrams for this 

research, and they will be referred to commonly in our discussion of nanofluidic diodes 

in order to visualize the main physical asymmetries which enable ion current 

rectification. 
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CHAPTER 5 

Fundamental Nanofluidics Theory 

 Nanofluidics and microfluidics are becoming extensively-researched fields, with 

mechanisms that have been well-documented, experimentally tested and measured in 

abundance, as well as modeled using a variety of methods. This is not to say that every-

thing has been discovered and explained, however, as many mechanics and characteris-

tics of nanofluidic systems lack complete quantitative models. Only in the most recent 

few decades have we developed methods to reliably fabricate nano-scale devices, as well 

as the computational capacity to handle the complex numerical simulations for modeling 

them. However, as nanofluidics is a highly multidisciplinary field, researchers have a 

wide variety of approaches to document their work from. This makes for a rather esoteric 

and diverse collection of literature, and it is filled with multiple different definitions and 

simplifications that can appear contradictory and confusing. Therefore, a strong motiva-

tion for this chapter is to bring clarity to the field for the engineering of nanofluidic 

diodes. We will do this by considering many sources in our discussion, and by creating 

new diagrams to better communicate these complex topics. 

 The focus for this chapter is on the fundamental concepts most important to the 

field of nanofluidics and ionic transport, with the broader understanding of how these 

concepts appear in and are often derived from microfluidics. The concepts covered here 

are in one way or another directly relevant to the understanding or modeling of the sys-

tems under investigation and will therefore be addressed in depth. Other details which are 
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not specifically relevant to ion current rectification in nanofluidics, but nonetheless are 

noteworthy, are included for the sake of completeness, as well as to give context to the 

modeling decisions, especially simplifications made later on. 

 The fundamentals of microfluidics and nanofluidics share plenty of overlap, but 

the smaller scale of nanofluidics means that certain mechanisms influence system behav-

ior more than they do in microfluidics, such as the effect of surface charge. As the diame-

ter of the channel shrinks, the surface to volume ratio rises dramatically, leading to be-

havior unique to nanofluidics that are not observable in microfluidics [15]. The nano-

scale dimensions are necessary for ion current rectification (ICR) – the key mechanism in 

a nanofluidic diode. For this research project, the systems being studied have functional 

features with nanometer-scale dimensions. Because of this and the fact that the ions being 

transported are freely suspended in a fluid, ionic nanochannels exhibiting electrokinetic 

(movement of charge) phenomena constitute nanofluidic systems. 

 A foundational concept for how nanofluidic diodes operate is that of the Debye 

length, which will be covered in great detail in this chapter because it is so important to 

ICR. The internal diameter of nanochannels is usually comparable to the Debye length of 

the ionic solution, which can range from about 1-100 nm [27]. Microfluidic devices are 

exclusively larger than the Debye length, rendering its effect almost negligible, while in 

nanofluidic devices, the Debye length plays a primary role in functionality. The ionic dis-

tributions inside nanochannels are a direct consequence of the relationship between sur-

face charge density in the walls, the diameter of the channel, and the ion concentrations in 
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the bulk [15]. The proof will develop as we build on these concepts, and we will see how 

deeply fundamental they are to the function of nanofluidic diodes. 

   

5.1: Charge Screening, the Electric Double Layer, and the Debye Length 

 In the context of ion channels, the key difference between microfluidics and 

nanofluidics is the influence of the fixed surface charge on the ions in the channel. To 

elaborate, we must first discuss the phenomenon of ion screening, characterized by the 

Debye length. Through investigation of the Debye length, it will become clear how ion 

screening plays a stronger role in nanofluidics as compared to microfluidics, and more 

importantly, pave the way for understanding the important phenomenon of the electric 

double layer.  

 Ions suspended in an aqueous solution are subject to movement due to any exter-

nal electric fields present, since by definition ions are atoms or molecules that carry a 

nonzero charge. To summarize the widely-known fundamentals, the charge is zero if the 

number of electrons and the number of protons are the same, negative if the ion has one 

or more electrons than what can be counterbalanced by its nucleic protons (“extra” elec-

trons), and positive if the ion has one or more protons in its nucleus that are not balanced 

out by orbiting electrons (“missing” electrons). Due to this net charge, ions themselves 

are sources of electric fields and therefore interact with one another, experiencing forces 

due to the electric fields generated by the charge of other ions.  
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 The electrostatic force that induces this movement is the Coulomb force, which 

has been discovered and verified through experimentation and is given by 

!  . 

 The Coulomb force F1 (kg⋅m/s2, or equivalently, N) that acts on a charge Q due to 

a separate charge q1, in a fluid of absolute permittivity ε, is dependent on the polarity and 

magnitude of charges q1 and Q (in coulombs, C). F1 is inversely related to the square of 

the distance of separation between them, r (in meters, m), represented as a vector that 

points from q1 to Q. The notation r̂ denotes the unit vector form of r [28].  From equation 

5.1, we can see that like-polarity charges produce a repulsive force, and opposite-polarity 

charges produce an attractive force between the two charges. 

 Note that the absolute permittivity, ε, is characteristic of the medium, and quanti-

fies the factor of decrease that the electric field experiences in that medium. The symbol ε 

is shorthand for the product ε0εr, with ε0 being the permittivity of free space and εr being 

the dielectric permittivity (or relative permittivity) of the specific medium.  

 The net, or total, force exerted on each ion is the combination of Coulomb forces 

exerted by each ion surrounding it, obtained through simple vector addition of the forces. 

As previously stated, these forces are the result of electric fields. The relationship be-

tween the net Coulomb force, F (N), exerted on a charge Q (C) and the net electric field 

present, E (N/C, or equivalently, V/m), is given by 

!  . 

F1 = q1Q
4πε r 2 r̂

F = QE
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 Combining equations 5.1 and 5.2, we can express the net electric field at any 

point due to the positions of all charges present as a summation of the electric fields gen-

erated by each of the n charges as 

!  . 

 As seen in equation 5.3, the electric field at a given point is a vector quantity, and 

is a function of the relative separation vectors between the given point and each charge. 

 Physics defines the direction of the electric field to be coming out of positive 

charge and going into negative charge, so electric fields are vectors because they have 

both magnitude and direction. It is common knowledge that opposite charges attract and 

like charges repel (also apparent in equation 5.1), but logically it makes sense when con-

ceptualizing the electric fields around the charges as vectors. Oppositely-charged parti-

cles will attract because the electric fields between them agree in direction and combine 

constructively, while particles with the same charge polarity will repel because the elec-

tric fields’ directions are discontinuous between them, and they combine destructively.  

 Keep in mind that although we will mostly consider ions to act as one-dimension-

al point charges, this is merely a convenient simplification. This simplification works best 

when the diameter of the channel is very large compared to the true physical size of ions 

in the solution. For example, a nanofluidic channel with a diameter of 20 nm is about 40 

times wider than the effective diameter of a single K+ ion (the largest ion species in the 

systems we study, using KCl electrolyte in aqueous solution), which is approximately 0.5 

E = 1
4πε

n

∑
i= 1

qi

ri
2 r̂i
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nm [29]. This ratio becomes even larger as the channel diameter increases, but as the di-

ameter decreases, the finite ion volume becomes more important and neglecting it leads 

to larger error. There are ways to improve upon a point-charge model to compensate for 

finite volume later on if desired (such as through imposing a radius of closest approach), 

but since the point-charge-based model is qualitatively accurate and simpler than ac-

counting for the ions’ finite volume from the beginning, it is the model of choice for this 

research. 

 The phenomenon of charge screening is a straightforward result of how charges 

interact with one another, and can be illustrated through a simple example. Let us concep-

tualize an electrolyte solution composed of negative ions, all carrying the same magni-

tude of charge. Each ion will feel a repulsive force from every other ion, resulting in a 

volume around each ion which is depleted of other ions. The radius of this volume of ex-

clusion will depend on the concentration of the ion solution: the more ions that are 

present per unit volume, the less distance they can maintain from each other, and con-

versely, the lower the ion concentration, the greater the distance from one another they 

can sustain. The field generated by each ion remains the same, but the “effectiveness” it 

has on repelling other ions is dependent upon the total ion concentration. In other words, 

the electric field around an ion is dampened by the increased presence of other like-

charged ions.  This is essentially the concept behind charge screening, also known as 

electric-field screening, which is important for understanding our next topic – the electric 

double layer. 
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5.2: Electric Double Layer Qualitative Model 

 For nanofluidic ion channels, the most important consequence of ion charge 

screening is the formation of an electric double layer on any charged surface. Whatever 

polarity of fixed charge is embedded in the surface of the channel walls, ions of the oppo-

site polarity, known as counter-ions, will be strongly attracted and adhere to the surface, a 

process called adsorption. Ions of the same charge polarity as the embedded wall charge 

are known as co-ions, and are depleted close to the charged walls. With enough counter-

ions adsorbed to and accumulated at the charged surface, ions farther away from the sur-

face will be less affected by the surface charge, an effect of charge screening. The layer 

of counter-ions essentially cancels out the surface charge from the point of view of ions 

more distant from the wall. This adsorbed layer of counter-ions held closely to the 

charged wall, together with a more diffuse layer of counter-ions (and some co-ions) in the 

adjacent solution, is what we refer to as the electric double layer, or EDL [30].  

 A brief note on terminology should be made regarding “EDL”. In this paper, we 

arbitrarily chose to represent both singular (electric double layer) and plural (electric 

double layers) versions of the term with the same acronym, EDL. The plural term would 

apply to the case of multiple separate charged surfaces, as each will form its own EDL 

when in contact with an electrolyte solution. Although it would not be incorrect to refer to 

multiple electric double layers as “EDLs”, we made the stylistic choice to exclusively use 

“EDL” in this paper.  
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 Our understanding of the basic structure of the EDL comes from experiments 

conducted over the years, but the experimental methods cannot yet completely quantify 

the structure and distributions of the ions in aqueous solutions near surfaces [24]. This 

gives computational simulations more importance to model the physics believed to be at 

play. The simulations and models we use to understand the EDL were developed and im-

proved upon over time, but the layers they describe are conceptual, not rigid physical 

boundaries. There are regions and planes in the models which serve as frameworks to ex-

plain real-world data, but they are only frameworks. One thing that all theories agree on 

is that the EDL, electric field, and electric potential follow a decreasing exponential func-

tion of distance from the wall [30].  

 A complete qualitative model of the electric double layer which forms at the inter-

face between a solid surface with fixed charge and a symmetric electrolyte solution has 

several main components, characterized by changes in the makeup and the electric poten-

tial at certain distances away from the boundary between substrate (the solid makeup of 

the channel wall) and solution. The Guoy-Chapman-Stern model is the most widely used 

model to describe an EDL [31], and it is the model we will use to guide our discussion of 

the EDL qualitative structure. However, there are numerous variations of EDL models in 

use, at times creating some seemingly conflicting definitions. For the purposes of this re-

search, we will take these variations into consideration and adapt a qualitative model that 

agrees with as many models as possible, to get the clearest and most complete under-

standing of the basic EDL structure. 
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 In figure 5.1, we illustrate a simplified, conceptual EDL with an electric potential 

vs. distance relationship overlay in purple. For this example, the substrate has a net nega-

tive fixed uniform surface charge (like the channel walls in most of our systems to be 

studied), so the counter-ions that make up the EDL are positive. The vertical line serves 

as both the electric potential (Φ) axis and the boundary between the solid surface and the 

electrolyte solution. The horizontal line serves as the distance (x) axis and represents the 
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Figure 5.1: Conceptual diagram of a simplified electric double layer (EDL) that forms at 
the boundary between a charged solid surface and an electrolyte solution. Hydrated ions 
are denoted by a gray shadow.



perpendicular length away from the surface. The circles represent positive and negative 

charges, denoted by the sign inside them. The fixed charge is depicted as negative 

charges lined up to the left of the vertical axis, and the ions in the electrolyte solution are 

represented by charges to the right of the vertical axis.  

 The diagram is not to scale, it is just a basic representation to serve the purpose of 

illustrating the EDL model. The ions are treated as idealized rigid spheres, and the solva-

tion of the ions (or more specifically, hydration, if in aqueous solution) has been simpli-

fied to be represented by a drop shadow. A more accurate, but more complex, diagram 

would show water molecules clustered around all of the ions in the electrolyte solution 

except for the ions adsorbed to the surface. 

 Now that the basic layout and simplifications of the diagram have been conveyed, 

we can focus on the qualitative EDL structure that we show with figure 5.1, which is 

based on the Guoy-Chapman-Stern model. We will begin with general descriptions of the 

two layers this model describes, and then elaborate on the electric potentials defined to 

quantify them.  

 The first layer, known as the Stern layer, is closest to the surface and encompasses 

the ions that are strongly held with attractive Coulombic forces by the fixed surface 

charge. The Stern layer is populated exclusively with counter-ions that are electrostatical-

ly adhered to the surface, so its ions are considered immobile with respect to the surface. 

The most firmly adhered ions are electrostatically held so close to the surface that no wa-

ter molecules come between ion and substrate, so they are not considered hydrated, and 
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are “specifically adsorbed” to the surface. Immobile, adsorbed ions are what the Stern 

layer accounts for as an improvement to the Guoy-Chapman model, which only considers 

the diffuse layer [24].  

 Hydrated ions are distinct from the specifically adsorbed non-hydrated ions in the 

Stern layer. Their closest approach marks the end of the Stern layer and the beginning of 

the diffuse layer. There are two planes defined for the Stern layer: the Inner Helmholtz 

Plane (IHP) and the Outer Helmholtz Plane (OHP). The IHP passes through the centers of 

non-hydrated ions that are specifically adsorbed to the surface, while the OHP passes 

through the centers of the hydrated ions at their closest approach to the surface [31]. The 

most important concept to grasp for the Stern layer is that it can be considered completely 

immobile in most cases. The short-range Coulomb forces on ions in the Stern layer over-

power most reasonable externally applied electric fields, and frictional forces oppose 

shear (along the plane of the surface) movement of ions in contact with the surface [32]. 

 Moving perpendicularly away from the charged surface, the electric field from the 

negative surface charge is screened out by the counter-ions in the EDL, and the distribu-

tion of cations and anions in the solution exponentially approaches its bulk value. Elec-

tro-neutrality can be assumed in the bulk solution, meaning the positive and negative ions 

are evenly distributed and there is no net electric field. While the bulk solution is electri-

cally neutral, this is not true near the charged walls. When moving from the bulk towards 

the charged wall, there is increasing depletion of co-ions and increasing accumulation of 
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counter-ions. Understandably, this is due to electrostatic repulsion and attraction acting 

on the ions from the fixed surface charge [24].  

 The volume between the Stern layer and the bulk solution is known as the Guoy-

Chapman diffuse layer, or simply the diffuse layer, due to the less rigid distribution of the 

ions that populate it. The diffuse layer has a higher concentration of counter-ions than co-

ions, but unlike the Stern layer, there exist some co-ions present in the diffuse layer. Also 

unlike the immobile Stern layer, the ions in the diffuse layer can move with respect to the 

substrate due to externally applied electric fields–an important distinguishing characteris-

tic. Note that all of the ions in the diffuse layer are hydrated, while all of the ions in the 

Stern layer are non-hydrated and are specifically adsorbed to the wall. 

 Considered together, the Stern layer and the diffuse layer are the two regions that 

comprise the electric double layer. Their boundaries are not rigid physical separations, 

rather, their thicknesses can be defined by the distance where the electric potential reach-

es certain values.  

 There exist some conflicting definitions of what the “double” in electric double 

layer stands for. Some sources will distinguish the “triple-layer model”, where considera-

tion of the adsorbed ions (the Stern layer) constitutes a third layer [31]. Then, “double” is 

implied to refer to the diffuse layer and the layer of embedded surface charge. This dis-

tinction is overly confusing for our purposes, and in many other literature sources, EDL 

refers to just the two ion layers in the solution (Stern and diffuse), which is what we will 
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adopt for this research. We mention this alternate definition simply to acknowledge its 

existence and to clarify our choice of terms. 

 For the systems we are studying, electric potential is quantified with respect to the 

value in the bulk electrolyte solution, and serves as a convenient scalar measure of net 

electric field. In general, the electric potential is related to the electric field by 

!  , 

where the electric field represented as a vector, E (V/m), is the negative of the gradient of 

the electric potential, Φ (V) [28]. Equation 5.4 also helps conceptually connect the elec-

tric field to the electric potential: the slope of the electric potential is the electric field 

vector with opposite direction. Referring back to figure 5.1, we can see this aligns with 

our understanding in two dimensions. The slope of the electric potential vs. distance trend 

is positive when moving in the +x-direction, indicating the electric field points in the –x-

direction. Since the largest component of the net electric field is from the negative surface 

charge, it makes sense that the electric field points toward those charges. 

 The potential at the wall is known as the surface potential and appears in figure 

5.1 as Φ0. It is negative due to the polarity of the surface charge, and its magnitude is the 

largest in the system. Keep in mind that there can be different definitions of the “surface 

potential”, depending on the context. We will use Φ0 to specifically reference the electric 

potential at the charged substrate surface (the boundary between solid wall and elec-

trolyte solution). We will use Φs to reference the potential at a surface with a more flexi-

ble definition, such as situations that treat the OHP as the boundary between fixed charge 

E = − ∇Φ
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and mobile charge (see the Guoy-Chapman-Stern model, discussed later). The potentials 

at the IHP and the OHP are sometimes named; here we will use ΦIHP for the potential at 

the IHP and ΦOHP  for the potential at the OHP. The OHP is also known as the onset of the 

diffuse layer [31], which brings us to the third plane from the surface, the shear or slip 

plane.  

 The shear plane is oriented through the centers of the first hydrated ions that are 

mobile, hence the name. It indicates the electric potential at the location of the first ions 

that can shear (move in the direction parallel to the surface) from the rigidly held ions in 

the Stern layer and the closest hydrated ions which are also essentially immobile. The 

electric potential at this shear plane is commonly defined as the zeta (ζ) potential.  

 The final distinguishing plane of the EDL structure separates the diffuse layer 

from the bulk solution. This plane is located at the Debye length (which will be discussed 

in-depth later). For most purposes it marks the “end” of the EDL, but the specific position 

depends on the model being used. Some sources define the Debye plane as being located 

one Debye length away from the charged solid surface, where the potential has decayed 

to the Φ0/e point (see reference [24]). Other sources, specifically the ones that follow the 

Guoy-Chapman-Stern model, define it as being located one Debye length away from the 

OHP, so its potential would be ΦOHP/e (see reference [31]). In figure 5.1, both are pre-

sented, and the brackets distinguishing the bulk solution from the diffuse layer take the 

midpoint between the two definitions.  
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 Most disagreements among different models stem from a simplification that can 

be made about the Stern layer. One of the more mild simplifications involves assuming 

the potential at the OHP is equivalent to the zeta potential, since the OHP is only a maxi-

mum of a few molecular diameters away from the shear plane [24]. A more significant 

simplification would be taking the surface potential to be the same as the zeta potential 

[24]. The logic for such a simplification applies mostly for microfluidic systems, or 

nanofluidic systems where the thickness of the Stern layer is very small compared to the 

diameter of the channel. In this simplification, the Stern layer is considered to be part of 

the wall’s surface charge as it is immobile and doesn’t contribute significantly to ion cur-

rent. The concept of the wall is shifted to be the interface between the Stern layer and the 

diffuse layer, with the total surface charge density being the charge in the substrate plus 

the charge of the ions that populate the Stern layer [27]. This simplification works best 

for high surface charge density, since in that case the majority of the counter-ions that 

balance the substrate’s surface charge are located within the first few angstroms from the 

surface [27].  

 It is also especially useful for cases of high surface charge density in the substrate, 

because some models (see the Guoy-Chapman model, discussed later) may overestimate 

the concentration of counter-ion accumulation at the interface. To account for the ad-

sorbed counter-ions’ finite volumes, a linear drop in potential can be described across the 

Stern layer, and the notions of the “wall” and its potential are given to the OHP (see the 

Guoy-Chapman-Stern model, discussed later).  
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 For the purposes of this research, the difference between the Debye length from 

the charged surface and the Debye length from the OHP is fairly negligible, but more im-

portantly, neither one actually marks the finite “end” of the EDL. The electric potential 

magnitude decreases exponentially as distance increases from the charged surface, but 

even in what we define as the bulk solution, there is still a nonzero potential contributed 

by the charged surface. The takeaway is that the EDL does not have a firm “edge”, but 

the Debye length provides a convenient way to characterize its distance of influence.  

5.3: Foundational Physics Models 

 So far, our theory has mainly been qualitative in nature, with a few simple physics 

relationships to review the basics of electrostatics. This has worked well for introducing 

the reader to such important topics as the electric double layer and the concept of the De-

bye length. But in order to get a deeper understanding of these models and work towards 

numerically modeling the behavior of nanofluidic diodes, we must have an efficient way 

to quantify these concepts. The purpose of this section is to review the remaining founda-

tional physics models which are important to nanofluidic diode systems. 

 We will start with Gauss’s law, which quantifies the fundamental relationship be-

tween the electric flux (electric field density passing through per unit area) through a hy-

pothetical closed three-dimensional surface and the charge enclosed by that surface. 

Gauss’s law is given as 
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!  , 

where the lefthand side of the equation represents the electric flux (the electric field E (V/

m) passing through each infinitesimal unit area da (m2), integrated over the whole closed 

surface), and the righthand side relating the flux to the enclosed charge, Qenc (C), and the 

absolute permittivity of the medium, ε [28].  

 The enclosed charge, Qenc, can be written as the volume integral of the charge 

density that is within the closed surface: 

!  . 

Here, ρ is used to denote volumetric charge density (C/m3), and dv denotes infinitesimal 

volume contributions to be integrated over the total volume, V (m3). Substituting equation 

5.6 into equation 5.5, and substituting equation 5.4 into equation 5.5 to write electric field 

in terms of electric potential, equation 5.5 simplifies to 

!  , 

where Φ (V) is the resulting electric potential due to the volumetric charge density ρ in a 

medium with absolute permittivity ε [28]. Equation 5.7 is a very significant equation in 

all applied fields of electrostatics, and is known as Poisson’s equation or the Poisson 

equation. For the nanofluidic systems we are studying, ρ is the charge density of the mo-

bile ions in an aqueous KCl electrolyte solution, and ε is the absolute permittivity of wa-

ter.  

∮ E ⋅ d a = 1
ε

Qenc

Qenc = ∫V
ρ d v

∇2Φ = − ρ
ε
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5.4: Electric Double Layer Mathematical Model 

 Let us return to the electric double layer now that we understand the roots of the 

Poisson equation, so that we can build a quantitative model. For this research, we will 

study the first mathematical model that was developed for EDL around 1910-1913 by 

Guoy and Chapman, and later improved upon by Stern [24].  

 The Guoy-Chapman model provides a fairly good (though simplified) approxima-

tion of the electric potential profile in an electrolyte solution near a plane of uniform 

fixed charge [24]. However, it is built from classical models of the EDL, which struggle 

to closely predict quantitative experimental values due to simplifications. These include 

neglecting ion-ion correlations, finite ion sizes, nonbonding interactions between ions 

known as steric effects, and electrostatic image interactions [33]. Despite this, the mod-

el’s strength lies in the fact that it accurately describes the fundamental behavior of the 

ions in a compact manner. 

5.4.1: The Poisson-Boltzmann Equation and the Debye Length Equation 

  In our EDL model, the ions populating the diffuse layer follow a typical organi-

zation described by the Boltzmann distribution. Thermodynamics defines a Boltzmann 

distribution as the most probable distribution of a set of indistinguishable particles at a 

given thermodynamic state [24]. Consider an ionic species i that has a bulk concentration 

ni,∞ at a very far distance away from the charged surface (when distance goes to infinity), 

and satisfies the electroneutrality condition given by  
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!  . 

Then the local concentration ni (number of ions/m3) of this ion species is given by the 

Boltzmann distribution:  

!  . 

The valence of the ion species i is zi, qe is the elementary charge (the charge of an elec-

tron in Coulombs), Φ (V) is the electric potential, kB is the Boltzmann constant, and T (K) 

is the absolute temperature of the system [24]. 

 To represent the volumetric ion charge density, we must sum all N ionic species 

that are present in the solution,  

!  . 

Note that this ρ denotes the same thing as it does in equations 5.6 and 5.7. Now, by sub-

stituting equations 5.9 and 5.10 into the Poisson equation (equation 5.7), we obtain the 

Poisson-Boltzmann (P–B) equation, which describes the electric potential distribution in 

the diffuse layer of the EDL, and can be written as 

!  . 

Clearly, there is no straightforward way to solve equation 5.11 for Φ, as it is both the sub-

ject of a del-squared operator and in an exponential term. Because of this, the Debye-

Hückel theory was developed to approximate an analytical solution for the Poisson-

Boltzmann equation by linearizing equation 5.11 [12].  

N

∑
i= 1

zini,∞ = 0

ni = ni,∞e
− ziqeΦ

kBT

ρ =
N

∑
i= 1

qezini

∇2Φ = − 1
ε

N

∑
i= 1

qezini,∞e
− ziqeΦ

kBT
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 For the Debye-Hückel approximation to hold, the potential in the diffuse layer 

(which is what the P-B equation describes) must be very small; e.g. ! . 

Then, by performing the series expansion for the exponential term and only using the first 

two terms, e.g. !  for small a, the P-B equation takes the form 

!   

where  

!  . 

Finally, applying the boundary conditions of ! , ! , and 

!  gives the Debye-Hückel approximation as a solution to the P-B equation: 

! , 

where Φs is the surface potential and x is the perpendicular distance from the surface [12]. 

  In the Guoy-Chapman model, the surface potential is the potential at the charged 

substrate, Φs. We will later explore a variation of equation 5.14 for the Guoy-Chapman-

Stern model that considers the surface potential to be represented by ΦOHP. 

 The decay coefficient, κ, is important because its inverse is known as the Debye 

length, which we identified in our qualitative description of the EDL structure as an es-

sential concept. The Debye length characterizes the range over which the EDL imposes a 

perturbation in the solution [30]. It is also known as the screening length, referring to 

how it defines the distance over which the mobile counter-ions screen out the electric 

field generated by the fixed surface charge [15]. In quantitative terms, the Debye length is 

ziqeΦ/kBT ≪ 1

e − a = 1 − a

∇2Φ = κ2Φ

κ2 =
∑N

i q2
e z2

i ni,∞

εkBT

lim x→∞Φ = 0 lim x→∞ ∇Φ = 0

Φ(x = 0) = Φs

Φ(x) = Φse − κx
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the distance from the charged surface where the potential has decayed to 1/e, or 36.7%, of 

the surface potential value. For a symmetric, z:z electrolyte, the Debye length λD (m) is 

given by 

!  . 

Since the bulk solution satisfies electroneutrality, the two ion species’ bulk concentrations 

are equal and are denoted simply as n∞. As we can see in equation 5.15, the Debye length 

inversely scales with the square root of the ion’s bulk concentration. This aligns with our 

previous qualitative discussion, since higher concentration means the electric field can be 

screened over shorter distances due to a higher presence of counter-ions canceling out the 

surface charge. 

 The Debye length decay has been confirmed through many experimental studies 

for monovalent (z = 1) electrolyte systems at low to moderate concentrations [30]. The 

nanofluidic diodes at the focus of this research use a monovalent solution, KCl, in low to 

moderate concentrations, so the Debye length models the diffuse layer well for our pur-

poses. For multivalent electrolyte systems however, theoretical and experimental studies 

suggest that the Debye length does not describe the decay length as accurately [30].  

 To illustrate how the screening length changes with electrolyte concentration, in 

figure 5.2 we set up a simple ion concentration gradient that spans 60 µm, and plotted the 

Debye length across the gradient. This system also models how the EDL thickness would 

vary in a simple representation of a uniformly charged nanochannel connecting two 

λD = κ − 1 = εkBT
2q2e z2n∞
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reservoirs of different concentrations (see figure 4.3). The uniform slope of the gradient is 

a simplifying assumption made about the electrolyte’s transition between high and low 

concentrations. It neglects areas of depletion and accumulation that will form in the sys-

tem at steady-state, which are most prominent at the openings of the channel. Also, in re-

ality, the concentration profiles for cations and anions will diverge and reach different 

steady-state trends due to opposite electrostatic forces, but in figure 5.2, the general trend 

given to the concentration profiles is the same.  

 From equation 5.15, we can immediately see how rapidly the Debye length grows 

as the ion concentration drops. At the left opening of the nanochannel (x = 0 µm), where 
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Figure 5.2: (Top) Simplified representation of electrolyte concentration vs. position 
along nanochannel. (Bottom) Corresponding Debye screening length along nanochan-
nel. The nanofluidic channel is 60 µm long, the left reservoir has an ion concentration 
of 0.1 M (~6×1025 ions/m3), and the right reservoir has an ion concentration of 0.1 mM 
(~ 6×1022 ions/m3).



the bulk ion concentration is about 6×1025 ions/m3, the Debye length is only about 1 nm 

thick. At the right opening (x = 60 µm), where bulk ion concentration is 3 orders of mag-

nitude lower at about 6×1022 ions/m3, the Debye length reaches a thickness of about 30 

nm. This would mean that a channel diameter of 60 nm or less would be sufficient for 

this system to experience good EDL overlap at one channel opening. The significance of 

this asymmetrical overlap will become more clear when we investigate the sources of ion 

current rectification in-depth.  

5.4.2: The Grahame Equation 

 The electric field produced by fixed wall charge is strongest at the wall’s surface, 

so the corresponding electric potential magnitude is at a maximum at the surface as well. 

A relationship can be drawn between the strength of the electric potential at the surface 

and the surface charge density which produces it. The Grahame equation, named after the 

person who developed it, provides a simple quantitative way of expressing this relation-

ship. The Grahame equation can be obtained from the one-dimensional Poisson equation 

(1D form of equation 5.7) when applying the boundary condition that the gradient of the 

electric potential is zero as distance goes to infinity, and assuming an electro-neutrality 

condition [12]. More directly, the Grahame equation can be obtained by analytically inte-

grating the nonlinear Poisson-Boltzmann equation (5.11) and again applying appropriate 

boundary conditions. 
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 The surface potential (in volts) is related to the surface charge density, σs (C m–2), 

and is described by the Grahame equation, given by [12, 27] 

!  or  ! . 

Equation 5.16 applies for a symmetric (cations an anions have same charge magnitude) 

electrolyte solution of permittivity ε, with ions of charge q (C), bulk number density n∞ 

(m–3), Boltzmann’s constant kB, and temperature T [12]. The Grahame equation is often 

used to approximate the surface charge density affixed to the substrate, as it is easier to 

measure electric surface potential than to directly measure σs. For this research, we use 

the Grahame equation to find the surface potential for a given fixed charge density, so 

that we can plot the Guoy-Chapman model for decaying electric potential (equation 

5.14).  

 Before we continue, note the distinction between σ and ρ, with the former denot-

ing charge per unit area and the latter denoting charge per unit volume. In nanofluidics, ρ 

is commonly used for charge density in the electrolyte and σ for surface charge density. 

The surface charge density is usually represented by a subscript s, as in σs, and this also 

helps distinguish it from conductivity, which is inconveniently also represented by σ. 

These notations are extremely prevalent in published literature, so we will use them in 

accordance with existing work, despite the potentially confusing overlap. 

σs = 8εn∞kBT sinh ( qΦs

2kBT ) σs = 2εrε0κkbT
q

sinh ( qΦs

2kBT )
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5.4.3: The Guoy-Chapman-Stern Model 

 Our quantitative understanding so far covers the Guoy-Chapman model, which 

assumes that the ions form a diffuse layer, but neglects the Stern layer [24]. Considering 

the existence of the immobile Stern layer improves upon the Guoy-Chapman prediction 

of electric potential in EDL because it accounts for the finite size of ions in the Stern lay-

er. Though it still treats ions as free-moving point charges in the Guoy-Chapman diffuse 

layer, by considering the finite volume occupied by ions in the Stern layer, the model 

avoids the erroneous result of predicting impossibly high ion concentrations accumulated 

at the walls. All together, the qualitative success of the Guoy-Chapman-Stern model has 

led to it being the most widely used quantitative model for EDL [31].  

 Consider the basic electric double layer structure presented in figure 5.3. The 

Guoy-Chapman-Stern model utilizes the electric potential values at three planes: Φ0 =  

Φ(0) at the boundary between solid and liquid at x = 0 (let us call it the 0-plane), ΦIHP =  

Φ(IHP) at the inner Helmholtz plane at x = IHP, and ΦOHP =  Φ(OHP) at the outer 

Helmholtz plane at x = OHP. Permittivity is not constant throughout EDL, and the Guoy-

Chapman-Stern model uses three relative permittivity values for the three regions be-

tween planes: ε1 for 0 < x < IHP, ε2 for IHP < x < OHP, and εr for x > OHP. Lastly, we de-

note charge density with σ0 for the density of fixed charges per unit area in the substrate 

on the 0-plane (located at x = 0) and σStern for the density of specifically adsorbed ions (in 

the Stern layer) on the IHP (x = IHP). Taken together, the total fixed charge density can 
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be written as σimmobile = σ0 + σStern [31]. σimmobile  accounts for both the fixed charge embed-

ded in the wall and the static charges adsorbed just outside the wall. 

 The Guoy-Chapman-Stern model assumes that the electric potential distribution 

Φ(x) obeys the Laplace equation in the region between the 0-plane and the OHP (the 

Stern layer: 0 < x < OHP), and the Poisson equation beyond the OHP (the diffuse layer: x 

> OHP) [31]. Formally written in one-dimension form (only x-dependent), the potentials 

for these regions are 

!   

and 

!   

where ε0 is vacuum permittivity and ρions(x) is the space charge density resulting from the 

ions in the solution [31], obtained using equation 5.10.  

d 2Φ
d x2 = 0, 0 < x < OHP

d 2Φ
d x2 = − ρions(x)

εrε0
, x > OHP
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Figure 5.3: Guoy-Chapman-Stern model for an electric double layer. (Left) Electric po-
tential as a function of distance from surface. (Right) Simplified EDL structure.

(5.17)



 We know that the diffuse layer is described by the Poisson-Boltzmann equation 

(equation 5.11), with an approximate solution in the Debye-Hückel form (equation 5.14). 

In the Guoy-Chapman model, Φs =  Φ0 because the entire EDL is considered to be a dif-

fuse layer. In the Guoy-Chapman-Stern model, the beginning of the diffuse layer is at the 

outer Helmholtz plane (OHP), so the Debye-Hückel approximation uses Φs =  ΦOHP, and 

the distance is taken to be from the OHP instead of x = 0. So, equation 5.18 can be solved 

in the same manner as equation 5.7, with a few additional conditions.  

 The boundary conditions that apply for equations 5.17 and 5.18 are [31] 

!   

!   

!  

!   

!  

!   

in addition to the boundary conditions we used before, 

! . 

Φ(IHP − ) = Φ(IHP+ ) = Φ(IHP )

Φ(OHP − ) = Φ(OHP+ ) = Φ(OHP )

d Φ
d x

x= 0+
= − σ0

ε1ε0

ε1
d Φ
d x

x= IHP −
− ε2

d Φ
d x

x= IHP+
= σIHP

ε0

ε2
d Φ
d x

x= OHP −
− εr

d Φ
d x

x= OHP+
= 0

d Φ
d x

x= OHP+
= − σimmobile

εrε0

Φ(x) → 0 and
d Φ
d x

→ 0 as x → ∞
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(5.20)

(5.22)

(5.21)

(5.24)

(5.23)

(5.25)



The superscript + and – that appear in equations 5.19-5.23 denote the side being ap-

proached from to evaluate at the plane. The + means the side of the plane facing the posi-

tive x-direction and the – means the side facing the negative x-direction.  

 Equations 5.19 and 5.20 account for continuity in electric potential across the IHP 

and OHP, respectively. Equation 5.21 applies for the assumption that there is no electric 

field within the solid wall [31]. Equations 5.22 and 5.23 ensure slope continuity for the 

electric potential across the IHP and OHP, respectively, and account for the effects of the 

different permittivities in the three regions, as well as the potential contributions from the 

specifically adsorbed ions in the IHP.  

 Solving equation 5.18 in the same way as we solved for equation 5.7, with the 

boundary conditions given in equations 5.20, 5.23, and 5.25, the Debye-Hückel lineariza-

tion approximation for the diffuse layer in the Guoy-Chapman-Stern model is found to be 

! , 

with the decay coefficient, κ, being the inverse of the Debye length, and equivalent to 

how it was defined in equation 5.13. Since the P-B equation is only valid for ions in the 

diffuse layer, we consider our “surface” to be the outer Helmholtz plane (OHP), as it is 

considered the onset of the diffuse layer. The surface potential is then taken to be ΦOHP  

or, in some cases, ζ potential (when ζ potential and ΦOHP are approximated to be equiva-

lent).  

 Returning to the Stern layer, we solve equation 5.17 for the region between the 

surface and IHP as well as the region between the IHP and OHP. Applying boundary con-

Φ(x) = ΦOHPe − κ(x − OHP), x > OHP
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ditions given by equations 5.19 and 5.20 to equation 5.17, the potential distributions in 

these regions are linear (since the potential distribution is considered to follow the 

Laplace equation within the Stern layer), and are given by [31] 

!   

and 

! . 

To obtain relationships between Φ0, ΦIHP, and ΦOHP, we substitute equations 5.27 and 

5.28 into equations 5.21 and 5.22, respectively, resulting in [31]  

!  

and 

!  . 

Equations 5.27 and 5.28 describe the potential distribution in the Stern layer, while equa-

tions 5.29 and 5.30 relate the potentials at each of the planes to the charge density (per 

unit area) on the planes themselves, and to each other.  

 Now, we have mentioned before how some models treat Φs in the Debye-Hückel 

approximation as the potential at the solid wall, and others treat it as the potential at the 

outer Helmholtz plane. In the Guoy-Chapman-Stern model, the Debye-Hückel approxi-

mation only applies in the diffuse layer, so Φs is treated as the potential at the onset of the 

diffuse layer and can be written as equation 5.26, repeated below for convenience: 

! . 

Φ(x) = Φ0 + ΦIHP − Φ0
IHP

x , 0 < x < IHP

Φ(x) = ΦIHP + ΦOHP − ΦIHP

OHP − IHP
x , IHP < x < OHP

Φ0 − ΦIHP = σ0IHP
ε1ε0

ΦIHP − ΦOHP = (σ0 + σIHP)(OHP − IHP )
ε2ε0

Φ(x) = ΦOHPe − κ(x − OHP), x > OHP
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(5.29) 

(5.30) 



The logic for treating the OHP as the boundary between the diffuse layer and a solid wall 

with total fixed charge per unit area, σWall = σ0 + σdiffuse, is supported by the model’s ful-

fillment of the electroneutrality condition of the whole system. The amount of charge in 

the entire diffuse layer per unit area can be calculated by integration of the volume charge 

density of diffuse ions as 

! . 

If we substitute equation 5.18 into equation 5.31 and apply the boundary condition of po-

tential going to zero as x goes to infinity, we can express total diffuse layer charge density 

per unit area as 

! . 

Then, we can apply boundary conditions given by equations 5.21, 5.22, and 5.23, along 

with equations 5.29, 5.30, and 5.32, to ultimately determine that  

σ0 + σStern + σdiffuse =  σimmobile  + σdiffuse = 0.  

The immobile charge (the fixed substrate charge plus the adsorbed ions in the Stern layer) 

and the diffuse charge balance out, satisfying electroneutrality [31]. Since equation 5.33 

shows σimmobile  = – σdiffuse, equation 5.32 can be written as 

! , 

which is one of the boundary conditions (equation 5.24) applied to constrain ΦOHP in 

equation 5.26.  

σdif f u se = ∫
∞

OHP
ρions(x)d x

σdif f u se = − εrε0 ∫
∞

OHP

d 2Φ
d x2 d x = εrε0

d Φ
d x

x= OHP+

d Φ
d x

x= OHP+
= − σimmobile

εrε0
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(5.33) 

(5.34) 

(5.32) 



 The relationship between the total immobile charge density σimmobile  and the po-

tential at the onset of the diffuse layer ΦOHP can be expressed by the Grahame equation 

for the Guoy-Chapman-Stern model as [13, 31] 

! . 

This is valid because equation 5.34 is equivalent to the hypothetical case of a wall located 

at x = OHP carrying the charge density σimmobile = σ0 + σStern in contact with an electrolyte 

solution. If taking the approximation that the OHP potential is equal to the zeta potential 

(the electric potential of first mobile ions), then the effective charge density of the “wall” 

would be calculated by equation 5.35 with ΦOHP replaced by ζ [13]. 

 The main conclusion to draw about the the Guoy-Chapman-Stern model is its 

strength in improving the Guoy-Chapman model in a simple way. By shifting the refer-

ence frame, the Guoy-Chapman-Stern model accounts for the finite stationary charge that 

accumulates at the nanochannel wall by treating it as part of the wall. The purpose of this 

analysis of the quantitative Guoy-Chapman-Stern model is not only to introduce its equa-

tions to the reader and compare it to the Guoy-Chapman model. It also serves to motivate 

the simplification that can be made by considering the OHP as the boundary between sol-

id and liquid, as doing so helps account for the finite charge accumulation in the Stern 

layer. Still, the Guoy-Chapman-Stern model has similar limitations as the Guoy-Chapman 

model in its neglecting of the ion-ion interactions and the finite ion volume in the diffuse 

layer. Accounting for these factors requires a far more complicated model, however, so 

σimmobile = 2εrε0κkbT
q

sinh ( qΦOHP

2kBT )
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the Guoy-Chapman-Stern model retains the advantage of being a simple and efficient 

way to predict the electric potential trends in EDL.  

5.5: Electrokinetic Transport Mechanisms in Nanofluidics 

 The major electric mechanisms in nanofluidics can be divided into three main cat-

egories: electrostatic, electrokinetic, and electroviscous, and all three contribute to ion 

transport [34]. These terms refer to the electrical interaction involved with stationary 

charges, moving charges, and charge effect on solution viscosity, respectively. In nanoflu-

idic diodes, electrostatic effects take the form of electric potentials produced by stationary 

fixed surface charge in the channel walls. We covered the important electrostatic concepts 

in our discussion of electric potential from fixed wall charge in EDL. Our research scope 

will not include electroviscous effects more than in passing, since nonuniform viscosity is 

not widely included in simple models. Electrokinetic effects, because they deal with mov-

ing charges, will be the focus of this subsection because we ultimately want to understand 

the fundamental model of ion transport characteristics in nanofluidic diodes. 

5.5.1: Quantifying Ion Current 

 The most useful way to quantify ion transport for nanofluidic device engineering 

is by defining a vector called the ion current flux, represented by J (A/m2). In physics, J 

is used to denote current flux (equivalent to current density) [28]: 
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!  , 

where !  is an infinitesimal cross-sectional area whose normal is in the same direction 

as ! , a measurement of the charge flowing past a point over an infinitesimal amount of 

time. A is total cross-sectional area (m2), and I is total electric current, measured in 

coulombs-per-second or amperes (A), where 1 C/s = 1 A [28]. Here, we use units A/m2  

for J, to work consistently with meters as units for length. However, in the device physics 

field, current density units are most commonly A/cm2. This difference in notation is not 

an issue, as the conversion from A/m2  to A/cm2 is simply multiplying by a factor of 104. 

 Current can be written in terms of charges by considering the velocity, v (m/s), of 

a uniform linear charge density, dQ/dℓ (C/m), to obtain charge flowing past a point per 

unit time as 

!  . 

Note that velocity can also be written as dℓ/dt, and that dℓ (m) is a loosely-defined vari-

able for infinitesimal length traveled by the infinitesimal charge dQ. The purpose of ℓ is 

not to represent a numerical quantity, but rather to convey the other parameters’ relation-

ships with physical space. 

 For nanofluidic diodes, we want to express the ion current density to quantify ion 

transport, so we will use equation 5.10 in conjunction with equations 5.36 and 5.37. 

Equation 5.10 represents the ion charge density, and is repeated below for convenience:  

J = d I
d a⊥

= I
A

d a⊥

d I

I = d Q
d ℓ

v
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!  . 

Since J is the current per unit area, it can be expressed as the volume charge density 

times its velocity, or 

!  . 

Equation 5.38 relates the physical flow of ions to the current density they create by trans-

porting charge. 

5.5.2: Quantifying Conductivity 

 Equations 5.36, 5.37, and 5.38 all define how to quantify the concept of charge 

flow in various forms, but none of them involve the driving source of charge motion– 

electric fields. The Coulomb force (equation 5.2) describes the force exerted on a charge 

in the presence of an electric field. When traveling through a real material, charges (elec-

trons, ions, etc.) encounter resistance as they are pulled by an electric field due to colli-

sions with other matter. We know that larger fields induce larger currents since the 

Coulomb force increases with field strength, and exerting a greater force on a charge in-

creases its acceleration. But the greater the resistance, the lower the velocity that the 

charges can maintain as they flow in the material. In most substances under ordinary con-

ditions, the current density is proportional to the electromagnetic force per unit charge, so 

the relationship is given as [28] 

ρ =
N

∑
i= 1

qezini

J = (
N

∑
i= 1

qezini) v
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! , 

where J (A/m2) is current density, E (V/m) is electric field, v (m/s) is the velocity of the 

charges, B (N⋅s⋅C-1⋅m-1, or equivalently, T) is magnetic field, and σ (kg-1⋅m-3⋅s3⋅A2, or 

equivalently, Ω-1⋅m-1) is conductivity. Conductivity is the inverse of resistivity, and ap-

pears as a proportionality factor. It is an empirical constant that is characteristic to the 

type of material. Normally, the charge velocity v is small enough to be negligible, so the 

second term is often dropped, giving [28] 

! .  

Equation 5.40 is the current density form of Ohm’s law, and is familiar in the field of 

electronics in its one-dimensional form, I = V/R.  

 Now, having defined how the flow of charge is expressed, and how it depends on 

electric field and conductivity, we will be able to build more complex quantitative rela-

tionships going forward, greatly assisting the derivation of our models. 

5.6: Electrophoresis and Electroosmosis 

 In nanofluidic diodes, a vital characteristic for optimal function is the presence of 

depletion and accumulation/enrichment zones, which impact the ability of the ions to 

translocate across the channel. Depletion zones are where the concentration of ions is less 

than in the bulk, while enrichment zones are areas of ion concentration higher than bulk 

concentration. Recall that bulk solution concentration refers to the inherent ion concentra-

tion of the electrolyte solution in areas where outside influences are negligible, such as in 

J = σ (E + v × B)

J = σE
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the large reservoirs on either side of the nanochannel in our nanofluidic diode devices. In 

areas influenced by nonuniform fields, ions can be manipulated to migrate to certain ar-

eas, causing ion accumulation, or migrate away from other areas, resulting in ion deple-

tion. These zones can be formed by two major electrokinetic phenomena: electrophoresis 

and electroosmosis [15].  

 Electrophoresis and electroosmosis are strongly impacted by the electric double 

layers that form on the charged nanochannel walls. In nanofluidic diodes, the EDL inter-

act with applied electric fields and low-Reynolds number hydrodynamic flows to create 

desirable effects on ion transport [35]. The Reynolds number is defined as the ratio of the 

inertial force to the viscous force, and appears as the most common dimensionless num-

ber in fluid dynamics [36]. In short, low-Reynolds number flows occur when pressure 

experienced by the fluid is effectively balanced out by the viscous force. So pressure-in-

duced fluid movement terms can be neglected [18], because the Reynolds number is low 

in the systems we are studying. 

 In the nanofluidic diode systems we are studying, the externally applied electric 

field exerts a force on the ions in the EDL as well as those outside the EDL. The Stern 

layer is composed of rigidly-held ions, so only the ions in the diffuse layer of the EDL 

can significantly move under the influence of the external electric field. As the mobile 

ions in the diffuse layer and the bulk are pulled by the field, they collide with solute mol-

ecules (H2O in aqueous solution). For an electric double layer on a fixed planar surface – 

in this case, the charged nanochannel walls – this type of induced fluid flow is called 
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electroosmosis. By definition, electroosmosis is defined as “the movement of liquid rela-

tive to a stationary charged surface” [24]. These ion-solution collisions drag the mole-

cules of the solution along the same path as the ions, inducing fluid flow that reaches a 

peak near where the diffuse layer ends and the bulk region begins, with a speed that ex-

ponentially approaches what is known as the Smoluchowski ‘slip velocity’ or ‘shear ve-

locity’ [35]. The slip velocity is simply a name given to the maximum fluid flow induced 

by electroosmosis as a way of quantifying the fluid’s momentum, and was originally de-

scribed by Smoluchowski. 

 To understand the relevance of the term ‘slip’, one must understand the slip 

boundary condition and the no-slip boundary condition, by which fluid flow is con-

strained in microfluidics and nanofluidics [37]. In the no-slip boundary condition, there is 

no relative velocity between the boundary and the fluid it touches. The velocity of the 

fluid layer in contact with the boundary is equivalent to that of the boundary, thus there is 

no “slip”. When the velocity of the boundary and that of the fluid in contact with it are 

offset, the slip boundary condition applies, constituting a discontinuity of flow velocity at 

the fluid-boundary interface. The slip boundary condition rarely applies in microfluidics, 

but in nanofluidic diodes, the boundary between immobile ions and mobile ions can usu-

ally be characterized by a slip boundary condition to account for their offset in velocity 

[37].  

 We can now understand that electroosmosis can occur within the nanochannel, 

starting at the slip plane (where the mobile ions come closest to the wall, and where the ζ 

!67



potential is defined). For example, in a nanofluidic channel with uniform, negatively-

charged walls, the electric double layer will consist primarily of positive counter-ions, 

which will move in the same direction as any externally applied electric field, pulling the 

fluid with it. So the electroosmotic component of flow will be in the same direction as the 

external electric field for nanochannels with negative fixed wall charge. The opposite is 

true for positively-charged walls; the EDL consists of negative counter-ions, which mi-

grate against the direction of the applied electric field, generating electroosmotic flow 

that is also opposite the direction of the electric field [19]. In microfluidics, electroosmot-

ic flow is a useful source of fluid flow for pumping and biomolecular separation. In 

nanofluidics, electroosmosis can also control the ionic current if the nanochannel is 

charged and the dimensions are less than the Debye length (so that the EDL overlap) [27].  

 In contrast to electroosmosis, electrophoresis is defined as “the movement of a 

charged surface, typically charged particles, relative to a stationary fluid” [24]. In the 

context of microfluidics and nanofluidics, electrophoresis is the movement of mobile ions 

relative to the molecules of the solute under the influence of the externally applied elec-

tric field. The electrophoretic component of flow is strongest for ions not held in the 

EDL, but in the bulk. These unfixed ions do not experience other significant forces be-

sides those exerted by the externally applied electric field, and the direction of force is 

determined by the ion’s polarity. There exist significant electrophoretic current contribu-

tions from ions in the diffuse layer as well, even though they experience stronger poten-

tial from the charged walls compared to ions in the bulk. This must be true, because when 
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the nanochannel’s height is less than the Debye length, there is still strong electrophoretic 

flow, even though the EDL are overlapping and there are no regions of bulk solution con-

centration within the channel itself.  

 To give a comprehensive summary of the distinction between electrophoresis and 

electroosmosis, we can consider electrophoresis as the cause of electroosmosis (in the 

absence of pressure and temperature gradient considerations). Electrophoresis is the 

movement of ions (due to the applied electric field) relative to solute molecules, and elec-

troosmosis is the movement of solute molecules resulting from those moving ions bump-

ing into and pulling them along. The reason electroosmosis is only considered in the EDL 

is because ion movement dominates in one direction, since one polarity is enriched. In the 

bulk solution where electroneutrality applies, ion movement occurs in both directions 

equally since cations and anions are present in equal numbers. Therefore, outside the 

EDL, electroosmotic components cancel out, resulting in zero flow due to electroosmosis.  

 Experimentally and theoretically, electrophoresis contributes to the ionic current 

much more in microfluidics and nanofluidics than electroosmosis does, and therefore 

electroosmosis can be neglected in some conditions [15, 27, 38, 39]. Multiple studies 

agree that the number of ions that pass through the channel due to electrophoretic flow 

greatly exceeds those that do so from electroosmotic flow, especially when the fixed sur-

face charge in the walls is low (on the order of 10-3 C/m2 at most). This means that the 

fluid dynamics-induced ion flow (a result of electroosmosis) is usually negligible for low 

fixed wall charge density [38].  
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 Daiguji, Yang, and Majumdar [27] neglect electroosmotic current contributions in 

their modeling of nanofluidic diode ion transport; they consider only electrophoresis. 

They neglected electoosmosis after finding that with low fixed wall charge density, elec-

trophoresis dominates when the channel height is smaller than the Debye length. Howev-

er, when the fixed surface charge density in the walls increases, the electroosmotic ion 

current becomes more significant and cannot be neglected. Daiguji, Yang and Majumdar 

further showed how the ratio of ionic current between electroosmotic flow and elec-

trophoretic flow contributions is dependent upon the fixed surface charge density. This 

ratio increases as the surface charge density increases, but the ratio is less than about 10 

percent as long as the surface charge density is less than 2×10-3 C/m2 [27]. Many nanoflu-

idic diodes feature fixed wall charge densities in this range, so electroosmosis contribu-

tions are often negligible. This is not always the case, however, as higher charge densities 

result in better ion current rectification (as we will later find), and so when maximizing a 

nanofluidic diode’s rectification ability, electroosmosis can play an important role in pre-

dicting quantitative values. 

 Based on our understanding of EDL electric potential, these findings agree with 

conceptual theory, because increasing the fixed wall charge density increases the surface 

potential (see equation 5.16 – the Grahame equation), but does not alter the Debye length. 

The characteristic decay length can remain the same with an increase in surface potential, 

with the main consequence being that the potential at the Debye length will be higher. 

Higher potential at the same distance from the walls means the exclusion-enrichment ef-
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fect is stronger, so electroosmosis contributes more to flow momentum. So it makes sense 

that higher fixed wall charge density increases the impact of electroosmosis on ion cur-

rent. 

5.7: Other Electrokinetic Phenomena 

 It is worth mentioning a couple other major electrokinetic phenomena for the sake 

of completeness, even though most models of nanofluidic diodes neglect them. Streaming 

potential and sedimentation potential can induce their own components of electrolyte 

flow, and so they can affect the current-voltage behavior slightly.  

 Streaming potential is defined as “the induced electric field when ionic solutions 

(e.g., aqueous electrolytes) are made to flow by external forces such as pressure along a 

stationary charged surface” [24]. Streaming potential is regarded as the opposite of elec-

troosmosis, as it is an external pressure gradient that generates a streaming current, pro-

ducing a potential, instead of an external electric potential gradient pulling the ions to 

create a pressure gradient on the solution [21]. 

 Sedimentation potential is defined as “the induced electric field when charged sur-

faces or particles move with respect to stationary fluid” [24]. Since the electric field de-

scribed by this phenomenon is created by the ions’ movement, it is the opposite of elec-

trophoresis, which describes the ions’ movement induced by an electric field.  
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5.8: Fick’s Laws of Diffusion 

 Diffusion accounts for the remaining major category of ion transport mechanisms 

in nanofluidic diodes, and differs from the previous effects in that it does not depend on 

charge interactions or electric fields. Instead, it is the gradient of the particles’ concentra-

tion that induces movement. The way we will approach this discussion of diffusion is 

through a quick review of Fick’s laws, as they succinctly explain the phenomenological 

relationships. Fick’s laws can be derived from kinetic gas theory, because diffusion is the 

relation between a particle’s kinetic energy (inertia) and friction forces exerted by the sur-

rounding fluid [37]. The full derivation is beyond the scope of this research (see [37] for 

the full derivation, and [40] for the behavioral observation-based derivation), but we will 

include the main points of interest for the context of nanofluidics.  

 Fick’s first law of diffusion describes the flux of a particle species (in our case, 

ions) in a steady-state system at very low Reynolds numbers [37]. The particle flux, J, is 

induced by gradients in chemical potential energy (a measure of energy transferrable to 

the particles and which depends on the local particle concentration) and damped by drag 

forces (friction) [37]. Combining these effects, particle flux due to diffusion can be ex-

pressed as 

! , 

where J (1/m2s) measures the number of particles passing through a plane per unit area 

per second, n (1/m3) is the particles’ concentration, and D (m2/s) is the diffusion coeffi-

cient [40]. The purpose of the negative sign in equation 5.41 is to indicate that the direc-

J = − D ∇n
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tion of diffusion is opposite that of increasing particle concentration. So, particles will 

diffuse (have a net flow) in the direction from higher concentration to lower concentra-

tion. The diffusion coefficient is a function of temperature, fluid viscosity, and particle 

radius, given as [37] 

!  , 

where kB is the Boltzmann constant, T is temperature, η is the fluid viscosity, and r is the 

particle radius. Liakopoulos, Sofos and Karakasidis found through molecular dynamics 

simulations that the number 6 in the denominator was most appropriate for channel 

widths less than five nanometers, while the number 4 (instead of 6 in equation 5.42) ap-

plied better for channels wider than five nanometers [32]. This concept would be worth 

examining in more detail for projects that utilize equation 5.42. However, many projects 

opt for using experimentally known diffusion coefficients, such as 1.96×10–9 m2/s and 

2.03×10–9 m2/s for K+ ions and Cl– ions, respectively [26, 38]. 

 Fick’s second law accounts for mass conservation, and can handle changing dis-

tributions of the particles as a result. That is, it can be used for non-steady-state diffusion 

processes [40]. For a three-dimensional system, Fick’s second law is given by 

!  . 

Equation 5.43 can be interpreted as stating that the change in particle concentration over 

time is equal to the negative divergence of the particle flux J. Basically, the spatial change 

D = kBT
6π ηr

∂n
∂t

= D ∇2 n
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in the concentration gradient corresponds to how the concentration profile will change 

over time.  

 Conceptually, these laws make sense when you think about diffusion on the parti-

cle-collision level. Thermal energy in the system manifests as kinetic energy (movement) 

of the particles, causing them to move in the fluid, only changing direction when collid-

ing with a wall or another particle. Clearly, a particle in an area of higher concentration 

will bump into more particles than in an area of lower concentration. It follows, then, that 

the particle will change direction more frequently when moving toward higher concentra-

tion, but will face fewer obstacles when moving toward lower concentration. Averaging 

over the whole system of many particles, we see an average trend of particles moving 

from higher to lower concentrations (the particle flux is opposite the concentration gradi-

ent). This helps explain Fick’s first law, but Fick’s second law is a little more abstract. 

The best way to think about change in concentration gradient is to conceptualize a system 

where particle flux is higher in one place compared to another. The region with higher 

particle flux will correspond with a faster change in concentration since more particles 

are passing through the region per unit time, while the lower particle flux corresponds to 

slower concentration change, as fewer particles pass by in that same time frame.  

 Equations 5.41 and 5.43 should help to convey what diffusion phenomena are 

based on, and how diffusion is separate from electrokinetics. The main diffusive process-

es in nanofluidic systems are known as diffusioosmosis and diffusiophoresis, which we 

will briefly define.  

!74



 Diffusioosmotic flow is a type of flow that is induced by the concentration differ-

ences between the EDL and the bulk solution [18]. The concentration gradient between 

the regions creates an osmotic pressure. As we saw with Fick’s laws, the particle concen-

trations naturally want to balance out and become more uniformly distributed. The flux 

that this type of diffusion contributes is known as diffusioosmosis. 

 Diffusiophoretic migration refers to the flow induced by concentration gradients 

across the channel’s length, such as asymmetry in reservoir ion concentration [18]. When 

one reservoir has a higher bulk concentration and the opposite reservoir has a lower bulk 

concentration, a gradient is set up across the channel that connects them, and the diffusive 

flux this contributes to the flow is known as diffusiophoresis.  

5.9: Mean-Field Approximation Models for Ion Transport in Nanofluidics 

 A recurring theme for our theory discussion has been the notion that the systems 

we aim to model are far too complex to model without simplifications. As we found with 

the electric double layer qualitative and mathematical models, there are many added lay-

ers of complexity that can be neglected in a model that still agrees with the real behav-

ioral trends. Although simplified models can struggle to replicate experimental measure-

ments precisely, they can be valuable for understanding the core phenomenological caus-

es.  

 Ion transport in nanofluidic systems is contributed to by many separate phenome-

na – not only EDL effects and electrostatic forces but also including fluid mechanics, 
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chemical interactions, thermodynamics, and even quantum mechanics and entropy con-

siderations. Clearly, the most accurate models of our targeted nanofluidic diodes would 

take all of these factors into account, but this is rarely feasible. The vast majority of 

nanofluidic research efforts around the world focus on a few of the most important mech-

anisms to develop their models. For this conceptual and theoretical research into nanoflu-

idic diodes, we want to determine what influences are vital to predicting ionic current in 

nanofluidic diode devices. If we know which effects can be neglected without significant-

ly impacting the predicted current-voltage trends, our models will be both efficient and 

insightful.  

 Published research papers on nanofluidics can have a wide variety of goals and 

origins, but there is common agreement that mean-field approximations are a great tool 

for modeling these systems to find ion transport profiles. In fact, most simplified models 

are derived from one such mean-field model known as the Poisson-Nernst-Planck (PNP) 

equations [26]. Though originally developed for nanofluidic systems and biological sys-

tems, the PNP model can be adapted for use in semiconductor devices as well [8]. For our 

purposes, it is useful for modeling the ionic current in nanofluidic diodes, since the con-

tinuum hypothesis works well for nanochannel diameters as small as 2.2 nm [39].   

 The PNP model describes the profiles of ion concentration and electric potentials 

as being continuous, as opposed to the summation of discrete contributions from individ-

ual charges. Since it takes the average of the fields and concentrations in a continuum de-

scription, it is able to efficiently handle the ion charge interactions and the electrostatic 
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effects that factor into ion transport. These contributions are regarded as the essential ion-

ic transport phenomena, so the PNP model is an effective yet relatively simple model [8]. 

At its core, it can be derived from detailed molecular models, so its physical description 

is firmly based in reality, not just observed data correlations [41]. Ultimately, the PNP 

model serves as an effective approximation that conserves computational power for low-

cost simulation while modeling the system’s real, underlying physics [42]. Clearly, the 

Poisson-Nernst-Planck equations are worth understanding in detail, so we will present a 

review of their functional forms and how they model the systems we want to analyze.  

 The PNP model is self-consistent, and is created by coupling the Nernst-Planck 

equation with the Poisson equation. These equations model the diffusion and drift of ions 

under the influence of an applied electric field, and this electric field itself is contributed 

to by those same ions [43]. This self-dependence is why the equations are coupled, and 

how the model remains self-consistent.  

 There is one Nernst-Planck equation and one concentration profile for each ion 

species involved. Since our systems utilize a KCl electrolyte solution, there are two ion 

species: K+ cations (positive ions) and Cl– anions (negative ions). This means that PNP 

models of our systems must have two Nernst-Planck equations, one corresponding to 

each ion species, as well as a concentration profile for each ion species. The Poisson 

equation combines the effects of both ion species, as well as fixed surface charge contri-

butions (through the use of boundary conditions), into one equation in order to calculate 

the net electric potential profile throughout the system. From a controls theory perspec-
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tive, the PNP system of equations treat the electrostatic potential and the charge densities 

of the ion species as the system’s state variables [41]. 

5.10: The Poisson-Nernst-Planck (PNP) Model 

5.10.1: The Poisson Equation 

 We used the Poisson equation in an earlier section to help model the EDL, but it 

also plays a vital role in the PNP model of ion transport. To review, the Poisson equation 

relates charge density to electric field (in terms of the electrostatic potential). Through 

equations 5.2 and 5.4, the divergence of the gradient of the potential corresponds to the 

electrostatic force that drives ion motion. The Poisson equation is expressed for the pur-

poses of the generalized PNP model as [27] 

!  , 

where ε0 and εr are the vacuum permittivity and the relative permittivity, respectively, Φ 

is the electric potential, qe is the elementary charge, zi is the valence of ion species i, and 

ni is the local number concentration of ion species i. For simplified systems, the relative 

permittivity, εr, is considered uniform, but in reality it can vary, depending on nonuniform 

factors such as electrolyte concentration and chemical makeup.  

∇2Φ = − 1
ε0εr

N

∑
i= 1

qezini
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5.10.2: The Nernst-Planck Equations and Ion Conductivity  

 While the Poisson equation links charge concentration with electric potential, the 

Nernst-Planck equation describes the electro-diffusion of ions, in terms of their concen-

trations, under the influence of the electric potential. The ionic flux of species i, Ji, is giv-

en by the Nernst-Planck equation [27]: 

!   

where Di is the diffusivity of the ion species, Φ is the electrostatic potential, ni and qezi 

are the concentration and charge of ion species i, respectively, kB is the Boltzmann con-

stant, and T is temperature. The simplified model considers the diffusion coefficient to be 

uniform, but the accuracy can be improved by using a position-dependent Di [8].  

 Notice that the diffusive component of ion flux is accounted for within the 

Nernst-Planck equation, as Fick’s first law of diffusion (equation 5.41) appears as the 

first term to the right of the equal sign. This quantifies the flow induced by the concentra-

tion gradient, serving as a component of the overall ion flux.  

 The second term quantifies the electrostatically-induced component of ion cur-

rent. Recall that current depends on conductivity and electric field strength through 

Ohm’s law, equation 5.40:  

! , 

and electric potential relates to electric field through equation 5.4: 

! . 

Ji = − Di(∇ni + qezini

kBT
∇Φ)

J = σE

E = − ∇Φ
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By substituting equation 5.4 into equation 5.40, we obtain  

! . 

Ji in equation 5.45 represents ionic flux, while J in equation 5.46 is current flux, so to 

compare them we must convert ionic flux to ion current flux. This is done by simply mul-

tiplying the Nernst-Planck equation by the charge of ion species i (qe for monovalent 

electrolytes), and then Equation 5.46 appears as the second term in the current flux ver-

sion of the Nernst-Planck equation. The conductivity (Ω-1⋅m-1) of ion species i in the elec-

trolyte solution is therefore expressed as [12] 

!  . 

Equation 5.47 is very useful for understanding how these parameters alter the ability for 

ions to flow, such as how a high concentration of an ion species increases conductivity 

for ions of that species. We can obtain even more insight by substituting equation 5.42 

into equation 5.47, to express the diffusion coefficient as a function of fluid viscosity, η, 

and radius of ion species i, ri: 

!  . 

Increasing fluid viscosity understandably decreases the ions’ ability to flow, and increas-

ing the radius also reduces conductivity because the amount of particle collisions will in-

crease. 

J = − σ ∇Φ

σi = Di
q2

e zini

kBT

σi = q2
e zini

6π ηri
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 In summary, as its terms suggest, the Nernst-Planck equation accounts for two 

different types of ion flux. The first is diffusion current that is induced by concentration 

gradients, and the second is drift current that is caused by electric potential gradients [26].  

5.10.3: The Continuity Equation and Boundary Conditions 

 The target functioning for a nanofluidic diode is when its behavior has stabilized 

and it is in steady-state. We want to find the steady-state solution, which must satisfy the 

continuity equation that can be written as [27] 

!  . 

Equation 5.49 is the time-independent continuity equation, and using it along with appro-

priate boundary conditions, the PNP equations (equations 5.44 and 5.45) can be solved in 

order to obtain profiles for the electric potential and the ion concentrations in the system. 

A similar continuity equation exists in semiconductor physics, but includes a recombina-

tion term to account for electrons and holes recombining. There is no corresponding term 

in nanofluidics’ continuity equation because cations and anions cannot recombine. Equa-

tion 5.49 ensures that the nanofluidic system is in a steady-state condition because spatial 

differences in flux (nonzero flux divergence) would indicate that the concentration pro-

files are still changing, and the flow is not yet stabilized.  

 The results of the PNP equations are strongly dependent on the boundary condi-

tions used, and the behavior is very sensitive to minor changes in those conditions [43]. 

∇ ⋅ Ji = ∇ ⋅ (∇ni + qezini

kBT
∇Φ) = 0
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From a logical standpoint, it makes sense that we need to know how the system behaves 

at the boundary to accurately predict trends. In mathematical reasoning, most models ex-

press the underlying physics with a system of equations to solve, which requires integra-

tion constants provided by the boundary conditions [37]. Without boundary information, 

the model cannot be solved to obtain a unique solution, so a discussion of mean-field 

continuum models is incomplete without considering boundary conditions. 

 Boundary conditions that apply to the Poisson equation at the nanochannel walls 

take the same form as equations 5.21 and 5.24 [21, 27]: 

! , 

where σs is the surface charge density (charge per unit area), and the subscript  indicates 

the wall-normal component. If we make the simplification that the OHP marks the “sur-

face” of the solid-liquid boundary instead of the substrate, then σs = σimmobile = σ0 + σStern . 

Otherwise, σs = σ0, which means the surface charge density is just the density of embed-

ded charge in the substrate. Note that σimmobile denotes the area charge density of all im-

mobile charges: the embedded charge in the substrate σ0 and the stationary ions in the 

Stern layer σStern . 

 It is also important to constrain the ion flux inside the nanochannel and reservoirs, 

thus boundary conditions at the walls must hold so that [21] 

! . 

∇⊥Φ = − σs

εrε0

⊥

Ji⊥ = 0
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Otherwise, ion current could be flowing into or out of the solid wall, which does not hap-

pen in reality. At the reservoir walls,  

!  

and at the electrodes, 

!  

!  (at the grounded electrode) 

!  (at the electrode where voltage is applied), 

where !  is the bulk ion concentration of ion species i [44]. 

 Modeling the PNP equations for a nanofluidic system is no simple feat; equations 

5.44 and 5.45 must be solved simultaneously, and with many meticulous boundary condi-

tions. In addition to the boundary conditions that apply to the nanochannel walls, there 

are conditions that describe the interfaces at the openings of the nanochannel that connect 

to the reservoirs, where nano-scale meets micro-scale. These are known as Donnan equi-

librium conditions. 

5.10.4: Donnan Equilibrium Condition 

 The ion concentrations and potentials at the two entrances of the nanochannel can 

be determined from relationships obtained through what is known as the Donnan equilib-

rium [45]. The electrolyte solution inside the nanochannel meets the solution in the reser-

voir at the openings of the nanochannel, forming an interface. When the system is in 

∇Φ = 0

ni = ni,∞

Φ = 0

Φ = Va

ni,∞
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steady-state, there is a stable difference in ion concentration across these interfaces, 

where the charge concentration is compensated by an electrical potential difference [12]. 

Another interface between electrolyte solutions of different ion concentrations is formed 

at any discontinuities in the nanochannel wall’s fixed charge. So, for a bipolar nanofluidic 

diode, a Donnan equilibrium condition applies at the cross-sectional plane where opposite 

fixed wall charge polarities are in contact. 

 The Donnan equilibrium condition for a 1:1 (symmetric and monovalent) elec-

trolyte solution is applied when the system at the boundary is in steady-state, and is given 

as 

! , 

where subscripts A and B refer to points on either side of the discontinuity [46], and ± 

indicates the polarity of the ion concentration, n. One Donnan equilibrium condition ap-

plies for each of the two ion polarities, and the only difference is the sign of the exponen-

tial. As stated before, equation 5.51 describes the correlation between ion concentration 

discontinuity and electric potential discontinuity that must apply for equilibrium and 

steady-state to be achieved and maintained. 

5.10.5: Types of Boundary Conditions: Dirichlet and Neumann  

 Boundary conditions can be categorized into common basic forms for modeling 

purposes with discrete, sampled grids, with the two most prominent being known as the 

n±A

n±B
= e

± qe
kBT (ΦB − ΦA)
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Dirichlet boundary and the Neumann boundary [47]. The Dirichlet boundary is the sim-

plest boundary condition, as it ascribes a known set of values to the parameter it con-

strains at the grid-points along the boundary. An example would be a sheet of metal, 

which is equipotential across its surface plane and so can be modeled by a grid of points 

with some fixed voltage [47].  

 Unlike a Dirichlet boundary condition which forces a solution at points on the 

boundary, a Neumann boundary condition expresses each point in terms of the surround-

ing points. This is because the Neumann boundary describes the known derivatives of the 

function at the boundary. Typically, the derivative is defined with respect to the outward 

unit normal vector, so the known derivative value is in the direction pointing perpendicu-

larly out from the plane of the boundary [47]. Since the grid-points on the boundary are 

not given direct values in a Neumann boundary condition, methods that approximate de-

rivatives using the difference between neighboring grid points, such as a central-differ-

ence method, are used to relate their values to the surrounding points to satisfy the de-

rivative condition. Central-difference methods relate a central point to its four cardinal 

neighbors through the slope between its values. There are many variations of discretizing 

systems to approximate derivatives, and they usually do so by quantifying the ratio of 

change from point to point. 
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5.10.6: PNP Model Weaknesses 

 The Poisson-Nernst-Planck model’s strength rests on its effective predictions of 

general nanofluidic behavior while using relatively simple equations. For nanofluidic 

diode systems, PNP-based simulations effectively model qualitative behaviors [44]. 

However, the PNP model by itself is known to struggle when predicting quantitative val-

ues, especially for systems with very small nano-scale dimensions. There are drawbacks 

to considering ion concentrations as continuous distributions, as taking the averages of 

the ions’ discrete profiles is less accurate on smaller scales [42]. This section will consid-

er some of the most prominent shortcomings of the PNP model, and suggest corrections 

that can help mitigate its errors. 

 One common simplification when using the PNP model is treating the diffusion 

coefficient, Di, as a constant value for each ion species in the Nernst-Planck equation 

(equation 5.45). Usually, the values used are measured from the bulk electrolyte solution. 

The actual diffusion coefficient within the nanochannel is extremely difficult to obtain, 

but it is known to vary with ion concentration [8]. A more accurate treatment would be to 

use a spatially-dependent diffusion coefficient as a way of accounting for the true varia-

tion in diffusive ability. Another useful modification of the Nernst-Planck equation would 

be to add more force contributions that affect the ion flux, which can help account for 

other neglected factors that cause diffusive differences within the system (such as elec-

trochemical potential). 
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 The next weakness in the PNP model is one that also appeared in our EDL mod-

els: neglecting the finite volume of ion particles. Ion correlation effects (also known as 

self-energy) are also not accounted for [8], and together, these missing factors mean that 

the PNP model cannot account for non-electrostatic interactions between ions [42]. These 

factors become more significant the more confined the channel is since the true ion sizes 

become more comparable to those dimensions. So, smaller diameter nanochannels are 

more difficult to model using the PNP equations than larger ones. As mentioned in our 

EDL model discussion, one method to compensate for this issue is to impose a radius of 

closest approach for the ions, which would place restrictions on maximum ion concentra-

tions and avoid overestimations of ion populations. Other methods have been researched 

as well, such as the work of J.J López-García, J. Horno and C. Grosse, who used a modi-

fied electrokinetic model to consider the finite volume and the hydration of the ions (wa-

ter molecules clustering around the ions) [48]. By treating the hydrated ions as charged 

dielectric spheres instead of point charges, the researchers were able to model the elec-

trolyte solution as a nonhomogeneous fluid that featured concentration-dependent coeffi-

cients of permittivity and viscosity [48]. Models that add considerations for ion size, 

permittivity and viscosity always improve upon the predictions by the standard electroki-

netic model that consider ions as point charges.  

 The PNP model faces even more difficulty in modeling biological nanochannels, 

as there are additional complexities it does not inherently account for. The first is that the 

PNP equations are lacking in descriptions of ionic dielectric boundary effects. In nanobi-
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ology, these are the boundaries that exist between ion flow and the protein/lipid domain 

[42]. It is more complex to model because protein channels have much more irregular 

geometry than synthetic, solid substrate-based nanochannels. So, while there exist some 

approximate analytic solutions to the PNP equations for regular geometries, they are un-

feasible for biological channels due to their immense complexity [42]. Numerical meth-

ods are therefore invaluable for solving most PNP models of complex nanofluidic sys-

tems, and computer simulation has emerged as the strongest tool in obtaining meaningful 

solutions [42].  

 Lastly, while the PNP equations do a good job of modeling electrokinetic phe-

nomena and basic diffusion effects that contribute to ion flux, they leave out any consid-

eration of fluid dynamics. As a result, effects such as electroosmosis cannot be modeled 

using the basic PNP equations, and additional relationships should be included when the 

fluid dynamics of the system are known to play significant roles in operation. The most 

common and effective way to include fluid dynamics is by using the Navier-Stokes equa-

tion in combination with the Poisson-Nernst-Planck equations. 

5.11: The Poisson-Nernst-Planck Navier-Stokes (PNP-NS) Model 

5.11.1: The Navier-Stokes Equation 

 The PNP model does not include fluid dynamics, so microfluidic and nanofluidic 

systems that are significantly affected by fluid mechanics must be modeled by adding to 

the PNP equations. The most commonly used addition is known as the Navier-Stokes 
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(NS) equation, and is paired along with another continuity equation to ensure the conser-

vation of fluid. This modified model is known as the Poisson-Nernst-Planck Navier-

Stokes model, or PNP-NS. The Navier-Stokes equation is essentially a conservation of 

momentum equation, accounting for kinetic energy held by the fluid in which the ions are 

suspended [24, 37]. It describes fundamental inertia so directly that the Navier-Stokes 

equation can actually be derived from Newton’s second law of motion, F = ma, but a 

more direct approach quantifies momentum as the product of mass times velocity [37]. 

 We will not spend as much time analyzing the Navier-Stokes equation as we did 

with the PNP equations, because models that neglect fluid dynamics can still yield accu-

rate predictions in many cases. The PNP-NS model is also significantly more complex to 

solve numerically compared to the PNP model (due to the greater number of equations, 

parameters, and necessary boundary conditions), but because this added complexity does 

often entail more accurate results, it is worth discussing for this review. The most impor-

tant accuracy improvement with the PNP-NS model compared to the PNP model is the 

inclusion of electroosmosis – something the original PNP equations alone cannot model 

because they do not consider fluid velocity [44, 49].  

 To describe fluid behavior in a system, some physical properties of the fluid are 

required, including pressure, fluid density, and viscosity. These scalar variables, along 

with fluid velocity as a vector variable, account for the major properties that affect fluid 

dynamics [37]. In many systems, we can assume that the solution is incompressible (den-

sity is constant), and its viscosity and temperature are also constant throughout. These 
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assumptions can apply in most nanofluidic diode systems, and also help simplify the 

model. Using v for velocity, p for pressure, ρ for fluid mass density (not to be confused 

with volume charge density), and η for viscosity, the Navier-Stokes equation with electro-

static force contribution can be expressed as [37, 38, 44]: 

! , 

but in steady state, the partial time derivative of velocity vanishes, giving [21] 

! .  

As before, Φ is the electrostatic potential, ni and qezi are the concentration and charge of 

ion species i (of N total ion species), respectively.  

 To understand the mechanisms being described by the Navier-Stokes equation, we 

will start on the lefthand side and move to the right, briefly interpreting the significance 

of each term in equation 5.58. The expression !  describes the convection (pattern/

profile of flow) experienced by the fluid. On the righthand side of the equation, the term 

–!  denotes the influence a pressure gradient has on flow, the term !  is a vector 

Laplacian and describes the friction within the moving fluid itself due to viscosity, ! , and 

the term  

!    

describes the impact to fluid flow from the volume force due to the electric potential gra-

dient [37]. This term is a familiar form if we recall equation 5.2: ! , and equation 

∂v
∂t

+ v ⋅ ∇v = 1
ρ {− ∇p + η∇2 v − (

N

∑
i= 1

qezini)∇Φ}

v ⋅ ∇v = 1
ρ {− ∇p + η∇2 v − (

N

∑
i= 1

qezini)∇Φ}

v ⋅ ∇v

∇p η∇2 v

η

− (
N

∑
i= 1

qezini)∇Φ

F = QE
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5.4: ! , with total charge expressed by the charge summation and the factor of 1/

! , which is multiplied by every term on the righthand side to scale the terms inversely 

with density. 

5.11.2: The PNP-NS Continuity Equation and Boundary Conditions 

 Introducing new parameters such as pressure and velocity means that additional 

boundary conditions must also be applied. The continuity equation that conserves fluid is 

given as 

!  . 

Equation 5.59 ensures that there are no sources or sinks of fluid in the system, and since 

the fluid is incompressible, the flow rate (velocity) coming in must equal that going out 

of any point. Lastly, to complete our modification of the PNP equations into the PNP-NS 

equations, the Poisson equation (equation 5.44) and the ion flux described by the Nernst-

Planck equation (equation 5.45) remain the same, but the steady-state continuity equation 

(equation 5.49) is given an additional term to account for fluid velocity [21]: 

!  . 

Boundary conditions given by equations 5.50-5.55 still apply in the PNP-NS model at the 

channel walls, 

  

!   

at the reservoir walls,  

E = − ∇Φ

ρ

∇v = 0

∇(niv + Ji) = 0

∇⊥Φ = − σs

εrε0

Ji⊥ = 0
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!   

and at the electrodes, 

!  

!  (at the grounded electrode) 

 (at the electrode where voltage is applied), 

but the Navier-Stokes equation needs to be constrained as well, with boundary conditions 

at the channel walls given by [21] 

!   

and  

! . 

At the reservoir walls, boundary conditions are given by [44] 

!  

and 

! . 

Finally, at the electrodes, we have [44] 

!   

and 

! . 

Like the PNP model, the PNP-NS model is highly sensitive to the boundary conditions 

applied. The boundary conditions listed above apply in the majority of nanofluidic sys-

∇Φ = 0

ni = ni,∞

Φ = 0

Φ = Va

∇⊥p = μ∇2
⊥v − (

N

∑
i= 1

qezini)∇⊥Φ

v⊥ = 0

∇p = 0

v = 0

p = 0

∇v = 0
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tems, but depending on the situation, some additional simplifications can be made, such 

as the slip or no-slip boundary condition, to be discussed later on in this research. 

 In conclusion, the Navier-Stokes equation incorporates fluid dynamics into the 

PNP model, which is a mean-field continuum approximation for ion transport. Although 

this PNP-NS model improves upon the PNP model, especially when electroosmosis is a 

major contributor to ion transport, it adds another layer of complexity when solving to 

obtain profiles for ion transport, while still suffering from some of the same limitations. 

These limitations include neglected interaction contributions such as ion-ion interactions 

and finite ion volume considerations, which become more important for smaller scale 

nanochannels [42].
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CHAPTER 6  

Ion Rectification in Nanochannels 

6.1: Charge Selectivity 

 Nanofluidic channels, like their biological inspiration, can be highly selective to 

the types of particles that pass through them. In the case of nanofluidic diodes, the em-

bedded wall charge induces charge selectivity behavior in its channel. This means it al-

lows only particles of a certain charge to move past, and prevents others due to electrosta-

tic effects. The electric double layer that forms when a charged surface comes in contact 

with an electrolyte solution, which we studied in-depth in the previous chapter, is popu-

lated primarily by counter-ions. So, in nanochannels whose dimensions are comparable to 

the Debye screening length, the EDL occupy most of the channel’s volume, causing the 

channel to be enriched with counter-ions and depleted of co-ions [11]. This phenomenon 

is known by many names, here we will call it the exclusion-enrichment effect (EEE) 

which describes the result of charge selectivity.  

 A charge density can be embedded into the walls of fabricated nanochannels 

through a variety of methods developed by researchers over the years, but it is difficult to 

create a specific desired nonuniformity in the wall charge. By comparison, biological 

nanochannels have much more control, as charged amino acid residues that are present in 

the protein walls are the primary source of the EEE [50]. The innate intricacy and possi-

ble variety of amino acid patterning grants biological nanochannels remarkable control 

over what they able to pass through them.  
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 To quantify the strength of charge selectivity for comparison of the EEE in differ-

ent nanochannels, there are a few values we could define. One option is to define a ratio 

of the concentration of an ion species in the nanochannel in the presence of electrostatic 

forces to the concentration without electrostatic forces present [50]. This would be equiv-

alent to taking the ratio of the averaged ion concentration in the nanofluidic diode versus 

the bulk ion concentration, and is often known as the exclusion-enrichment coefficient 

[12]. Selectivity could also be measured by taking the fraction of the total ionic current 

that is carried by counter-ions [49]. For our purposes, it is sufficient to review these defi-

nitions in order to conceptualize what makes a “good” nanofluidic diode. A high selectiv-

ity filter is usually preferred because it indicates that the charge in the walls strongly in-

fluences ion transport. This is a desirable feature for nanofluidic diodes because ion recti-

fication is made possible by the asymmetric electrostatic profiles induced by the wall 

charge.  

 Since channels function as a pathway between two reservoirs or across a mem-

brane barrier, the matter that passes through is said to permeate the barrier or membrane. 

From this perspective, the ability to control what passes through and what is prevented 

from permeating is referred to as permselectivity. For our purposes in working with 

nanofluidic diodes, permselectivity and charge selectivity are essentially the same, be-

cause the systems from chapter 4 only discriminate based on particle charge polarity. In 

biological nanochannels, however, the precision of permselectivity can go farther than 

charge preferences. For example, the inward-rectifying potassium channel that helps 
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maintain the potential difference across a cell’s membrane has a highly effective selectiv-

ity filter. It allows potassium ions to flow through while strongly preventing ions such as 

sodium from entering, even though potassium and sodium ions have the same valence 

charge [1]. Nanofluidic diodes do not need to filter ion species so carefully in order to 

achieve ion current rectification, but selectivity based on charge polarity is a necessary 

requirement.  

 The EDL that form in the nanofluidic diode systems serve as the charge selectivi-

ty filter, as they are populated with counter-ions (and co-ions are depleted). Since we 

want the EDL present in most of the nanochannel to maximize the selectivity, the bulk 

ion concentration should not be too high. As equation 5.15 shows, the Debye length is 

inversely proportional to the square root of the bulk ion concentration, so electrolyte solu-

tions of low ionic strength (low charge concentration) are ideal to form thicker EDL. The 

surface potential also has an effect on the EDL, as higher surface potentials (due to higher 

embedded surface charge densities, see the Grahame equation: equation 5.16) cause elec-

trostatic potential profiles to extend farther from the wall. The resulting exclusion-en-

richment effect causes the local ion concentration to be inhomogeneous in the cross-sec-

tion of the nanochannel [12]. Logically, since the valence of the ions in the solution af-

fects the Debye length, the EDL extension will depend on the electrolyte species as well. 

Since we are considering systems with KCl solutions (symmetrical with 1:1 valence for 

cations and anions), we will not elaborate on the complicated effects of asymmetric or 

higher valence species in this research. 
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 With an established EDL presence in the nanochannel, so there is enrichment of 

counter-ions within its volume, an applied electric field from one reservoir to the other 

(achieved by applying a voltage difference between the electrodes submerged in each 

reservoir) has an interesting effect. The applied electric field, which points along the 

length of the channel, can cause ion depletion at one end and ion enrichment at the other 

end of the channel for the sake of producing the asymmetric conductivity required for 

nanofluidic diodes. A bulk concentration gradient is therefore formed across the 

nanochannel, known as concentration polarization [18]. Note that a nonuniform concen-

tration profile develops in all three types of nanofluidic diodes we are studying, not only 

the one with asymmetrical reservoir concentrations.  

 The concentration polarization modifies the ionic current, with a stronger impact 

in narrower nanochannels and lower ionic strength solutions. We will explore this con-

cept deeper when we look at how different system asymmetries cause ion current rectifi-

cation, and how the applied electric field inducing regions of enrichment and depletion 

across the channel changes the effect on ion current when the field’s direction is reversed.  

 The applied electric field along the length of the channel is not the only applied 

field that can manipulate ionic current; a field applied to the channel wall can alter the 

surface potential and the zeta potential, which in turn can change the exclusion-enrich-

ment coefficient [12]. This so-called field-effect control of permselectivity is analogous 

to how the applied gate voltage is used in MOSFETs to control the electron/hole popula-

tions of the conducive inversion channel in the semiconductor body [12]. Although our 
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targeted nanofluidic diode systems do not implement this principle, there are numerous 

research groups that have modeled and tested field-effect nanochannels. They have 

demonstrated the ability to regulate the cation and anion populations in nanochannels, 

and by extension, the ion current is controllable. This functionality can be implemented 

as a conductive switch for ionic current, like a MOSFET or BJT does with electron cur-

rent [13, 23, 27].  

6.2: Ionic Conduction 

 Ionic current is not possible if there is zero ionic conductance, as the charge must 

be able to move for current to exist. Quantifying ionic conduction is thus necessary to 

understand the influences at play which permit or prevent ion flow in the on/off modes of 

the nanofluidic diode. Recall equations 5.47 and 5.48, which relate the conductivity for 

an ion species (the ability for charge to travel) to factors such as that ion species’ concen-

tration and radius, as well as the viscosity of the fluid: 

! . 

Our electrolyte solution, KCl, has two ion species: K+ ions which have an atomic radius 

of 0.138 nm, and Cl– ions whose radius is 0.181 nm [51]. When hydrated, K+ has an ef-

fective radius of 0.25 nm and Cl– has an effective radius of 0.2 nm [29]. According to 

equation 5.48 (rightmost term above), this difference in hydrated radius, with all other 
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factors being identical, constitutes a slightly higher conductivity for Cl– ions than for K+ 

ions.  

 We also observe in the conductivity equations that ion conductivity scales propor-

tionally with that ion species’ concentration. Logically, this direct relationship between 

conductivity and concentration makes sense. Instead of charge carriers each needing to 

physically move from one end to the other, they are able to “push” those in front of their 

path forward (through coulombic repulsion), which in turn push those in front of them 

forward farther down the length, and so on. This domino-like effect, by essentially trans-

porting a wave of kinetic energy, allows charge to flow more efficiently in higher concen-

trations compared to lower concentrations. The relationship between conductivity and 

concentration is essential to understanding the mechanisms of ion rectification, which is 

why we emphasize its origin and logic here. 

 The overall conductance in a nanofluidic channel is the superposition of the bulk 

conductance and the EDL conductance, which are different mostly due to variation in ap-

parent viscosity [12]. We will discuss what alters apparent viscosity when we describe 

slip conditions later in this chapter.  

 When the EDL are thinner than the diameter of the channel, the solution occupy-

ing the remaining volume has similar properties to the bulk solution. In such a region, 

ions effectively do not experience electric fields from the charged walls due to the EDL, 

so the only significant electric force that drives their movement is from the applied volt-

age difference between reservoirs – electrophoresis. 
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 While ions in the bulk have one set of diffusion and mobility coefficients, ions in 

the EDL experience a different environment, as the wall charge adds a significant electric 

field component the closer the ion is to the wall. So, different coefficients characterize the 

ions’ freedom of movement in the EDL. The counter-ion enrichment in EDL contributes 

to the high conductance for counter-ions in the same way that higher electron density in-

creases conductivity in a wire. 

 Aside from the consequential increase in conductivity from increased counter-ion 

enrichment, electroosmotic transport also affects ion conductance. While the bulk solu-

tion experiences just electrophoresis, in the diffuse layer, electroosmosis serves as an ad-

ditional source of ion transportation and should be considered [12]. 

6.3: Surface Charge Dependence for Ion Current Rectification 

 Combining some of the ideas we have mentioned thus far, we are able to conclude 

that when EDL overlap, ion current depends on the wall charge density. Stronger charge 

density leads to thicker EDL, and when they overlap, the EEE causes the solution in the 

channel to become unipolar. The fixed surface charge in the channel walls has a greater 

influence on the ionic current as its EEE alters the ion concentrations from their original 

bulk values [39]. Counter-ions dominate as they are attracted to the fixed wall charge, 

with that same fixed wall charge repelling co-ions and depleting them from the channel 

[27]. Through this causal chain, the fixed wall charge density, instead of the bulk concen-

tration in the reservoirs, governs the ion conductance through the channel [11]. 
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 Increasing the bulk ion concentration decreases the EDL thickness, modeled by 

the Debye length (equation 5.15), so less volume in the channel is occupied by the unipo-

lar EDL and more volume is occupied by ion concentrations at values similar to that of 

the bulk. Thus, increasing the bulk ion concentration lowers the ionic current’s depen-

dence on the fixed wall charge [27]. Interestingly, the regime of operation where ion 

transport is governed by the wall charge happens mostly in hydrophilic nanochannels 

made of a substrate with negative surface charge, such as silicon or glass [20].  

6.4: Threshold Voltage for Ion Transport 

 When the ionic current is dependent on the embedded surface charge instead of 

the bulk concentration, the current-voltage characteristics feature a turning point that 

strikingly resembles a semiconductor diode’s threshold voltage.  

 In bipolar nanofluidic diodes (such as the example system in figure 4.2), there is a 

“built-in” potential difference across the boundary between opposite fixed wall charge 

polarities [52]. The applied potential must overcome this potential before ions are able to 

conduct across the junction. However, there is a different type of “threshold voltage” that 

occurs in all nanofluidic diodes, where the applied electric potential changes the bound-

ary conditions of the fluid at the walls [20]. 

 When the applied voltage between one reservoir and the other is very low, the 

ions in the channel, especially the ones closest to the wall, feel a stronger electrostatic 

attraction to the charged walls than from the applied field, and so their transport through 
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the channel is slow. However, as the applied voltage bias is increased (in the nanofluidic 

diode’s “on” voltage polarity), it reaches a threshold value where the applied electric field 

overcomes the fixed wall charge’s electrostatic field. Beyond that threshold voltage, in 

terms of current-voltage characteristics, the system experiences a dramatic, nonlinear in-

crease in ion transport and ion current [20]. Below the threshold voltage, the ion current-

voltage relationship is much more linear and repressed (smaller slope magnitude). 

 On a more technical level, the threshold voltage denotes the point at which the 

zero-slip boundary condition breaks down [20]. When the applied field is strong enough 

for the ions closest to the fixed surface to become mobile, they drag solute molecules 

with them, and so the fluid’s velocity relative to the surface at the boundary becomes 

nonzero. This is a type of electroosmosis, and it enhances ion transport properties, con-

tributing to the sharp increase in ion current as applied voltage bias continues past the 

threshold voltage.  

6.5: Slip Conditions 

 The criteria for the slip boundary condition to apply instead of the no-slip (or 

zero-slip) boundary condition is not only affected by externally applied voltage, but can 

be linked to surface charge density as well. It has been found that increasing the density 

of the fixed wall charge decreases the slip length. The slip length defines the distance 

from the boundary (into the solid) where the linear approximation of the fluid velocity 

profile goes to zero [20, 53, 54].  
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 The reason that slip length shrinks with increasing surface charge density can be 

rationalized by considering the static structure factor of liquid water, which defines the 

rigidity of clustering water molecules [53]. Since water molecules are highly polar, they 

are electrostatically attracted to the fixed charges in the wall. Accumulating water mole-

cules take on a structure with unique properties due to their shape and the fact that they 

are polar [53]. It follows logically that a higher fixed charge density would lead to more 

rigid structuring, and less freedom of movement for the molecules closest to the surface, 

causing an apparent increase in viscosity and a consequential decrease in the diffusion 

coefficient (according to equation 5.42).  

 We depict the concept of slip length in figure 6.1, to visualize how the fluid veloc-

ity vector profile (shear; parallel to the plane of the wall) is given a linear approximation, 

and the distance from the boundary where the linear trend reaches zero marks the slip 

length. Molecular dynamics simulations confirm that the slip length decreases as the sur-

face charge density increases, caused by the presence of the surface charge increasing the 

ordering structure of liquid water [53]. If the slip length is zero, then the no-slip boundary 

condition would apply, and fluid velocity would be zero (relative to the immobile region) 

at the boundary between mobile and immobile regions. A positive slip length indicates 

that the fluid in contact with the interface is mobile relative to the surface. If the slip 

length is negative, it refers to a layer of stationary fluid (with a thickness equal to the slip 

length) between the stationary solid wall and the non-stationary fluid.  
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 The concept of slip at the boundaries of a nanochannel is important for nanoflu-

idic diode models, since the diffusion of water molecules through a nanochannel can be 

much different than in the bulk. This difference is often attributed to the status of fluid 

flow at the channel walls [20], so slip boundary conditions can have a sizable effect on 

predicted ion transport profiles, especially for systems with lower fixed wall charge den-

sities.  

 Slip conditions are important to consider when designing nanofluidic diodes, be-

cause different materials interact with solutions in different ways. When the solution is 

aqueous, these interactions can be either hydrophobic or hydrophilic in nature, corre-

sponding to weak affinity and strong affinity, respectively, between water and surface 

[20, 32]. The friction factor (a measure of frictional force strength, which opposes 
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Figure 6.1: Simple depiction of the slip length definition, adapted from [54]. Ls is the slip 
length, and defines where the linearized velocity profile (green vector arrows) goes to 
zero. The horizontal black line denotes the wall surface, i.e. the boundary/interface be-
tween liquid and solid. 



movement) is found to usually decrease as channel walls become more hydrophobic, and 

increase for more hydrophilic walls [32]. This means that water molecules can slip on 

hydrophobic walls, and consequentially require a slip boundary condition to describe flu-

id transport behavior [20], and the slip length as defined in figure 6.1 would be a positive 

nonzero value. 

 In this research, we will not pursue the complex quantitative relationships that 

model these concepts, but it is worth emphasizing that better liquid/wall wetting (termi-

nology used to describe stronger liquid/wall interactions) is just one factor contributing to 

friction between fluid and wall. It is electrostatic interactions that contribute most to the 

friction factor [20], though wettability does affect slippage, and is therefore a prominent 

concept in nanofluidics. 

6.6: Sources of Ion Current Rectification 

 A nanofluidic diode gets its name from the diode-like behavior of its current-volt-

age characteristics. As we reviewed in chapter 4 when the systems were first introduced, 

diodes rectify current, meaning that at one applied voltage polarity, current flows across 

the electrode terminals at a much higher level than at the opposite polarity. Also recall 

that for rectification to occur in nanofluidic channels, there must be electrostatic asymme-

try of some kind in the system, in order to produce these different conductivities.  

 Through experimentation performed by many groups, key factors have arisen that 

consistently correlate to significant ion current rectification being exhibited. First is that 
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at least one opening diameter of the nanochannel is comparable to the Debye length, so 

that the EDL overlap somewhere in the channel. Second, that there is an excess (net non-

zero) surface charge embedded in the nanochannel walls. Lastly, that there is asymmetry 

between the two entrances of the nanochannel in the interactions the ions have with the 

charged channel walls [45]. These asymmetrical electrostatic interactions can be induced 

by asymmetrical EDL overlap or by asymmetrical surface charge. 

 Nanochannels embedded with positive or negative surface charge rectify ion cur-

rent in opposite directions [45]. So, the surface charge polarity determines the direction of 

ion current rectification, serving as strong evidence that it is the electrostatic interactions 

that are the cause of this diode-like effect. Experiments also indicate that the type of solid 

material forming the membrane between the reservoirs, as well as the specific chemistry 

of the fixed wall charge, are independent of ionic rectification ability. The conclusion is 

that electrostatic asymmetry at the two openings is ultimately responsible for rectification 

[45]. 

6.6.1: General ICR Trends and Connections to Quantitative Relationships 

 As we mentioned, the root of ion current rectification (ICR) is the different con-

ductivity profiles across the channel when opposite voltage polarities are applied. To sup-

port this claim, let us recall our discussion of the quantitative models that are useful for 

predicting nanofluidics behavior. For this research, we are focusing on the most basic, 

fundamental relationships to explain ICR. Therefore, we will neglect fluid dynamics here, 
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as electrostatic interactions are sufficient to qualitatively model ICR in the systems we 

are studying. We will explain current rectification in a general nanofluidic diode by using 

the PNP model to compare forward bias to reverse bias modes. 

 The PNP equations are given by equations 5.44 (the Poisson equation) and 5.45 

(the Nernst-Planck equation), repeated here for convenience: 

!   

! . 

The PNP model also showed a way to express ion current conductivity, given by equation 

5.47-5.48:           ! ! . 

We can see that conductivity scales directly with concentration, so the conductivity (σi) of 

an ion species (i) is greater in areas where that species exists in higher concentrations, 

(ni). Concentration is easier to change than the other parameters that affect conductivity, 

such as ion radius (ri) or viscosity (η), so logically, concentration is the parameter which 

is manipulated to switch a nanofluidic diode on or off. In forward bias, the channel 

should have a high ion concentration so that conductivity is high and ion current is strong 

as a result, and in reverse bias the channel should have low ion concentration so that con-

ductivity is low, repressing ion current. We can also see this connection between higher 

concentration and greater ion flux through the second term in the Nernst-Planck equation. 
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 This is the function that asymmetric electrostatic interactions carry out, because 

on the side of the channel with stronger electrostatic forces, counter-ions will accumulate. 

Accumulation means ion concentration increases and counter-ion conductivity increases, 

promoting greater counter-ion flux. In forward bias, the counter-ions enter the channel at 

the opening with greater flux, so the channel is flooded with counter-ions, increasing 

overall concentration, conductivity, and flux. In contrast, reverse bias sees the counter-

ions exit the channel on the opening with greater flux, so the channel is depleted of 

counter-ions, and overall concentration, conductivity, and flux decreases.  

 There are numerous ways to create asymmetrical electrostatic interactions across 

a nanofluidic channel to induce ICR. However, three types consistently appear the most 

in research publications, standing out as the most effective methods to fabricate function-

al nanofluidic diodes. These three asymmetries are in: fixed wall charge, bulk ion concen-

tration, and channel diameter, as discussed in chapter 4. Interpretations of rectification, 

which are theoretical trends based on experimental and computational results, are depict-

ed in figure 6.2 to help visualize the concentration trends and resulting ion current fluxes. 

Let us now examine figure 6.2 to clarify its features. There are three columns of dia-

grams, one for each of the three main types of nanofluidic diodes. The top diagram of 

each column is a simple depiction of that column’s type of diode. They are length-wise 

cross-sectional diagrams of the systems, exactly the same setup as figures 4.2, 4.3, and 

4.4. But unlike those previous figures, the top diagrams in figure 6.2 are more vague in 

how they indicate the presence of the reservoirs on either side, as well as the voltage ap-
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plied to the electrodes in each. They are similar in that they are not to scale, however, 

since both representations enlarge the nanochannel vertically to show the channel more 

clearly.  

 Below the system diagrams in each column, there are ion concentration graphs 

corresponding to equilibrium state (labeled 1a, 2a, and 3a), forward bias (labeled 1b, 2b, 

and 3b), and reverse bias (labeled 1c, 2c, and 3c), with the upwards vertical direction be-

ing the axis of increasing ion concentration, n. The concentration profiles of K+ ions are 

represented with a solid red line, while those of Cl– are drawn with a dotted blue line. In 

the two reservoirs on either side of the nanochannel, electroneutrality applies, so the con-

centrations of the two ion species are equivalent in the reservoirs, and are represented by 

solid black lines.  

 The concentration graphs for the equilibrium state also label the regions of the 

graph that correspond to the nanochannel and the two reservoirs (baths), labeled nL and 

nR for the concentrations in the left bath and right bath, respectively. The comparisons 

between nL and nR are indicated just below the system diagrams, with nL = nR indicating 

that the reservoirs contain equal ion concentrations, and nL > nR indicating that the left 

reservoir contains a higher concentration than the right reservoir. The concentration 

graphs for the states of forward bias and reverse bias also label general regions inside the 

nanochannel where ion concentration is in accumulation and depletion. 

 Lastly, there are flux diagrams for forward bias and reverse bias states, presented 

below the concentration graphs to which they correspond. The boundaries between solid 
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Figure 6.2: Interpretation of ionic rectification in different types of nanofluidic devices based on the 
analysis of asymmetric ion currents building up right after the external electric fields are applied. 
The solid red/dashed blue lines represent the cation/anion concentration profiles in nanochannels, respec-
tively. Areas of noteworthy ion accumulation and ion depletion are indicated by labels. 
Channel flux diagrams are presented below the concentration graphs for the forward and reverse bias 
modes. The solid red/empty blue arrows symbolize cation/anion fluxes respectively. For each ion species, 
if the inward current is greater than outward current, ions will accumulate in the channel when the system 
reaches the steady state. On the contrary, if there is more outward current than inward current, ion deple-
tion takes place in the channel. Adapted from [26]. 



and liquid are outlined with gray lines, and the arrows indicate ion fluxes, with the length 

of the arrow indicating the relative value of the flux – longer arrows correspond to greater 

fluxes. Solid red arrows denote K+ ion flux in the nanochannel, while empty blue arrows 

indicate Cl– ion flux in the nanochannel. Gray solid and open arrows in the reservoirs in-

dicate the presence (but not necessarily magnitude) of K+ and Cl– ion flux, respectively, 

between the reservoirs and the nanochannel. The applied voltage polarity to each reser-

voir’s electrode is indicated by a boxed symbol + or –.  

 We will carefully analyze the behavior of each of these nanofluidic diode types, 

using the example systems from chapter 4 and which are depicted in figure 6.2. By doing 

so, we will fulfill our main objective of this theoretical research project, which is to build 

a stable, fundamentals-based understanding of ion current rectification in nanofluidic 

channels. 

6.6.2: Asymmetry in Surface Charge 

 The first case we will delve into is asymmetrical surface charge density in the 

nanochannel’s walls. These nanochannels are structurally symmetric, located between 

reservoirs of identical electrolyte solution and bulk ion concentration, with the only 

asymmetry existing in the surface charge distribution. The system is known as a 

“nanofluidic bipolar diode” or a “bipolar nanochannel” when the surface charge densities 

at the two halves of a channel possess the same magnitude but opposite signs [55]. We 

present figure 6.3 as an example system with this type of asymmetry, showing the EDL 
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which form in equilibrium (when applied voltage is zero). The EDL in the positive por-

tion of the channel are enriched with negative ions and appear as a blue “cloud” to sym-

bolize the accumulated anions. In the negative portion of the channel, the EDL are en-

riched with positive ions and appear as a red “cloud” to symbolize the accumulated 

cations. 

 The rectifying effect is a natural consequence of the changes that occur in the 

cation and anion concentrations when the system is given an applied voltage bias. Refer-

ring to the system in figure 6.3 and the first column of figure 6.2 to facilitate our discus-

sion, we will approach the theory qualitatively from the molecular perspective. We will 

explain that rectification occurs due to ion enrichment and ion depletion at the central 

junction, where the surface charge densities of opposite polarities meet [55]. 
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Figure 6.3: Qualitative representation of EDL formed in bipolar 
nanofluidic channel with zero applied potential (equilibrium). 



6.6.2a: Off Mode 

 The “off” mode of any nanofluidic diode, in general, occurs when the entrance 

resistance (inverse of conductance) is higher than the exit resistance for both ion species 

[1]. In a system with asymmetrical fixed wall charge, the off-mode requires the electrode 

with the positive applied potential to face the positively charged side of the nanochannel, 

and the electrode with the negative applied potential to face the negatively charged side.  

 The system in figure 6.3 is in the off mode when a negative voltage is applied to 

the right electrode with respect to the left electrode, meaning the applied electric field 

points from the left to the right. Figure 6.2, panel 1c represents the bipolar nanochannel 

under reverse bias, the off mode, illustrating the behavior of this system.  

 Under these conditions, cations exit the channel on the right, and since the nega-

tive wall charge forms EDL enriched with cations, there is a high conductivity provided 

for them as they leave. Cations try to enter the channel on the left, but the positive wall 

charge repels them, resulting in a high resistance (low conductance) at the entrance. The 

exact same reasoning applies (just in the opposite direction) for anions, with higher resis-

tance at their entrance to the channel compared to their exit. So as a result of the applied 

bias, both cations and anions are depleted from the central junction of the nanochannel 

[38], and the channel as a whole. Ion depletion lowers conductivity, so the off mode, en-

abled when “reverse bias” voltage is applied, is characterized by low conductance and 

low ion current.  
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6.6.2b On Mode 

 The system switches to its “on” mode when the entrance resistance is lower than 

the exit resistance for both ion species [1]. As the inverse of the off mode, the on mode 

has its electrode with the positive applied potential facing the negatively charged side of 

the nanochannel, and the electrode with the negative applied potential facing the positive-

ly charged side.  

 In figure 6.3, a positive voltage applied to the right electrode with respect to the 

left puts the system into the “on” mode. Figure 6.2, panel 1b represents the bipolar 

nanochannel under forward bias, illustrating the behavior we will now be describing.  

 Now, the cations are pulled by the applied voltage into the channel on the side of 

lower resistance (the right side), where negative fixed charge enriches the channel with 

cations and provides a conductive region for them. The left side is their exit, and is the 

side of higher resistance. However, with cations able to rush in at the entrance and accu-

mulate at the junction, they reach a concentration much higher than the bulk in the reser-

voirs. Drift current (appearing as the first term of the Nernst-Planck equation) dominates 

and allows cations to exit the channel smoothly, resulting in a steady ion current flow [13, 

38, 44]. Just as before, the same logic applies to anions, in reverse. So, in the on mode, a 

“forward bias” applied voltage causes the cations and anions to move toward the central 

junction, toward each other, and diffuse the remaining half to exit the channel, setting up 

a path of high conduction for ion current.  
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6.6.2c Fluid Flow 

 The velocity of the fluid in the bipolar nanofluidic diode is mainly induced by ex-

cess charge under the effect of the electric field, known as the body force, as well as fluid 

pressure. The fluid flow within a nanochannel is extremely difficult to measure experi-

mentally, so the best way to gain insight is through simulations, usually through molecu-

lar dynamics simulations or numerically solving the PNP-NS equations with appropriate 

boundary conditions. Fluid flow is of interest to researchers and engineers studying 

nanofluidic diodes because it is the source of electroosmosis. The momentum of solution 

molecules can be transferred to ions suspended in the solution, thus providing a source of 

ion flow known as electroosmosis. 

 Kunwar Pal Singh and Manoj Kumar numerically modeled a nanofluidic bipolar 

diode, and among their findings, they presented profiles of the fluid flow in the system, 

included here as figure 6.4 [44]. Their results indicate that in both forward bias and re-

verse bias, the fluid velocity along the center of the nanochannel and the fluid velocity 

close to the walls flow in opposite directions, resulting in nonuniform fluid flow. 

 In reverse bias, fluid enters the nanochannel close to the walls and exits through 

the center of the channel. In forward bias, fluid enters the nanochannel through the center 

and exits close to the walls. These simulation results are presented in figure 6.4, with flu-

id flow magnitude and direction indicated by arrow size and direction. 

 Singh and Kumar repeated the simulation to solve for the PNP and the PNP-NS 

systems of equations, to exclude and include electroosmotic flow, respectively. Interest-
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ingly, for the nanofluidic bipolar diode, they found negligible difference between the cal-

culations. Further analysis led them to conclude that the oppositely-charged zones con-

tribute electroosmotic flow that cancels out at the junction close to the walls [44]. We can 

conclude from these results that the electroosmotic components of ion current can be ne-

glected because they cancel out. It can be inferred, however, that this same fluid flow 

cancellation is not present in the other types of nanofluidic diodes (asymmetrical ion con-

centrations and asymmetrical channel diameter), so it may not be valid to neglect elec-

troosmosis in non-bipolar nanofluidic diodes.  

!116

Figure 6.4: Vectors of fluid velocity 
in a bipolar nanochannel for (a) 
forward bias at Va = +2.4 V and (b) 
reverse bias at Va = –2.4  V for sur-
face charge density σ0 = 10 mC/m2, 
bulk electrolyte concentration n∞ = 
100.0 mM, and a nanochannel di-
ameter of 10 nm [44].  
These plots depict a two-dimen-
sional length-wise cross-section of 
the bipolar nanochannel, which 
considers the nanochannel walls to 
be horizontal and positioned at the 
top and the bottom of each graph, 
and the fluid occupying the space 
between them.  
In this diagram, ‘z’ is the coordinate 
system along the length of the 
channel, and the vertical axis repre-
sents the width/diameter coordi-
nates.



6.6.3: Asymmetry in Ion Concentration 

 The second we are studying is asymmetry in ion concentration. This system has a 

structurally symmetric nanochannel and uniform surface charge density in the channel 

walls, but the bulk concentrations in the two reservoirs are not equal. We depict such a 

system in figure 6.5, showing the concentration gradient with a dark gray to light gray 

color gradient denoting the higher and lower ion concentrations, respectively. The EDL is 

shown as a red “cloud” to indicate positive ion enrichment, and has a nonuniform thick-

ness from the walls.  

 As with all nanofluidic diodes, the rectifying effect is attributed to disparate ion 

concentration profiles that arise from opposite applied biases [11]. The asymmetrical 

electrostatic impact that gives rise to such disparate concentrations comes from asymmet-

rical EDL [26, 56]. On the low concentration side (right side in figure 6.5), the EDL are 

thick, represented by the red cloud, illustrating the accumulated positive counter-ions and 

!117

Figure 6.5: Asymmetry in ion concentration. The left reservoir holds a high ion concen-
tration, while the right holds a low ion concentration. The shade gradient across the 
channel corresponds to the resulting concentration gradient between the two reservoirs.



extending further into the center of the channel, while on the high concentration side (left 

side in figure 6.5), EDL are thin, represented by thinner red clouds. As the Debye-Hückel 

approximation (equation 5.14) indicates: larger screening lengths, which correspond to 

thicker EDL, result in farther-reaching electric potentials, meaning that Φ(x) extends far-

ther in x. So the unipolar region of electrolyte solution extends farther out from the walls 

for thicker EDL compared to thinner EDL.  

 To view this from the molecular-level perspective of the system in figure 6.5, we 

know that the EDL will be dominated by positive ions, as they are attracted to the nega-

tive surface charge. The right channel opening will have thicker EDL than the left open-

ing, meaning that cations will experience higher conductivity on the right than on the left. 

6.6.3a: Off Mode 

 The diode is off in figure 6.5 when the voltage applied to the right reservoir elec-

trode is negative with respect to the left reservoir. Figure 6.2, panel 2c represents this 

nanochannel under reverse bias, illustrating the following behavior description.  

 Under these circumstances, cations will flow from the left reservoir to the right, 

and will experience lower conductivity as they enter the channel as compared to when 

they exit. Their concentration will therefore be depleted within the channel as it is easier 

for them to flow out than to flow in. Anions experience similar conductivity asymmetry 

in the opposite direction, as they flow from the right reservoir towards the left. The right 

entrance to the nanochannel has a repulsive effect, from the far-reaching electrostatic ef-
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fects of the negative surface charge in the lower electrolyte concentration. The exit on the 

left opening is more conductive, as the higher electrolyte concentration screens out the 

field from the negative fixed charge much closer to the surface. Just like the cations, the 

anions will be depleted from the channel as they exit much easier than as they enter, and 

overall, ion current is suppressed. 

6.6.3b On Mode 

 The diode turns on when the positive potential is applied to electrode in the reser-

voir containing lower ion concentration. Figure 6.2, panel 2b represents this nanochannel 

under forward bias, illustrating the behavior we are describing. Now, cations flow from 

the right to the left, experiencing high conductivity at the entrance, where EDL occupy 

most of the cross-sectional area, and lower conductivity at the exit, where EDL only exist 

closer to the walls. Cation concentration is enriched in the channel as a result. Anions 

flow from left to right, and their entrance has a higher conductivity than their exit. In the 

left opening, the EDL screen out the negative wall charge close to the wall. But on the 

right, the electric field from the negative charge reaches farther into the center of the 

channel, lowering anion conductivity. Anion concentration is therefore also enriched in 

the channel compared to the bulk values. With enrichment of both ion species in the 

channel, ion transport is enhanced.  

 Theoretically, EDL overlap may not be necessary to produce the asymmetric elec-

trostatic effect needed to rectify current. However, ICR is most pronounced, and most 
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clearly measured, when one side of the channel has overlap in its EDL [26]. When the 

channel becomes unipolar throughout the whole cross-sectional area (when EDL 

overlap), cations experience enhanced conductivity and anions are repelled by the un-

screened fixed negative wall charge.  

6.6.4: Asymmetry in Channel Diameter 

 The final case we will consider in-depth is that of asymmetrical channel geome-

try. This system features uniform fixed wall charge and uniform ion concentration reser-

voirs, but the diameter of one opening is larger than the other, with a smooth transition 

between, forming a conical nanochannel. We illustrate a system that serves as an example 

of an asymmetrical geometry in figure 6.6, with its left opening being a larger diameter, 

which decreases at a constant rate moving towards the right opening. Once again, the 

EDL are enriched with cations and represented as red clouds, but now with a constant 

thickness from the wall. 
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Figure 6.6: Asymmetry in geometry. The channel diameter is at a minimum on the right 
opening, and at a maximum on the left opening, with a smooth slope along the channel 
between them. The result is a conical nanochannel.



 Interestingly, conical nanochannel diodes and asymmetric ion concentration 

diodes (the previous type of asymmetry) share the same physical basis for ICR [26]. Both 

of these systems feature more EDL cross-section occupation at one end than the other, 

with EDL overlap on the smaller end of the channel producing the best ICR. Unlike the 

previous case, this system maintains a consistent EDL thickness (screening length from 

the charged wall) across the entire length of the channel. The EDL overlap is produced by 

a smaller physical distance between the walls (i.e. a smaller diameter) at one end com-

pared to the other.  

 In the “off” state, reverse bias, a zone of ion depletion is observable at the small 

end of the conical nanochannel, forming an electric potential well [56]. The potential well 

disappears when applied voltage is inverted from reverse bias to forward bias, lending 

further proof that the disparate induced ion concentration profiles between the biases are 

the cause of ICR. The molecular-level description that follows will be brief due to its 

similarity to the previous case. 

6.6.4a: Off Mode 

 The conical diode is reverse biased when the applied voltage on the side of the 

smaller channel opening is negative (in figure 6.6, when negative voltage is applied to the 

right side with respect to the left). Figure 6.2, panel 3c represents the conical nanochannel 

under reverse bias, illustrating the behavior of this mode of operation. Cations will flow 

from left to right, but their concentration will be depleted in the channel because the left 
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opening has lower cation conductivity than the right opening. Negative fixed wall charge 

impacts more of the cross-sectional area of the channel at the right channel opening, re-

sulting in attractive forces enhancing cation flow. 

 Anions will flow right to left, and their concentration in the channel will also be 

depleted because they enter the right side of the channel, where repulsive forces from the 

fixed wall charge are stronger. Both ion species being depleted from the channel restricts 

the ion current, so the system is in its off mode.  

6.6.4b: On Mode 

 When the applied potential to the electrode facing the smaller channel opening is 

positive, the diode is forward biased. Figure 6.2, panel 3c represents the conical 

nanochannel under forward bias, illustrating the behavior of this mode of operation. 

Cation and anion flows are reversed, so they both enter the channel at their respective 

higher conductivity openings, and exit at lower conductivities for their species. Both ion 

species concentrations are enriched in the channel compared to the reservoirs, which 

gives them an extra diffusive flow component to help transport them across the side of 

the channel with lower conductance, which greatly increases ion current. Therefore, this 

applied bias results in the system’s on mode. 
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6.6.5: Optimal Characteristics for Current Rectification 

 Measuring current-voltage relationships in different variations of the nanofluidic 

bipolar diode have helped researchers design systems that maximize ICR. Here, we will 

briefly review how combinations of asymmetries and/or the manipulation of properties 

such as fixed charge density, channel diameter, and bulk electrolyte concentration affect 

ICR in nanofluidic bipolar diodes. 

6.6.5a: Combining Asymmetries 

 Often, fabricated nanofluidic diodes are designed to incorporate more than one of 

the three cases of asymmetry we have discussed. By combining multiple sources of 

asymmetrical electrostatic impact, the rectification factor can be enhanced. The most 

common combination of asymmetry types into one nanofluidic diode is that of asymmet-

rical fixed charge and asymmetrical geometry [15, 55]. Bipolar nanochannels also induce 

the largest rectification factors, so asymmetric charge is very commonly used in design-

ing highly-rectifying nanofluidic diodes [44]. 

6.6.5b: Effects of Manipulating Characteristics 

 Variation in fixed charge density, channel diameter and bulk electrolyte concentra-

tion affects ICR properties in nanofluidic diodes. Researchers have manipulated these 

characteristics to learn what improves the rectification ability, so that nanofluidic diodes 

can be designed to suit a desired need.  
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 Although the systems depicted in our examples have fixed wall charge along the 

entire channel, there are other possible configurations. A system with the same nanochan-

nel length, but a shorter zone of fixed charge, cannot electrostatically hold as many ions 

in the channel compared to a longer charged zone. Therefore, the ion current decreases as 

the length of the charged zone inside the nanochannel decreases [55].  

 Affixing charge to the walls around the openings of the nanochannel (the walls 

facing the reservoirs, perpendicular to the inner channel walls) is another possible modi-

fication, which creates an extension of EDL surrounding the nanochannel openings. For 

the bipolar nanofluidic diode, this means extending the charged zones of each polarity 

around their respective openings. A combination of inside and outside charge asymmetry 

has been shown to further increase the current rectification factor [57]. The additional 

EDL at the openings serves to strengthen the selectivity filters for ions’ entrance and exit 

to the nanochannel, thus improving the asymmetric conductivity strength. 

 The density of the fixed wall charge also has an impact, as symmetrically increas-

ing the densities in a bipolar nanofluidic diode increases ICR [44, 57]. Higher charge 

density embedded in the walls produces a higher electric field, which requires more 

counter-ions to compensate. Increasing the counter-ion enrichment increases the conduc-

tivity for that ion species [57]. The electric field decreases as a result of higher ion con-

centration, but the concentration (and conductivity) increase dominates the diminished 

field, so the overall effect is an increase in ion current for applied forward bias. The recti-
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fication factor increases dramatically with surface charge density because of the simulta-

neous increase in forward current and decrease in reverse current [44].  

 The diameter of the nanochannel is important, as we know from our understand-

ing of EDL. An increase in the ratio of channel diameter to Debye length decreases ICR 

because the solution in the channel becomes less unipolar as the EDL becomes thinner. 

The counter-ion concentration decreases as diameter increases because there is less ex-

cess charge required to maintain electroneutrality, so the counter-ion conductivity in the 

channel drops. Interestingly, Singh and Kumar found through their simulations that for 

any given ratio of channel diameter to Debye length, the ICR increases with an increase 

in channel diameter [44]. They determined the reason to be a relatively higher increase in 

the forward current density compared to the increase in the reverse current density as di-

ameter increased. This shows that it is the ratio between diameter and EDL thickness that 

is most important in ICR, since maintaining the same ratio while increasing the diameter 

gives the benefits of having more ions in the channel without compromising the conduc-

tivity asymmetry.  

 Lastly, the electrolyte concentration affects the system by manipulating the Debye 

length which characterizes EDL thickness. Ion current rectification decreases as elec-

trolyte concentration increases [44], which may be surprising if we did not consider the 

importance of EDL. As ion concentrations increase in the electrolyte solution, clearly, a 

higher number of ions can flow across the nanochannel connecting the reservoirs due to 

the applied electric field. The ion current in forward bias therefore increases, so why does 
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ICR decrease? With higher concentration comes more efficient screening of the wall’s 

fixed charge. Counter-ions accumulate close to the walls in higher concentrations when 

the electrolyte concentration is higher, screening out the fixed charge density’s field over 

a shorter distance (EDL is thinner). The unipolar character of the solution is decreased, 

increasing reverse bias ion current more rapidly than forward bias current increases. This 

results in rapidly diminishing ICR with increasing electrolyte concentration [44].  

 An apt conclusion to this section is discussing the core similarities shared by all 

nanofluidic diode systems. All nanochannels that exhibit ion current rectification do so 

with areas of ion depletion and ion enrichment, especially at the entrances to the channel. 

The creation of these regions at the mouths of the channel under the applied potential is 

referred to as polarization concentration, and they are the reason the current-voltage 

curves deviate from linear, ohmic behavior [1]. In all nanofluidic diodes, ion depletion 

and accumulation regions can be explained by a combination of different flow compo-

nents, including electrophoresis, electroosmosis, diffusiophoresis and diffusioosmosis 

[15, 18]. We sufficiently and thoroughly analyzed the most important effects in three 

types of nanofluidic diodes under forward bias and reverse bias, enabling us to explain 

the phenomenon of ion current rectification.  

6.7: Semiconductor Diode Analogy 

 All of our discussion and analysis of nanofluidic diodes begs the question: how do 

they compare to PN-junction semiconductor diodes? In this section, we will explore simi-

!126



larities and differences between the two, with the purpose of coming to a more complete 

understanding of nanofluidic diodes’ capabilities, strengths and weaknesses. 

6.7.1: Similarities in Equations and Materials 

 To start, let us look at the quantitative expressions that describe behavior within a 

nanofluidic diode. The Poisson-Nernst-Planck equations, which are very useful for mod-

eling nanofluidics and microfluidics, are formulated on the basis of describing charged 

particle diffusion and migration in a self-consistent electric field [26]. Since electrons and 

holes can be thought of as charged particles, the Nernst-Planck equations can be adapted 

for semiconductors to describe their charge carrier behavior. Both diodes’ charge carriers 

flow by a combination of drift and diffusion mechanisms, so electric potential and con-

centration profiles are very important to the function of both devices. The Debye-Hückel 

theory accurately describes the screening effects that take place in both nanofluidics and 

semiconductors, since both types of charge carriers (ions and electrons) can dampen an 

electric field from other particles. Because of this, the Debye length appears in many 

quantitative relationships in both types of materials. 

 To compare the material composition of the devices, we will take a look at how 

fixed wall charge density induces ion environments that are similar to N-type and P-type 

semiconductors. N-type semiconductors have been doped with donor atoms, providing 

extra electrons in the lattice. P-type semiconductors have “missing” electrons, known as 

holes, and have been doped with acceptor atoms [52]. Electrons serve as the negative 
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charge carriers in the semiconductor material, while holes can move as valence band 

electrons shift, acting as mobile positive charge carriers. So, in N-type semiconductors, 

electrons are the majority charge carriers and in P-type semiconductors, holes are the ma-

jority charge carrier.  

 N-type semiconductors are analogous to nanochannels with positive fixed wall 

charge. This is because the EDL that is induced is populated with negative counter-ions, 

so that anions are the majority charge carrier. P-type semiconductors are analogous to 

nanochannels with negative fixed wall charge, since their EDL is enriched with positive 

counter-ions, so that cations serve as the majority charge carrier [26]. This suggests com-

paring the EEE to semiconductor diodes’ areas of charge carrier depletion and enrich-

ment, because the parallel is very clear. In a nanofluidic diode, the fixed wall charge in-

duces dramatic co-ion depletion and counter-ion accumulation. At the junction between 

regions of positive and negative charge carriers in a bipolar nanofluidic diode, diffusion 

across the interface creates a region of depletion very similar to the depletion region in a 

PN-junction diode. In both types of devices, the induced regions of accumulation and de-

pletion are critical to the desired current rectification behavior. 

6.7.2: Built-in Potential Analogy 

 PN-junction semiconductor diodes are built by connecting a P-type semiconduc-

tor region with an N-type semiconductor region. The interface where the doping concen-

tration switches from P-type to N-type is known as the “metallurgical junction” and the 
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abrupt switch is referred to as a step junction. Electrons in the electron-enriched N-type 

region will immediately diffuse into the electron-depleted P-type region (and holes dif-

fuse from P-type to N-type). The charge displacement gives rise to a built-in potential 

called the junction potential [52].  

 In nanofluidic bipolar diodes, a junction is formed by connecting oppositely-

charged nanochannels, resulting in EDL of opposite charge polarity to form next to each 

other. Some positive ions in the negatively-charged nanochannel will diffuse across the 

junction towards the negative EDL, while some negative ions in the positively-charged 

nanochannel will diffuse in the opposite direction towards the positive EDL. The diffu-

sion depletes the junction of both ion species, leaving behind the fixed wall charge junc-

tion. The electric field generated by the exposed surface charges reaches a balance with 

the ion concentration difference, and the resulting electric potential set up across the junc-

tion is analogous to the built-in potential in a semiconductor system [12, 26].  

 For nanofluidic systems, this potential is known as a Donnan potential, and shares 

the same physics as the semiconductor’s built-in potential. The Donnan potential sup-

presses the diffusion of mobile ions across the depleted junction until the system reaches 

equilibrium [26]. This is essentially identical to how the built-in potential suppresses dif-

fusion of electrons and holes across the space-charge region in a PN-junction diode. The 

applied potential in forward bias has to overcome the built-in potential before the diode 

switches to its on-mode. 
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6.7.3: Breakdown Potential Analogy 

 A “breakdown regime” has been observed to occur in nanofluidic bipolar diodes 

when the applied reverse bias potential becomes sufficiently strong [13]. The breakdown 

regime is defined to occur when the current in reverse bias continues to increase in mag-

nitude with an increase in applied potential. It is surmised to be the result of water split-

ting, where the applied electric field is strong enough to begin breaking apart water mole-

cules into their ionic components [13].  

 The analogous breakdown regime in semiconductor devices occurs in PN-junc-

tion diodes, where reverse bias current suddenly increases from its saturated value at 

strong enough reverse-bias potentials. Current rapidly increases in magnitude due to ava-

lanche multiplication (impact ionization) of electron-hole pairs induced by the high ap-

plied field magnitude [13]. 

6.7.4: Key Differences 

 As we have seen, PN-junction semiconductor diodes and nanofluidic bipolar 

diodes share many similarities, including comparable material structure, built-in poten-

tial, and breakdown regimes at large enough reverse bias potential. Despite these analo-

gous parallels, there are plenty of differences that separate semiconductor and nanofluidic 

devices. 

 One of the most pronounced differences is in the charge carriers, because elec-

trons and holes can recombine, while cations and anions cannot. For semiconductor 
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diodes in forward bias, the depletion width is reduced at the junction, and electrons and 

holes are able to diffuse more easily across the junction, increasing overall current. While 

they are transported by means of drift and diffusion, some holes and electrons will re-

combine, and this recombination is important to consider in modeling. Also, the concen-

trations of electrons and holes are restricted by the concentrations of doped donors and 

acceptors, respectively [38]. In contrast, nanofluidic diodes use positive and negative ions 

as charge carriers, and they cannot recombine near the junction. Instead, they accumulate 

at the junction in forward bias, leading to concentrations that are much higher than the 

bulk ion concentrations [38]. This difference manifests itself in the continuity equation 

for current flux, as it features a recombination term in semiconductor physics that does 

not exist in nanofluidic physics. 

 Even more striking is the difference between carrier mobilities. Ions flowing in a 

solution have far smaller mobilities than electrons and holes in semiconductor crystals, at 

a factor of around 106-107 times smaller [26]. As a result, it takes a much longer time for 

ions to be transported from one reservoir to the other. In fact, permeation of ions through 

a nanochannel connecting electron solutions occurs on a time scale of microseconds to 

milliseconds, while atomic motion that transports electrons and holes has time scales in 

the femtoseconds range [41].  

 The majority-minority charge carrier concentrations also have some different 

sources affecting their fluctuations. In most semiconductors, the doping level is high 

enough, and the dopants are considered completely ionized at room temperature, so the 
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assumption can be made that there are equal fixed charge and majority carrier popula-

tions, while the minority carrier concentrations are orders of magnitude smaller. In 

nanofluidics, the counter-ion concentration inside charged nanochannels is determined by 

the surface charge density on its walls as well as other factors such as channel geometry 

and the bulk ion concentrations. The latter two factors are unique to nanofluidics as they 

do not apply to semiconductor charge concentration profiles. To achieve the high counter-

ion to co-ion concentration ratio in the nanochannel, surface charge density must be high, 

the channel diameter should be small, and the bulk ion concentrations should be low [26]. 

 The current-potential curves also differ between semiconductor and nanofluidic 

diodes. Semiconductor diodes exhibit an exponential current increase in forward bias. 

Nanofluidic diodes with non-overlapping EDL show more of a quadratic increase in cur-

rent with respect to potential in forward bias [38]. This difference can be attributed to the 

more ohmic behavior of the electrolyte solution outside of the EDL, which dampens the 

rectifying effect. When EDL overlap, the EEE occurs in the whole cross-section, and ICR 

increases. 

 Despite sharing some functional similarities, these numerous incongruences be-

tween nanofluidic diodes and semiconductor diodes distinguish them as fundamentally 

different devices. Many of the differences, especially the massive disparity in charge mo-

bility, strongly diminish the utility of nanofluidic diodes as traditional current switches 

for purely electronic applications. However, consider the fact that current is carried 

through ions instead of electrons in nanofluidic diodes, and then the connections to chem-
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istry and biology encourage our research endeavor. By developing the theory, we hope to 

advance the pursuit of harnessing ion flow for biochemical-electrical integration and new 

medical technologies, as discussed in chapter 3.
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CHAPTER 7 

Modeling Ion Current Rectification 

 Originally, the goal of this research was to perform our own simulations of the 

PNP equations through use of a commercial software package such as COMSOL. This 

goal evolved over time, and gradually changed as we gathered more information about 

nanofluidics and the complexity of modeling nanofluidic diodes. Ultimately, our primary 

interest shifted to forming a comprehensive foundation for future simulation research, 

achieved through the interpretation and organization of a fundamentals-based theory. We 

wanted to create a resource that conveys topics relevant to the engineering and physics of 

nanofluidic diodes, so that the reader can form an intuitive understanding of these 

devices. 

 This has been the purpose of the preceding chapters – to develop an 

understanding of ion current rectification in nanofluidic diodes – which we did by 

building a strong theory from fundamental physics concepts. Most of our descriptions 

have been logical in nature, supplemented with the most commonly-used and well-

evidenced quantitative relationships. 

 These mathematical models serve as representations of physical reality, and were 

developed to analyze and calculate quantities predicted for a system’s real-world 

behavior [58]. However, though the mathematical models themselves can show 

relationships between parameters that affect behavior, it is their solutions that give the 

most insight. The complexity of nanofluidics, even at the fundamental level, means that 
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numerical simulations are crucial for calculating solutions to the models. So in this 

chapter, we will review some of the many methods that yield predictions for nanofluidics 

behavior, including classical molecular dynamics (MD) and the finite difference method 

(FDM). Then we will use a simplified, fundamental physics-based set of equations to 

conduct our own analysis of one of the nanofluidic diode types – a homogeneous 

nanochannel with asymmetric ion concentration. Our simulation goal is to illustrate the 

theoretical understanding we have developed about the source of ion current rectification. 

7.1: Classical Molecular Dynamics (MD) 

 Let us begin with a method of simulation which has been used to provide 

evidence for parts of the theory we have developed: molecular dynamics, or MD. In 

classical MD, the dynamics of ions, the solution, proteins, etc. are described in atomic 

detail [8]. Numerically integrating equations of motion as functions of time allows a 

state-by-state prediction of behavior for each individual particle involved in the system 

[20]. Although massively computationally exhaustive and demanding in time to simulate 

each consecutive state, the results are among the most accurate and insightful possible 

due to the method’s meticulous consideration of individual molecules [8]. MD is 

therefore ideal for simulating flow, and for finding transport properties such as the ion 

transport behavior we wish to analyze in nanofluidic diodes, but it suffers immensely 

from limitations in computational power and simulation time, so the size of the system 

that can be modeled is very restricted [8].  
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 One example of a MD simulation is presented by Liakopoulos, Sofos, and 

Karakasidis [32], where they investigated liquid flow in nanochannels with varying 

hydrophobic/hydrophilic interactions. They used their MD simulation results to estimate 

the effect that the wettability of the channel walls, as well as the effect their roughness 

(surface unevenness) had on fluid flow. They concluded that the friction factor decreases 

as the channel walls become more hydrophobic (lower wettability), and the rougher a 

channel wall is, the greater the frictional impact on flow [32]. The results agree with the 

logical relationships between these characteristics, as described in section 6.5. Similar 

investigative goals involving fluid flow at nanochannel walls, such as the slip length 

investigation conducted by Xinran Geng et. al. [53], rely on molecular dynamics to 

illuminate the complex behavior, especially because of how difficult it is to 

experimentally measure in such close proximity to the walls [20, 53].  

 For the purpose of analyzing transport mechanisms through a nanofluidic diode, 

the number of molecules that need to be simulated is too staggeringly large for practical 

applications of molecular dynamics, so methods that rely on approximations to simplify 

calculation are preferred to simulate meaningful behavior [8]. Mean-field 

approximations, such as the PNP model we discussed in section 5.10, are the most 

widely-used alternative because they are reliable, efficient, and accurate. MD and PNP 

models disagree by less than a 10% margin unless the nanochannel has a fixed surface 

charge density magnitude more than about 19×10-2 C/m2 in its walls, and a radius on the 

order of 1 nm [22]. The nanofluidic diodes we want to analyze have typical wall charge 
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densities on the order of 1×10-2 C/m2 or less, and radii around 10 nm, so the PNP models 

are well-suited to model many fabricated nanofluidic diodes.  

  

7.2: Methods to Solve the PNP Equations 

 In mean-field approximation models, or continuum theory, ion species are 

represented by macroscopic ion concentration profiles instead of microscopic discrete 

particles [8]. The Poisson-Nernst-Planck equations are one such continuum-based model, 

and though their system of equations is complex, it uses more manageable computational 

processes to obtain results. Analytical attempts at solving PNP equations do exist, but 

their coupled, nonlinear nature usually makes numerical simulation more attractive for 

general use [58].  

 In this section, our goal is not to provide a full tutorial on how to implement these 

numerical simulation methods, but rather to introduce the reader to them for the purpose 

of familiarization. As a result, these methods will be described on a conceptual level 

instead of a mathematical one, as general comprehension is our emphasis. Another 

benefit of this brief review is to help conceptualize what kind of process the PNP model 

(or any continuum-based model, including the PNP-NS model) must be put through 

before meaningful results are achieved. 
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7.2.1: Gummel Iteration Method  

 To begin, we will consider a method that is most applicable to a one-dimensional 

simplification of the targeted system, and is easier to implement than the later methods. It 

is known as Gummel’s method, or the Gummel iteration method, and is used to solve a 

nonlinear discrete system, such as the drift-diffusion and continuity equations in 

semiconductor physics as well as nanofluidics [4].  

 For the PNP model, the Gummel iteration begins with a starting prediction of the 

electric potential and ion concentration profiles obtained from initial conditions and the 

geometry of the system. The “guess” of the electric potential profile is substituted into the 

steady-state Nernst-Planck equations (equation 5.49, one for each ion species), and 

solved for the concentration profiles of each ion species throughout the system [8, 42]. 

Next, these concentration profiles are substituted into the Poisson equation, which is 

solved to obtain a new version of the electric potential profile. The predictions of the ion 

concentration and electric potential profiles are updated using the new, calculated 

profiles, usually through a relaxation method. To find the prediction to be used for the 

next iteration using a relaxation method, a parameter w with a value chosen between 0 

and 2 is multiplied by the new prediction, which is then added to the old prediction 

multiplied by a factor of (1 – w). Updating the profiles by relaxation instead of simply 

switching to the new predictions often improves the convergence of the system, as it 

ensures smoother steps in the iteration process for narrowing in on an accurate solution 

that satisfies all of the equations [42].  
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 Essentially, when solving a system that follows Boltzmann statistics and drift-

diffusion equations, the Gummel method alternates between solving linear differential 

equations for the electric potential and for the charge carrier densities [4]. Each iteration 

refines the predictions, until the change between one prediction and the next is smaller 

than some set threshold, at which point the model has converged on a solution. 

7.2.2: Finite Difference Method (FDM) 

 As previously stated, the Gummel iteration method is most suited to one-

dimensional systems, and is not as practical to attempt for domains of greater dimensions. 

Other methods are better adapted to discretize two-dimensional and three-dimensional 

spatial coordinate systems for approximating differential equations. One of the oldest and 

most commonly used methods of numerical approximation is the finite difference method 

(FDM) [58]. In essence, the finite difference method is a direct conversion of the 

mathematical model’s equations from continuous to discrete form, converting the entire 

problem into a system of linear equations that are solvable by matrix inversion [47]. 

 A simple way of understanding FDM is by reviewing the discretization expansion 

of first-order and second-order differential terms, and visualizing how values at each 

point are calculated relative to the values at their closest neighboring points. To apply 

FDM, you must first define a uniform grid of spatial points, known as a mesh, with each 

point holding a sampled value of the continuous function (i.e. discretizing the function). 

In two dimensions, each sample is only dependent on its own value and the values of its 

!139



four nearest neighbors. Since the computational evaluation of each sample involves 

values at five total grid points, the relationship structure is known as the 5-point star 

“computational molecule”, which can also be thought of as a numerical stencil [47].  

 We visualize these concepts through figure 7.1, with the left image depicting 

mesh points for the FDM grid and the right image depicting the computational molecule 

for the 5-point star. Indices i and j are integers which are intended to serve as matrix 

indices to keep track of positional relationships between points. Shorthand notation is 

used for the left image in figure 7.1 so that Φ(i, j) = Φ(xi, yj). For this example, the 

continuous function being approximated is electric potential, Φ, in the two-dimensional 

xy-plane, with i denoting the horizontal (x-direction) index and j denoting the vertical (y-

direction) index.  

 Now, we have a framework for approximating the derivative operators in the PNP 

equations (or any other continuum-based equations), using finite differences. The most 
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Figure 7.1: (Left) FDM grid, formed by discretizing the spatial domain into mesh points separated in the 
x and y directions by a uniform physical distance h. Coordinates are labeled using indices i and j to be 
used as matrix indices [47]. (Right) Computational molecule for the 5-point star, used to relate samples of 
a continuous parameter (here, electric potential, Φ) to each other for the purpose of approximating the 
differential profile (calculating the slope in each direction). Adapted from [47].



straightforward representations of first-order and second-order derivatives in finite 

difference form are as follows: 

!   

! . 

Equation 7.1 is known as a two-point forward difference, and equation 7.2 is known as a 

three-point central difference. Similar expressions apply for the partial derivatives with 

respect to y.  

 Each differential operator in the PNP model’s equations is translated into finite 

difference form, then re-arranged so the value at each point is expressed as a function of 

the values of its neighboring points (and boundary conditions, where applicable). Since 

each sample of the parameter (such as electric potential) is linearly dependent on the 

other samples in the five-point star, we can represent the solution over the whole system 

(all (i,j)) as a matrix-vector equation of the form Ax = b. Here, x is a vector containing all 

of the samples in the domain, and A is comprised of the linear relationships between the 

parameter samples [47]. 

 Boundary conditions must also be discretized accurately so that mass, velocity, 

charge, etc. are conserved; constraints are critical for the accuracy of the long-term 

behavior of the solutions [43]. So, b is a vector that holds all of the discretized boundary 

condition information, such as fixed charge density. At last, the system’s numerical 

solution using a finite-difference method is able to be obtained by solving x = A-1b [47]. 

∂
∂x

Φ(i, j ) ≈ −Φ(i, j ) + Φ(i + 1, j )
h

∂2

∂x2 Φ(i, j ) ≈ Φ(i − 1, j ) − 2Φ(i, j ) + Φ(i + 1, j )
h2
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 These concepts can be extended into a third dimension, which complicates the 

linear system, but follows the same principles. In three dimensions, the computation 

molecule needs two additional mesh points in the third dimension, and this stencil is 

known as the seven-point star [59]. 

7.2.3: Other Numerical Methods 

 Although it may seem complicated, the finite-difference method is fundamentally 

just a simplified form of another more complicated method known as the finite-element 

method (FEM). While FDM utilizes a fixed, rectangular mesh to discretize its domain, 

FEM requires a flexible, triangular mesh [47]. Clearly, the computational complexity is 

formidable, so most research groups wishing to use these methods primarily do so via a 

commercial software package, such as COMSOL, which can handle all of the 

computational tasks automatically in the background. 

 One last approximating method of solving continuum models such as the PNP 

equations that we will briefly mention is the finite volume method (FVM). As indicated 

by its name, FVM discretizes the domain into finite volumes. By explicitly considering 

the fluxes of each parameter through each finite volume, this method efficiently 

conserves mass [60]. We will not discuss this method in detail, but it is useful to think of 

FVM as a version of FDM that uses volume chunks instead of one-dimensional point 

samples.  
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 Now that we have reviewed some of the most common methods for numerically 

simulating models such as the PNP equations, we have a better understanding of the 

general procedures they follow. Although in this research, we will not directly simulate 

nanofluidic diodes using the PNP model, we will take inspiration from the spatial domain 

discretization into matrix form utilized by FDM. 

7.3: Modeling Electric Potential Profiles in a Nanofluidic Diode 

 The goal of forming an intuitive comprehension of nanofluidic diodes has served 

as a guiding compass for this research, and we will now depart from foundation-building 

and the review of existing simulation methods, in order to begin simulating a visual 

model of the fundamental theory. In this section, we will apply quantitative electrostatic 

and ion conductivity theory to see if we are able to demonstrate its mechanisms needed 

for ion rectification. If a simplified model can support the theory that has been solidified 

through experimentation and complex simulations by many other research groups, then 

we have credibly identified a fundamental basis for ion rectification in the system being 

modeled.  

7.3.1: Motivation for Analyzing Electric Potential Profile: ICR Causal Chain 

 The approach we take in our fundamental physics-based modeling stems from our 

analysis of the causal chain that produces ion current rectification. In section 6.6, we 

explained how rectification is attributed to the ion accumulation and depletion regions 
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within the nanochannel under an externally applied voltage. The full flowchart of cause 

and effect can be summarized as follows:  

1. For each ion species, asymmetrical electrostatic impact is stronger at one end of the 

nanochannel than the other due to asymmetry in the system structure/setup. 

2. Each ion species forms regions of accumulation and depletion due to the nonuniform 

electrostatic impact, resulting in one nanochannel opening having higher 

concentration of that species than the other.  

3. Conductivity is directly dependent on concentration, and ion current flux (under the 

same applied electric potential gradient) is greater in areas of higher concentration, so 

one opening will allow ions to flow through easier than the other opening. 

4. Forward bias: When an ion species enters the nanochannel opening with higher 

conductivity and exits the opening with lower conductivity, the ion flux into the 

nanochannel is greater than the flux out of the nanochannel, resulting in channel-wide 

ion accumulation, further increasing conductivity and ion current flux.  

5. Reverse bias: When an ion species enters the channel at the opening with lower 

conductivity and exits at the opening with higher conductivity, ion flux is greater out 

of the nanochannel than into the nanochannel, causing channel-wide ion depletion, 

consequentially lowering ion conductivity and repressing ion current flux.  

 For the simulation portion of this research, we aim to model the asymmetrical 

electrostatic impact, as it is the root cause of ion rectification in nanofluidic diodes. The 

subsequent causal chain relies on this electrostatic asymmetry in order to exist; it is 

!144



therefore prudent to model the system’s electrostatic profile to verify if ion rectification is 

possible. 

7.3.2: System to be Modeled and Equations to be Used 

 The electric field in a system requires vector quantities to model it, and this adds 

complexity to the simulation due to the necessity of vector addition. Therefore, we chose 

to represent the electrostatic profile using the scalar quantities of electric potential, so that 

the various electrostatic contributions are easily combined by scalar addition. In this 

investigation, we chose to model the electrostatic profile of a nanochannel with uniform 

charge and geometry that connects reservoirs of asymmetric ion concentration, which can 

be visualized in figure 4.3, repeated below. 

 The equations we use are derived from the Guoy-Chapman model of EDL in 

nanofluidics, which we discussed in detail in section 5.4, and are given by equations 5.14,  

5.15, and 5.16, repeated below for convenience:  
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Figure 4.3: (repeated from chapter 4) Asymmetry in ion concentration. The left reservoir 
holds a high ion concentration, while the right holds a low ion concentration. The shade 
gradient across the channel corresponds to the resulting concentration gradient between 
the two reservoirs.



!   

!   

! . 

Recall that equation 5.14 is the Debye-Hückel approximation of the Poisson-Boltzmann 

equation, and it describes the electric potential at a perpendicular distance x from the 

charged surface (nanochannel wall). The potential demonstrates an exponential decay as 

x increases that is characterized by κ. The inverse of κ is known as the Debye screening 

length, and is related to system properties through equation 5.15. Finally, equation 5.16 –

the Grahame equation – can be used to find the surface potential, Φs, if the surface charge 

density is known. Solving the Grahame equation, equation 5.16, for Φs, we obtain 

! . 

The simulation we will present uses equations 5.14, 5.15, and 7.1 to model the electric 

potential profile in the system depicted in figure 4.3. A true nanofluidic diode is three-

dimensional, but simulating in two dimensions instead of three is far more efficient, yet 

still valid, since the system is assumed to be radially symmetric around the central axis of 

the nanochannel. Therefore, we will model a two-dimensional length-wise cross-section 

of the system to simplify our procedure. 

Φ(x) = Φse−κx

λD = κ−1 = εkBT
2q2n∞

σs = 8εn∞kBT sinh ( q Φs

2kBT )

Φs = 2kBT
q

sinh−1 ( σs

8εn∞kBT )
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(7.1)



7.3.3: Description of the Simulation Algorithm 

 The software we use to code the simulation program is MATLAB R2019a. This 

section is focused on explaining the logical steps carried out by the simulation, using the 

language of the written code. The complete MATLAB code can be found in the 

Appendix. 

 Since we want to perform a numerical simulation that calculates values of electric 

potential throughout the system, we must discretize the system’s domain. We will do so 

by creating a two-dimensional matrix that contains the spatial coordinates at each 

sampling point on the computational grid (mesh). Initializing the mesh requires creating 

constants for the length and width of the nanochannel, as well as the length of the 

reservoirs.  

 We present a visualization of the computational domain in figure 7.2, including 

the coordinate system. The origin of the xy-plane is located at the top left corner of the 

channel in the diagram, the positive y-direction is horizontal to the right (parallel to the 

length of the channel), and the positive x-direction is vertical downward (parallel to the 

width of the channel).  

 In addition to the spatial dimensions of the system, we must choose the number of 

points we wish to sample in the x and y directions to form a matrix. To maintain 

consistency between our diagrams and our MATLAB program, we consider the number 

of rows in the matrix to be in the x-direction, and the number of columns to be in the y-

direction. We call these parameters Nx and Ny, respectively. Using the “linspace” 
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MATLAB function, we create a vector, y_vec, that contains an Ny amount of evenly-

spaced numbers between 0 and the length of the nanochannel, and another vector x_vec, 

that contains an Nx amount of evenly-spaced numbers between 0 and the width/diameter 

of the nanochannel. To account for the reservoirs, we similarly create vectors ry_vec and 

rx_vec, the former containing an Nry amount of evenly-spaced numbers between 0 and 

the reservoir length, and the latter being equivalent to x_vec. To place the reservoirs 

appropriately in the coordinate plane, we use a “for loop” that takes two copies of ry_vec 

and creates ry_vec_left and ry_vec_right. The for loop subtracts the reservoir length from 

every element in ry_vec_left, and adds the channel length to every element in 

ry_vec_right, so the y-coordinates of the left and right reservoirs are accurately described. 

Once this is done, we create yfull_vec, which concatenates ry_vec_left, y_vec, and 
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Figure 7.2: Diagram of the computational domain for simulating the electric potential, 
which is overlaid on the nanofluidic diode of asymmetrical ion concentration, as 
depicted in figure 4.3. The computational boundaries are outlined in solid green lines, 
with dotted green lines denoting the regions of the system.



ry_vec_right to describe the full range of y-values in the mesh. This completes the spatial 

initialization. 

 Next, we create the electric potential profiles that are contributed to only by the 

applied potential difference. We create three versions, using the suffix “_e” for 

equilibrium, “_f” for forward bias, and “_r” for reverse bias. The left reservoir voltage is 

always grounded at Vl = 0. The following explanation will apply for forward bias, but the 

exact same procedure is used for equilibrium and reverse bias, with the only difference 

being that Vr = 0 for equilibrium, Vr = 1 for forward bias, and Vr = -1 for reverse bias. 

 To represent the potential gradient across the channel due to the applied bias, we 

use the linspace function to assign an Ny amount of evenly-spaced voltage values across 

the length of the nanochannel, from Vl to Vr, and the resulting vector is named Vay. To 

complete a two-dimensional matrix profile, we run a for loop that enters Vay as the 

columns in a Nx-by-Ny matrix named Va_f (_f for forward bias). A similar process is 

used to create a uniform electric potential profile in each reservoir: Vrl_f for the left 

reservoir, and Vrr_f for the right reservoir.  

 An approximate ion concentration profile must also be created to describe how 

the bulk ion concentration (n∞ – the number concentration of ions existing absent the 

effects of the fixed wall charge) changes along the nanochannel connecting the reservoirs.  

The left reservoir contains a concentration cl, while the right contains cr, and a 

simplifying assumption we used when plotting the Debye length in figure 5.2 is that the 

concentration profile has a constant slope, changing uniformly from one concentration to 
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the other [11, 50]. The coding procedure is identical to how we initialized the electric 

potential gradient – first creating a vector Cy using linspace to assign a concentration 

value to every mesh point in the y-direction (from cl to cr with Ny entries), then running a 

for loop to create the two-dimensional matrix, C, that has Nx identical rows, each 

containing the vector Cy. The left and right reservoirs are given uniform concentration 

profiles as matrices Crl and Crr (both are Nx-by-Nry in dimension) with all entries 

containing cl and cr, respectively. 

 All initializations are complete, and the next step is the calculations. We assign all 

of the constants in equation 5.15 (the Debye length equation) with appropriate values. 

Then we perform the calculation of equation 5.15, using element-wise operations, on the 

vector Cy to create a vector named ‘debye’. ‘Debye’ is a vector with Ny entries that 

contains the Debye screening length at each y-coordinate along the y-direction of the 

nanochannel, and is not uniform due to the ion concentration gradient along the channel. 

 The last calculations before plotting utilize equations 5.14 and 7.1 (the Deby-

Hückel approximation, and the conductivity equation, respectively). The fixed wall 

charge density is defined as a constant, and since it is uniform for the system to be 

modeled, we create a vector Qy with Ny equivalent entries of that value of charge 

density. Performing element-wise operations, we create a vector Vs (also with Ny 

elements) that uses equation 7.1 to calculate the surface potential at every y-coordinate 

along the nanochannel. It is an element-wise calculation so that it can use the pre-defined 
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values of wall charge density and bulk ion concentration at each coordinate in the y-

direction. 

 Finally, in a for loop, we apply the Debye-Hückel theorem (equation 5.14) to 

calculate the electric potential profile in the x-direction, Vq1, due to the horizontal 

charged nanochannel wall at x = 0. This for loop iterates through each y index (Ny total), 

substituting in the surface potential at each index from the Vs vector, and using element-

wise operations to substitute each x-coordinate of x_vec to create column vectors that 

exhibit the potential decay at each y-coordinate. Since the electric potential profile 

induced by the bottom wall is just a mirrored version of the profile induced by the top 

wall, we use the “flip” function to create Vq2, which is identical to Vq1 but has all of its 

column vectors inverted.  

 The final step before plotting is to create the full electric potential profiles. Using 

two nested “for loops”, we iterate through every (x,y) coordinate pair and add the scalar 

quantities of electric potential at each point. We create three Nx-by-Ny matrices: 1) 

Vtot_e that adds the potential contributions from Vq1, Vq2 (electric potential due to the 

fixed wall charges), and Va_e (electric potential due to the equilibrium applied bias); 2) 

Vtot_f that adds Vq1, Vq2, and Va_f (electric potential due to the forward applied bias); 

and 3) Vtot_r that adds Vq1, Vq2, and Va_r (electric potential due to the reverse applied 

bias). Vfull_e, Vfull_f, and Vfull_r are defined to concatenate Vrl_e, Vtot_e, and Vrr_e, 

Vrl_f, Vtot_f, and Vrr_f, and Vrl_r, Vtot_r, and Vrr_r, respectively. To create the graphs 

that plot these electric potential profiles, we use the meshgrid and mesh functions, in 
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order to plot Vfull_e, Vfull_f, and Vfull_r as surfaces in x-y space (with appropriate 

coordinates using yfull_vec and x_vec for the full system including reservoirs).  

7.3.4: Results and Discussion 

 The MATLAB program we created maps out an approximation of the electric 

potential throughout the nanofluidic diode. It does so by calculating the surface potential 

(via equation 7.1, the Grahame equation) and the Debye length (via equation 5.15), which 

both change as a function of ion concentration along the length of the channel, in the y-

direction. Then, through the Debye-Hückel approximation (equation 5.14), the electric 

potential profile in the x-direction is determined for each y-coordinate.  

 There are several approaches we could take to analyzing the results, such as 

changing the parameters to see how it affects the outcome, but for this research, we will 

mainly focus on the predicted behavior and how it depicts the theory we have developed. 

 The parameters we use are: a channel length of 10 µm, a channel width/diameter 

of 20 nm, a reservoir length of 1 µm, a left reservoir concentration of 10 mM (~6.022 

×1024 ions/m3 of each ion species), a right reservoir concentration of 0.1 mM (~6.022 

×1022 ions/m3 of each ion species), the left electrode fixed at 0 V (grounded), the right 

electrode given a forward/reverse bias applied voltage of +1/–1 V, and a uniform wall 

charge density of –5×10–2 C/m2. The electrolyte is KCl in aqueous solution. The number 

of grid points in the x-direction is 200 (Nx = 200), along the channel length in the y-

!152



direction it is 1000 (Ny = 1000), and each reservoir length has 100 grid points in the y-

direction (Nry = 100). 

 We will now present the results of our electric potential profile simulation, for 

which we performed calculations using the Debye length equation (equation 5.15), the 

surface potential equation (equation 7.1), and the Debye-Hückel approximation (equation 

5.14), to model electric potential at evenly-spaced grid points throughout the 

nanochannel. Running the simulation produces one figure containing three surface plots, 

and we present several perspectives of them in figures 7.3, 7.4, 7.5, 7.6, and 7.7.  

 The coloration of the surfaces indicate the “height” of the plotted surface (its 

values in the z-direction, which represents electric potential); in this case, yellower hues 

correspond to higher electric potentials (greater z-axis coordinates), while bluer hues 

correspond to lower electric potentials (lower z-axis coordinates). The x-axis and y-axis 

correspond to the width/diameter and length of the channel, respectively, and are labeled 

in nanometers and micrometers, respectively. 
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Figure 7.3: Simulation results of electric potential in a homogeneous nanochannel between reservoirs of 
different ion concentration, viewing the full y-axis, which is along the length of the nanochannel. The 
electric potential profile is shown in (a) equilibrium; (b) forward bias; (c) reverse bias.
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Figure 7.4: Simulation results of electric potential in a homogeneous nanochannel 
between reservoirs of different ion concentration, viewed from a skewed angle. (a) 
Equilibrium; (b) forward bias; (c) reverse bias. 
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Figure 7.5: Simulation results of electric potential in a homogeneous nanochannel 
between reservoirs of different ion concentration, with a clear perspective of the x-
axis (width/diameter of channel). (a) Equilibrium; (b) forward bias; (c) reverse bias. 
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Figure 7.6: Simulation results of electric potential in a homogeneous nanochannel 
between reservoirs of different ion concentration, viewed at angles and compressed 
axes which best show the potential trough at y = 10 µm. (a) Equilibrium; (b) 
forward bias; (c) reverse bias. 
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Figure 7.7: Simulation results of electric potential in a homogeneous nanochannel 
between reservoirs of different ion concentration, viewed at angles and compressed 
axes which best show the curvature along the walls at x = 0 nm and x = 20 nm. (a) 
Equilibrium; (b) forward bias; (c) reverse bias. 



 We present our results using figures 7.3, 7.4, 7.5, 7.6 and 7.7 to show various 

perspectives of the calculated electric potential profile. In each of these figures, we 

present the electric potential due to the uniform fixed charge and the applied voltage in 

the (a) equilibrium, (b) forward bias, and (c) reverse bias states of an asymmetric ion 

concentration type of nanofluidic diode.  

 Figure 7.3 depicts a length-wise view, where the reservoir of higher concentration 

corresponds to the left, and the reservoir of lower concentration is on the right. Figure 7.4 

and figure 7.5 depict angled views, both with the reservoir of high concentration angled 

closer and the angle of low concentration reservoir angled farther away from the 

perspective. Figures 7.6 and 7.7 have compressed axes compared to figures 7.3-7.5, but 

they are able to better illustrate certain features of the electric potential profile. Figure 7.6 

most clearly depicts the region around y = 10 nm, which is of interest to our following 

analysis. Figure 7.7 most clearly depicts the downward curvature of the electric potential 

at x = 0 nm and x = 20 nm, which are the locations of the charged channel walls. 

7.3.4a: Analysis 

 These surface plots of electric potential throughout the nanofluidic diode can give 

us valuable insight. The forces experienced by cations and anions are due to their charges 

interacting with the electric field in the system, which we recall is related to the electric 

potential expressed by equation 5.4, repeated below:  

! . E = − ∇Φ
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 For the behavior analysis, we will also use equations 5.46 and 5.48, repeated 

below, which describe current density and conductivity, respectively. We will not be 

performing explicit calculations with them, but they will facilitate our discussion of the 

simulation results because they show the relationships between parameters. 

!   

! . 

 Equation 5.46 allows us to interpret cation or anion current flux, J, under the 

influence of a nonuniform electric potential. The negative sign before the gradient of the 

electric potential in equation 5.4 and equation 5.46 tells us that cations will be “pulled” 

down the slope of the surfaces depicted in figures 7.3-7.7 in a similar way a ball would 

roll down a hill, while anions will be pulled up the slope. 

 In plot (a) of each figure, where applied voltage is zero on both sides of the 

channel and the system is in equilibrium, we observe that the electric potential exhibits a 

strong “dip” near the opening of the channel at y = 10 µm, facing the reservoir of low ion 

concentration, which is on the right side. Figure 7.6 most clearly depicts this 

characteristic. This aligns with our understanding of the Debye length, since the 

screening length is longer in solutions of lower ion concentration. A longer screening 

length means that the electric potential induced by the wall charge decays at a slower 

exponential rate. So, our results illustrate our theory since the electric potential is lower 

(due to negative wall charge) over a longer distance where the ion concentration is lower.  

J = − σ ∇Φ

σi = q 2
e zini

6π ηri
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 The “dip” forms a “trench” or “trough” at y = 10 µm when either forward or 

reverse bias is applied (plots (b) and (c), respectively, in each figure). This is because the 

electric potential is larger in the reservoir of low ion concentration (y > 10 µm) than it is 

just inside the nanochannel opening (at y = 10 µm), where contributions from the fixed 

wall charge decrease the total electric potential the most significantly. This phenomenon 

is most clearly seen in (b) and (c) of figure 7.6,  

 The “trench” is more pronounced when comparing it to the opposite channel 

opening at y = 0. The electric potential in the reservoir containing higher ion 

concentration (y < 0) and in the closest opening of the channel (at y = 0) do not show as 

much of a difference in magnitude, which can most clearly be seen in figure 7.3. In fact, 

at the center of the channel’s width (at x = 10 nm), the electric potential profile appears to 

have only a minuscule change. Examining figure 7.3, the top of the plotted surface, where 

the electric potential is highest, is nearly smooth in transition across the y = 0 axis. 

Comparing this to figure 7.5, we notice that the maximum value of electric potential is at 

the center of the channel’s width, at x = 10 nm. This is because the electric potential 

contributed by the negative wall charge is screened out very rapidly (due to a smaller 

Debye length), and the center of the channel feels very little influence from the wall 

charge as a result. The symmetry in the system is the cause of the centralized maximum, 

with lower potential at the charged walls, where x = 0 nm and x = 20 nm. 

 This leads us to discuss the EDL that form in the system, particularly along x = 0 

nm and x = 20 nm. These axes are the locations of the interface with the solid, charged 
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walls of the nanochannel, and the solid substrate that forms the confinements of the fluid 

extends beyond x < 0 nm and x > 20 nm. Because the fixed wall charge is negative, the 

EDL will be enriched with cations. So, if we picture the surfaces from our simulation as 

physical solid surfaces, we can imagine cations as small marbles, which will move down 

the gradients of the surface. Cations will cluster close to the walls of the nanochannel (at 

x = 0 and x = 20 nm), as well as at the right opening of the nanochannel (at y = 10 µm). 

The clearest depiction of the electric potential curvature near the walls is in figure 7.7a, 

but all of the figures show the curvature to varying degrees. Visualizing where the cations 

in the system would accumulate allows us to picture the EDL that form in the 

nanochannel, which assists our conceptual understanding of ion behavior. 

 The most important conclusion from considering cation accumulation is the way 

it impacts ion current conductivity. From equation 5.48, we know that higher 

concentrations of an ion species causes an increase in the conductivity for that species, so 

cation conductivity is increased at the right opening of the nanochannel. From equation 

5.46, we know that the resulting ion current flux is greater when the conductivity is 

higher.  

 Analyzing the cases of forward bias and reverse bias, we can see that in forward 

bias, cations accumulate at the opening of the channel that they enter (which is at y = 10 

µm; see 7.6b for a good perspective of the accumulation trench at the higher potential, 

where cations enter), resulting in a greater cation flux entering the channel compared to 

exiting. Conversely, in reverse bias, cations accumulate at the opening of the channel that 
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they exit from (at y = 0 µm, see 7.6c for a good perspective of the accumulation trench at 

the lower potential, where cations exit), so the cation flux out of the channel is greater 

than the cation flux into the channel.  

 Extrapolating forward in time, we can logically make the connection that applying 

a forward bias increases the overall accumulation of cations in the channel, while 

applying a reverse bias depletes cations from the channel. Although this is not directly 

visually apparent in figures 7.3-7.7, and requires conceptualizing the causal chain we 

discussed in section 7.3.1, we were able to connect the visible trends of electric potential 

to ion concentration. We then used our conductivity equation (equation 5.48) to interpret 

this accumulation as higher ion current conductance, which brings us to the final 

conclusion through the ion current flux equation (equation 5.46) that applying forward 

bias results in higher ion current than applying reverse bias in this type of nanofluidic 

diode. 

7.3.4b: Simplifications and Weaknesses 

 In our effort to create a fundamental model that explains ICR, we have made 

several significant simplifications that are important to acknowledge. We have already 

mentioned the simplifying assumption of the uniform slope of the concentration gradient 

along the nanochannel, but we should also interpret its implications for our simulation 

results.  
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 In a study of the exclusion-enrichment effect (EEE) in a negatively charged 

nanoslit (a wide rectangular nanochannel with a short height) between reservoirs of 

different ion concentration, Plecis, Schoch and Renaud interpret the concentration profile 

as a linear transition between the two concentration baths, but only for noninteracting 

diffusing species [50]. In the presence of a negative wall charge, the counter-ion 

concentration gradient has larger values and a steeper slope, while the co-ion 

concentration gradient has lower values and a less steep slope, compared to the linear 

transition between reservoirs. This is in accordance with and follows logically from the 

EEE.  

 Because we use the simple linear transition as our ion concentration gradient, we 

effectively neglect the EEE in our system setup. Therefore, the best interpretation of the 

system we modeled is if an uncharged nanochannel connecting reservoirs of different ion 

concentration is suddenly given a uniform fixed wall charge. Figures 7.3, 7.4 and 7.5 thus 

describe the electrostatic profile that forms at the instant the nanochannel walls are 

embedded with a uniform negative charge density, before ion fluxes from the potential 

gradient change the concentration profiles. 

 Another simplification that impacts our simulation’s accuracy is the assumptions 

we make about the electric potential around the two openings of the nanochannel. To give 

perspective to the electrostatic profile in the nanochannel, we included the reservoirs as 

featuring uniform electric potentials equal to the voltage applied to the electrode in that 

reservoir. In reality, the negative fixed wall charge in the openings of the nanochannel 
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will induce some fringing effects that extend into the reservoir close to the opening. In a 

similar sense, the edge of the surface charge density is not accounted for within the 

nanochannel close to the openings. The Grahame equation best describes the electric 

potential decay perpendicular to the surface when the surface charge density extends to 

infinity in both directions. If we conceptually consider the finite end of the wall charge 

density, we can interpret from our understanding of electric fields that the electric 

potential would not have the sharp discontinuity seen in figures 7.3, 7.4 and 7.5. We can 

conclude that a model which accounts for the electrostatic impact of fringing effects 

would exhibit a smoother and less severe transition in electric potential between reservoir 

and channel. In other words, discontinuities at the two interfaces between channel and 

reservoir would be smoother, less angular, and less deep, most notably for the “trench” at 

y = 10 µm.  

7.4.3c: Conclusions of Simulation Effectiveness 

 Through the analysis and interpretations of our simulation results, we can 

conclude that there is strong agreement between our developed nanofluidic ICR theory 

and the behavior suggested by our models of electric potential profiles. Our results also 

agree qualitatively with PNP-based simulations of a similar nanofluidic diode presented 

by Cheng and Guo [11]. Both the PNP model and our simplified model based on the 

Guoy-Chapman theory predict that in equilibrium, the nanochannel opening facing the 

reservoir of lower ion concentration has a larger dip in electric potential than the opening 
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facing the reservoir of greater ion concentration. Both models indicate asymmetrical EDL 

overlap and asymmetrical electrostatic impact, which are necessary characteristics for 

ICR. Therefore, we conclude that our model and simulation demonstrate the source of ion 

current rectification in a homogeneous nanochannel connecting reservoirs of asymmetric 

ion concentration. 
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CHAPTER 8 

Conclusions, Reflections, and Future Works 

8.1: Conclusions 

 In this research, we developed a cohesive theory that describes how ion current 

rectification (ICR) is exhibited by nanofluidic diodes. Three main types of nanofluidic 

diodes were focused on, which are formed by: asymmetry in fixed wall charge, asymme-

try in ion concentration, and asymmetry in channel diameter. Our main goal was to clari-

fy the research field’s inconsistencies and complexities by creating a comprehensive re-

view of nanofluidic diodes from an electrical engineering standpoint. Our secondary goal 

was to use this theory to simulate the electric potential profile in a nanofluidic diode of 

asymmetrical ion concentration, the interpretation of which helped to visualize the 

asymmetrical electrostatic impact necessary for ICR. 

 Through fundamental electrostatic physics relationships, we defined and ex-

plained major sources of ion movement, with the primary sources being that of electrosta-

tic forces and diffusion. This supported our discussion of more complex models and con-

cepts, such as electric double layers (EDL) and the Poisson-Nernst-Planck (PNP) equa-

tions. We discussed how electrophoresis usually has the most influential effect on total 

ion current in nanofluidic diodes, while electroosmotic and diffusive contributions are 

normally much smaller. This led to the molecular-level approach that we took to analyze 

ion transport in the different types of nanofluidic diodes. We concluded that asymmetric 

electrostatic impact is the foundational requirement for ion current rectification to occur, 
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and extrapolating ion flow trends from electrokinetics by using the second term in the 

Nernst-Planck equation is sufficient to explain ion current rectification. 

 As a visualization of some of the key theoretical findings, we wrote a MATLAB 

program that numerically calculates the electric potential at evenly-spaced grid points 

across a two-dimensional representation of a nanofluidic diode of asymmetrical ion con-

centration. We first calculate the Debye length from the varying ion concentration values 

along the length of the channel, then we use the Grahame equation to relate a given sur-

face charge density to its surface potential. Substituting the surface potential and the De-

bye length into the Poisson-Boltzmann equation, we can numerically estimate the electric 

potential profile along points perpendicular to the channel walls at each point along the 

length of the system. The scalar contributions of electric potential from both sides of the 

channel are added, and any externally applied electric potential can be added as well to 

complete the profile. 

 The electric potential simulation we developed produces three-dimensional sur-

face plots of electric potential throughout a nanofluidic diode of asymmetrical ion con-

centration when the device is in equilibrium, forward bias, and reverse bias. Through the 

result of our numerical simulations, we observed that the electric potential forms a 

“trench” at the nanochannel opening at the opening of the nanochannel on the side of 

lower ion concentration. The location of the trench was the same regardless of the exter-

nally applied voltage. Analyzing the ion flow trends using our developed electrokinetic 

theory, we determined that the trench will accumulate counter-ions and become a region 
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of high conductivity for ion current, since counter-ions are the majority charge carriers in 

nanofluidic diodes. 

 This region of higher ion current conductivity remains at the same nanochannel 

opening regardless of voltage polarity, but the direction of ion flow reverses when applied 

voltage polarity switches. Forward bias causes higher cation current into the channel than 

out of, increasing conductivity throughout the channel and promoting high ion current. 

Reverse bias causes higher cation current out of the channel than into the channel, de-

creasing conductivity and repressing ion current. This demonstrates the requirements for 

ion current rectification in the nanofluidic system, showing that the causal chain con-

structs itself given a systemic electrostatic asymmetry.  

 The causal chain is as follows: 

 1. For each ion species, asymmetrical electrostatic impact is stronger at one end of 

the nanochannel than the other due to asymmetry in the system structure/setup.  

 2. Each ion species forms regions of accumulation and depletion due to the non-

uniform electrostatic impact, resulting in one nanochannel opening having higher  

concentration of that species than the other.  

 3. Conductivity is directly dependent on concentration, and ion current flux (under 

the same applied electric potential gradient) is greater in areas of higher concen-

tration, so one opening will allow ions to flow through easier than the other open-

ing.  
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 4. Forward bias: When an ion species enters the nanochannel opening with higher  

conductivity and exits the opening with lower conductivity, the ion flux into the 

nanochannel is greater than the flux out of the nanochannel, resulting in channel-

wide ion accumulation, further increasing conductivity and ion current flux.  

 5. Reverse bias: When an ion species enters the channel at the opening with lower 

conductivity and exits at the opening with higher conductivity, ion flux is greater 

out of the nanochannel than into the nanochannel, causing channel-wide ion de-

pletion, consequentially lowering ion conductivity and repressing ion current flux.  

Since it is the culmination of our theoretical investigation into ion current rectification in 

nanofluidic diodes, this causal chain succinctly describes the necessary processes for 

nanofluidic diode function. In a sense, it is a main conclusion of this research, as all of 

the theory we developed and clarified gives foundational evidence to this ICR causal 

chain’s veracity.  

8.2: Reflections and Future Works 

 Through compiling knowledge of fundamental nanofluidics and researching 

nanofluidic diodes, it became clear that there are no limits to the possible routes of focus 

or the depth of any one topic in the field. As is common with any research subject, we 

found that what initially appeared to be straightforward concepts would expand once we 

delved into them. However, for a subject as multidisciplinary as nanofluidic diodes are, 

obtaining a comprehensive understanding of any one topic – such as the formation of 
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electric double layers – required diligent review and study of many different descriptions 

and perspectives to grasp the big picture. So inevitably, there is more work that could be 

done to build on the research we have presented in this thesis. 

 The most direct and natural next step would be to apply the theoretical modeling 

method introduced in section 7.3.3 to the two other types of nanofluidic diodes we ana-

lyzed: asymmetry in fixed wall charge and asymmetry in channel diameter. It would be 

very interesting to see the electric potential profiles as surface plots for those different 

systems, and be able to compare and contrast characteristics and trends between them.  

 A more distant step would be to fully numerically simulate the PNP equations or 

even the PNP-NS equations, as we originally conceived. As we have described, the PNP 

equations are limited to describing electrophoretic (drift) and diffusion components of ion 

transport, but the PNP-NS equations include fluid dynamics considerations such as fluid 

momentum (electroosmosis). This type of model simulation would need to be done via a 

commercial software package, such as COMSOL, which would handle the computational 

finite-element method or finite-difference method, so that the primary focus could be on 

manipulating parameters to see how the predicted transport properties are affected. How-

ever, correctly and meticulously setting up the correct equations and boundary conditions 

is vital. There would still be a significant learning curve for those who are inexperienced 

with the software or numerical simulations in general. However, an intuitive understand-

ing of the systems under investigation is crucial for such simulations, especially for mak-

ing simplifications, modifications, and forming interpretations of the results. So in any 
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case, the theory compiled in this research provides a very useful first step towards that 

goal. 

 Perhaps an option beyond the fundamental electric potential simulation but not as 

large of a reach in software complexity would be to perform a modified iterative algo-

rithm (possibly similar to the Gummel iteration method) that adds more components of 

the PNP model to our model for electric potential. If the concentration profile could be 

updated using predictions from the electric potential that indicate how ions would move 

over time, there could be some interesting results that give insight into the mechanisms at 

work. The PNP model has been tested and validated to be qualitatively accurate by many 

research groups. Therefore, its proven accuracy in predicting ion transport characteristics 

in nanofluidic systems make it a logical choice to pursue further in any future work.
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APPENDIX 

MATLAB Code for Electric Potential Simulation 

%Electric Potential In Nanofluidic Diode 
%Author: Julia Proctor 
%Completed June 2021 
clear; clc; close all; 

%% PARAMETERS 

L = 10e-6; %channel length (m) 
D = 20e-9; %channel diameter (m) 
RL = 1e-6; %length and width of reservoirs (m) 
cl = 10*10^-3*(1000*6.022e23); %high (10 mM) left reservoir ion concentration of each 
species (ions/m^3) 
cr = 0.1*10^-3*(1000*6.022e23); %low (0.1 mM) right reservoir ion concentration of 
each species (ions/m^3) 
Q = -5e-2; %fixed charge density on wall (C/m^2) 
Vl = 0; %left electrode applied potential (V) --always grounded 
Vr = 1; %right electrode applied potential (V) --applied potential 

%% SPATIAL INITIALIZING 
%Discretize area 

%%Channel 
%y (length-direction) 
Ny = 1000; %Number of gridlines along y (1D) 
y_vec = linspace(0, L, Ny); %y direction coordinates for channel 

%x (width/diameter-direction) 
Nx = 200; %Number of gridlines along x (1D) 
x_vec = linspace(0, D, Nx); %x direction coordinates for channel 

%%Reservoirs 
%y (length-direction) 
Nry = 100; %number of gridlines in reservoir along y (1D) 
ry_vec = linspace(0, RL, Nry); %y direction coordinates for reservoir 

%x (width/diameter-direction) 
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Nrx = Nx; %number of gridlines in reservoir along x (1D) 
rx_vec = linspace(0, D, Nrx); %x direction coordinates for reservoir (same as channel) 

%making 2 copies of the reservoir 
ry_vec_left = ry_vec;  %left reservoir 
ry_vec_right = ry_vec; %right reservoir 
%calibrating y coordinates to allow joining of reservoir grids with channel grid 
 for i = 1:Nry 
    ry_vec_left(i) = ry_vec(i) - RL; 
    ry_vec_right(i) = ry_vec(i) + L; 
 end 
%concatenating for full y-direction coordinates computational domain 
yfull_vec = [ry_vec_left y_vec ry_vec_right]; 

%% POTENTIAL INITIALIZING 

%Equilibrium (_e) 
Vr = 0; %equilibrium; zero applied potential to right electrode 
Vay = linspace(Vl,Vr,Ny); %length-wise (y) applied potential gradient 
Va_e = zeros(Nx,Ny); %initializing potential matrix in channel 
%electric potential in channel due to equilibrium applied voltage 
for i = 1:Ny 
    Va_e(:,i) = Vay(i);  
end 
%initializing potential matrix in reservoirs 
Vrl_e = zeros(Nrx,Nry); %Vrl: voltage reservoir left 
Vrr_e = zeros(Nrx,Nry); %Vrr: voltage reservoir right 
%electric potential in reservoirs due to equilibrium applied voltage 
for i = 1:Nry 
    Vrl_e(:,i) = Vl;  
    Vrr_e(:,i) = Vr; 
end 

%Forward bias (_f) 
Vr = 1; %forward bias; positive applied potential to right electrode 
Vay = linspace(Vl,Vr,Ny); %length-wise (y) applied potential gradient 
Va_f = zeros(Nx,Ny); %initializing potential matrix in channel 
%electric potential in channel due to forward bias applied voltage 
for i = 1:Ny 
    Va_f(:,i) = Vay(i);  
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end 
%initializing potential matrix in reservoirs 
Vrl_f = zeros(Nrx,Nry); %Vrl: voltage reservoir left 
Vrr_f = zeros(Nrx,Nry); %Vrr: voltage reservoir right 
%electric potential in reservoirs due to forward bias applied voltage 
for i = 1:Nry 
    Vrl_f(:,i) = Vl;  
    Vrr_f(:,i) = Vr; 
end 

%Reverse bias (_r) 
Vr = -1; %reverse bias; negative applied potential to right electrode 
Vay = linspace(Vl,Vr,Ny); %length-wise (y) applied potential gradient 
Va_r = zeros(Nx,Ny); %initializing potential matrix in channel 
%electric potential in channel due to reverse bias applied voltage 
for i = 1:Ny 
    Va_r(:,i) = Vay(i);  
end 
%initializing potential matrix in reservoirs 
Vrl_r = zeros(Nrx,Nry); %Vrl: voltage reservoir left 
Vrr_r = zeros(Nrx,Nry); %Vrr: voltage reservoir right 
%electric potential in reservoirs due to reverse bias applied voltage 
for i = 1:Nry 
    Vrl_r(:,i) = Vl;  
    Vrr_r(:,i) = Vr; 
end 

%% CONCENTRATION INITIALIZING 

Cy = linspace(cl, cr, Ny); %length-wise (initial) concentration gradient (1D) 
C = zeros(Nx,Ny); %initializing 2D mesh of ion concentration profile 
%concentration profile in channel 
for i = 1:Ny 
    C(:,i) = Cy(i); 
end 
%initializing concentration matrix in reservoirs 
Crl = zeros(Nrx,Nry); %Crl: concentration reservoir left 
Crr = zeros(Nrx,Nry); %Crr: concentration reservoir right 
%concentration profile in reservoirs 
for i = 1:Nry 
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    Crl(:,i)=cl; 
    Crr(:,i)=cr; 
end 

%% Debye length  

%parameters 
er = 80.2; %relative permittivity (of water) 
e0 = 8.854*10^-12; %vacuum permittivity constant 
kb = 1.381*10^-23; %Boltzmann's constant 
T = 293;  %temperature of system; room temperature in Kelvin 
qe = 1.602*10^-19; %magnitude charge of electron in Coulombs 
qk = 1*qe; %charge of K+ ions in Coulombs; z*qe = 1*qe 
qcl = -1*qe; %charge of Cl- ions in Coulombs; z*qe = -1*qe 

%Calculating Debye length profile along channel y direction  
debye = sqrt((er*e0*kb*T)./((Cy.*qk^2)+(Cy.*qcl^2)));  %equation 5.15 

%% Debye-Hückel approximation of Poisson-Boltzmann potential equation for diffuse 
layer  
%Guoy-Chapman EDL model 

Qy = linspace(Q, Q, Ny); %uniform charge density in channel walls (y direction) 
%Element-wise calculation of surface potential using Grahame equation 
Vs = ((2*kb*T)/qe)*asinh(Qy./sqrt(8*er*e0.*Cy.*kb*T)); %equation 5.16 

%Initializing electric potential profile in channel due to fixed wall charge 
Vq1 = zeros(Nx,Ny); %potential due to charge in "top" channel wall 
%Calculating electric potential proflile using Debye-Hückel equation 
for i = 1:Ny 
    Vq1(:,i)=Vs(i).*exp(-x_vec./debye(i)); %equation 5.14 
end 
Vq2 = flip(Vq1,1); %potential due to charge in "bottom" channel wall 

%% Total electric potential profiles in channel 
%due to charged channel walls and applied voltage 

%Initializing total electric potential 
Vtot_e = zeros(Nx, Ny); %equilibrium 
Vtot_f = zeros(Nx, Ny); %forward bias 
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Vtot_r = zeros(Nx, Ny); %reverse bias 
%Calculating total electric potential 
for x = 1:Nx 
   for y = 1:Ny  
       Vtot_e(x,y)=Vq1(x,y)+Vq2(x,y)+Va_e(x,y); %equilibrium 
       Vtot_f(x,y)=Vq1(x,y)+Vq2(x,y)+Va_f(x,y); %forward bias 
       Vtot_r(x,y)=Vq1(x,y)+Vq2(x,y)+Va_r(x,y); %reverse bias 
   end     
end 

%Concatenating Full Electric Potential Profiles 
Vfull_e = [Vrl_e Vtot_e Vrr_e]; %equilibrium 
Vfull_f = [Vrl_f Vtot_f Vrr_f]; %forward bias 
Vfull_r = [Vrl_r Vtot_r Vrr_r]; %reverse bias 

%% PLOTTING 

figure() %Plotting all three modes (equilibrium, forward bias, reverse bias) in one figure 
p1 = subplot(311); 
[xx,yy] = meshgrid(yfull_vec,x_vec); 
mesh(yy,xx,Vfull_e); %Electric Potential in equilibrium 
title('Electric Potential in Equilibrium') 
xlabel('X coordinate (m) Width') 
ylabel('Y coordinate (m) Length') 
zlabel('Electric Potential (V)') 
ax = gca(); 
ax.XRuler.Exponent = -9; 
ax.XRuler.TickLabelFormat = '%.f'; 
axis([0 D -RL L+RL -inf inf]) 

p2 = subplot(312); 
[xx,yy] = meshgrid(yfull_vec,x_vec); 
mesh(yy,xx,Vfull_f); %Electric Potential in forward bias 
title('Electric Potential in Forward Bias') 
xlabel('X coordinate (m) Width') 
ylabel('Y coordinate (m) Length') 
zlabel('Electric Potential (V)') 
ax = gca(); 
ax.XRuler.Exponent = -9; 
ax.XRuler.TickLabelFormat = '%.f'; 
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axis([0 D -RL L+RL -inf inf]) 

p3 = subplot(313); 
[xx,yy] = meshgrid(yfull_vec,x_vec); 
mesh(yy,xx,Vfull_r); %Electric Potential in reverse bias 
title('Electric Potential in Reverse Bias') 
xlabel('X coordinate (m) Width') 
ylabel('Y coordinate (m) Length') 
zlabel('Electric Potential (V)') 
ax = gca(); 
ax.XRuler.Exponent = -9; 
ax.XRuler.TickLabelFormat = '%.f'; 
axis([0 D -RL L+RL -inf inf]) 
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