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Abstract

Thermoelectricity, as a substantial energy form alternate to the traditional

fossil fuels, has attracted tremendous attentions nowadays. The energy conversion

efficiency of the thermoelectric device is mainly governed by the dimensionless ther-

moelectric figure of merit (aka zT) of thermoelectric materials, which consists of both

electrical and phonon transport properties. Nowadays, the exploration of high figure

of merit thermoelectric materials still rely greatly on the experimental efforts due

to the lack of first principles methods for calculating the thermoelectric transport

properties. Comparing with the computational methods for the phonon transport

properties (aka lattice thermal conductivity), which can be calculated considering

the phonon-phonon interactions as the scattering term in the Boltzmann transport

equation (BTE), the first principles methods for calculating the electrical transport

properties fall behind. Till now, the most common methods for calculating the elec-

trical transport properties usually employ the combination of BTE along with the

relaxation time approximation. The human-adjustable and single-value nature of

the relaxation time makes this calculation scheme for the electrical conductivity lack

physical meaning and predictive power.

In this dissertation, we developed first principles algorithms for calculating the

electrical transport properties using the electron-phonon interaction as the scattering

term in the electron BTE, which can be combined with available methods for phonon
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transport properties to provide a full description of the thermoelectric figure of merit.

The complete methodology is presented in Chapter 2. Although 3C-SiC possesses a

simple structure, the polar nature of this material makes it a good candidate to exam-

ine the accuracy of our algorithms for calculating the electrical transport properties.

The calculated charge carrier (both electron and hole) mobilities as a function of tem-

perature agree well with the experimental results. Besides, a temperature dependent

scattering mechanism is observed through our calculations in Chapter 3.

Despite the excellent thermoelectric performance of n-type Mg3Sb2, the low

thermoelectric figure of merit of the p-type counterpart prevents this material from

practical applications. In Chapter 4 of this dissertation, we presented our work on

the anisotropic transport properties of both n- and p-type Mg3Sb2, which are hard to

explore experimentally. Our calculated n-type thermoelectric figure of merit using the

methods developed in Chapter 2 is in excellent agreement with the experimental value,

showing the excellent predictive power of our methods. Most importantly, strong

anisotropic thermoelectric figure of merit of the p-type Mg3Sb2 is observed, with the

out-of-plane figure of merit beyond unity, making it possible for device applications.

Moreover, we further proposed through highly oriented polycrystalline samples, it is

possible to greatly improve the p-type performance of Mg3Sb2 experimentally.

Nanomaterials, especially the two-dimensional materials, have drawn great at-

tentions these days after the discovery of graphene. Although it remains challenging

to measure the thermoelectric transport properties of two-dimensional materials ex-

perimentally, it can be easily calculated using our algorithms developed in Chapter

2. In Chapter 5, we presented our work on the thermoelectric transport properties of

two-dimensional α-Tellurium (α-Te). We found despite the thermoelectric figure of

merits of both n-type and p-type two-dimensional α-Te are already promising com-

pared with other two-dimensional materials, small tensile strain (less than 4%) could
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further boost the n-type thermoelectric performance. However, the tensile strain has

a negative effect on the p-type thermoelectric properties. Lastly, in Chapter 6, we

discussed possible future efforts following the vein of the first principles methods for

calculating the thermoelectric transport properties.
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Chapter 1

Introduction to Thermoelectricity

and Electron-phonon Interactions

Energy consumption is an important issue getting significant attentions from

the entire world. Till now, most common energy resources still come from the burning

of the fossil fuels, such as petroleum, coal, natural gas, etc. According to an annual

report from Lawrence Livermore National Laboratory, in the year 2019, the energy

rejected (wasted) was twice the amount of the energy utilized. These data indicate

serious problems with the energy consumption structure on both ends: the resources

and the usage. To tackle this problem, one can deal with the resource end, that is

to use clean and sustainable energy, such as the wind, solar, nuclear, etc, instead of

the fossil fuels; while on the usage end, one can focus on re-utilizing (harvesting) the

wasted energy. If 20% of the wasted energy can be harvested, it is comparable to

building 10-30 nuclear power plants for free. Since most of the energy is wasted in

the form of thermal energy (heat), it is natural to seek methods to convert the wasted

heat back into power that can be used.

1



Figure 1.1: 2019 Energy Consumption in the United States.

1.1 Brief Introduction to Thermoelectrics

Thermoelectrics can be traced back to the year 1821. Thomas Johann Seebeck,

a German scientist, found a magnetic needle was deflected if a temperature difference

was maintained on two materials in a closed loop. [31] A few years later, a French

scientist, Jean Peltier, discovered a temperature difference across the junction of two

dissimilar conducting materials in a closed loop when a current was driven through

the loop. [32] These two effects (Seebeck effect and Peltier effect) constructing the

foundation of thermoelectrics are named after these two famous scientists. [33]

1.1.1 Seebeck effect and Peltier effect

Seebeck effect

In a particle-like picture, the microscopic origin of the Seebeck effect can be
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Figure 1.2: Schematic diagram of (a) density of occupied states in n-type semiconduc-
tor and its decomposition to density of states and Fermi-Dirac occupation function
and (b) the electron diffusion in the n-type semiconductor when a temperature differ-
ence is held at the two ends. [1] We have modified this figure from its original form
to reflect the density of occupied states on the right (cold) end is much larger than
the one on the left (hot) end in the final steady state as a result of carrier diffusion,
and the fact that the chemical potential on the left (cold) end is lowered while the
chemical potential on the right (hot) end is elevated.

understood as follows. Taking a semiconductor under a temperature difference as an

example without losing generality, the chemical potential at the two ends tend to stay

the same as in the equilibrium state at the moment an external temperature gradient is

applied at the two ends of the semiconductor (Figure 1.2). Heat excites charge carriers

(either electrons or holes) according to the Fermi-Dirac distribution. Therefore, both

the number of charge carriers and the average energy of charge carriers at the hot end

tend to be higher than the counterparts at the cold end. Then, hot charge carriers,

driven by the difference in the average energy, diffuse from the hot end towards the
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cold end, with charge carriers with one sign (either positive or negative) accumulating

at the cold end and the charge carriers with the opposite sign accumulating at the

hot end [2], developing an internal electric field between the hot and cold ends. At

the final steady state, the resultant electric field counterbalances the further diffusion

of hot charge carriers (Figure 1.3). Alternatively, one can image this process as the

accumulation of charge carriers at the cold end shifts the local chemical potential in

such a way that the average energy of the charge carriers at the hot and cold end equal

each other. Consequently, a potential difference is built up due to the temperature

difference. This phenomenon is called the absolute Seebeck effect.

Figure 1.3: Representation of diffusion of carriers under temperature gradient in an
electric conductor (upper panel) and finally a steady electric field builds up in the
conductor (bottom panel). [2]

In addition, there is also a relative Seebeck effect, where a thermocouple con-

sisting of two dissimilar electric conductors is involved (Figure 1.4 (a)). In the ther-
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mocouple, the two junctions between the two dissimilar materials (A and B in Figure

1.4 (a)) are kept at different temperatures Th and Tc with Th >Tc. A potential

difference V can be measured between the two junctions, which is defined as:

V = αAB × (Th − Tc), (1.1)

where αAB is the relative Seebeck coefficient between the two materials.

Figure 1.4: Schematic diagram of (a) Seebeck effect and (b) Peltier effect.

Peltier Effect
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Figure 1.5: Schematic diagram for thermoelectric generator and cooler. [3]

If a current is driven through the thermocouple, heat is absorbed at one of

the junctions, and released at the other (Figure 1.4 (b)). This is called the (relative)

Peltier effect. Unlike Seebeck effect, Peltier effect can only be observed in dissimilar

materials (relative Peltier effect). This is because the Peltier effect originates from the

different chemical potential of the two materials in the closed circuit. In the closed

circuit, when the charge carriers move from the high (low) chemical potential side to

the low (high) chemical potential side due to the driven current, energy is released

(absorbed). It is interesting to note that the Peltier effect should not be regarded as

the exact inverse of the Seebeck effect because the Seebeck effect is observed in an

open circuit, while Peltier effect is observed in a closed circuit. Suppose the current

driven in the closed circuit is I, the heat absorption or emission rate can be expressed
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as:

q = ΠABI (1.2)

where ΠAB is the relative Peltier coefficient similar to the relative Seebeck coeffi-

cient. It is obvious from Equation 1.2 that the heat absorption or emission rate is

proportional to the current driven through the closed circuit.

1.1.2 Thermoelectric Generator and Cooler

The Seebeck effect discussed above provides the foundation for a thermoelectric

generator. Figure 1.5(a) depict the schematic diagram of a thermoelectric generator

consisting of both n-type and p-type semiconductors (aka n- and p-thermoelectric

legs). When a temperature difference is maintained at the two junctions of two

thermoelectric legs, more electrons in the n-type semiconductor and more holes in

the p-type semiconductor are excited at the hot side. Under the influence of the

concentration gradient, the electrons (holes) in the n-leg (p-leg) would diffuse from

the hot side to the cold side, building a voltage difference between the two ends of

the generator.

Thermoelectric cooler, which can be regarded as the inverse of the thermoelec-

tric generator, is based on the Peltier effect. Similar to the thermoelectric generator,

a thermoelectric cooler also consists of n-legs and p-legs, which are connected electri-

cally in series and thermally in parallel. The schematic diagram for a thermoelectric

cooler is depicted in Figure 1.5 (b). When a current is driven through the closed

series loop, electrons in the n-legs would move in the direction opposite to that of the

applied current; in the meanwhile, holes in the p-legs would move in the same direc-

tion as the current. When the charge carriers move from one junction to the other,

energy carried by the charge carrier is released or absorbed depending on the average
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energy of the charge carriers. As can be seen from Figure 1.5 (b), both electrons in

the n-legs and holes in the p-legs run away from the top junction towards the bottom

junction carrying heat with them, which finally results in the top junction cooled and

the bottom junction heated. It should be noted that if the current in Figure 1.5 (b)

is reversed, the cooling (heating) effect would occur at the top (bottom) junctions.

1.1.3 Thermoelectric Conversion Efficiency

The efficiency of a thermoelectric device, η, is given by Equation 1.3, where

zT is the average figure of merit over the whole working temperature range, with TC

and TH being the temperatures at the cold and hot ends, respectively.

η =
TH − TC
TH

×

√
1 + zT − 1√

1 + zT + TC/TH
(1.3)

According to the Equation 1.3, the thermoelectric conversion efficiency is constrained

by the Carnot limit and the dimensionless figure of merit or the zT values. [34] It

should be noted the zT values are the properties of materials. Therefore, Equation 1.3

is the linkage between the thermoelectric conversion efficiency and the thermoelectric

materials. Figure 1.6 is represented to have a better visualization of the relationship

between the thermoelectric device efficiency and the average figure of merit.

1.1.4 Thermoelectric Figure of Merit

As mentioned above, the dimensionless figure of merit or zT value which is

used to characterize the performance of a thermoelectric material, is defined as [35]

zT =
α2σT

κ
(1.4)
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Figure 1.6: Thermoelectric device efficiency as a function of the hot-end temperature
under the assumption that the cold-end is kept fixed at 300 K [4].

where α is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute

temperature, and κ is the total thermal conductivity contributed from charge carriers

κe and phonons κL, respectively. P-type semiconductors, in which holes are the

majority carriers, possess positive Seebeck coefficient, while n-type semiconductors

exhibit negative Seebeck coefficient because the electrons are majority carriers. The

power factor (PF) is defined as the product of α2 and σ in Equation 1.5, which is

mainly used to describe the electrical performance of a thermoelectric material.

PF = α2σ (1.5)
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1.2 Experimental Efforts to Explore High Figure

of Merit

1.2.1 Optimizing the Carrier Concentration

All the physical quantities except κL in Equation 1.4 are coupled to each other

as functions of carrier concentration, n. n is governed by the doping level, temper-

ature, and defects. In general, the electrical conductivity increases as the carrier

concentration increases. On the contrary, the Seebeck coefficient decreases with in-

crease of the carrier concentration (Figure 1.7). As a result, there is no ideal method

to optimize these quantities (except κL) separately. However, according to Figure

1.7, through optimizing the carrier concentration, it is possible that the power factor

reaches an optimal value. The optimal carrier concentration of different thermo-

electric materials differs from each other. However, it generally falls in the range

1018-1020 cm−3, which usually belongs to the range for the degenerate semiconduc-

tors. [35] Therefore, to optimize the power factor requires doping, alloying or other

strategies to tune the carrier concentration. In addition, it is verified in Bi2Te3 that

it is possible to tune the intrinsic point defect in Bi2Te3 through extrinsic doping,

which in turn helps optimize the carrier concentration. [36]

However, it should be noted that the optimal carrier concentration for zT and

power factor is different, which is due to that the optimal carrier concentration for

power factor benefits not only the electrical performance but also the electrical ther-

mal conductivity. With increasing electrical thermal conductivity, the total thermal

conductivity is also elevated, negatively affecting the final zT. Therefore, the optimal

carrier concentration for maximum zT should be slightly lower that corresponding to

the maximum power factor.
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Figure 1.7: Relationship between the electrical transport properties (Seebeck coeffi-
cient, electrical conductivity, and power factor) and the carrier concentration [5].

1.2.2 Band Engineering

At a fixed carrier concentration, it is possible to further optimize the thermo-

electric performance via band engineering. According to Equation 1.6,

α =
8π2

3

k2
BT

eh2
m∗(

π

3n
)
2
3 (1.6)

the Seebeck coefficient is not only determined by the carrier concentration but also

proportional to the density of state (DOS) effective mass, indicating increasing the

DOS effective mass of charge carrier, the Seebeck coefficient could be elevated. As

can be seen from the DOS effective mass expression m∗ = N2/3
v m∗b [6, 37], where Nv is

the band valley degeneracy and m∗b is the band effective mass, that increasing Nv or

m∗b could increase the DOS effective mass, thus further optimizing the thermoelectric
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performance. On the other hand, it should be noted that if the charge carrier is

mainly scattered by phonons, which is usually the case for thermoelectric materials

especially at high temperatures, the charge carrier and the band effective mass has

a relation µ ∝ 1/m∗b
5/2 [6, 37]. In the meanwhile, according to the Drude model,

σ = nqµ, at a fixed carrier concentration, the carrier mobility is determinant for

the electrical conductivity. Therefore, increasing the band effective mass must be

accompanied by sacrificing the electrical conductivity and thus the thermoelectric

performance. Compared to increasing the band effective mass, increasing the band

valley degeneracy is more effective method to enhancing the DOS effective mass [38].

Some thermoelectric materials with high symmetry, such as PbTe, SnTe and

half-Heusler [38] possess intrinsic large valley degeneracy if the band extrema deviate

from the Gamma point in the Brillouin zone. In addition, through methods like

alloying, it is possible to tune the position of the energy band, decreasing the energy

difference between the light band and heavy band, aka the band convergence, which

could also increase the band valley degeneracy. For example, Pei et al. [6] found

in PbTe that the light valence band at the L point in the Brillouin zone moves

downwards in the energy scale and merged with the heavy band at the Σ point,

realizing the band convergence as in Figure 1.8. The number of the band valleys

that contribute to the conduction of the charge carrier increases from 4 to 16 (4 from

L point and 12 from the Σ point), leading to a great increase in the DOS effective

mass, thus the Seebeck coefficient. Besides, through Rashba effect it is also possible

to fulfill the band convergence. [39]

Apart from the methods mentioned above, introducing resonant level could

also increase the Seebeck coefficient [40, 41]. Resonant level, like impurity level,

is usually introduced by the dopants. Unlike the common impurity level, which

usually lies inside the band gap of a semiconductor, the resonant level locates in the
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conduction band or valence band depending on the type of dopants. Accordingly, the

DOS shows a spike, which is beneficial in increasing the DOS effective mass. Typical

examples include Tl doped PbTe [42], Al doped PbSe [43] and In doped SnTe [44],

etc.

1.2.3 Efforts to Decrease Lattice Thermal Conductivity

As mentioned above, lattice thermal conductivity is the factor that could be de-

coupled from the electrical transport parameters, which could be optimized separately.

In recent years, more and more methods to reducing the lattice thermal conductivity

have been reported. For example, the multi-scale scattering center introduced by

defect engineering could help shorten the phonon mean free path [45], thus decreas-

ing the lattice thermal conductivity. From the dimensional viewpoint, in general,

defects can be categorized into zero-dimensional (point defect), one-dimensional (dis-

location), two-dimensional (grain boundary) and three-dimensional (nano inclusion

or secondary phase) [46]. Point defect, including vacancy [47, 48], doping or alloying

[49] and interstitial atoms [50], can scatter high-frequency phonon effectively. High

density dislocation can scatter mid-frequency phonons, which can be introduced via

plastic deformation of the samples. Large amount of grain boundaries can be in-

troduced via grain refinement and nano-structuring, thus forming high density grain

boundary scattering centers, which can scatter low-frequency phonons. However, it

should be noted that the high density grain boundary scattering center not only scat-

ters the low-frequency phonon but the charge carriers, which has negative effect on

the electrical performance. Introducing the above discussed defects into one sample,

we can construct multi-frequency and multi-scale scattering centers, thus realizing

the reduction of lattice thermal conductivity. For instance, Biswas et al. introduced
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the multi-scale scattering centers into PbTe and achieved a zT around 2.2 at 915 K

[51].

In addition, the lattice thermal conductivity can also be effectively reduced

via lattice anharmonicity [52], complex crystal structure[53], porous structure [54, 55],

and introducing heavy element or weak chemical bonding [56].

1.2.4 Pre-screening Factor

It can be inferred from the discussion above that to explore the high perfor-

mance thermoelectric materials, there are large amounts of work to be done experi-

mentally due to the large phase space for the parent compounds to be dealt with, not

to mention the fine-tuning of the electrical and thermal transport properties via dop-

ing or alloying. To reduce the size of the phase space, experimentalists came up with

some pre-screening factor for excellent thermoelectric materials, such as degenerate

semiconductors with carrier concentration between 1018 and 1020 cm−3, semiconduc-

tors with small band gap, high symmetry crystal structure, small electronegativity

difference among the constituent element, etc.

However, even with the pre-screening factors, to enumerate all the possible case

in the large phase space or to fast-target some promising candidates for thermoelectric

application is a great burden from the experimental point of view. Therefore, more

advanced techniques should be developed not only in the vein of experiment but also

the path along the theoretical efforts.
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1.3 Calculations of the Thermoelectric Figure of

Merit

The calculations of the thermoelectric figure of merit involves two parts: (i)

the electrical transport properties, such Seebeck coefficient, electrical conductivity

and electrical thermal conductivity; (ii) the phonon transport properties (aka lattice

thermal conductivity). Solving the phonon Boltzmann transport equation (BTE) is

an easy but efficient way to calculate both the electrical transport properties and

phonon transport properties.

1.3.1 Phonon Transport Properties

In the presence of a temperature gradient ∇T , the Bose-Einstein distribution

of a phonon mode, f , deviates from f 0, and this deviation can be obtained from the

BTE. The phonon distribution function is influenced by both the diffusion due to

the temperature gradient and the scattering from possible scattering processes, such

as phonon-phonon scattering, phonon-isotope scattering, electron-phonon scattering,

etc. For a steady state, the changing rate of the phonon distribution function must

vanish, which can be expressed by the BTE [57, 58]:

−vqp · ∇T
∂fqp
∂T

+
∂fqp
∂t
|scatt = 0 (1.7)

where q and p represent the wave vector and phonon band branch of a phonon mode.

In the following, we will use λ to denote the phonon mode with wave vector q and

phonon band branch p. vλ is the phonon group velocity. In Equation 1.7, the first

term is the temperature gradient induced diffusion term, and the second term is the

scattering processes governed scattering term. Under a small temperature gradient,
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the phonon BTE can be linearized with fλ = f 0
λ + f 0

λ(1 + f 0
λ)Φλ, where Φλ is a small

perturbation. If only three-phonon processes within the phonon-phonon scattering

are considered for the scattering term, the linearized phonon BTE can be written as

[59, 60]

−vλ·∇T
∂f 0

λ

∂T
=
f 0
λ (1 + f 0

λ)

N
×
∑
λ′λ′′

[
(Φλ + Φλ′ − Φλ′′) Γ+

λλ′λ′′ +
1

2
(Φλ − Φλ′ − Φλ′′) Γ−λλ′λ′′

]
(1.8)

where a discretization of the Brillouin zone into a Gamma-point-centered regular grid

of N = N1×N2×N3 q points is employed, with N1, N2 and N3 being the number of

divisions along the three principal axes in the Brillouin zone. Γ+
λλ′λ′′ and Γ−λλ′λ′′ are the

transition rates due to the three phonon absorption (+) and emission (-) processes,

respectively, which can be calculated directly from first principles. [61, 62, 63, 64, 65]

With the phonon BTE solved and the distribution function f obtained, it is

then possible to calculate the lattice thermal conductivity. The detailed methods are

provided in Chapter 2.

1.3.2 Electrical Transport Properties

Similar to the phonon transport properties, in the presence of an external elec-

tric field E, the Fermi-Dirac distribution of an electronic state, f , deviates from its

equilibrium distribution f 0, and this deviation can be calculated using the electron

BTE. The electron distribution function is affected by the diffusion due to the ex-

ternal electric field, and the scattering from possible scattering processes, which is

mainly governed by the electron-phonon interaction for single crystal samples at high

temperature. When the external electric field E is small, the BTE for the electrical
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transport properties has the form:

−qE
h̄

∂fnk
∂k

+
∂fnk
∂t
|scatt = 0 (1.9)

where q is the elementary charge, h̄ is the reduced Planck constant, E is the external

electric field, fnk is the electron distribution function with electron wave vector k and

band branch n.

Compared to the full solution to the phonon BTE, the development of the

solution to the electron BTE falls behind. Nowadays, the common way to deal with

the scattering term (the second term on the left of Equation 1.9) in the electron BTE

is to use the constant relaxation time approximation with the form:

∂fnk
∂t
|scatt =

fnk − f 0
nk

τ
(1.10)

where τ is the relaxation time. It should be pointed out that the relaxation time is

identical for different electronic state under the constant relaxation time approxima-

tion, which is physically meaningless. In addition, despite the relaxation time could

be fit from experimental data or using some empirical expressions, this type of solu-

tion to the electron BTE lacks the predictive power. Therefore, the calculations of the

electrical transport properties based on the constant relaxation time approximation

could only provide phenomenological explanations to the experimental results, which

is also the main reason why there is much less computational research work in the

thermoelectric field than the experimental work. In order to make the calculations of

the electrical transport properties fully from first principles, more advanced solution

to the electron BTE is in high demand.
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1.4 Electron-phonon interactions

The electron-phonon interactions, where an electron exchanges energy and

momentum with phonons (collective modes of the lattice vibrations), play a key role

in condensed matter physics and materials science and engineering. For example, the

electron-phonon interaction is responsible for the fundamental physical phenomena

such as the conventional superconductivity [66], Kohn anomaly [67] and the Peierls

[68] distortions, etc. The broadening of the spectral lines in angle-resolved photoemis-

sion spectroscopy [69] and in vibrational spectroscopy [70], phonon-assisted photon

absorption [71, 72, 73] as well as for the temperature dependence of the band gaps in

semiconductors [74] are consequences of the interactions between electrons and lattice

vibrations.

Most important to this dissertation is that electrical conductivity and related

electrical transport properties [75] have a close relation with the electron-phonon

interactions. Thus, the electron-phonon interaction also plays an important role in

the thermoelectric effect [76]. According to the first order perturbation theory, an

electron can change its state by absorbing or emitting a phonon, corresponding to

the phonon absorption process and phonon emission process, respectively. According

to the Fermi golden rule, it is possible to calculate the scattering rate of each process

for each electronic state. The obtained scattering rates for each electronic state can

then be fed into the electron BTE, which is the advanced first principles solution to

the electron BTE we desire. Finally, it is possible to calculate the electron-phonon

interaction limited electrical transport properties under the framework of BTE and

electron-phonon interaction. The detailed methodology is presented in Chapter 2.
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Figure 1.8: Relative energy of the valence bands in PbTe0.85Se0.15. At around 500 K
the two valence bands converge, resulting in transport contributions from both the L
and S bands. C denotes conduction band; L represents low degeneracy hole band; S is
high degeneracy hole band. [6]. It should be noted that in the figure, only the relative
shift of the band extrema makes sense since in reality it is impossible to rigidly shift
the whole band.
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Chapter 2

First Principles Methods for

Electrical and Phonon Transport

Calculations

2.1 Electrical Transport Properties

Recall the expression for the electron BTE:

−qE
h̄

∂fnk
∂k

+
∂fnk
∂t
|scatt = 0 (2.1)

where q is elementary charge and h̄ is the reduced Planck constant. If the external

electric field E is small (low-field limit), fnk could be expressed using Taylor expansion

as fnk = f 0
nk + fnk(1− fnk)Φnk, with Φnk being a small perturbation which is linear

with respect to E. Therefore, it is convenient to express Φnk as qE
kBT
·Fnk, with kB being

the Boltzmann constant, and T being the temperature. Fnk can be considered as the

mean free displacement [58, 77]. If the scattering term (second term) of Equation 2.1
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is limited to the electron-phonon interactions, Equation 2.1 can be linearized [77]:

Fnk = vnkτ
0
nk + τ 0

nk

∑
qpm

(Γmk+q
nk,qp + Γmk+q,−qp

nk )Fmk+q, (2.2)

where qp represents the phonon mode with branch p and wave vector q, vnk describes

the group velocity of carrier defined as vnk = 1
h̄
∂Enk
∂k

, and τ 0
nk is the relaxation time

which could be calculated as [
∑
qpm

(Γmk+q
nk,qp + Γmk+q,−qp

nk )]
−1

. Here, Γmk+q
nk,qp and Γmk+q,−qp

nk

are transition rates for phonon absorption and emission processes, respectively [77],

which can be obtained from electron-phonon coupling strength calculated via first

principles method as:

Γmk+q
nk,qp =

2π

h̄
|gmk+q
nk,qp |2(f 0

k+q +N0
qp)× δ(Enk + h̄ωqp − Emk+q), (2.3)

Γmk+q,−qp
nk =

2π

h̄
|gmk+q
nk,qp |2(1 +N0

−qp − f 0
mk+q)× δ(Enk − h̄ω−qp − Emk+q), (2.4)

where gmk+q
nk,qp is the electron-phonon interaction matrix element, N0 is the Bose-

Einstein distribution function for phonons, f 0 denote the Fermi-Dirac function for

electrons and the δ function guarantees the conservation of energy and momentum

during the scattering process.

Equation 2.2 can be solved iteratively to find Fnk, which is also called the ex-

act solution. This method has been successfully applied to studying phonon transport

properties [58, 78, 79] for a few years, but has not been introduced to the study of elec-

tron transport properties until very recently [77, 80, 81, 82, 83]. For the exact solution

to Fnk, the k and q grids are required to be commensurate [84, 85]. Besides the exact

solution, for comparison, two more solutions are also implemented in our calcula-

tions, which are the conventional relaxation time approximation (conventional RTA)

method and momentum relaxation time approximation (momentum-RTA) method.
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Conventional RTA neglects the sum term (second term) on the right-hand side of

Equation 2.2. Momentum RTA also neglects this sum but further takes account

for the relative change of momentum in each scattering process by multiplying the

transition rates involved in τ 0
nk by an efficiency factor of [77]

λ = 1− vnk · vmk+q

|vnk|2
. (2.5)

At a finite temperature T , with the calculated Fnk, the electrical conductivity tensor

can be expressed as:

σβγ =
se2

V Nk

∑
nk

vβnkF
γ
nk

(
−∂f

0
nk

∂εnk

)
, (2.6)

and the Seebeck coefficient as:

αβγ =
(
σ−1

)βη
ξηγ, (2.7)

where ξηγ = se
TV Nk

Σnk (εnk − εf ) vηnkF
γ
nk

(
−∂f0nk
∂εnk

)
. With ξ defined above, the electrical

thermal conductivity could be obtained as:

κβγe =
s

TV Nk

∑
nk

(εnk − εf )2 vβnkF
γ
nk

(
−∂f

0
nk

∂εnk

)
− Tξβηαηγ, (2.8)

In Equations 2.6-2.8, Nk is the number of k meshes for sampling the first Brillouin

zone, V is the volume of the unit cell, and β and γ are the Cartesian directions. For

example, vβnk is the electron velocity along β direction.

From Drude model, it is also possible to extract the carrier mobility:

µβγ =
σβγ

nce
, (2.9)

where nc is the carrier concentration and can be calculated as nc = s
NkV

Σnkf
0
nk and
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nc = s
NkV

Σnk(1− f 0
nk) for n-type and p-type semiconductors, respectively.

2.2 Lattice Thermal Conductivity

In the linearized phonon BTE in mentioned in Chapter 1 (Equation 1.7), it

should be noted that the conservation of both energy (ωλ±ωλ′ = ωλ′′) and momentum

(qλ ± qλ′ = qλ′′ + G) must be obeyed in all the allowed scattering processes, where

+ and - are for absorption and emission processes, respectively, and G is a reciprocal

lattice vector. In absorption processes, a phonon λ is scattered by absorbing a phonon

λ′ to yield a third phonon λ′′; while in emission processes, a phonon λ decays into

two phonons λ′ and λ′′. Γ+
λλ′λ′′ and Γ−λλ′λ′′ can be expressed as [58]:

Γ+
λλ′λ′′ =

h̄π

4
(f 0
λ′ − f 0

λ′′)× |V +
λλ′λ′′‖2 × δ(ωλ + ωλ′ − ωλ′′)

ωλωλ′ωλ′′
, (2.10)

Γ−λλ′λ′′ =
h̄π

4
(f 0
λ′ + f 0

λ′′ + 1)× |V −λλ′λ′′ |2 ×
δ(ωλ − ωλ′ − ωλ′′)

ωλωλ′ωλ′′
, (2.11)

where

V +
λλ′λ′′ =

∑
bl′b′l′′b′′

∑
αβγ Φαβγ

0b,l′b′,l′′b′′e
λ
αbe

λ′
βb′e

−λ′′
γb′′√

mbmb′mb′′
× e+iq′·rl′e−iq

′′·rl′′ , (2.12)

V −λλ′λ′′ =

∑
bl′b′l′′b′′

∑
αβγ Φαβγ

0b,l′b′,l′′b′′e
λ
αbe
−λ′
βb′ e−λ

′′

γb′′√
mbmb′mb′′

× e−iq′·rl′e−iq
′′·rl′′ . (2.13)

V +
λλ′λ′′ and V −λλ′λ′′ are the scattering matrix elements for absorption and emission

processes, respectively. Since Φλ is linear with ∇T , we can write Φλ = − h̄ωλ
kBT 2 Fλ ·∇T ,

where Fλ can be regarded as mean free displacement, a generalization of mean free

path [58], and ωλ is the angular frequency. To simplify the linearized phonon BTE
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equation (Equation 1.8), we further define Eλ ≡ ωλFλ, and can obtain

{
−ωλvλ +

1

N

∑
λ′λ′′

[(Eλ + Eλ′ − Eλ′′)Γ
+
λλ′λ′′ +

1

2
(Eλ − Eλ′ − Eλ′)Γ

−
λλ′λ′′ ]

}
· ∇T = 0.

(2.14)

Taking Eλ out of the summation term in Equation 2.14, we obtain its iterative form

as

Ei+1
λ = E0

λ +
τ 0
λ

N

∑
λ′λ′′

[(Ei
λ′′ − Ei

λ′)Γ
+
λλ′λ′ +

1

2
(Ei

λ′′ + Ei
λ′)Γ

−
λλ′λ′ ], i = 1, 2, 3, ...... (2.15)

where N is the number of sampled q-points in the reciprocal space. The iterative

process starts with

E0
λ = ωλvλτ

0
λ (2.16)

with 1
τ0
λ

= 1
N

∑
λ′λ′′(Γ

+
λλ′λ′′ + 1

2
Γ−λλ′λ′′). Notice it is also possible to include the phonon-

isotope scattering the in expression for τ 0
λ using Matthiessen’s rule, which is discussed

in the Appendix A. In fact, setting Eλ equal to E0
λ is equivalent to the conventional

RTA solution to the linearized phonon BTE (Equation 1.8) [58]. The process is

regarded as converged when the difference between the values of Eλ in two consecu-

tive steps is below a convergence threshold. The Eλ should converge for all phonon

modes in the iterative process, which is too slow from the computational point of

view. Instead, the convergence criterion for κL is implemented [58]. When the devi-

ation between the values of κL in two consecutive steps falls within the convergence

threshold, the iteration scheme is terminated.

The heat current J generated from the small temperature gradient can be

expressed in terms of the distribution function fλ or Eλ in the linearized BTE (2.14))
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[60, 86],

J =
1

NV

∑
λ

h̄ωλvλfλ = − 1

kBT 2NV

∑
λ

h̄2ωλf
0
λ

(
1 + f 0

λ

)
vλ (Eλ · ∇T ) (2.17)

where V is the volume of the unit cell, and we have used the fact the heat current

is vanishing at the equilibrium state. From Fourier’s law Jα = −∑β κ
αβ(∇T )β, it

follows

καβ =
1

kBT 2NV

∑
λ

h̄2ωλf
0
λ(1 + f 0

λ)v0
λE

β
λ . (2.18)
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Chapter 3

Carrier Scattering Mechanism in

3C-SiC

We have developed the first principles methods for the calculations of electrical

transport properties in Chapter 2, whose accuracy still needs further examination.

In this chapter, we used 3C-SiC as an example to validate our methods for obtaining

the electrical transport properties such as carrier mobility. Despite there are only

two atoms inside the primitive unit cell of 3C-SiC, the two atoms belong to different

elements, leading 3C-SiC to be a polar semiconductor, which is ideal to examine

the accuracy of the interpolated electron-phonon interaction matrix elements with

the polar-longitudinal-optical phonons. Also, the simple crystal structure that 3C-

SiC possesses makes the calculations of the electrical transport properties limited

by the electron-phonon interaction less expensive. In addition, there are abundant

experimental data measured on the single crystal samples available for both n-type

and p-type 3C-SiC, which makes it easy to compare our calculated electrical transport

properties, such as the carrier mobility, to the available experimental data.
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3.1 Introduction

Silicon carbide (SiC) is one of the most promising alternatives to silicon for

high-temperature and/or high-power devices because of its unique combination of

wide band gap [87, 88],high breakdown voltage [87, 88], and high thermal conduc-

tivity [89, 90]. The performance of SiC-based devices has been demonstrated in past

decades [91, 92, 93, 94, 95, 96, 97]. From a fundamental research point of view, SiC is

interesting in its own right. For example, SiC has numerous allotropes, among which

the cubic phase (3C) and hexagonal phases (4H and 6H) are the most interesting.

Note that the device applications of SiC rely on its electrical transport properties.

Concerning the electrical transport properties, the 4H and 3C phases have been re-

ported to have substantially higher electron mobility than the 6H phase [98]. In

particular, 3C-SiC adopts a simple zinc-blende crystal structure, which is isotropic,

with several advantages compared to other allotropes with respect to applications.

Despite the abundant data in literature, both experimental [9, 10, 99, 100] and

theoretical [101, 102, 103, 104, 105, 106, 107, 108], the electrical transport properties of

3C-SiC have not yet been fully understood at the microscopic level. The experimental

electron mobilities vary greatly from sample to sample, intimately related to the

quality and growth conditions. For example, Nelson et al. [9] reported a room

temperature electron mobility of 890 cm2/V · s in n-type single crystalline 3C-SiC.

Shinohara et al. [10] obtained a value larger than 750 cm2/V · s in undoped 3C-SiC

epitaxial film grown on carbonized silicon surfaces. Yamanaka et al. [99] obtained a

much smaller value around 500 cm2/V · s for incidentally doped n-type 3C-SiC layers

epitaxially grown on silicon, and the authors argued that longitudinal acoustic (LA)

phonons dominate the scattering mechanism at room temperature and above. On the

theory side, a value of 1300 cm2/V ·s at 300 K has been reported which assumes polar
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longitudinal optical (LO) phonon scattering being the dominant scattering mechanism

[108]. These early studies focused mainly on n-type 3C-SiC, however, the research

on p type 3C-SiC is scarce. Thus, there is a knowledge gap regarding p-type 3C-

SiC, preventing us from obtaining a coherent and complete picture of the electrical

transport properties of 3C-SiC.

As discussed above, electron-phonon interaction is at the core of understand-

ing the electrical transport properties of 3C-SiC at the microscopic level. To this end,

first-principles calculations of carrier transport properties are the tools of choice to fill

this gap of knowledge. However, first-principles calculations of carrier transport prop-

erties are computationally expensive as very dense meshes of Brillouin zone sampling

are required for both carriers and phonons. The lately developed interpolation meth-

ods for electron-phonon interaction matrix elements [77, 84, 85, 109] greatly reduced

the time required for calculating the electron-phonon interaction matrix elements.

The efficiency of these methods has been confirmed in both nonpolar materials and

polar materials [77, 80, 81, 83, 110, 111, 112]. Therefore, in this paper, we carry out

first-principles calculations to have a deeper understanding of the intrinsic electron

and hole transport mechanism of single crystalline 3C-SiC. In particular, the Wan-

nier function interpolation method [84, 85, 109, 113] 29313233is employed to obtain

the electron-phonon interaction matrix elements, which are then used to calculate

phonon-limited scattering rates and carrier mobilities by solving the electron BTE

(Equation 2.1).

3.2 Computational Details

Density functional theory (DFT) is employed to calculate the geometric struc-

ture and electronic band structure, while density functional perturbation theory is
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used to obtain phonon dispersion relation and initial electron-phonon interaction

matrix elements as implemented in Quantum Espresso package [114] with norm-

conserving pseudopotential under the local density approximation [115]. The planewave

cutoff energy is set to be 58 Ry, and 16 × 16 × 16 Monkhorst-Pack k meshes are used

for structure relaxation, both of which are well converged. The lattice structure of

3C-SiC is shown in Figure 3.1(a) with the relaxed lattice constant of 4.326 Å, agree-

ing well with experimental value 4.360 Å[116]. To interpolate the electron-phonon

interaction matrix elements, the EPW package [85] is employed to perform Wannier

function interpolation. The initial coarse grids are chosen as 6 × 6 × 6 for both k and

q. The chemical potential is manually chosen to be 0.3 eV in the band gap away from

the band edges to ensure that the calculated mobility is intrinsically phonon-limited

and corresponds to a low carrier concentration limit, where the defect scattering can

be ignored.

3.3 Results and Discussions

It has been reported that the spin orbit coupling (SOC) effect, which leads to

the splitting of the degenerate valence band, has a great influence on the hole mobility

in different materials [81, 82, 83]. Therefore, in our calculation, SOC is included for

the calculation of electronic band structure, phonon dispersion relation, and electron-

phonon interaction matrix elements unless otherwise stated. The electronic band

structure along high-symmetry paths [Figure 3.1](b) is shown in Figure 3.2(a). 3C-

SiC has an indirect band gap, with the valence band maximum (VBM) located at Γ

point, and the conduction band minimum (CBM) sitting at X point. The calculated

band gap is 1.34 eV, smaller than the experimental value of 2.42 eV [117]. This is a

result of DFT usually underestimating the energy of band gaps. However, the band
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Figure 3.1: (a) Geometric structure of 3C-SiC (conventional unit cell) and (b) first
Brillouin zone of 3C-SiC with the high symmetry points labeled. The fractional
coordinates for the high symmetry points with respect to reciprocal lattice vectors
are: X1=(0.5, 0, 0.5), X2=(0, 0.5, 0.5), X3=(0.5, 0.5, 0), X4=(-0.5, 0, -0.5), X5=(0, -
0.5, -0.5), X6=(-0.5, -0.5, 0), K=(0.375, 0.375, 0.75), W=(0.5, 0.25, 0.75) and L=(0.5,
0.5, 0.5).

gap has no effect on the calculated transport properties. With SOC, as can be seen

from the inset of Figure 3.2(a), there is a small split-off energy gap about 15 meV in

the valence band, close to the experimental value of 10 meV [118]. The calculated

phonon dispersion relation along with experimental data are shown in Figure 3.2(b).

It is clear that the calculated phonon dispersion relation is in excellent agreement

with the experimental values from both inelastic X-ray scattering [7] and Raman

measurement [8]. It is worth noting that the highest frequency of the LO phonons is

121 meV, which is larger than those in conventional semiconductors such as silicon

[81, 83] and GaAs [80, 81, 110].

The mobility calculation is very time and memory consuming, and it is always

necessary to do a convergence test on the k and q grids. As can be seen in Figure 3.3,
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Figure 3.2: (a) Electronic band structure and (b) phonon dispersion relation along
high-symmetry points in the first Brillouin zone. Inset: zoom-in of the valence band,
where the split-off gap is significantly clearer. Experimental data for phonon dis-
persion are taken from Ref [7] and Ref [8]. Different branches: transverse acoustic
(TA1 and TA2), longitudinal acoustic (LA), transverse optical (TO1 and TO2), and
longitudinal optical (LO) are depicted in different colors.

at room temperature, the obtained mobilities of holes and electrons are well converged

with the relative difference around 2% when the fine k and q meshes are both 120 ×

120 × 120.

With the converged k and q meshes mentioned above, the calculated carrier

mobilities as a function of temperature are depicted in Figure 3.4. For both electrons

and holes, the mobilities obtained with exact solution to the BTE (labeled as ITER

in Figure 3.4) agree very well with the experimental results in a broad temperature

range, from 200 K to 600 K. However, the conventional-RTA method strongly under-

estimates the mobilities by more than 31% and 17% variance for electrons and holes,

respectively.

Mobilities obtained without SOC are also plotted in Figure 3.4 for comparison.

Since SOC does not affect the conduction bands in 3C-SiC, the electron mobilities

calculated with and without SOC are identical. On the other end, calculation without

SOC slightly overestimates the hole mobilities compared to the valued obtained with

SOC. For example, at 300 K, the mobilities obtained with and without SOC effect
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Figure 3.3: Convergence on the carrier mobilities at 300K with respect to k and q
grids. Here, in light of the high symmetrical cubic structure of 3C-SiC, the number
n on the horizontal axis represents n× n× n k and q fine grids.

are 120.4 and 122.8 cm2/V · s, respectively. As temperature increases from 200 K to

800 K, the variance decreases from 2.0% to 1.0%. The thermal energy increasing with

temperature can smear out the split-off gap. Only when the thermal energy is much

smaller than the split-off gap, SOC can have appreciable effect on the carrier mobility.

The split-off gap of 15 meV corresponds to a temperature of 174 K. Therefore, the

SOC effect on the hole mobility in the temperature range (from 200 K to 800 K)

studied in this paper is negligible and much smaller than that of silicon [81, 83] and

GaAs [81] because of much smaller split-off energy gap of 3C-SiC (15 meV) when

compared with silicon (∼44 meV) [81] and GaAs (∼330 meV) [81, 119, 120].

Figure 3.5 shows the scattering rates of electrons and holes decomposed into

each phonon mode of 3C-SiC at 300 K. There are two sudden jumps, signifying

the onset of emission processes of certain phonon modes. Electrons and holes share a
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Figure 3.4: Mobilities of electron (a) and hole (b) as a function of temperature. The
experimental results for electrons are taken from Ref [9] and Ref [10] and is from Ref
[11] for holes. It should be noted that the mobilities obtained by full solution with
and without SOC are overlaid on each other in the figure.

common jump at 121 meV, corresponding to the emission processes of the LO phonon

at Γ point. For electrons, the other jump is located at 79 meV, related to the LA

phonon at X point. For holes, the other sits at 99 meV which is relevant to the TO

phonon at Γ point.

Figure 3.5: Total and decomposed scattering rates of (a) electrons and (b) holes in
3C-SiC at 300K.

As can be seen, LA phonons dominate the electron-phonon scatterings for

electrons with energy less than 121 meV, which actually contribute 97% to its total

mobility. In the case of holes, LA phonons still govern the electron phonon interactions

with hole energy less than 99 meV, from which 93% of the total mobility is reached.
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This indicates that the LA phonon scattering is the governing scattering mechanism

in 3C-SiC at 300 K, in consistent with experimental observation [99, 121]. This is,

however, in contrast to other polar materials, such as GaAs [80, 81], PbTe [122],

SnSe [111], and SnTe [112], in which polar LO phonons dominate the scattering for

a wide energy range including band edges. Actually, LO-phonon scattering increases

suddenly by two orders of magnitude at 121 meV due to the occurrence of phonon

emission processes. As a result, LO phonons dominate the scattering above 121

meV. To understand the orders-of-magnitude smaller scattering below 121 meV for

the LO-phonon absorption processes, we refer to Equations 2.3 and 2.4. Since the

electron/hole occupation number can be neglected in the intrinsic limit, the scattering

rates from phonon absorption and emission processes are proportional to Nqp
0 and

1 +N0
−qp, respectively, which is due to the Boson nature of phonons. The LO phonon

corresponds to an energy of 121 meV, which is much larger than the thermal energy

at 300 K. Therefore, the LO phonon is almost unexcited at room temperature, and

(1 + N0
Γ,LO)/N0

Γ,LO is 105. This also indicates that the large LO phonon frequency

typically suggests small scattering. It should be noted that the authors of a very

recent paper [82] also mentioned that the frequency of LO phonons are also very high

in boron-based semiconductors, leading to the suppression of the contribution of LO

phonons to the total scattering rates.

Transverse optical (TO) phonon scatterings for holes are larger than those

for electrons by more than one order of magnitude. As a result, the signature of

the corresponding phonon emission processes is evident in the total scattering rates

for holes but not for electrons. To understand this, we plot the electron-phonon

interaction matrix elements |g| of electrons and holes at band extrema with each

phonon branch along high-symmetry paths in Figure 3.6(a) and 3.6(b), respectively.

Clearly, the electron-phonon interaction matrix element |g| with TO modes at Γ point

34



Figure 3.6: Calculated electron-phonon interaction matrix elements |gmk+q
nk,qp | (in unit

of eV) of (a) initial CBM and (b) initial VBM electron with different phonon branches
along high-symmetry directions in the first Brillouin zone.

for holes is much larger than that for electrons. |g| is actually very sensitive to the

nature of electronic orbitals. For instance, |g| is found to be weak for interaction

between acoustic phonons and nonbonding orbitals [123]. We also note that |g| with

LO modes at Γ point for electrons and holes are comparable.

Since the VBM occurs at Γ point, there is no intervalley scattering for holes.

However, the CBM is at theX point, and then intervalley scattering with phonon atX

point is allowed for electrons. Due to symmetry, there are six equivalent X points, as

shown in Figure 3.1(b). X1, X2, and X3 are identical to X4, X5, and X6, respectively,

up to a certain reciprocal lattice vector. Two nonidentical X points can be connected

with a vector going from the origin to another X point. For example, X2−X1 = X3.

The intervalley scattering processes are facilitated by the large |g| with LA modes at

X point. In Figure 3.7, we quantify the individual contribution from intravalley and

intervalley scatterings to the total LA scattering rates for electrons. The intravalley

scattering actually dominates up to 79 meV, whereas the intervalley scattering governs

above 79 meV. As aforementioned, the sudden jump of the intervalley scattering rates

at 79 meV corresponds to the onset of the emission processes of the LA phonon at

the X point. Those electrons below 79 meV contribute 82% to the total mobility.
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Therefore, the mobilities are dominated by the intravalley LA phonon scattering for

both electrons and holes at room temperature.

Figure 3.7: Contribution of intravalley and intervalley scattering to LA scattering
rates for electrons at room temperature.

Figure 3.8 shows the total scattering rates and the contributions from LA

and LO phonons for both electrons and holes at different temperatures. The phonon

occupation number and, consequently, the scattering rates, increase with temperature.

Notably, the relative increase nT2 (E)
nT1 (E)

in the occupation number of LO phonons is larger

than that of LA phonons with increasing temperature. As a result, the LO scattering

becomes comparable to the LA scattering near the band edges at 600 K and turns

out to be completely dominant at 800K. This contrasts with the argument made in

Ref. [99], in which the authors claimed that both electron and hole mobilities are

limited by the acoustic phonon scattering above room temperature.
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Figure 3.8: Total scattering rates and contributions from LA and LO phonons for
electrons at (a) 400K, (b) 600K and (c) 800K; for holes at (d) 400K, (e) 600K and
(f) 800K

The mode-specific analysis of mean free paths (MFPs) are shown in Figure

3.9. At room temperature, the largest MFPs of electrons and holes are about 40 nm

and 15 nm, respectively. The largest MFPs of both carriers are found be of the energy

range from 0.07 eV to 0.1 eV. In this energy range, the electrons contribute about

75%-94% to its total mobility, while holes contribute 71%-93% to the total mobility.

3.4 Summary

In summary, we performed entire first principles calculations of the mobilities

for both n- and p-type 3C-SiC using Boltzmann transport equation (BTE) based

on polar Wannier function interpolation of electron-phonon interaction matrix ele-

ments. The calculated electron and hole mobilities are reasonably consistent with the

experimental data. We found a temperature dependent scattering mechanism in 3C-

SiC. At room temperature, owing to unexcited longitudinal optical (LO) modes, the

longitudinal acoustic (LA) phonons dominate the scatterings of electrons and holes
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Figure 3.9: Mean free path of (a) electrons and (b) holes in 3C-SiC at 300K.

contributing to the mobilities. Specifically, the intravalley LA phonons dominate the

scatterings of electrons up to 79 meV, and the intervalley scattering becomes domi-

nant between 79 and 121 meV. The intervalley scattering is not present for holes. At

800K, LO-phonon interaction becomes the governing scattering mechanism for both

electrons and holes. The spin-orbit coupling almost has no influence on the calculated

mobilities, especially for the electrons. The largest carrier mean free path is about 40

nm for the electrons and 15 nm for the holes in 3C-SiC at room temperature.
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Chapter 4

Anisotropic Thermoelectric

Performance of Magnesium

Antimonide

Till now, we have proved in Chapter 3 that our developed methods can suc-

cessfully reproduce the experimental measured carrier mobility for 3C-SiC without

any human-adjustable parameters. Combining with the phonon BTE, it is now pos-

sible to calculate the thermoelectric transport properties of thermoelectric materials.

In this chapter, we choose Mg3Sb2, which is rising star for moderate temperature

thermoelectric application. Another important reason for choosing Mg3Sb2 is that

its trigonal structure implies possible anisotropic thermoelectric transport properties,

which is hard to explore from the experimental point of view.
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4.1 Introduction

Towards high zT, high crystal lattice symmetry is favored because high band

degeneracy and multiple pockets at the Fermi surface tend to yield high power fac-

tor (PF). [6, 124] In this vein, many state-of-the-art thermoelectric materials adopt

cubic structure: PbTe (Fm3̄m, space group No. 225) [6, 125], SnTe (Fm3̄m, space

group No. 225) [126, 127, 128], Mg2Si (Fm3̄m, space group No. 225) [129, 130],

CoSb3 (Im3̄, space group No. 204) [131, 132], half-Heusler alloys (F4̄3m, space group

No. 216) [133, 134, 135], and Si-Ge alloys (F4̄3m, space group No. 216) [136]. On

the other hand, some renowned thermoelectric materials possess lower crystal lattice

symmetry: Bi2Te3 (R3̄m, space group No. 166) [137, 138, 139], GeTe (R3̄m, space

group No. 166) [140], and SnSe (Pnma, space group No. 62) [52, 141, 142] and

owe their state-of-the-art thermoelectric performance largely to their intrinsically low

thermal conductivities. In the context of the classic phonon-glass and electron-crystal

paradigm [143, 144, 145], the cubic structured thermoelectric materials are in line of

electron-crystal, whereas lower lattice symmetry-structured materials emphasize the

aspect of phonon-glass to make good thermoelectrics.

Among low lattice symmetry thermoelectric materials, Zintl phase compounds

with a general formula AB2X2 and a space group P3̄m1 (space group No. 162) con-

stitute a notable family, in which A is the cation and BX together is the anion. Most

AB2X2 Zintl compounds are p-type semiconductors because of cationic vacancies

[146]. In light of the large phase space of AB2X2 to tune the electrical and thermal

transport properties, the ground-breaking discovery of Te-doped n-type Mg3Sb2 with

zT around 1.6 at 720 K has made Mg3Sb2-based compounds an active frontier of

current thermoelectric materials research [19]. The highest reported zT of n-type

Mg3Sb2 (Mn and Te co-doped Mg3Sb1.5Bi0.5) is 1.85 at 723 K [147]. Meanwhile, n-
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type Mg3Bi2 with similar geometric structure as Mg3Sb2 is known to possess a peak

zT of around 0.9 at 350 K [148]. To date, the major challenge is the performance

imbalance between n-type and p-type Mg3Sb2. From a thermoelectric device perspec-

tive, it is desired to fabricate a device using n-type and p-type polycrystalline legs

made from the same parent compound and with comparable thermoelectric perfor-

mance. However, despite great efforts, the present highest zT of p-type Mg3Sb2-based

compounds is only about half of its n-type counterparts. The imposing need to de-

velop higher performance p-type Mg3Sb2-based compounds is the motivation of the

present work.

Toward higher performance p-type Mg3Sb2-based compounds, theoretical ef-

forts via orbital engineering [149] and experimental efforts via optimizing hole con-

centration as mentioned in Chapter 1 [15, 23, 150] have been exerted. Given the

relatively lower lattice symmetry (trigonal lattice), anisotropic electrical and thermal

transport properties including zT of Mg3Sb2-based compounds are expected. Crys-

tal structural anisotropy is not rare among thermoelectric materials, unnecessarily a

disadvantage in performance optimization. For instance, the out-of-plane electrical

resistivity of n-type is found to be three times higher than that of in-plane direction

with a wide temperature range [151]; for p-type SnSe, the in-plane zT is much higher

than that of out-of-plane direction [52, 141, 142]. However, experimentally exploring

the anisotropic transport properties of a structurally anisotropic thermoelectric ma-

terial is demanding; the characterization of single crystalline samples calls for large,

high-quality single crystal samples and transport measurements (aka the electrical

conductivity, Seebeck coefficient, and thermal conductivity) along major crystallo-

graphic axes; concerning the characterization of polycrystalline samples, especially

those prepared under uniaxial pressure, one must ensure all thermoelectric properties

are measured along the same direction to avoid the artifacts caused by the texture.
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To date, there are only a few reports of the transport properties of single crys-

talline Mg3Sb2. The single crystals grown by Kim et al. were easily cleavable, and the

electrical resistivity measurements were performed in the ab-plane (hereafter called

in-plane) direction [12]. Another work on single crystalline Mg3Sb2−xBix by the same

group reported large anisotropy in the electrical resistivity, with the resistivity in

the out-of-plane (c-axis) direction orders of magnitude larger than the that along the

in-plane direction [13]. Xin et al. has found that for pristine Mg3Sb2, the in-plane

resistivity is two times larger than that of out-of-plane direction at 300 K [14]. Ow-

ing to the highly demanding requirements on the sample dimensions, the anisotropy

of thermal conductivity and Seebeck coefficient has not been reported experimen-

tally. To clarify the intrinsic thermoelectric properties, and thus the thermoelectric

potential of Mg3Sb2, it is highly desired to experimentally grow large, high quality-

single crystals and/or theoretically calculate the thermoelectric properties of pristine

Mg3Sb2.

As mentioned in Chapter 2, first principles calculations employing semiclassi-

cal transport equations (e.g. Boltzmann transport equations for charge carriers and

phonons) offer a great opportunity to fill out the knowledge gap of many anisotropic

thermoelectric materials that are hard to experimentally explore, including Mg3Sb2.

To this end, ab initio calculations of lattice thermal conductivity based on the three-

phonon process have matured nowadays [58, 152]. Several groups reported the nearly

isotropic lattice thermal conductivity of Mg3Sb2 along in-plane and out-of-plane di-

rections [17, 18]. Meanwhile, as the electrical transport properties are governed by

the electronic band structure and the specific carrier scattering mechanism, it is cru-

cial to deal with the scattering properly in the calculations. Previous calculations

of electrical transport properties on Mg3Sb2 employed constant relaxation time ap-

proximation (CRTA) [19, 146, 149, 153], in which relaxation time is an adjustable
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single-value parameter. Apparently, it is hard for CRTA to capture the detailed scat-

tering mechanism of charge carriers. Given the complexity of both the structural

and electronic structure of Mg3Sb2, CRTA is oversimplified. On the other hand, it

is customarily accepted that electron-phonon interactions become the dominant scat-

tering mechanism at elevated temperatures. In Mg3Sb2, despite small contributions

from alloy scattering, the electron-acoustic phonon interactions dominate above 500

K [19, 20]. Pristine Mg3Sb2 is a semiconductor with a band gap around 0.4-0.6 eV

[17, 19, 154, 155] and a Debye temperature below 230 K [156]. Per the 10 kBT0 rule

[157], the optimal working temperature for Mg3Sb2 should be around 700-800 K. At

temperatures well above the Debye temperature, electron-phonon interaction is the

dominant scattering mechanism of charge carriers, making the results of theoretical

calculations based on electron-phonon interaction more reliable to be compared with

the experimental data.

Here, we use the state-of-the-art ab initio method to calculate the electron-

phonon interaction limited electrical transport properties via exact solutions of the

Boltzmann transport equation. When calculating the electron-phonon interaction

matrix elements, the contributions from all phonon branches (aka all modes in the

first Brillouin zone) are taken into account. It is of great interest to note the zT

of p-type Mg3Sb2 along its c-axis attained in this work is almost three times larger

than that along the a(b)-axis, with a zT around 1.5 at 750 K along the c-direction.

In n-type Mg3Sb2, both the electrical and thermal transport properties tend to be

isotropic, and our calculated zT value agrees well with experimental data of n-type

Mg3Sb2.
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4.2 Computational Details

First principles calculations based on density functional theory (DFT) are car-

ried out to calculate electronic band structure with a 10×10×6 Monkhorst-Pack k grid

and cut-off energy of 50 Ry. Norm conserving fully relativistic pseudo-potentials with

local density approximation (LDA) [115] are employed. The phonon dispersion rela-

tion is calculated using density functional perturbation theory (DFPT) with a 5×5×3

q grid mesh. All these calculations are performed using Quantum Espresso software

package [114]. The relaxed geometrical structure of Mg3Sb2 is shown in Figure 4.1(a).

The calculated lattice constants are a=4.492 Å and c=7.097 Å, which agree well with

values measured experimentally (a=4.569 Å and c=7.245 Å) for Mg3Sb2 single crys-

tal [14]. The calculated phonon dispersion relation of Mg3Sb2 [Figure 4.1(d)] agrees

well with previous works [17, 18, 158, 159], especially for the low-frequency phonon

modes. In addition, our calculated Born effective charges are 3.10, 1.77 and -3.32 for

Mg1, Mg2 and Sb atoms are also in consistent with Ref[17, 18, 158, 159].

As aforementioned, the electrical transport properties in this work are based on

electron-phonon interaction. The correctness of electronic band structure is of great

importance. The calculated band gap of Mg3Sb2 using LDA is 0.051 eV as shown

in Figure 4.1(c). However, the band gaps obtained using Heyd-Scuseria-Ernzerhof

(HSE06) [160, 161, 162] and TB-mBJ potential [163] are 0.45 [17] and 0.6 eV [19],

respectively. Although these two methods could provide more accurate values of band

gap comparable to experimental measured values [154, 155], the band curvatures are

basically the same compared with LDA or PBE, and only the energy eigenvalues

are shifted [17]. The multivalley character of the conduction band is clear in our

calculated band structure [cf. Figure 4.1(c)]. The conduction band minimum (labeled

as CBM1) is located at point (0.0, 0.417,0.333) inside the first Brillouin zone as
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Figure 4.1: (a) Geometric structure of Mg3Sb2. (b) First Brillouin zone and high
symmetry points. (c) Electronic band structure and (d) phonon dispersion relation
along high-symmetry directions in the first Brillouin zone.

pointed out in Zhang et al. [20] There are other two conduction band valleys: one is

at the K-point (labeled as CBM2) with an energy 0.067 eV above CBM1; the other

(CBM3) sits along the M-L direction, and its energy is 0.039 eV higher than CBM2.

The locations of these valleys and the energy difference among them are consistent

with previously reported values [20]. A single valley in the valence band is observed

at the point.

To calculate electron-phonon interaction limited electronic transport proper-

ties (aka electrical conductivity, Seebeck coefficient, and electrical thermal conductiv-

ity), Wannier function interpolation of electron-phonon coupling matrix is employed
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as implemented in EPW package [85]. Both k (for electrons and holes) and q grids

(for phonons) are interpolated to 75×75×50 in Mg3Sb2. The electronic transport

properties are calculated with the methodology developed in Chapter 2, where the δ

functions involved are treated as Gaussian functions with physically adaptive broad-

ening parameters, making the calculation completely parameter free. To calculate,

the third-order anharmonic interatomic force constants are obtained using a 4×4×4

supercell with a force cutoff distance of 0.55 nm employed [58, 65]. The ShengBTE

package [58, 164] is used for solving the phonon BTE with 26×26×16 q sampling.

Owing to the relatively large atomic mass of Sb, spin-orbit coupling (SOC)

needs to be considered when calculating the band structure. It is observed in Mg3Sb2

that SOC effect has a great influence on the valence band, whereas its effect on the

conduction band is negligible as demonstrated in Chapter 3, which is consistent with

previous calculations [20]. Hence, SOC is included when calculating the electron-

phonon interaction matrix elements for valence band while excluded for conduction

band. Because electrons and holes are treated separately in this work, the band gap

has no influence on the calculated transport properties as indicated in Chapter 3

[165]. Given the band gap value of 0.45-0.6 eV [154, 155], the bipolar effect is less

severe than the case of other narrow band gap materials, e.g. Bi2Te3 [166] and not

taken into account in our calculations. As pointed out in the literature [20, 153] that

alloying does not substantially affect the electronic band structure of Mg3Sb2, herein

our calculations are conducted on the pristine Mg3Sb2.

4.3 Results and Discussions

The lattice thermal conductivity of materials depends largely on their bond-

ing properties (e.g. bond type, bond strength, and so on). The interlayer and in-
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tralayer interactions in chemical bonding networks can be characterized by the ratio

of ρinter/ρintra, where ρinter and ρintra denote the electron density values at the bond

critical points of the interlayer and intralayer bonds, respectively [18]. In Mg3Sb2, the

value of ρinter/ρintra is close to unity [18], attesting similar interlayer and intralayer

interactions and thus nearly isotropic lattice thermal conductivity. Given a trigonal

crystal lattice such as Mg3Sb2, the physical properties, like effective mass and lattice

thermal conductivity in the ab-plane, should be isotropic because of symmetry. In

our calculations, it is found the lattice thermal conductivities are identical along a-

and b-axis. The lattice thermal conductivity along c axis is slightly larger than that

along a(b)-axis with the largest anisotropy (κcL/κ
a
L) around 1.05, agreeing with the

analyses based on interlayer and intralayer interactions and Huang et al. and Tamaki

et al. [17, 21]. Hereafter, the degree of anisotropy is defined as the relevant physical

quantity along the c-axis divided by the counterpart along a(b)-axis.

In general, the temperature dependency of lattice thermal conductivity at-

tained in this work is in reasonable agreement with previous experimental efforts. It

is expected that the calculated lattice thermal conductivity [Figure 4.2(a)] is slightly

larger than the experimental results because our calculations do not take into ac-

count other phonon scattering mechanisms such as point-defects and grain boundary

scattering. Meanwhile, the calculated values obtained via similar methods by other

groups are smaller than experimental data [17, 18]. The discrepancy is likely because

of different functionals employed in computing the interatomic force constants. Thus,

LDA outperforms PBE in obtaining the lattice thermal conductivity for Mg3Sb2.

The anisotropy of the electrical conductivity is because of the difference of the

carrier velocity squared along different directions. Considering the carrier velocity

squared is inversely proportional to the effective mass, the effective mass difference

along different crystallographic axes could reflect the anisotropy of electrical conduc-
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Figure 4.2: Temperature dependent lattice thermal conductivity along with
anisotropy (κcL/κ

a
L). (b) Temperature dependent (b) n-type and (c) p-type electrical

thermal conductivity. (d) Temperature dependent anisotropy (κce/κ
a
e) of electrical

thermal conductivity in both types. The experimental lattice thermal conductivity
data are taken from Ref[12, 13, 14] and Ref[15, 16] for single crystal and p-type poly-
crystalline samples, respectively. The calculated lattice thermal conductivity data
are taken from Ref[17, 18].

tivity and electrical thermal conductivity [111]. According to our calculations, the

effective masses at CBM1 are m∗kx = 0.15m0, m∗ky = 0.49m0 and m∗kz = 0.16m0, in

accordance with existing data [17, 20, 153]. However, as aforementioned, because of

the symmetry, the physical properties in the ab-plane should be isotropic. At CBM1,

it is obvious that m∗kx differs greatly from m∗ky . To understand the strong anisotropy

in effective mass along kx- and ky-axis, we carefully examined the isoenergy surface

with the energy 0.05 eV above CBM1 [Figure 4.3(a)]. Because the CBM1 is located
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inside the first Brillouin zone, there are six equivalent electron valleys originating

from the symmetry of Mg3Sb2 (P3̄m1). Therefore, the effective mass in the ab-plane

should be averaged over the six valleys. After averaging, the effective masses along

the principal axes in the reciprocal space are exactly identical as can be seen from

Figure 4.3(b). The value of the averaged effective mass along the kx (ky) direction

is 0.22 m0. The small deviation of effective mass along the in-plane and out-of-plane

direction implies that both electrical conductivity and electrical thermal conductivity

in n-type Mg3Sb2 might be less anisotropic.

Figure 4.3: (a) Isoenergy surface of Mg3Sb2 with energy 0.05 eV above CBM1. (b)
Electron effective mass in the ab-plane according to spatial directions, where 0◦ and
60◦ correspond to the kx- and ky-axis in the reciprocal space, respectively.

The effective masses at Γ for the valence band maximum (VBM) are m∗kx =

m∗ky = 0.61m0 and m∗kz = 0.07m0, in reasonable agreement with previously reported

values [17]. The small effective mass along the c-axis in p-type Mg3Sb2 is an outcome

of the small distance between layers leading to strong interlayer interactions, unlike

Bi2Te3 in which the interlayer interactions is mainly the van der Waals interactions.

It is obvious that the effective masses of holes are strongly anisotropic, suggesting

the anisotropy of electrical transport properties. Meanwhile, it is generally accepted
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for a layered structure that electrical conductivity along the in-plane direction should

outperform that along the out-of-plane direction. For example, in n-type Bi2Te3, the

in-plane electrical conductivity is three times greater than in the out-of-plane direction

[151]. Considering the effective mass of VBM along the kz direction (corresponding

to the crystallographic c-axis) is almost one order of magnitude smaller than that in

the ab-plane, electrical conductivity and electrical thermal conductivity are expected

to be superior along the out-of-plane direction than those along in-plane direction in

p-type Mg3Sb2.

Figure 4.4: Temperature dependent (a) n-type and (c) p-type electrical conductivity.
Corresponding temperature dependent anisotropy (σc/σa) for (b) n-type and (d) p-
type Mg3Sb2. The experimental data for n- and p-type are taken from Refs[19, 20,
21, 22] and Refs[23, 24, 25, 26], respectively.

According to our calculations, the electrical conductivity [Figure 4.4(c)] and
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electrical thermal conductivity [Figure 4.2(c)] of p-type Mg3Sb2 along the c-axis are

indeed much larger than that in the ab-plane. At room temperature, the ratio of

anisotropy in both electrical conductivity and electrical thermal conductivity are close

in value; the largest ratio of anisotropy is around 4.6 [cf. Figures 4.2(d) and 4.4(d)].

The anisotropy value attained for p-type electrical conductivity at room temperature

is slightly larger than the experimental value reported by Xin et al. [14]. For the

n-type counterpart, both the attained electrical conductivity and electrical thermal

conductivity are nearly isotropic with the highest anisotropy around 1.15 at room

temperature [cf. Figures 4.2(d) and 4.4(b)], which is consistent with our analyses

based on effective mass.

Figure 4.5: Average carrier velocity and corresponding anisotropy (vc/va) for (a) n-
type and (b) p-type Mg3Sb2.

To analyze the anisotropy quantitatively, we calculate the average carrier ve-

locity along different directions, which is obtained as:

v̄α(ε) =
√∑

nk

|vαnk|
2 δ (ε− εnk) /

∑
nk

δ (ε− εnk), (4.1)

where εnk is the carrier energy at the nk state. It is clear from Figure 4.5(b) that

the average velocity along the c-direction is much larger than in the a(b)-direction
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in p-type Mg3Sb2. The presence of a kink at around 0.35 eV indicates the second

valence band starts to contribute to electrical transport. The contribution from the

second valence band can also be seen from the hole scattering rates [Figure 4.6].

As can be seen from the band structure [Figure 4.1(c)], the effective mass along

the ab-plane of the second valence band does not vary much compared with VBM,

whereas it is larger in the c-direction, leading to a smaller vc/va at energies larger

than 0.35 eV. For n-type [Figure 4.5(a)], when the electron energy is below 0.2 eV,

the average velocities along a(b)- and c-axis are nearly identical, with an almost-

flat anisotropy within this energy range. Multiband conduction behavior is obvious

for n-type Mg3Sb2 from Figure 4.5(a) with more kinks as compared with p-type

Mg3Sb2, which are mainly because of the participation from sub-bands. Careful

inspection of the mode-specific scattering rates as a function of carrier energy (Figure

4.6) revealed that for both conduction types, carriers with low energy are scattered

dominantly by the two polar-LO-phonons [as demonstrated in Figure 4.1(d)], owing

to the large electron-phonon coupling constant of these two phonon branches because

of the electron-phonon interaction matrix elements of these two branches diverge as

1/|q| for |q| approaching zero [167]. As the energy of carriers increases, other phonon

modes start to contribute significantly to the total scattering.

Note that the carrier scattering by polar-LO phonons is sensitive to the dielec-

tric constant. The calculated dielectric constants are 13.5 and 16.2 along a(b)-axis

and c-axis, in good agreement with the literature data 13.8 and 16.4 along a(b)-axis

and c-axis, respectively [27]. In general, high carrier concentration tends to weaken

the screening effect, yielding longer carrier lifetime and higher carrier mobility [122].

In this work, the screening effect is not taken into account. Nonetheless, high carrier

concentration enhances electron-electron and electron-defect scattering, which de-

crease the carrier mobility and somewhat compensate for the effect of the weakened
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Figure 4.6: Room temperature scattering rates as a function of carrier energy for (a)
n-type and (b) p-type Mg3Sb2 with carrier concentration at 5×1018 cm−3.

screening effect [168].

It is generally accepted that the anisotropy of the Seebeck coefficient is weaker

than that of the electrical conductivity in an anisotropic thermoelectric material.

SnSe, as an example, regardless of the ratio in zT along a- and c-axis is around three

at 700 K; the corresponding ratio for Seebeck coefficient is merely around one [141].

In this work, it is apparent from Figure 4.7(b) and (d) that the Seebeck coefficients

are also nearly isotropic with the anisotropy (αc/αa) between 0.9 and 1 within a wide

temperature and carrier concentration range. In physics, the pair superscripts for a

physical quantity can be regarded as the action-reaction relation. Taking σβγ as an

example, the action is along the γ direction, while the reaction is along the β direction.

The ξ term of Equation 2.7 is the entropy flow. According to Equation 2.7 for Seebeck

coefficient, the direction of reaction for the entropy flow (ξ) is the action direction of

the σ−1 term. In other work, the Seebeck coefficient can be viewed as the average

entropy flow weighted by the σ−1 terms along the three principal axes. Therefore,

the Seebeck coefficient should be less anisotropic than the electrical conductivity.

The near isotropy of Seebeck coefficient may be further understood from the
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Figure 4.7: Room temperature Seebeck coefficient of (a) n-type and (c) p-type as a
function of carrier concentration. Temperature dependent Seebeck coefficient and cor-
responding anisotropy (αc/αa) for (b) n-type and (d) p-type Mg3Sb2. The experimen-
tal data for n-type are taken from n-type Mg3Sb2-based alloys, e.g. Mg3Sb2-Mg3Bi2.
[19, 20, 27, 28, 29, 30]. The p-type experimental data are taken from Refs[15, 23, 24].

average velocity. Per Equation 2.6, σ−1 is inversely proportional to the velocity

squared; the velocity is also implicitly contained in F (F = v × τ), whereas ξ in

Equation 2.7 is proportional to the velocity squared. So the velocity squared is can-

celled out in the expression of Seebeck coefficient, leading to a nearly isotropic Seebeck

coefficient. For both types, the calculated Seebeck coefficients are consistent with the

experimental measured data over a wide range of carrier concentration [Figure 4.7(a)

and (c)].

Because Seebeck coefficients depend more on the electronic band structure,

it can be inferred from the alignment between our calculations and experimental
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data that doping (for p-type) or alloying (for n-type) does not alter the electronic

band structure to the first order, which thus justifies our calculations of electronic

transport properties of n-type and p-type Mg3Sb2 by simply shifting the chemical

potential of pristine Mg3Sb2. Experimentally, n-type Mg3Sb2 is achieved by alloying

the Sb site with Bi element. Because the conduction band minimum is dominated by

the s-orbital of Mg, alloying has trivial effect on the conduction band. In addition,

the electrical transport properties of p-type Mg3Sb2 are typically optimized through

minute doping, so the influence on the valence band is expected to be small.

With all the determinant quantities obtained, we calculate the zT for Mg3Sb2.

Figure 4.8 depicts the contour map of zT for n- and p-type Mg3Sb2 as a function

of temperature and carrier concentration. Nearly isotropic zT is attained for n-type

Mg3Sb2, and the highest zT in both directions approaches 2.1 at 750 K with carrier

concentration around 3×1019 cm−3. To date, the highest zT achieved experimentally

in n-type Mg3Sb2 is 1.85 at 723 K with carrier concentrations ranging from 3× 1019

cm−3 to 3.5 × 1019 cm−3 [147]. The good agreement between experimental and our

calculated zT confirms the reliability of our calculation methods. Strong anisotropic

zT is obtained for p–type Mg3Sb2. In the ab-plane, the highest calculated zT is

around 0.6 at 750 K with carrier concentration at 2 × 1019 cm−3. This value is

relatively smaller than what has been achieved from experiments of 0.8 at 773 K

with carrier concentration around 1020 cm−3 for bulk polycrystalline p-type Mg3Sb2.

However, it is astounding to find our calculated zT along the c-axis goes beyond unity,

reaching a maximum value of 1.5 at 750 K with carrier concentration at 4×1019 cm−3.

In reality, Mg3Sb2 has native defects, like Mg vacancies [146]. Meanwhile, to tune the

carrier concentrations, external defects are also introduced. Herein, we have employed

the Brooks Herring model to study the defects scattering [169, 170] and find that the

defects have a weak effect on the electrical transport properties (see Appendix B for
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details). Specifically, the zT along the c-axis of p-type Mg3Sb2 is still greater than

unity, with a maximum value of 1.42 at 750 K at a carrier concentration of 2× 1019

cm−3. This outcome is of great significance because it has been a long-going project to

discover the p-type Mg3Sb2 with zT above unity considering that both p- and n-type

legs are needed for power generation devices to maximize power output. It has been

reported that highly oriented, textured Bi2Te3 could have significantly enhanced zT

compared with a less-oriented sample [171, 172, 173]. Our finding could provide an

insightful guide for experimental work. For example, it might be possible to achieve

zT above unity for p-type Mg3Sb2 by properly oriented samples.

4.4 Summary

Anisotropic thermoelectric transport properties of pristine Mg3Sb2 are ex-

plored via parameter-free first principles calculations along with electron-phonon

interactions (phonon-phonon interaction) limited Boltzmann transport equation for

carriers (phonons) as implemented in Chapter 2. Nearly isotropic lattice thermal

conductivity and Seebeck coefficient are observed, both of which align with the ex-

perimental data. Electrical conductivity and carrier thermal conductivity for n-type

Mg3Sb2 are also nearly isotropic, originating from the similar effective masses along

the a(b)- and c-direction. In contrast, large anisotropy was found for p-types, with

the electrical conductivity and electrical thermal conductivity along the c-axis be-

ing four times of those in the ab-plane. The abnormal anisotropy is attributed to the

much lower effective mass along the c-direction than that along a(b)-direction. Unlike

Bi2Te3, Mg3Sb2 has strong inter-plane interactions, leading to a dispersive band along

the Γ-A direction (crystallographic c-axis). The calculated zT for n-type Mg3Sb2 was

2.1 at 750 K in accordance with experimental data. Strong anisotropy of zT is found
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in p-type Mg3Sb2; the largest zT in ab-plane and c-direction are 0.6 and 1.5 at 750 K,

respectively. We also propose that, in practice, the performance of p-type zT might

be enhanced by properly texturing polycrystalline samples.
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Figure 4.8: Contour map of zT as a function of both temperature and carrier con-
centration for Mg3Sb2: (a) n-type along the in-plane direction, (b) n-type along the
out-of-plane direction, (c) p-type along the in-plane direction and (d) p-type along
the out-of-plane direction. (a) and (b) share the same color bar, while (c) and (d)
share the same color bar. The white (black) dotted line corresponds to zT equaling
to 1.0 (2.0).
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Chapter 5

Strain Effects on the

Thermoelectric Performance of

Two-dimensional alpha-Tellurium

After the discovery of graphene in the year 2004, physical properties of two

dimensional materials have attracted tremendous attention. The thermoelectric per-

formance of two dimensional materials is still an open question. Two dimensional

transition metal dichalcogenides are reported to have large power factors; however,

they are accompanied by large lattice thermal conductivity. Recently, it has been

found that two dimensional alpha-tellurium exhibits low lattice thermal conductiv-

ity, which is a prefactor for excellent thermoelectric performance. Nevertheless, its

thermoelectric performance is less studied. In this chapter, we calculated the ther-

moelectric transport properties of two dimensional alpha-tellurium without external

strain and with tensile strain up to 4%, with the expectation to show our developed

methods are able to handle the cases with reduced dimensionality.
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5.1 Introduction

Two-dimensional (2D) materials have attracted tremendous interests from the

point of view of reduced dimensionality as they can be cleaved or made nanosized.

In the field of thermoelectric material research, 2D materials such as transition metal

dichalcogenides (TMDs) [174, 175] have demonstrated their promise by possessing

a large power factor (PF) comparable with the state-of-the-art bulk thermoelectric

materials. On the other hand, TMDs often have thermal conductivities too high for

good thermoelectrics. In parallel with the experimental study, theoretical calculations

typically involved with simplifications on an electronic band structure and a scattering

rate have been carried out to explore the thermoelectric promise of many 2D materials

including MX2 (M = Mo, W; X = S, Se), [176, 177, 178] MCO2 (M = Ti, Zr, Hf)

[179], TiS2 [180], ZrS2 [181], TiS3 [182], black phosphorene [183], PdXY (X, Y = S,

Se, Te) [184, 185], and Bi2Te2X (X = S, Se, Te) [186], to name a few. The results

of these calculations do not yield zT values above unity due to a low power factor

and/or high thermal conductivity. Recently, promisingly high zT values are predicted

in emerging 2D materials, such as PbI2 [187], KAgSe [188] and pentasilicene [189].

Nonetheless, the phenomenological models with simplifications generally lack enough

predictive power. Hence, there is a demanding need for first principles (parameter-

free) calculations of the performance of thermoelectric materials using the methods

developed in Chapter 2.

From the computational perspective, the materials to be modeled would be

structurally simple enough so the results are reliable yet thermoelectrically good

enough. Therefore, the results are of immediate practical implication. Elemental

Te is such a material. Recently, Lin et al. [190] reported polycrystalline bulk Te as a

good thermoelectric material with zT up to 1.0 at 600 K. zT = 1.0 is regarded as the
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benchmark for practical thermoelectric materials. This discovery is ground breaking

in that most known good thermoelectric materials are multinary semiconductors or

semimetals, whereas Te is elemental. On the other hand, the experimental results

of Te are derived from polycrystalline samples, which does not fully reflect the ther-

moelectric potential of Te, given its anisotropic crystal structure. Hence, inspired by

the reduced dimensionality approach mentioned above and in the light of the lay-

ered crystal structure of Te, the intrinsic thermoelectric performance of monolayer Te

needs to be studied.

To this end, Zhu et al. [191] predicted that monolayer Te could possess two

semiconductor phases, named α-Te and β-Te using density functional theory (DFT)

calculations. The α-Te phase is stable, whereas β-Te is metastable. [191] The authors

also pointed out that monolayer α-Te could be readily obtained via a thickness-

dependent structural phase transition along the [001] direction of the trigonal bulk

Te, whereas the β-Te phase could be derived by the structural relaxation when the

bulk helical chain structure is truncated along the equivalent [010] or [100] direction.

So far, only the β-Te phase has been experimentally obtained using molecular beam

epitaxy growth on a highly oriented pyrolytic graphite (HOPG) substrate [191, 192]

and a graphene/6H-SiC substrate [193]. The interactions from the substrate during

Te growth prevent β-Te from transforming into a more stable α phase. Nonetheless,

when grown on a substrate that is more chemically bounded (yet not too strong) than

HOPG and graphene/6H-SiC substrate, α-Te is expected. [191]

Regarding the thermoelectric performance of monolayer Te, previous studies

showed that κL of α- and β-Te are lower than 10 Wm−1K−1 above room tempera-

ture, [194, 195, 196] much smaller than that of monolayer TMDs. [197, 198] Nonethe-

less, the studies of full thermoelectric transport properties are scarce. The electrical

transport properties in previous studies are estimated based on a roughly constant
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relaxation time, [195, 196] which in real life depends on carrier modes, carrier con-

centrations, and temperatures. Therefore, more accurate study is highly desired.

To accurately calculate the electrical transport properties, first principles calcula-

tions have not been made possible until recently by solving the Boltzmann transport

equations (BTE) with scattering limited by the electron-phonon interactions obtained

from DFT and density functional perturbation theory (DFPT). [77, 81, 199, 200, 201]

Electron phonon interactions are typically the dominant mechanism at an elevated

temperature, where the zT value peaks. In this work, we calculate full thermoelectric

transport properties along with zT of the monolayer α-Te from first principles and

parameter-free BTE. Considering the fact that the monolayer Te is grown on a sub-

strate, mismatch in the lattice constants could result in strain, either compressive or

tensile; the strain effect is studied.

5.2 Computational Details

The DFT and DFPT calculations were carried out in the Quantum Espresso

package [114] using full relativistic norm-conserving pseudopotentials with local den-

sity approximation (LDA) exchange-correlation functional. [115] Figure 5.1 shows the

crystal structure of monolayer α-Te in the real space, which adopts a trigonal P3̄m1

(No. 164) space group. The relaxed lattice constant is a = 4.14 Å, in agreement with

the literature data. [191, 195] In a side view, there are three Te atomic planes, with

a distance between the upper and lower atomic planes of d = 3.60 Å. The crystal

structure is not mirror symmetrized with respect to the middle atomic plane. The

vacuum space perpendicular to the atomic plane was fixed to be 20 Å to eliminate

the interactions between layers. For the properties normalized by volume, an effec-

tive thickness of 7.72 Å was adopted, also known as the distance between surface Te
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atomic planes plus the van der Waals radii of a Te atom. [195] The electron energy,

phonon dispersion, and electron-phonon coupling were initially calculated on 8×8×1

k and 8×8×1 q grids. To calculate electrical transport properties, Wannier func-

tion interpolation was employed as implemented in EPW package. [85] To calculate

κL, the thirdorder anharmonic interatomic force constants were calculated using a

4×4×1 supercell with 3×3×1 k sampling, and a force cutoff distance of 0.6 nm was

employed. The ShengBTE package [58] was used for iteratively solving the phonon

BTE. Considering the melting point of bulk Te is about 723 K, the thermoelectric

properties of monolayer α-Te are discussed between 300 and 700 K. Here, we focus on

the bulk transport properties of α-Te, a 2D hexagonal lattice structure with infinite

in-plane extension. The isotropy of in-plane bulk transport properties is guaranteed

by the lattice symmetry. The impact of zigzag and armchair configurations, which

may yield directional transport properties in nanoribbons, is thus not relevant in this

work. Thus, the electrical and thermal transport properties of monolayer α-Te in the

basal plane are regarded as scalars hereafter.

5.3 Results and Discussions

5.3.1 Mobility and Lattice Thermal Conductivity

The calculated band structure of α-Te with the spin-orbit coupling (SOC)

considered is shown in Figure 5.2. As shown, the SOC significantly alters the band

structure. Since the electrical transport properties are markedly affected by the band

structure as demonstrated in Chapter 3, the SOC must be included to achieve high

accuracy for the calculated mobility. α-Te has an indirect band gap, about 0.37

eV, with the conduction band minimum (CBM) located at Γ and the valence band
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Figure 5.1: Top and side views of the crystal structure of monolayer α-Te with the
primitive cell indicated by the red dashed lines.

maximum (VBM) located in the Γ-M line and its equivalent positions in the first

Brillouin zone. Since LDA underestimates the band gap, the GW correction was

employed using YAMBO code [202], and the band gap is opened up to 0.69 eV (cf.

Figure 5.3), only a little smaller than the previous calculation (0.75 eV) [191] using

VASP [203] with HSE06 functional [160, 161, 162] including SOC. The real band gap

is 10 times larger than thermalization energy below 700 K, i.e., 10 kBT ≈ 0.60 eV;

thus the bipolar effect is negligible in the electrical transport. [204, 205] Therefore,

the electron and hole transports were calculated using conduction and valence bands

separately, with chemical potential manually shifted with respect to CBM and VBM,

respectively.

The band structure is flatter near the VBM compared to that near the CBM,

suggesting a larger effective mass for VBM. In previous studies, the valence and

conduction bands around band edges were treated as isotropic. [191, 195] However, we
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Figure 5.2: Electronic band structure with (red) and without (gray) the spin-orbital
coupling effect along high symmetry directions of reciprocal space shown in the inset.

found that such isotropy is oversimplified for holes. As seen in the energy-momentum

contours of Figure 5.4, the CBM edge is indeed isotropic with an effective mass of

0.10 m0, in agreement with previous results. [191, 195] However, the VBM edge is

strongly anisotropic, with m∗x = 0.39m0 and m∗y = 0.17m0 when fitting the valley

in the Γ-M line along the x and y directions. Previous studies only fitted the hole

effective mass along the Γ-M line, i.e., m∗y, and reported similar values. [191, 195] It is

important to note that despite the anisotropic shape of each hole pocket and thus the

anisotropic hole effective masses along the x and y axes, as shown in Figure 5.4(b),

the hole transport properties are isotropic in the basal plane due to the crystal lattice

symmetry embodied in the space group P3̄m1 (No. 164) of α-Te. Figure 5.5 shows

the phonon dispersion of α-Te. The maximum phonon frequency corresponds to an
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Figure 5.3: Band structures of monolayer α-Te calculated with and without GW
correction, where the conduction band minimum is shifted to zero.

energy of 23 meV, smaller than most of the 2D materials [176, 177, 178, 179, 180,

181, 182, 183] due to the heavy atomic mass of Te, but is comparable to other low κL

systems. [184, 185, 186] The low phonon frequency renders a low Debye temperature

for α-Te.

To calculate the carrier mobility, the q grids were interpolated to 120×120×1

for phonons, whereas the k grids were interpolated to 360×360×1 and 120×120×1 for

electrons and holes, respectively, which are enough to ensure the convergence [Figure

5.6]. The calculated intrinsic electron and hole mobilities of α-Te at different tem-

peratures are plotted in Figure 5.7(a). Remarkably, the room-temperature electron

mobility reaches as high as 2500 cm2V −1s−1, outperforming many other 2D materials

such as TMDs [77, 206], InSe [207], black phosphorene [206, 208]and antimony [209].

Meanwhile, this electron mobility is about two orders of magnitude larger than the

hole mobility, which is only about 30 cm2V −1s−1 at room temperature. This tallies

with the usual situation that materials have high mobility for only one type of car-
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Figure 5.4: The electronic energy versus the wave vector for the (a) conduction band
and the (b) valence band around the band edge

rier, such as Si [81, 83], SiC as reported in Chapter 3 [165], GaN [210], InSe [207],

and so on. We note that the estimations based on a simplified phenomenological

model with isotropic parabolic bands and acoustic deformation potentials correctly

give a high electron mobility (∼ cm2V −1s−1). [191, 195] This is expected because

the electron transport at low temperatures with a low carrier concentration is mainly

governed by the low-energy electrons in the Γ valley, reasonably described by the

isotropic parabolic relation. Nonetheless, the deformation potential model is crude,

which completely ignores the nonparabolicity of the band structure, the mode- and

temperature-dependences of electron-phonon scattering, to name a few. For instance,

using the acoustic deformation potential model, the electron mobility of monolayer

MoS2 is either overestimated by twice [211] or underestimated by half [212] as com-

pared to the first-principles calculations [77]. It can be seen that the hole mobility of

α-Te is overestimated (∼ 1700 cm2V −1s−1) [191, 195] by about two orders of magni-

tude.

The remarkably smaller hole mobility as compared to the electron is due to

the heavier effective mass, which results in not only a smaller group velocity but also
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Figure 5.5: Phonon dispersion relation of α-Te.

much stronger scattering rates. As shown in Figure 5.7, the scattering rates of elec-

trons at room temperature are much lower than those of holes, except in a narrow

neighborhood of 0.4 eV. The scattering rates of electrons are also lower than that of

MoS2 [77], InSe [207], and black phosphorene [208]. This is a combined consequence

of a small effective mass and a low Debye temperature. The electron-phonon scat-

tering process requires energy and momentum conservations between electrons and

phonons. Generally, the closer the difference in the energy scale between the electron

and the phonon, the more easily the conservation criteria can be satisfied. The char-

acteristic energy scale of electrons (on the Fermi level) is on the order of eV, while

the counterpart of phonons varies between 1 and 100 meV. A lower Debye tempera-

ture generally corresponds to lower phonon energies, thus a larger energy difference

between electrons and phonons and a smaller scattering phase space. In this case,

the scattering rates are expected to be small and favor the electrical conductivity. By

looking into the decomposed contribution to the scattering rates from out-of-plane

acoustic (ZA), transverse acoustic (TA), longitudinal acoustic (LA), and optical (OP)

phonons in Figure 5.7(c) and (d), we can see that the ZA and OP phonons contribute
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Figure 5.6: Convergence of electron and hole mobilities with respect to k and q
grids at room temperature. The (N1, N2) in the labels of horizontal axis indicates
N1×N1× 1 for k grids and N2×N2× 1 for q grids.

the most at relatively low energies, while the contribution of TA and LA increases

as the energy increases. Unlike MoS2 but as in silicene and stanene, [213, 214, 215]

ZA contributes significantly to the scattering, which originates from the broken mir-

ror symmetry of the crystal structure. [216] For 2D systems with mirror symmetry,

the ZA phonons have purely out-of-plane polarization vectors and the in-plane Bloch

waves are mirror symmetric; therefore, the electrons and ZA phonons are decoupled

to the first order and the coupling matrix elements vanish. On the other hand, in

buckled 2D systems, where the mirror symmetry is broken, the cancelation no longer

applies.

The temperature-dependent κL of α-Te was calculated, as shown in Figure 5.8,

with a value of 4.2 Wm−1K−1 at 300 K and 1.8 Wm−1K−1 at 700 K, which are about

half smaller than the values reported by Gao et al [195]. We have carefully checked the

convergence of κL (the details are given in Appendix C) and found that the calculated

κL would be overestimated if the computational parameters especially the scalebroad
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Figure 5.7: (a) Intrinsic electron and hole mobilities of α-Te as a function of tem-
peratures. (b) Electron and hole scattering rates at room temperature and the (c,
d) corresponding decoupled scattering contributed from different phonon modes for
electrons and holes, respectively.

used in ShengBTE package [58] are insufficient for the convergence. κL of monolayer

α-Te is much smaller than monolayer TMDs [197, 198], black phoshperene [217], InSe

[218], but close to the recently reported thermoelectric monolayer of Bi2Te2X (X =

S, Se, Te) [186], β-Te [194], and organic (NiC4S4)n [219]. The low κL is due to a low

Debye temperature, which suggests a small group velocity and small phonon lifetimes.

[220, 221] κL is mainly contributed by phonons with a relaxation time below 100 ps

at room temperature, as shown in the inset of Figure 5.8, which is smaller than the

monolayer TMDs [198], InSe [218], and β-Te [194]. The acoustic phonons, of which
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the frequency is smaller than 10 meV, contribute more than 70% of κL above room

temperature.

Figure 5.8: Lattice thermal conductivity and room-temperature phonon lifetimes of
different modes.

5.3.2 Thermoelectric Figure of Merit

The high electron mobility and low lattice thermal conductivity are key in-

gredients for high zT. The carrier concentration dependence of zT (Figure 5.9) was

calculated at a number of temperatures and is shown 1019cm−3 in the case of n-type

α-Te. As temperature decreases, the maximum zT is reduced. However, at 300 K,

it is still as large as 0.55 at an electron concentration of 5 × 1018cm−3. The zT of

p-type α-Te was also calculated, which is much smaller than the n-type counterpart
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at the same carrier concentration because of the much lower hole mobility. Nonethe-

less, as the hole concentration increases to 5× 1020cm−3, the maximum zT of p-type

α-Te can reach 0.86 at 700 K, whereas the highest room-temperature value is about

0.25 at a hole concentration of 2.5 × 1020cm−3. It is also found that the optimal

carrier concentrations of unstrained α-Te are (5− 10)× 1018cm−3 for the n-type and

(2.5−5)×1020cm−3 for the p-type α-Te over the whole temperature range of 300-700

K.

Figure 5.9: Thermoelectric zT of n- and p-type α-Te as a function of carrier concen-
trations and temperatures.

Figure 5.10 provides the individual thermoelectric properties of n- and p-type

α-Te as a function of carrier concentrations at 300 and 700 K. For an n-type system,

in 5.10(a) and (b), as electron concentration increases, α decreases while σ and κe

increase; consequently, the PF and zT have a peak shape as the function of carrier

concentrations. At 300 K, α and σ at the optimal concentration of zT are 218 µV K−1

and 1943 Scm−1, respectively, producing remarkably high PF of 92 µWcm−1K−2. As
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temperature increases, α is slightly increased while σ is significantly reduced, and thus

the PF is decreased. At 700 K, the PF at the optimal carrier concentration of zT is

approximately reduced by half to 50 µWcm−1K−2. The decrease of PF arises from

a slight increase of α to 227 µV K−1 and a strong decline of σ to 973 Scm−1. The

corresponding κe is also reduced from 0.8 Wm−1K−1 at 300 K to 0.6 Wm−1K−1

700 K; combined with the reduced κL, the total thermal conductivity is reduced by

half. As shown in Figure 5.10(c) and (d), the thermoelectric properties of p-type

α-Te exhibits similar concentration dependence and temperature dependence as their

n-type counterparts. Specifically, at the optical carrier concentration of zT, the PF

of p-type α-Te are 39 and 30 µWcm−1K−2 at 300 and 700 K, respectively, which are

about half smaller than that of n-type α-Te. Smaller PF of a p-type system leads

to lower zT. It is noted that at the optimal carrier concentration the total thermal

conductivity is mainly contributed by phonons. For instance, about 85 and 75%

thermal conductivity is contributed by κL at 300 and 700 K, respectively, for both n-

and p-type systems.

5.3.3 Strain Effects

Strain, which cannot be avoided in realistic samples, has important influence

on the transport properties. It has been reported that the thermoelectric performance

of monolayer ZrS2, TiS2, and InSe can be enhanced by tensile strain. [180, 181, 222]

Therefore, we also studied the tensile strain effect on the properties of α-Te for 1, 2,

3, and 4% strains. Figure 5.11(a) shows the tensile strain effect on electron and hole

mobilities. It can be seen that the electron mobilities increase significantly, which

reach up to 8000 cm2V −1s−1 at room temperature above 2% strain. As temperature

increases to 700 K, the enhancement of electron mobility by tensile strain is reduced,

73



Figure 5.10: Seebeck coefficient (α), electrical conductivity (σ), electronic thermal
conductivity (κe), and the power factor (PF) of (a, b) n- and (c, d) p-type α-Te as a
function of carrier concentrations at 300 and 700 K, respectively.

but still more than doubled as compared to an unstrained system, from 630 to 1515

cm2V −1s−1. It is also found that the electron mobilities under 2, 3, and 4% strains

are almost identical, indicating that strain effect gets marginal above 2% strain. The

tensile strain effect on mobility can be understood from the scattering rates, as shown

in Figure 5.11 (b) and (c), and from the variations of the band structures as in Figure

5.1. Overall, for strain changing from -1% to 4%, the conduction band tends to

become steeper, whereas the valence band tends to become flatter. The change of
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band structure around CMB and VBM is not significant. To better characterize the

small changes of effective mass under stains, we derived the fitting from the constant

energy contours as in Figure 5.13. The fitted effective masses are listed in Table 5.1.

The valley around CBM is located at Gamma point and is isotropic, as shown in

Figure 5.13(a). When the strain varies from -1% to 4%, the electron effective mass is

slightly reduced. The valley around VBM is not located at Γ point, and thus there

are six equivalent valleys originating from the lattice crystal symmetry, as shown in

Figure 5.13(a). As the strain varies from -1% to 4%, the hole effective mass along

the y-direction is clearly increased, whereas the hole effective mass in the x-direction

does not vary monotonically due to the strong nonparabolicity. However, since the

change of the constant energy contour in the y-direction is larger than that in the

x-direction, as shown in 5.13(b), the enlarged area of constant energy contour implies

the equivalent increase for hole effective mass.

For an unstrained system, the ZA phonons dominate the scattering of elec-

trons at low energies as compared to other phonon modes, partially because of the

divergent thermal population of the quadratic ZA phonons. [216] Upon strain, the

ZA phonons get stiffened, and the dispersion changes from quadratic to linear as

in Figure 5.14. Consequently, the thermal population of the quadratic ZA phonons

is significantly reduced. Therefore, the scattering rates by ZA phonons decrease by

more than one order of magnitude at 2, 3, and 4% strains. For a given electron state,

smaller effective mass means fewer electron states available for phonon scattering in

the momentum space. The small scattering phase space corresponds to a small scat-

tering rate. The scattering rates by TA, LA, and OP phonons are almost unchanged,

implying the weak effect from the change of electron effective mass. Therefore, the

significant enhancement of electron mobility stems from the great decrease of electron-

ZA phonons scattering. As for holes, we found that the tensile strain also reduces the
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Strain Electron (m∗x = m∗y) Hole (m∗x) Hole (m∗y)

-1% 0.100 0.37 0.16
0% 0.097 0.39 0.17
1% 0.094 0.37 0.18
2% 0.092 0.38 0.20
3% 0.090 0.38 0.22
4% 0.099 0.39 0.25

Table 5.1: Effective masses of electron (by fitting the CBM valley at Γ point) and
hole (by fitting the VBM valley in Γ-M line) under different strains.

scattering rates by ZA phonons but increases the scattering rates by other phonons

(as in Figure 5.15) due to the equivalently increased hole effective mass. Since the

ZA phonons scattering is not dominant for holes, the total scattering rates of holes

are increased. As a result, the hole mobilities under tensile strains decrease slightly,

for instance, from 30 to 23 cm2V −1s−1 by 4% strain at room temperature. Unlike

electron mobilities, the change of κL caused by tensile strain is also not strong. At

room temperature, κL first increases from 4.2 to 5.7 Wm−1K−1 with 2% strain and

decreases again to 4.3 Wm−1K−1 at 4% strain, which is a result of the complicated

change of mode-dependent phonon group velocity and phonon lifetime.

The effect of compressive strain is also studied. It is found that -1% compres-

sive strain has limited effects on the electronic band structure near the band edges

(Figure 5.12) but results in imaginary frequencies of ZA phonons near the Γ point

(Figure 5.14). Imaginary frequencies are not allowed in the calculations of electron-

phonon coupling; with the imaginary ZA modes manually removed, the resulting

electron mobility is significantly enhanced, while the hole mobility is much less af-

fected (Figure 5.16). Although the physical meaning is discounted because imaginary

phonon modes do not exist in real life materials, these results attest to the vital role of

the coupling between electrons and the ZA modes in relation to the electron mobility
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(Figure 5.17). In short, any strain-induced change to the ZA phonon modes would

drastically impact the electron mobility. It should be noted that the strain effect on

carrier mobility has a different origin in monolayer α-Te and bulk GaN. Poncé et al.

[210] reported that the hole mobility of bulk GaN can be significantly increased by

both tensile and compressive strains due to the upshift of the light split-off hole band.

These results showcased the efficacy of strain in tuning the electronic band structure

of materials with multiple bands close in energy but differing in the effective mass.

By contrast, the electronic bands of α-Te are well separated in energy and the strain

effect is limited. Rather, the strain effects of electron mobility in α-Te is governed by

the strain effects of the ZA phonon modes and the resulting change of electron-phonon

scattering.

The noticeably increased electron mobility portends significant increase of σ

and κe in a n-type system, whereas α is only weakly affected since it is mainly de-

termined by the band structure [111]; as a consequence, loosely speaking, the overall

trend of PF is increased (Figure D.1 in Appendix D). As discussed above, κ is dom-

inated by κL that is less changed upon strain. The zT of n-type α-Te is generally

enhanced by the tensile strain, as shown in Figure 5.18(a). The optimal concen-

tration of n-type α-Te varies only slightly with 1-4% tensile strain in the range of

(2.5− 7.5)× 1018cm−3 over the temperature range of 300-700 K. By contrast, σ and

PF of p-type alpha-Te are decreased by tensile strain (Figure D.2 in Appendix D) in

consistence with the reduced hole mobility, and the zT becomes worse, as shown in

Figure 5.18(b).

The optimal concentration of p-type α-Te is also weakly affected by the tensile

strain in the range of (2.5 − 5) × 1020cm−3 over the temperature range of 300-700

K. Figure 5.19 shows the maximum zT under different strains and temperatures for

n- and p-type alpha-Te. The maximum zT of the n-type system increases first at
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1% strain due to the increase of σ but decreases at 2 and 3% strains due to the

increase of κL. When the strain increases up to 4%, the zT increases again because

κL reduces to the level of no strain. At room temperature, the enhanced zT is

0.94. When temperature increases to 700 K, the optimal zT can be as high as 2.03,

which is comparable with the famous bulk thermoelectric SnSe at close temperatures.

[141, 223] In contrast, it is found that the zT of a p-type system is decreased by tensile

strain due to its deteriorated hole transport properties. From the concentration and

temperature dependences of the calculated zT of 4% strained n-type alpha-Te, it is

found that the zT can be larger than unity over a wide electron concentration and

temperature ranges, promising realistic applications. The thermoelectric zT of ntype

alpha-Te is much better than previously estimated β-Te [196] due to its much smaller

effective mass and the promising strain effect.

5.4 Summary

In summary, the intrinsic electrical and thermal transport properties of mono-

layer α-Te were studied based on parameter-free first-principles calculations and the

solution of the electron phonon interaction limited Boltzmann transport equation as

developed in Chapter 2. It is found that α-Te has ultrahigh electron mobility despite

hole mobility is two orders of magnitude lower. The room temperature electron and

hole mobilities are 2500 and 30 cm2V −1s−1, respectively. Because of the absence of

mirror symmetry in the crystal structure, the heavily populated out of-plane acoustic

(ZA) phonons play a key role in the scattering of a charge carrier. Meanwhile, the

lattice thermal conductivity of α-Te is lower than many previously reported mono-

layer materials due to its low phonon frequency and short phonon lifetime. Above

room temperature, the lattice thermal conductivity is lower than 4.2 Wm−1K−1.
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As a result, monolayer α-Te displays good thermoelectric performance; the zT value

reaches 1.46 and 0.86 at 700 K for pristine n- and p-type systems, respectively, while

the room-temperature counterparts are 0.55 and 0.25. Notably, the tensile strain

significantly enhances the zT of an n-type system mainly due to strain-induced linear

dispersion of ZA modes and the resulting suppressed carrier scattering by ZA modes.

The peak zT values are enhanced to 0.94 and 2.03 by a 4% tensile strain at 300

and 700 K, respectively. By contrast, strain degrades the thermoelectric performance

of p-type monolayer α-Te. These results are expected to promote the experimental

study of monolayer α-Te via doping, alloying, and compositing.
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Figure 5.11: Tensile strain effect on (a) electron and hole mobilities, (b) electron
scattering contributed by ZA phonons, (c) electron scattering contributed by TA,
LA, and OP phonons, and (d) lattice thermal conductivity, respectively.
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Figure 5.12: Band structures of monolayer α-Te (aka 0%) and the effects of compres-
sive and tensile strains.

Figure 5.13: Constant energy contour of (a) conduction band (at 0.1 eV with respect
to CBM)and (b) valence band (at -0.03 eV with respect to VBM) as a function of
wavevector under different strains.
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Figure 5.14: Phonon dispersions of monolayer α-Te (aka 0%) and the effects of com-
pressive and tensile strains.

Figure 5.15: Scattering rates of holes contributed by ZA phonons and other phonon
modes under different tensile strains at room temperature.
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Figure 5.16: Effects of compressive strain on the electron and hole mobilities of mono-
layer α-Te at different temperatures.

Figure 5.17: Effects of compressive strain on the scattering rates of electrons con-
tributed by ZA phonons and other phonon modes at room temperature.
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Figure 5.18: Concentration dependence of the zT for (a) n- and (b) p-type α-Te under
different tensile strains at 300 and 700 K, respectively.
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Figure 5.19: Maximum zT under different tensile strains for n- and p-type alpha-Te
at different temperatures.
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Chapter 6

Conclusions and Future Work

In this dissertation, we presented our home-developed algorithms based on

Boltzmann transport equation in conjunction with electron-phonon interactions for

calculating the electrical transport properties, such as electrical conductivity, electri-

cal thermal conductivity, Seebeck coefficient. Our scheme combined with the available

methods for phonon transport properties (aka lattice thermal conductivity) can pro-

vide a complete description of the thermoelectric figure of merit.

When examining the correctness of our methodology, the calculated mobilities

for both n-type and p-type 3C-SiC are consistent with the experimental data. In

addition, it is interesting to find a temperature scattering mechanism for both types of

charge carriers. At room temperature, the scattering is dominated by the longitudinal

acoustic (LA) phonons. However, at elevated temperature, the polar longitudinal

optical (LO) phonons become dominant. This is because of the high frequency of the

LO phonons, which are less populated at room temperature.

We found that the anisotropy of the effective mass is greatly related to the

anisotropic electrical conductivity and electrical thermal conductivity in the study of

Mg3Sb2 in Chapter 4. Strong anisotropic electrical conductivity and electrical thermal
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conductivity were observed in p-type Mg3Sb2, whereas they are nearly isotropic in the

n-type counterpart. Seebeck coefficient and lattice thermal conductivity tend to be

nearly isotropic in both types. Therefore, strong anisotropic thermoelectric properties

were found for p-type Mg3Sb2. And it is interesting to note the thermoelectric figure

of merit along the out-of-plane direction is above unity, indicating that the p-type

performance might be improved experimentally.

Our methodology can also be used for calculating the thermoelectric properties

of two-dimensional materials. In Chapter 5, ultrahigh electron mobility is obtained

for α-Te. However, the hole mobility is two orders of magnitude smaller. In addition,

it is noticeable that the lattice thermal conductivity of α-Te is lower than many

previously reported two-dimensional materials due to its low phonon frequency and

short phonon lifetime. Above room temperature, the lattice thermal conductivity

is lower than 4.2 Wm−1K−1. As a result, two-dimensional α-Te exhibits excellent

thermoelectric performance; the zT value reaches 1.46 and 0.86 at 700 K for pristine

n- and p-type systems, respectively. Besides, even small tensile strain (up to 4%) can

significantly enhance the zT of an n-type system mainly due to strain-induced linear

dispersion of ZA modes and the resulting suppressed carrier scattering by ZA modes.

The peak zT values are enhanced to 0.94 and 2.03 by a 4% tensile strain at 300 and

700 K, respectively. By contrast, strain degrades the thermoelectric performance of

p-type monolayer α-Te.

The recent development on the thermoelectric properties of Dirac/Weyl nodal

semimetal brings in a new viewpoint for the thermoelectric materials. [224, 225, 226,

227, 228, 228] For example, the maximum zT of Cd3As2 could achieve 1.24 at 450 K

under magnetic field of 9 T, which is order of magnitude higher than the data obtained

with the absence of magnetic field. [225] However, compared to the fast development

of the experimental techniques, the theoretical approaches are being developed at a
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slower pace. [229, 230] Most importantly, all the theoretical/computational research

did not consider the electron-phonon interaction, which is the main source of scat-

tering especially at temperature well above the Debye temperature of the material.

Therefore, the thermoelectric transport properties of Dirac/Weyl nodal semimetal

still warrant further studies from the theoretical/computational viewpoint. In fu-

ture work, the effects from magnetic field need to be considered in the algorithms,

in which the magnetic field would be an adjustable parameter so that we would be

able to calculate the thermoelectric properties under magnetic field directly from first

principles, which can provide fruitful physical insights of the detailed thermoelectric

transport mechanism under magnetic field.

88



Appendices

89



Appendix A Phonon-Isotope Scattering

In single crystals, besides from phonon-phonon interactions, phonons can also

be scattered by isotopes. [57] The phonon-isotope scattering rate can be calculated

with [231, 232]

Γλλ′ =
πω2

2

∑
i∈u.c.

g(i)|e∗λ(i)eλ′(i)|2δ(ωλ − ωλ′) (A.1)

where λ denote the phonon index with q point and p branch. In Equation A.1, the

g(i) is the Pearson deviation coefficient for each atom in the primitive unit cell, and

can be obtained as:

g(i) =
∑
s

fs(i)[1−Ms(i)/M̄(i)]2 (A.2)

where fs is the relative frequency with 0 < fx ≤ 1, Ms(i) represent the mass of isotope

s for the element corresponding to atom i and their average M̄(i) is given by:

M̄(i) =
∑
s

fsMs(i). (A.3)
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Appendix B Charged Impurity Scattering in Mag-

nesium Antimonide

Mg3Sb2 is known to have native defects, including Mg vacancies [146]. Mean-

while, in order to tune the carrier concentration, defects are introduced externally.

We used the Brooks-Herring model [169, 170] to simulate the influence of the charged

impurity on the electronically related transport properties, such as the electrical con-

ductivity, the electrical thermal conductivity and the Seebeck coefficient.

According to the Brooks-Herring model, the scattering rate from charged im-

purity is given by:

τmk→m′k+q =
2πZ2nie

4

h̄V (εrε0)2

δ (εm′k+q − εmk)

(q2
scr + |q|2)2 (B.1)

where V is the unit cell volume, qscr is the screening wave vector, εr and ε0 are the

relative and the vacuum permittivity. Ze is the charge of the impurity, where Z is

taken to be unity in the calculations; ni is the impurity density, which is set equal to

the carrier concentration, thus assuming full ionization.

As shown in Figure B.1 and B.2, both electrical conductivity and electrical

thermal conductivity decrease slightly, but the anisotropy is almost unaffected in the

presence of such defects. Meanwhile, the impacts of the point defects on the Seebeck

coefficient and the anisotropy of the Seebeck coefficient are trivial according to our

calculations (Figure B.3). Finally, the zT value is slightly influenced by the defects

(Figure B.4). For n-type Mg3Sb2, the highest calculated zT including defect scattering

is around 2.0 at 750 K. For p-type Mg3Sb2, the highest calculated zT including defect

scattering is 0.57 along a(b)-axis and 1.42 along c-axis at 750 K, respectively.

To understand why the charged impurity contributes negligibly to the elec-
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Figure B.1: Temperature dependent (a) n-type and (c) p-type electrical conductivity
obtained with point-defect scattering included. Corresponding temperature depen-
dent anisotropy (σc/σa) for (b) n-type and (d) p-type Mg3Sb2.

tronically related transport properties, especially the electrical conductivity and the

electrical thermal conductivity, the scattering rates of electron-phonon interactions

and impurity scattering are compared in Figure B.5 for both conduction types. As

can be seen, the scattering rates of electron-phonon interactions are much larger than

those arising from charged impurity scattering processes; meanwhile, in some other

semiconductors, taking silicon for an example, the scattering rates from a charged

impurity are comparable, or even higher, than the scattering rates due to electron-

phonon interactions. [77, 199]
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Figure B.2: Temperature dependent (a) n-type and (c) p-type electrical thermal con-
ductivity obtained with point-defect scattering included. Corresponding temperature
dependent anisotropy (κce/κ

a
e) for (b) n-type and (d) p-type Mg3Sb2.

93



Figure B.3: Temperature dependent (a) n-type and (c) p-type Seebeck coefficient ob-
tained with point-defect scattering included. Corresponding temperature dependent
anisotropy (αc/αa) for (b) n-type and (d) p-type Mg3Sb2.
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Figure B.4: Contour map of zT with point defect scattering included as a function of
both temperature and carrier concentration for Mg3Sb2: (a) n-type along the in-plane
direction, (b) n-type along the out-of-plane direction, (c) p-type along the in-plane
direction and (d) p-type along the out-of-plane direction. (a) and (b) share the
same color bar, while (c) and (d) share the same color bar. The white dashed line
corresponds to zT equaling to 1.0.
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Figure B.5: Comparison between room temperature electron-phonon interaction scat-
tering rates and electron-impurity interaction scattering rates in (a) n-type and (b)
p-type Mg3Sb2 at carrier concentration 1019 cm−3.
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Appendix C Convergence Check for Lattice Ther-

mal Conductivity for Two Dimensional

alpha-Tellurium

The first principles calculation of lattice thermal conductivity using ShengBTE

package [58] requires several convergence checks. In convention, a truncating cutoff is

implemented in the calculations of third-order anharmonic interatomic force constants

(IFCs). We have checked that a cutoff distance of 0.6 nm, used in our work, can

achieve reasonable convergence. As shown in Figure C.1(a), if the cutoff is not large

enough, the lattice thermal conductivity would be overestimated.

When applying ShengBTE package to solve BTE, there are two more parame-

ters affecting the convergence, namely, ngrids and scalebroad. The ngrids denotes the

q meshes of Brillouin zone, whereas the scalebroad controls the energy conservation

process. We first used a safely large scalebroad = 1 to check the convergence with

respect to q grids, and found that the lattice thermal conductivity is easily converged,

as shown in Figure C.1(b). Then, using large q grids, we checked the convergence

with respect to the scalebroad. As a routine, one uses a small scalebroad to reduce

the processes that need to be considered to save the computational cost. However,

we found that the scalebroad should be larger than 0.1, otherwise small scalebroad

would overestimate the lattice thermal conductivity, as shown in Figure C.1(c).

To have a deeper understanding of the overestimation caused by a small scale-

broad value, here we calculated the frequency-dependent contribution to the lattice

thermal conductivity, as what was done in the work of Gao et al. [195]. As shown in

Figure S4, it is found that the overestimation mainly comes from the non-convergent

low-frequency phonons. With a small scalebroad, we reproduced the low-frequency
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peak reported in the work of Gao et al. [195] However, using convergent scalebroad,

the peak is gone, and the distribution lines converge very well.

Therefore, in this work, we use a cutoff of 0.6 nm for the calculation of third

order IFCs, and in solving BTE, we use 200×200×1 q grids with scalebroad=1.

Figure C.1: Convergence of lattice thermal conductivity with respect to (a) the cutoff
distance for third-order IFCs, (b) the q grids, and (c) the scalebroad, at room tem-
perature.
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Figure C.2: Contribution to the lattice thermal conductivity from different frequencies
at room temperature with different scalebroad parameters.
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Appendix D Tensile Strain Effect on Thermoelec-

tric Properties Two Dimensional alpha-

Tellurium

The tensile strain effect on Seebeck coefficient, electrical conductivity, elec-

tronic thermal conductivity, and power factor for n- and p-type α-Te are given in

Figures D.1 and D.2, respectively. Overall, the Seebeck coefficient is weakly affected

by tensile strain in both n-type and p-type systems. The electrical conductivity, elec-

tronic thermal conductivity, and power factor in n-type system first increase obviously

when the strain changes from 0 to 2% and then remain almost unchanged as strain

increases from 2% to 4%, whereas these properties are decreased in p-type system

with strain changing from 0 to 4%, which is consistent with the changing trends of

mobilities.
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Figure D.1: (a) Seebeck coefficient, (b) electrical conductivity, (c) electronic thermal
conductivity, and (d) power factor of n-type α-Te under different tensile strains at
300 K and 700 K.
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Figure D.2: (a) Seebeck coefficient, (b) electrical conductivity, (c) electronic thermal
conductivity, and (d) power factor of p-type α-Te under different tensile strains at
300 K and 700 K.
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Appendix E Thermoelectric ZT with Closed-circuit

Electrical Thermal Conductivity of Two

Dimensional alpha-Tellurium

The main difference for electrical thermal conductivity in the open circuit and

the closed circuit is: electrons are driven by both electrochemical potential gradient

and temperature gradient in a closed circuit, whereas electrons are driven by temper-

ature gradient in an open circuit. In this thesis, the electronic thermal conductivity

is calculated in the open-circuit case, expressed as [233]:

κe =
s

TV Nk

∑
nk

(εnk − εf )2 vnkFnk

(
−∂f

0
nk

∂εnk

)
− TσS2 (E.1)

The second term TσS2 on the right-hand side, with a minus sign, is the electro-

chemical potential gradient contribution. Removing the TσS2 term, the formula is

reduced to the closed-circuit case [233]. Therefore, the electronic thermal conductiv-

ity in open-circuit case is smaller than that of closed-circuit case, leading to higher

calculated ZT. From Figure E.1, it is found that the ZT calculated with closed-circuit

electronic thermal conductivity is indeed smaller than that of open-circuit case.
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Figure E.1: Calculated ZT with closed-circuit electronic thermal conductivity for (a)
and (b) p-type α-Te under different strains at 300 K and 700 K.
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