
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

August 2021

Framing Ludens: Pawn Swapping and Game Mode Alteration in an Framing Ludens: Pawn Swapping and Game Mode Alteration in an

Unreal Engine Game Level Unreal Engine Game Level

Jeffrey Paul Martell
Clemson University, jpmartell@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Martell, Jeffrey Paul, "Framing Ludens: Pawn Swapping and Game Mode Alteration in an Unreal Engine
Game Level" (2021). All Theses. 3608.
https://tigerprints.clemson.edu/all_theses/3608

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3608?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Framing Ludens: Pawn Swapping and Game Mode
Alteration in an Unreal Engine Game Level

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Fine Arts

Digital Production Arts

by

Jeffrey Paul Martell

August 2021

Accepted by:

Dr. Eric Patterson, Committee Chair

David Donar

Insun Kwon

Abstract

Knight of Drones is a hybrid twin-stick top-down shooter and side-scrolling platformer that

aims to bring vintage gameplay to a contemporary game engine. A single swatch of the top-down

game mode and a pair of levels from the side-scrolling game mode will be presented beginning with

the player characters and player pawn assets and then extending to the level design and game design

assets.

The game deals with the fallout effects of climate change and serves as a cautionary tale

against pollution and weaponized AI. This message will appear primarily in the game’s atmosphere,

literally in the background in some cases, as the settings and places visited by the player will be

constructed of level assets that relate to these concepts. Instead of standard platformer levels (the

ice level, the lava level, the jungle level), Knight of Drones features levels such as an oil slick ocean

level, an abandoned copper smelter level, or a plastic dump level.

While not blind to the irony of using silicon processing power to warn about the negative

effects of consumer waste on the environment, there exists an undervalued opportunity to build

game worlds that promote social causes. By creating a setting that engages the player through

environmental instability, and by using familiar, approachable vintage mechanics, it may be possible

to celebrate the history of gaming and offer the player thoughtful moral questions without diluting

the core gameplay mechanics or taking agency away from the player.

Hybridity of game mode is used in Knight of Drones to change up the gameplay speed and

style as it affords the player more than one viewpoint or character token to control. Additional

hybridity of genre should offer the players something innovative in aesthetics. Viewed from the

Mechanics Design Aesthetics (MDA) framework, the goal of Knight of Drones is to offer old-school

gameplay in a strange new setting that makes the player consider humanity’s long-term effects on

the planet.

ii

Dedication

This research and production is dedicated to my father Paul Martell. Thank you for guiding

me, and always being there. May the SEGA never come between us.

iii

Acknowledgments

I hold immense gratitude for the instruction and support of Eric Patterson, Jessica Baron,

Insun Kwon, David Donar, and Victor Zordan. Additional thanks to the faculty, staff, and Visual

Arts students at the South Carolina Governor’s School for the Arts and Humanities. Your patience

and flexibility made this work possible.

iv

Artist Statement

This gameplay prototype is the result of my desire to learn how to design and implement

a video game. It does not reflect a full game in its entirety, but rather a smaller compartment

of learning and development of an artist seeking to bolster a set of technical abilities and practice

contemporary forms of computer generated art asset creation. It’s been a welcome challenge to

balance artistic creation and technical execution, and one of the more important lessons along the

way has been the dissolution of the barrier between the two. Artistic creation can be technical

and studious, while technical implementation can be quite creative and flow-state inducing. The

idea that the two are separate may be a false dichotomy perpetuated by specialization and team

delineation; however, the arguments that persist seem to stem from a meaningful place.

As a young man I fell in love with Capcom’s side-scrolling action games, particularly the

MegaMan games, which allow the player to select the order in which they tackle the levels and bosses.

To modern gamers, these are old school games with unforgiving jump puzzles and trial-and-error

problem solving. To a young child new to the concept of a video entertainment system, this was a

revelatory new world to explore. Growing up with the age of consoles and personal computers, I

have witnessed the growth of video games from shunned, nerdy pastime into monstrous multi-billion

dollar industry and popular culture maelstrom.

The formula for Knight of Drones is simple: old school gameplay with new school design.

My dedication to story forms the foundation for the concept of a post-human world with only the

scrap heaps of automated military machines fighting with one another over a forgotten program-

matic purpose. My background in story art and filmmaking leads me to seek ideas that encourage

thought and dialog among audience members. Science fiction is a wonderful genre with which to

ask important questions about humanity’s actions and its effects on our world. The fiction of Neal

Stephenson, Roger Zelazny, and China Mieville continue to provide solid inspiration for narrative

v

craft and worldbuilding.

The design document for this game (see Appendix E) has been a living document for the

last several years and will no doubt continue to shift and change as the game develops. Future goals

may be categorized and bullet-listed to kingdom come, but the primary focus must be marrying the

artistic direction and technical craft together to tell the story of the game. And, of course, to make

something fun to play.

vi

List of Figures

1.1 MDA framework approach . 4

2.1 Vertical Level . 8

2.2 Wizards and Warriors / Super Ghouls’n’Ghosts Map Screens 9

2.3 Herzog Zwei Player Controller Transformation . 11

2.4 Battlezone (1980) . 11

2.5 Battlezone Remake (1998) . 12

3.1 Story Frame 01 . 19

4.1 Material Authoring with Photographs . 23

4.2 Early Knight Sketches . 24

4.3 Knight V01 Run Cycle and Texturing . 25

4.4 Knight Design . 26

4.5 Knight Early Sculpt . 27

4.6 Knight V02 Finished Mesh . 27

4.7 UV Unwrap Process . 28

4.8 Lambert Material Application to Low Res Mesh . 29

4.9 Knight Textured in Substance Painter . 30

4.10 Knight FK Rig in Maya . 32

4.11 Knight Animation State Machine . 33

4.12 Vertical Level Sketch . 34

4.14 Set Dressing with Quixel MegaScans Assets . 35

4.13 Level Blockout . 35

4.15 Level Zero: Knight’s Guarden . 36

4.16 Secondary Level Assets: Mothership, Turret, Parrallax Asset 36

vii

4.17 Terrain Test . 37

4.18 World Creator 2 Asset Test . 38

4.19 Brushify Material Function and Original Assets . 38

4.20 Gameplay View of Overworld . 39

4.22 Additional Frame Concepts . 40

4.21 Frame Concept Overpaint . 40

6.1 Animation Cycles in Unreal Engine . 47

6.2 Knight Final Render with Base . 48

6.3 Sidescroller Level 00 . 49

viii

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

Artist Statement . v

List of Figures . vii

1 Introduction . 1
1.1 Statement of Intent . 1
1.2 MDA Framework . 2
1.3 Video Games and Psychology . 5
1.4 Vintage-to-Modern, Vintage within Modern . 6

2 Related Work . 7
2.1 Vintage Roots . 7
2.2 Modern Gameplay . 14
2.3 Vintage-in-Modern . 16

3 Design: Content, Tone, and Message . 18
3.1 Drones and Technology . 18
3.2 Environmental Message . 21

4 Design: Lookdev and Asset Generation . 23
4.1 Knight . 24
4.2 Level Assets - Primary . 34
4.3 Level Assets - Secondary . 35
4.4 Overworld . 36
4.5 Frame . 39

5 Design: Gameplay Mechanics . 41
5.1 Implementation and Gameplay Methodology . 41
5.2 Iteration . 44

6 Results . 47

7 Conclusions and Discussion . 51
7.1 Conclusions . 51

ix

Appendices . 53
A Shovel Knight Mechanics Comparison . 54
B Primary Side Scroller Level Asset Generation . 55
C Pawn Swapping Blueprints . 58
D Knight Player Controller . 59
E Game Design Document . 65

Bibliography . 71

x

Chapter 1

Introduction

1.1 Statement of Intent

Games create an active dialog with the player by using the mechanics of the game as

constraints that form a separate reality for the player to explore. According to Dutch Anthropologist

Jonathan Huizinga, this play space must be separate from the outside world, and part of the nature

of the game’s play space is that it is utterly absorbing, takes place in its own time and space, and

proceeds according to its own rules. In Homo Ludens: A Study of the Play Element in Culture,

Huizinga claims that play is less a mindset and something more akin to a sense; “[games’]rationale

and their mutual relationships must lie in a very deep layer of our mental being.” After all, play

exists biologically in a way that predates civilization. In the animal kingdom, a lion cub will play

with its siblings by biting their ears and wrestling. It’s important to note that their bites never

cross the threshold from play to pain. Huizinga’s work recognizes that this threshold ensures the

game’s nature does not escalate beyond “not serious,” which is another criteria in defining what is

or is not the nature of a game. The moment harm is done by a lion cub to another, play has ceased

and the interaction has become something else, something not-playing. Play as a concept appears

to be so universal that it is practiced by multiple species and is so ingrained in the nature of the

living world that it may be categorized as a sensory experience like touch or smell rather than a

pastime or instinct. [21] There have been many attempts at defining games, several of which are well

covered in Rules of Play: Game Design Fundamentals. Typically these definitions are broken into

lists of traits or inclusions that define what a game is or does.[47] While game design shares many

1

attributes typically associated with visual arts and graphic design, a large part of game design lies

outside the visual realm. Because of this extension beyond visual design, it is necessary to explore

what constitutes a game in order to create one. It’s worth noting that like any other art form, a

great game requires sincere dedication to design and craft.

Much like traditional design, the constraints or rules determine the methods and processes

of the creator as well as the nature and quality of the game experience for the user. Unlike most

other media, games invite the player to become participant. A game can be a multi-million dollar

production created by hundreds of team members, or it can be a simple twilight backyard pastime

invented by a couple of eight-year-olds drawing in the dirt with a stick. It doesn’t matter who

makes a game, it only matters who plays it. And to attract participants to your game it must be

fun. Determining the attributes of a game that manifest fun can be difficult.

Defining fun is a little like defining a game itself: it’s a multifaceted attempt to pin down a

highly variable construct. The goal of Knight of Drones is to create a fun game that affords the player

multiple modes of gameplay. By combining a top-down shooter with a side-scrolling platformer, the

player has a variety of play styles and a greater number of methods with which to explore the world

of the game. Altering the player’s perspective within the game is a novel way to break repetition

and introduce simple new mechanics without complicating the play experience.

Hybridity of gameplay may be utilized to break up the game loop, to progress the narrative,

to surprise the player, or to strengthen the effect of the game on the player. My goal is to create a

game where different gameplay modes speak to one another as the player solves puzzles and defeats

enemies across different play styles. By building shifts in perspective and play, different narrative

events can be weighted and scaled to different effect.

1.2 MDA Framework

Game design is an abstract process that requires the use and understanding of several

standardized terms before discussion can take place. Games vary widely from tossing pebbles in a

cup or kicking a ball to a hyper-real Western with a hunting system in a massive open video game

world. Becuase of this range, game creation is perhaps best seen through the prism of Mechanics,

Dynamics, and Aesthetics, or the MDA Framework. There are many ways to study game design.

By approaching a game from this framework, a game can be broken down into components that are

2

easy to recognize and define using a standard set of terms to clarify elements of game design.[22]

Mechanics are the methods by which the player can interact with the game or other players.

In poker, for instance, the mechanics are the cards, their values, the colors red and black, the four

suits, the taking of turns, and the rules that determine which values or combinations of cards defeat

others. Mechanics are the foundations of gameplay and the means by which the game designer

creates the player experience through which the players enact their presence and decisions within

the world of the game. Without Mechanics, the game would break or prove unplayable.

The next framework term is Dynamics. Dynamics emerge from player behavior through

successful implementation of the mechanics on the part of the game designer. Gambling is not

necessary to play poker. Gambling and all its nuances, such as bluffing that you have the third eight

or slow-playing the best hand because you need to bleed your opponents who would otherwise fold,

are examples of dynamic systems that emerge out of the human play of poker. It is not through the

cards in this case, but through the collective use of the afforded mechanics that dynamics emerge.

Gambling is not a mechanic. Though it has its own rules and mechanics, it is an emergent behavior

and thus is considered a dynamic. Another example of a dynamic occurs in the board game Clue[38].

A player lying to throw an inquisitive family member off their trail is not a mechanic; it is behavior

that the player chooses to engage in during play time. The rules of Clue create new behaviors in

the players, who choose how creative or sly or witty to act. Dynamics reveal themselves at runtime,

or during gameplay, as an effect of the player using the mechanics and/or interacting with other

players.

The final term in the framework is Aesthetics. Aesthetics encompass the emotions evoked

in the player by gameplay, which are usually influenced by the look and feel of the game. Aesthetics

are often what the player first encounters and first envisions when asked to describe any given game.

The aesthetics of UNO [41], for instance, are undeniably simple and instantly recognizable: primary

and choice secondary colors, white text over black with a design as stark as brutalist architecture.

The design choices are clear: stark design for a brutal game that’s both easily readable and instantly

playable. Aesthetics are the design choices that are not game design; they are the visual and audio

cues that players use to inform their decisions and actions. Like in UNO, aesthetics should create

or at least parallel the tone of the game, and the aesthetics should enhance the ability of the player

to understand what’s happening in the game. Aesthetics conjure the tone of the game in the mind

of the player. They also keep the gameplay flowing by helping every player understand the current

3

Figure 1.1:
MDA Framework from Designer and Player perspective

state of play and help them formulate their next decision.

Because players experience the game through the aesthetics, this aspect of game design

understandably often receives the majority of the artists’ consideration and approach. The first thing

the player encounters is the splash page, the front of the box, or an opening cinematic. Aesthetics

are forward for the players, then dynamics, and lastly, the mechanics are there to be picked apart

by especially inquisitive players. Artists need to understand, though, that for the game designers

this flows in reverse order. Mechanics come first in the game design process, followed by Dynamics

(through playtesting), and lastly, Aesthetics. This is why the framework is ordered M-D-A.

Despite its placement in the framework’s order, art and visual/audio design is still unques-

tionably important, and the order of operations for game design is not one of clear hierarchy. Each

step of the framework needs attention and aesthetics often requires a large portion in the artists’

skillset. Artists seek unity in their pieces. Artistic unity occurs when all the elements present in

the work successfully combine to achieve the central goal of the work. No matter how disparate or

fractured, even the most postmodern of postmodern conceptual pieces use elements of design and

composition to achieve unity. In films, games, and other multidisciplinary arts, unity becomes in-

creasingly more difficult to achieve as the scope and vision for the work expands. For the traditional

artist, aesthetics is its own facet; however, for the game artist, aesthetics must achieve an ideal

match with the game as a whole. The look and feel of the game should match the goals and tones

of the mechanics and dynamics. As production design serves the story of a film, artistic direction

and design choices serve the gameplay as well as the tone (or narrative) of the game. This may

4

sound simple, but small details and decisions become more complex when considered within the

larger context of the game. For example, imagine choosing the font for the options menu for a first

person shooter or selecting the color of HUD elements. Would one choose red for health and blue

for mana? Perhaps green might represent health, yellow signifies stamina, and red is toxicity that

will result in player death? If it’s a bloody game or there’s a red team in a multiplayer match, red

would become confusing for toxic effects and the designer may decide toxicity should be purple as

this appears less frequently in other areas of the game. Each visual cue impacts readability, which

ripples out into the player’s understanding of the game’s mechanics. The player must have fast,

accessible information about the game state so they may decide how best to make choices. Unity

becomes more than design elements working together to create a meaningful or beautiful composi-

tion, it also necessitates clear communication of the mechanics to the player. The player must not

be confused about what mechanics are active and available at any time during gameplay. Design

must serve the game as well as the player.

1.3 Video Games and Psychology

Drawing inspiration from the rule “drama is conflict,” games are often built with challenges

or forces in opposition to the player. A small subset of games in general, video games have expanded

into new interactive categories that warrant further study. Contrary to speculative media claims that

violent video games (VVG) contribute to gun violence in the United States[18], shooters and action

games appear to have net beneficial effects on the brain. Action gamers are shown to have better

eyesight, increased ability to resolve different levels of gray, and increased speed at solving Stroop

effect style challenges, where incongruous stimuli cause a delay in naming tasks.[6] Studies concerning

the effects of VVG on behavior show that VVGs do not prime humans for violent behavior[52] and

that family violence and innate aggression are better predictors of violent crime than exposure to

violence in media[13]. In short, VVGs do not increase violent behavior and in fact seem to be

having beneficial effects on the brains of players. The act of making a game that contains conflict or

violence does not mean that designers condone real world violence. Provided that the game includes

narrative elements to explain the reasoning behind something like shooter mechanics, a game can

include combat without actively promoting any real-world use. Even better, games may be designed

as positive influences for change and can be as much a powerful source of social commentary as films,

5

visual arts, and other forms of media. With these considerations in mind, the shooter mechanics

in Knight of Drones serve a purpose beyond mindless destruction and add a layer of commentary

for the player that does not cause Ludonarrative Dissonance[20], a term for when a game’s message

does not match its mechanics. It was a deliberate decision to make all the enemy NPCs in Knight

of Drones robotic, and, later in the game, choices presented to the player concerning the death

or killing of organic combatants are relegated to player choice and not forced through mandatory

kill-to-progress situations. In this way, the goal of the mechanical systems of Knight of Drones is to

present a narrative-based shooter that does not require killing to progress.

1.4 Vintage-to-Modern, Vintage within Modern

Vintage games present excellent gameplay models to inspire contemporary game designers in

early development cycles. There is a rich history of gameplay mechanics with which to experiment,

and many successful modern games are built on foundations established in eras when limitations of

computation and memory constrained game designers to certain technical boundaries. As is often

the case with artistic endeavors, boundaries can become a source of liberation and creative problem

solving. Early gameplay mechanics and level design are no less immersive and captivating than

modern games, even if their color choices and sound effects were limited by the hardware at the

time. More than nostalgia, the purpose of selecting vintage game mechanics as inspiration is rooted

in a long history of successful, enjoyable games, some of which have aged beautifully and are still

worth playing today.

Knight of Drones combines familiar mechanics from older games to create a style of gameplay

that feels new. Merging two primary game modes, a top-down shooter and a side-scrolling platformer,

creates a memorable experience that feels simultaneously familiar and unique.

6

Chapter 2

Related Work

2.1 Vintage Roots

The primary inspiration for the sidescroller aspect of Knight of Drones is Rare Ltd.’s Wizards

and Warriors[28] for the Nintendo Entertainment System, which is known outside North America

as the Famicom. Released in 1987, Wizards and Warriors reviewed well, earning nominations for

Best Sound and Music and Best Character (Kuros) in The Nintendo Power Awards ’88[34]. In this

game, many young, novice gamers found a captivating adventure unique from an ocean of Mario-

clone sidescrollers because of its odd approach to level design and jump-heavy, exploration focused

gameplay.

The mechanics of Wizards and Warriors’ player controller are now-standard d-pad Up/

Down/ Left/ Right with jump/attack actions along with duck and duck attack actions. The player

adds to this repertoire of player controller mechanics as the game progresses by adding items to

their player inventory via chests strewn throughout the game’s maps. Chests are often colored and

locked with a corresponding colored key. Items like the Feather allow the player to press Up on the

d-pad and float a bit higher. This new height can be combined with a jump to reach greater heights.

Other noteworthy features include staves that shoot projectiles and the Boots of Force, which allow

the player the kick open chests whether or not they have the proper key. Pickups that appear at

certain areas of the map have various effects, such as a clock that stops time momentarily or colored

potions that increase the player’s jump height, speed, or constitution. The player has a health bar

that, when depleted, leads to death, and the when the player health bar reaches a near-death low,

7

the music changes to a particularly attention-grabbing repeating melody to warn the player that

they are about to die. The end boss has its own Enemy health bar at the bottom of the Heads Up

Display (HUD) that lies dormant and empty throughout most of the levels and fills up during boss

fights, which is reminiscent of Castlevania games.[26]

Figure 2.1: Vertical

Level

A noteworthy design choice that proved to be especially inspiring is

the verticality of the levels. While most platformers of the day built levels that

moved the player left and right to progress, Wizards and Warriors tended to

build extremely tall levels that would lead to perilous climbs and long falls.

Mistakes by the player leading to a fall could set them back minutes at a

time as they watched their knight fall depths that would need re-climbing.

Add to this the player character’s falling animation, which progresses from a

simple fall to a back-down plummet with limbs in the air along with the slow,

soupy air control on the way down and you have some particularly hilarious

dynamics as the player attempts to salvage their footing and aim for any plat-

form below. Forced falls complicate the game further by creating scenarios in

which players bounce or slide, panchinko-style, to different platforms on the

way down the map in an attempt to optimize item collection or enemy avoid-

ance and minimize player damage on impact when landing. These mechanics

are placed early in the game levels so as to prime the player for later levels,

such as the notorious castle exterior climb with block platforms that animate

into and out of the castle walls, forcing the player to time their jumps more

carefully. All of these features create memorable layers of difficulty to add to

precise jump puzzles.

Wizards and Warriors also features an overworld map to give the

player a sense of where they are in the overall game’s level structure, a common

feature in early adventure titles where levels are beaten and the next level

loaded with no visible connection between them. The map serves to stitch the

levels of the game together in the mind of the player at a time when levels

needed to be kept separate for technical limitations or production needs.

This overworld map mechanic is also present in Capcom’s

Ghouls’n’Ghosts[9], a notoriously unforgiving arcade quarter muncher and a

8

Figure 2.2:
Platformer Overworld Maps: Wizards and Warriors (left) and Super Ghouls’n’Ghosts (right)

more polished sequel to Ghost’n’Goblins. This overworld map appears after

successful bossfights lead to a new area, and it also draws onscreen after each death to show the

player’s progress. Showing player progression in a game like this, with long, sprawling sideways

levels and incredibly varied environmental hazards, helps keep the player excited about progress

even as they are relentlessly murdered by hordes of enemies spawning in dastardly positions.

Ghouls’n’Ghosts, built for arcade money collection, relies on a two-hit health system. After the

first hit, the player spritesheet changes from an armored knight to the player character, Arthur,

running around half-naked in his boxers. One more hit and Arthur turns into a pile of bones.

Powerups to Green and Gold armor increase the effectiveness of the player’s equipped weapon and

add a charge up attack. These armor powerups do not increase player health; one hit and it’s back

to Arthur running around in his boxers.

Overworld maps serve to link the levels together and give the player a sense of where they are

in the greater world of the game. Knight of Drones takes inspiration from 2D side-scroller mechanics

and seeks to replace the overworld map animation with another game mode, allowing the player to

play across the world of the game in the form of a top-down shooter. The player can opt to eject

from the shooter vehicle to traverse the map and enter a different level, which loads as a side-scroller.

Switches and encounters in the side scroller levels affect the greater overworld map, opening new

areas to explore and eventually expanding the gameplay loop to include new items and abilities. The

level design for the 2D platformer sections of Knight of Drones borrows heavily from the verticality

and precision jump puzzles of Wizards and Warriors. The player controller is also built to mimic the

feel of controlling Kuros, which has a distinctly slower, more deliberate feel to precision jump puzzles

9

than many left-to-right side-scrollers that tend to favor speed and memorization over exploration

and discovery. Air combat in Wizards and Warriors is an interesting choice in mechanics, as Kuros

cannot swing his sword in the air and cannot change direction. This makes the direction the player

chooses to face before jumping quite important as the only way to kill enemies in the air is by facing

them with the sword while colliding. As this is a defining characteristic of the Wizards and Warriors

play style, initial mechanics for the knight’s jump were planned to implement this system; however,

upon further playtesting of the Wizards and Warriors jump mechanic in Knight of Drones, it was

determined that changing which direction the knight is facing while airborne should be included,

and future implementation will add an air attack animation to make air combat less passive and

more player driven. The shooter mechanics of Knight of Drones have been modeled after early levels

of arcade style shooters, with single-hit enemies making up the majority of the early game and

mini-bosses and boss encounters following later. The strategy component of the shooter portion is

currently limited to a type of castle defense, which needs more implementation of AI to differentiate

between main target (player) and secondary target (castle).

Hybridity of game modes is nothing new, with several vintage gaming examples from which

to draw inspiration. An early NES title, Kid Icarus[32], begins as a vertical platformer climb and

grows into a maze-like, Zelda-style[31] dungeon crawler before its brief finale as an Irem- (creators

of R-Type[23]) style sidecrolling shooter. The play styles change as the player progresses through

the narrative: as the player grows in skill, the game shifts and presents the player with a new play

method that suits the next portion of the player character’s journey. Aside from a game manual

provided in the cartridge box or a brief flit of text, there is no warning that the game is about to

change. There are no tutorials and no special instructions. The player has the same controller input

options as before, but now that the perspective or controls have changed, the player knows innately

that the mechanics are new. With next to no practice the player is able to adapt to the new control

scheme and continue on with no break in flow.

Another strong example of hybridity of game mode is Herzog Zwei, a combat/RTS mashup

for the Sega Genesis.[46] Nearly impossible to play without reading the manual, it featured an

advanced-for-its-time mechanics set that could be played solo or as local split-screen player-versus-

player (PVP). Each player flies around an RTS-style map in a top-down shooter mode and is able to

reach high speeds with the caveat of required refueling along the way to any given destination. The

player has a home base where they can build a number of units, such as tanks and infantry, which the

10

Figure 2.3:
Herzog Zwei Player Controller: Flying Mode (left) and Walking Mode (right)

player can then pick up with their ship and air drop to locations around the map. Each player’s ship

can also transform into a bipedal mech that traverses the terrain and fires weapons to damage any

enemy units. When in flying mode, however, the player may only engage air targets. These features

make it an interesting mix of real-time strategy and top-down shooting that continues to resonate

with contemporary gamers enough to warrant its recent inclusion in the Sega Ages collection.[42]

Figure 2.4: Battlezone (1980)

A final inspiration and an excellent case study in game

mode hybridity comes from Atari’s 1980 arcade cabinet Bat-

tlezone[4] and its 1998 remake by Activision.[1] The original

Battlezone is often remembered as one of the earlier examples

of 3D graphics in the arcade. Its green vector tank combat

is easily recognizable as a somewhat iconic image of the 80’s

arcade era. The original Battlezone is a fairly simple hover-

tank shooter that sets the user in a first-person cockpit and

challenges players to wipe out battalions of enemy hovertanks.

The gameplay is complex enough to be difficult, but it is not meant for extended play as the enemy

variety wears thin quickly and the map can do little more than offer a flat horizon. However, the

challenge of maneuvering to overtake enemy tanks as well as the visual feedback of low-velocity

shells traveling onscreen to connect with moving targets in 3D space proves interesting enough to

11

warrant play time and several generations worth of quarters. If anything held Battlezone back, it

was repetition and lack of variety, and this is where the remake is worth study.

Now with texture-mapped polygons and early game physics models, the developers of the

Battlezone remake, 18 years after the original release, created a convincing hovertank combat game

with a compelling cold-war era alternate timeline story. In this world, the United States and Russia

fight a top-secret war on the moon and, later in the game, on other planets in the solar system. This

alone may have made a game worth some attention, but the developers decided to take the remake

a step further and integrated a completely flexible hybrid Real Time Strategy (RTS) – First Person

Shooter (FPS) gameplay combination.

Figure 2.5:
Hybrid Gameplay Introduced to a Vintage Classic in Battlezone (1998)

Much like a standard RTS game, players collect resources, build bases, and fabricate AI-

controlled battlefield units that they order around the map. However, in combining RTS and FPS

gameplay, the player now does this in a realtime, first-person mode using a series of waypoint tags,

combat targets, and reticle-based or map-based unit or building selection. Additionally, players are

now able to exit their hovertank and walk around the terrain with the option to commandeer and

pilot any other friendly vehicle in the game. If the battle seems to be going poorly or there is an

order just a little too complex to trust to other AI-controlled squad members, the player can take

the initiative and jump into a self-built artillery unit and clear a path for other units. Of course

the player could also stock up on weapon types or ammunition and speed into imminent danger,

leaning on their FPS combat skills to clear the area and secure victory. Alternatively, the player

12

could choose to send their friendly AI forces into an enemy-held area and observe and direct from

afar, a heavy RTS-based approach. A game from 1980 that could have just used a face-lift instead

recieved an innovative new way of playing an RTS game by combining it with an FPS, which allows

for massive amounts of variety and player freedom. The repetitive nature of the original arcade

cabinet has been replaced by a refreshing, memorable experience that was unlike anything players

had seen to date, and not because any individual game mechanic had never been done, but because

well-tested mechanics from multiple styles of play were being combined in interesting new ways.

Two familiar gameplay modes had been seamlessly integrated together to create something new and

memorable.

In Knight of Drones, the choice to combine a shooter with a platformer stems from a simple

desire to create an interesting, memorable experience for new and old players alike. Because the

inspiration for the platformer aspects of Knight of Drones is rooted in a slower, vintage platformer

with a focus on careful jumps and wide exploration, it seems ideal to have these platformer elements

placed in a top-down overworld map with a faster-paced game loop emphasizing speedy combat and

fast dodge mechanics. This also provides an opportunity for Knight of Drones to grow interacting

mechanics where the side-scroller portions directly relate to the overworld map. As an example, the

end of a 2D platformer level could feature a switch that opens gates in the overworld, allowing the

shooter portion of the game to progress.

Game mode hybridity is alive and well in the modern AAA landscape. Games with massive,

varied, open-world systems often involve games-within-games: CD Projekt Red’s Witcher 3:Wild

Hunt [40] notoriously included the card game Gwent into the world’s mechanics, much like Rockstar’s

Red Dead Redemption II [45] included Five-Finger Filet and Poker. This kind of hybridity intends to

immerse the player further into the game world. Though, arguably, it can be a distraction or even

a gimmick, these games-within-games serve to perk the player up and break the learned pattern of

open world quests so as to stave off monotony. There’s no reason not to put off that main quest to

play a little poker in Valentine, for instance, as the game clock won’t penalize you and it’s easier on

the head to exit a saloon at the crack of dawn after a fake full night of poker than a real one. The

persistence of gameplay hybridity throughout the rich history of video games predates and often

overcomes the need to control the pacing of a massive open world.

13

2.2 Modern Gameplay

However gameplay mechanics evolve over time, some trends have led to regression. Some-

times with increasing complexity, as evidenced by the increase in console buttons and pressure

sensitivity, comes an increase in what the developers expect of the players. This can lead to some

mechanics players find troublesome, for instance the need to hold a shoulder button, navigate through

several touch-wheel menus to find an item, and release the shoulder button to equip. Metal Gear

Solid games come to mind, as well as several Rockstar titles such as the Grand Theft Auto series

or Red Dead Redemption 2. Sure, this mechanic works well enough, but it’s often combined with

a time-stoppage in game. This means that each time the player equips something new, the game

world slows down. This can disrupt the assonance, or flow, of the game. Red Dead Redemption 2 is

an excellent example of how increased production values and state-of-the-art open world systems do

not necessarily lead to increased player agency. Grand Theft Auto V [33] and Read Dead Redemption

2 are notorious hand-holders, down to telling the player which button to hold when in a narrative

sequence in order to perform an action that moves the game story forward. Hold left stick up to grab

the wagon wheel. Rotate the L stick to roll the wheel back to the wagon. Tap A to bash the wheel

back onto the axle. While this is going on, the characters are interacting in a beautiful landscape

and each has their own animation sets that match perfectly the props and setting around them.

It’s all terribly impressive. But the player is being told exactly what to do at every moment. This

is because the aesthetics and the mechanics are at odds. Rockstar has built so many systems and

mechanics into their game that no one control scheme will suit every moment in the game. So when

the narrative takes hold, the open world mechanics get placed on hold and new mechanics must be

taught to the player as they happen. It’s as if Rockstar wants a different hybridity of game mode:

one where the player can play in their sociopathic sandbox of robbery and murder, and another

where the player shuts up and does what they’re told.

This can also go the other way, where instead of demanding more or less of the player, now

the mobile or casual game may only exist as a pathway into the player’s wallet. Many problematic

practices involving whalehunting or dopamine targeting releases and pay-to-win models have opened

up entirely new predatory practices in game development.[24] In this case, mechanics have shifted

away from play models and into pay models. The dynamics that have grown from the mechanics

are financial transactions that allow the player to continue their gameplay.

14

Bringing it back to practicalities: Another problematic development in modern game me-

chanics to be questioned (or perhaps even avoided) is the quest marker minimap. Similar to the

Rockstar’s need to hand-hold the masses through their wagon-wheel replacement cutscenes, with

ever-increasing world sizes comes the need to help the player navigate them. What started as a

clever way to lead the player to their objective has now become an all-too-familiar gameplay trope:

follow the highlighted path on the minimap to get to your next objective. This isn’t a good or bad

thing, but it may be an overused one, and it is changing the way games are played to some extent. A

comparison of Bethesda’s The Elder Scrolls III : Morrowind [43] with their fifth entry in the series,

Skyrim[44], reveals much about this modern gameplay trend. Morrowind featured no onscreen min-

imap or quest markers, instead relying on a journal system where key pieces of data were marked

in text pages with hypertext-style links so that the player may jump between topics. Some players

found this difficult when following directions to locations because a missed landmark could lead to

stalled quests or getting completely lost. The trade-off becomes apparent with Skyrim’s marker sys-

tem, which, while convenient, also provides the player with almost too much guidance. The player

now spends so much time looking at markers and minimaps that the dynamics of exploration and

discovery that Morrowind was so heavily lauded for have been significantly reduced during runtime.

Skyrim designers attempted to build the guidance system into the lore with an Illusion school spell,

Clairvoyance, that will spend mana to illuminate a streak of bright mist along the player’s path to

their active objective. It’s an admirable attempt to build a guidance mechanic that fits the dynamics

and aesthetics of the game world, but the spell often sits neglected as nearby quest markers appear

onscreen at all times, often hovering above doors or the heads of non-player characters (NPCs). The

only way to turn quest markers off without modifiying the game is to turn off the entire Heads Up

Display (HUD), which removes the ability for the player to see their health, stamina, and mana.

Additionally, there is no guarantee that the game content provided to the player will offer sufficient

directions or descriptions to get to their destinations without active quest markers. This is an indi-

cation that the nature of the included content of the game has changed due to the inclusion of the

quest marker system. This suggests fewer work hours spent creating content for quests as the player

no longer needs to read about where to go next, but this may also be interpreted as less content

being provided to the player as well as the content being developed as biased towards players who

use the marker system that is all but baked into the game’s fabric at this point.

It’s a strong aim of the design choices of each mechanic in Knight of Drones to avoid these

15

modern gameplay regressions. The player should feel rewarded for exploration and discovery. The

best eventual course for Knight of Drones might be to include a minimap, if only to facilitate strategy

or keep the player aware of their location relative to resources and points of interest. But this should

exclude the mechanic of directing the player to where they need to go next. Exploration of the game

map will reward players who pay attention and remember when and where their path is blocked so

that as they gain new abilities they return to the areas to progress. This system is well proven in

metroidvania style games, and a good example of an independent developer trusting the memory

and fortitude of their players can be found in a Steam library game called Witch Hunt [51]. This is a

smaller game in scope, but remains an excellent example of what a solo developer can achieve with

simple systems, a couple of maps, and curious players. Witch Hunt provides the player with single

statement directives and a bare-bones tutorial before throwing the player into a brutal, terrifying

forest full of deadly zombies and treacherous paths. The map is a single screen that updates only

with sparse, select landmarks, and the level map is large enough to make remembering paths between

areas a stressful survival horror experience in itself.

In this way, Knight of Drones avoids the dilution of vintage-style dynamics of exploration

and discovery and pays homage to predecessors without patronizing or pandering to its player base.

Questions of accessibility remain, however. Should the player be allowed to rebind their controls?

This should be added to the to-do list, as each player should be able to change their button mappings

to suit their play style or accessibility needs. Should the game be playable with a mouse and

keyboard? An important question if the primary release platform target is for Personal Computers.

This is a more difficult question to answer, as a top-down shooter by nature begs for a controller with

analog joysticks. More research and playtesting will be done to determine if a keyboard and mouse

setup is feasible for this game, and if at all possible, it should be implemented. However, to avoid

the pitfalls of multi-platform feature creep, if the gameplay is designed for controllers, mechanics

and difficulty should not be compromised to adjust for other input devices.

2.3 Vintage-in-Modern

It’s worth noting that vintage gameplay is alive and well and several successful homages to

older genres can be found in contemporary game libraries. Shovel Knight by Yacht Club games[15] is

all but a sopping love letter to vintage Capcom and Nintendo 8-bit era games. As of 2018 it sold over

16

2 million copies across ten platforms.[16] It uses familiar mechanics from the era to great success,

and, particularly in free Downloadable Content packs added after launch, proved that innovation is

still possible even in bygone-era player controllers, level designs, and boss encounters. See Appendix

A for a side-by-side comparison of select vintage mechanics in Shovel Knight with their predecessors.

17

Chapter 3

Design: Content, Tone, and

Message

3.1 Drones and Technology

Knight of Drones takes place in a distant future after all humans have destroyed each other

and all that remains are self-replicating factions of military robots and drones. It could be compared

to the SkyNet future of James Camerons’ Terminator [12] series but without the cautionary take

on Artificial Intelligence, human faction fighting to survive, or the time travel. Instead, it aims to

be a tongue-in-cheek take on renewed tribalism by having the military robots continuing to fight

each other because it’s what their long-dead creators programmed them to do. Much like the AI

example of the paperclip maximizer[30], which states that if you build a machine to self-replicate

and create only paperclips, eventually the entire mass of the universe will be paperclips or machines

designed to make them, Knight of Drones is based on the idea that if machines of war are designed

to fight wars, all they will see is battlefields. Add to this the speculative science fiction of an army

of machines that was designed to self-replicate and you have the core idea of the game.

The mashup of medieval feudalism with this advanced technology provides a strong foun-

dation of culture to draw from, and it also serves as a humorous anachronism: take humanity’s

bloody past of tribalism and feudalism and blanket it with technological adornment that has ironi-

cally outlived the people who created it. And yet in doing so gets stuck in a programmatic cycle of

18

constant conflict, the legacy of humans lives on! The idea creates ample fodder for fun combat as

well as thought-provoking societal critique for any gamer who chooses to dig into the lore scattered

throughout the game.

Figure 3.1:
Early Concept Story Frame

While this game is not intended to be a cautionary tale about the growth and use of

technology, it is worth noting that there are several areas of development that have become alarming

and problematic. It would be irresponsible to create content without researching the current state

of ethics on the use of drones and robotics on the current fields of battle, and in some cases in areas

of civilian life.

Setting aside several known areas of contemporary technological overreach, such as the

rampant rise in facial recognition tracking and social media economics of contemporary China now

bleeding over into U.S. cities[5], which brings a whole range of ethical problems, there are uses of

drones in America that warrant some investigation.

Well known are the extrajudicial killings and assassinations perpetrated by the United States

government[35]. These strikes often rely on data collection and vast systems of communication, and

the news headlines often involve the victim and the perpetrator. But interestingly, studies have

shown that drone operators suffer from PTSD symptoms[7], even so far removed from the real-

19

world effects that their experience could be described as a simulation often compared (somewhat

dubiously) to a video game, such as in the 1992 film Toys, to use a cultural example.[27]

Another noteworthy occurrence of drone operation, this time in an American city, involved

the apprehension of the Dallas gunman who opened fire on police officers from the top of a parking

garage. Dallas PD pinned the gunman in a parking garage basement and notified the perpetrator

that he could put down his weapon and surrender or be killed. The gunman declined, and Dallas PD

sent in a bomb robot, which detonated and killed the gunman.[14] Understandably, people began

asking questions. What is a bomb robot? Where did Dallas PD get it? How many more were there?

Who was trained to use them?

Recently, the NYPD unveiled a new robotic dog[3], complete with blue paint and tailing

officer with a huge remote control. Videos of the robot appeared online as the unveiling went

viral. Questions concerning the ethics unmanned reconnaissance have been replaced with even more

practical questions: should the police force have access to this expensive technology in a district of

New York City that can barely afford to staff and supply its schools? Shiny technology and life-

saving equipment may appear promising in a boardroom full of city officials. Perhaps if our students

were all shiny expensive robots, they would be more thoroughly funded and all the classrooms would

be filled with qualified, well-trained operators of shiny expensive robot children. Outrage over these

questions led to the NYPD cancelling their lease and returning the digidog.[50]

In a tragic incident in South Carolina, a former NFL player murdered a family and then

took his own life. A robot was used for reconnaissance of the area so that in the event of an active

shooter, officers would be able to gather information about the immediate area without placing their

lives in danger.[39] These events appear to be growing in number, and it seems possible that soon

the military and police force will be utilizing unmanned drones as a first response. In many ways,

this is a good thing. If robotics offers solutions that increase speed and safety, their use seems a

natural choice. Imagine a squadron of drones programmed to fight fires or lift loved ones or pets to

safety. Doing so without endangering the lives of staff could be a technological leap forward. But

it’s important to ask not just how these things can happen, but should they, and why?

The legislation regulating unmanned drone use varies by state in the U.S., but there are

federal guidelines in place for Unmanned Aerial Vehicles (UAVs).[2] Globally, it is illegal to create

killer robots.[8] Thirty countries have expressed desire to draft a treaty banning their creation.[48]

These laws have been created to prevent war crimes that may occur in a war where one side is

20

human and the other completely robotic. Wealthy countries would be able to fight without putting

their lives on the line, limited only by their resources and ability to deploy. The other side could

very well face massacre with opposition loss of life remaining at zero. But has the discussion now

shifted into old rules of engagement, and is human life now measured in a different way? If one side

has the ability to fight a war without risking the lives of its citizens and military, does it not have

the moral obligation to do so in order to minimize losses?

These questions seem new, but in many ways they seem similar to any questions about

conflict since humans have existed. For this reason a game where robots fly banners and defend

castles is not only hilarious, it is scarily relevant and definitely a game worth developing.

3.2 Environmental Message

Knight of Drones is inspired by vintage gameplay, but deviates from known vintage game

tropes. Early platformers present the player with common themed levels: the ice level, the lava

level, the desert level.

In place of these vintage motivations for level aesthetics, Knight of Drones will feature levels

that draw from humanity’s abuse and neglect of its environment. Players will navigate the Plastic

Refuse Island level, or the Abandoned Oil Tanker level. Some aspects of level design should reflect

nature’s ability to reclaim land, so the game world will not be devoid of foliage or fauna. But several

areas should read to the viewer as permanently ruined, and as the difficulty of the game increases

the levels should parallel the increase in difficulty with an increase in the visible effects of a degraded

environment.

Several real world locations will be drawn from for this dark inspiration. The Carrie

Furnace[36], a derelict iron forge in operation from 1884-1982, provides views of rusted metal towers

and tapering, connecting vent systems. This refinery could serve as inspiration for a robotic army’s

self-replicating facilities and is well suited for level assets that need to bridge medieval structures

and speculative, ruined far-future ones.

The Nike Nuclear Missile Site S-13/14[49] is a Cold-War era missile launch complex near

Seattle, WA that’s been abandoned since 1974. The area is now a protected park, and there are

tours of the maintained areas of the complex. Much of the surrounding space is littered with trash

and refuse and overgrown with vines. It could be an interesting overgrown bunker level or an interior

21

warehouse that abuts an exterior landfill level. It could also provide architectural reference for an

underground bunker level that would appear later in the game.

The man-made waste runoff lake of Baotou in Inner Mongolia[29] is a dark toxic slick that

permeates the area. A toxic body surrounded by Rare Earth mines and refineries, the environment at

this site provides a direct link between our technology addicted consumerism and its dark, destructive

effects. It seems apt to design a level around drainage runoff that results from harvesting minerals

that go into our smart phones and televisions, as well as the very computers we use to create artistic

assets.

The common tropes of vintage game levels did not come to be due to aesthetics, of course.

They exist because they afford the game developers motivated reasons to increase difficulty of me-

chanics. Ice levels commonly introduce slick platforms with lower friction, causing the player to slide

along the ground unpredictably. Lava levels usually spew fireballs or threaten players with flaming

pits of death. So as the game increases in difficulty, Knight of Drones will use environmental themes

to similar effect. The black sludge of the technological production runoff could serve as this game’s

ice platforms, decreasing the ground friction of the platformer game controller. Platforms of plastic

refuse could crumble below the player’s weight, leaving them small windows of time to jump away

before they fall to their doom. These common vintage level mechanics are familiar, but repackaged

with a new purpose of aesthetics that serve the cautionary message of the game.

22

Chapter 4

Design: Lookdev and Asset

Generation

Figure 4.1:
Bitmap to Material Melted Plastic Example

The overarching design philosophy of Knight of Drones is to mash up medieval era arms and

armor with speculative science fiction mechanical design. Level design elements will feature stacked

stone and pounded iron elements, while character and NPC designs originate from contemporary

hard surface design and weathered mechanical attributes. Sources for enemies that the players

encounter may be remniscient of Boston Dynamics robot[10] gone awry, or of terrifying, out-of-

control Vine Robots[19]. Shades of military style drones should come to mind as players encounter

23

them. Assets will be surfaced using Physically Based Rendering shaders so that materials will

respond to in-game lighting in realistic ways. To enhance mechanical design, emissives are utilized

to add glow and flash to create the look of an internal energy source. Painterly, stylized textures are

to be avoided and whenever possible assets should appear to have weight and believable material

properties. A majority of the game actor assets for Knight of Drones will have an aged hard-surface

look, and the game features a ruined or desolate organic landscape, so the fidelity and lighting

possibilities of a PBR workflow are better suited to this game than a painterly, stylized approach.

Additionally, level assets take on a melted plastic layer as the player progresses, increasing

player unease and highlighting dangerous areas. The plastic materials were created using Allegorith-

mic’s Bitmap to Material and Substance Alchemist. Photographs taken from a nearby plastic bin

storage warehouse fire served as excellent material sources.

4.1 Knight

Figure 4.2:
Early Knight Sketches

After several rough sketches, the Knight began as a stand-in asset box-modeled in Maya,

where it was then rigged and skinned with a HumanIK preset. The rig was animated with a simple

walk/run/idle cycle and a quick attack animation. The model was then UV’ed in Maya and textured

in Substance Designer before being shipped to Unreal Engine. This stand-in Knight asset served

24

as a practice run for shipping an asset to Unreal and building a basic animation state machine and

player controller using the UE Character class. Once the trial run of the asset proved successful,

the design of the main asset moved forward. The current, polished Knight asset is the main player

controller skeletal mesh and represents a significant effort to create a working hero asset for the

side scroller portions of the game. Initial sketches sought to strike a balance between medieval and

hardsurface mech design, and further research and development led to a primary design document,

which features a turnaround, pose ideas, and multiple stylistic references.

Figure 4.3:
Knight V01 Run Cycles and Texturing

The Knight is a primary hero asset that will serve as the mesh for the player controller

during side-scroller gameplay, and it embodies the mashup of medieval armor and technology. It

needs to look worn and embattled and feature a strong, recognizable silhouette. The Knight is a

main character that should function to stand out from the game levels and have enough appeal to

fit center stage on a poster or one-sheet for the game. It is a mech at its core, so it is designed as a

hard surface mechanical robot with a layered appearance.

An interior endoskeleton featuring the robotic workings of the mech, including spring details,

bolts, and smaller plated armor details give the impression of a functional inner structure, while the

outer shell was designed to evoke the silhouette of a knight by expanding the design to rounder,

more organic forms and increasing size and amount of armor coverage. The helmet proved a difficult

25

Figure 4.4:
Knight V02 Design and Turnaround

design to nail down and went through at least 5 iterations. Some appeared too mech-like and others

didn’t bring recognition of a knight’s helmet. Finally a simplified design of a knight’s traditional

helmet was referenced to create a recognizable silhouette with clear facemask and jawline. An eye

guard was designed with a pivot that would allow the guard to hang at the back of the helmet (at

rest) or be rotated forward, covering the face. The interior of the head is a base sphere mesh that

has been kept simple with the goal of adding an emissive texture to represent the face. In the future,

it would be ideal to wrap a small animated texture over the interior head so that the player can gain

additional feedback from the player character. An indication of eyes or expression through a simple

motion graphics animation of a blink cycle or other expressions would increase the personality of

the player character.

Thinking forward to the rigging and animation process during early design and throughout

modeling proved necessary. Spherical joints were chosen to maximize joint rotation. At the shoulders,

cylinder forms sprout from the sphere joints to distance the appendages appropriately to minimize

polygonal overlap while animating. At the knees, the armor curves out away from the mesh to provide

room for joint rotation. Hoop details at the forearm and rear of the knee broke the silhouette into a

more interesting shape and also provided some details that could be animated with secondary action

to give more weight and bounce to the character’s walk and run cycles.

26

Figure 4.5:
Early Knight V02 Sculpt Based on Concepts

The sculpt for the Knight’s base mesh was done in ZBrush using the design document

turnaround as reference at first, then allowing for more improvisation and deviation as the sculpt

progressed. The complexity of the hardsurface pieces grew throughout the process, which used the

Zmodeler brush on the low polygon surfaces and then Creased Polygroups that were subdivided to

maintain the crisp hard surface edges. The final Knight mesh ended up at just over 200 subtools,

which were then merged into appropriate groups to prepare the mesh for retopology, texturing, and

rigging.

Figure 4.6:
Knight V02 Final

27

A good amount of effort was spent experimenting with an auto-remesh/auto-UV method

using Houdini’s SideFX Labs tools.[37] The goal of these experiments was to create a section of the

asset generation pipeline that would increase speed by negating the need to manually remesh and

UV unwrap each asset. A GOZ transfer brought the high-res mesh into Houdini, then a Polyreduce

node followed by a voxelization node created a closed-envelop mesh. Each group was separated with

a split node and the voxelization applied with a for-each node. After the voxel mesh’s resolution

was adjusted to a proper level, an Exoside Quad Remesh node was added to clean up the mesh and

convert the triangles to cleaner quads. Then UVs were generated with a SideFX Labs auto-UV node

and UV visualizer. However, too much hard surface detail was being lost in the remesh process,

particularly smaller live Boolean applications. It was determined that the auto-remesh and auto-UV

processess were indeed useful, but should be limited to background assets and smaller elements that

would appear at some distance from the camera. So this process will continue to be utilized for

parallax background assets and overworld enemy types, neither of which will be subject to close

scrutiny during gameplay. As described in later sections, the experiments were not successful for

the Knight asset, but did lead to time saved in preparation of mesh assets elsewhere in the game.

Figure 4.7: UV Unwrap Process

Because the Knight is a hero asset and the primary

player character mesh, a hands-on approach was worth the

time. However, manual remesh via Topogun or Quad Draw

utilities was determined to be too time consuming after the re-

search time spent in Side FX Labs tools. Therefore, the mesh

was decimated down from approximately 20 million to 220,000

polys using ZBrush’s Decimation Master. This low res mesh

was then brought into Rizom UV and unwrapped manually for

each hard surface component. 220,000 polygons for a hero as-

set in engine is slightly heavy; it is recommended that a final

remesh of the asset be performed in topogun to hit a target of

60-70,000 polygons, which is more appropriate for a game asset.

Using Maya, each hard surface piece was assigned a Lambert shader material group rep-

resenting an ID map of different metals and types of hardware surfaces, which range from painted

steel to rusty metal and rubber-coated wires. These 10 Lambert materials formed the basis across

which to spread the UVs.

28

Figure 4.8:
Lambert Materials Applied to the Low Resolution Mesh

After some research into Unreal Engine’s most recent implementation of UDIMs, the UV

groups were spread across several UDIM tiles in Rizom UV and exported as a low-res texture-ready

OBJ. This was brought into Substance Painter as the base mesh and UDIM tiles were activated in

the new project. UDIM is short for U-Dimension and refers to a type of UV mapping that utilizes

tile sets that extend outside of the standard UV 0-1 space. This increases texture fidelity or texel

space because texture sets no longer need to be packed into to the 0-1 U and 0-1 V tile space. This

workflow is typically reserved for film work as realtime engines haven’t often previously supported

UDIM tiling, but with Unreal Engine’s virtual texture streaming activated in the project settings

and a notorious tile packing bug from version 4.25 fixed in Unreal Engine version 4.26, UDIMs have

become a viable option for Unreal users. This was a natural choice for the Knight textures due to

the high number of separate pieces that make up the mesh. The Lambertian materials from Maya

were selected for the ID map as the polypaint vertex color ID coming from ZBrush displayed a few

too many gradient spills between some subtools, likely from user error keeping grads selected when

applying the polypaint by polygroup.

29

Figure 4.9:
Knight Textured in Substance Designer

Initial texture maps were baked from a high resolution FBX rendered out of ZBrush down

onto the decimated low res Substance Painter source file at a high dilation rate with maximum anti-

aliasing (8X) in order to achieve the highest quality mesh map sources possible. Ambient Occlusion

(AO) was baked with backside faces ignored and with self-occlusion active for the whole mesh so

that the interior and exterior components of the hard surface details all contribute to a convincing

depth and shadow overlap across mesh pieces. In the future, it would be ideal to organize mesh

components with a naming convention that would facilitate self-occlusion on a more object-specific

basis, but the current bake only shows AO artifacting on some close-up interior surfaces that won’t

be visible to the player. Standard and smart materials were used to create the look of the knight.

Standard materials often create a nice base to work from, such as a rusty iron or matte plastic.

Smart materials utilize the mesh map bakes (curvature maps, AO, thickness maps, etc.) to quickly

generate areas where paint would wear off or where metal welds would swell. Smart materials save

time and look great, although these can lead to a recognizable, almost generic preset look that

needs to be adjusted. Altering base colors, scale and rotation, or random seeds can mix up the

base smart materials, and even then additional layers of dust and grunge were added to age up

30

the surfaces and make them appear worn and used. Complementary colors were the target for the

knight’s look; a cool ash blue over chipped painted steel for the armor and a conductive-looking

copper material was chosen for the interior and most hardware pieces. Complementary colors are

pleasing to the eye and provide a nice base contrast for the player. The ashy blue chipped-steel

paint look makes the armor appear sturdy and time-tested, while the copper should convey a more

modern look and hopefully offset the medieval feel of the armor design with an uncommon tint for

armor plating. Another set of structural details on the interior chest took a plastic that was initially

painted with a Printed Circuit Board (PCB) green appearance, but the saturation level required for

the PCB board proved too glaring for the rest of the mesh, and so the saturation was toned down

and the material reconsidered as a type of interior plastic casing. Furthering the anachronism of

futuristic medieval design choices, emissives were painted onto select areas of the mesh and over the

face of the knight. The recently added ability to paint across UDIM tiles proved very convenient

for this portion of the workflow. A very few materials were instanced across the whole mesh and

then tweaked from there. A layer of diffuse dust applied with inverted curvature maps helped tone

down some reflective surfaces that were too shiny and new. When needed, contrast filters and dirt

generators were applied to material masks to break up their distribution and add age to selected

materials. AO and curvature maps again proved useful as bitmap masks during the dirt and dust

application, occasionally requiring brightness/contrast filters or inversion to properly orient dust

and dirt buildup in crevasses. It’s important to the aesthetics of the game that the knight character

not appear shiny and new. Once complete, the materials were rendered out using the Unreal Engine

Packed method that cooks out a base color map, a normal map, and an AO, Roughness, Metallic

map packed into a single bitmap’s separate Red, Green, and Blue channels. Emissives were included

where applicable as their own bitmap. The materials were then imported alongside the mesh and

hooked up in Unreal Engine’s material editor. As the Knight asset will enter Unreal engine as an

animated skeletal mesh, it must first be rigged and animated. The Knight was rigged in Maya using

a straightforward FK joint hierarchy. Due to the hard-surface, mechanical nature of the mesh there

wasn’t need for skinning and deformation of geometry anywhere except the feet, which are large and

flat enough to present a problem if remaining stiff while animating walks and runs. The feet were

separated off the hierarchy and rigged with two bones, then skinned and weight painted to allow a

bend at the toes. A hoop detail covering the top arch of the foot was modeled as a plan to hide

this foot bend, and for the most part has proven successful. A future pass on the rig might add

31

a control to the hoop detail to allow it to rotate as the foot bends. Other secondary details were

altered to have specifically placed pivots in order to be animated to create some secondary action.

These include a lower, inner portion of the shoulder armor and a ring detail on the forearm exterior,

which bounce and move depending on the primary action. Another important detail on the rig was

the pivot placement and animation of the hip springs, which sit atop the hip armor at the waist

and end in the lower abdomen. These needed to animate to avoid clipping into the legs and hips as

those move; it also serves to show some indication of the inner workings of the mech and give some

loose, bouncing mechanical details to show the knight is not a closed, tight system, but more a loose

assembly of parts. The secondary animation details on the model are animated on the geometry

instead of controls, this method proved speedy and kept the rig controls lighter and easier to select.

Care was taken to freeze this geometry’s attributes and place the pivots before animation began.

Figure 4.10: Knight FK Rig in Maya

The animation cycles are straightforward in

terms of action and looping, but the idea behind the

motion was to give weight to the robot whenever pos-

sible. The walk is on 16’s, the run cycle on 8’s, and

the idle cycle gives the impression of something alive

and ready. The jump cycles were animated as an

animator would tackle them: the jump start has an

anticipation down and a slight upward momentum on

the hips and the jump end has a collapse and com-

pression of weight that returns to a standing ready

pose that will lead back to the idle, walk, or run. The

animation cycles were defined in Maya’s time editor and the entire knight was selected and exported

using Maya’s game exporter feature. In-engine testing of the jumps provided feedback that the

anticipation down and the up on the hips in the animated joints is unnecessary or needs reimple-

mentation. The game engine provides the up, and so jumps need to be animated as if the feet are

coming up off the ground instead of the hips dropping towards the knees. And while the anticipation

down was known to be a chance worth taking, the player controller would need to delay the jump

to play the animation properly, and a delay between player input and visual feedback should likely

be avoided. Looking to the Wizards and Warriors version, there is a very slight anticipation down

before the character jumps, perhaps more trial and error could lead to a solution that feels right

32

for the player and animates the character in a more believable way. But for now, the animation

frames at the beginning of the jump start animation have been cut off in engine so that the jump

feels more responsive. Another pass on the jump animation could lead to better results with more

study of references and some more careful keyframe planning. There is also an issue with the jump

end, where the animation of the weight coming down can occur as the player is moving left or right

at speed. This gives the impression of the Knight sliding across the ground. A solution might be

to use speed to transition more quickly to the walk/run from the jump end, or to consider adding a

jump end that accounts for speed and has the legs in motion already.

The animation state machine was implemented with a standard 1-D blend space for the

Idle/Walk/Run and transition rules and bools for playing the jump up, inAir, and jump end states.

The animation state machine is the link between player and animation. The player controller sends

signals through the state machine and the game engine plays back animation according to the rules

set by the state machine. For instance, there the bool inAir check prevents the walk or run cycles

from playing while the player is in the air, and instead all actions while inAir is set to true must

stem from the inAir idle (falling) animation.

Figure 4.11:
Animation State Machine

33

4.2 Level Assets - Primary

The first side-scrolling level of Knight of Drones is a simple vertically oriented platformer

stage. The level design began as a hand-drawn sketch which was then blocked out in engine to

create colliders and floors that could be play tested with the player controller as early as possible.

The intent of level one is to create a precise, jump-centric platformer level akin to an early Wizards

and Warriors map. It was also designed to be an ideal play space with which to test and tweak the

movement mechanics of the knight player controller.

Figure 4.12: Vertical Level

Sketch

The sidescroller Level 1 assets took advantage of the free

Unreal Engine Marketplace plugin called Blockout Tools[25], which

allow the user to create fast blockout collision placement for floors,

walls, and platforms. These may then be selected in the engine and

exported as an FBX. This full-scale level FBX was then brought into

ZBrush and subdivided and sculpted into the primary art assets that

appear in game. The design of the back wall elements gradually

transition from stone and masonry to melted plastic waste, and

the back wall features crumbled openings that serve as windows.

This was a deliberate choice to increase the depth of the level and

introduce parallax elements. Four major background elements were

sculpted as bespoke assets for the level, and three sizes of platform

“brick” were sculpted to be modular assets for placement throughout

the level. The brick volumes selected from the blockout stage were

roughly 1X1X4, 1X2X4, and 3X4X4, as these were the most common

shapes in the level. Each brick was sculpted with a different front

and back face to increase versatility. Each level piece was then UV’ed in Rizom UV and baked

and textured in Substance Painter. The major background wall assets were textured to increase in

plastic/oil darkness as the level increased in height so that the player would notice a progression

from normal rock and stone to more melted plastic, ominous toxic surfaces the further up the level

they progress.

The entrance area was sculpted to create the appearance of an old tomb with an entrance

pyre. These assets were also designed to be somewhat modular, and were repurposed for the parallax

34

pieces that decorate the distant background of each area. Some free Qixel Megascans assets from

the Unreal Library[11] were added for small plants, foliage, and ground cover. To view primary

sidescroller level assets, see Appendix B.

Figure 4.14:
Set Dressing with Megascans

4.3 Level Assets - Secondary

Figure 4.13: Level Blockout

Not every level in the game needs to be a ver-

tical jump trial, so another level was added early on

as a safe place of respite for players to return to any

time. Similar to the camp levels in Shovel Knight,

it’s a small area designed to be a calming break from

the challenges elsewhere in the game. It is also de-

signed to be visited early on in the game so that the

player may discover an item, such as the sword or

some later addition to the Knight’s inventory.

This area, called the Knight’s Guarden, is a green oasis with old rusted buckets of past

battles scattering the landscape. A primary background asset starting as a quick sketch on scrap

paper was sculpted in VR using Gravity Sketch, and was then exported and brought into ZBrush,

where some cleanup was necessary. Each piece of the Gravity Sketch sculpt was ZRemeshed into

cleaner quads, divided, and detailed using alphas. The high-res sculpt was then sent to Houdini via

a GoZ port, where the model was decimated down, voxelized, and auto-UV’ed. This geometry was

then brought over to Substance Painter for texturing.

35

Figure 4.15:
Level Zero: Knight’s Guarden

Figure 4.16:
Mothership, Knight’s Guarden Background, and Turret Assets

The Gravity Sketch workflow combined with the auto-remesh and auto-UV functions of

Houdini Side-FX Labs proved incredibly fast for non-hero assets, and this workflow was repeated

for the mothership stand-in and first enemy turret assets that the player encounters in the top-down

shooter portion of the game.

4.4 Overworld

The overworld is a large play space and the first area the player will encounter. The player

explores the area to uncover new points of entry that lead to sidescroller maps. The main gameplay

loop involves a mothership, which must be protected by the player. In the future, the player may

return to the mothership for additional mechanics, such as restock ammunition and refuel. But for

now, it represents the “castle,” the home and origin point of the knight, who must protect it.

36

Figure 4.17: Terrain Test

Several terrain tests using World Creator

2 (WC2) proved successful for generating assets

with an aesthetically pleasing eroded landscape feel.

These assets were used to generate height and flow

maps that could be sent to Unreal Engine. How-

ever, during playtesting it became apparent that the

height range needed to create naturalistic eroded ter-

rain was too extreme. These terrains would be well

suited to open areas in an RPG, where traversal of

mountains and hills might create a sense of adven-

ture and break up gameplay by occluding areas that

would reveal themselves as the player successfully climbed over the top of a mountain. Because

this is a top-down shooter, the height field needs to be relatively constant, broken up by spires and

canyons that would cause the flying drone player to collide or crash. The gradual shifts in hills of

the WC2 generated terrain look good, but in practice would alter gameplay so that the player’s

drone would not be constrained at a certain height. It was determined that the height available

for gameplay would need to be quite limited as the drone needs to be able to hover fairly close to

the ground to allow the player to eject and walk along the surface to enter new areas, as well as to

constrain the player to a fixed height on the map. The height fields, when scaled in the Z (up/down)

axis to squash them into a playable space, proved too gradual a change in the other axes and was not

pleasant to the eye, so the height constraint in gameplay led to the abandonment of World Creator

2 as a terrain generator for this project.

The material assets previously generated were combined with Epic Megagrant Recipient Joe

Garth’s[17] Brushify Canyon Biome asset to manually sculpt and paint the height fields of the map.

This combined with 3D meshes copied and reoriented around the scene laid a strong foundation for

the overworld map. Due to the camera’s distance from the ground and the heavy texture load of

the game’s current assets, procedural grasses have been deactivated from the Brushify landscape

material. Two additional materials were added to the Brushify material function to break up the

natural materials with plastics, and erosion brushes were used on top of the sculpted terrain height

field to instill some natural curvature. The height differences must remain steep, though, as the

flying player controller must not skirt along the ground, and the secondary player controller must

37

Figure 4.18:
Early World Creator 2 Height Field with Heat Maps in UE4

always have the ability to return to the position from which they have ejected. Because of these

steep terrain changes, additional meshes will be needed to cover the texture stretching as anisotropy

at this texture scale would be too expensive and potentially crater the framerate. More time must

be spent carefully layering and painting the areas around level entries to help guide the player to

important areas that load new levels.

Figure 4.19:
Brushify Assets Combined with Original Materials

The overworld continues to present a problem of scale. The sizes of pawns and player

character meshes likely needs to increase, and the sizes of the turrets and motherships may need to

decrease. At the same time, the purpose of the overworld is to become a fast-paced shooter with

dodge mechanics. The player needs room to move and they need large bodies to maneuver around

38

when seeking cover. Scaling of gameplay elements needs to continue as combat is implemented and

as additional playtesting occurs.

Figure 4.20:
Top-Down Shooter View of Overworld

4.5 Frame

The frame is the drone asset for the top-down shooter and has been through several phases

of sketches. Currently the asset is a stand-in box model from Maya with two pieces: a body and

a turret. The body is designed to take fans as a quad copter drone would, and the turret is a

two-barrel machine gun design.

The model was lit and rendered with Arnold to provide source images for photobashing and

speedpainting concepts for further development of the frame. The frame holds the knight, and thus

should be considered a vehicle more than a familiar or steed, and it is left on its own as the player

switches from the frame class to the mini-knight class in the top-down overworld. The frame needs

more design iterations before a final model is attempted; for now, the stand-in asset has served well

to build the basic shooter mechanics.

Future frame iterations of design need to be built around the abilities of the player, thus

more playtesting and mechanics design needs to occur before further visual design of this asset

39

should take place. Known mechanics that need to be developed and tested include a boost function

and a secondary weapon that can lock on to nearby targets and fire; this mechanic will need a design

element on the frame that will animate. The current frame is a pawn using two static meshes. It is

likely that the final version of the frame will need a skeletal mesh to take some simple animations

for different weapons firing, etc.

Figure 4.22:
Frame Concepts Continued

Figure 4.21: Frame Concept Overpaint

40

Chapter 5

Design: Gameplay Mechanics

5.1 Implementation and Gameplay Methodology

Knight of Drones is built in Unreal Engine 4 (UE4) and features three different player

controllers spanning two modes of gameplay. All player controllers have defined inputs in the engine’s

project settings that route key presses and joystick movement to the proper functions. Each player

controller has a collider and some method of binding input from the player to movement or other

kinds of feedback. The preferred controller for Knight of Drones is a gamepad with two analog

sticks. All game classes are built in C++ and later used as source code for blueprints, which share

similarities to ’prefabs’ in Unity. Blueprints can also refer to the visual scripting system built into

Unreal Engine; this can confuse new users at first. A blueprint may refer to a collection of game

objects, such as a player controller with an animated mesh or a wall sconce with a point light and a

fiery particle system. These types of blueprints may often be dragged into the map and placed in the

game world. In this way, ’blueprint’ is a catch-all term for many types of game objects. However,

blueprints is also the node-based visual scripting system in UE4, which can be used to control event

flow or create functions and variables. Coding in C++ is generally more modular and versatile

while blueprint scripting is considered faster and more accessible. While it is possible to create an

entire game using only blueprints (the scripting platform), it is generally accepted as good practice

to use both C++ and blueprints in UE4. Blueprints can become cumbersome and difficult to read

over time, and thus their use is not ideal for collaboration. C++ can occasionally cause a derived

blueprint to stop updating, which forces the user to save their work and close the project to rebuild

41

the Visual Studio files. Knowing these parts of the UE4 workflow ahead of time can be helpful in

making decisions about which tools to use when.

The most important gameplay mechanics start with the player controllers. The player uses

these to interact with the game world. The player controllers that receive input drive the avatars or

the interfaces through which the player experiences the game.

The top-down shooter controller in Knight of Drones, the Frame, inherits from the pawn

class. Pawns are any actor class that can be possessed by a user or an AI. The Frame is constrained

in the Z axis (Z is ’up’ in UE4) so that the player may only move on the X and Y axis. In addition

to a mesh and the player movement component, a camera actor attached to a springarm component,

a functioning camera boom, attaches to the pawn’s root component, in this case a capsule collider.

The springarm has a built in camera drag function so that the camera drifts behind slightly, and this

helps give a sense of weight and speed to the player’s movement. The Frame also has an assortment

of attributes and functions, such as move speed and the ability to shoot(), which is a function that

spawns a projectile class that contains a collider with speed and direction. As is common with many

moving actors, the Frame also has getters and setters for location, which are crucial for moving the

pawn through space or spawning a projectile from the current mesh location. The Frame also has

a slight up and down drift applied to the Z axis during runtime to give it a feel of floating in air.

This function is built with a simple SIN function from Unreal’s FMATH library. When dealing with

a speedy pawn constrained in the air, it’s best not to look like a wet bar of soap sliding along a

countertop. This sine wave function creates an illusion of in-air hovering for the Frame actor.

The Frame class is also the source of a pawn swap. The player may eject from the Frame

at any time to drop a new controller onto the ground. This new controller is of the character class,

which derives from the pawn class. Character classes in UE4 are built to take input and have

default movement modes like walking, swimming, and flying. The character class that drops out of

the Frame is called the MiniKnight(MK), a tiny version of the early version 01 Knight. This small-

scale character class only needs some limited functionality such as input that translates the actor so

that the player may walk along terrain, and the MK class also includes an animation blueprint and

a collider to detect when the actor is overlapping with other game objects. This MK class provides

the method by which players overlap with colliders on the overworld terrain in order to load a side

scroller level. At the moment, there isn’t much need for additional functionality to the MiniKnight,

but future iterations might include a run/sprint function or a sword swing attack() to knock aside

42

barriers at ground level in the overworld. The pawn swap is not implemented in the pawn class as it

involves multiple interacting classes (pawn and character classes). See later in this section for more

on the character controller swap.

The most complex player controller class is the side scroller player controller, the Knight.

The Knight character takes a skeletal mesh component with several animation loops. It needs a

collider, of course, and it also features a socket at the center of the right hand wrist joint to which

an item can be equipped. The sword is a static mesh and is equipped to the the Knight class via

an overlap item pickup. The sword itself is an Item class; An Item is a modified Actor class that

comes with built-in overlap checks and a simple getter/setter pair for overlaps. This getter/setter

pair helps with any future item overlap, be it item collection or a weapon striking an enemy. The

Knight player controller represents many hours of tweaking parameters to get the proper gameplay

feel. Jump velocity, ground friction, air control, camera drag, running speed, and rotation speed

(for when the character rotates to the left or right when changing direction) are several instances of

parameters that required tight adjustment to fit the feel and flow of a vertical platformer. See the

source code for Knight.h and Knight.cpp in Appendix D. The Knight character class also takes an

animation instance, which is a very simple C++ class that may be sourced to create the animation

blueprint. This animation blueprint takes the segmented animation clips as inputs for the animation

state machine and sends the necessary signals from the animation frames to the skeletal mesh based

on the rules of the state machine.

Despite the flexibility of C++, ready and easy access to multiple classes are available in

the game mode and level blueprints. The terms ’level’ and ’map’ are used interchangeably hereafter

and refer to an Unreal Engine asset that contains a playable area of the game into which player

controllers may be spawned. Levels may contain their own rulesets and assets, and in this case

different levels will load different player controllers. UE4 base game modes define a default pawn

class as a controller to spawn when the game begins. Due to the player swapping controllers during

gameplay, it was necessary to disable the default pawn and to define a pawn possession at the start

of gameplay depending on which level was loaded. Therefore the primary method that makes pawn

swapping possible is the level blueprint, although this could also potentially be relegated to the

game mode blueprint. Because the sidescroller levels would need to load a separate camera and set

of assets at a different world scale, level blueprints were selected as the location to perform player

controller swapping.

43

When the game starts, the player spawns in the overworld as a Frame pawn. This takes the

defined top-down shooter parameters. The player may then press the B button on their controller (or

the E key) to initiate the following: The player controller dispossesses the frame pawn, a MiniKnight

character spawns at the location of the center of the frame, the player possesses the MK class, and

the MiniKnight responds to gravity and thus falls to the ground. Once walking, the MiniKnight

character is free to roam. From here, it’s necessary to provide the player with the ability to return

to the Frame class to continue flying and exploring. This is achieved with the same B Button / E

key input, which causes the MK class to cast a ray upwards to perform a collision check. If the ray

collides with the collision mesh of the Frame class, the MiniKnight depossesses, destructs, and the

player repossesses the Frame pawn to continue flying about. As the MiniKnight class, the player

may also choose to explore the ground plane of the overworld level in search of entrances to other

levels. Once the MK class overlaps with an entrance, a level load is called. With the level load, a

Knight class is constructed and possessed by the player and the sidescroller portion of the game is

in play.

5.2 Iteration

Initial builds of the pawn swapping mechanic were built into the pawn and character classes.

These proved unsuccessful. Immediate problems became apparent when class casting needed to occur

between classes, some that hadn’t even yet been constructed. Pawn swapping mechanics are quite

common in Unreal Engine, particularly during multiplayer games where player deaths and respawns

occur. This highly functional mechanic seems built for server-level commands, game modes, and

levels. Thankfully the possess and dispossess functions are readily available for use because of these

conventions.

At the start of play, the overworld level executes the first player possession call. The Frame

class is spawned and the player automatically possesses this pawn. The Frame class blueprint

contains an event bound to a key press (the B-button or E key on the keyboard) that constructs a

MiniKnight class at the position of the Frame. Gravity drops the MK to the terrain and a blueprint

call depossesses the Frame and possesses the MK class. As soon as the MK class touches the ground,

the player is free to move using the MK player controller. From here they may explore the overworld

on foot or choose to return to the Frame. The MK class has an event call for the action button B

44

(or E key) that casts an upward ray check. If the ray collides with the Frame mesh component, the

MK class destructs and the player once again possesses the Frame class. To view the blueprints for

pawn swapping functionality, see Appendix C. The player also needs feedback as to the position of

the Frame as it stands idle while they walk around with the MK class. Currently, the Light Studio

blueprint of the overworld has a directional light in the scene set to shine directly down onto the

terrain, which casts a shadow directly underneath the Frame mesh. The player may use this as a

destination marker to return to the Frame. In the future, a decal or visual effect can be added as

the MK class drops to the ground as an indication of where the player must return to to initiate

repossession of the Frame.

The side-scroller levels are a fresh level load called by the MK class overlapping with a box

collider placed on the terrain of the overworld. A level load creates a pause on many systems while

the engine shifts geometry and texture data. As Knight of Drones continues to develop, attention

should be given to the transitions between the top-down map and the sidescroller levels. A simple

Linear Interpolated (LERP’ed) camera move through parallax art assets to align to the side-scroller

player camera could be an artistically effective way to create an in-engine ’wipe’ to reveal the new

level.

Pawn swapping and level loading iterations have been tested and proven successful. A

somewhat foreseen but unresolved mechanic that needs several more builds is a behind-the-scenes

autosave system that preserves the states between levels. Typical save states involve specifically

selected data points that are written to save files for later recall. An inventory is easy to imagine;

a player carries 152 coins. They save their game. They should load the game and find their pouch

packed with 152 coins. In this same way, one could extrapolate that an idle pawn class needs to

set its position data to a save file for later recall. The complication becomes that setting a pawn’s

location is different than saving its possession state. If a level’s default loading pawn is a Frame,

and the save file loads a MiniKnight and a Frame in two positions, the level blueprint will override

save function and automatically possess the level pawn.

The most important progression for the game is to iterate on the save state functions that will

allow the player to seamlessly hop between levels keeping their position, inventory, and progression

intact. A technical and artistic hunch points towards the game mode blueprint, which serves as the

director of gameplay and the event coordinator and chaperone. This is more important than enemy

or friendly NPC’s, item or experience based progression, or shooter mechanics. Without the ability

45

to link the sidescroller levels and overworld map together, there is no game. The save/load mechanic

that will link the level states together is the immediate, primary concern for the state of the game.

46

Chapter 6

Results

The majority of endeavors for each facet of the project have been successful. Importantly,

the gameplay is fun. This is a good sign, and a good indicator that development should continue.

Several additional mechanics need to be in place before the game reaches an alpha state.

These include an automatic save/load function that serves to link the top-down and side-scroller

levels together, a mothership health function that leads to a game over state upon depletion, Knight

player vs. NPC combat mechanics, and Frame (top-down) shooter game mode mechanics.

Figure 6.1:
Animation Cycles in Unreal Engine

The most important aspect of gameplay, the player controllers, are in place and working

well. The animation cycles need adjustment. In the case of the run cycle, a better loop is necessary.

The attack cycle needs an improved backwards arc for the anticipation and a stronger swing forward,

possibly with a horizontal slash and a vertical slice. The in-air cycle for falls and drops needs to read

better in silhouette, and the addition of an in-air attack swing would expand the player controller in

47

to more playable and fun territory. Additionally a duck and duck attack should be added for variety

of attack response to NPC enemies. The FK rig of the knight was found to be serviceable, but an

IK/FK switch rig, or even better, a rig with rubberbones to allow for comical squash and stretch

with even the most mechanical of elements could prove beneficial for a game that needs a veneer of

cheek to become successful.

Figure 6.2:
Knight Final Render: Textured and Posed on a Base Sculpt

The Knight character stands out as a success of design, modeling, texturing, and rendering.

The head and face highlight a feature set where additional effort could improve feedback to the

player and increase personality and appeal. However, overall, the creative and technical pipelines

unified to create a piece of work that both aesthetically intrigues and technically performs. It looks

great, and it shipped to a game engine as an interactive asset. In this way, the Knight is a highly

48

successful project in itself. The game resolution asset, lit and rendered with Arnold renderer in

Maya, captures the look and feel of Knight of Drones in a single image.

Figure 6.3:
Knight’s Guarden: Successful Level Build

The side scroller levels represent successful level builds. Colliders have been placed to

prevent the character controller from disorienting from the plane constraint and falling off the map.

In the event of a player controller becoming disoriented, a kill box collider at the bottom of each

level is ready to take reset or kill commands. For now, the box trigger ends gameplay.

The pawn swapping experiment succeeded completely where applied, and needed additional

research and implementation in areas of admitted blind spots, namely the save/load function neces-

sary for proper recall of game states between level loads. The game currently lacks NPC enemies and

friendly NPC encounters, but these should be logged in the TODO list and not in the failure-to-have

implemented list. Indeed, a carefully designed player controller is more important than an enemy

spawn volume.

The game also needs a HUD for player feedback, and clear death states or respawn states.

Additional time must be spent on optimization as well. In its current form, the game is slightly

heavy in the area of texture memory.

49

As mentioned earlier, the scale problem of the overworld should be considered a design

concern of note, and one whose solution could lead to the ultimate success or failure of the game.

If the top-down shooter camera doesn’t reveal enough or adjust its zoom or placement with the

number of adversaries and events onscreen, frustration will result and players will move on. Along

similar lines, the color choices and separation between the player characters and background assets

must be enhanced for clarity of image separation. Even in dark areas or saturated desert sands, the

player must know at a glance their avatar’s position onscreen.

50

Chapter 7

Conclusions and Discussion

7.1 Conclusions

A number of important lessons of technical and artistic process were learned throughout the

course of this project. Implementation of game design mechanics was done as early as possible and

engine grayboxing took place well before artistic asset generation began. Still as the player controllers

were designed, it became increasingly apparent that game mechanics and dynamics will shift and

change in ways that can impact artistic assets. The Frame design was one of the first elements to

have concepting iteration and remains one of the final assets to be completed. More details must

be known regarding the full needs of the Frame class and how it affects the flow of the game before

designs begin to harden into final game assets. Through playtesting with the current Frame asset,

it was discovered early on that the player would need to see forward facing direction clearly, but

further testing revealed that the model must be asymmetrical and have a stronger silhouette. This

may clash with the recognizable quad-copter drone silhouette as these are commonly symmetrical.

Additionally, a two-part mesh is insufficient as later functions will require visual feedback.

The complexity of the hard surface Knight sculpt provided excellent practice blending me-

chanical design with medieval appearance. This work represents both significant effort towards

building a functioning hero asset for an independent game project and a solid source for what must

be designed for the eventual Frame asset. Larger moving parts and a modular structure with multi-

ple sockets are defining features of the next iteration of the Frame asset so that it can take various

skeletal mesh assets that animate when aiming and firing. The Frame must also be designed with

51

rotors that can move and animate depending on the movement input of the player, so more research

must done on real-life drone operation.

Having a clear, focused design missive or style bible at the start of a project helps guide

the look and colors of the game through the production process. A game design document was

prepared as a preproduction asset to help organize classes and systems as the playable prototype

progressed, which was a valuable tool. More concept art and more stylistic exploration would serve

the project well by establishing color, lighting, and thematic tones. These need to be more clearly

established in the game and gameplay moving forward so that the narrative themes of the game do

not get lost during design and implementation. Singular assets and level art pieces in this prototype

are successful and serve their purposes, but increased numbers of assets and higher level complexity

left several areas of artistic opportunity unexplored. There should be more coordination between

the overworld level art areas and the side-scroller level areas, for instance, which can be achieved

with more careful planning and greater attention to detail when moving forward with level design

and modular asset creation. In short, Knight of Drones needs Art Direction. The decision to create

PBR textures looks great in engine, especially with RTX raytracing enabled, but the color choices

of aged dirty stone and metals introduces a washed-out, muddy look. The game needs more color,

and the player controller assets need help standing out from the levels.

Balancing game design with art asset generation was a known difficulty, but even so, the

cross-feedback between game design and visual design presented many unforeseen challenges. It is

entirely possible to iterate on designs that do not comply with gameplay, for instance, or to find

that an artistic asset, such as an animation, can work well during playback but not fit the needs of

the game engine. It is also possible to make color choices that work well in an evening or night time

setting that will not work well in a daytime scene, and so game lighting and design must also work

with the time of the setting. More choices should be made around the game’s day/night cycle, if

there is to be one, and to make sure that assets are test-rendered using settings and lights that best

represent the needs of the game.

These lessons represent a few of the highly valuable experiences that will inform decision

making and design choices in future iterations of Knight of Drones. The game plays well, and has

a long way to go before it resembles a full title for players to enjoy, but this working prototype

successfully demonstrates the core concepts of the game and remains a clear example of dedication

to the craft of game design and artistic discipline.

52

Appendices

53

Appendix A Shovel Knight Mechanics Comparison

54

Appendix B Primary Side Scroller Level Asset Generation

55

56

57

Appendix C Pawn Swapping Blueprints

58

Appendix D Knight Player Controller

Knight.h

1 // Fill out your copyright notice in the Description page of Project Settings.

2

3 #pragma once

4

5 #include "CoreMinimal.h"

6 #include "GameFramework/Character.h"

7 #include "KNIGHT.generated.h"

8

9 UCLASS ()

10 class KNIGHTOFDRONES_API AKNIGHT : public ACharacter

11 {

12 GENERATED_BODY ()

13

14 public:

15 // Sets default values for this character ’s properties

16 AKNIGHT ();

17

18

19

20 /** Camera Boom positioning the camera to the side of the player */

21 UPROPERTY(VisibleAnywhere , BlueprintReadOnly , Category = Camera , Meta = (

AllowPrivateAccess = "true"))

22 class USpringArmComponent* CameraBoom;

23

24 /** Camera that follows the player */

25 UPROPERTY(VisibleAnywhere , BlueprintReadOnly , Category = Camera , Meta = (

AllowPrivateAccess = "true"))

26 class UCameraComponent* FollowCamera;

27

28

29

30 protected:

31 // Called when the game starts or when spawned

32 virtual void BeginPlay () override;

33

34 // Called to bind functionality to input

59

35 virtual void SetupPlayerInputComponent(class UInputComponent* PlayerInputComponent)

override;

36

37 /** Called for side to side input */

38 void KnightMoveRight(float input);

39

40 /** Handle touch inputs. */

41 void TouchStarted(const ETouchIndex ::Type FingerIndex , const FVector Location);

42

43 /** Handle touch stop event. */

44 void TouchStopped(const ETouchIndex ::Type FingerIndex , const FVector Location);

45

46 public:

47 // Called every frame

48 virtual void Tick(float DeltaTime) override;

49

50 FORCEINLINE class USpringArmComponent* GetCameraBoom () const { return CameraBoom; }

51 FORCEINLINE class UCameraComponent* GetFollowCamera () const { return FollowCamera;

}

52

53 UPROPERTY(EditDefaultsOnly , BlueprintReadOnly , Category = Items)

54 class ASword* EquippedWeapon;

55

56 FORCEINLINE void SetEquippedWeapon(ASword* WeaponToSet) { EquippedWeapon =

WeaponToSet; }

57

58 };

Knight.cpp

1 // Fill out your copyright notice in the Description page of Project Settings.

2

3

4 #include "KNIGHT.h"

5 #include "GameFramework/SpringArmComponent.h"

6 #include "Camera/CameraComponent.h"

7 #include "Engine/World.h"

8 #include "Components/CapsuleComponent.h"

9 #include "GameFramework/CharacterMovementComponent.h"

10

60

11 // Sets default values

12 AKNIGHT :: AKNIGHT ()

13 {

14 // Set this character to call Tick() every frame. You can turn this off to improve

performance if you don’t need it.

15 PrimaryActorTick.bCanEverTick = true;

16

17 //Set size for collision capsule

18 GetCapsuleComponent ()->SetCapsuleSize (35.f, 105.f);

19

20 // Don’t rotate when the controller rotates.

21 bUseControllerRotationPitch = false;

22 bUseControllerRotationYaw = false;

23 bUseControllerRotationRoll = false;

24

25 // Create Camera Boom (pulls twds player if there’s a collision)

26 CameraBoom = CreateDefaultSubobject <USpringArmComponent >(TEXT("CameraBoom"));

27 CameraBoom ->SetupAttachment(GetRootComponent ());

28 CameraBoom ->SetUsingAbsoluteRotation(true); // Rotation of the character should not

affect rotation of boom

29 CameraBoom ->bDoCollisionTest = false;

30 CameraBoom ->TargetArmLength = 420.f; // Camera follows at this distance

31 CameraBoom ->bUsePawnControlRotation = false; //Do not rotate spring arm based on

the controller ’s rotation

32 CameraBoom ->SocketOffset = FVector (0.f, 0.f, 75.f);

33 CameraBoom ->SetRelativeRotation(FRotator (0.f, -180.f, 0.f));

34 CameraBoom ->bEnableCameraLag = true;

35 CameraBoom ->CameraLagMaxDistance = 200.f;

36 CameraBoom ->CameraLagSpeed = 3.0f;

37

38 // Create camera that will follow player and attach it to the boom

39 FollowCamera = CreateDefaultSubobject <UCameraComponent >(TEXT("FollowCamera"));

40 FollowCamera ->SetupAttachment(CameraBoom , USpringArmComponent :: SocketName);

41 FollowCamera ->bUsePawnControlRotation = false;

42

43 // Characer movement components

44 //and constrain to plane!

45 // GetCharacterMovement ()->JumpZVelocity = 450.f;

46 // GetCharacterMovement ()->AirControl = 0.2f;

61

47 // GetCharacterMovement ()->bConstrainToPlane = true;

48 // GetCharacterMovement ()->SetPlaneConstraintNormal(FVector (1.f, 0.f, 0.f));

49 //Fixed collision issues drifting player with vectors instead of normal

50 // Constrain to Y,Z axes

51 // GetCharacterMovement ()->SetPlaneConstraintFromVectors(FVector (0.f, 1.f, 0.f),

FVector (0.f, 0.f, 1.f));

52

53 GetCharacterMovement ()->bOrientRotationToMovement = true; // Face in the direction

we are moving ..

54 GetCharacterMovement ()->RotationRate = FRotator (0.0f, 720.0f, 0.0f); // ...at this

rotation rate

55 GetCharacterMovement ()->GravityScale = 2.f;

56 GetCharacterMovement ()->AirControl = 0.80f;

57 GetCharacterMovement ()->JumpZVelocity = 1200.f;

58 GetCharacterMovement ()->GroundFriction = 3.f;

59 GetCharacterMovement ()->MaxWalkSpeed = 600.f;

60 GetCharacterMovement ()->MaxFlySpeed = 600.f;

61

62 // Note: The skeletal mesh and anim blueprint references on the Mesh component (

inherited from Character)

63 // are set in the derived blueprint asset named MyCharacter (to avoid direct

content references in C++)

64

65

66 //TODO: Constrain player X so theres no drift from collisions

67

68

69 }

70

71 // Called when the game starts or when spawned

72 void AKNIGHT :: BeginPlay ()

73 {

74 Super:: BeginPlay ();

75

76

77

78 }

79

80 // Called every frame

62

81 void AKNIGHT ::Tick(float DeltaTime)

82 {

83 Super::Tick(DeltaTime);

84

85 }

86

87 // Called to bind functionality to input

88 void AKNIGHT :: SetupPlayerInputComponent(UInputComponent* PlayerInputComponent)

89 {

90 Super:: SetupPlayerInputComponent(PlayerInputComponent);

91 check(PlayerInputComponent);

92

93

94 // Character includes a jump function already , so qualify character class

95 PlayerInputComponent ->BindAction("Jump", IE_Pressed , this , &ACharacter ::Jump);

96 PlayerInputComponent ->BindAction("Jump", IE_Released , this , &ACharacter ::

StopJumping);

97

98 // PlayerInputComponent ->BindAxis (" MoveForward", this , &AKNIGHT :: MoveForward);

99 PlayerInputComponent ->BindAxis("KnightMoveRight", this , &AKNIGHT :: KnightMoveRight);

100

101 PlayerInputComponent ->BindTouch(IE_Pressed , this , &AKNIGHT :: TouchStarted);

102 PlayerInputComponent ->BindTouch(IE_Released , this , &AKNIGHT :: TouchStopped);

103

104 }

105

106 void AKNIGHT :: KnightMoveRight(float input)

107 {

108 if ((Controller != nullptr) && (input != 0.0f))

109 {

110

111 AddMovementInput(FVector (0.f, -1.f, 0.f), input);

112

113 }

114

115 }

116

117 void AKNIGHT :: TouchStarted(const ETouchIndex ::Type FingerIndex , const FVector

Location)

63

118 {

119 // jump on any touch

120 Jump();

121 }

122

123 void AKNIGHT :: TouchStopped(const ETouchIndex ::Type FingerIndex , const FVector

Location)

124 {

125 StopJumping ();

126 }

64

	
	
	
	
	
	
Martell	DPA	Thesis	
Knight	of	Drones	Game	Document	
	
Title:	Knight	of	Drones	
Engine:	UE4	
Genre:	Action/Platformer	
	
Description	
	
Knight	of	Drones	is	a	tongue-in-cheek	top-down	shooter/2d	platformer	hybrid	with	
light	strategy	mechanics.	
	
The	look	is	a	mashup	of	post-apocalypse,	technology,	and	medievalism.	The	game	
combines	many	simple	mechanics	together	and	draws	heavy	inspiration	from	8-bit	
era	vintage	games.	
	
Story	
	
Knight	of	Drones	takes	place	in	a	post-human	world	where	all	that	remains	is	the	
autonomous/unmanned	war	machines	programmed	for	battle.	Players	take	control	
of	a	flying	drone,	called	the	Frame,	and	a	robotic	protagonist,	the	Knight.	
	
Players	awaken	as	a	unique	AI	function	that	can	hop	between	operating	a	top-down	
shooter	drone	and	a	side-scrolling	platformer	character.	Initially,	the	game	is	a	
straightforward	action	game	where	players	win	battles	to	progress.	The	narrative	
builds	tension	as	the	gameplay	increases	in	difficulty.	Midgame	or	late-game,	it’s	
revealed	that	humans	still	exist	underground	and	the	player	can	choose	to	stop	
destroying	their	facilities	and	make	some	allies,	or	choose	to	continue	to	fight	on	the	
side	of	the	machines	and	eradicate	the	last	bastion	of	humanity.		
	
The	story	should	be	told	with	gameplay	and,	if	necessary,	pictograms	of	gameplay	
elements.	If/when	the	game	gets	finished,	translation	and	localization	to	other	
territories	will	be	minimal-	all	that	needs	translation	is	menus.	
	
	
	
	
	
	

Appendix E Game Design Document

65

Gameplay	
	
The	FRAME	
	
The	primary	game	mode	of	the	main	map,	called	the	Overworld,	is	a	top-down	twin-
stick	shooter	where	the	player	controls	a	quadcopter	drone	called	the	FRAME.	It	
hovers	at	a	constant	height	and	can	move	(L	stick)	and	fire	(R	stick)	in	a	circle	at	its	
own	height.		
	
Future	actions	could	include	dropping	bombs	or	grenades	(x	button)	onto	the	
ground.	These	projectiles	could	have	different	functions	and	ranges	(some	explode	
out,	some	up,	some	dig,	some	are	EMP,	etc).	R-stick	firing	is	unlimited	ammo,	
grenades/bombs	are	limited	and	need	to	be	refilled.	
	
The	Frame	can	also	be	upgraded	to	dodge	short	distances	(y	button),	use	a	
radar/magnetic	ping	(b	button)	to	reveal	or	pinpoint	areas	of	interest.	
	
Static	enemies	(turrets,	etc)	litter	the	world	and	need	to	be	cleared	to	progress.	
Enemy	drone	NPCs	swarm	and	attack	much	of	the	time.	Static	spawn	points	throw	
these	enemy	drones	when	player	is	within	a	certain	distance.	Players	destroy	spawn	
points	to	get	some	respite	and	also	to	progress.	
	
The	player	can	also	eject	the	entity	that’s	being	carried	in	the	center	of	the	frame,	
which	drops	to	the	ground	and	unfolds	to	become:	
	
The	MINIKNIGHT	
	
Now	the	player	is	a	tiny	knight	walking	on	the	terrain	of	the	game	world.	The	mini	
knight	on	the	ground	of	the	overworld	is	vulnerable	to	attack	and	later	
random/scripted	events.	But	the	purpose	of	ejecting	down	to	the	ground	is	to	walk	
into	entrances	to	caves,	mines,	buildings,	castles,	etc.		Once	inside	the	game/camera	
transitions	to	a	sidescrolling	game.		
	
The	KNIGHT	
	
Once	the	side-scroller	level	has	loaded,	the	player	assumes	control	of	the	Knight.	
	
Inspired	by	Rare’s	early	NES	game	Wizards	and	Warriors,	it’s	a	vertically	oriented	
platformer	for	the	most	part.	Players	climb	tall	heights	or	fall	long	depths.	But	much	
like	Wizards	&	Warriors,	jumping	is	the	best	attack	and	character	placement	on	
platforms	is	a	strategy	in	itself.		
	
The	KNIGHT	has	a	thin	sword	like	a	rapier.	Great	for	parrying	and	slapping	but	not	
ideal	for	ground	combat	since	the	player	will	mostly	be	worried	about	jumping.	
	

66

The	side-scrolling	levels	will	be	lots	of	jumping	and	dodging,	but	will	have	some	
tough	enemies	that	require	slapping	an	enemy	at	a	weak	spot,	and	a	few	bosses	as	
things	progress.	Bosses	will	likely	need	to	be	jumped	over	(hitting	them	with	the	
sword	on	the	way	over).	
	
The	KNIGHT	will	encounter	some	switches	or	light	puzzles	that	open	things	in	the	
overworld	outside.	Then	the	KNIGHT	goes	back	outside	to	the	overworld	and	hops	
back	into	the	FRAME	(if	it’s	still	there	or	there	isn’t	a	story	event,	etc.)	and	heads	
back	home	to	home	base	to	refuel	and	refill	ammo.		Home	is:	
	
The	MOTHERSHIP	
	
There’s	a	giant	hovering	drone	that	the	player	starts	at,	and	every	so	often	the	
player	returns	or	spawns	back	at	this	big	ship.	Here	there	are	3	friendly	NPC’s:	the	
Commander,	The	Shopkeep,	and	the	Intel	bot.	They’re	all	bots	and	all	of	them	just	
make	noises	and	show	pictograms	to	communicate	anything	to	the	player.	
	
The	mothership	has	little	moments	to	progress	story	and	it	takes	in	resources	the	
player	brings	home.		
	
The	ultimate	goal	of	the	game	is	to	move	the	mothership	to	the	final	place	on	the	
map,	the	Commander	NPC	will	overtake	it	and	all	the	enemy	bots	in	the	territory	
will	come	under	Commander’s	control.	The	mothership	only	moves	via	a	large	pause	
map,	and	it	moves	very	slowly.	The	player	needs	to	clear	turrets	and	spawn	points	
on	the	overworld	to	make	the	world	safe	for	the	mothership	to	move.	This	could	
also	open	up	a	defense	mechanic	where	the	player	must	rush	back	to	the	
mothership	to	protect	it	from	some	randomly	spawned	waves	of	enemies,	but	this	
mechanic	must	be	used	carefully/sparingly	because	the	flow	of	the	game	must	not	
be	interrupted.	There	may	be	room	here	for	a	mechanic	for	the	player	to	spend	
resources	to	add/build	defensive	turret	additions	to	the	mothership.	These	could	
increase	its	speed,	have	an	auto-fire	defense	turret,	etc.	This	adds	more	direct	need	
for	resources	and	takes	the	pressure	off	the	player	mid-game,	allowing	them	to	
explore	farther	without	worrying	about	incoming	attacks	to	the	mothership.	
	
This	is	the	strategy	element	and	the	mothership	also	serves	as	a	respawn	point	for	
the	player	and	a	game-over	state	if	the	mothership	takes	too	much	damage	and	is	
lost.	
	
It	also	could	introduce	a	fun	story	element	where	if	the	player	decides	to	save	the	
humans	later	in	the	story,	the	humans	start	to	show	up	at	the	mothership	and	cause	
messes/problems	in	the	background.	Like	while	the	player	is	shopping	a	big	galoot	
pops	into	the	shop	and	knocks	a	bunch	of	items	over	bothering	the	Shopkeep	bot,	
etc.	
	
	
	

67

Music	/	Audio	
	
Building	the	audio	system	in	Unreal	Engine	is	an	area	of	interest,	but	may	be	outside	
the	scope	of	this	prototype.	
	
The	music	should	be	a	fun	mix	of	medieval/Baroque	organ/harpsichord	riffs	and	
german	booty	bass/electro.	It’s	not	strictly	analog	in	sound	and	the	music	should	be	
separated	into	stems	that	build	or	drop	as	the	player	is	performing	actions.	Intense	
music	during	combat	will	shift	through	reverb	and	drift	into	calm	ambiance	during	
pause	screen,	then	ramp	back	up	after	pause	menu	exits,	etc.	
	
	
Upgrades	
	
There	are	upgrades.	I’ve	been	drawing	them	out	and	planning,	see	other	docs	for	
those.	Still	brainstorming	here.	
	
FRAME	gets	stronger	guns,	wider	ping,	finite	shielding,	new	grenades	and	eventually	
instead	of	taking	collision	damage,	it	can	ricochet.	Mid/late	game	to	add	fun	and	
change	things	up,	FRAME	can	bounce	of	obstacles	and	enemies,	turning	some	old	
areas	into	new	pinball.	
	
KNIGHT	gets	a	shield,	an	upward	boost,	a	boomerang	type	thing.	Maybe	more.	
	
Upgrades	aren’t	done	via	pause	menus,	but	rather	via	the	garage/shop	in	the	
mothership.	This	needs	a	picture-in-picture	style	HUD,	and	will	likely	involve	
multiple	cameras	overe	various	scenes	rendered	out	of	view	in	the	overworld.	
	
	
Overworld	
	
Map	area	ideas:	desert	(starting	area),	toxic	sea,	forest	regrowth	(difficult	flying	for	
drone),	fortified	canyons,	winter/ash,	metro/old	construction,	etc.	Look	to	
environmental	disasters	and	climate	change	for	inspiration.	
	
Events	
	
Each	overworld	area	should	have	some	randomized	events	and	moving	creatures,	
little	things	that	emerge	from	holes	and	run	back	in,	weird	little	homebrew	bots	that	
scavenge	and	if	killed	drop	resources.	If	players	decide	to	drop	down	and	
investigate,	maybe	some	new	things	happen.	These	are	far-future	details,	but	it	
seems	important	to	the	world	sim	aspect--	and	no	one	wants	to	play	a	static/dead	
game.	It	needs	to	feel	alive	whenever	possible.	
	
	
	

68

Weather	
	
The	game’s	all	top-down	and	profile,	so	no	skybox	unless	its	needed	for	rendering.	I	
do	think	I’d	like	to	have	a	weather	system	(rain,	fog,	snow,	etc)	so	this	means	the	
texture	sets	need	to	be	built	with	roughness	and	some	dirt/grime	layers	exposed	for	
animation.	It	may	be	wise	to	tie	the	weather	systems	to	the	geography	and	terrain	
rather	than	attempting	a	living	system	that	changes	across	the	whole	overeworld.	
	
Goals	
	
Phase	I:	
	

1. Continue	making	notes	and	getting	this	thing	out	on	paper.	Draw	maps,	write	
story	beats,	sketch	it	out	a	bit	further.	

2. Practice	building	things	with	UE4	classes,	focus	on	player	controllers.	
3. Concept	art	1:	Get	some	style	frames,	photobashes	of	level	designs,	Frame	
4. Music	sketches.	Plan	a	theme,	some	general	tones	and	ideas	for	audio	during	

diff’t	gamestates.	
5. Graphic	design.	Cool	off	with	some	logo	options	and	some	menu/font	choices.	

	
Phase	II:	

1. Grayboxing	and	player	character	swap	mechanic	builds.	
2. Concept	art	2:	Knight,	enemies.	
3. Modeling,	texturing:	Frame,	Terrain	1(Overworld	start	area)	
4. Houdini	.hip	development:	procedural	enemy	drone	generator(?)	
5. Overworld	combat	alpha	w/	Frame	V1	

	
Phase	III:	

1. Assess	state	of	prototype	and	needs	for	next	steps.	Take	a	step	back.	
2. Concept	art	3:	Mothership,	Sidescroller	level	assets	env	1,	turrets	
3. Modeling,	texturing:	Knight,	Side-scroller	environment	1	modules	
4. Build	and	test	sidescroller	env	1	
5. Sidescroller	level	alpha	w/	Knight	V1	

	
Notes	
	
The	benefit	of	having	almost	entirely	mechanical	assets	is	limiting	the	need	for	
rigging,	I	can	take	the	time	I’d	spend	learning	rigging	and	use	that	for	more	Unreal	
work.	
	
Controls:	
	
Built	for	controllers—XBOX	or	PS	style	analog	controllers.	Consider	mouse	and	
keyboard	controls	in	the	future.	
	

69

Controls	should	start	with	controller,	and	all	button	functions	eventually	should	be	
able	to	be	remapped	by	the	user	(except	the	pause	button	maybe.)	
	
Art	style/Color:	
	
Shouldn’t	be	drab	and	dustbowl,	but	nor	should	it	be	hyperstylized	painterly	like	
Blizzard,	Dota2	or	League	of	Legends.	Star	Wars	(original	trilogy)	is	a	great	visual	
reference—colorful,	lived-in,	old	looking	future	machines.	Lattices,	greebles,	rust-
streaked	domes,	but	also	lights	and	electricity	everywhere.	Deep	tones	with	lots	of	
texture	and	some	saturated	highlights	and	flourishes.	Lots	of	stone,	mud,	grass,	but	
also	lots	of	scattered	semi-campy	future	tech	with	some	saturated	glow.	Wires,	
cables,	etc.		
	
Structures	and	some	natural	game	objects	should	be	destructible,	but	I	don’t	want	to	
get	trapped	in	the	“fabricate	all	assets	to	be	destroyed,”	problem.	Much	of	the	
overworld	will	be	indestructible	landmarks.	But	the	player	ship	has	bombs,	and	
those	need	to	have	impact.	Decals	will	become	necessary	as	art	and	mechanics	
progress.	Additionally,	enemies	being	downed	should	lead	to	them	dropping,	
bouncing,	and	exploding.	Explosion	systems	(Houdini?)	will	be	important	as	they’ll	
be	part	of	the	fun	and	a	major	way	the	player	gets	feedback.	

70

Bibliography

[1] Activision. Battlezone, 1998.

[2] Federal Aviation Administration. Fact sheet – small unmanned aircraft systems (uas) regula-
tions (part 107), 2020.

[3] T. Aiello. New nypd ‘digidog’ robot raising questions among new yorkers. 2021.

[4] Atari. Battlezone, 1980.

[5] G. Barber and T. Simonite. Some us cities are moving into real-time facial surveillance. 2019.

[6] D. Bavelier. Your brain on video games. https://bit.ly/2ViRxhG, 2012.

[7] A. Blaszczak-Boxe. Drone pilots suffer ptsd just like those in combat. 2015.

[8] M. Busby. Use of ’killer robots’ in wars would breach law, say campaigners. 2018.

[9] Capcom. Ghouls’n’ghosts, 1988.

[10] Boston Dynamics. Do you love me? https://bit.ly/3k6cXce, 2020.

[11] Unreal Engine. Unreal engine 4.24 to ship with free quixel megascans, unreal studio features,
and more. https://bit.ly/36q6Pn9, 2019.

[12] J. Cameron et. al. The terminator, 1984.

[13] C. Ferguson, S. Rueda, A.Cruz, D. Ferguson, S. Fritz, and S.Smith. Violent video games and ag-
gression: Causal relationship or byproduct of family violence and intrinsic violence motivation?
Criminal Justice and Behavior, 35:311–332, 2008.

[14] H. Fountain and M. Schmidt. ‘bomb robot’ takes down dallas gunman, but raises enforcement
questions. 2016.

[15] Yacht Club Games. Shovel knight, 2014.

[16] Yacht Club Games. Two million copies of shovel knight sold!! https://bit.ly/3k4mVLo, 2018.

[17] J. Garth. Brusify.io. https://www.brushify.io/, 2020.

[18] A. Griffin. Trump to launch crackdown on violent video games after mass shootings. 2019.

[19] E. Hawkes, L. Blumenschlein, J. Greer, and A. Okamura. A soft robot that navigates its
environment through growth. Science Robotics, 2017.

[20] [C.] Hocking. Ludonarrative dissonance in bioshock. 2007.

[21] J. Huizinga. Homo Ludens: A Study of the Play Element in Culture. Martino Publishing, 1950.

71

[22] R. Hunicke, M. LeBlanc, and R. Zubek. Mda: A formal approach to game design and game
research. 2004.

[23] Irem. R-type, 1987.

[24] Torulf Jernstrom. Let’s go whaling: Tricks for monetizing mobile game players with free-to-play.
https://bit.ly/36serWo, 2016.

[25] D. Karpukhin. Blockout tools plugin. https://bit.ly/2UvGzVL, 2019.

[26] Konami. Castlevania, 1986.

[27] B. Levinson and V. Curtin et. al. Toys, 1992.

[28] Rare Ltd. Wizards and warriors, 1987.

[29] T. Maughan. The dystopian lake filled by the world’s tech lust. 2015.

[30] K. Miles. Artificial intelligence may doom the human race within a century, oxford professor
says. 2014.

[31] Nintendo. The legend of zelda, 1986.

[32] Nintendo. Kid icarus, 1987.

[33] Rockstar North. Grand theft auto v, 2015 (Windows Version).

[34] Nintendo of America Inc. Nintendo power awards ’88. Nintendo Power, 1989.

[35] The Bureau of Investigative Journalism. Drone warfare. https://bit.ly/2UDylLr, 2010-2020.

[36] Rivers of Steel. Carrie blast furnaces national historic landmark. https://bit.ly/36FEsBL, 2021.

[37] M. Pavlovich. Houdini auto game res. https://bit.ly/3e2Z4aR, 2020.

[38] [A.] Pratt. Cluedo/clue, 1949.

[39] Associated Press. Former nfl player kills 6 people, then himself, in south carolina. 2021.

[40] CD Projekt Red. The witcher 3: Wild hunt, 2015 (Windows Version).

[41] [M.] Robbins. Uno, 1971.

[42] SEGA. Herzog zwei. https://segaages.sega.com/project/herzog-zwei/.

[43] Bethesda Game Studios. The elder scrolls iii: Morrowind, 2002.

[44] Bethesda Game Studios. The elder scrolls v: Skyrim, 2011 (Windows Version).

[45] Rockstar Studios. Red dead redemption 2, 2019 (Windows Version).

[46] Technosoft. Herzog zwei, 1990.

[47] K. Telinbas and E. Zimmerman.

[48] Campaign to Stop Killer Robots. Who wants to ban fully autonomous weapons?
https://www.stopkillerrobots.org/, 2021.

[49] J. Uitti. Nike nuclear missile site s-13/14. https://bit.ly/3ww3FJl.

[50] J. Vincent. The nypd is sending its controversial robot dog back to the pound. 2021.

72

[51] A. Vintsevych. Witch hunt, 2018.

[52] D. Zendle, P. Cairns, and D. Kudenko. No priming in video games. Computers in Human
Behavior, 78:113–125, 2018.

73

	Framing Ludens: Pawn Swapping and Game Mode Alteration in an Unreal Engine Game Level
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Artist Statement
	List of Figures
	Introduction
	Statement of Intent
	MDA Framework
	Video Games and Psychology
	Vintage-to-Modern, Vintage within Modern

	Related Work
	Vintage Roots
	Modern Gameplay
	Vintage-in-Modern

	Design: Content, Tone, and Message
	Drones and Technology
	Environmental Message

	Design: Lookdev and Asset Generation
	Knight
	Level Assets - Primary
	Level Assets - Secondary
	Overworld
	Frame

	Design: Gameplay Mechanics
	Implementation and Gameplay Methodology
	Iteration

	Results
	Conclusions and Discussion
	Conclusions

	Appendices
	Shovel Knight Mechanics Comparison
	Primary Side Scroller Level Asset Generation
	Pawn Swapping Blueprints
	Knight Player Controller
	Game Design Document

	Bibliography

