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Abstract: We present a polynomial-time primal-dual interior-point algorithm
for solving linear optimization (LO) problems, based on generalized logarithmic
barrier function. The growth term depends on a parameter p ∈ [0, 1]. The kernel
functions are neither self-regular nor strongly convex. The classical logarithmic
barrier function occurs if p = 1. The goal of this paper is to investigate such
class of kernel functions and to show that the interior-point methods based on
these functions have favorable complexity results. In order to achieve these
complexity results, several new techniques had to be used for the analysis.
Complexity issues are discussed and they are O

(
n log n

ε

)
, and O

(√
n log n

ε

)
,

for large-update and small-update methods, respectively. Numerical tests show
that the iteration bounds are influenced by p. We conclude that a gap still exists
between the theoretical complexity and practical behavior of the algorithm.
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1. Introduction

In 1984 Karmarkar [5] proposed a new polynomial-time method for solving lin-
ear optimization problems. This method, and its variants that were developed
subsequently, are now called interior-point methods (IPMs). For a survey we
refer to recent books on the subject, as Hertog [3], Peng et al [7], Roos at al [8],
Wright [10], and Ye [11]. In order to describe the idea of this paper we need
to recall some ideas underlying new primal-dual IPM’s. The purpose of this
work is to present primal-dual interior-point methods (IPM’s) based on gener-
alized logarithmic barrier function for solving the standard linear optimization
problem

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

where A ∈ Rm×n is a real m× n matrix with rank m, and c, x ∈ Rn, b ∈ Rm.
The dual problem of (P ) is given by

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
,

with y ∈ Rm and s ∈ Rn.

1.1. Barrier Function

The generalized logarithmic barrier function considered in this paper is defined
as follows:

Ψ(v) =
n∑

i=1

ψ(vi), (1)

where

ψp(t) = ψ(t) =
t1+p − 1
1 + p

− log t, 0 < t <∞, p ∈ [0, 1]. (2)

Obviously, when p = 1, the growth term is quadratic and Ψ(v) is the classical
logarithmic barrier function, which has been studied extensively in the liter-
ature, see e.g. Roos at al [8]. When p = 0, ψ(t) has a linear growth term.
Following the terminology introduced in El Ghami [4] and Peng at al [7], we
call ψ(t) the kernel function of the barrier function Ψ(v). In this paper, we de-
rive iteration bounds for the primal-dual interior-point algorithm for solving LO
problems based on the above function. We use new analysis tools developed in
Bai at al [2] and El Ghami [4], yielding sharp estimates for the generalized log-
arithmic barrier function and its corresponding norm based proximity measure,
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which results in a relatively simple analysis, both for large- and small-update
methods. The resulting iteration bounds for these methods are O

(
n log n

ε

)
,

and O
(√
n log n

ε

)
, respectively. Although the theoretical iteration bound of

the algorithm is not influenced by parameter p, we implement the algorithm
and present some numerical experiments, which show that the practical behav-
ior of the iteration bound of the algorithm relates closely to the parameter p
introduced in the generalized logarithmic barrier function.

The paper is organized as follows. In Section 2 we introduce the basic
concepts of primal-dual interior-point algorithms for LO problems. In Section 3
we drive some properties of the kernel function ψ(t), as well as the corresponding
properties of the generalized logarithmic barrier function Ψ(v). The estimate
of the step size and the decrease behavior of the barrier function are discussed
in Section 4. The inner iteration bound and the total iteration bound of the
algorithm are derived in Section 5. In Section 6 we present some numerical
tests. Finally, some concluding remarks follow in Section 7.

2. Preliminaries

We consider the LO problem (P) and its dual (D) as mentioned above and we
assume that both satisfy the interior-point condition (IPC), i.e., there exists
(x0, s0, y0) such that

Ax0 = b, x0 > 0 AT y0 + s0 = c, s0 > 0.

It is well known that the IPC can be assumed without loss of generality, in
fact we may, and will assume that x0 = s0 = e, where e denotes the all-one
vector. For this and some other properties mentioned below, see, e.g., Roos at
al [8]. Finding an optimal solution of (P) and (D) is equivalent to solving the
following system

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (3)

xs = 0,

where xs denotes the coordinatewise product of x and s.

2.1. The Central Path

The basic idea of the primal-dual IPM’s is to replace the third equation in (3),
the so-called complementarity condition for (P) and (D), by the parameterized
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equation xs = µe, with µ > 0. Thus we consider the system

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (4)

xs = µe.

Since rank(A) = m, and the IPC holds, the parameterized system (4) has a
unique solution, for each µ > 0. This solution is denoted as (x(µ), y(µ), s(µ))
and we call x(µ) the µ-center of (P ) and (y(µ), s(µ)) the µ-center of (D). The
set of µ-centers (with µ running through all positive real numbers) gives a
homotopy path, which is called the central path of (P ) and (D), see Megiddo [6]
and Sonnevend [9]. If µ→ 0, then the limit of the central path exists and since
the limit points satisfy the complementarity condition, the limit yields optimal
solutions for (P ) and (D).

2.2. New Search Direction

All existing primal-dual IPM’s follow the central path approximately. We de-
scribe briefly how this can be done. Suppose that x is primal feasible and (y, s)
dual feasible and µ > 0. Then (4) will be satisfied if and only if the vector

v :=
√
xs

µ
(5)

equals the all-one vector e. Now let Ψ(v), v ∈ Rn
++ be a strictly convex function

such that Ψ(v) is minimal at v = e and Ψ(e) = 0. Then we have

∇Ψ(v) = 0 ⇔ v = e ⇔ Ψ(v) = 0. (6)

Hence, the value of Ψ(v) can be considered as a measure for the distance of the
given primal-dual pair to the µ-center. Now consider the following system of
linear equations in the variables 	x, 	y, and 	s :

A∆x = 0,
AT ∆y + ∆s = 0, (7)
s∆x+ x∆s = −µv∇Ψ(v).

Because A has full row rank, this system has a unique solution. It follows from
(7) that the right hand side in the system vanishes if and only if v = e. Thus
we conclude that ∆x, ∆y and ∆s all vanish if and only if v = e, i.e., if and only
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Generic Primal-Dual Algorithm for LO

Input:
A proximity function Ψ(v);
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := 1; s := 1; µ := 1;
while nµ ≥ ε do
begin
µ := (1 − θ)µ;
v :=

√
xs
µ ;

while Ψ(v) > τ do
begin
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;

end
end

end

Figure 1: The algorithm

if x = x(µ), y = y(µ) and s = s(µ). Otherwise, at least one of ∆x, ∆y and ∆s
will be nonzero. We will use these vectors as our search directions. For future
use we introduce scaled versions of the search directions ∆x and ∆s as follows:

dx :=
v∆x
x

, ds :=
v∆s
s
. (8)

The system (7) can then be rewritten as

Ādx = 0,
ĀT ∆y + ds = 0,

dx + ds = ∇Ψ(v),
(9)

where
Ā := AV −1X = µAS−1V,
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and
V := diag (v), X := diag (x), S := diag (s).

Note that dx and ds are orthogonal vectors, since dx belongs to the null space
and ds to the row space of the matrix Ā; moreover, their sum is the steepest
descent direction for the barrier function Ψ(v).

2.3. Generic Primal-Dual Algorithm for LO

In principle each barrier function Ψ(v) gives rise to a primal-dual algorithm.
Without loss of generality we assume that a point (x(µ), y(µ), s(µ)) is known
for some positive parameter µ. For example, due the above assumption we
may assume this for µ = 1, with x(1) = s(1) = e. We then decrease µ to
µ := (1− θ)µ, for some θ ∈ (0, 1) and we solve (9). By choosing an appropriate
step size α, we move along the search direction, and construct a new triple
(x+, y+, s+) with

x+ = x+ α∆x y+ = y + α∆y s+ = s+ α∆s. (10)

If necessary, we repeat the procedure until we find iterates that are in the
neighborhood of (x(µ), y(µ), s(µ)). Then µ is again reduced by the factor 1− θ
and we apply the same procedure targeting at the new µ-centers. This process
is repeated until µ is small enough, say until nµ ≤ ε, at this stage we have
found an ε-solution of (P) and (D).

The generic form of this algorithm is given in Figure 1.
The parameters τ , θ and the step size α in the algorithm should be chosen

in such a way that the algorithm is ‘optimized’ in the sense that the number
of iterations required by the algorithm is as small as possible. Obviously, the
resulting iteration bound will depend on the kernel function, and on the choice
of τ , θ and α.

3. Properties of the Barrier Function

In this section, we focus studying the properties of ψ(t). The first, second and
third derivative of ψ(t) with respect to t are given by

ψ′(t) = tp − 1
t
, ψ

′′
(t) = ptp−1 +

1
t2

(11)

ψ
′′′

(t) = −p(1 − p)tp−2 − 2
1
t3
. (12)

The analysis of the IPM depends on the next technical lemmas.
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Lemma 1. ψ has the following properties

tψ′′(t) + ψ′(t) > 0, t < 1, (13-a)
ψ′′′(t) < 0, (13-b)

ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (13-c)

Proof. Using (11) we have

ψ′(t) + tψ
′′
(t) = (1 + p) tp.

Thus (13-a) follows. (13-b) is an immediate consequence of (12). Finally, (13-b)
follows since

ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) =
tp (1 + p)

(
β1+p − 1

)
βt2

> 0.

Thus the lemma follows.
Due to Lemma 2.1.2 in Peng at al [7], (13-a) implies that ψ is e-convex, i.e.,

if and only if ψ(
√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for all t1, t2 > 0.

Lemma 2. One has

(t− 1)2

2t
≤ t− 1 − log t ≤ ψ(t), ∀p ∈ [0, 1] and t ≥ 1.

Proof. Setting g(t) = (t−1)2

2t − t + 1 + log t, we have g(1) = 0, and g′(t) =

− (t−1)2

2t2 < 0, for all t > 1. This implies that g(t) ≤ 0, for all t > 1. From this
the first inequality of the lemma follows. The second inequality follows in a
similar way.

Lemma 3. One has

ψ(t) <
1
2
ψ′′(1) (t− 1)2 , if t > 1 .

Proof. By using Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1
2
ψ′′(1) (t− 1)2 +

1
6
ψ′′′(ξ) (ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ′′′(ξ) < 0. Thus the lemma follows.

Lemma 4. One has

tψ′(t) ≥ ψ(t), if t ≥ 1.
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Proof. Defining g(t) := tψ′(t)−ψ(t), one has g(1) = 0 and g′(t) = tψ′′(t) ≥
0. Hence g(t) ≥ 0 and the lemma follows.

We introduce a norm-based proximity measure δ(v) defined by

δ(v) :=
1
2
‖∇Ψ(v)‖ =

1
2

√√√√ n∑
i=1

(
vp
i − 1

vi

)2

, v ∈ Rn
++. (14)

3.1. Relation between Ψ(v) and δ(v)

For the analysis of the algorithm in Section 4 we need to establish the relation
between Ψ(v) and δ(v). A curial observation is that the inverse function of
ψ(t), for t ≥ 1, plays an important role in this relation.

The next theorem, which is one of main results in Bai at al [2], gives a
lower bound on δ(v) in terms of Ψ(v). This is due to the fact that ψ(t) satisfies
(13-b).

Theorem 5 (Theorem 4.9 in Bai at al [2]). Let 	 : [0,∞) → [1,∞) be the
inverse function of ψ on [0,∞). One has

δ(v) ≥ 1
2ψ

′ (	 (Ψ(v)) .

Lemma 6. If Ψ(v) ≥ 1, then

δ(v) ≥ 1
12
. (15)

Proof. The proof of this lemma uses Lemma 4 and Theorem 5. So we have
to estimate the inverse function 	 of ψ for t ∈ [1,∞). This is obtained by
solving t from the following equation:

ψ(t) =
t1+p − 1
1 + p

− log t = s, t ≥ 1.

Since it is hard to solve this equation explicitly, we derive an upper bound for
t, as this suffices for our goal. From Lemma 2 we have

(t− 1)2

2t
≤ ψ(t) = s,

hence we have the following inequality

t2 − 2t (1 + s) + 1 ≤ 0,
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which can be solved by

1 + s−
√
s2 + 2s ≤ t = 	(s) ≤ 1 + s+

√
s2 + 2s.

Therefore, the upper bound of t = 	(s) is

t = 	(s) ≤ 1 + s+
√
s2 + 2s. (16)

Assuming s ≥ 1, we get
t = 	(s) ≤ 6s.

Note that if Ψ(v) ≥ 1, then

	(Ψ(v)) ≤ 6Ψ(v).

Now, using Theorem 5, and Lemma 4 we obtain

δ(v) ≥ 1
2
ψ′(	(Ψ(v))) ≥ ψ (	(Ψ(v)))

2	 (Ψ(v))
=

Ψ(v)
2	 (Ψ(v))

≥ 1
12
.

This proves the lemma.

3.2. Growth Behavior of the Barrier Function

Note that at the start of each outer iteration of the algorithm, just before the
update of µ with the factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of
µ the vector v is divided by the factor

√
1 − θ, with 0 < θ < 1, which in

general leads to an increase in the value of Ψ(v). Then, during the subsequent
inner iterations, Ψ(v) decreases until it passes the threshold τ again. Hence,
during the course of the algorithm the largest values of Ψ(v) occur just after
the updates of µ. That is why in this section we derive an estimate for the
effect of a µ-update on the value of Ψ(v). We start with an important theorem.
This is due to the fact that ψ(t) satisfies (13-c).

Theorem 7 (Theorem 3.2 in Bai at al [2]). Let 	 : [0,∞) → [1,∞) be the
inverse function of ψ on [0,∞). Then for any positive vector v and any β ≥ 1
we have:

Ψ(βv) ≤ nψ

(
β	

(
Ψ(v)
n

))
.

Corollary 8. One has

Ψ(βv) ≤ n (1 + p)
2

(
β	

(
Ψ(v)
n

)
− 1
)2

. (17)
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Proof. Since β ≥ 1 and 	
(

Ψ(v)
n

)
≥ 1, the corollary follows from Lemma 3,

Theorem 7 and ψ′′(1) = 1 + p.

Corollary 9. Let 0 ≤ θ ≤ 1 and v+ = v√
1−θ

. If Ψ(v) ≤ τ, then

Ψ(v+) ≤ n (1 + p)
2

(
	
(

τ
n

)
√

1 − θ
− 1

)2

. (18)

Proof. By using (17), and β = 1√
1−θ

, the corollary is proved.

Suppose that the barrier update parameter θ and threshold value τ are
given. According to the algorithm, at the start of each outer iteration we have
Ψ(v) ≤ τ. By Corollary 9, after each µ-update the growth of Ψ(v) is limited by
(18). Therefore we define

L(n, θ, τ) :=
n (1 + p)

2

(
	
(

τ
n

)
√

1 − θ
− 1

)2

. (19)

Obviously, L(n, θ, τ) is an upper bound of Ψ(v+), the value of Ψ(v) after the
µ-update.

4. Analysis of the Algorithm

In this section, we determine a default step size which not only keeps the iter-
ations feasible but also gives rise to a sufficiently large decrease of the barrier
function Ψ(v) in each inner iteration. Apart from the necessary adaptations
to the present context and some simplifications, the analysis below follows the
same line of arguments that was used first in Peng at al [7], and later in Bai at
al [1] and Bai at al [2].

4.1. Decrease of the Proximity

After a damped step, with step size α, using (8) we have

x+ = x+ α∆x =
x

v
(v + αdx) , y+ = y + α∆y,

and
s+ = s+ α∆s =

s

v
(v + αds) .
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Thus from (5) we obtain

v2
+ =

x+s+
µ

= (v + αdx) (v + αds) . (20)

Now ψ satisfies the (13-a). Hence, ψ(t) is e-convex, see [1]. This implies

Ψ (v+) = Ψ
(√

(v + αdx) (v + αds)
)
≤ 1

2 [Ψ (v + αdx) + Ψ (v + αds)] .

Thus we have f(α) ≤ f1(α), where

f1(α) := 1
2 [Ψ (v + αdx) + Ψ (v + αds)] − Ψ (v) ,

is a convex function of α, since Ψ(v) is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative to α, we get

f ′1(α) = 1
2

n∑
i=1

(
ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi

)
.

This gives, using the third equation in (9) and (14),

f ′1(0) = 1
2∇Ψ(v)T (dx + ds) = −1

2∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (21)

Differentiating once more, we obtain

f ′′1 (α) = 1
2

n∑
i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
. (22)

Below we recall without proof three lemmas from Bai at al [2], and we use
the following notation:

v1 := min(v), δ := δ(v).

Lemma 10 (Lemma 4.1 in Bai at al [2]). One has

f ′′1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ) .

Since f1(α) is convex, we will have f ′1(α) ≤ 0 for all α less than or equal
to the value where f1(α) is minimal, and vice versa. In this respect the next
result is important.

Lemma 11 (Lemma 4.2 in Bai at al [2]). One has f ′1(α) ≤ 0 if α satisfies
the inequality

−ψ′ (v1 − 2αδ) + ψ′ (v1) ≤ 2δ. (23)
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Lemma 12 (Lemma 4.4 in Bai at al [2]). Let ρ : [0,∞) → (0, 1], denote
the inverse function of −1

2ψ
′(t) restricted to the interval (0, 1]. Then

ᾱ ≥ 1
ψ′′ (ρ (2δ))

. (24)

In the sequel we use the notation

α̃ =
1

ψ′′ (ρ(2δ))
. (25)

By Lemma 12 we have α̃ ≤ ᾱ.

Lemma 13 (Lemma 1.3.3 in Peng at al [7]). Let h be a twice differentiable
convex function with h(0) = 0, h′(0) < 0, which attains its minimum at t∗ > 0.
If h′′ is increasing for t ∈ [0, t∗], then

h(t) ≤ 1
2th

′(0), 0 ≤ t ≤ t∗.

Lemma 14. If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −α δ2. (26)

Proof. Let the univariate function h be such that

h(0) = f1(0) = 0, h′(0) = f ′1(0) = −2δ2,

and
h′′(α) = 2δ2 ψ′′ (v1 − 2αδ) .

Due to Lemma 10, f ′′1 (α) ≤ h′′(α). As a consequence, f ′1(α) ≤ h′(α) and
f1(α) ≤ h(α). We may write

h′(α) = −2δ2 + 2δ2
∫ α

0
ψ′′ (v1 − 2ξδ) dξ

= −2δ2 − δ
(
ψ′ (v1 − 2αδ) − ψ′ (v1)

)
.

Since α ≤ ᾱ, inequality (23) is certainly satisfied. Thus it follows that h′(α) ≤ 0,
for all α ≤ ᾱ. Since ψ′′ is decreasing, as a function of t, h′′ is increasing in α.
Hence Lemma 13 applies and we obtain

f(α) ≤ f1(α) ≤ h(α) ≤ 1
2αh

′(0) = −αδ2.

This proves the lemma.
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Theorem 15. Let ρ be as defined in Lemma 12 and α̃ as in (25). Then

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
≤ − 1

512
. (27)

Proof. The first inequality of theorem follows immediately if we apply
Lemma 14 to the default step size (25). To obtain the inverse function t = ρ(s)
of −1

2ψ
′(t) for t ∈ (0, 1], we need to solve t from the equation

−
(
tp − 1

t

)
= 2s.

This gives 1
t = 2s+ tp ≤ 2s+ 1, whence ρ(s) = t ≥ 1

2s+1 . Hence

α̃ =
1

ψ′′ (ρ(2δ))
=

1
p(ρ(2δ))p−1 + 1

(ρ(2δ))2

≥ 1
p (4δ + 1)1−p + (4δ + 1)2

.

Since p (4δ + 1)1−p ≤ (4δ + 1)2, for p ∈ [0, 1], it follows that

α̃ ≥ 1
2 (4δ + 1)2

.

Denote
α̃ :=

1
2 (4δ + 1)2

, (28)

this will be our default step size. Hence

f(α̃) ≤ − δ2

2 (4δ + 1)2
.

By using (15), that 12δ ≥ 1, we have

f(α̃) ≤ − 1
512

.

This proves the theorem.

5. Iteration Bounds

In this section we drive the complexity bounds for large-update methods and
small-update methods. An upper bound for the total number of iterations is
obtained by multiplying (the upper bound for) the number K by the number
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of barrier parameter updates, which is bounded above by (cf. Roos at al [8],
Lemma II.17, page 116)

1
θ

log
n

ε
.

Lemma 16 (Proposition 1.3.2 in Peng at al [7]). Let t0, t1, · · · , tK be a
sequence of numbers such that

0 < tk+1 ≤ tk − κt1−γ
k , k = 0, 1, · · · ,K − 1, (29)

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊

tγ0
κγ

⌋
.

Lemma 17. If K denotes the number of inner iterations, we have

K ≤ 512Ψ0.

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)
1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
512 and γ = 1. Application of Lemma 16, with tk = Ψk yields the

desired inequality.
Let L = L(n, θ, τ), as defined in (19). Using ψ0 ≤ L, and Lemma 17 we

obtain the following upper bound on the total number of iterations:

512L
θ

log
n

ε
. (30)

We finally have to estimate L, i.e., to drive an upper bound for Ψ(v) just after
a µ-update. Using (16), and Lemma (18), we obtain

L ≤ n (1 + p)
2

⎛⎝1 + τ
n +

√(
τ
n

)2 + 2τ
n√

1 − θ
− 1

⎞⎠2

.

Using also 1 −√
1 − θ = θ

1+
√

1−θ
≤ θ, this leads to

L ≤ n

(1 − θ)

(
θ +

τ

n
+

√( τ
n

)2
+

2τ
n

)2

=

(
θ
√
n+ τ√

n
+
√

τ2

n + 2τ
)2

(1 − θ)
.

We conclude that the total number of iterations is bounded by

K

θ
log

n

ε
≤ 512

(
θ
√
n+ τ√

n
+
√

τ2

n + 2τ
)2

θ (1 − θ)
.
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A large-update methods uses τ = O(n) and θ = Θ(1). Then the right hand
side expression is O

(
n log n

ε

)
.

For Small-update methods use τ = Θ(1) and θ = Θ
(

1√
n

)
. Then the right

hand sid expression is O
(√
n log n

ε

)
.

6. Numerical Tests

In this section we investigate the influence of the choice of the parameter p
on the computational behavior of the generic primal-dual algorithm for LO, as
given in Figure 1. In our experiment we used the kernel function ψ(t) with
several values of parameters namely p ∈ {0; 0.25; 0.5; 0.75; 0.9; 1}.

For the test problems we used problems from the well-known library Netlib.1

To limit the number of test problems we applied the algorithm only to a selec-
tion2 of ten of these problems. We used a straightforward implementation of
our algorithm in MATLAB.3 We employed the self-dual embedding model Roos
at al [8] to enable us to start the algorithm as indicated in Figure 1, namely
with x = s = 1 and µ = 1. Our experiments were performed on a standard PC
with a Pentium 4 processor and with 1 GB internal memory.

Since we wanted to compare iteration numbers for several kernel functions,
and since these numbers depend on the parameters τ , θ and the accuracy pa-
rameter ε, we fixed these parameters in our experiments to τ = 1, θ = 0.99 and
ε = 10−8. In this way the iteration numbers depend only on the choice of the
parameter p and the problem instance.

For each of the ten problems we used bold font to highlight the best,
i.e., the smallest, iteration number. From Table 1 we may draw the following
conclusion: the numbers of iterations obtained by using ψ0, which has a linear
growth term, are the worst. For ψp, it becomes clear that smaller values of the
parameter p influence the iteration count negatively. Hence, p = 1 seems to be
the best possible choice, which gives ψ1, the kernel function of the logarithmic
barrier function.

1http://www-fp.mcs.anl.gov/otc/Guide/TestProblems/index.html
2The selection was based en the problem instance: Small instance (Adlittle, Afiro, Sc105

and Sc205), Medium instance (Degen2, Grow15 and Shell) and Large instance (Degen3, Maros
and Sctap2).

3http://www.matlab.com



114 M. El Ghami, I.D. Ivanov, C. Roos, T. Steihaug

LO
Problem

Number of iterations

ψ1 ψ0.9 ψ0.75 ψ0.5 ψ0.25 ψ0

ADLITTLE 22 23 30 58 201 ≥ 300
AFIRO 16 18 26 58 137 ≥ 300

DEGEN2 24 28 44 141 ≥ 300 ≥ 300
DEGEN3 28 32 43 138 ≥ 300 ≥ 300
GROW15 35 49 56 111 ≥ 300 ≥ 300
MAROS 67 69 81 171 ≥ 300 ≥ 300
SC105 20 25 35 64 161 ≥ 300
SC205 19 24 53 123 ≥ 300 ≥ 300

SCTAP2 24 29 40 127 ≥ 300 ≥ 300
SHELL 55 59 71 175 ≥ 300 ≥ 300

Table 1: Iteration numbers for ψp.

7. Concluding Remarks

In this paper we prove that the iteration bound of a Large-update interior-
point method based on this type of barrier function with p ∈ [0, 1], gives the
classical iteration complexity O

(
n log n

ε

)
. For small-update methods gives the

best known iteration complexity namely O
(√
n log n

ε

)
. Numerical tests demon-

strate that in practice the iteration bound of the algorithm depends on the
parameter p ∈ [0, 1], and that p = 1 seems to be the best choice in practice.
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