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Abstract

This dissertation pushes on the boundaries of improving human performance

through individualized models of fatigue and recovery, and optimization of human

physical effort. To that end, it focuses on professional cycling and optimal pacing of

cyclists on hilly terrains during individual and team time trial competitions. Cycling

is an example of physical activity that provides nice interfaces for real-time perfor-

mance measurement through inexpensive power meters, and for providing real-time

feedback via a mobile displays such as smartphones. These features enable imple-

menting a real-time control system that provides the optimal strategy to cyclists

during a race.

There has been a lot of work on understanding the physiological concepts

behind cyclists’ performance. The concepts of Critical Power (CP ) and Anaerobic

Work Capacity (AWC) have been discussed often in recent cycling performance re-

lated articles. CP is a power that can be maintained by a cyclist for a long time;

meaning pedaling at or below this limit, can be continued until the nutrients end in

the cyclist’s body. However, there is a limited source of energy for generating power

above CP . This limited energy source is AWC. After burning energy from this tank,

a cyclist can recover some by pedaling below CP .

In this dissertation, we utilize the concepts of CP and AWC to mathematically

model muscle fatigue and recovery of cyclists. We use experimental data from six
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human subjects to validate and calibrate our proposed dynamic models. The recovery

of burned energy from AWC has a slower rate than expending it. The proposed

models capture this difference for each individual subject. In addition to the anaerobic

energy dynamics, maximum power generation of cyclists is another limiting factor on

their performance. We show that the maximum power is a function of both a cyclist’s

remaining anaerobic energy and the bicycle’s speed.

These models are employed to formulate the pacing strategy of a cyclist during

a time trial as an optimal control problem. Via necessary conditions of Pontryagin

Minimum Principle (PMP), we show that in a time trial, the cyclist’s optimal power is

limited to only four modes of maximal effort, no effort, pedaling at critical power, or

pedaling at constant speed. To determine when to switch between these four modes,

we resort to numerical solution via dynamic programming. One of the subjects is then

simulated on four courses including that of the 2019 Duathlon National Championship

in Greenville, SC. The simulation results show reduced time over experimental results

of the self-paced subject who is a competitive amateur cyclist.

Moreover, we expand our optimal control formulation from an individual time

trial to a Team-Time-Trial (TTT) competition. In a TTT cyclists on each team

follow each other closely. This enables the trailing cyclists to benefit from a rather

significant reduction in drag force. Through a case study for a two-cyclist team,

we show that the distance between the cyclists does not need to be variable and

can be set at the minimum safe gap. We then use this observation to formulate the

problem for an n-cyclist team. We propose a Mixed-Integer Non-Linear Programming

(MI-NLP) formulation to determine the optimal positioning strategy in addition to

optimal power and velocity trajectories for a three-cyclist team. The results show

improved travel time compared to a baseline strategy that is popular among cycling

teams.
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The results from this work highlight the potential of mathematical optimiza-

tion of athletes’ performance both prior and during a race. The proposed models of

fatigue and recovery can help athletes better understand their abilities at their limits.

To prepare for a race, cyclists can practice over the simulated elevation profile of the

race on a stationary bicycle with the optimal strategies we proposed. Additionally, if

allowed by the rules of a specific competition, a cyclist can be provided with real-time

race strategies. There is also the potential for integrating the proposed algorithms

into the available commercial smart stationary bicycles for improving well-being and

training of the general public.
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Chapter 1

Introduction

Optimization of human performance by accurately modeling fatigue has chal-

lenged athletes, coaches, and scientists. The rise in popularity of wearable sensors in

physical activity tracking presents opportunities for modeling and optimizing perfor-

mance as they alleviate the need for expensive laboratory equipment. Understanding

fatigue dynamics can potentially help athletes train in a more efficient way and per-

form at their peak. Moreover, it can provide useful information to further enhance

the performance of an athlete during a physical exercise. Fatigue due to prolonged

exercise is defined as a decline in muscle performance which accompanies a sensation

of tiredness [5, 6]. Therefore, during physical exercise, fatigue prevents athletes from

producing the required power.

Cycling is an example of physical exercise that enables a systematic perfor-

mance optimization given the known dynamics of a bicycle’s movement. There are

several types of commercial sensors, such as power, heart rate, cadence, and muscle

oxygenation, that can be mounted on a bicycle or worn by a cyclist for monitoring

the cyclist’s performance. Obtaining data from these sensors can help in developing

individualized optimal strategy for a race. Figure 1.1 illustrates a cyclist pedaling

1



Figure 1.1: An illustration of optimal pacing of a cyclist using upcoming elevation data, a dynamic
model of cyclist fatigue and recovery, and a model of bicycle longitudinal dynamics. The illustration
also shows a dynamic programming grid on two states of velocity and anaerobic energy for planning
the optimal velocity or power. The optimal power is communicated and displayed to the cyclist in
real-time. Drawn in https://www.icograms.com.
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in a time trial on a mountain course. Even seasoned cyclists may find it challenging

to pace themselves in such a course. By over exerting themselves too early or too

late, they may not achieve their maximum potential. We hypothesize that cyclists

can finish a time trial faster if they plan in advance in consideration of their state of

fatigue and upcoming road elevation. The pacing strategy can be formalized as an

optimal control problem which requires dynamic models of fatigue and recovery and

maximal power capacity of a cyclist as a function of their fatigue levels. While former

members of our team had attempted optimal pacing based on a dynamic model of

muscle fatigue and recovery in [7] and [8], such lumped muscle models were complex

and hard to experimentally verify and calibrate.

Several studies such as [9, 10, 11] have investigated fatigue in cycling and

developed models for it based on the expenditure of anaerobic energy. Only a few

studies investigate the recovery dynamics of this anaerobic energy [12]. Alternatively,

one can consider fatigue as running out of Anaerobic Work Capacity (AWC) which

is a limited tank of anaerobic energy, and recovery as reconstitution of AWC when

pedaling below a Critical Power (CP ). Such a model can be more easily verified and

calibrated in laboratory experiments as our recent work in [13, 14, 15] shows. In fact,

a model based on anaerobic energy expenditure has been used in [16] to optimize a 5

km cycling time-trial. However, a model for recovery was not considered in [16]. In

order to hypothesize dynamic models of fatigue and recovery, we first need to review

the current models presented in literature.
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1.1 Literature Review

1.1.1 Fatigue Definition and Mechanism

Several studies have investigated fatigue, which has led to its many definitions.

For example, in [17] authors define fatigue as a reduction in maximal capacity to

generate force or power during exercise. Whereas, fatigue is defined as inability to

produce the desired force or power resulting in impaired performance in [18] and [19].

The point of occurrence of fatigue is defined as the moment at which a drop from the

desired power level is observed, which is also time-to-exhaustion, thus making both

terms indistinguishable [20]. To address this, in [21] and [22] fatigue is defined as a

continuous process altering the neuromuscular functional state resulting in exhaustion

and exercise termination. In general, there are two sources of fatigue: central fatigue

and peripheral fatigue [23]. Central fatigue is defined as the failure of the Central

Nervous System (CNS) in sending necessary commands to muscles to operate [24].

This factor is essentially important in high-intensity exercise [25]. Peripheral fatigue

is caused at the muscle level. It can be induced because of the neuromuscular failure in

muscles to comprehend and perform the commands coming from CNS, and deficiency

of vital substances [25].

The above mentioned studies illustrate the difficulty involved in arriving at

a global definition of fatigue. The mechanism of fatigue leading to exhaustion are

different for cycling, running, swimming, etc [26]. As we previously presented in [13],

we define muscle fatigue and recovery in cycling as follows:

• Fatigue: Expending energy from anaerobic metabolic systems by pedaling above

a critical power which results in a decrease of maximum power generation ability.

• Recovery : Recovering energy from anaerobic metabolic systems by pedaling be-
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low the critical power which results in an increase of maximum power generation

ability.

1.1.2 Muscle Fatigue Measurement and Modeling

Measuring the effect of central fatigue on muscle performance is a challenge

since the the matter is highly subjective [27]. Most research efforts to objectively mea-

sure central fatigue are focused on measurement of Maximum Voluntary Contraction

(MVC) [28, 29, 30]. In voluntary contraction of a muscle, the generated force is pro-

portional to the muscle electrical activation [31]. A standard way of measuring muscle

activity is via Electromyography (EMG) tests. During the test the amount of electric

potential produced in muscles can be measured. Although studies such as [32] and

[33] have shown the accuracy of EMG tests in measuring maximal and submaximal

voluntary contractions, there is evidence of underestimating muscle activation at high

force levels [23]. Therefore, to point to the goal of the current study, EMG cannot

provide accurate data for modeling a cyclist’s fatigue and recovery.

In addition to central fatigue there are several sites for peripheral fatigue.

To get a better understanding of fatigue at muscle level, we should focus on muscle

metabolic system. Like all of the natural processes in the world, muscle contraction

needs a source of energy to be executed. The fuel that provides this energy is adeno-

sine triphosphate (ATP). When one phosphate radical detaches from ATP, more than

7300 calories of energy are released to supply the energy needed for muscle contrac-

tion [1]. After this detachement, ATP converts to adenosine diphosphate (ADP).

When a human muscle is fully rested, the amount of available ATP is sufficient to

sustain maximal muscle power for only about 3 seconds, even in trained athletes [1].

Therefore, for any physical activity that lasts more than a few seconds, it is essential
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Table 1.1: Comparison between three metabolic systems that provide ATP for muscle contraction
[1].

Metabolic system Moles of ATP/min Endurance time

Phosphagen system 4 8-10 seconds
Glycogen-lactic acid system 2.5 1.3-1.6 minutes

Aerobic 1 Unlimited (as long as nutrients last)

that new ATP be formed continuously.

There are three metabolic systems which provide the needed ATP: Aerobic

system , Glycogen-lactic acid system and Phosphagen system. Table 1.1 compares

the three systems, in terms of moles of ATP generation per minute and endurance time

at maximal rates of power generation. Utilization of these systems during physical

activity is based on the intensity of the activity.

Cycling can fall in all categories above depending on the intensity of the ex-

ercise. Many people cycle for fun and get around cities. In this case they may only

use their aerobic system which provides them with low amount of power which they

can hold for a very long time. However, during high intensity cycling such as in a

time trial, the human body will use the other two sources besides the aerobic system

to provide enough energy for muscle contraction. This is important when designing

mathematical models that describe muscle power generation in cycling. Later on,

we discuss a method to define a power limit below which the cyclists use their aero-

bic metabolic system that allows them to hold their power for long periods of time.

However, there is limited energy to pedal above this power limit.

During aerobic exercise, muscles utilize the aerobic metabolic system to pro-

duce ATP. Oxygen plays a vital role in formation of ATP molecules. There are

two major methods to measure oxygen during a fatiguing exercise. The first one is

measuring the volume of oxygen intake in breathing (V̇O2) [34]. During a physical
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exercise, V̇O2 increases to provide the necessary oxygen needed to produce ATP in

the muscle as suggested in [35, 36], and modeled in [37]. The experimental procedure

to measure V̇O2 requires a number of laboratory equipment that cannot be used by a

cyclist during everyday outdoor ride. The second method is directly measuring the

amount of oxygenated hemoglobins at the local muscle (muscle oxygenation). When

muscles are fully fresh, the percentage of oxygenated hemoglobins among the total

number of hemoglobins is at its highest. During a fatiguing exercise, this percent-

age drops. Several studies show that Near Infrared Spectroscopy (NIRS) is a robust

method to measure muscle oxygenation [38, 39, 40]. A few companies currently make

wearable devices that enable the cyclists to monitor their muscle oxygenation in real-

time [41, 42]. We have shown in [13] a real-time measurement of muscle oxygenation

during a set of experiments.

Another fatigue indicator is the amount of lactate produced in the muscle.

Maximum Lactate at Steady State (MLSS ) is the maximum maintainable blood lac-

tate concentration without additional buildup through aerobic exercise [43, 44]. Dur-

ing an anaerobic exercise, the rate of lactate production is higher than its dissipation

[45]. As authors in [46] and [47] suggest, the amount of lactate accumulation can pro-

vide useful information about the fatigue level of muscles. The high lactate levels at

muscle represent a lower ability of the muscle to generate force and power [18, 48, 49].

Traditionally, a common way to measure lactate has been taking blood samples or

biopsies during an experiment [50, 51]. These invasive methods are not in any way

suitable for real-time measurement and estimation of fatigue. Recently, authors in

[52] developed a non-invasive method to measure blood lactate using electromagnetic

wave sensors. Commercialization of such non-invasive in-situ measurement techniques

will enable researchers to develop mathematical models that represent the relationship

between blood lactate level and muscle power/force generation capacity.
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1.1.3 Fatigue and Recovery in Cycling

In cycling, it is easier to measure power without elaborate laboratory equip-

ment owing to the development of commercial grade power meters. However, deter-

mining exercise intensity using power is not straightforward as a threshold power is

needed to classify exercise intensity. As stated in [53] and [54], the Critical Power

(CP ) can potentially be used to determine exercise intensity. It has been shown that

CP is close to the power at which MLSS occurs according to [55, 56, 57]. This means

that while pedaling at a power level above CP , a cyclist would expend energy from

anaerobic energy sources. On the other hand, pedaling below CP allows the cyclist

to partially recover the burned energy using anaerobic metabolic system [55, 56, 57].

The critical power concept was introduced by authors in [58]. They defined

CP as the maximum power output that can be maintained indefinitely. In [59]

authors showed that there is a limited amount of anaerobic energy for a cyclist to

pedal above CP . This “tank” of energy is called Anaerobic Work Capacity (AWC).

They suggest by pedaling at a certain power level above CP , a cyclist can hold that

power for a limited amount of time before he or she runs out of anaerobic energy and

cannot pedal above CP . This is known as the two parameter model. The relationship

between critical power and anaerobic work capacity is often expressed as:

P = CP +
AWC

tlim
(1.1)

where P is instantaneous power in Watts, and tlim is time-to-exhaustion in seconds.

The experimental protocol designed to calculate CP and AWC in Equation (1.1)

requires multiple lab visits for the test subjects according to [10, 11, 60, 61, 62] .

To avoid these multiple lab visits, authors in [63] developed a 3-minute-all-out

test (3MT) as in Figure 1.2. In this test, subjects sprint “all-out” for the entire 3
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minutes. The value of CP is given by the average power output of the last 30 seconds.

The value of AWC is the area between the power curve and CP . This test has been

validated in [64] and [65]. Therefore, we can conclude that to calculate the amount of

expended anaerobic energy at any point in time, we can simply integrate the power

curve above CP .

Figure 1.2: The 3-minute-all-out test protocol. The average power at the last 30 seconds of the tests
is considered to be CP , and the area between power plot and CP is equivalent to AWC.

On the other hand, recovery happens at a slower rate than fatigue [66, 67].

Authors in [68] propose an exponential model for recovery of anaerobic energy as,

W ′
bal =

∫ t

0

W ′
expe

−(t−u)
τW ′ du (1.2)

where W ′ is the estimate of AWC from the 3MT test, W ′
bal is the remaining anaerobic

energy at every time, W ′
exp is the amount of expended energy, (t − u) is the recov-

ery interval duration, and τW ′ is the time constant of reconstitution of W ′ which is

calculated from,

τW ′ = 546e−0.01DCP+316 (1.3)
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where DCP is the difference between CP and the average power during the recovery

interval. The model in Equation (1.2) has been shown to underestimate the amount

of recovered anaerobic energy in [69, 70]. Additionally, in Equation (1.3) τW ′ is

calculated as a function of the average power during the recovery interval. However,

this average power is not known until the end of the recovery interval. Therefore,

the aforementioned model cannot serve as a real-time predictive model of recovery

during cycling. In this study, we propose a subject specific recovery model that is

predictive and can be used in formulating an optimal control problem for time trial

competitions.

1.1.4 Cycling Time Trial

There are a few other studies in which an individual time trial competition is

formulated as an optimal control problem such as [7, 16]. The authors in [7] propose

dynamic models of fatigue and recovery that are based on the notion of MVC. First,

they suggest that the maximum isometric force decays with fatigue according to the

relationship below,

dFmax,iso(t)

dt
|fatigue = −kFmax,iso(t)

Fiso(t)

MVC
(1.4)

where Fmax,iso is the maximum isometric force generation of a cyclist, k is the model’s

constant, Fiso is the applied isometric force, and MVC is the maximum voluntary

contraction of a subject when fully fresh. The authors propose a different model for

recovery as,

dFmax,iso(t)

dt
|recovery = R(MVC − Fmax,iso(t)) (1.5)
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where R is the model’s constant. Combining Equations (1.4) and (1.5) the maximum

isometric force generation ability of a cyclist during an exercise can be written as,

dFmax,iso(t)

dt
= −kFmax,iso(t)

Fiso(t)

MVC
+R(MVC − Fmax,iso(t)) (1.6)

Knowing the maximum isometric force generation ability of a cyclist in real

time, they define the state of fatigue of the cyclist as,

SOF =
MVC − Fmax,iso(t)
MVC − Fth,iso

(1.7)

where Fth,iso is the equilibrium of Equation (1.6) at which the recovery and fatigue

happen at an equal rate. This equilibrium is determined as,

Fth,iso = MVC
R

2k
(−1 +

√
1 + 4

k

R
) (1.8)

The state of fatigue SOF , which is a number between 0 and 1, is considered

as a state in the optimal control formulation. While the models presented in the

paper mentioned above have basis in the literature, they are not validated using

experiments. Moreover, in sports science community the notions of AWC and CP

are more widely used.

In [16], the individual cyclist models presented are centered around AWC and

CP . The dynamics of the remaining anaerobic energy of a cyclist is presented as,

a(t) = u− CP (1.9)

where a is the remaining anaerobic energy and u is the cyclist’s power. In this

model recovery and fatigue happen at the same rate. However, in Section 1.1.3 it is

mentioned that there are several studies suggesting that the recovery happens at a
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slower rate than fatigue as mentioned in Section 1.1.3. Moreover, the authors in [16]

assume the maximum power generation ability of a cyclist is constant. The results of

a 3MT test rejects this assumption. If the power generation ability does not decay,

then during the 3MT a cyclist is able to generate a constant level of power.

In the present study, using the concepts of Critical Power (CP ) and Anaerobic

Work Capacity (AWC), we propose an anaerobic energy recovery model that has

a slower rate than fatigue and validate it using experimental data. Moreover, we

propose a model for maximum power generation ability of a cyclist that is dependent

on both the remaining anaerobic energy and the speed of a cyclist.

1.2 Contributions of this Dissertation

1. Developing practical mathematical models of fatigue and recovery

in cycling :

In this dissertation, we investigate performance optimization for cyclists during

time trial competitions, by formulating them as optimal control problems. To

this end, a thorough literature review of the definitions, mechanisms, and models

for fatigue and recovery is performed. The concepts of Anaerobic Work Capacity

(AWC) and Critical Power (CP ) are selected as the physiological parameters

to be used in modeling a cyclist’s fatigue and recovery during exercise. We

then explain the design of a set of experimental protocols to determine how

a cyclist expends and recovers anaerobic energy from the AWC. Out of 17

participants in the study, six subjects were able to successfully finish all the

tests. Based on the experimental data, We propose a switching model for the

dynamic of the remaining energy of a cyclist, in which recovery has a slower rate

than fatigue. The rate of recovery depends on the cyclist’s power level below
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CP , which makes the model practical for real-time non-invasive performance

assessment. Another important model derived from the experiments, is the

maximum power generation ability of a cyclist. When a cyclist is fatigued,

his or her maximum power generation ability is lower than a maximum effort

when fully fresh. Additionally, there is an optimum pedaling cadence at which

a cyclist’s power generation ability is at its maximum. Pedaling below or above

the optimum pedaling cadence, lowers one’s ability to generate power. In this

dissertation we propose a model for maximum power generation ability of a

cyclist as a function of the remaining anaerobic energy and pedaling cadence,

which is another contribution of this research.

2. Improving the travel time of a competitive amateur cyclist during

an individual time trial by implementing an optimal controller :

We formulate an optimal control problem for a cyclist participating in an indi-

vidual time trial competition using the generated dynamical models of fatigue

and recovery from experimental data. The objective is to minimize time, con-

strained by both the bicycle and the cyclist’s anaerobic energy dynamics. First,

we derive the form of the optimal solution by adopting an analytical approach to

the problem. Applying Pontryagin’s Minimum Principle (PMP), we show that

the optimal power for a cyclist can be either zero, CP , at maximum, or a power

level that keeps the bicycle’s velocity constant. We benefit from this result in

the numerical simulation of the problem using Dynamic Programming, by lim-

iting the solution space to the four modes found from the analytical solution.

We then simulate a time trial competition using the model parameters for one

of our subjects, who is a competitive amateur cyclist, and elevation profile from

the 2019 National Duathlon Championship in Greenville SC. As a baseline, we
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simulate the same elevation profile on a stationary bicycle trainer, and ask the

same subject to ride over the simulated course in the laboratory environment

with her own strategy. The optimal control simulated shows a 24% lower travel

time compared to the baseline. However, in reality, a cyclist cannot perfectly

follow the optimal power trajectory calculated by the controller. Therefore, in a

first of its kind experiment, we set up a test environment in which the controller

receives power, velocity, and position data from the cyclist, and sends back the

optimal power to hold to the cyclist in real-time. In a pilot test the cyclist’s

travel time was reduced by 3% by following the controller’s recommendation

compared to the baseline test.

3. Showing that the mathematical optimal strategy during a team time

trial race outperforms a popular empirical one :

A more complicated competition in cycling races is a Team Time Trial (TTT).

In a team time trial, unlike the individual case, the cyclists in a team should

cooperate with other. The important factor that affects the strategy of a team

is the reduction in aerodynamic drag force acting on a cyclist who is trailing

another team member with a close gap. The aerodynamic drag coefficient is a

function of both the distance gap to a lead cyclist, and the position of a cyclist in

the platoon. Using the previously calibrated models of fatigue and recovery, we

first formulate an optimal control problem for a two-cyclist team. By applying

the Direct Multiple Shooting method, we translate the optimal control problem

to a Non-Linear Programming problem and solve it using the CasADi solver [71],

and using the elevation profile of the 2019 National Duathlon Championship.

The results show that while switching positions is necessary for the cyclists,

the distance gap between them should be at the minimum safe gap. Then,
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we expand the formulation to an n-cyclist team. In this case, distance gap

between the cyclists is fixed, but the formation of them in the platoon is for the

controller to decide. The respective optimal control problem is transformed to

a Mixed-Integer Non-Linear Programming problem which is again solved with

CasADi. For the purpose of comparison, we create a baseline solution where we

apply a rule-based formation trajectory, and run the optimization problem with

the team’s acceleration as the only control input. This rule-based trajectory is

based on the current popular strategy followed by cycling teams. This strategy

directs the lead cyclist to frequently go to the back of the platoon after spending

some time in the lead position [4]. Simulation results over the first 10 km of

the 2019 National Duathlon Championship shows that the travel time of a

three-cyclist team can be reduced by 2.3% compared to the baseline case. The

optimal formation trajectory determined by the controller heavily depends on

the elevation profile alongside the fatigue/recovery model parameters for each

cyclist. Therefore, a rule-based strategy cannot be adopted for usage in every

competition.
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Chapter 2

Modeling and Experimental Design

A major part of this dissertation research focused on hypothesizing models

for cyclists’ fatigue and recovery, recruiting human subjects with proper Institutional

Review Board (IRB) approvals, validating the hypothesis and calibrating the param-

eters of our chosen models using individualized data collected over many lab visits.

This was a collaborative effort with another Ph.D. student. This chapter describes

the test protocol and setup, models that were hypothesized, and their calibration pro-

cess. In particular, we use the previously described three-minute-all-out test (3MT)

to estimate the subjects’ Critical Power (CP ) and Anaerobic Work Capacity (AWC).

The 3MT test also provides information regarding maximum power generation abil-

ity of a cyclist. We propose a model that relates the maximum power generation

ability of a cyclist to his or her remaining anaerobic energy and pedaling speed. To

determine the rate of recovery, we designed an interval test through which we can

model the dependency of the recovery rate on a cyclist’s power level, and recovery

duration. These models help us assess the performance of a cyclist before, during,

and after exercise, which is important in determining the optimal pacing strategy

during a time trial effort.

16



2.1 Experimental Protocol

All of the experiments for this study were conducted in a laboratory setting

on both Clemson and Furman University campuses. The tests were programmed

on a RacerMate CompuTrainer [72] using Perfpro studio software application [73].

Subjects brought their own bicycles to be mounted on the CompuTrainer. The Com-

puTrainer applies resistance to the rear wheel, which can be programmed to follow

any desired power profile. There are a few studies such as [74] that suggest the Com-

puTrainer’s power measurement accuracy depends on a variety of parameters such

as temperature and calibration procedure. Nevertheless, the CompuTrainer has been

shown to be a valid device to estimate CP and AWC using the 3MT test in [75]

and [76]. Figure 2.1 shows the experimental setup in our laboratory. The power and

speed sensors are integrated in the CompuTrainer. Additionally, we used a Garmin

heart rate [77], and a Moxy muscle oxygenation [41] sensor, shown in Figure 2.2, to

collect data. These sensors were connected to the PerfPro software and measured

heart rate and muscle oxygenation in real-time.

Figure 2.1: A view of the testing environment. The cyclist in this photo is not one of our subjects.
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Figure 2.2: The Garmin heart rate (top), and Moxy muscle oxygenation (bottom) sensors used in
the experiments.

The experimental protocol comprised of three tests namely, (i) a power ramp

test to determine Gas Exchange Threshold (GET), (ii) a 3-minute all-out test (3MT)

to determine CP and AWC, and (iii) an interval cycling test to determine the recovery

of AWC. The ramp test involves incrementally (25 watts per minute) increasing the

power at a constant cadence of 80 rpm until the subject is exhausted [15]. From the

ramp test, oxygen uptake V̇O2 , defined as the volume of oxygen inhaled per minute

per kilogram of body weight [34], alongside the volume of CO2 exhaled per minute

per kilogram of body (V̇CO2), and the power are tracked. During the test, there

is an abrupt increase in the ratio of volume of CO2 exhaled to the volume of O2

inhaled, which is the point at which blood lactate concentration starts to increase.

This point is called the Gas Exchange Threshold (GET). The test is terminated when

the subject pedals at least 5 rpm below the set cadence level of 80 rpm for 10 seconds

(exhaustion). We then record the power at GET (PGET ) and the power at the end of

the test (Pmax). The average of these two powers (Pcal) was used to calibrate the 3MT

test. The CompuTrainer’s load was adjusted in a way that at 80 rpm, the subject’s
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power would be equal to Pcal. This method is adopted from [63] and [78].

In the next step, the subjects were tasked with performing the 3MT test. For

each subject the CompuTrainer was calibrated using Pcal. Constant verbal encour-

agement was given to the subjects during the 3MT test to make sure they are exerting

maximum power throughout the test. Each subject performed four 3MT tests. The

first one served as a familiarization test for the subject to understand what the pro-

cess is. Then, 3MT is performed three more time on three different days to make sure

about the repeatability of the 3MT test. We then calculated CP from the average

power of the last 30 seconds of the test, and AWC by integrating the power curve

above CP .

The CP and AWC from the 3MT are then used to design the interval test for

modeling the AWC recovery. The interval test was developed using the definitions of

fatigue and recovery form Section 1.1.1 to derive mathematical models for recovery

of AWC as well as the maximum power generation capacity of cyclists at any instant

in a ride. The protocol was developed under the following assumptions:

• The 3MT test provides reliable estimates of CP and AWC.

• Exercise below CP utilizes the aerobic energy source, and results in recovery of

AWC.

• The recovery of AWC below CP happens at a slower rate than its expenditure

above CP .

• The rate of recovery depends on the recovery power and not the duration of

recovery.

• The power held during recovery interval is averaged and assumed to be constant.
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Figure 2.3: The power interval test protocol. After a warm-up period, the subject pedals at CP4 for
2 minutes. Then the cyclist pedals at three different recovery power levels for different time intervals
to recover energy. Following that, the subject performs a 3-min-all-out to burn all the remaining
energy from AWC.

The interval tests were conducted at three different recovery powers (min power

on Computrainer which was 80 Watts, 90% of power at GET (PGET ), and half way

between PGET and CP ) and three durations (2 min, 6 min, 15 min). The power

levels were adopted from [68] and recovery durations from [66]. There was at least 24

hours between two consecutive tests to ensure complete recovery. In the interval test

protocol as shown in Figure 2.3, after a warm up of 10 minutes, there is a 2 minute

interval at CP4, the power at which all of the subject’s AWC will be consumed in 4

minutes (CP4 = AWC
240

). The subject expends 50% of their AWC in the 2-min CP4

interval and then recovers AWC at the mentioned recovery powers and durations.

Following the recovery interval, the subject then performs a 3-min-all-out test to

expend all of their remaining AWC. The amount of energy recovered in the recovery

interval is then determined by subtracting AWC from the summation of areas above

CP through the entire test.

On the first visit, the ramp test was conducted followed by a 3MT familiar-

ization test. On the next three subsequent visits, a fresh 3MT was conducted from
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which we can calculate the average CP and AWC. On the fifth visit, the interval

test familiarization was conducted. On the nine subsequent visits, each subject per-

formed the interval test protocol at three different recovery power levels and three

time durations. We have conducted experiments on a total of 17 subjects. All of

the subjects are cyclists who cycle at least 3 times a week, and are used to high

intensity workout sessions. Each subject was scheduled for 14 one-hour-long visits

to our laboratory. Because of the complexities of such scheduling, only 6 of the sub-

jects were able to finish all of the tests. The test protocol was approved by Clemson

University’s Institutional Review Board (IRB) under protocol numbers IRB2016-169

and IRB2017-222. In order to be compliant with IRB policies we label our subjects

by a number. The subjects who successfully finished all the experiments were Subs

6, 9, 11, 12, 14, 16.

2.2 Modeling Fatigue and Recovery

Let w be the amount of AWC remaining during exercise. The rate of change

of w while expending energy above CP is given by the difference between the rider’s

power and CP . Recovery rate can be calculated similarly as assumed in [79]. How-

ever, it has been shown in [66] and [67] that recovery occurs at a slower rate than

expenditure. For instance, if the cyclist is pedaling at a power level below the critical

power, the amount of recovered energy will be less than the area between CP and

the power curve. Thus, we propose to compute an adjusted recovery power using the

amount of energy recovered given by,

Padj = CP − wrec
Trec

(2.1)
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where Padj is the adjusted recovery power, and Trec is the duration of recovery. Equa-

tion (2.1) can be rewritten to form an energy expenditure and recovery model as,

dw

dt
=


−(P − CP ) P > CP

−(Padj − CP ) P < CP

(2.2)

where P is the power output of the cyclist.

Equation (2.2) represents a switching dynamic model of fatigue and recovery.

To calculate the adjusted power we need a model that can provide Padj at any power

level in the recovery interval (i.e. below CP ). The interval test was performed at

three different power levels below CP , and three time durations to determine the

effect of each on the rate of recovery. As mentioned before, one of the sensors used

in the experiments was the Moxy oxygenation sensor. The sensor was placed on the

thigh of each subject. This sensor measures SmO2 which is the balance between

oxygen delivery and consumption in muscle in percentage. SmO2 is at its maximum

when the cyclist is fresh, and decreases as the cyclist gets fatigued. In other words, a

high SmO2 demonstrates the cyclist’s high amount of remaining energy from AWC.

The data collector from this sensor shows that, at each recovery power level, SmO2

rises to a certain level regardless of the time period of recovery as shown in Figure 2.4.

In this figure, for each recovery power, the SmO2 data series for all three recovery

time durations are plotted together, from which we can observe a consistent steady

state value for SmO2. Therefore, the SmO2 recovery, is dependent on the power level

and not on recovery time. We extend this conclusion to the recovery dynamics of

the anaerobic energy. Moreover, if it is assumed that w’s rate of recovery depends

on Trec, the amount of recovered energy during recovery interval will depend on the

recovery duration in the future which does not seem plausible. Therefore, we propose
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that the recovery rate of w does not depend on the duration of the recovery interval

Trec.

Figure 2.4: SmO2 recovery during 6 min of recovery interval at three different power levels bellow
sub 9’s CP .

To arrive at a relationship between Padj and the actual applied power by the

rider, using Equation (2.1), Padj can be calculated from the interval tests at each

recovery power and plotted against the actual pedaling powers as in Figure 2.5. The

following linear model provides a good fit to the experimental data from the interval

tests,

Padj = aP + b (2.3)

where a and b are the model’s constants. In order to find the recovery model pa-

rameters, the results of the interval tests are analyzed. As mentioned in before, it

is assumed that the recovery model does not depend on time interval. Therefore, at

each power level below CP , the adjusted power is calculated for the 3 time intervals

and then averaged. By doing this we will have a plot of adjusted power versus actual

applied power, consisting of 3 data points. Figure 2.5 represents the recovery model

derived for Sub 14. Each of the three data points in this figure represents the average
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adjusted power at each recovery power level for all three time intervals. The data

point close to CP represents the adjusted power for the case where the subject pedals

at halfway between PGET and CP . Since the corresponding adjusted power is very

close to CP we expect very little energy recovery at this level.
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Figure 2.5: Recovery model plot for Sub 14.

2.3 Maximum Power Generation

Another parameter which is affected by the expenditure of AWC is the cyclist’s

ability to generate an instantaneous maximum power at any point during cycling.

This is illustrated in the 3MT in Figure 1.2 where it is required for the subjects

to pedal at their maximum power throughout the test. The power continuously

decreases as a subject expends energy from AWC. Authors in [16] assumed a constant

maximum power generation ability of 800 Watts regardless of the amount of energy

remaining. If this assumption was to be valid, the 3MT profile would look completely

different.

Using 3MT, a model of the maximum power vs. remaining energy w can be

determined. The remaining energy at any instant during 3MT can be calculated
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by computing the remaining area between the power plot and the CP line. The

remaining energy w can then be plotted against power values in 3MT. Maximum

power of the cyclist is applied 2 to 3 seconds into the test as it can be seen in Figure

1.2. Data points before the maximum power account for overcoming flywheel and

aerobic inertia and are removed when fitting the model. The data is then fitted with

a linear expression of the form,

Pmax(t) = αw(t) + CP (2.4)

where w is the remaining energy of the cyclist’s work capacity, and α is the model’s

constant. Figure 2.6 represents the relationship between maximum power generation

ability and the remaining anaerobic energy of a cyclist.
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Figure 2.6: Power versus the remaining anaerobic energy of Sub 14 during the 3MT test.

There are several studies that suggest a relationship between maximum power,

force and cadence in addition to the remaining anaerobic energy. In [2] authors present

a survey of the literature on the maximal cyclist output (power, force, cadence). The

standard experiment for deriving this relationship consists of a series of fresh sprint

tests. Each sprint test is performed at a different braking force (CompuTrainer’s
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calibration force). To minimize the effect of fatigue, only the first few seconds of the

test is taken into consideration. Figure 2.7 adapted from [2] demonstrates the test

results for a subject performing fresh sprint tests at 4 different braking forces.

26



Figure 2.7: “a) Typical example of the time-course of the pedaling rate (or crank velocity) during
a force-velocity test on a Monark cycle ergometer: 4 short sprints against 4 braking forces (in kg at
the circumference of the flywheel and equivalent resistive torque in Nm at the crank axis). Squares
correspond to the peak values and circles to the mean values on each complete cycle before. b)
Time-power curves for the two extreme loads with the raw and filtered data (grey lines) and the
same representation of the mean values on the five first complete crank cycles and at the peak
velocities. c Mean value of torque, pedaling rate and power on these complete cycles (first 3 s of
each sprint) can be used to plot torque- and power-velocity relationships. Note the good match
in this example between the shape of these relationships for the two methods: one that considers
only the peak velocity values of the 4 distinct sprints of panel a (squares: power corresponds to
the product of peak velocity and braking force) and the other that considers all the cycles of the
2 sprints of panel b (circle: power measurement also takes into account the force to accelerate the
flywheel inertia during the first phase of the sprint” [2]

It is observed from Figure 2.7(d) that if one plots the maximum power from

each test against its corresponding cadence, a second degree polynomial relationship

between them can be found as:

P = −(
4Pmax
ω2
max

)ω2 + (
4Pmax
ωmax

) (2.5)

where (ωmax, Pmax) denotes the extremum point of the polynomial. Subsequently, the
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relationship between maximum force and cadence would be linear:

F = −(
8Pmax
ω2
max

)ω +
4Pmax
ωmax

(2.6)

Other studies also investigate the effect of fatigue of this parabolic relationship

[80, 81, 82]. In [82] the authors show that if we repeat the short sprint test at different

anaerobic energy levels and plot the parabolic function, the peak powers have a linear

relationship with their respective remaining anaerobic energy. This is similar to our

proposed model in Equation (2.4).

Similarly to power, maximum cadence also decreases with fatigue [80, 82]. As

authors show in [82], maximal cadence is a linear function of the remaining anaerobic

energy (w),

ωmax = αωw + ωmax,f (2.7)

where αω is a model parameter and ωmax,f is the maximum cadence of the cyclist when

AWC is fully depleted. Therefore, we propose the following model using Equations

(2.4) and (2.7) as below,

Pmax = −
(

4(αw + CP )

(αωw + ωmax,f )2

)
ω2 +

(
4(αw + CP )

(αωw + ωmax,f )2

)
ω (2.8)

It should be noted that we hypothesized Equation (2.8) after we collected our

experimental data. Therefore, we made an assumption for us to be able to determine

the constants α, αC and Cmax,f post hoc. We assume the braking force applied by

the CompuTrainer is set in a way that the subject is always at the peak power of

the parabolic power-cadence function at each energy level in figure 2.8. Under this

assumption we will be able to determine the model constants in Equation (2.8) with
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a single 3MT. Figure 2.8 visualizes Equation (2.8) using Sub 14’s model parameters

which will later be used in our optimal control formulation as a constraint.
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Figure 2.8: Maximum instantaneous power as a function of the cyclist’s cadence and remaining
anaerobic energy.

The summary of modeling results for all of the subjects is presented in Table

2.1. The reported values for CP , AWC, and constant parameters of the Equation

(2.8) are the average of the three 3MT tests each subject performed.

Table 2.1: Experimentally determined parameters for the six subjects who successfully finished all
of the 3-min-all-out and interval tests.

Subject Sex m (kg) CP (Watts) AWC (J) a b (Watts) α (1/s) αω(rpm/J) ωmax,f (rpm)

6 M 79 269 12030 0.11 237.5 0.037 0.017 139
9 M 63 233 10100 0.09 204.5 0.036 0.014 158
11 M 95 335 15092 0.08 300.9 0.039 0.01 163
12 M 70 217 5637 0.12 196.5 0.046 0.009 142
14 F 74 242 7841 0.08 222.5 0.044 0.008 164
16 M 51 206 9137 0.2 167.5 0.025 0.007 154
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2.4 Conclusion

In this chapter, an experimental protocol was proposed to hypothesize and

validate individualized mathematical models of fatigue and recovery. Six of the sev-

enteen recruited human subjects were able to successfully finish all of the tests in the

protocol. The protocol included 3MT and a recovery interval test which were repeated

3 and 9 times, respectively. Using the experimental data, a dynamic switching model

for anaerobic energy expenditure and recovery was proposed that depends only on

the power generated by a cyclist. Additionally, we presented a model to understand

the maximum power generation ability of a cyclist that depends on two contributing

factors. First, by expending energy from anaerobic sources, cyclists lose their ability

to generate power. This is evident from the 3MT test where subjects were required to

apply maximum power during the test, which declines throughout the test. Second,

regardless of fatigue, the power generation ability of cyclists is constrained by pedal-

ing cadence that is defined by a second-degree polynomial equation. This means that

at very low and high cadence, a cyclist cannot generated much power. Integrating

both of the contributing factors, we derived an equation to calculate maximum power

generation ability of cyclists as a function of their remaining anaerobic energy and

pedaling cadence.

The models proposed in this Chapter provide valuable information about the

physical readiness of an athlete. Cyclists can track their individualized model parame-

ters to better adjust their training routine. For instance, by measuring CP and AWC

every month, cyclists can observe how their training is influencing these parameters.

Then, in preparation for a race, they can design a specific training routine to improve

these two parameters. In this dissertation, these models are used to formulate an op-

timal control problem for individual and team time trial competitions. As described
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in the following chapters, having an estimate of a cyclist’s remaining anaerobic energy

and maximum power generation ability during a race, we can calculate the optimal

power to hold, and send it back to the cyclist in real-time.
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Chapter 3

Individual Time Trial

This Chapter presents an optimal control formulation and simulation for an

individual Time Trial (TT) competition. Now that we have validated dynamic models

of fatigue and recovery, the big question is what is the optimal strategy for a cyclist

to finish a race in minimum time? When determining a rule-based strategy, one can

think of pedaling at a constant power, or at a constant cadence as long as possible

regardless of the elevation profile. On the other hand, when considering the elevation

profile of the race, a cyclist may decide to pedal at a low power to “save” energy

during the flat and downhill sections to have enough power for overcoming steep

uphills. The question is how low should the recovery power be and for how long? To

find the answer, we should have a mathematical approach to the questions. While

our qualitative assessment of our performance and strategy can be helpful, in many

cases it does not result in the best possible strategy.

Following an optimal controller’s prescribed strategy can guarantee the best

result. However, such controller is dependent on the accuracy of the physiological

models of fatigue and recovery presented in the previous Chapter. While the models’

representation of the fatigue and recovery process is acceptable, it is impossible to

32



model human muscle performance perfectly. That is because there are numerous

factors affecting the process that might not be feasible to account for. Therefore,

an optimal controller that is designed based on imperfect models may not provide

the ultimate best solution. The main goal of this present Chapter is to find out

whether a cyclist who follows the controller’s recommendation can improve his or her

performance in a TT compared to using a rule-based self strategy.

3.1 Optimal Control Formulation

In this section, we formulate the time trial race for a cyclist as an optimal

control problem. The proposed system has three states: i) traveled distance s ii)

velocity of the bicycle v and iii) remaining energy of the cyclist w, and a single input

which is rider’s power u,

ẋ = f (x(t), u(t)) =

[
f1 f2 f3

]T
(3.1)

in which

x(t) =

[
s(t) v(t) w(t)

]T
(3.2)

where x(t) is the states vector. The function f is the nonlinear state-space model

function, which relates the rate of change of the 3 states to the states and input. The

first state function f1 in Equation (3.1) is simply,

ds

dt
= v

∆
= f1 (3.3)
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Newton’s second law can be used to write,

dv(t)

dt
=

u(t)

mv(t)
− mb

m
g(sin(θ) + CR cos(θ))− 1

2m
CdρAv(t)2 ∆

= f2 (3.4)

where mb is the mass of the bicycle and rider, m is the effective mass which is 1.4%

greater than mb, Cd is the aerodynamic drag coefficient, A is the frontal area, ρ is

the density of air which is assumed to be constant and independent of the elevation,

θ is the road slope which is positive for uphill and negative for downhill, and CR is

the coefficient of rolling resistance of the road.

Assuming 100% efficiency for the bicycle powertrain, we can equate u(t) to

the cyclist’s power on the pedals. The advantage of using Equation (3.4) is that gear

selection is not a factor in our formulation, which otherwise makes the optimization

more complex. Note that the third state equation for time derivative of cyclist’s

remaining anaerobic energy is the previously represented by Equation (2.2),

f3
∆
=
dw

dt
=


−(u− CP ) u > CP (a)

−((au+ b)− CP ) u < CP (b)

(3.5)

Now we are able to formulate a minimum-time optimal control problem to

formalize the pacing strategy in a time-trial. Therefore, the objective function to be

minimized is time,
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min
u(t)

J =

∫ tf

t0

dt (3.6)

subject to,

state-space model: ẋ = f(x(t), u(t))

velocity limits: 0 6 v(t) 6 vmax

remaining energy limits: 0 6 w(t) 6 AWC

rider’s power limit: 0 6 u(t) 6 umax(w, ω)

(3.7)

where umax is defined by Equation (2.8). In this formulation the final position is

specified and fixed but the other two states v and w are left open at the final position.

In the simulations, we assume the maximal speed vmax is constant during the trip, but

our approach applies if vmax varies along the road for example during sharp corners.

3.2 Analytical Approach to the Optimal Control

Problem

In this section we study the defined optimal control problem using the varia-

tional approach. According to Pontryagin’s Minimum Principle (PMP), the necessary

condition for the optimality of input u is that it minimizes the following Hamiltonian

function,

H(x(t), u(t), λ(t)) = L(x(t), u(t)) + λT (t) {f(x(t), u(t))} (3.8)
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in which

λ =

[
λ1 λ2 λ3

]T
(3.9)

where λ is the vector of co-state variables, L is the integrand in the cost function

J in (3.6), and f is the vector on the right hand side of the state equations with

components represented in Equations (3.3), (3.4), and (3.5). We also need to address

the constraint of maximum power generation of the cyclist. The maximum power

umax is a function of state variable w and cadence ω as represented in (2.8). We

need to translate ω to the state variable v for the constraint to be applicable in our

formulation. Using the gear ratio of the bicycle in our experimental setup, we can

write the bicycle’s velocity v at each gear as,

v(t) = giRrearω (3.10)

where gi is the gear ratio of the ith gear, and Rrear is the rear wheel (tire thickness

included) radius. The lab’s bicycle has 21 gear combinations. We can combine Equa-

tions (3.10) and (2.8) to obtain the relationship between maximum power generation,

remaining anaerobic energy, and the velocity as,

umax = − 4(αw + CP )(
αωw + vmax

giRrear

)2

(
v

giRrear

)2

+
4(αw + CP )(
αωw + vmax

giRrear

)2

v

giRrear

(3.11)

If we plot Equation (3.11) for each gear ratio, it will have a similar shape to

Figure 2.8 except that cadence is translated to velocity. To make the formulation

easier we want to build the constraint independent of the gear ratio, so we do not

need to add the gear ratio as an additional control input. To this end, we take the
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union of all 21 variations of Equation (3.11) given all 21 gear ratios. The reason

behind performing this operation is shown in Figure 3.1. This 2D figure shows the

parabolic relationship between power and velocity at a certain level of remaining

anaerobic energy for two gear ratios. The operating point p1 is feasible when the

1st gear is selected, and not feasible when 2st gear is selected. The opposite is true

for the second operating point p2. However, with proper gear changing strategy

both operating points are reachable for the cyclist. Therefore, the union of the two

parabolic functions for 1st and 2st gear is the feasible region.

Figure 3.1: The power-velocity relationship at a given energy level for two gear ratios.

The result for taking the union of all 21 variations of Equation (3.11) with the

parameters for Sub 14 is shown in Figure 3.2. Now, we have an inequality constraint

as a function of the control u, the state v, and the state w variables. We can rewrite

the constraint in a standard form as,

C(u, v, w) = u(t)− umax(v(t), w(t)) 6 0 (3.12)

where umax(v, w) is defined by the surface in Figure 3.2. In the presence of such
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an inequality constraint on control and state variables, the Hamiltonian needs to be

augmented as follows [83],

0 10 20 30 40 0

5,0000
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400
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v (m/s) w (J)

u
m
a
x

(W
at

ts
)

Figure 3.2: The constraint surface on the control input u as a function of the state variables v and
w.

H = L+ λTf + µC (3.13)

where

µ


> 0 C = 0

= 0 C < 0

(3.14)

Additionally, the upper and lower limits on v and w presented in Equation
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(3.7) should be taken into account as,

S(v, w) =



v(t)− vmax

−v(t)

w(t)− AWC

−w(t)


6 ~0 (3.15)

Following [83], when constraints are not functions of the control input u, we

take successive time derivatives of S(v, w) and replace v̇ and ẇ with f2 and f3 ins

Equations (3.4) and (3.5), respectively, until we obtain an expression that is explicitly

dependent on u. In this case, the first derivative of S(v, w) with respect to both v

and w includes u. Then, we can treat S(1)(v, w) similarly to C(v, w) and augment

the Hamiltonian as,

H = L+ λTf + µC + ηTS(1) (3.16)

where η =

[
η1 η2 η3 η4

]T
must obey the following conditions,

ηi


> 0 S

(1)
i = 0

= 0 S
(1)
i < 0

for i = 1, 2, 3, 4 (3.17)

It should be noted that the terms µC and ηTS(1) will always be zero in the

Hamiltonian when constraints are met. The dynamics of the co-states follow,

λ̇T = −Hx ≡ −Lx − λTfx − µCx − ηTS(1)
x (3.18)

where the subscript x denotes the partial derivative with respect to the corresponding

state variables. Rider’s remaining energy model in Equation (3.5) switches between
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fatigue and recovery conditions. Therefore, we have a switching Hamiltonian function

between fatigue and recovery modes.

A necessary condition for optimality is that the control input u, minimizes the

Hamiltonian. One can set the partial derivative of H with respect to u equal to zero.

However, in this case because H is affine in u, the derivative with respect to u (Hu)

does not depend on u.

Hu =


λ2
mv
− λ3 + 1

mv
(η1 − η2) + (η4 − η3) + µ u > CP

λ2
mv
− aλ3 + 1

mv
(η1 − η2) + (η4 − η3) u < CP

(3.19)

Note that the µ term only shows up when u > CP because when u < CP the

constraint C is not active. Since Equation (3.19) does not depend on u, the optimal

solution will be of the bang-singular-bang form; that is the Hamiltonian is minimized

at extreme values of u with the exception of potential singular arcs in between.

When the Hamiltonian is affine in u, the sign of Hu indicates the optimal input

value. As is shown in Equation (3.19), the sign of Hu depends on µ and η. When

µ has a non-zero (positive) value, the constraint C in Equation (3.7) is active which

means the optimal value for u is its maximum (umax) regardless of the sign of the

slope. When either η1 or η2 has a non-zero value, S
(1)
1 or S

(1)
2 is active. In that case,

it can be shown that acceleration should be zero which means the optimal value for u

is the power at which velocity is constant (uv̇=0). When either η3 or η4 has a non-zero

value, S
(1)
3 or S

(1)
4 is active. In this case, it can be shown that ẇ is zero which means

the optimal input u will be at CP . The only cases left are when µ and η are all zero
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and we can cross them off from Equation (3.19) and rewrite it as,

Hu =


λ2
mv
− λ3 u > CP

λ2
mv
− aλ3 u < CP

(3.20)

The system of equations that should be solved are the state-space Equations

(3.1) and (3.18), which provide 6 equations combined. The expanded version of the

Equation (3.18) will be,



λ̇1 = gλ2g
dθ(s)
ds

(cos(θ(s))− CR sin(θ(s)))

λ̇2 = −λ1 + λ2
mt

(
u
v2

+ CdρAv
)

λ̇3 = 0

(3.21)

Now let’s compare Hu in both fatigue and recovery modes. If Hu is posi-

tive, the minimum value of u minimizes the function. On the other hand, if Hu is

negative, the maximum value of u minimizes the function. We can consider four cases,

Case I : λ2
mv
− λ3 < 0 AND λ2

mv
− aλ3 < 0

The slope in both fatigue and recovery modes are negative which means max-

imum value of u in each case minimizes the Hamiltonian. Now, we should see which

one results in a lower value of Hamiltonian. In the fatigue mode the maximum input

value is umax, and in the recovery mode the maximum input value is CP ,

H∗ = min {Hfatigue(umax), Hrecovery(CP )} (3.22)
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where the subscripts of H differentiates between fatigue and recovery modes because

the equations of the two modes are slightly different. If we substitute the aforemen-

tioned values of u we cannot decisively say which Hamiltonian is smaller. We can

write the optimal input as,

u∗ =


umax Hfatigue(umax) < Hrecovery(CP )

CP Hfatigue(umax) > Hrecovery(CP )

(3.23)

It should be noted that if the Hamiltonian is equal in both fatigue and recov-

ery modes, we will have two optimal solutions.

Case II : λ2
mv
− λ3 > 0 AND λ2

mv
− aλ3 > 0

In this case, the input should take its minimum value in both cases, which will

be CP and 0 for fatigue and recovery modes, respectively. The minimum Hamiltonian

can be found from,

H∗ = min {Hfatigue(CP ), Hrecovery(0)} (3.24)

The optimal input value in this case will be:

u∗ =


CP Hfatigue(CP ) < Hrecovery(0)

0 Hfatigue(CP ) > Hrecovery(0)

(3.25)

Similarly to the previous case, if the Hamiltonian is equal in both modes, we

will have two optimal solutions.
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Case III : λ2
mv
− λ3 > 0 AND λ2

mv
− aλ3 < 0

In this case, the input takes its minimum value in fatigue mode, and its max-

imum value in recovery mode. In both of these scenarios the input is CP , so we can

decide,

u∗ = CP (3.26)

Case IV : λ2
mv
− λ3 < 0 AND λ2

mv
− aλ3 > 0

In this case, the input takes its maximum value in fatigue mode, and its min-

imum value in recovery mode, which will be umax and 0, respectively. The minimum

Hamiltonian can be found from,

H∗ = min {Hfatigue(umax), Hrecovery(0)} (3.27)

Th optimal input value in this case will be:

u∗ =


umax Hfatigue(umax) < Hrecovery(0)

0 Hfatigue(umax) > Hrecovery(0)

(3.28)

So far the optimal control input can take values of 0, CP , uv̇=0, and umax.

This means, when needed, the cyclist should recover at zero power. A hypothetical

recovery scenario can be when the cyclist is on a steep downhill. However, there is

still another case that is not investigated, which is a possible singularity condition.

Singular Arc: λ2
mv
− λ3 = 0 OR λ2

mv
− aλ3 = 0

Here we present the calculation for the case where the Hamiltonian’s slope in

the recovery or fatigue mode is zero. It can be shown that we get the exact same
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final result for both modes. Therefore, we proceed with the recovery mode. During

the possible singular condition in recovery mode we have,

λ2

mv
− aλ3 = 0 (3.29)

This equality needs to hold for an interval of time for a singular interval to

exist. Therefore, its time derivative during that interval should also be zero. Setting

the time derivative equal to zero and observing from Equation (3.21) that λ̇3 = 0 we

get,

λ̇2

v
− λ2

v2
v̇ = 0 (3.30)

We can substitute λ̇2 and v̇ from Equations (3.21) and (3.4), respectively:

1

v

[
− λ1 + λ2

u

mv2
+
λ2

m
(CdρA)v

− λ2

v

(
u

mv
− h(s)− 1

m
(CdρA)v2

)]
= 0

(3.31)

Simplifying the equation above by using (3.29) yields,

λ1 + amλ3h(s) +
3

2
(CdρA)aλ3v

2 = 0 (3.32)

Since input u does not appear in Equation (3.32), it becomes necessary to take

the time-derivative again which yields,

− λ̇1 + amλ̇3h(s) + amλ3
dh

ds
v

+
3

2
aλ̇3(CdρA)v2 + 3aλ3(CdρA)vv̇ = 0

(3.33)
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Simplifying by using Equation (3.21) yields,

3aλ3(CdρA)vv̇ = 0 (3.34)

In Equation (3.34) only v̇ can be zero. Therefore, during a potential singular

interval the velocity must be a constant. The corresponding input power is obtained

using Equation (3.4),

u∗ = uv̇=0 = mv

(
h(s) +

1

2m
(CdρA)v2

)
(3.35)

which varies with the road grade.

Considering all of the cases discussed above, the optimal power can only take

values from the vector below,

u∗ =



umax

uv̇=0

CP

0


(3.36)

Equation (3.36) provides the necessary conditions for optimality of u since it

was based on a PMP analysis. It therefore suggests that the global minimizer at each

time u∗(t) must be one of these modes. This is an interesting insight and indicates that

the optimal pedaling strategy may include one or more of the four modes of pedaling

at maximal power, riding at CP , resting, or riding at a constant speed. While this

insight is useful, it is difficult to analytically determine when the switching between

these modes happens. Note that the three state equations in Equation (3.1) along

with the three co-state equations in Equation (3.21) form a two point boundary value

problem that is generally difficult to solve analytically. The switching dynamics of the
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problem at hand creates additional challenges. Therefore, next we resort to numerical

solution of the optimal control problem via dynamic programming. The above PMP

analysis proves valuable in limiting the input space in DP process to only the modes

described by Equation (3.36) which significantly reduces the computational burden

of DP.

3.3 Numerical Solution of the Problem

In our DP implementation, at every step in distance, the state variables are

quantized between their minimum and maximum. On the other hand, the control

variable u is only quantized at the four power levels in Equation (3.36) without the

loss of optimality, which will significantly reduce the required memory and time of

the computing process. First, the state space model in Equation (3.1) is discretized.

Since the final destination is known, we pick distance as the independent variable

and discretize it at regular intervals ∆s = 10 m. With a zero-order hold on input in

between sampling intervals we obtain the following discretized state-space equations:

ti+1 = ti +
∆s

vi
(3.37)

vi+1 = vi +
∆s

vi

(
ui
mtvi

− g(sin(θi) + µcos(θi))−
0.5CdρA

mt

v2
i

)
(3.38)


wi+1 = wi − ∆s

vi
(ui − CP ) ui > CP

wi+1 = wi − ∆s
vi

(aui + b− CP ) ui < CP

(3.39)
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Figure 3.3: Demonstration of use of Bellman’s principle of optimality in dynamic programming.

The cost function in Equation (3.6) is rewritten with position as the indepen-

dent variable and discretized as follows1,

JN =
i=N∑
i=0

∆si
vi

(3.40)

According to the Bellman’s principle of optimality [84], when a system is on

its optimal path from an initial state to a final state, regardless of any past decision

or state, it should follow an optimal policy for the remainder of the route. Therefore,

in dynamic programming, to find the optimal state trajectory, one can begin from the

final state and move backward and calculate the optimal cost-to-go from any state to

the final step. Figure 3.3 demonstrates the backward dynamic programming method

based on the Bellman’s principle of optimality. The optimal costs from all of the

1When implementing this objective function in DP, we sometimes observed chattering in the
power trajectory. This chattering can be the optimal solution or due to the coarse quantization of
control input to only four (optimal) modes. To achieve a practical power trajectory for a cyclist,
we added a regularization term to the cost that penalizes the change in control input from stage to
stage multiplied by a small penalty weight. The weight was carefully tuned to minimize the impact
of the regularization term on the value of the objective function.
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nodes at si+1 to the final state at sN are stored as J∗i+1,N . Then, cost-to-go from

every node at si to all of the nodes at si+1 is calculated and the optimal value among

them is stored at the specified node at si. This process is repeated backwards to the

beginning of the route. Subsequently, in a forward DP sweep, the optimal action at

each discretized state node will be known. Let’s denote the optimal cost-to-go from

specific velocity and energy states at step si+1 to sN by J∗i+1,N . Then, the optimal

trajectory from step si to sN will be,

J∗i,N = min
ui

[Ji,i+1 + J∗i+1,N(x)] (3.41)

where

J∗i+1,N = min
ui+1,ui+2,...,uN−1

[Ji+1,N ] (3.42)

The DP formulation was then coded in MATLAB. At every step in distance,

velocity v is quantized to 300 nodes spaced uniformly in the interval [1, 20] m/s. The

choice of minimum velocity at 1m/s is because i) speeds closer to zero cause numerical

issues as v appears in the denominator in the discretized equations of motion ii) during

a time-trial the athlete is unlikely to pedal at lower speeds. Anaerobic energy w is

quantized into 600 nodes spread uniformly between 0 and the Sub 14th AWC (7841J).

As discussed earlier, the input power u is also quantized to 4 values the the levels

indicated by Equation (3.36).

When at the distance si from the initial position, vi and wi states move to vi+1

and wi+1 by applying an input ui. The resultant states at step si+1 will not necessarily

attain the quantized values of states v and w. Therefore, we implemented a stochastic

transition to the neighboring nodes on the v − w plane. The transition method is

adopted from [3] and is shown in Figure 3.4. In this figure, the red circle shows
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the resultant state which is not on a quantized value of states v and w. According

to [3], the transition cost is calculated as a weighted summation of the costs at the

neighboring nodes as,

Figure 3.4: The schematic of the stochastic transition method presented in [3] using the neighboring
nodes.

Jp =

(
vp − v1

v2 − v1

)(
1− wp − w1

w2 − w1

)
J1+(

vp − v1

v2 − v1

)(
wp − w1

w2 − w1

)
J2+(

1− vp − v1

v2 − v1

)(
1− wp − w1

w2 − w1

)
J3+(

vp − v1

v2 − v1

)(
wp − w1

w2 − w1

)
J4

(3.43)

The calculated cost Jp is then stored in the nearest neighbor [3], which in

Figure 3.4. is node 1 specified by green color.

Initially, the cyclist starts from the minimum velocity, and his/her remaining

energy is initialized at AWC. The DP simulation was ran on a desktop computer

with a 3.2GHz Intel core i5 CPU, and 12GB of RAM. The computation time for our
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longest cycling route (18km) was 53 min and 45 sec. This is thanks to the PMP

results that allowed us to significantly reduce the input quantization. Without it the

computation time would be close to two days.

3.4 Results and Discussion

3.4.1 Simulating Optimal Pacing

To illustrate the nature of optimal solution, we first found the optimal pace

over 4 km roads with three basic elevation profiles: a flat road, a road with a 5%

grade climb, and a road with two hills. Figure 3.5 shows the three scenarios and the

results based on Sub 14 data. Optimal power u, remaining anaerobic energy w, and

velocity v are shown in each case. The figure also shows which one of the four optimal

control mode was chosen in the umode subplot, in which which values of 1, 2, 3, and

4 correspond respectively to the control u equaling, 0, CP , uv̇=0, and umax.

On the flat road, the optimal strategy is to go all-out till all anaerobic reserves

are depleted and then continue with critical power. In this case, the maximum power

constraint is activated and the power trajectory stays on the constraint. More inter-

estingly, during the ramp course, the optimal pacing strategy benefits from elevation

preview. The cyclist burns only 2% of anaerobic energy in the starting line to get

to the velocity that can be then maintained by applying CP . The reserved energy

comes to use during the ascent over the hill, by the end of which all of the AWC is

expended and the cyclist pedals at CP towards the end. During the simulation over

a course with two uphill sections, having known about the upcoming downhill, the

controller recommends the cyclist to burn most of the anaerobic energy. Then during

the downhill, the subject recovers 8% of the AWC to overcome the second hill. In
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Figure 3.5: DP simulation results over three elevation profiles. Sub14 model was used in this set of
simulations.
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this case, all four modes of optimal power are applied.

3.4.2 Baseline Performance Captured by an Experiment

We had the opportunity to simulate the cycling course of the 2019 Duathlon

National Championship in Greenville, South Carolina on our CompuTrainer. The

elevation profile of this course is presented in Figure 3.6. We ran this experiment

with Sub 14 by requesting the subject to ride with her own strategy as the baseline

test2. During the test, she was receiving velocity, distance, power, elevation, and

heart rate data in real-time via the interface depicted in Figure 2.1.

The subject managed to finish the course in 34 min 8 sec. However, our DP

simulation suggests that if she followed the optimal power provided by the DP, she

would have finished the course in 25 min 56 sec. An important observation from this

test is that the subject’s self strategy lacks consistency in applying power. During the

first 5 km of the course in the self-paced scenario, the average power of the cyclists

is 230 Watts, whereas during the last 5 km it is 190 Watts. Both of these values

are below the Subject’s critical power (242 Watts). However, the optimal simulation

suggests that except for several short periods of maximal effort and recovery, power

should remain at CP . While velocity profile in the simulation is always higher than

the subject’s velocity, both profiles have a similar trend during the course which is

dictated by the elevation profile. The difference between the velocity profiles can

be explained by the the short frequent maximal efforts that increases the cyclist’s

velocity. The average power of the optimal strategy is 240 Watts which is only 28

2One of the shortcomings of utilizing Computrainer is that it does not model drag force during
a ride. Therefore, the drag term in Equation (3.38) should be removed. Also, when the subject is
riding downhill, the CompuTrainer cannot accelerate the bicycle as would happen on a real road.
Therefore, besides removing the negative resistance force due to downhill section of the course, the
calibrated resistance force of 15.5 N is added to Equation (3.38) instead of the drag force. This force
is imposed constantly by the CompuTrainer and is set during the calibration process.
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Figure 3.6: Power and energy trajectory differences between sub 14’s self strategy and the optimal
simulation on the Greenville Duathlon course.
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Watts greater than the total average of the self strategy case.

Also, because the cyclist was pedaling below CP for most parts of the course,

she recovered almost all of her anaerobic energy at the end which is the against the

optimal strategy. Although our subject was familiar with the route and cycles around

four times a week, she is not a professional athlete and lacks high level training, which

could be one reason for her lack of pace in spending anaerobic energy. Nevertheless,

pacing over long hilly courses can be a challenge for professional athletes, and our

proposed optimal strategy could be used for coaching or even real-time guidance of

cyclists.

3.4.3 Controller Implementation

In addition to simulation we prepared the test setup to implement the con-

troller in real-time use. The benefit of using DP is that once we calculate the backward

solution, we can store it as a lookup table. This lookup table can be used at any point

in time during a race. If we have measurements of a cyclist’s power, velocity, and

position, we can estimate the remaining anaerobic energy at that time. Then, we

can refer to the backward solution of DP and find out what the optimal power to

hold should be at that position. In order to implement this real-time controller, we

first needed access to the power, velocity, and position data from the CompuTrainer’s

software. The challenge was that PerfPro software was not capable of logging data

into a file during the exercise. It only saved the exercise data on an Excel file after the

work out is finished. However, PerfPro visualizes the real-time data on its graphical

user interface as shown in Figure 3.7. Therefore, we set up a software that took a

screen shot of PerPro’s user interface every 0.5 seconds. Then, an image processing

code was run in MATLAB to collect power, velocity, and position data from each
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picture.

Figure 3.7: The PerfPro user interface on top, and the MATLAB interface designed to communicate
information with the cyclist in the bottom.

The position interval of DP was set at 100 m. During each interval, we cal-

culated the average power and velocity of the cyclist, and estimated the remaining

anaerobic energy. With that information, optimal power to hold for the next position

interval was calculated from the stored lookup table. This power level was sent to

the cyclist to follow. We designed a MATLAB graphical interface to communicate

information to the cyclist. The interface showed optimal power to hold, applied power

by the cyclist, and written status of the optimal power suggestion.

We had a chance to perform a pilot test with Sub 14 by suggesting optimal

power to hold in real-time. Similarly to the baseline test presented in Section 3.4.2,

we simulated the elevation profile of the 2019 National Duathlon Championship on

the CompuTrainer. The difference was that this time the cyclists was instructed
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to only look at the MATLAB user interface and follow the optimal power. This is

because if the subject knew her position in the course, she might have included her

own strategy in the process. In that pilot test, Sub 14’s travel time was reduced by

3% when following the optimal power suggestion. However, after the test, we found

out that there was a minor error in the stored backward solution of DP. That is why

the results of that test is not presented in this dissertation.

This implementation was the first known attempt of its kind on pacing a cyclist

during a time trial by providing real-time optimal power suggestions. In the future

of this study, the controller implementation test can be done with multiple subjects

to verify the effectiveness of the proposed optimal controller.

3.5 Conclusion

In this chapter, the previously validated models of fatigue and recovery from

Chapter 2 were used to formulate an individual time trial (TT) race as an optimal

control problem with three states (position, velocity, and remaining anaerobic en-

ergy), and a single input (a cyclist’s power). Initially, the problem was approached

analytically using the Pontryagin’s Minimum Principle (PMP). By applying PMP,

we showed that there are only four optimal modes for a cyclist’s power during a TT

race. Power can be zero, at CP , at a power level that keeps the velocity constant,

or at maximum power generation ability. There are two takeaways from this analyt-

ical solution. First, it helps cyclists develop a rule-based strategy knowing that they

should not exert any power level other than the four modes presented. Second, in

the numerical simulation of the problem, we can limit the solution set to these four

power values and reduce the computation time significantly. Dynamic Programming

(DP) was used for the numerical simulation of the problem. We selected the ele-
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vation profile of the 2019 National Duathlon Championship in Greenville, SC which

was simulated on a CompuTrainer. Results from simulating over this elevation profile

using one of our human subjects’ individual model shows 24% improvement in travel

time compared to a baseline test, where the same subject was instructed to ride over

the simulated course with her own strategy.

In order to realistically assess its benefits, the optimal pacer was implemented

during an experiment, where optimal power to hold was given to the subject in real-

time during the race over the simulated course on the CompuTrainer. The results

of a pilot test showed a 3% reduction in the subject’s travel time compared to the

baseline test, which was promising. In the future, more tests with several subjects

are needed to validate the effectiveness of the optimal pacer.
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Chapter 4

Team Time Trial

A Team Time Trial (TTT) is a road cycling competition in which a team of

2 to 10 cyclists run against the clock as described by Union Cycliste Internationale

(UCI). The fundamental difference between a Team Time Trial and an Individual

Time Trial is that the team members in TTT benefit from drafting behind each

other. This means riding in close distances between each other which reduces the

aerodynamic drag force on the trailing cyclists. The reduction in the aerodynamic

drag in drafting depends on two factors: 1) the distance to the preceding cyclist, and

2) the position of the cyclist in the platoon. Several studies have investigated the

effects of these factors on the drag coefficient [4, 85, 86].

Therefore, it is crucial for cycling teams to strategize switching their position

in the platoon. For instance, a simple periodic strategy would be for a cyclist in the

leading position to go to the back of the platoon, which is repeated by every cyclist

in the team. Understanding the strength of the team members is a key to finding

the best strategy. Should the strongest cyclist mostly be in the leading position,

or not? How long each formation should be maintained? The fatigue and recovery

models presented in this dissertation can be very useful to strategize a TTT. Our
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proposed approach involves an optimal controller that has access to power, velocity,

and position data from the athletes, and estimates their remaining anaerobic energy,

and determines the optimal formation for the team at every time step. In this chapter,

we present an optimal control formulation that can be generalized for an n-cyclist

team. The first step is to establish the cyclist and aerodynamic drag models.

4.1 Modeling

4.1.1 Individual Cyclist Models

The same individual models of fatigue and recovery that were presented in

Chapter 3 are used for the problem of Team Time Trial. For completeness, we will

review this model again here. The rate of energy expenditure above CP is the dif-

ference between the cyclist’s power and CP . However, recovery happens at a slower

rate than fatigue, which is accounted for in our model by adjusted powers below CP ,

dw

dt
=


−(p− CP ) p > CP

−((ap+ b)− CP ) p < CP

(4.1)

where w is the remaining anaerobic energy, and p is the cyclist’s power. The param-

eters a and b are the model constants to be determined individually for each cyclist

using experimental data. Combining fatigue and recovery models, we can define an

adjusted power function as below,

P =


p p > CP

ap+ b p < CP

(4.2)
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Figure 4.1: The switching function P for fatigue and recovery with the smooth fit.

Equation (4.1) can be rewritten as,

ẇ = P(p)− CP (4.3)

The switching function P is shown in Figure 4.1 as a function of a cyclist’s

power p. Since P has a non-differentiable point at CP , a smooth function of the sum

of five sinusoidal terms is fitted to the data in Figure 4.1 to ensure differentiability

during numerical optimization.

An important aspect of modeling a cyclist’s physical ability is the maximum

power generation capability which is diminished by expending energy from AWC.

We employ the same maximum power generation constraint presented in Chapter 3

that depends on the amount of the remaining anaerobic energy as well as bicycle’s

speed as shown in Figure 3.2.
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4.1.2 Aerodynamic Drag Coefficient During Drafting

The central part of our approach models how the aerodynamic drag forces

change with respect to the distance gap between cyclists and their position in the

platoon. The aerodynamic drag force is calculated as,

fdrag = 0.5ρCDAv
2 (4.4)

where ρ is the air density, CD is the aerodynamic drag coefficient, A is the frontal

area of the bicycle while the cyclist is seating on it, and v is the cyclist’s velocity.

Assuming the cyclist remains in an optimal posture to expose the least possible frontal

area to the air stream, the only action that minimizes drag, is a reduction in the drag

coefficient by riding behind another cyclist in the team.

There are three ways to estimate the aerodynamic drag coefficient imposed

on each cyclist in a team including field tests, wind tunnel tests, and Computational

Fluid Dynamics (CFD) methods [4]. In the present study we adopt the wind tunnel

test results for cyclists in a straight line from [4]. Figure 4.2 shows the drag coefficient

for the cyclists in a two-cyclist platoon with respect to the changes in the distance

gap. In addition to the distance, drag coefficient depends on the position of a cyclist

in the platoon. If we fix the distance gap between the cyclists in a platoon, the drag

coefficient imposed on each is very different at various positions in the platoon. Figure

4.3 shows the drag coefficient at each position in a 6-cyclist platoon given a distance

gap of 50 cm between the cyclists [4].

Formulating an optimal control problem that in addition to velocity and en-

ergy of each cyclists, includes the distance gap between them as state variables can

be very complex. Determining the order of cyclists in the platoon with respect to

their distance gap with each other is another source of complexity that increases the
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Figure 4.2: The drag coefficient for the leading and the trailing cyclists in a two-cyclist team as a
function of the distance gap between the cyclists [4].

decision variables dramatically. Even after resolving all the mentioned challenges, it

will be computationally costly to simulate a system with a high number of optimiza-

tion variables. Therefore, we first study a less challenging case study of a two-cyclist

team, where we hope to achieve useful insights that can help us develop an applicable

generalized system of equations for an n-cyclist team.

4.2 Two-Cyclist Team

4.2.1 Problem Formulation

Consider two cyclists in a straight line. In a take over maneuver, a cyclist

needs to change lanes which will require including the lateral dynamics of the bi-

cycle in addition to longitudinal. This will add additional states to the state-space

and therefore adds complexity to the optimal control formulation. In this study, we

propose a formulation that only requires longitudinal dynamics by handing over the

62



1 2 3 4 5 6

0.3

0.4

0.5

0.6

Position in Platoon

C
D

Figure 4.3: The drag coefficient as a function of the position of a cyclist in a 6-cyclist platoon with
cyclists having a 50cm distance gap between each other [4].

steering responsibility to the cyclist.

For the case of a two-cyclist team, the proposed system has 6 states,

x =

[
s1 v1 w1 d v2 w2

]T
(4.5)

where s, v, and w are the position, velocity, and remaining anaerobic energy of a

cyclist. The subscripts of each parameter denote each cyclist’s ID number. The state

d represents the distance gap between the cyclists. The input variables to the system

are the applied power of each cyclist,

u =

[
p1 p2

]T
(4.6)

Using the individual cyclist dynamics from Chapter 3 and assuming 100%
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efficiency for the bicycle’s powertrain, we can write the state-space equations as,



ṡ1

v̇1

ẇ1

ḋ

v̇2

ẇ2


︸ ︷︷ ︸
ẋ

=



v1

1
m1eff

(
p1
v1
−m1g sin θ(s1)−m1gCR cos θ(s1)− 0.5ρA1CD(−d)v2

1

)
P1 − CP1

v1 − v2

1
m2eff

(
p2
v2
−m2g sin θ(s2)−m2gCR cos θ(s2)− 0.5ρA2CD(d)v2

2

)
P2 − CP2


︸ ︷︷ ︸

f(x, u)

(4.7)

where m is the bicycles total mass, meff is the effective mass of the bicycle, θ is the

road angle, CR is the rolling resistance coefficient, and CD(d) is the drag coefficient as

a function of the distance gap to the front bicycle. The functions P1 and P2 represent

the adjusted power of each cyclist from Equation (4.2) considering their individual

model parameters.

The CD function is an essential part of the state-space equations that can

trigger the need for performing a take-over maneuver. To develop this function, it is

useful to inspect the distance gap between the bicycles.

Considering the bicycles as point particles, the distance gap between the two

cyclists follows,

ḋ = v1 − v2 (4.8)

Therefore, when d is positive, the first cyclist is leading, and if it is negative,

the second cyclist is leading. Combining the curves for leading and trailing cyclists

in Figure 4.2, we can develop a drag coefficient function that outputs the trailing
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Figure 4.4: The modified drag coefficient plot for the leading and the trailing cyclists in a two-cyclist
team as a function of the distance gap between the cyclists. The data is from [4]

bicycle’s CD when d is positive, and the leading bicycle’s CD when d is negative.

The challenge is now implementing a minimum distance gap constraint to ensure a

reasonable minimum gap between the two cyclists,

|d| > dmin (4.9)

where dmin is a positive minimum gap between the bicycles. Directly imposing this

constraint in the optimal control problem, prohibits the distance gap to take any

value between −dmin and +dmin. In a smooth take over maneuver, the distance

should gradually go to zero and then change sign. To make this transition happen,

we propose an indirect method to enforce the constraint. First, we set dmin = 50 cm

as the minimum safe gap allowed between the bicycles. Then, we modify the drag

coefficient when -50 < d < 50 so that the drag coefficient takes larger values in this

interval as shown in Figure 4.4 compared to its value at 50 cm. The red points in

this figure represent the dummy point we added in the -50 < d < 50 interval. This
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modification incentivizes riding outside of the 50 cm gap zone. The spline fitted to

the curve in Figure 4.4 is intended to capture drag coefficient function in the optimal

control formulation. In this figure we can observe that if the trailing cyclist (for which

d > 0) rides at a distance less than 50 cm the drag coefficient will be higher than when

riding a 400 cm distance. Therefore, the controller is expected to avoid riding in that

region. It should be noted that this does not guarantee the constraint in Equation

(4.9). Applying the method described serves as a soft constraint on the distance gap.

Similar to the individual time trial case, the cost of the optimal control problem

is time. We need to decide which cyclist’s time should be minimized. In a two-cyclist

time trial the time of the second cyclist passing the finish line will be the team’s

record. Therefore, it is not logical for one of the cyclists to finish significantly sooner

than the other team mate. Also, during numerical simulation, similar to the DP

formulation for individual time trial, we consider position as the independent variable.

The position’s increment is set to be 10 m. The length of the team platoon is the

sum of the bicycles’ lengths and the distance gap between them which will be less

than 10 m during the ride. Therefore, we can minimize the average time of the team

as,

J =

∫ Sf

0

(
1

v1

+
1

v2

)
ds (4.10)

where Sf is the position of the finish line. Now we can construct the optimal control

problem in a formal way as,
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min
u(t)

J =

∫ Sf

0

(
1

v1

+
1

v2

)
ds

subject to:

ẋ = f(x, u)

0 6 vi 6 20m
s

i = 1, 2

0 6 wi 6 AWCi i = 1, 2

0 6 pi 6 pi,max(vi, wi) i = 1, 2

vi(0) = 0 i = 1, 2

wi(0) = AWCi i = 1, 2

(4.11)

The maximum power constraint pi,max(vi, wi) is derived using the same method

presented in Chapter 2 and shown in Figure 3.2. In order to reduce the number of

non-linear constraints in the problem, we can approximate this surface by three planes

as in Figure 4.5. As a result, we will have three linear constraints instead of a single
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highly non-linear one which will reduce the computation time of the optimization.

4.2.2 The Numerical Optimization

A problem, similar to our TTT formulation, that is designed to find a tra-

jectory that optimizes an objective function, is called Trajectory Optimization. In

trajectory optimization, the dynamic system’s equations are transformed into a set of

static equations to be solved using an optimization solver.There are several methods

to do this including single shooting, multiple shooting, direct collocation, orthogonal

collocation, and pseudospectral [87]. In this study we utilize the “Direct Multiple

Shooting (DMS)” method which was first presented as a solution for optimal control

problems in [88].

In this method, the problem formulation in Equation (4.11) is first discretized

over N control time intervals. Then, we will have u1, u2, ..., uN each as a decision

variable to be determined by the optimizer instead of having a continuous functions

for u. In a similar way, we will have the states x1, x2, ..., xN+1 as our decision vari-

ables. Therefore, in total we have 2N + 1 decision variables. So far these variables

are independent. To apply the system dynamics to the problem and establish the

relationship between the variables, at each time step t = k we need to integrate

the state-space equations f(xk, uk) to approximate xk+1. There are different ways

to perform the integration. The simplest method is the explicit Euler integration

xk+1 ≈ xk + ∆tf(xk, uk), with ∆t = T
N

being the time step. A more accurate method

of integration that we use in the current work is the classical Runge-Kutta method

(RK4),

xk+1 = xk +
∆t

6
(k1 + 2k2 + 2k3 + k4) (4.12)
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where

k1 = f (xk, uk)

k2 = f
(
xk + k1

∆t
2
, uk

)
k3 = f

(
xk + k2

∆t
2
, uk

)
k4 = f (xk + k3∆t, uk)

(4.13)

The parameters k1 to k4 are the slopes at four points from the start of the

interval to the end. The state xk+1 is then calculated using a weighted sum of these

slopes. We now can add Equation (4.12) as a constraint to our optimization problem.

Therefore, we can write the optimal control problem presented in Equation (4.11) as

an optimization problem,

min
u1,...,uN ,x1,...,xN+1

T

Subject to:

xk+1 = xk + ∆t
6

(k1 + 2k2 + 2k3 + k4) k ∈ {1, 2, ..., N}

xmin 6 xk 6 xmax

0 6 uk 6 umax(xk)

(4.14)

where xmin, xmax, and umax are vectors that include the minimum and maximum

constraints on each state and control variable. The resultant optimization is a non-

linear programming problem because of the non-linearity in state equations and the

cost function.

For the case of two-cyclist team, we considered position as the independent
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variable rather than time. Therefore, we need to write the cost function as,

T =
N+1∑
i=1

(
1

v1

+
1

v2

)
∆s (4.15)

where v1(i) and v2(i) represent the velocity of both cyclists at time step i. In this

study we use the CasADi optimal control solver [71]. CasADi is an open source tool

that helps the user implement various numerical methods of trajectory optimization

for non-linear systems. It also embeds several non-linear programming (NLP) solvers

such as IPOPT, BONMIN, Knitro, SNOPT, etc. For the purpose of solving the

current optimization problem, IPOPT is chosen as the NLP solver [89].

The downside of employing DMS method for a nonlinear system is that the

resulting non-linear programming problem can be non-convex. Therefore, we may

converge to a local optimum rather than the global using the NLP solvers. This is

in contrary to the Dynamic Programming that always guarantees the global optimal

solution. In Chapter 3, we used Dynamic Programming for the problem of individual

time trial. However, applying DP to the current problem for team time trial will be

very costly in terms of computation with twice as many state and control variables

as in individual time trial case. Solving the NLP from the direct multiple shooting

method is a lot faster than DP, and seems to be among few viable choices that we

have.

4.2.3 Simulation Results

The two cyclists in this case study have distinct fatigue and recovery model

parameters which are presented in Table 4.1. Cyclist #1, who is Sub 14 from our list of

subjects for experiments, is a stronger athlete with a higher CP , AWC, and maximum

cadence ωmax,f compared to the other rider. On the other hand, the parameters
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Table 4.1: Model parameters of the cyclists in the two-cyclist team case study.

cyclist #1 cyclist #2

mass (kg) 82 70
CP (watts) 242 217
AWC (J) 7841 5637
a 0.08 0.12
b (watts) 222.5 196.5
α 0.044 0.046
αω 0.008 0.009
ωmax,f (rpm) 164 142

for the cyclist #2 are those from Sub 12 who has a faster recovery rate than the

other cyclist. The elevation profile used in this simulation is the same 2019 National

Duathlon Championship course in Greenville, SC that was presented in the individual

time trial simulation presented in Chapter 3.

The simulations in MATLAB using IPOPT was performed on a Dell desktop

computer with a 2.9 GHz 10th generation Intel Core i7 CPU, and 12GB of RAM and

took an hour to complete. The simulation results are presented in Figure 4.6. The

results show that despite having a very similar velocity trajectory, the cyclists have

fundamentally different energy expenditure strategies. Cyclist #1 is consistent in

applied power, without much fluctuation, which results in a gradual decrease of the

remaining anaerobic energy. On the other hand, the power of cyclist #2 frequently

varies over time. When in the leading position this cyclist applies high power and

burns a considerable amount of anaerobic energy. Then, by switching positions, #2

drafts behind #1 and recovers a significant portion of the lost energy.

For understanding the reason behind the large recovery sections for cyclist #2,

the distance gap plot in Figure 4.6 can be inspected. When d is positive, cyclist #1

is leading, and when it is negative, cyclist #2 is leading. It can be seen that for a

larger portion of the ride, cyclist #1 is leading who is the stronger athlete. Therefore,
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Figure 4.6: Simulation results for a two-cyclist team riding over the 2019 Duathlon National Cham-
pionship in Greenville, SC.
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cyclist #2 has the opportunity to recover for larger time durations.

As a baseline for comparison, we ran the optimization a second time by im-

posing a hard constraint for the distance gap to be always positive. In other words,

a case where the cyclists do not switch positions, and cyclist #1 is always in the

lead. The results of this baseline simulation is shown in Figure 4.7. The team time

record in the baseline simulation was 1969 seconds, and in the optimal simulation was

1880 seconds, which shows a 4.7% reduction in travel time when the cyclists switch

positions. By comparing the energy expenditures of the cyclists in the baseline and

the optimal simulations, we can observe that cyclist #2 recovers a lot more anaerobic

energy in the optimal simulation, which enables the cyclist to generate higher power

levels.

An important take away from this case study is that the distance gap between

the cyclists switches between +57cm and−57cm which are the corresponding distance

gaps for the minimum drag coefficient in leading and trailing positions according to

the plot in Figure 4.4. Therefore, if we assume that the cyclists can switch positions

instantly, we can fix the distance gap at the minimum possible. Then, a binary

decision variable can be considered as a decision variable that commands a take

over maneuver when necessary. This result is specially helpful for developing the

formulation for a general n-cyclist team.
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Figure 4.7: Baseline simulation results for a two-cyclist team without switching positions.
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4.3 n-Cyclist Team

4.3.1 Problem Formulation

Our takeaway from the two-cyclist team case study is that the distance can be

fixed at the minimum safe value. We utilize this fact when formulating the formation

optimization problem for an n-cyclist team. There are two more assumptions we make

for this problem. First, in an n-cyclist team, the time of the nth rider passing the finish

line will be the team’s record. This is not the case for several TTT competitions. For

instance, in the TTT stage of the Tour de France, for a six-cyclist team, the finish

time of the 4th cyclist is the team’s record. Second, the cyclists can switch their

positions in the platoon instantaneously. In other words, we neglect the dynamics

of the overtaking maneuver, and assume that during each maneuver, cyclists do not

expend any energy. With these simplifying assumptions, we conclude that the velocity

and acceleration of all cyclists should be the same to maintain a constant distance

with each other. Therefore, instead of the velocity of each cyclist, we consider the

platoon velocity as a state variable, in addition to the platoon head position s,

ṡ = vp

v̇p = ua

(4.16)

where vp is the platoon velocity and ua is the acceleration of the platoon which we

consider as a control input. Additionally, from Equation (4.3) the dynamics of the

remaining anaerobic energy of each cyclist is,

ẇi = Pi − CPi for i = 1, 2, ..., n (4.17)

Since we consider the platoon acceleration ua as a control input, we should
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Figure 4.8: All 6 formations in a three-cyclist team.

calculate each subject’s power pi from acceleration, velocity, and position within the

platoon,

pi = vp
(
mieffua +mig sin θ(s) +migCR cos θ(s) + 0.5ρAiCDiv

2
p

)
(4.18)

where CDi is the drag coefficient for each cyclist depending on his or her position

in the platoon. In order to determine the position of the cyclists in the platoon,

we propose a method that includes a vector of binary decision variables. For an n-

cyclist team, there are n factorial distinguished formations. For example, there are

six possible formations for a team of three cyclists as shown in Figure 4.8.

Let’s assign to each formation a binary variable indicating whether the team

is currently in that specific formation or not,

Fj ∈ {0, 1} for j = 1, 2, ..., n! (4.19)
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where Fj is 1 when the formation j is selected. Figure 4.8 shows each Fj assigned

to a unique formation. Since at every point in time only one formation can exist, we

add the following constraint,

n!∑
j=1

Fj = 1 (4.20)

Each Fj serves as a decision variable that is to be determined by the optimal

controller.

For every formation the drag coefficient of the cyclists in the platoon is known

from Figure 4.3, which suggests the drag coefficients for a cyclist in the first, second,

and third position in the team are 0.59, 0.38, and 0.31, respectively. If we construct

a vector of the corresponding drag coefficients for each cyclist with respect to every

formation Fj, we can calculate CDi for the cyclists in a team of three as,

CD1 =

[
F1 F2 F3 F4 F5 F6

] [
0.59 0.59 0.38 0.31 0.38 0.31

]T
CD2 =

[
F1 F2 F3 F4 F5 F6

] [
0.38 0.31 0.59 0.59 0.31 0.38

]T
CD3 =

[
F1 F2 F3 F4 F5 F6

] [
0.31 0.38 0.31 0.38 0.59 0.59

]T (4.21)

where CD1 , CD2 , and CD3 are the drag coefficients in Equation (4.18). With the

proposed formulation the velocity of all cyclists are equal. Therefore, to write the

cost of this optimal control problem we consider the completion time of the platoon

as the variable to be minimized. Similarly to the two-cyclist case study in Section

4.2.1 the position interval is considerably larger than the length of the platoon. Thus,

minimizing the time of the platoon means minimizing the last cyclist in the team as

well. We can now construct the optimal control problem as,
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min
ua(t),Fj(t)

J =

∫ T

0

dt

Subject to:

ṡ = vp

v̇p = ua

ẇi = Pi − CPi i = 1, 2, ..., n∑n!
j=1Fj(t) = 1 j = 1, 2, ..., n!

0 6 vp 6 20m
s

0 6 wi 6 AWCi

0 6 pi 6 pi,max(vp, wi)

(4.22)

where pi,max is the maximum power constraint from Figure 4.5. Unlike the previous

cases for individual time trial and two-cyclist team trial, we consider time t as the

independent variable. CasADi has a collection of helper classes called “Opti” that

can be used to translate an optimal control formulation to a non-linear programming

optimization. Opti stack provides the ability to define final time as the optimization

objective, and consider time as the independent variable. Therefore, we used Opti to

keep the formulation as is in Equation (4.22).

4.3.2 Simulation and Results

The three cyclists selected for this simulation are Sub 14, Sub 12, and Sub 9

for whom we have experimental data. Their model parameters are presented in Table

4.2. The elevation profile considered for this case is from the first 10 km of the 2019

National Duathlon Championship in Greenville.

As shown in Figure 4.8, there will be six binary decision variables representing
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Table 4.2: Model parameters of the cyclists in the two-cyclist team case study.

cyclist #1 cyclist #2 cyclist #3

mass (kg) 82 70 63
CP (watts) 242 217 233
AWC (J) 7841 5637 10100
a 0.08 0.12 0.09
b (watts) 222.5 196.5 204.5
α 0.044 0.046 0.036
αω 0.008 0.009 0.014
ωmax,f (rpm) 164 142 158

all the formations of cyclists in the platoon. Applying the same direct multiple

shooting method presented in Section 4.2.2, the resultant optimization problem will

be of a mixed-integer non-linear programming (MI-NLP) form. We chose the Bonmin

solver for the optimization which is designed for MI-NLP type problems [90], and uses

the Branch-and-Bound (BB) method. While applicable for other types of problems,

the BB method is widely used for MI-NLP optimization [91].

It should be noted that utilizing the BB method, especially when applied to a

problem with multiple integer variables, can be computationally costly. In the worst

case, the method is exponential in terms of time complexity. In our specific problem

for a three-cyclist team, after constructing the MI-NLP optimization problem using

the direct multiple shooting method, we will have 6 × N binary decision variables,

assuming N control intervals. Therefore, by increasing N , the simulation time gets

exponentially higher.

To avoid long simulation time, we divide the simulation into two parts. First,

we run the optimization by setting the number of control intervals at N = 50. From

the results of this simulation we obtain the optimal formation trajectory of cyclists

as shown in Figure 4.9. It can be seen in this figure that the cyclists have tried

all of the possible formations from F1 to F6. Additionally, it is important to note
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that the formations selection is not based on the remaining anaerobic energy of the

cyclists. This means, a cyclist with the highest anaerobic energy is not necessarily in

the leading position.

However, for a 10 km course with 50 control intervals, the distance interval for

receiving a formation command will be on average 200 m which is significantly larger

than our previous distance interval of 10 m in the two-cyclist team case study. That

is why the velocity, anaerobic energy, and acceleration plots in Figure 4.9 have low

resolutions. Thus, we run the optimization a second time with N = 200, and by fixing

Fj at the values obtained from the simulation with N = 50 control intervals. Since

the binary variables Fj are known, the new optimization problem will not include

any integer decision variable with platoon acceleration as the only control input as

represented in Equation (4.23). To emphasize the difference in time complexity, it

should be noted that the resultant MI-NLP simulation with N = 50 took 8 hours and

10 minutes, while the NLP simulation with N = 200 took 30 seconds.

min
ua(t)

J =

∫ T

0

dt

Subject to:

ṡ = vp

v̇p = ua

ẇi = Pi − CPi i = 1, 2, ..., n

0 6 vp 6 20m
s

0 6 wi 6 AWCi

0 6 pi 6 pi,max(vp, wi)

(4.23)

The downside of this two-step optimization is that the final result is not nec-
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Figure 4.9: Simulation results for a three-cyclist team riding over the first 10 km of the 2019 Duathlon
National Championship in Greenville, SC. This result is for the case with 50 control intervals. We
save the optimal formation trajectory to be used later in the higher resolution simulation.
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essary the same as a one-step MI-NLP optimization with N = 200. The results of the

simulation with optimal formation are presented in Figure 4.10. The results in this

figure show that there is no rule based relationship between the optimal formation

and the remaining anaerobic energy of each cyclist. In other words, the cyclists are

not sorted based on how much anaerobic energy they have at the time. Therefore,

there is a necessity to perform the mathematical optimization for each competition

with its unique elevation profile.

In order to determine the effectiveness of the formation trajectory decided by

the controller, a baseline simulation is required. The universal strategy for cyclists

in a team time trial race is that the team members alternatively take the lead which

is called “ taking a pull” [4]. Then, after a set time interval in the lead position, a

cyclist goes to the back of the line. Although this is a practical and easy to perform

strategy, it is rule based and not necessarily mathematically optimal.

To simulate the baseline case, we first construct the formation trajectory for

N = 50 control intervals assuming that at the end of every control interval the lead

cyclist goes to the back of the platoon. According to Figure 4.8, if the team starts at

formation F1, the team’s formation will be F4 for the next interval, and after that F5.

Then, the same order is repeated. Once we set the formation trajectory, we solve the

optimal control problem in Equation (4.23). This way, the only difference between

the baseline and the optimal formation simulation is the formation strategy.

The baseline simulation results are presented in Figure 4.11. The team’s finish

time in the baseline test was found to be 912.4 sec, while in the simulation with the

optimal formation this time was 881.3 sec which shows %2.3 reduction in travel time.

The most important conclusion from comparing these two results is that the current

general strategy that is being practiced in time trial teams is not optimal. In fact, we

observe in Figure 4.10 that all possible formations from F1 through F6 are adopted
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Figure 4.10: Simulation results for a three-cyclist team riding over the first 10 km of the 2019
Duathlon National Championship in Greenville, SC. This result is ran with 200 control intervals
and the formation trajectory from Figure 4.9
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during the trial.

In practice, the fatigue and recovery model parameters of each team member

should be determined. Then, the proposed optimization simulation should be con-

ducted prior to the competition to derive the optimal formation strategy during the

race. Practice with the optimal formation can help the cyclists adapt to the strategy

and be able to follow it during the competition.
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Figure 4.11: The baseline simulation results for a three-cyclist team.
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4.4 Conclusion

In a Team Time Trial (TTT) competition, cyclists of a team form a platoon

by riding in close distance between each other, which is called drafting. Drafting

can help significantly reduce the aerodynamic drag coefficient on the trailing cyclists.

In this chapter, using the individual models of fatigue and recovery presented in

Chapter 2, a novel optimal control formulation is proposed that decides how and

when the cyclists should change their position in the platoon. As a case study, we

first formulated the problem for a two-cyclist team. The elevation profile of the 2019

National Duathlon Championship in Greenville, SC was selected for the simulation.

The optimization was solved using the commercial solver CasADi. According to the

simulation results, the time record of the team was reduced by 4% when the cyclists

optimally switched their positions compared to a baseline case where the cyclists

formation was unchanged during the race. Another observation form this simulation

was that during the intervals where cyclists did not switch positions, their distance

remained at the minimum safe gap.

We then expanded the formulation to an n-cyclist team where the finishing

time of the nth cyclist is considered as the team record. Since in the two-cyclist case

study we showed that the optimal distance gap between the cyclists is fixed, we did

not consider distance as a state variable in the formulation and set it as a constant.

Because the distance gap was constant between the cyclists, their velocity was the

same. Therefore, instead of having three separate state variables for velocity of each

cyclist, the velocity of the platoon was considered as a state variable. The control

variables in this formulation were the formation of cyclists in the platoon and the

platoon acceleration. The simulation results for a three-cyclist team over the first 10

km of the 2019 National Duathlon Championship course, showed a 2.3% reduction in
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travel time compared to a baseline simulation. The baseline simulation was designed

using a widely practiced strategy by professional cycling teams. In this rule-based

strategy, the cyclist in the leading position goes to the back of the platoon at the end

of the time interval. This process is repeated by all of the cyclists in the platoon. From

the simulation results, we conclude that the formation strategy of a team depends

on the conditions of a specific race, and applying a rule-based general strategy is not

necessarily optimal for every competition.
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Chapter 5

Conclusions

Optimal pacing of a cyclist in a time-trial was formulated as an optimal control

problem with an emphasis on the influence of depletion and recovery of anaerobic

reserve on performance. In particular each cyclist’s maximal power varies with level

of fatigue and chosen cadence and plays a critical role in determining the optimal pace

in a hilly time-trial. To that end, state-space dynamic models that track depletion

and recovery of Anaerobic Work Capacity (AWC) as a function of rider’s power

above or below their Critical Power (CP ) were hypothesized and were validated and

calibrated using data from six human subject tests after each spent 14 hours in the lab.

In addition, a model was obtained from experimental data relating cyclists’ maximal

power to their remaining anaerobic capacity and their cadence. With the models in

place, we were able to usefully employ Pontryagin’s Minimum Principle, and that

over any road profile, the optimal strategy is bang-singular-bang, switching between

maximum exertion, no exertion, pedaling at CP , or cruising at constant speeds. Once

global optimality was confirmed, limiting the quantization of the cyclist power to only

these four optimal modes, substantially reduced the computational load of DP and

allowed finer quantization of the states. We demonstrated that the strategy for an
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18 km course can be computed in around 2 minutes, well below what was needed in

a standard DP implementation.

Simulations over simple road profiles with one or two steep climbs, showed

the efficacy of the optimal strategy in distributing the depletion of AWC along the

whole course and appropriately pacing the cyclist in anticipation of climbs. We also

simulated human subject 14 over the 2019 Greenville Duathlon course. We had data

from subject 14 pedaling the same course on a CompuTrainer with her self-strategy.

The simulation suggested that optimal pacing could speed up subject 14 and allow

her to finish the course in 76% of her original time (reduction from 2048 seconds to

1556 seconds) with a 28 Watt increase in her average output power which is 11%

of her CP . The comparison indicates that consistency in power generation is a key

difference between the subject’s self and the optimal strategies. While the power

should be kept at CP for most of the ride, the cyclist benefits from frequent short

sprints to increase velocity.

We have also set up a test protocol using a CompuTrainer for providing optimal

power to our subjects in real time, and to observe their performance improvement in

laboratory environment. At the time of writing this dissertation, unfortunately we

were forced to pause our human subject testing because of the spread of COVID-

19. We had the opportunity to perform a pilot test before the pandemic in which we

observed about 3% improvement in travel time when the subject followed the optimal

power to hold provided by the controller compared to the subject’s self-strategized

pace.

In addition to the individual time trial competition, we expanded our work

to study the team time trial (TTT). During this type of competitions the cyclists in

the trailing positions benefit from a rather significant reduction in the aerodynamic

drag force by riding in a close distance to their preceding teammates. The current
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general strategy of the professional cycling team during a TTT race is that the team

members alternatively take the lead. Then, after spending a single time interval in

the lead position, the lead cyclist goes to the back of the line. We first formulated

an optimal control problem for a case study involving a two-cyclist team using the

previously calibrated models of fatigue and recovery for two of our subjects. Using

the direct multiple shooting method, the optimal control problem was transcribed

into a non-linear programming problem which was solved using CasADi solver. The

case study showed that the distance between the cyclists can be fixed at its minimum

safe value. That means we only need to determine the formation of the cyclists in

the team.

Next, we developed a generalized formulation for an n-cyclist team where

their formation is determined using n factorial binary decision variables in addition

to velocity and acceleration of the entire platoon decision choices. This leads to a

mixed-integer non-linear programming problem. We then simulated a 10 km time

trial race for a three-cyclist team. Since having several binary decision variables

significantly increases the computation time, we first ran a low resolution simulation

with 50 control intervals. From this trial, the optimal formation trajectory was saved

and fed to a second optimization trial with 200 control intervals. In the second

simulation, the only control input was acceleration since formation trajectory is fixed.

To examine the effectiveness of the controller, we also ran a baseline simulation using

the rule-based strategy where the lead cyclist goes to the back of the line periodically.

The results show 2.3% reduction in travel time for the optimal formation simulation

compared to the baseline. This confirms that the current well known rule-based

formation strategy has room for improvement. For an optimal performance, a cycling

team needs to perform the mathematical optimization prior to a competition to find

and practice the prescribed formation strategy.
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In summary, the contributions of this dissertation are:

• Proposing a novel set of dynamic models of athletes’ fatigue and recovery which

are validated using experimental data.

• Formulating an individual time trial race as an optimal control problem and

solving it both analytically and numerically. The simulation results show 24%

reduction in travel time compared to a baseline experiment where the subject

followed her own strategy.

• Implementing the controller in action and providing power suggestion to a cy-

clist pedaling on a CompuTrainer over a simulated elevation profile in the lab-

oratory environment. To the best of the authors knowledge, this is the first try

for implementing a controller to pace a cyclist during a time trial.

• Expanding the optimal control formulation for a team time trial race, and sim-

ulations for a two-cyclist and a three-cyclist team. We confirm that the current

widely used strategy, where the lead cyclists periodically goes to the back of

the platoon, has room for improvement via mixed-integer NLP. The formation

strategy depends on the elevation profile of each race, as well as the fatigue and

recovery model parameters for the team members.

There is still much opportunity for future work. Most importantly, the pro-

posed experiment in this dissertation for real-time use of the optimal pacer in an

individual time trial should be repeated with multiple subject to verify the effective-

ness of implementing the controller. Given that the proposed test setup is located in

a laboratory environment, the next step would be doing experiments on a real road.

To enable outdoor experiment, a power sensor that can communicate real-time data

to the controller is required along with an on-board communication device for sending
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the measurements to a server computer that runs the controller. The controller then

sends back the optimal power to hold to the cyclist.

Moreover, the Team Time Trial simulation should be done with more realistic

assumptions. For instance, several TTT competitions do not consider the time of

the last team member passing the finish line as the team’s record. In fact for a six-

cyclist team, the finish time of the fourth cyclist is considered the team’s record. The

optimal control formulation should be modified to consider this rule. This will not

be an easy task because it will likely results in an increasing number of state variable

in the formulation, which will make it computationally expensive to solve.
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