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Chapter 1

Introduction

Physiological research of the circulatory system is highly based on experimental in vitro and
in vivo studies and the analysis of such. However, mathematical modeling of physiological
fluid systems is regarded as an important tool for further understanding of circulatory
properties. In later years there has been a need for more detailed modeling contributions
to this field of research.

Interstitial flow is one field of circulatory research. The interstitium is a fluid filled
space outside the cells in the body, and all transport of substances in and out of cells
must pass through the interstitium. It is therefore of great interest to obtain a better
understanding of this fluid flow.

The interstitial flow is hindered by structural molecules in the interstitium. The struc-
tural molecules are mainly a network of fibers which the fluid must flow through. Large
substances, e.g. proteins and some therapeutic agents, are hindered to an even larger extent
due to their molecular size. They are excluded from a certain fraction of the fluid volume,
and thus have a lower distribution volume in the interstitium. The excluded volume will
in general vary for different macromolecules, however, may be of considerable size.

The molecular size obviously affect the excluded volume for different substances. How-
ever, recent articles by Wiig et al. [1] have shown that the molecular charge may have a
strong influence on the exclusion phenomenon. This recent discovery has been the moti-
vation for the modeling in this thesis.

The object for this thesis has first been to derive a set of equations appropriate for modeling
fluid flow through the interstitium. Second, a thorough study of electrostatic properties of
the interstitium has been performed. The aim has been to obtain a platform for further
studies of the interstitial flow, and hopefully obtain some useful benchmarks regarding the
electrostatic properties.

The exclusion phenomenon is only relevant for large or charged substances. Therefore,
the interstitial fluid may be regarded as solutes evolving in a solvent. The ‘gas’ of solutes
might be quite dense, and certain dense gas effects may come in to force.
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2 Introduction

The study of the electrostatic properties of the interstitium concerns molecular inter-
actions of charged molecules on a microscopic level. It has therefore been of great interest
to retrieve these microscopic properties in our set of modeling equations. Thus we have
derived solute equations on a microscopic level and used these equations to obtain solute
equations on a macroscopic level. Microscopic solute equations are known as Boltzmann
type equations. In this thesis certain dense gas corrections to these equations are pre-
sented, which are suggested by Øien 1. The macroscopic solute equations are further used
to obtain a compartment model for fluid flow through the interstitium. In this manner we
may follow effects on a microscopic level up to, first, a macroscopic level, and second, a
compartment level.

In Chapter 2 a thorough description of the interstitium and the exclusion phenomenon
is given.

In Chapter 3 we describe collision frequencies in a gas on a microscopic level, that will
be used in the solute equations. First collision frequencies for a rare gas is obtained,
and second dense gas effects are included.

In Chapter 4 the solute equations are obtained. First a derivation of a general Boltz-
mann type equation is given. This equation is further used to obtain macroscopic
solute equations. Secondly, to account for multicomponent gases and dense gas ef-
fects, corrections to the Boltzmann type equation, and hence the macroscopic equa-
tions, are successively given. Finally, a background solvent is introduced to the set
of macroscopic equations.

In Chapter 5 the set of macroscopic equations obtained in Chapter 4 are used to derive
a compartment model for fluid flow through the interstitium. The model is inspired
by a similar Starling model in an article by Bert et al. [2].

In Chapter 6 basic electrostatic theory is reviewed. Solutions for the electrostatic poten-
tial in a spherical geometry are obtained, as well as an expression for the electrostatic
potential energy on a microscopic level. Moreover, electrostatic shielding and dipole
effects are discussed.

In Chapter 7 the expression for the potential energy obtained in Chapter 6 is further
applied to a study of the electrostatic effects in the interstitium. In addition, some
results and observations are presented and compared to experimental findings.

In Chapter 8 the set of macroscopic equations obtained in Chapter 4, and further the
compartment model obtained in Chapter 5, are expanded to also include some charge
effects on the macroscopic level.

1Alf Øien, Professor emeritus, Department of Mathematics, University of Bergen, Norway. Private
communication



Chapter 2

Physiological Background - The
Interstitium

The interstitium is a fluid filled space which surrounds all the cells in the body. It holds
most of the extracellular fluid, and all substances going in and out of the cells must trans-
port through the interstitium. It is therefore important to understand which properties
that affect the fluid flow, and how it is affected. Flow-affecting properties of the intersti-
tium has been the topic of several scientific papers, and is still an active field of research.
In this chapter a basic description of the interstitium is given.

2.1 Physiological function

Arteries transport water, salts and nutrients from the heart to the tissue. The arteries
divide into thinner vessels, arterioles, and in the thinnest vessels (capillaries) the substances
can leave the circulation. Selected substances leave the capillaries through the capillary
wall and enter the interstitium, see Figure 2.1. The transport of substances into the
interstitium is selective. This means that the capillary wall permits a high rate of fluid
filtration while at the same time it restricts the passage of macromolecules [3].

In the interstitium there is an exchange of nutrients and waste products from the cells.
Water, salts and waste products are reabsorbed by the capillaries and by small veins called
venules, and thus returned to the circulation. Venules drain to larger veins that return
blood to the heart. Under normal conditions there is a net filtration of fluid from the
capillaries, and this excess fluid in the interstitium is drained back to the circulation by
the lymphatic system. Lymphatic capillaries are dead-ends of thin lymphatic vessels, and
they drain into collecting lymphatics that eventually drain into lymphatic trunks.

The basic structure of the interstitium is similar in all tissues. However, the composition
of structural elements varies between tissues. In the following section the basic structure
of the interstitium is reviewed briefly.

3



4 Physiological Background - The Interstitium

Figure 2.1: Arteries transport water, salts and nutrients to the tissue. There is an exchange of fluid and
nutrients in the thinnest vessels, called capillaries, to the interstitium. In the interstitium
there is an exchange of fluid, nutrients and waste products from tissue cells. This implies
that all substances entering (or leaving) the cells must pass through the interstitium. The
net filtrate in the interstitium is drained back to the circulation by the lymphatic system.

2.2 Structure

The interstitium can roughly be split up into two elements; fluid and the structural matrix.
The basic structure of the interstitial matrix, also known as the extracellular matrix or
ECM, is a network of large protein fibers (collagens). In between the fibers there are
large sugar polymers (glycosaminoglycans) which are entrapped in the network. For an
illustration see Figure 2.3.

2.2.1 Collagens

Long chains of amino acids are called polypeptides, and they differ by the sequence and
number of amino acids in the chain. A collagen molecule is a protein which consists of
three long polypeptide chains coiled together in a triple helix [4]. While some polypeptides,
called globular proteins, wind up to form spherical structures, fibrous proteins, such as
collagens, do not. Instead, several collagen molecules are packed together to form thin



2.2 Structure 5

collagen threads, called fibrils. These threads can subsequently assemble to form even
larger structures; collagen fibers. The size of collagen fibers varies between tissues. E.g. in
tendons, which connect muscles to bone, the diameter of collagen fibers varies from 30 to
300 nm [1].

The collagen fibers organize in a three dimensional network in the interstitium, and is
the major structural element of the interstitial matrix. They, in some sense, span out and
support the interstitial space. In this manner they create a space between the fibers which
the fluid can flow through.

2.2.2 Glycosaminoglycans

This section is based on [5].

Glycosaminoglycans, or GAGs, are long, chained molecules made up of repeating sugar
units that contain amino groups. In the same manner as for polypeptides, the different
types of glycosaminoglycans are characterized by the type and number of sugar units in
the chains. The sugar units carry carboxylic acid groups that will dissociate into a proton
(H+) and a negatively charged carboxylate group as the pH increases. At physiological pH
all of these groups will be negatively charged resulting in the characteristic high negative
charge of GAG molecules in the interstitium.

Due to the negatively charged groups (anionic sites) most glycosaminoglycans also bind
covalently to protein. The composition of a protein backbone and glycosaminoglycans is
called proteoglycan. Subsequently, proteoglycans can form even larger structures where
several proteoglycans bind to one specific glycosaminoglycan; hyaluronan.

Hyaluronan is a much longer sugar chain than other glycosaminoglycans. While most
glycosaminoglycans are built up of less than 100 sugar units, each hyaluronan molecule
may contain around 100000 units. Hyaluronans do not bind covalently to proteins, but
exist in the interstitium as single chains or in large aggregates together with proteoglycans
as described above. Single hyaluronans have the quaternary structure of a random coil.
Therefore, the molecule will occupy a domain that is much larger than the molecule itself
[6]. Hyaluronan constitutes a major part of glycosaminoglycans, at least in some tissues
[1].

Since glycosaminoglycans are large coils (hyaluronans) or bottle brush-like (proteo-
glycans) molecules they are entrapped, and hence immobilized, in the collagen network.
Together they constitute the main parts of the interstitial matrix.

2.2.3 Fluid

In between the collagen fibers and GAGs there is a fluid filled space. Interstitial fluid
consists mainly of water and small ions, e.g. sodium Na+, chloride Cl−, potassium K+ and
calcium Ca2+. Ionic density is a measure of the amount of ions present in the fluid. At
normal physiological conditions the ionic density in interstitial fluid is 150 mM/L. The pH
in the fluid at normal conditions is 7.4, and is referred to as physiological pH.



6 Physiological Background - The Interstitium

In the fluid there are also several types of proteins derived from blood plasma. They
vary in both size and shape, and in general these properties are well defined. E.g. globular
proteins have a well defined radius.

The fluid ‘fills up’ and flow through all the gaps in the matrix. Thus, the interstitial
matrix constitute a great hindrance for fluid flow through the interstitium. An interesting
point of view is therefore to which extent the flow of different proteins is hindered by the
interstitial matrix.

2.3 Excluded volume

The interstitial matrix restricts the available fluid volume or distribution volume for the
proteins. Since proteins are large molecules, their center can not come closer to the matrix
elements than their radius, i.e. for globular proteins. This is called steric exclusion.

Due to the negatively charged elements of the matrix, particularly glycosaminoglycans,
recent articles have concluded that negatively charged proteins are excluded to an even
larger extent, see [1] and references therein. This phenomenon is called electrostatic exclu-
sion, or charge exclusion. In Figure 2.2 an illustration of the two exclusion phenomena is
given.

(a) Steric exclusion (b) Electrostatic exclusion

Figure 2.2: Proteins are excluded from a certain fraction (white) of the volume surrounding structural
matrix components (shaded) due to their size, as shown in 2.2a. This is called Steric exclu-
sion. Additional exclusion (pink) due to protein charge is called electrostatic exclusion, see
2.2b.

The exclusion phenomenon is only relevant for large molecules, such as proteins. Small
molecules, ions and water are assumed to distribute in the entire extracellular fluid volume.
Therefore the total excluded volume can be measured by comparing the distribution volume
for a protein to the distribution volume for another, much smaller, molecule that distributes
in the entire extracellular fluid volume. In Figure 2.3 an illustration of the interstitium
and the exclusion phenomenon is given. In the figure the available volume for a protein is
indicated, which is the total fluid volume minus the excluded volume.
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Figure 2.3: Macromolecules (yellow and dark blue) are excluded from a certain fraction of the total
interstitial fluid volume due to their molecular size. Glycosaminoglycans have a high negative
charge at physiological pH. Thus, negatively charged macromolecules may be excluded to an
even larger extent. The available volume VA, which is the total fluid volume minus the
excluded volume, is indicated in both Figures. During physiological experiments negatively
charged macromolecules appear to have a larger effective radius than their molecular radius,
which is indicated in Figure B (light blue). The Figure is reproduced from the article by
Wiig et al. [1].

The amount of excluded volume is clearly dependent on the surface-to-volume ratio.
Proteins can not be excluded from a surface that is not in contact with the fluid. The total
excluded volume around thin collagen fibrils is larger than if all the fibrils were packed
together in a bundle. Therefore, the exclusion effect of collagen molecules is less than the
exclusion effect of GAG molecules. However, the amount of collagen in the interstitium is
large compared to the amount of GAGs, and both exclusion effects must be accounted for
[7].

2.4 Drug related motivation for studying exclusion ef-

fects

The exclusion phenomenon has been studied extensively, and collagens have been assumed
to account for a major part of the exclusion effect. However, more recently, the electrostatic
exclusion effect has been given a larger role. It has been shown that the negatively charged
elements of the matrix, particularly glycosaminoglycans, give a significant contribution to
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the excluded volume for negatively charged proteins [1].
The interstitium in tumor tissues represents a major barrier to drug delivery. In ad-

dition some types of tumors contain an increased amount of glycosaminoglycans [1]. Ac-
cording to recent results this may imply a significantly increased excluded volume, which
again may affect the drug uptake in tumors. It is therefore of great interest to study the
electrostatic exclusion effect thoroughly.



Chapter 3

Collision Frequencies

Particles in a gas constantly collide with each other. The average number of collisions
per unit time and particle is called the collision frequency. During each collision there is
a transfer of molecular properties, i.e. energy and momentum, between the two colliding
particles. The collision frequency is thus a ‘measure’ of the molecular transfer in a gas,
and thus is an important quantity in gas kinetics.

In this chapter we will first derive a simple expression for the collision frequencies in
a gas. Furthermore, we make necessary corrections for an increased desity of the gas, in
accordance with theory by Chapman and Cowling [8]. The collision frequencies derived in
this chapter enter into the solute equations to be derived in Chapter 4.

3.1 Collision frequency - a first approach

For simplicity we consider a gas consisting of rigid spherical molecules, i.e. billiard ball-like
particles. We consider a gas consisting of two types of particles; 1-particles and larger
2-particles. For a gas consisting of different types of particles, there are several collision
frequencies. In this section we derive an expression for the collision frequency for 1 → 2
collisions. The collision frequencies for other types of collisions are derived in a similar
manner.

We let τ represent the average time between two successive collisions a 1-particle un-
dergo with 2-particles in the gas. It follows that the collision frequency is given by

νc =
1

τ
.

The average length a particle travels between two successive collisions is called the mean
free path. In a rarefied gas the mean free path is much greater than the size of the particles.
The volume of all the molecules in the gas is negligible as compared to the total volume
of the gas. Thus, one may assume that the volume available for the particles to move
in between collisions, is approximately equal to the total volume, and thus their size is
negligible. It is therefore sufficient to consider a point-like 1-particle interacting with a
larger 2-particle, see Figure 3.1.

9



10 Collision Frequencies

Figure 3.1: A point-like particle (blue) interacts with a larger particle (red). If τ is the average time
between two collisions, and v the velocity, then v · τ is the average distance a particle travels
between two collisions. It is assumed that there is approximately one large particle inside
the volume π

(
d2
2

)2
vτ , indicated in the Figure.

d2 = diameter of 2-particle.

The point-like particle approaches the 2-particle with velocity v, which is assumed to
be the average velocity of all the 1-particles in the gas. It follows that the mean free path
is equal to vτ . One may assume that there is approximately one large 2-particle inside the

volume π
(
d2

2

)2
vτ . This is the volume of a cylinder with bottom equal the crossection of

the 2-sphere, called the collisional crossection, and height equal to the mean free path, see
Figure 3.1. This implies that, if n2 is the molecular density of the larger particle, we have:

π

(
d2

2

)2

vτn2 ≈ 1 =⇒ ν1→2 =
1

τ
≈ π

(
d2

2

)2

vn2 .

Thus we have the following expression for the collision frequency in a rarefied gas:

ν1→2 = π

(
d2

2

)2

vn2 . (3.1)

3.2 Some dense gas effects

As the density of a gas increases, the molecules account for a fraction of the total volume
which is no longer negligible. The collision frequency (3.1) was derived assuming that
the available volume for a 1-particle to move in is approximately equal to the total vol-
ume. Thus, corrections to the first approach collision frequency is needed. In this section
successive corrections are introduced as the density of the gas increases.
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The first correction necessary for dense gases is an increase of the collisional crossection.
The particles can no longer be considered point-like. It follows that the collision frequency
(3.1) is corrected to

ν1→2 = π

(
d2 + d1

2

)2

vn2 ,

where the molecular size of both particle types, d2 and d1, are included.

For a collision to take place, the center of the 1-particle must lie on a sphere encircling the
2-particle with radius equal to the sum of the two different particle radii, d2+d1

2
, see Figure

3.2. This sphere is called the associated sphere of influence for a 1 → 2 collision. During

Figure 3.2: Two particles with diameter d2 (red) and d1 (blue) interact in a dense gas. The associated
sphere of influence is the sphere encircling the 2-particle with radius equal to the sum of the
particle radii. During a collision the center of the incoming particle must lie on the associated
sphere of influence.

a collision with the 2-particle, the center of the 1-particle can never lie on the associated
sphere of influence for any other collision. Thus, the 1-particle has a reduced volume to
move in, which needs to be accounted for as the density of the gas increases. It is assumed
that, during a collision, the volume in which the center of the incoming 1-particle are
unable to move in is approximately equal to the volume of all the spheres of influence,
associated with 1→ 2 collisions, in the gas1. It follows that the available unit volume for
a 1-particle is

VAV = 1− 4π

3

(
d2 + d1

2

)3

n2 ,

1See remark at the end of this chapter.
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where n2 is the density of 2-particles. This leads to an increased probability of molecular
collision, and hence an increased collision frequency, by the factor 1

VAV
[8]. The resulting

collision frequency is then found to be

ν1→2 = π

(
d2 + d1

2

)2

n2v
1

1− 4π
3

(
d2+d1

2

)3
n2

.

If the density of the gas is further increased, we also need to take into account multiple
encounters. One may no longer assume that collisions take place undisturbed. Additional
particles might partly block the associated sphere of influence for 1 → 2 collisions. This
effect is called collisional shielding. The disturbing particle might both be another 2-particle
or 1-particle, however, for generality we assume that it is a 3-particle with diameter d3.

The associated sphere of influence for a 1→ 3 collision covers a part S of the associated
sphere of influence for a 1→ 2 collision. Thus, the 1-particle is unable to collide with the
2-particle in such a way that its center lies on S, see Figure 3.3. The disturbing 3-particle
is placed at position x relative to the center of the 2-particle.

The surface cap S of the associated sphere, which the 3-particle covers, has an area of

Area(S) = 2πRh = 2πR(R− R2 − r2 + x2

2x
) , (3.2)

where h is the height of the surface cap, R = d2+d1

2
and r = d3+d1

2
, see Figure 3.4. The

position for the center of the 3-particle, x, may vary like d2+d3

2
≤ x ≤ d2+d3

2
+ d1. The

spherical shell of thickness dx, indicated in Figure 3.3, has an approximated volume of
4πx2 dx. Thus it contains a probable number of 4πx2n3 dx 3-particles, where n3 is the
molecular density of 3-particles. We are able to obtain an expression for the fraction of the
associated sphere of influence for a 1→ 2 collision probably shielded by a 3-particle. This
fraction is called the Total Shielded Surface or TSS, and is, in accordance with [8], given
by

TSS =

d2+d3
2

+d1∫
d2+d3

2

Area(S) · 4πx2n3 dx .

Area(S) is here given by Equation (3.2). If the integration is carried out we obtain the
following result for the Total Shielded Surface:

TSS1→2(d3, n3) = π2n3

(
1
6
d2

2d
3
1 +

1
2
d2

2d
2
1d3 +

1
3
d2d

4
1 + d2d

3
1d3 +

1
2
d2d

2
1d

2
3 +

1
6
d5

1 +
1
2
d4

1d3 +
1
2
d3

1d
2
3

)
.

(3.3)
The total area of the associated sphere of influence is 4π(d2+d1

2
)2. It follows that the

fractional area of which the center of the incoming 1-particle can lie at during a collision is
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Figure 3.3: In a dense gas there is an additional shielding effect of particle interactions. During an
interaction between an incoming 1-particle (blue) and a 2-particle (red) another particle may
disturb the collision (green). The disturbing particle may be a third particle type, 3-particles,
or another 2- or 1-particle. The associated sphere of influence for the 1→ 3 collision shields
a surface cap S of the associated sphere of influence for the 1→ 2 collision, indicated in the
Figure (shaded area). The probability of shielding enters into a correction of the collision
frequency.
d1 = diameter of 1-particle.
d2 = diameter of 2-particle.
d3 = diameter of 3-particle.
x = position of 3-particle relative the center of the 2-particle.

1− TSS

4π(
d2+d1

2
)2

. Thus, the effect of shielding by other molecules is to reduce the probability

of a collision in this ratio [8].

Since we consider a two component gas consisting of 1- and 2-particles, there are two
possible types of shielding to be accounted for. We may obtain an expression for the TSS
for each type of shielding by inserting d3 = d2, n3 = n2 and d3 = d1, n3 = n1 into the
expression (3.3), respectively. The different types of shielding are assumed uncorrelated,
and thus we may multiply the two probable fractional areas into the expression for the
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Figure 3.4: The height h of the surface cap S for the shielding of a 1→ 2 collision.
d1 = diameter of 1-particle.
d2 = diameter of 2-particle.
d3 = diameter of 3-particle.

collision frequency. We finally obtain

ν1→2 = π

(
d2 + d1

2

)2

n2vχ1→2 , (3.4)

where the steric factor χ is given by

χ1→2 =
1

1− 4π
3

(d2+d1

2
)3n2

[
1− TSS(d2, n2)

4π(d2+d1

2
)2

][
1− TSS(d1, n1)

4π(d2+d1

2
)2

]
. (3.5)

If there are several components in the gas, other possible shieldings is accounted for by
including similar terms for each component in the steric coefficient.

As the density in a gas increases, the particles collide more often. However, the collisions
are increasingly shielded by other particles. One may interpret the effect of shielding as
a loss of efficiency in the collisional transfer. Thus, the effect of a dense gas on the steric
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factor, and hence the collision frequency, is first an increase in the number of encounters,
and second a loss of efficiency in the collisional transfer due to shielding. More complex
interaction corrections, and consequent further collision frequency corrections, for even
higher densities may be thought of, but will not be discussed here.

The expression (3.4) is an expression for the 1→ 2 collision frequency in a gas consisting
of two types of particles. In a similar manner we may obtain collision frequencies for the
other possible collision types in the gas, e.g. ν1→1. These expressions will be further used
in following chapters.

Remark

We have aimed at developing collision frequencies between particles in a mixture of several different types
of particles, and denoted 1- and 2-particles to be of two arbitrary types (which may also be identical types
of particles). We have developed the collision frequency between one 1-particle and all 2-particles from its
simplest form, through stepwise refinements. Doing this we consider the 1 → 2 collision frequency to be
built up independent of the fact that the 1-particle also undergo collisions with other types of particles, that
build up other collision frequencies.

The second refinement is due to the excluded volume because of all the spheres of influence of 1→ 2
collisions. The last refinement is due to other particles of all different types (the shielding effect) that may
disturb each of the 1→ 2 collisions taking place.

Particles have been considered as rigid spheres in this scheme. This may be an oversimplification
of real molecular (and further, for charged particle) interactions. However, we consider the estimation
we have done as relevant as a first attempt in quantifying the interactions. A more thorough analysis of
interactions in dense gas systems certainly will modify to some extent our results quantitatively. Such
modifications may easily be adopted and used in the equations we develop later, since these are of quite
general form regarding collision frequency dependencies.





Chapter 4

Gas- and Fluid Equations

4.1 Equations on a microscopic level

4.1.1 Phase space

To be able to derive equations of motion for a gas from a statistic mechanical point of view
we need to describe the motion of all the particles, or molecules in the gas.

If the molecules are small point like particles, the motion of one particle is fully de-
scribed by six variables, three positional and three velocity variables. If the particle has a
defined molecular size we need six additional variables, to describe the orientation of the
molecule and the angular velocity. However, if we assume that the molecules are spherically
symmetric, we do not need to account for their orientation. Furthermore, if we assume
that the molecules are smooth so that the angular velocity is not influenced by particle
collisions, the variables describing their angular velocity can be neglected as well. Under
these assumptions the motion of a particle, with a defined molecular size, can be fully
described by six variables, which are the same as for point like particles.

Thus, the motion of a particle can be represented by a moving point in a six dimensional
hyperspace, which is called phase space, see Figure 4.1. Curves in the phase space are called
phase trajectories. When two particles in a gas collide their velocity changes. This causes
their phase trajectories to ‘jump’ in the velocity dimensions, see Figure 4.1.

The motion of one large molecule is sufficiently described by the motion of a point like
particle. However, when considering several large molecules in a gas, their size will affect
the motion. The importance of their size increases with the molecular size and the density
of the gas. These effects are called dense gas effects, and was studied on a microscopic
level in Chapter 3. The dense gas effects act in addition on a macroscopic level, which will
be studied thoroughly later in this chapter. For now we restrict ourselves to consider point
like particles in a gas.

17
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Figure 4.1: The motion of a particle are represented by a trajectory in (r,v) space. This space is called
phase space. Collisions between spherical, rigid particles leads to discontinuous trajectories
in velocity dimensions v.
r = spatial dimensions.
v = velocity dimensions.

4.1.2 The distribution function

There are a large number of particles present in a gas, and to study the trajectory of each
individual particle seems meaningless. We rather represent the particles by a continuous
distribution function f in the six dimensional phase space, f(r,v, t). The distribution
function represents the probable density of molecules per unit volume of phase space.
It follows that f(r,v, t) dr dv is the probable number of particles in the spatial volume
element dr with a velocity in the range of dv, and thus, if the gas is sufficiently dense, is
a good approximation to the number of particles in the volume element dr dv.

4.1.3 Derivation of the Boltzmann equation

In this section an equation of motion on a microscopic level is derived. This equation
is known as the Boltzmann equation. Later this equation is used to obtain macroscopic
solute equations. We will at first derive the collisionless Boltzmann equation from Newton’s
second law of motion for a single particle. In fact, any one of those equations can be used
to derive the other, and hence the two principles are equivalent [9].

First we consider a force dominated system. Particles in such systems are assumed to
only be driven by external forces, and the effect of particle collisions are thus neglected.

The motion of a single particle is given by its trajectory in phase space (r(t),v(t)). The
trajectory is given by Newton’s second law of motion, i.e.

dr

dt
= v ,

dv

dt
=

F(r)

m
, (4.1)
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where the forces F are assumed to be velocity independent, F = F(r). Related to ap-
propriate initial conditions the above differential Equation (4.1) provide an initial value
problem. Given that the force field F and the velocity v are continuous, the IVP has a
unique solution [10]; the particle trajectory (r(t),v(t)).

We consider a small volume element in phase space drdv which transforms into dr′dv′

during the time interval from t to t + ∆t, see Figure 4.2. Since the Equation of motion

Figure 4.2: A small volume element drdv of particles in phase space transforms into dr′dv′ during a
short time period ∆t. If particle interactions are neglected the number of particles inside the
volume element is conserved during transformations.
r = spatial dimensions.
v = velocity dimensions.

(4.1), with appropriate initial conditions, provides unique solutions, this implies that no
particle trajectories may intersect each other. It follows that no particle may leave the
volume element drdv during ∆t. Thus, the number of particles inside the volume element
is conserved, i.e.

f(r′,v′, t+ ∆t)dr′dv′ = f(r,v, t)drdv . (4.2)

The transformation of the volume element is defined mathematically by

dr′dv′ = J(r′,v′)drdv =

∣∣∣∣∣∣∣∣∣
∂r′

∂r

∂r′

∂v

∂v′

∂r

∂v′

∂v

∣∣∣∣∣∣∣∣∣ drdv ,

where J(r′,v′) is the Jacobi determinant for the transformation. During the short time
period ∆t, the position r(t) and velocity v(t) are transformed into

r′ = r(t+ ∆t) , v′ = v(t+ ∆t) , (4.3)
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in accordance with the Equation of motion (4.1). The expressions (4.3) may be linearized
to show that the Jacobi determinant is of order O(1 + (∆t)2).

r′ ≈ r(t) + ∆tv(t) +O((∆t)2) , v′ ≈ v(t) + ∆t
F(r(t))

m
+O((∆t)2) .

If we insert for the Jacobi determinant in the expression for number conservation (4.2), it
follows that the time derivative of f is 0:

df

dt
= lim

∆t→0

f(r′,v′, t+ ∆t)− f(r,v, t)

∆t
= 0 .

If we write out the derivative df
dt

we obtain the collisionless Boltzmann equation

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= 0 (4.4)

If particle collisions are accounted for, the Conservation Equation (4.2) breaks down.
Collisions allow particles to ‘jump’ out of, or in to, the volume element during ∆t, and
the derivative of f is no longer zero. This net ‘leakage’ is accounted for by adding a term
on the right hand side of Equation (4.4). The collision term is denoted

(
∂f
∂t

)
coll

, and may
be interpreted as the number of incoming particles to a volume element drdv during ∆t
minus outgoing particles.

Various collision terms have been derived with a different degree of complexity, however,
we will not go into details on this. In this thesis we will use the Bhatnagar-Gross-Krook
collision term 1, or BGK term for short.

(∂f
∂t

)
coll

=
(∂f
∂t

)
BGK

= νc(fM − f)

Here νc is the collision frequency (3.1), which was described in Chapter 3, and fM is the
Maxwellian distribution, described below.

Due to particle collisions, energy and momentum are transferred between particles, i.e.
collisional transfer. If there are no external forces acting on the gas, collisional transfer
relax any initial distribution f towards the Maxwell distribution fM .

fM = n

(
m

2πκT

)3/2

exp

(
− m(v −U)2

2κT

)
, (4.5)

where n is the number density of the gas, m is the molecular mass, κ is the Boltzmann
constant, T is the temperature and U is the particle velocity in the mean, which together
with the number density n and temperature T is a macroscopic quantity of the gas. We
will return to these macroscopic quantities later.

1See e.g. [11] for a short description of the BGK approximation, or the article by Bhatnagar et al. [12]
where the BGK term was first presented.



4.2 Equations on a macroscopic level 21

The BGK term is a rather simple collision term, nevertheless, it expresses the main
effect of collisions, namely that the distribution function relaxes towards a Maxwellian
distribution, i.e f → fM as t→∞.

We have then obtained the Boltzmann equation with a BGK collision term.

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= νc(fM − f) . (4.6)

The second term in the Boltzmann equation is the particle velocity and the spatial density
gradient. Thus, this term expresses how diffusional processes acts on the gas. Furthermore,
the third term expresses the effect of external forces on the gas. We will refer to them as
diffusion term and force term respectively.

4.2 Equations on a macroscopic level

4.2.1 Macroscopic quantities

When we presented the Maxwell distribution fM (4.5), it included several macroscopic
quantities which we had not yet defined. In this section we briefly define several macro-
scopic quantities of a gas to be used in the macroscopic equations.

The distribution in velocity space may be of little interest when describing macroscopic
systems. We are interested in physical quantities which do not depend on the velocity
of each particle but rather express an averaged quantity for particles, regardless of their
velocity. We may obtain a macroscopic quantity by integrate the wanted quantity, weighted
by the distribution function, over the entire velocity space.

In this section we give a brief definition of relevant macroscopic quantities.

n(r, t) number density of particles at a space point r and time t

n(r, t) =

∫
f(r,v, t) dv , (4.7)

where the integration is over the entire velocity space. If m is the molecular mass of
the components in the gas, it follows that the mass density is

ρ(r, t) = n(r, t)m .

U(r, t) velocity in the mean

U(r, t) =
1

n(r, t)

∫
vf(r,v, t) dv . (4.8)

P(r, t) Pressure tensor

P(r, t) =

∫
m(v −U)(v −U)f(r,v, t) dv , (4.9)
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from which the scalar pressure is defined

p(r, t) =
1

3

∫
m(v −U) · (v −U)f(r,v, t) dv .

T (r, t) Temperature

T (r, t) =
1

3n(r, t)κ

∫
m(v −U) · (v −U)f(r,v, t) dv . (4.10)

When a gas is in thermodynamic equilibrium locally, the distribution function f
equals the Maxwell distribution fM and the ideal gas law

p = nκT ,

is valid [13]. Here κ is the Boltzmann constant and T is the absolute temperature.
This relation is used to describe the temperature of a gas away from thermodynamic
equilibrium.

q(r, t) Heat flux

q(r, t) =
1

2

∫
m(v −U) · (v −U)(v −U)f(r,v, t) dv . (4.11)

4.2.2 Moment equations

From the Boltzmann equation one may derive a set of macroscopic equations. This is done
by computing certain velocity moments of the Boltzmann equation. A velocity moment
is obtained by multiplication of the velocity v, of increasing order, into the equation and
integrate over the entire velocity space. We compute the zeroth, first and second velocity
moment of the Boltzmann equation to obtain a continuity equation, equation of motion
and temperature equation, respectively.

Continuity equation - zeroth order moment

We integrate the Boltzmann Equation (4.6) term by term over the entire velocity space.∫
∂f

∂t
dv +

∫
v · ∂f

∂r
dv +

∫
F

m
· ∂f
∂v

dv =

∫
νc(fM − f) dv ,

∂

∂t

∫
f dv +∇ ·

∫
vf dv +

∫
∂

∂v
·
(

F

m
f

)
dv = νc(n− n) ,

where we let ∇ = ∂
∂r

represent the spatial del operator. In the computation of the force
term the divergence theorem is applied, and the integration is then over the limiting values
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of v. The distribution function must tend to zero as v becomes infinite [8], and given that
the force field F is finite, it follows that the integral is zero. We obtain

∂

∂t

∫
f dv +

∂

∂r
·
∫

vf dv +

∫
P

v

(
F

m
f

)
· dSv = νc(n− n) ,

∂

∂t
n+∇ · (nU) + 0 = 0 .

Thus, if we multiply the molecular mass m into the equation, the zeroth order velocity
moment of the Boltzmann equation provide the following continuity equation

∂ρ

∂t
+∇ · (ρU) = 0 . (4.12)

Equation of motion - first order moment

First order velocity moment of the Boltzmann equation is obtained multiplying the velocity
v into the equation and integrate over the velocity space. We present a brief summary of
the computations here, and the details are left to the Appendix A.1.

Time derivative: ∫
v
∂f

∂t
dv =

∂

∂t
(nU) .

Diffusion term: ∫
v

(
v · ∂f

∂r

)
dv = ∇ · (nUU) +

1

m
∇ ·P .

Force term: ∫
v

(
F

m
· ∂f
∂v

)
dv = − 1

m
nF .

Collision term: ∫
vνc(fM − f) dv = 0 .

We multiply the molecular mass m into the equation, and apply the Continuity Equation
(4.12). The equation of motion is found to be

ρ

[
∂U

∂t
+ U · ∇U

]
= −∇ ·P + nF . (4.13)
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Temperature equation - second order moment

We now multiply (v −U)2 into the Equation (4.6) and perform the velocity integration.
This corresponds to the trace of the tensor (v −U)(v −U), and thus is the trace of the
second order moment. Again, details are left to the Appendix A.1.

Time derivative: ∫
(v −U)2∂f

∂t
dv =

1

m

∂

∂t
(3nκT ) .

Diffusion term:∫
(v−U)2

(
v · ∂f

∂r

)
dv =

2

m
∇ · q +

1

m
3nκT∇ ·U +

1

m
U · ∇(3nκT ) +

2

m
P : ∇U .

Force term: ∫
(v −U)2

(
F

m
· ∂f
∂v

)
dv = 0 .

Collision term: ∫
(v −U)2νc(fM − f) dv = 0 .

We sum up all terms, multiply m
2

into the equation and apply the continuity equation.
Finally, we obtain the temperature equation

3

2
nκ

[
∂T

∂t
+ U · ∇T

]
+∇ · q + P : ∇U = 0 . (4.14)

4.3 Dense gas effects

4.3.1 Corrections to microscopic equation

The Boltzmann Equation (4.6) in Section 4.1.3 was derived under the assumption that the
molecules in the gas were point like particles. If the molecules are large and the density
increases, Equation (4.6) is strictly no longer valid. The molecules in the gas occupy a
certain fraction of the total volume which is no longer negligible.

We recall from Chapter 3 some of the properties of dense gases. In a dense gas the
molecules are packed closer together and the mean free path is comparable to the molecular
size. On a collisional level this means that we no longer can assume that particle collisions
take place undisturbed. A correction to the collision frequency νc for dense gases (3.4)
was derived in Chapter 3. This correction accounts for dense gas effects on a microscopic
level. However, dense gas effects also appear on a macroscopic level. It is clear that an
additional correction to the collision term is needed to account for macroscopic effects, or
non-uniformities.



4.3 Dense gas effects 25

The correction term for the Boltzmann Equation (4.6) has been suggested by Øien 2,
in correspondence with previous and similar correction terms by [8] and [14].

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

= νc(fM − f) +
∂

∂r
·
[

2π

3
d3nχ(UfM − vf)

]
, (4.15)

where χ is the steric coefficient described in section 3. In Equation (4.15) r is now the
position of the center of the particles. The idea behind the correction term is that the
incoming particles, with velocity v, is distributed according to f(v) and the deflected
particles, with velocity U in the mean, is distributed according to fM(v).

The collision term, first term on the right hand side of Equation (4.15), is essentially
the same as before. However, in accordance with the dense gas expansion in Chapter 3,
Equation (3.4), the collision frequency is modified to

νc = πd2nvrelχ .

If we compare the size of the collision and correction term in Equation (4.15), we observe
that the correction term is negligible for a rare gas.

νc(fM − f) ∼ d2χvrelnf ,

∂

∂r
·
[

2π

3
d3nχ(UfM − vf)

]
∼ 1

L
d3χ(‖U‖+ ‖v‖)nf ∼ d

L
d2χvrelnf ,

where L is a characteristic length scale for non-uniformities in the gas, and d is the molecu-
lar size. In a rare gas L is obviously much bigger than d, and the correction term vanishes.
If d and L are comparable sizes, however, the correction term is no longer negligible.

To sum up, dense gas effects in Equation (4.15) is expressed through the χ factor in
the collision term, and through the correction term.

4.3.2 Correction to macroscopic equations

To account for the dense gas effects in the macroscopic equations, it is sufficient to com-
pute velocity moments of the new correction term and add the resulting quantities to the
Continuity Equation (4.12), Equation of motion (4.13) and Temperature Equation (4.14),
respectively.

Zeroth order: ∫
m
∂

∂r
·
[

2π

3
d3nχ(UfM − vf)

]
dv = 0 .

The dense gas effects do not affect the continuity equation.

2Alf Øien, Professor emeritus and advisor, Department of Mathematics, University of Bergen, Norway.
Private communication
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First order: ∫
mv

∂

∂r
·
[

2π

3
d3nχ(UfM − vf)

]
dv = −∇ ·

[
2π

3
d3nχP

]
.

The dense gas effects is expressed through a correction of the pressure tensor P.

Second order: ∫
1

2
m(v −U)2 ∂

∂r
·
[

2π

3
d3nχ(UfM − vf)

]
dv

= −∇ ·
(

2π

3
d3nχq

)
− 2π

3
d3nχP : ∇U .

The dense gas effects is expressed through a correction of the heat flux q and the
P : ∇U term.

Thus, the continuity equation, equation of motion and temperature equation for dense
gases are found to be

∂ρ

∂t
+∇ · (ρU) = 0 , (4.16)

ρ

[
∂U

∂t
+ U · ∇U

]
= nF−∇ ·

(
1 +

2π

3
d3nχ

)
P , (4.17)

3

2
nκ

[
∂T

∂t
+ U · ∇T

]
+∇ ·

(
1 +

2π

3
d3nχ

)
q +

(
1 +

2π

3
d3nχ

)
P : ∇U = 0 . (4.18)

These equations are almost in accordance with Chapman and Cowling [8].

4.4 Multicomponent fluids

The equations in the previous section were derived for a gas containing only one type
of particles, i.e. a one component gas. The interactions in such a gas is always between
similar particles. However, if a gas contain several types of particles, all possible particle
interactions must be accounted for. In this section we will extend the equations to apply
for a multicomponent gas.

We restrict ourselves to consider a two component gas. Further extensions will follow the
same principles, and is easily accounted for. The two components of the gas is referred to
as i-particles and j-particles. Both components are represented by distribution functions,
fi(ri,vi, t) and fj(rj,vj, t), which both follow the Boltzmann equation. Each particle
interacts with both similar particles, ii- collisions, and particles of the different type, ij-
collisions. We first consider the particles as point like particles. Later we account for the
dense gas effects, in accordance with one component gases.
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4.4.1 Corrections to microscopic equations - collisional transfer

The distribution functions fi og fj follow the Boltzmann Equation (4.6), however, the
collision term on the right hand side in the equation only accounts for interactions with
similar particles. As described in Section 4.1.3, this collision term expresses that the
distribution function f relaxes towards the Maxwell distribution fM . During molecular
encounters there is an exchange of both momentum and energy between the particles. The
collisional transfer for one particle, after several encounters, ‘drag’ the particle towards
the mean particle velocity and energy. Thus, a collision dominated system, from whatever
initial distribution, eventually distributes according to the Maxwell distribution (4.5).

The additional collision term, to account for ij-collisions, therefore expresses a drag to-
wards a Maxwell distribution with the mean velocity and temperature of the other particle
type. The Maxwell distributions are given as

fii,M = ni

(
mi

2πκTi

)3/2

exp

(
− mi(vi −Ui)

2

2κTi

)
, (4.19)

fij,M = ni

(
mi

2πκTj

)3/2

exp

(
− mi(vi −Uj)

2

2κTj

)
, i 6= j . (4.20)

Thus, the extension to the Boltzmann Equation (4.6) is found to be

∂fi
∂t

+ vi ·
∂fi
∂ri

+
Fi

mi

· ∂fi
∂vi

= νii(fii,M − fi) + νij(fij,M − fi) , (4.21)

where the collision frequencies νii and νij are similar to (3.1).
Collisional transfer generally happens on different time scales [15]. Lighter particles

move around with high velocities in the mean, and thus have a correspondingly high
collision frequency. Therefore they reach a self-Maxwellian rapidly. Heavier particles reach
a self-Maxwellian later, due to their lower velocities. The two components also interact
and reach an equilibrium with each other. However, if e.g. i-particles are much lighter
than j-particles, at most a fraction mi

mj
of the energies involved can be transferred in each

encounter [15]. Thus, one may assume that the changes in energies (temperature equation)
are small as compared to the changes in momentum (equation of motion).

In the following we assume that we have a mass difference between the two components
in the gas, i.e. mi � mj which is most relevant for our later studies. Furthermore, we
neglect the changes in temperatures, and assume that the two temperatures are equal,
T1 = T2 = T , for the same reason.

4.4.2 Corrections to macroscopic equations

We need only evaluate the contribution from the new collision term due to ij-collisions.

Zeroth order moment: ∫
miνij(fij,M − fi) dvi = 0 .
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The presence of additional components in gas does not affect the continuity equation.
This was expected since the continuity equation expresses conservation of mass. The
continuity equation applies component-wise.

First order moment: ∫
miviνij(fij,M − fi) dvi = νijρi(Uj −Ui) .

In a multicomponent gas a component experience a ‘frictional drag’ from the other
component. It follows from Newton’s third law of motion that νijρi equals νjiρj.

The continuity equation and equation of motion for each component is then found to be

∂ρi
∂t

+∇ · (ρiUi) = 0 , (4.22)

ρi

[
∂Ui

∂t
+ Ui · ∇Ui

]
= niFi −∇ ·Pi − νijρi(Ui −Uj) . (4.23)

Extension of the Equations (4.22) and (4.23) is a straight forward addition of several
interaction terms, ij, ik, il, ....

Dense gas effects

The inclusion of dense gas effects for a multicomponent gas is, however, not straight for-
ward. We make a simplifying assumption that one component, e.g. the j-component, is
considered immobilized due to their large mass as compared to i-particles. It follows that
Uj is set to zero, and thus, the equations for that component is dropped.

Again a correction term is needed to the Boltzmann equation, this time to express the
dense gas effects on interactions between the two components. And again, the correction
term has been suggested by Øien 3. The final extension to the Boltzmann equation reads

∂fi
∂t

+ vi ·
∂fi
∂ri

+
Fi

m1

· ∂fi
∂vi

=νii(fii,M − fi) +
∂

∂r
·
[

2π

3
d3
iniχii(Uifii,M − vifi)

]
+ νij(fij,M − fi)−

∂

∂r
·
[

2π

3

(
di + dj

2

)3

njχijvifij,M

]
.

(4.24)

3Alf Øien, Professor emeritus, Department of Mathematics, University of Bergen, Norway. Private
communication
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A computation of the velocity moments give the following corrections

Zeroth order moment:∫
mi

∂

∂r
·
[

2π

3

(
di + dj

2

)3

njχijvifij,M

]
dvi = 0 .

No corrections of the continuity equation.

First order moment: ∫
mvi

∂

∂r
·
[

2π

3

(
di + dj

2

)3

njχijvifij,M

]
dvi

= −2π

3

(
di + dj

2

)3

∇(niκTnjχij) .

In case of a Maxwell distribution, which follows from assuming a local thermodynamic
equilibrium, we have a diagonal pressure tensor Pi = niκT I [13]. Thus, the additional
term may be interpreted as a correction of the pressure tensor.

The continuity equation and equation of motion for a two component gas, including on
immobilized component, is found to be

∂ρi
∂t

+∇ · (ρiUi) = 0 (4.25)

ρi

[
∂Ui

∂t
+ Ui · ∇Ui

]
= niFi −∇ ·

(
1 +

2π

3
d3
iniχii

)
Pi

− νijρiUi −
2π

3

(
di + dj

2

)3

∇(niκTnjχij) (4.26)

4.5 Introduction of a background continuum

To obtain a set of equations suitable for modeling interstitial flow, we introduce a back-
ground continuum. This implies that we have a system mainly consisting of a continuum,
or a solvent, which our ‘gas’ evolves in. The solvent we may, without loss of generality, de-
scribe using classical hydrodynamic equations, i.e Navier-Stokes like fluid equations. The
gas particles is referred to as 1-particles and 2-particles (immobile). They interact with
each other, as described in previous sections, and they also interact with the solvent. To
be able to relate the equations to each other, the solvent is referred to as s-particles.

The solvent is assumed to have velocity field Us. This gives rise to a 1s friction drag
term in the equation of motion for particle 1. In accordance with Newton’s third law of
motion a friction term is added to the Navier-Stokes equation for the solvent. Furthermore,
this also applies for a s2 friction drag term, due to solvent interactions with the immobile
2-particles.
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We have the following set of fluid equations for the solvent and 1-particles:

∂ρ1

∂t
+∇ · (ρ1U1) = 0

ρ1

[
∂U1

∂t
+ U1 · ∇U1

]
= n1F1 −∇ ·

(
1 +

2π

3
d3

1n1χ11

)
P1 − ν12ρ1U1

− 2π

3

(
d1 + d2

2

)3

∇(n1κTn2χ12)− ρ1ν1s(U1 −Us)

∂ρs
∂t

+∇ · (ρsUs) = 0

ρs

[
∂Us

∂t
+ Us · ∇Us

]
= nsFs −∇ps +∇ · µ

[
∇Us + (∇Us)

T − 2

3
∇ ·UsI

]
− ρsνs1(Us −U1)− ρsνs2Us

(4.27)

where ρsνs1 = ρ1ν1s obviously. This set of equations will be used in the following chapters.
It should be remarked that the ‘collision frequencies’ ν1s, νs1 and νs2 are not given

in accordance with (3.4). They rather express the magnitude of the friction drag on the
solvent, and should be interpreted as such. E.g. a large ν1s in express that the solute is
tightly bound to the solvent. The notation could be misleading, however, is chosen for
simplicity in further work.



Chapter 5

Compartment Model

In this chapter we will use the set of Equations (4.27) derived in Chapter 4 to derive
a compartment model for fluid flow through the interstitium. Compartment models are
coarse fluid models, where all spatial variations in the fluid system are neglected. These
models are used extensively to model fluid flow in physiological literature.

The compartment model derived in this chapter is in compliance with the Starling
Model from [2].

5.1 Model adaptation

In a compartment model the fluid system is divided into several compartments. Inspired
by Bert et al. [2], we define a closed fluid system composed of three compartments; in-
terstitium, circulation (blood) and lymph. As described in Chapter 2, fluid enters the
interstitium from the capillaries, and excess fluid is drained to the lymphatics. The lym-
phatic system leads the fluid back to circulation, see Figure 5.1. We neglect the transport
of fluid in and out of tissue cells.

The composition of the fluid must be defined properly for our solute equations, derived
in Chapter 4, to apply. As a first attempt we let the fluid be composed of a solvent and a
solute. The solute is a larger substance, e.g. a type of protein. In the interstitial compart-
ment there are additional fixed macromolecules. The presence of these macromolecules is
an attempt to represent the hindrance by the interstitial matrix.

The solute and the solvent are in constant interaction with each other. In addition they
interact with the fixed macromolecules in the interstitial compartment. For an illustration
of the fluid composition in the interstitial compartment see Figure 5.2. In Chapter 8
the fluid composition is expanded to also include ions and charged components of the
interstitial matrix.

Hindrance of the flow by the interstitial matrix are hopefully represented by interac-
tions with the fixed macromolecules. In accordance with the notation used in Chapter
4, the subscript s refers to the solvent, 1 refers to the solute and 2 refers to the fixed
macromolecules.

31
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Figure 5.1: A schematic compartment model of the fluid system: The fluid system is divided into three
compartments; interstitium, circulation (blood) and lymph. Inside each compartment all
variables are assumed constant in space. There is an exchange of fluid across the membranes,
indicated in the figure.
V = volume.
S = surface.
n = outer unit normal.
z = flow direction.

5.1.1 General compartment equations

Compartment models are based on the assumption that all components of a compartment
are well mixed at all times. This implies that no physical quantities can vary in space
inside a compartment, and thus only vary with time. Several compartments are coupled
and there is an exchange of fluid between them, see Figure 5.1. If the fluid system is closed,
exchange of fluid can only occur at common boundaries between two compartments. These
boundaries are called membranes.

Equations describing flow in a compartment fluid system are called compartment equa-
tions. These equations are constructed to satisfy an important physical principle; the
conservation of mass in a closed system. This principle is stated as follows

Accumulated mass inside V = Mass flux into V through S ,

where V is the volume and S is the boundary of a compartment. Mathematically the mass
conservation reads

d

dt
M = −

∫
S

ρU · n dS , (5.1)
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Figure 5.2: The interstitial compartment is composed of fixed macromolecules (shaded), moving macro-
molecules or solute (black) and a solvent (light blue). The solute interacts with both the
solvent, which accounts for water and small ions, and the fixed macromolecules, which ac-
count for the interstitial matrix.
z = flow direction.

where ρ is the mass density of the fluid, U is the fluid velocity and n is the outer unit normal
of S, see Figure 5.1. The mass conservation Equation (5.1) is valid for each compartment.
In case of a multi component fluid, the equation is valid for each component of the fluid.

In a compartment model it is more relevant to include fluid fluxes, rather than velocity
fields. The evaluation of the integral on the right hand side in Equation (5.1) depends
obviously on the complexity of the integrand and the surface S. However, for a simple
geometry, as in Figure 5.1, the integral can be evaluated as follows

d

dt
M = mJzS1 −mJzS2 , (5.2)
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where Jz is the number molecular flux of the fluid per unit area, and is defined to be

Jz =

1∫
0

1∫
0

nUz dA , (5.3)

where dA is a small surface fraction, the integral is over a unit area, n is the number
density and Uz is the flow component in z-direction.

The fluxes in Equation (5.2) must be evaluated. A set of governing equations for the
fluid system is applied for this purpose. In general, the fluxes will contain information
from both interfacing compartments, and from the membrane between them. The set of
Equations (4.27) derived in Chapter 4 will be the governing equations for our fluid system.
We will assume that this set of equations, with minor modifications, also apply for flow
through the membranes, i.e. pore flow. The modifications are only briefly described. In
Section 5.2 we will derive local flux expressions based on the set of equations (4.27), further
the fluxes are modified to apply for pore flow, and averaged over the membranes.

5.2 Evaluation of averaged membrane fluxes

We will use the set of Equations (4.27) derived in Chapter 4 for a solute evolving on a
solvent background in constant interaction with each other and fixed macromolecules. We
will assume that the system is in a

� Quasi steady state

A quasi steady state system is essentially a system ‘close to’ an equilibrium state. The quasi
steady state assumption implies a balance of forces in the equations of motion, since acceler-
ation terms are assumed small and negligible.
In addition following simplifying assumptions are made:

� Flow is directed in the z-direction

� No x- or y-dependency in any variables

� Constant viscosity µ

� Constant solvent mass density ρs

� Diagonal pressure tensor P1

� External forces are absent
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Figure 5.3: The flow is directed in the z-direction.
It is assumed no variations in any vari-
ables in both the x- and y-direction.
U = flow field.

There is a net flow from capillaries to
lymph, as described in Chapter 2. Thus,
assuming that the flow is in the z-direction,
see Figure 5.2, seems justified. The as-
sumptions on µ and ρs follows from as-
suming that the solvent is a homogeneous
and incompressible newtonian fluid. A local
thermodynamic equilibrium is assumed. It
follows that the pressure tensor is diagonal
with P1 = n1κT I, where n1 is the number
density of the solute, κ is the Boltzmann
constant and T is the temperature [13]. For
now we restrict our model to apply for sys-
tems in which there are no external forces.
From the above assumptions we obtain the
following flow fields

U1 = U1(z)ez , Us = Usez . (5.4)

With all of the assumptions put into the Equations of motion in (4.27), we arrive at
the following equations, which are equations of motion for the solute and the solvent in
z-direction.

0 = −κT d

dz

{[
1 +

2π

3

(
d1 + d2

2

)3

χ12n2 +
2π

3
d3

1χ11n1

]
n1

}
− ρ1ν12U1 − ρ1ν1s(U1 − Us) ,

0 = −dps
dz
− ρsνs1(Us − U1)− ρsνs2Us .

A small rearrangement of the terms then gives us the following expressions for the velocities:

ρ1U1 = − 1

ν12 + ν1s

κT
d

dz
(Xn1) + ρ1

ν1s

ν12 + ν1s

Us , (5.5)

ρsUs = − 1

νs1 + νs2

dps
dz

+ ρs
νs1

νs1 + νs2
U1 , (5.6)

where we have defined

X
def
= 1 +

2π

3

(
d1 + d2

2

)3

χ12n2 +
2π

3
d3

1χ11n1 . (5.7)

We can now use the defined flux (5.3) to obtain an expression for the fluxes. However,
a small adjustment is done for the solvent flux, since it is more convenient to relate to the
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solvent volume flux rather than the molecular flux. In accordance with (5.3) we have the
following fluxes

J1 =

1∫
0

1∫
0

n1U1 dA , Js =

1∫
0

1∫
0

Us dA , (5.8)

where J1 is a molecular flux and Js is a volume flux.
The solvent flux Js is constant. This follows from (5.4). We recall that ρ = mn, and

insert Equations (5.5) and (5.6) into the expressions for the fluxes. The calculation is
straight forward, and we are left with two coupled expressions for the fluxes

J1 = − 1

m1

1

ν12 + ν1s

κT
d

dz
(Xn1) + n1

ν1s

ν12 + ν1s

Js , (5.9)

Js = − 1

ρs

1

νs1 + νs2

dps
dz

+
1

n1

νs1
νs1 + νs2

J1 . (5.10)

By inserting Equation (5.9) into Equation (5.10) we are able to relate the solvent volume
flux, Js, to well known, and measurable, pressures; the hydrostatic pressure P and the
osmotic pressure Π. The hydrostatic pressure is the sum of the partial pressures of the
solvent and solute, and is therefore the total pressure of the fluid as a whole [8]. The
partial pressure of the solute is the diagonal element in the pressure tensor plus the steric
correction terms. For the solvent flux we obtain

Js = −K d

dz

[
P − σΠ

]
, (5.11)

where

Π = κTXn1 ,

P = ps + Π ,

K =
1(

1− νs1
νs1+νs2

· ν1s

ν12+ν1s

) 1

ρs

1

(νs1 + νs2)
,

σ =
ν12

ν12 + ν1s

.

Here K is called a local filtration coefficient and σ is called a local reflection coefficient.
Equation (5.11) expresses that the solvent flux is driven by gradients in the hydrostatic
and osmotic pressure.

Equation (5.9) and (5.11) express the local fluxes through a unit surface area (cross section)
in the interstitial compartment. However, with minor adjustments, they also apply for local
fluxes through a unit surface area of the pores in the membrane. We neglect all terms due
to interactions with 2-particles in the equations, and further add similar terms due to
interactions with the pore wall.
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Solvent and solutes are transported through pores in the membrane. The capillary
membrane is a semipermeable membrane, as described in Chapter 2. Since the transport
is restricted to small pores in the capillary membrane, the hindrance of flow varies for
different components of the fluid. The pore wall hindrance gives rise to similar friction
terms as for the structural molecules. Thus, for a simple adaptation of the flux equations,
we change all terms in Equation (5.9) and (5.11) due to matrix interaction into similar
terms due to interactions with the pore walls. This implies that ν12 and νs2 is changed into
ν1pw and νspw, where the subscript pw refer to porewall obviously. However, it should be
remarked that ν1pw and νspw no longer are collision frequencies in accordance with (3.4).
They rather express the magnitude of a friction force due to the pore walls.

A modified set of local fluxes, which apply through a membrane, is given by

J1 = − 1

m1

1

ν1pw + ν1s

κT
d

dz
(Xn1) + n1

ν1s

ν1pw + ν1s

Js , (5.12)

Js = −K d

dz

[
P − σΠ

]
, (5.13)

where

K =
1(

1− νs1
νs1+νspw

· ν1s

ν1pw+ν1s

) 1

ρs

1

(νs1 + νspw)
,

σ =
ν1pw

ν1pw + ν1s

.

The parameter K is a local filtration coefficient. The ‘collision frequencies’ in K represent
the magnitude of a friction force, e.g. ν1s represents how tight the solute is bound to the
solvent. σ is a local reflection coefficient.

We now average the expressions for the fluxes along the pores in the membrane. The flux
expressions (5.12) and (5.13) are integrated from the pore entrance to the pore end, and
divided by the pore length l. The ‘collision frequencies’, and hence the local filtration
coefficient K and local reflection coefficient σ, are taken to be the average values along the
pores, and are thus constant.

It is assumed that the pressure P and (Xn1) are continuous at the pore ends. We thus
obtain

(Js)m ≈
(
K

l

)
m

[
∆mP − σmκT∆m(Xn1)

]
,

(J1)m ≈
1

m1

(
1

ν1pw + ν1s

1

l

)
m

κT∆m(Xn1) + n1,m(1− σm)(Js)m ,

where the subscriptm refers to membrane, and n1,m is the average number density of solutes
inside the membrane. The operator ∆m is the difference operator over the membrane, e.g.
∆mP = P |z=0 − P |z=l.
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The fluid transport through the lymph capillary membrane is somewhat less rigid than
through the blood capillary membrane. The lymph membrane is more permeable to larger
molecules so the transport of macromolecules through this membrane is mainly by filtration
[2]. Since the collision frequency ν1s is a measure of how tight the solute is bound to the
solvent through the membranes, we will approximate this effect by letting ν1s →∞ for the
lymph capillary membrane. It follows that the reflection coefficient σly goes to zero, and
the local filtration coefficient Kly reduces to 1

ρsνspw
. We thus evaluate the flux terms for

the lymph capillary in this limit. The membrane specific fluxes are thus found to be

(Js)cap =

(
K

l

)
cap,m

[
∆cap,mP − σcap,mκT∆cap,m(Xn1)

]
, (5.14)

(Js)ly =

(
K

l

)
ly,m

∆ly,mP ,

(J1)cap =
1

m1

(
1

ν1pw + ν1s

1

l

)
cap,m

κT∆cap,m(Xn1) + n1,cap,m(1− σcap,m)(Js)cap ,

(J1)ly = n1,ly,m(Js)ly ,

We observe that fluxes through the membranes are related to pressure differences over
the membranes, and in addition specific membrane parameters. The expression (5.14)
can be recognized as the Starling equation, which is a well known equation in membrane
physiology.

5.3 Excluded volume

In the interstitium solute molecules are excluded from a fraction of the total fluid volume V
due to their size. This was described in Chapter 2. The exclusion phenomenon also applies
for the pore volume, see Figure 5.4. The excluded volume VE is indicated in the figure.
The solute density n1 is the number of solute molecules per unit volume. If the excluded
volume is accounted for, the effective density increases. This gives rise to a definition of
an additional solute density. The density in the available volume, VAV = V − VE, is called
the available density n1,AV . We will define this density as

n1,AV
def
= Xn1 . (5.15)

Since X is equal to or larger than 1, the available density is obviously equal to or larger
than n1. It follows that the excluded volume is

VE =

(
1− 1

X

)
V , (5.16)

where V is the total fluid volume. We observe that when the dense gas effects are neglected,
i.e. X → 1, the excluded volume goes to zero, as we would expect. And as the dense gas
effects increase, the excluded volume approaches the total fluid volume V .
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Figure 5.4: The solute is excluded from a certain fraction of the total fluid volume due to its molecular
size. This volume is referred to as the excluded volume VE . In a membrane pore (left) the
excluded volume is the volume of a cylindrical shell, and in the interstitial compartment
(right) the excluded volume is the volume of several spherical shells.

5.3.1 The X factor

We now briefly recall the origin of the X factor (5.7)

X = 1 +
2π

3

(
d1 + d2

2

)3

χ12n2 +
2π

3
d3

1χ11n1 .

The two last terms is due to corrections of the pressure tensor for dense gases. They
therefore express dense gas effects on the pressure. These effects arose when we accounted
for the molecular size of the solute in the derivation of the macroscopic equations in Chapter
4. Since the solute molecules are assumed large, as compared with water molecules or ions,
their size is no longer negligible during particle interactions. The second term in X is due
to 1 − 2 (protein-matrix) interactions and the last term is due to 1 − 1 (protein-protein)
interactions. Without the dense gas effects the X factor is 1, i.e. no corrections to the
pressure tensor.
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5.4 A compartment model

In Section 5.1.1 we derived a general compartment equation. We will now use the evaluated
flux expressions from Section 5.2 to obtain a compartment model for interstitial flow. A
small adjustment for the solvent equation is needed, in accordance with the definitions
of the fluxes (5.8). This implies an easy transfer from accumulated mass to accumulated
volume in Equation (5.1.1), as it is assumed that the total solvent volume is almost equal
the total volume V .

We then have 7 unknown variables in the system:

n1,int Interstitial solute density
Pint Interstitial hydrostatic pressure
M1,int Total interstitial solute content
Vint Total interstitial fluid volume
n1,cap Capillary solute density
Pcap Capillary hydrostatic pressure
Ply Lymphatic hydrostatic pressure

The three last variables are assumed known. We are then left with 4 unknowns, and
thus need 4 equations to close the system. Equation (5.2), evaluated for the solute and
solvent respectively, provide us with two equations. In addition we have the definition of the
interstitial mass density which relates n1,int to M1,int and Vint. To close the system we adopt
an assumption from the article by Bert et al. [2]; interstitial hydrostatic pressure Pint is a
(known) function of interstitial fluid volume Vint. We have thus obtained a compartment
model for interstitial fluid flow.

Compartment model

d

dt
V = K ′cap,m

[
∆cap,mP − σcap,mκT∆cap,m(Xn1)

]
−K ′ly,m∆ly,mP

d

dt
M1 =

(
1

ν1pw + ν1s

S

l

)
cap,m

κT∆cap,m(Xn1)

+m1n1,cap,m(1− σcap,m)(JsS)in −m1n1,ly,m(JsS)out

m1n1,int =
M1

V
Pint = F (V )

(5.17)

Here K ′m =
(
KS
l

)
m

is a filtration coefficient for the entire membrane, where S is the total
membrane surface and l is the membrane thickness.

In Chapter 8 this model is expanded to also account for electrostatic exclusion effects.



Chapter 6

Electrostatics

The physiological composition of the interstitium makes it necessary to take a closer look
at the electric properties of the medium. Although we consider the interstitium to be
electroneutral, i.e. it does not have a net charge, each charged component of the interstitial
matrix possesses a local electric field. In addition, the composition of the extracellular fluid
will contribute to the effect of such fields. It is clear that certain interstitial properties,
such as ionic density and pH-value, will affect how a possibly charged solute interacts with
the interstitial matrix. In the present chapter we attempt to analyze the local electric field
surrounding charged parts of the ECM. We will derive relevant, but general, equations for
the behavior of such electric fields.

6.1 Basic equations

We will now study a simple system of charged particles. The system has a source sphere,
or molecule, which is the main source to the electric field. In accordance with the notation
used in Chapter 3 we will denote this sphere a 2-particle, or simply refer to the source. The
source sphere is assumed to be fixed in space. The sphere is surrounded by a fluid which
consists of small, point-like ions and water, see Figure 6.1. We assume the electrostatic
approximation is valid.

The behavior of electrostatic fields are then described by two of Maxwell’s equations,
i.e. Gauss’ law of the electric field

∇ ·D = ρf , (6.1)

and Faraday’s law reduced to
∇× E = 0 , (6.2)

where D is the displacement vector, E is the electric field and ρf is the free charge density,
which is the sum of all free charges of the system; ρf =

∑
i qini. In a homogeneous, linear

and isotropic medium the displacement vector D can be written as ε0κdE, where ε0 is the
permittivity in vacuum and κd is the dielectric constant. Faraday’s law (6.2) states that
an electrostatic field is irrotational, which implies that the field is derived from an electric
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potential, i.e E = −∇φ. Then Gauss’ law (6.1) can be rewritten as the Poisson equation
for the electric potential φ. The behavior of an electrostatic field is thus given by

∇2φ = − 1

ε0κd
ρf . (6.3)

This equation will consistently be used to find an electrostatic potential, assuming that
the Displacement field D is linear on the entire domain. This implies that the dielectric
constant κd is indeed constant on the entire domain.

6.2 Model equations

To find the electrostatic potential surrounding the source sphere we need to solve the
Poisson Equation (6.3). First we assume that the source charge is uniformly distributed
throughout the sphere. A spherical symmetry of the system with the origin placed in the
source sphere center is therefore justified. This implies that the free charge ρf of the system
is given by

ρf (r) =

{
ρf,vol for r ≤ a

(n+ − n−)e for r > a
,

where a is the radius of the sphere, n+ and n− is the density of positively and negatively
charged (monovalent) ions respectively, and e is the elementary charge. The volume charge
density ρf,vol is constant and given in unit charges per unit volume.

Since the free charge ρf is a discontinuous function of r in general, we will solve for the
two domains separately.

6.2.1 Internal solution

We solve for the internal domain where r ≤ a. With the Laplacian operator written in
spherical coordinates, the governing equations is

1

r2

d

dr

(
r2 d

dr
φ

)
= − 1

ε0κd
ρf,vol , r ≤ a .

It is a straight forward procedure to solve the equation. We obtain

φ(r) = − 1

6ε0κd
ρf,volr

2 +
C1

r
+ C2 , r ≤ a .

6.2.2 External solution

The only free charge outside the source, i.e. for r > a, is the ionic charges. We will assume
the ionic densities are given by the Boltzmann distribution, i.e.

ni(r) = ni,0e
− qi
κT
φ(r) , i = +,− (6.4)
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Figure 6.1: The charged source sphere of radius a is surrounded by water and small ions. A spherical
symmetry in the electric potential is assumed, and thus, the potential is a function of r.
The free charge of the system changes for r = a, and the potential must be found on the
two domains separately. Inside the source sphere, 0 ≤ r < a, the free charge is uniformly
distributed ρf,vol. Outside the source, r > a, the free charge is given by the density of anions
n− and cations n+ times the unit charge e.
r = distance from source center.

where qi = ±e for cations and anions respectively, and ni,0 is a reference value where the
potential φ = 0. The reference value is taken to be far away from the source sphere.
This assumption implies local thermodynamic equilibrium in the fluid. The Boltzmann
distribution relates the ionic densities to the electric potential φ. A derivation of Boltzmann
distribution from the equation of motion for ions is given in the Appendix A.3. We are
able to solve this equation for large r, i.e. where φ ≈ 0. When φ is small we may expand
the exponentials

ni(r) ∼ ni,0

[
1− qi

κT
φ(r) +O(φ2)

]
, r � a .

We apply the linear approximations and substitute for the ionic densities, n+ and n−. If
we assume that the reference values of the ionic densities are equal, i.e. n+,0 = n−,0 = n0,
we obtain a governing equation

1

r2

d

dr

(
r2 d

dr
φ

)
=

1

Λ2
d

φ , (6.5)

where

Λ2
d =

ε0κdκT

2n0e2
. (6.6)

The length Λd is called the Debye length and is a characteristic screening length for the
medium. Again, it is a straight forward procedure to solve the equation.

φ(r) = C3
1

r
e−Λ−1

d r + C4
1

r
eΛ−1

d r , r � a . (6.7)
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6.2.3 Boundary conditions and matching

We have now obtained a solution for the potential on two domains separately. However,
the solution for the external domain is only valid for large r. To obtain a solution for the
entire domain we stretch the solution for the external domain inwards and match the two
solutions at the source sphere interface r = a. We require both the potential function φ
and also the derivative of the potential r2 d

dr
φ, and hence the electric field , to match there.

I.e. we require the potential φ to be continuous to second order :

φ(a) = lim
r→a+

φ(r) , a2 d

dr
φ(a) = lim

r→a+
r2 d

dr
φ(r) .

In addition we have two boundary conditions. First we must require φ to be finite when
r → 0 and second, when r → ∞ the potential must go to 0. The matching and the
boundary conditions determines the coefficients in the solution. The potential on the
entire domain is then found to be

φ(r) =


1

3ε0κd
ρf,vol

[
a2

(
1

2
+

Λd

a+ Λd

)
− 1

2
r2

]
for r < a

1

3ε0κd
ρf,vol

a

r

a2Λd

a+ Λd

e−Λ−1
d (r−a) for r ≥ a

. (6.8)

6.3 Screening effect and dipole effect

If the source sphere had been placed in vacuum, or a completely neutral medium, then the
free charge ρf would be zero on the external domain. The governing equation then reduces
to the Laplace equation on this domain, i.e.

1

r2

d

dr

(
r2 d

dr
φ

)
= 0 , r > a , (6.9)

which has the solution

φ(r) =
A

r
+B , r > a .

It follows that the potential would fall as 1
r

external to the sphere. The effect of positive
and negative ions surrounding the sphere is therefore an additional exponential fall. This
is known as the screening effect; the ions to some extent conceal the electric field from
the external surroundings, or screen out the field, see Figure 6.2a. We will refer to the
sphere as a dressed source1 when we want to emphasize that the source sphere is placed
in a non-neutral medium. The Debye length Λd (6.6) is to be interpreted as a measure of
how fast (in space) the ions screen out the electric field. This length measure is therefore
a property possessed by the medium surrounding the source charge, and is independent of
the source charge itself.

1A dressed particle is a particle which includes the particle charge and its attendant polarization cloud
[15]. The concept of dressed particles is used in plasma physics.
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Although not carrying free charge, the water molecules also contributes to the electric
field. The molecules are net neutral, however, their charge is distributed unevenly inside
the molecule. One end of the molecule is carrying slightly more positive charge components
than the other. Such molecules are known as dipoles. When placed in an electric field the
water molecules are polarized and in the mean they turn one end pointing towards the
source center, in the same manner as a compass needle, see Figure 6.2b. This is known
as the dipole effect. The dimensionless dielectric constant κd is a measure of the dipole
effect, for example is κd ≈ 75 for water at 37 ◦C, while for a medium not containing dipoles
κd = 1.

The dipole effect is quite complex where elements of the effect act in opposition to each
other. This can be observed if we take a closer look at the electric potential (6.8) obtained
above. By studying the Debye length Λd (6.6) we observe that

↑ κd =⇒ ↑ Λd , Λd ∼
√
κd .

An increased Debye length implies both an increase in the ratio Λd
a+Λd

and an increase in

the exponential e−Λ−1
d (r−a). The potential range increases. As a consequence the dielectric

effect can be interpreted as a weakening of the exponential damping of the potential, which
act in opposition to the screening effect. However, at the same time the magnitude of the
potential is reduced through the factor 1

κd
in Equation (6.8). Hence, we can conclude that

the dielectric effect to some extent levels out, or smooths the screening effect.
From the Debye length Λd (6.6) we also observe

↑ n0 =⇒ ↓ Λd , Λd ∼
1
√
n0

.

An increased ionic density leads to a decrease in the Debye length, which implies an
intensified shielding of the source.

We have created a model of the source sphere to indicate how we interpret the screening
effect and dipole effect on a microscopic level, see Figure 6.2. We choose the source charge
to be negative in the model. In the region immediately outside the surface of the sphere
there will be an excess of cations since the negative source charge attracts cations, as well
as repels anions. There is established a diffuse layer of ions outside the source sphere where
the distribution of ions is governed by the Boltzmann distribution (6.4). This approach
may be seen in accordance with the Gouy-Chapman model from the theory of electric
double layers EDL2, to some extent.

6.4 Charge distributions

6.4.1 Surface charge

The total source charge Q is found by multiplying the volume charge density ρf,vol with
the volume of the source sphere 4π

3
a3. Thus, assuming the charge is uniformly distributed

2see e.g. J. Cross [16]
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(a) Electrostatic shielding (b) Dipole effect

Figure 6.2: 6.2a: A negatively charged source sphere (large blue sphere) is screened by ions in the
surrounding fluid. The density of cations (red) are high close to the source sphere and
decreases away from the sphere, and opposite for anions (blue).
6.2b: The water molecules are small dipoles, and in the mean they turn one end pointing
towards the source center, in the same manner as a compass needle. Although not indicated
in the figure, the polarization is assumed equal inside the source sphere.

in the entire volume of the source sphere, implies that the total source charge goes like the
sphere radius a to third power. However, it might be desirable that the charge does not
increase that rapidly. We can account for this by assuming that the total source charge
is placed at the surface of the source sphere instead. The distribution of the charge is
assumed to be uniformly over the surface, as above. The free charge of the system is then
modified to

ρf (r) =


0 for r < a

σf,surf for r = a

(n+ − n−)e for r > a

,

where σf,surf is the surface charge density. The source charge Q is then σf,surf ·4πa2 which
implies that Q increases as the radius a to second power as opposed to third power for the
volume charge density. We shall update the electric potential (6.8) in accordance to this
adjustment. We keep the total source charge constant, that is

ρf,vol ·
4π

3
a3 = σf,surf · 4πa2 =⇒ ρf,vol =

3

a
σf,surf . (6.10)

On the external domain the solution will not change. Outside the sphere the electric field
is experienced as if all charge was placed in the center of the source [17], therefore the
solution on this domain is similar for surface charge and volume charge as long as the total
charge is kept constant. Hence, it is sufficient to substitute for the surface charge σf,surf
in accordance to (6.10) on the external domain.
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Figure 6.3: The potential surrounding a source sphere with volume charge or surface charge respectively.
r = distance from source center.

On the internal domain the free charge is now zero, since the charge is placed at the
surface, and the governing equation reduces to the Laplace Equation (6.9) for r < a, which
was described in the preceding Section 6.3. Together with the boundary condition, that φ
must be finite as r → 0, this gives that the potential φ is constant on the internal domain.
A first order matching of the two solutions at the sphere interface r = a determines this
constant to be the external value of φ as r → a+. A complete solution for the electric
potential induced by a source sphere with surface charge is

φ(r) =


1

ε0κd
σf,surf

aΛd

a+ Λd

for r < a

1

ε0κd
σf,surf

1

r

a2Λd

a+ Λd

e−Λ−1
d (r−a) for r ≥ a

. (6.11)

We have created two plots, see Figure 6.3, to illustrate the difference between the two
cases; charge distributed in the entire volume and charge distributed at the surface of the
sphere.
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6.4.2 Spherical shell charge

As we observe in the plot for surface charge 6.3 the potential is now continuous to first
order only. The electric field E, which is the gradient of φ, is discontinuous at the source
sphere surface r = a. Since all charge components have a defined three dimensional size,
the assumption that all the source charge is placed at the surface of the sphere is clearly
nonphysical. We can account for this, and hence make the electric field continuous, by
inserting a thin spherical shell of thickness δ at the surface of the source with all the
charge distributed inside this shell, see Figure 6.4. Let the charge density in the shell be
ρf,shell. The free charge ρf is then given as

ρf (r) =


0 for r ≤ a

ρf,shell for a < r < a+ δ

(n+ − n−)e for r ≥ a+ δ

.

The density ρf,shell is obviously a volume density which implies that the governing equation,

Figure 6.4: The charged spherical shell of thickness δ is surrounded by water and small ions. The free
charge of the system changes for r = a and r = a+ δ and the potential must be found on the
three domains separately. Inside the source sphere, 0 ≤ r < a, there are no free charges. In
the spherical shell, a < r < a + δ, free charge is uniformly distributed ρf,shell. Outside the
source, r > a+ δ, the free charge is given by the density of anions n− and cations n+ times
the unit charge e.
r = distance from source center.

and hence the solution for this region a < r < a + δ is similar as for the internal domain
for volume charge described in Section 6.2.1.

On the internal domain r < a the governing equation reduces to the Laplace Equation
(6.9) for r < a. Together with the boundary condition, that φ must be finite as r → 0,
this implies that the solution φ(r) is constant on the internal domain, as for the internal
solution for surface charge given in Section 6.4.1.
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The governing equation for the external domain is similar as for volume charge, hence
the solution φ is similar to Equation (6.7). The boundary condition φ → 0 as r → ∞
implies that the coefficient in front of the positive exponential in that equation is zero. To
sum up, we have

φ(r) =


C1 for r < a

− 1

6ε0κd
ρf,shellr

2 +
C2

r
+ C3 for a < r < a+ δ

C4
1

r
e−Λ−1

d r for r � a+ δ

.

In the same manner as we did for volume charge in Section 6.2.3 we require the solution
to be continuous to second order, i.e. we require both r2 dφ

dr
and φ to be continuous on

the entire domain. The external solution is stretched inwards to match at the interface
r = a + δ. Continuity is also required at the interface r = a. The calculations are left to
the Appendix A.4. The resulting solution for the potential φ surrounding a source sphere
with spherical shell charge density is

φ(r) =


1

6ε0κd
ρf,shell

[
1

a+ δ

(
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)
1 + (a+ δ)Λ−1

d

)
− 3a2

]
for r < a

1
6ε0κd

ρf,shell

[
1

a+ δ

(
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)
1 + (a+ δ)Λ−1

d

)
− 1
r

(r3 + 2a3)
]

for a < r < a+ δ

1
3ε0κd

ρf,shell

(
(a+ δ)3 − a3

)
1

1 + (a+ δ)Λ−1
d

1
r
e−Λ−1

d (r−(a+δ)) for r > a+ δ

,

which is continuous to second order. The above expression for φ is valid for all values
of δ since no restrictions have been placed on that parameter. A plot for the potential
for different δ is given in Figure 6.5. However, it is a quite complex expression to work
with. Therefore, since we only are interested in small δ values, we can first expand the
potential (6.4.2) in terms of powers of δ, secondly let δ → 0 and obtain a zeroth order
approximation. It is shown in the Appendix A.4 that the expression then obtained, equals
the expression for φ with surface charge (6.11) given in Section 6.4.1. Hence, expression
(6.11) is a good approximation, mathematically, for the potential φ surrounding a source
sphere with spherical shell charge density. Thus,We will therefore use this expression in
further studies.

6.5 Potential energy

In the preceding sections we have derived an expression for the electric potential φ, and
hence the electric field E, surrounding a dressed source sphere. It was found to be

φ(r) =


1

4πε0κd
Q

Λd

a+ Λd

1

a
for r < a

1

4πε0κd
Q

Λd

a+ Λd

1

r
e−Λ−1

d (r−a) for r ≥ a
, (6.12)
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Figure 6.5: The potential surrounding a source sphere of radius a2 = 18 nm, with the free charge
distributed in a spherical shell of thickness δ. In the plot δ is set to a2/4, a2/8 and a2/20
respectively.



6.5 Potential energy 51

here expressed by the total source charge Q.
Let us now assume that another, possibly charged, particle enters the domain. Again,

in accordance with the notation used in Chapter 3 we will denote this particle as a 1-
particle, or simply refer to it as the enterer. Subscripts 2 refer to the source sphere. The
electric field E exerts a force on a charged particle, given by

F = q1E ,

where q1 is the particle charge. The force tells us how the particle is affected by the field.
However, an entering particle carrying a charge has an electrostatic potential energy Vp
in the electrostatic potential generated by the source. It might be desirable to study the
potential energy Vp rather than the electrostatic force F. The potential energy of the
enterer with charge q1 is

Vp(r) = q1φ(r) , (6.13)

given that the enterer is a point-like particle. However, if the particle is not point-like and
we assume that all its charge is placed on the surface of the particle the expression for the
potential energy will modify to

Vp =

∫
ρf,1(r)φ(r) dr , ρf,1 = σ1δ(r−R− a1) , (6.14)

where ρf,1 is the charge density and is given by the Delta function. For a geometric

Figure 6.6: A particle with radius a1 (blue) moves in the electrostatic field surrounding a source sphere
of radius a2 (red). The distance between their centers is r. R is the distance from the source
center to an arbitrary point on the surface of the entering particle.
z = distance from the source center.

interpretation of the expressions (6.14) see Figure 6.6. However, as a first attempt, an
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expression for the electrostatic potential is obtain by considering the entering particle a
point like particle as compared to the source sphere. This approximation is valid whenever
the enterer is much smaller than the source sphere, i.e. a1 � a2. The subscripts 2 and
1 refer to the source and the enterer respectively. The potential energy of the entering
particle outside the source sphere is then given by (6.13) and is found to be

Vp(r) =
1

4πε0κd
Q2

Λd

a2 + Λd

q1
1

r
e−Λ−1

d (r−a2) , r ≥ a2 , (6.15)

where q1 is the total charge of the entering particle.



Chapter 7

Electrostatic Interaction Model
Results and Comparison with
Experimental Data

In the preceding chapter we obtained an expression for the electrostatic potential φ sur-
rounding a source sphere. We also obtained an expression for the electrostatic potential
energy Vp of an additional particle entering the domain. The motivation for deriving these
expressions is to apply them to our physiological system, and then, hopefully, be able
to investigate electrostatic properties of the interstitium. In the present chapter we aim
to study how certain interstitial properties, such as ionic strength and pH-value, affect
possibly charged macromolecules entering the interstitial domain.

7.1 Model simplifications

In most cases, to be able to model a physical system several properties of the system must
be omitted, or at least simplified. Our aim is to use a simplified model to study some of
the properties of our physical system. Results obtained based on simplifying assumptions
will hopefully show qualitative similarities to real-life studies. In the following section the
chosen model simplifications are presented, and justified. The assumptions are presented
point by point.

7.1.1 GAG

The interstitial matrix consists of several components, mainly collagen fibers and gly-
cosaminoglycans, or GAGs. GAGs are strongly negatively charged in the interstitium, and
thereby possess local electric fields around GAG molecules. The present study will focus
on proteins interacting with GAGs, and will use a single idealized protein-GAG interaction
as a model.

The interstitial fluid surrounds the GAG molecules, and the fluid composition will
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affect the electric potential. A description of glycosaminoglycans is given in Chapter 2.
They exist in the interstitium as long chained molecules (hyaluronans) or as large branched
GAG and protein combinations (proteoglycans). However, the quartenary structure of the
molecules is not known exactly. To be able to model these molecules we assume that they
take on the shape of a sphere:

� Spherical shape

� Internal ions are neglected

One could think that the long polysaccharide chains curl up and take on the shape of a
sphere, see Figure 7.1. This assumption implies that the model GAG sphere also contains

Figure 7.1: The long GAG molecules are assumed to curl up and take on the shape of a sphere of radius
a2. The effect of small ions inside the sphere on the external electric field, is neglected.

a varying amount of water and small solutes, however, we will assume that the ionic charge
contribution to the potential is negligible inside the sphere.

� Solid sphere

For simplicity we make the assumption that the model GAG sphere is impermeable to
other macromolecules, i.e. proteins. The hyaluronan molecule is then considered a solid
sphere. This assumption is especially problematic considering the effect of hydration. We
will return to this later.

� Surface charge (negative)

We will also assume that the negative charge held by hyaluronan is uniformly distributed
on the surface of the sphere. In the previous chapter, however, we showed that it is not
how the charge is distributed in the sphere but the total charge held by the sphere that
affects the potential outside the sphere.

� No overlapping potentials
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We will assume that the different GAG molecules are placed far away from each other,
sufficient to make us able to look at a single sphere and the corresponding potential without
considering effects of overlapping potentials.

� Spherical symmetry

A spherical symmetry of the electric field is justified by the above assumptions.

� Fixed in space

Since the large glycosaminoglycan molecules are entrapped in the structural matrix in the
interstitium, we regard them as fixed in space.

7.1.2 Proteins

The quartenary structure of proteins are well known in general. The proteins considered in
this thesis are all globular proteins with a well defined hydrodynamic radius. It is therefore
a reasonable assumption to model the proteins as spheres.

� Globular proteins → spherical shape

� Surface charge (negative)

A possible net charge on the proteins is again assumed to be placed on the surface of the
protein. I addition to neutral proteins, we restrict ourselves to look at proteins of negative
polarity.

� Solid sphere

The proteins will also be considered as solid spheres.

7.1.3 Energy

We further assume a thermodynamic equilibrium of the fluid. This implies that the velocity
distribution for the molecules tend to the Maxwellian. It can be shown that the mean
velocity squared is then v2 = 3κT

m
, where T is the temperature in the fluid, m is the mass

of the molecule and κ is the Boltzmann constant [13]. Hence, the mean kinetic energy of
a molecule in a fluid at temperature T is found to be

Ek =
1

2
mv2 =

3

2
κT .

This energy is often referred to as a thermal energy.

� Proteins enter the electric field domain with thermal energy: Ek =
3

2
κT

� Ion interactions are neglected
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The square root of the mean square velocity is denoted thermal velocity vth. It depends

on the mass m, i.e. vth =
√

3κT
m

. This implies especially that ions and water molecules

move around in the fluid at a much higher velocity than proteins, which are much larger
molecules, in the mean. However, we will neglect ion interactions since they happen on
a much shorter timescale and therefore reach an equilibrium state much faster than the
proteins.

� Energy transfer is neglected

At a single GAG-protein encounter, at most a fraction m1

m2
of the kinetic energies involved

can be transferred [15], where m1 is the mass of a protein and m2 is the mass of a GAG.
Therefore, if we assume that the GAG molecules are much heavier than the proteins, i.e.
m2 � m1, we may neglect the energy transfer between the GAG and the protein.

� Head-on velocity

We assume for simplicity that the velocity is pointing towards the center of the GAG.

7.1.4 Excluded volume

In our single GAG-protein model we will calculate the excluded volume. This volume is the
volume of which the center of the protein is unable to move in, additional to the volume
of the GAG sphere. See Figure 7.2a.

The assumptions made in previous sections imply that the protein is always excluded
from a certain fraction of the total volume due to its size a1. This excluded volume is
referred to as steric exclusion. If the distance from which the protein is repelled is bigger
than the sum of the GAG and protein radii, i.e. a2+a1, then the excluded volume additional
to the steric exclusion is referred to as electrostatic exclusion. See Figure 7.2b.

7.1.5 Hydration

The model GAG spheres contain a various amount of fluid, as described above. When the
tissue is hydrated the total fluid volume in the interstitium increases. This is assumed to
imply an increased amount of fluid also inside the GAG sphere. Therefore, we attempt to
model the effect of hydration by increasing the radius of a GAG sphere. See Figure 7.3.

� Hydration leads to a larger GAG sphere

From Equation (6.12) in Chapter 6 we observe how an increased model sphere radius
a2 affects the electric potential surrounding it. The internal potential decreases and the ex-
ponential damping of the external potential decreases. We have created a plot to illustrate
this, see Figure 7.4.
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(a) Exclusion (b) Steric and electrostatic exclusion

Figure 7.2: A protein (blue) is repelled at a certain distance outside the GAG (red). This distance dca
is called the distance of closest approach.
r = distance from center of GAG.
a2 = radius of GAG.
a1 = radius of protein.
7.2a: The excluded volume outside a GAG sphere is indicated in pink.
7.2b: Steric exclusion (white) is due to the molecular size of the protein. Additional exclusion
is due to possible molecular charge of the protein, and is referred to as electrostatic exclusion
(pink).
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Figure 7.3: The GAG sphere increases in size as more fluid (water and small ions) enter the sphere.
This process is referred to as hydration. In the model the total GAG charge is kept constant
during hydration. A hydrated GAG sphere is seen to the right.
a2 = radius of GAG.

Figure 7.4: The electrostatic potential varies with the radius of the GAG sphere (hydration). The blue
curve represents a more hydrated GAG sphere than the red curve. We observe that outside
the GAG, the potential is weaker for the hydrated sphere.
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7.2 Model equation

In this section we will study a single GAG-protein system, see Figure 7.5. The system

Figure 7.5: A protein with radius a1 (blue) moves in the electrostatic field surrounding a GAG sphere
of radius a2 (red). The distance between their centers is r, and R is the distance from the
source center to an arbitrary point on the protein surface. (The figure is a reproduction of
Figure 6.6 in Chapter 6).
z = distance from GAG center.

considered is a GAG sphere fixed in space and a protein which enters the domain with an
initial kinetic energy

Ek,init =
3

2
κT . (7.1)

The protein will experience a force due to the electric field, F = q1E, where q1 is the protein
charge. The force is repulsive since the protein charge and GAG charge both are negative,
and is obviously zero if the protein is neutral. The magnitude of the force increases as
the protein approaches the GAG. This also means that the kinetic energy of the protein is
transformed into potential energy. We may use the principle of conservation of energy to
calculate how close to the GAG the protein is able to reach1.

The distance from the GAG center at which the protein is repelled is known as the
distance of closest approach dca and is a fundamental length in plasma physics 2, together
with the Debye length (6.6). In a plasma3 the Debye length is much greater than the

1This approach is somewhat similar to an approach made in Tanenbaum’s Plasma Physics [18] on the
derivation of the scattering angle for a particle interaction.

2The distance of closest approach is defined e.g. in Tanenbaum’s Plasma Physics [18].
3Note that a plasma in this context is not a physiological plasma. Definitions of a physical plasma is

found in many books on plasma physics, see e.g. Delcroix’ Plasma Physics[13].
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distance of closest approach, however, in our medium one might expect them to be of more
comparable sizes since the temperature is significantly lower. Since we have neglected
the energy transfer between protein and GAG, conservation of energy in the protein-GAG
system leads to conservation of energy for the protein alone.

Ek(r) + Vp(r) = Etotal , ∀r .

In the previous Chapter 6 we obtained an expression for the potential energy of a protein.
This was found to be

Vp(r) =
1

4πε0κd
Q2

Λd

a2 + Λd

q1
1

r
e−Λ−1

d (r−a2) , r ≥ a2 .

We are then able to calculate how close the particle can approach the GAG before it is
repelled. For a given q1 we find which r that solves

Vp(r)− Ek,init = 0 .

If the equation has a solution for r > a2 + a1, i.e. the protein is repelled before it collides
with the solid GAG sphere, this solution is the distance of closest approach dca for the
protein-GAG system. If the equation does not have a solution on this domain, e.g. if the
protein charge q1 is zero, it is assumed that the protein hits the GAG sphere and is repelled
at distance r = a2 + a1.

dca :


1

4πε0κd
Q2

Λd
a2 + Λd

q1
1
r
e−Λ−1

d (r−a2) − 3
2κT = 0 if solution exist for r > a2 + a1

a2 + a1 else
.

(7.2)

Several parameters in the equation will affect the dca computed, e.g. protein charge q1,
GAG size and charge a2, Q2 and Debye length Λd. Equation (7.2) will be the model
equation for our study.

7.3 Charge effects

In addition to the protein charge q1 and the GAG radius a2, several parameters affect the
solution to the above Equation (7.2). In the following section we will focus on the effect of
two specific parameters, namely the ionic density and the pH-value of the fluid. Equation
(7.2) will be our model equation for this study.

Test proteins

For our study we have created a set of illustrative proteins of varying size and charge, see
Table 7.1. Hopefully this set will capture a relevant span in protein size and charge. The
proteins are referred to as test particles. The charge is given in unit charges, i.e. number
of electron charges.
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radius a1 (nm) charge q1 (e)

Small

1.5 -2.5
1.5 -12.5
1.5 -25

Medium

4.5 -2.5
4.5 -12.5
4.5 -25

Large

7.5 -2.5
7.5 -12.5
7.5 -25

Table 7.1: Radius and charge for test particles.

7.3.1 Ionic density n0

In Chapter 6 we briefly showed how the Debye length (6.6) varied with the number density
for ions n0. We recall the Debye length

Λ2
d =

ε0κdκT

2n0e2
. (7.3)

An increased number density gives a shorter Debye length which implies a stronger shielding
of the GAG charge. For instance if the number density is increased by a factor 10, this
corresponds to a decrease of the Debye length by a factor 1

3
, approximately.

When we derived the expression for the Debye length in Chapter 6, it was assumed that
the number density of cations n+ and anions n− were approximately equal at a distance
sufficiently far away from the GAG. Thus, the ionic number density n0 included in the
expression (7.3) is the density of both cations and anions as they are assumed equal,
n+ = n− = n0.

In medical terms ionic density, or ionic strength, is given in milli Moles per liter, mmol
L

.
This easily adopts to our number density by multiplication with Avogrado’s number, NA,
which is the number of molecules in 1 mole.

n0

( 1

m3

)
= ionic strength

( mmol

L

)
·NA

( 1

mol

)
.

In the interstitium we assume normal value for ionic strength is 150 mmol
L

. An interval for
variation of the ionic density, hopefully relevant for physiological data, is suggested to be

ionic strength ∈
[
50, 500

]
mmol

L
. (7.4)

7.3.2 pH-value

One may intuitively assume that the pH-value also affects the dca. It is not, however,
intuitive to understand how it is affected. In Chapter 2 the GAG molecules were described.
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They are large molecules built up of amino sugar units that contain carboxcylic acid groups.
These acid groups will dissociate into protons (H+) and negatively charged carboxylate
groups (A−) as the pH increases. It is therefore assumed that glycosaminoglycans follow
the general acid-base equilibrium

HA ⇀↽ H+ + A− . (7.5)

According to Le Chatelier’s Principle, if the equilibrium is disturbed, e.g. an increase in the
H+-density, it shifts to the left to counteract the disturbance. The pH-value is a measure
of the number of H+ ions present in a fluid volume,

pH = − log[H+] .

Hence, as the pH value in the fluid drops, the number of H+ ions increases, and the
equilibrium 7.5 is shifted to the left. This implies that the total GAG charge decreases as
the pH value drops.

At physiological pH, i.e. pH 7.4, all the acid groups on a GAG are negatively charged
[5]. Furthermore, we assume that GAGs are neutral at pH around 4.5.

In the model GAG all the charge is placed at the surface of the GAG sphere. Free
hydrogen ions H+ in the fluid move around much faster than heavier molecules, and they
‘bombard’ the surface of the GAG molecules. Since an increased H+-density implies a
decreased GAG charge Q2, it is assumed that the GAG charge is negative proportional
to the net flux of hydrogen ions on the GAG surface, i.e. Q2 ∼ −10− pH. Together these
assumptions relates the total GAG charge and the pH value as

Q2(pH) = Q2,max

[
1− 10−(pH−4.5)

1− 10−(7.4−4.5)

]
, (7.6)

where Q2,max is the GAG charge at pH = 7.4 (fully charged). We will assume that
Q2,max = 50000. In Figure 7.6 it is shown how the GAG charge varies with pH.

The normal value for pH is obviously set to physiological pH, which is 7.4. We let the
pH vary from 4.5, where hyaluronans are neutral, to physiological pH, i.e.

pH ∈
[
4.5, 7.4

]
. (7.7)

Remark

It is assumed that the GAGs are fully charged at pH 7.4. However, it might be the case that they are fully
charged at a lower pH value, for instance at pH 6 or 7. A further increase in the pH towards pH 7.4 will
not affect the charge, and the GAG charge curve in Figure 7.6 will thus be steeper.
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Figure 7.6: The GAG charge varies with pH, and is assumed to follow Equation (7.6). At physiological
pH, i.e. pH = 7.4, the GAG is fully charged, which is assumed to be 50000 negative unit
charges. As pH drops the GAG charge decreases in accordance with Le Chatelier’s Principle.
At pH = 4.5 the GAGs are neutral.
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7.4 Results

The distance of closest approach dca is computed from Equation 7.24. The result is related
to the effective protein radius a1,eff . If the excluded volume of a protein coincides with the
steric excluded volume of a larger sphere, then the effective radius of the protein equals
the radius of the larger sphere, i.e. a1,eff = dca − a2, see Figure 7.7. It follows that the

Figure 7.7: The excluded volume of the protein (blue) coincides with the steric excluded volume of a
larger sphere (dotted). Thus, the effective radius of the protein a1,eff equals the radius of
the larger sphere.
a2 = radius of GAG.

effective radius is greater than or equal to the real protein radius.
In this section the result of our electrostatic study is presented.

4The model is implemented in Matlab.



7.4 Results 65

F
ig

u
re

7.
8:

T
he

el
ec

tr
os

ta
ti

c
ex

cl
us

io
n

eff
ec

t
is

st
ud

ie
d

fo
r

sm
al

l
te

st
pa

rt
ic

le
s

(a
1

=
1.

5
nm

)
of

va
ry

in
g

ch
ar

ge
(q

1
=
−

2.
5e
,−

12
.5
e,
−

25
e)

.
T

he
eff

ec
ti

ve
ra

di
us
a

1
,e
f
f

is
co

m
pu

te
d

fo
r

va
ry

in
g

io
ni

c
de

ns
it

y
in

th
e

le
ft

pl
ot

,a
nd

fo
r

va
ry

in
g

pH
in

th
e

ri
gh

t
pl

ot
.

T
he

D
eb

ye
le

ng
th

Λ
d

va
ri

es
w

it
h

th
e

io
ni

c
de

ns
it

y,
se

en
in

th
e

le
ft

pl
ot

.
In

ad
di

ti
on

,
th

e
D

eb
ye

le
ng

th
is

ad
de

d
to

th
e

ra
di

us
of

th
e

te
st

pa
rt

ic
le

s
a

1
+

Λ
d

an
d

in
di

ca
te

d
in

th
e

pl
ot

.



66
Electrostatic Interaction Model

Results and Comparison with Experimental Data

F
igu

re
7.9:

T
he

electrostatic
exclusion

effect
is

studied
for

all
test

particles
(a

1
=

1.5
nm

,
4.5

nm
,

7.5
nm

)
of

varying
charge

(q
1

=
−

2
.5e,−

12.5e,−
25e).

T
he

effective
radius

a
1
,e
f
f

is
com

puted
for

varying
ionic

density
in

the
left

plot,
and

for
varying

pH
in

the
right

plot.
T

he
D

ebye
length

Λ
d

varies
w

ith
the

ionic
density,seen

in
the

left
plot.

In
addition,the

D
ebye

length
is

added
to

the
radius

of
the

test
particles

a
1

+
Λ
d

and
indicated

in
the

plot.



7.4 Results 67

F
ig

u
re

7.
10

:
T

he
el

ec
tr

os
ta

ti
c

ex
cl

us
io

n
eff

ec
t

is
st

ud
ie

d
fo

r
sm

al
l

(a
1

=
1.

5
nm

),
w

ea
kl

y
ch

ar
ge

d
(q

1
=
−

2.
5e

)
te

st
pa

rt
ic

le
s.

T
he

eff
ec

ti
ve

ra
di

us
a

1
,e
f
f

is
co

m
pu

te
d

fo
r

va
ry

in
g

io
ni

c
de

ns
it

y
in

th
e

le
ft

pl
ot

,
an

d
fo

r
va

ry
in

g
pH

in
th

e
ri

gh
t

pl
ot

.
T

he
D

eb
ye

le
ng

th
Λ
d

va
ri

es
w

it
h

th
e

io
ni

c
de

ns
it

y,
se

en
in

th
e

le
ft

pl
ot

.
In

ad
di

ti
on

,i
n

bo
th

pl
ot

s
th

e
eff

ec
ti

ve
ra

di
us

is
co

m
pu

te
d

fo
r

se
ve

ra
ld

iff
er

en
t

G
A

G
ra

di
i.



68
Electrostatic Interaction Model

Results and Comparison with Experimental Data

F
igu

re
7.11:

T
he

electrostatic
exclusion

effect
is

studied
for

album
in-like

test
particle

(a
1

=
3.5

nm
,
q
1

=
−

17
e).

T
he

effective
radius

a
1
,e
f
f

is
com

puted
for

varying
ionic

density.
T

he
radius

of
an

neutral
IgG

-like
test

particle
(a

1
=

5
nm

,
q
1

=
0e)

is
indicated.

In
addition,

the
D

ebye
length

is
added

to
the

album
in

radius
a

1
+

Λ
d

and
indicated

in
the

plot.



7.4 Results 69

Following observations are made:

Effective radius a1,eff increases with protein charge:
When a test particle is charged it is excluded from an additional volume surrounding
the GAG sphere. This is observed in both Figure 7.8 and 7.9. Strongly charged test
particles have a larger effective radius than weakly charged test particles. However,
the difference between weakly and moderately charged test particles are larger than
the difference between moderate and strongly charged test particles.

Increased ionic density → Decreased effective radius:
We clearly observe in all four plots that as the ionic density increases, the effective
radius for charged test particles decreases. For large test particles we observe in
Figure 7.9 that when the ionic density is sufficiently high, the effective radius equals
the real radius, which implies that the electrostatic effect vanishes.

Effective radius not sensitive to pH-changes:
We observe in all four plots that as the pH drops from physiological pH, i.e. 7.4,
there are no significant variations in effective radius until the pH reaches around 5.5.
Our model for how the total GAG charge relates to the pH value (7.6) might not be
entirely correct. However, it is realistic to believe that the relation may be similar
to our model. As briefly mentioned in the remark, it is possible that GAGs are fully
charged at lower pH values than 7.4. This would give an even steeper curve than in
our plots. Thus, these results might imply that the exclusion effect is not affected by
pH variations around physiological pH.

Electrostatic exclusion is less dominant for larger proteins:
The protein size was neglected in the derivation of our model Equation (7.2). There-
fore, as long as there is an additional electrostatic exclusion, this exclusion is equal
for test particles with equal charge. However, larger test particles will have a larger
steric exclusion, and it follows that the relative excluded volume due to the particle
charge is smaller for large test particles. In Figure 7.9 we observe that for certain
values of ionic density or pH, large test particles are not repelled due to their charge
(flat curves), i.e. the electrostatic exclusion effect vanishes. Due to their size they
are hindered to come close enough to the GAG for the electrostatic exclusion effect
to apply.

Hydrated GAG decreases the effective radius:
We observe in Figure 7.10 that as the GAG radius increases the effective radius
a1,eff decreases. Outside the GAG sphere proteins experience the electric field as
if all GAG charge was placed in the center of the GAG. An increased GAG radius
gives a weaker electrostatic field outside the GAG, and thus, the distance of closest
approach dca, and hence the effective radius, decreases. We observe that if the GAG
radius is sufficiently large, the electrostatic exclusion effect vanishes.
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Protein radius + Debye length = not sufficient!:
An increased ionic density implies a decreased Debye length, i.e. a greater shielding
of the GAG charges. The Debye length Λd is indicated in the left plots of all the
Figures. One might think that adding the Debye length to the protein radius is
sufficient to account for the electrostatic exclusion. We observe in the left plot of
Figure 7.8 that the effective radius follows the Debye length approach for varying
ionic densities, however, is in general larger. In addition the effective radius varies
with the protein charge. Thus, this may indicate that adding the Debye length to the
real radius, to account for electrostatic exclusion, is not sufficient. A more thorough
evaluation might be needed.

Albumin vs. IgG:
There is obtained experimental data on exclusion effects on albumin in the article by
Wiig et al. [1] (and in other articles, see references within). In this article it is also
observed that the exclusion effect for neutral IgG coincides with that of albumin 5.
In view of these findings we have calculated the effective radius for an albumin-like
test particle in Figure 7.11. We observe that around normal values for ionic strength
(150 mmol

L
) the effective radius of albumin is larger than the real radius of IgG. Since

this result is relevant only for protein exclusion due to GAGs and not collagenes, we
can not conclude that our estimation coincides with experimental findings.
We also observe that adding the Debye length to the albumin radius might not be
sufficient to account for electrostatic exclusion.

5Both albumin and IgG (Immunoglobulin G) are proteins which occur naturally in the body.
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Remarks

In our model we have considered a charged protein moving in the electrostatic field governed by a charged
GAG, where the GAG charge is shielded by ions in the surrounding fluid. Therefore, the GAG is referred
to as a dressed source sphere, as described in Chapter 6. We have not, however, taken into account a
similar effect to the protein. The protein charge might be surrounded by a similar polarization cloud as the
GAG. The effect of dressed proteins has not been studied in this thesis, however, such a study might result
in a correction of the distance of closest approach dca, and hence the effective protein radius. It is likely
to assume that a correction, due to a dressed protein effect, will give a reduction in the effective radius.
GAGs are assumed to be almost immobilized in the interstitium while proteins move more freely, and the
attendant polarization cloud to a protein might be affected by the protein motion. Thus, it is difficult to
answer how relevant the dressed protein effect is.

We may account for the electrostatic exclusion effect on a microscopic level in the set of solute equations
derived in Chapter 4, and hence in the compartment model derived in Chapter 5. The protein size d1

appear in the solute equations through the collision frequencies obtained in Chapter 3. In this chapter we
have shown that negatively charged proteins may interact with the GAGs as if they have a larger effective
radius. Therefore, a correction in the protein-matrix collision frequency ν1→2 is needed. However, the
collagen molecules, which are the main contributor to the interstitial matrix, are net neutral molecules.
This might imply that additional refinements are needed in our set of equations from Chapter 4.

In Chapter 8 this set of solute equations is expanded to account for solute interactions with the GAG
molecules specifically. Thus, the electrostatic exclusion might be accounted for by replacing the protein size
d1, in the protein-GAG collision frequency, with the effective radius 2 · a1,eff . Such corrections may be
evaluated, however, has not been a part of the present thesis.





Chapter 8

Extended Fluid- and Compartment
Model

The compartment model obtained in Chapter 5 was derived without considering the elec-
trostatic properties of the interstitial system. In this chapter we will introduce additional
information into the Model (5.17), based on the electrostatic properties of the interstitium.
We need to expand the set of Equations (4.27) derived in Chapter 4. Additional equations
is needed to account for both charged components in the interstitial matrix, and also an-
ions and cations in the interstitial fluid. We follow the expansions up to compartment level
in an attempt to see where and how electrostatic properties influence the compartment
model.

8.1 Expansion of the system equations

In the following section we will expand the set of Equations (4.27) step by step, to obtain
a set of equations which also account for electrostatic effects. This set of equations apply
for a system of fixed macromolecules 2, solute 1 and background solvent s.

8.1.1 Charged components of the matrix

The first expansion is straight forward. We will account for the charged components of
the interstitial matrix by simply add parameters d3 and n3 where ever d2 and n2 appear
in the equations. This correspond to a splitting of the macromolecules into one charged
component 3 and one uncharged component 2. The two Equations of motion in (4.27) then
reads

ρ1

[
∂U1

∂t
+ U1 · ∇U1

]
= n1F1 −∇ ·

(
1 +

2π

3
d3

1n1χ11

)
P1 −

3∑
j=2

ν1j,cρ1U1

−
3∑
j=2

2π

3

(
d1 + dj

2

)3

∇(n1κTnjχ1j)− ρ1ν1s,c(U1 −Us) ,

(8.1)
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ρs

[
∂Us

∂t
+ Us · ∇Us

]
= nsFs −∇ps +∇ · µ

[
∇Us + (∇Us)

T − 2

3
∇ ·UsI

]
− ρsνs1,c(Us −U1)−

3∑
j=2

ρsνsj,cUs .

(8.2)

8.1.2 Cations and anions

The interstitial fluid contains small charged solutes, i.e. ions, which we already have dis-
cussed in Chapter 6 and 7. We will include equations for (monovalent) anions and cations.
The equations are deduced in a similar manner as for the solute (1-particles) in Chapter
4. The subscript i refers to ions.

Assumptions

In the same manner as we did for the solute in Chapter 4, we must account for interactions
between ions and other components in the fluid.

1. other ions, i-particles

The collisions i-particles do with other i-particles is accounted for. The dense ii-effects
will be neglected since the ions are small, almost point-like particles, and di is assumed
neglegible.

2. structural matrix components, 2- and 3-particles

The ions interact with the fixed components of the matrix. This gives rise to an expanded
pressure term in the equation of motion, and furthermore, i2- and i3 friction terms.

3. background solvent, s-particles

Interactions between ions and background solvent s is assumed to give rise to a is friction
drag term in the equation of motion. In addition, this term must be added to the equation
of motion for the solvent in accordance with Newton’s third law of motion.

4. solute, 1-particles

It is assumed that 1-particles may have a charge q1. However, we neglect interactions
between 1-particles and ions on a collisional level, and assume that interactions take place
only when 1-particles are charged. In that case the interactions are considered to be via
the electric field.

In accordance with Chapter 6 the electric field E is given by

∇ · E(r, t) =
1

ε0κd

( ∑
i=an,cat

qini(r, t) + q1n1(r, t) + q3n3(r, t)

)
, (8.3)

where ni are the ionic densities, n1 and n3 are the density of 1-particles and charged
matrix components respectively, and qi, q1 and q3 are the respective molecular charges.
The equation also include the permittivity in vacuum, ε0, and the dielectric constant, κd.
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Expanded set of equations

For the ions we then have a continuity equation and an equation of motion, for both
anions and cations, giving four new equations. The equation of motion for the solvent and
1-particles are modified in accordance with the above assumptions. The expanded set of
equations is found to be

∂ρ1

∂t
+∇ · (ρ1U1) = 0 ,

ρ1

[
∂U1

∂t
+ U1 · ∇U1

]
= n1F1 + n1q1E−∇ ·

(
1 +

2π

3
d3

1n1χ11

)
P1 −

3∑
j=2

ν1jρ1U1

−
3∑
j=2

2π

3

(
d1 + dj

2

)3

∇(n1κTnjχ1j)− ρ1ν1s(U1 −Us) ,

∂ρs
∂t

+∇ · (ρsUs) = 0 ,

ρs

[
∂Us

∂t
+ Us · ∇Us

]
= nsFs −∇ps +∇ · µ

[
∇Us + (∇Us)

T − 2

3
∇ ·UsI

]
− ρsνs1(Us −U1)−

∑
i

ρsνsi(Us −Ui)−
3∑
j=2

ρsνsjUs ,

∂ρi
∂t

+∇ · (ρiUi) = 0 , i = an, cat ,

ρi

[
∂Ui

∂t
+ Ui · ∇Ui

]
= niFi + niqiE−∇ ·Pi −

3∑
j=2

νijρiUi

−
3∑
j=2

2π

3

(
dj
2

)3

∇(niκTnjχij)− ρiνis(Ui −Us) , i = an, cat ,

(8.4)

In the above equation, Fi is now any force additional to qiE. The electric field E is given
by Equation (8.3).
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8.2 Expansion of the compartment model

We will now expand the compartment model derived in Chapter 5. The set of equations
derived in the previous section is used for this purpose.

8.2.1 Model adaptation

We keep the compartment structure from the compartment model in Chapter 5. However,
the new set of equations makes us able to account for electrostatic properties in the fluid
system on both a microscopic and a macroscopic level. The fluid composition is expanded
to also include ions and charged components of the matrix, see Figure 8.1.

Figure 8.1: The interstitial compartment is composed of fixed macromolecules (lightly shaded), moving
macromolecules or solute (black) and a solvent (light blue), as in Chapter 5. The composition
is further expanded to also include charged fixed macromolecules (shaded) and small charged
solutes (not indicated in the figure). The large solute interacts with both the solvent, small
charged solutes and the fixed macromolecules, which account for the interstitial matrix.
z = flow direction.
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8.2.2 Membrane fluxes

We will not go into detail in the evaluation of the new fluxes, since this was done thoroughly
in Chapter 5. However, additional assumptions regarding the electrostatic properties are
needed before the fluxes can be evaluated.

� External forces additional to qE are absent.

� Fixed negative charges uniformly distributed in the capillary wall may give rise to a
macroscopic electric field

� Electric field is directed in the z-direction

� No x- and y-dependency in the electric field

� E = −∇φ

The dominating external forces of the system is assumed to be electrostatic forces, possibly
due to fixed charges in the capillary wall. This assumption is inspired by work done by
Deen et al. [3]. In this article Deen et al. studied fixed charges in the capillary membrane
in kidneys, and how they affected fluid filtration through the membrane.

The above assumptions imply an electric field to take the form

E = − d

dz
φez .

The resulting fluxes are

Js = −K
[
d

dz

(
P − σ1Π1 −

∑
i

σiΠi

)
+R

dφ

dz

]
,

J1 =
1

m1

1∑3
j=2 ν1j + ν1s

n1q1
dφ

dz
− 1

m1

1∑3
j=2 ν1j + ν1s

κT
d

dz
(X1n1)

+ n1
ν1s∑3

j=2 ν1j + ν1s

Js ,

Ji =
1

mi

1∑3
j=2 νij + νis

niqi
dφ

dz
− 1

mi

1∑3
j=2 νij + νis

κT
d

dz
(Xini)

+ ni
νis∑3

j=2 νij + νis
Js , i = an, cat ,
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where we have

K =
1(

1− νs1P3
j=2 νsj+

P
i νsi+νs1

· ν1sP3
j=2 ν1j+ν1s

−
∑

i
νs1P3

j=2 νsj+
P
i νsi+νs1

· νisP3
j=2 νij+νis

)
1

ρs

1∑3
j=2 νsj +

∑
i νsi + νs1

,

σ1 =

∑3
j=2 ν1j∑3

j=2 ν1j + ν1s

,

σi =

∑3
j=2 νij∑3

j=2 νij + νis
, i = an, cat ,

R = (1− σ1)n1q1 +
∑
i

(1− σi)niqi ,

X1 = 1 +
2π

3
d3

1n1χ11 +
3∑
j=2

2π

3

(
d1 + dj

2

)3

njχ1j ,

Xi = 1 +
3∑
j=2

2π

3

(
dj
2

)3

njχij ,

Π1 = κTX1n1 ,

Πi = κTXini , i = an, cat ,

P = ps + Π1 +
∑
i

Πi .

The parameter K is a local filtration coefficient. The collision frequencies ν1j and νij, which
appear in K, are given in accordance with (3.4) in Chapter 3. Additional ‘collision fre-
quencies’ appearing in K represent the magnitude of a friction force, described in Chapter
4 Section 4.5. ρs is the mass density for the solvent.

The parameters σ1 and σi are reflection coefficients, and R is an electrostatic reflection
coefficient. The number densities n1 and ni, and the molecular charges q1 and qi, all appear
in R.

The steric factors Xi for ions correspond to the steric factor X1 for the solute, which
was described in Chapter 5. They are functions of molecular sizes and number densities.

The pressures Π1 and Πi are the partial pressures of the solute and ion components
respectively, and are osmotic like pressures. κ is the Boltzmann constant and T is the
temperature. The pressure P is the sum of all the partial pressures, i.e. the total pressure
of the fluid as a whole.

When evaluating the fluxes through the pores we apply the same assumptions as we
did in Chapter 5. This imply again that all parameters which include properties of the
interstitial matrix, i.e. 2- and 3-parameters, is modified to pore wall parameters. Further-
more, we assume a linear drop in the electric potential over the capillary membrane, i.e.
dφ
dz
≈ 1

l
∆φ, where l is the membrane thickness.
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8.2.3 An expanded compartment Model

A complete expanded compartment model can then be presented.

d

dt
V = K ′cap,m

[
∆cap,mP − σ1,cap,mκT∆cap,m(X1n1)

−
∑
i

σi,cap,mκT∆cap,m(Xini) +Rcap,m∆cap,mφ

]
−K ′ly,m∆ly,mP ,

d

dt
M1 =

(
1

ν1pw + ν1s

S

l

)
cap,m

[
q1n1,cap,m∆cap,mφ+ κT∆cap,m(X1n1)

]
+m1n1,cap,m(1− σ1,cap,m)(JszS)in −m1n1,ly,m(JsS)out ,

d

dt
Mi =

(
1

νipw + νis

S

l

)
cap,m

[
qini,cap,m∆cap,mφ+ κT∆cap,m(Xini)

]
+mini,cap,m(1− σi,cap,m)(JszS)in −mini,ly,m(JsS)out , i = an, cat

m1n1,int =
M1

V

mini,int =
Mi

V
, i = an, cat

Pint = F (V ) ,

(8.5)

for the following 8 unknowns.

n1,int Interstitial solute density
ni,int , i = an, cat Interstitial ionic density
Pint Interstitial hydrostatic pressure
M1,int Total interstitial solute content
Mi,int , i = an, cat Total interstitial ionic content
Vint Total interstitial fluid volume

The parameter K ′m =
(
KS
l

)
m

is a filtration coefficient for the membrane, where S is
the total membrane surface and l is the membrane thickness. The operator ∆m is the
difference operator over the membrane, e.g. ∆cap,mP = Pcap−Pint and ∆ly,mP = Pint−Ply.
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Remark

If fixed charges in the capillary membrane restrict the transport of one type of ions relative to the other,
or if one type of ions in any other way is favored relative to the other, this would cause an imbalance in
the ionic densities, and hence an ambipolar electric field is governed over the membrane. The ambipolar
field will counteract the imbalance in such a way that there are no net transport of ionic charge through
the membrane. This effect is called ambipolar diffusion, and is described e.g. in [18]. Thus, if we neglect
the transport of charged solutes, this implies that we have

Jan = Jcat .

The two compartment equations for the ions may then be used to provide one common compartment equa-
tion and one equation for the electrostatic potential differences over the membrane ∆φ. The potential
difference found is then the sum of the potential due to the fixed charges and the ambipolar field. In the
Appendix A.6 there is given an example on how to derive a potential difference over a capillary membrane
due to fixed charges in the membrane.



Chapter 9

Conclusion and Further Work

9.1 Conclusions

The origin for this thesis was the paper by Wiig et al. [1]. This paper is a study of
exclusion phenomena in the interstitium, with emphasis on charge effects. It was quickly
established that mathematical modeling of the system could be of good use, and hopefully
gain additional information to the study.

The combination of microscopic and macroscopic effects in the problem lead to an
approach of solute equations as the governing equations for the system. The complexity of
the system became obvious after starting the work on deriving these solute equations. It
was decided that, in stead of a detailed study, we should make a general modeling approach
and aim to obtain an overall view of different effects which might come into force. In this
thesis we have thus obtained a general platform for studying transport of solutes through
the interstitium. Throughout the process it has been necessary to make several simplifying
assumptions, in order to proceed. It has been possible, and indeed tempting, to dive into
specific problem areas throughout the process.

Due to the interdisciplinary nature of the problem, we saw it as our task to present
our work in such a way that it may come in useful within areas of research other than
Applied Mathematics. Thus, a lot of time and effort has been put into the construction of
the thesis, and the presentation of the different subjects which are treated.

The compartment model obtained in this thesis is based on solute equations derived from
a microscopic level, and it thus contains microscopic information. Effects on a microscopic
level may therefore be followed on a compartment level.

The electrostatic model study performed in this thesis, provides useful observations
regarding electrostatic exclusion phenomena. One might think that the electrostatic ex-
clusion effects may be accounted for by adding the Debye length Λd to the protein radius.
The Debye length has thus been regarded an important parameter. Our study suggests
that an evaluation of the distance of closest approach dca, and hence the effective radius, for
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each protein might be necessary for a more accurate approach. For relevant ionic densities
and pH, the dca found in our study, and hence the effective radius a1,eff , is of the same
size order as the protein radius and the Debye length a1 + Λd. Allthough other interaction
effects may come into force simultaneously, the difference between the two approaches is
significant and may be possible to study in experiments.

9.2 Further works

Dressed protein: In our electrostatic model in Chapter 7, a possible shielding effect
on the protein is not taken into account. This might affect the distance of closest
approach dca, and hence the effective radius. It is likely that such an effect, if relevant
in size, would lead to a decrease in the effective protein radius.

Effect of ions and polarization inside GAG: In the derivation of the electrostatic po-
tential, to be used in the electrostatic model, several simplifying assumptions are
made. Inside the source sphere (GAG) the polarization effect (dielectric constant κd)
is assumed equal to the surrounding fluid. In addition the effect of small ions inside
the GAG sphere is neglected. Both simplifications may be further studied.

Macroscopic electrostatic model: Our electrostatic model study may provide an esti-
mation of the effective protein radius, and it might be used to calculate the excluded
volume due to glycosaminoglycans. In physiological experiments the total excluded
volume is measured, i.e. excluded volume due to both collagenes and GAGs. Thus,
a macroscopic model, based on our electrostatic model, that estimates the total ex-
cluded volume might be derived.

Macromolecular crowding: In the paper by Wiig et al. [1] it is found that the relative
charge contribution to the excluded volume, decreases as the tissue is dehydrated.
Thus, effects of overlapping domains of the electrostatic field might come into force.
In our model this has not been accounted for.

In Chapter 3 dense gas corrections due to shielding were added to the collision fre-
quency. When the density in a gas increases, particle collisions are increasingly
shielded (interrupted) by other particles. The shielding may be interpreted as a loss
of efficiency in the collisional transfer at each encounter. This might affect the elec-
trostatic interaction between charged particles, and hence the electrostatic exclusion
effect. In addition, since our solute equations contain collision frequencies for interac-
tions between solute and matrix molecules, and since dehydration, or macromolecular
crowding of the interstitium, might be represented by an increased density of matrix
molecules in our model, it follows that the shielding effect is an interesting property
for further studies.
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The polarization effect mentioned above may also be further studied in light of macro-
molecular crowding. There might be a decrease of the polarization effect during de-
hydration of the tissue. As described in Chapter 6 this would lead to a decrease in
the Debye length, which further implies a reduced electrostatic exclusion.

Refine compartment model → simulations: The compartment model obtained in Chap-
ter 5, and further expanded in Chapter 8, may be applied for numerical simulations
of interstitial flow. The model is based on several simplifications, which might be
refined.

Pore flow/Membrane transport: Our set of solute and solvent equations governing
the interstitial flow is assumed to also apply for pore flow through the membranes.
This was simply done by removing all terms due to matrix interactions, and add
similar term due to pore wall interactions. This process should have been studied
more thoroughly.

Expand Starling model to Plasma Leak model: Our compartment model was de-
rived in accordance with the Starling model from the paper by Bert et al. [2]. In
this paper there are presented two models; the Starling model and the Plasma Leak
model. Whereas the Plasma Leak model accounts for flux variations along the cap-
illary membrane, and thus is a more complex model, these variations are neglected
in the Starling model. The Plasma Leak model was found to provide more accurate
simulation predictions. Thus, our set of equations may be used to derive a similar
compartment model.

Ambipolar field: In Chapter 8 a macroscopic electrostatic field due to fixed charges in
the capillary membrane was included in the compartment model. This work was
inspired by a paper by Deen et al. [3] on solute transport through a charged capillary
membrane in kidneys. A charged capillary membrane might favor the transport of
one polarity of small charged solutes (ions), and thus lead to an imbalance in the
ionic concentrations. As the imbalance increases an ambipolar field is build up across
the capillary membrane, which will affect the transport of charged solutes in such a
way that the imbalance is evened out. This was only briefly mentioned in Chapter
8, and should be studied in more details.





Appendix A

A.1 First and second order velocity moments of the

Boltzmann equation

Equation of motion - first order moment

First order velocity moment of the Boltzmann equation is obtained multiplying the velocity
v into the equation and integrate over the velocity space. We integrate the Boltzmann
Equation (4.6) term by term.∫

v
∂f

∂t
dv =

∂

∂t

∫
vf dv =

∂

∂t
(nU) , (A.1)∫

v

(
v · ∂f

∂r

)
dv =

∫
v
∂

∂r
· (vf) dv =

∂

∂r
·
∫

vvf dv

=
∂

∂r
·
∫ [

(v −U)(v −U) + vU + Uv −UU

]
f dv

=
∂

∂r
·
[

1

m
P + nUU + nUU− nUU

]
=

1

m
∇ ·P +∇ · (nUU) , (A.2)∫

v

(
F

m
· ∂f
∂v

)
dv =

∫
vj

(
Fi
m

∂f

∂vi

)
dvej =

Fi
m

∫
vj

(
∂f

∂vi

)
dvej

=
Fi
m
δijnej = − 1

m
nF , (A.3)∫

vνc(fM − f) dv = νc

∫
v(fM − f) dv = νc(nU− nU) = 0 , (A.4)

where ∇ is the spatial del operator and δij is the Kronecker delta, see Section A.5. In the
force term computation (A.3) we have applied integration by parts.
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Temperature equation - second order moment

We now multiply (v − U)2 into the Boltzmann Equation (4.6) and perform the velocity
integration. This corresponds to the trace of the tensor (v −U)(v −U), and thus is the
trace of the second order moment. We integrate the Boltzmann Equation (4.6) term by
term. ∫

(v −U)2∂f

∂t
dv =

∂

∂t

∫
(v −U)2f dv + 2

∫
f(v −U) · ∂U

∂t
dv

=
∂

∂t
(

1

m
3nκT ) + 2

∫
f(v −U) dv · ∂U

∂t
=

1

m

∂

∂t
(3nκT ) , (A.5)∫

(v −U)2

(
v · ∂f

∂r

)
dv =

∫
(v −U)2 ∂

∂r
·
(

vf

)
dv

=

∫
∂

∂r
·
(

(v −U)2vf

)
dv −

∫
∂

∂r
(v −U)2 · vf) dv

=
∂

∂r
·
∫

(v −U)2vf dv + 2

∫
v · ∂U

∂r
· (v −U)f dv

=
∂

∂r
·
∫

(v −U)2(v −U)f dv +
∂

∂r
·
∫

(v −U)2Uf dv

+ 2

∫
(v −U) · ∂U

∂r
· (v −U)f dv + 2

∫
U · ∂U

∂r
· (v −U)f dv

= ∇ ·
(

2

m
q

)
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(
3nκ

m
TU

)
+

2

m
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P : ∇U , (A.6)∫
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∫
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·
(

F

m
f

)
dv
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∫
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f
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∫
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f dv

=

∫
P

v
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∫
(v −U)f dv · F

m
= 0 , (A.7)

∫
(v −U)2νc(fM − f) dv = νc

[
3nκ

m
T − 3nκ

m
T

]
= 0 , (A.8)

where ∇ is the spatial del operator.
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A.2 Velocity moments of the Boltzmann equation -

corrections for multicomponent fluid and dense

gas effects

Multicomponent fluid

The velocity moments of zeroth and first order for the additional term in Boltzmann
Equation (4.21) is computed.∫

miνij(fij,M − fi) dvi = miνij

∫
(fij,M − fi) dvi = miνij(ni − ni) = 0 , (A.9)∫

miviνij(fij,M − fi) dvi = miνij

∫
vi(fij,M − fi) dvi

= miνij

[ ∫
(vi −Uj)fij,M dvi +

∫
Ujfij,M dvi −miνij

∫
vifi dvi

]
= miνij(0 + niUj − niUi) = νijρi(Uj −Ui) . (A.10)
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Dense gas effects

There are included correction terms in the Boltzmann Equation (4.15), first for a one
component fluid. Velocity moments of zeroth, first and second order are computed.∫

m
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Additional dense gas correction term for multicomponent fluid:∫
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given that Uj = 0.∫
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given that Uj = 0.
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A.3 Derivation of the Boltzmann distribution from

equation of motion

An equation of motion for ions was deduced in Chapter 8. If we consider a system of ions
and solvent, i.e. no hindrance particles, and if we neglect all outer forces acting on the ions
other than the electric force, the equation of motion reduces to

ρi

[
∂Ui

∂t
+ Ui · ∇Ui

]
= niqiE−∇ ·Pi − νij,cρi(Ui −Us) , i = an, cat .

The subscript i refers to either anions or cations. When the fluid is in local thermodynamic
equilibrium one assumes that the dominating forces are the pressure force and the electric
force, and that the dominating part of the pressure tensor Pi is niκT I, i.e. thermal pressure
[13]. If we in addition assume that the acceleration term on the left is small and negligible
we are left with a force balance

κT∇ni = −niqi∇φ ,

where we have made use of E = −∇φ, shown in Chapter 6. The equation is a simple first
order DE with solution

ni = ni,0e
− qi
κT
φ , i = an, cat , (A.16)

where ni,0 is taken to be the ionic density where φ = 0. The above expression is known as
the Boltzmann distribution, and it relates the ionic density to the electric potential.
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A.4 Electrostatic potential - spherical shell model

The solutions for an electric potential surrounding a charged spherical shell on separate
domains are found to be

φ(r) =


C1 for r < a

− 1

6ε0κd
ρf,shellr

2 +
C2

r
+ C3 for a < r < a+ δ

C4
1

r
e−Λ−1

d r for r � a+ δ

, (A.17)
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=
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3ε0κd
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−C4(1 + rΛ−1
d )e−Λ−1

d r for r � a+ δ

. (A.18)

The solutions is matched to second order at the two interfaces r = a and r = a+ δ.

1. r2dφ
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4. φ is streched inwards to match in r = a+ δ :
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r→(a+δ)−

φ(r) = lim
r→(a+δ)+

φ(r) ⇒

− 1

6ε0κd
ρf,shell(a+ δ)2 +

C2

a+ δ
+ C3 = lim

r→a+δ+
C4

1

a+ δ
e−Λ−1

d (a+δ) ⇒

C3 =
1

6ε0κd
ρf,shell

1

a+ δ

(
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)

1 + (a+ δ)Λ−1
d

)
,

C1 =
1

6ε0κd
ρf,shell

[
1

a+ δ

(
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)

1 + (a+ δ)Λ−1
d

)
− 3a2

]
.

The coefficients goes into the expression (A.17) and we obtain

φ(r) =

8>>>>>>><>>>>>>>:

1

6ε0κd
ρf,shell

»
1

a+ δ

„
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)

1 + (a+ δ)Λ−1
d

«
− 3a2

–
for r < a

1

6ε0κd
ρf,shell

»
1

a+ δ

„
(a+ δ)3 + 2a3 +

2((a+ δ)3 − a3)

1 + (a+ δ)Λ−1
d

«
−

1

r
(r3 + 2a3)

–
for a < r < a+ δ

1

3ε0κd
ρf,shell

„
(a+ δ)3 − a3

«
1

1 + (a+ δ)Λ−1
d

1

r
e−Λ−1

d
(r−(a+δ)) for r > a+ δ

. (A.19)

We now expand the obtained expressions in terms of powers of δ. We make use of the
following relations:

1

a+ δ
∼ 1

a

[
1− δ

a
+O(δ2)

]
,

1

(a+ δ)2
∼ 1

a2

[
1− 2

δ

a
+O(δ2)

]
,

1

1 + (a+ δ)Λ−1
d

∼ 1

1 + aΛ−1
d

[
1− δΛ−1

d

1 + aΛ−1
d

+O(δ2)

]
,

eΛ−1
d (r−(a+δ)) ∼ eΛ−1

d (r−a)

[
1− Λ−1

d δ +O(δ2)

]
.

We also make use of a change in the coordinates for a < r < a + δ. We set r = a + δx
where 0 < x < 1. This result in the following expansion for φ

φ(r) =



1
ε0κd

ρf,shellδa
1

1 + aΛ−1
d

+O(δ2) for r < a

1
ε0κd

ρf,shellδa
1

1 + aΛ−1
d

+O(δ2) for 0 < x < 1 (a < r < a+ δ)

1
ε0κd

ρf,shellδa
1

1 + aΛ−1
d

a

r
e−Λ−1

d (r−a) +O(δ2) for r ≥ a+ δ

, (A.20)

which is discontinuous to first order. However, the above expression may be a good ap-
proximation for the electric potential for small δ.

The free charge for the entire domain is a stepfunction of r, i.e.

ρf =


0 for r < a

ρf,shell for a < r < a+ δ

0 for r ≥ a+ δ

.
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Thus, to conserve the total charge of the GAG we must require that

lim
δ→0

(δρf,shell) = σf,surf , (A.21)

where σf,surf is the surface charge density. If we now let δ → 0 we are left with

φ(r) =


1

ε0κd
σf,surfa

1

1 + aΛ−1
d

for r < a

1

ε0κd
σf,surfa

1

1 + aΛ−1
d

a

r
e−Λ−1

d (r−a) for r ≥ a
, (A.22)

which may approximate the electric potential surrounding charged spherical shells, when-
ever the shell is sufficiently thin, i.e. δ is sufficiently small.

This derivation has been done in an attempt to explain the ‘nonphysical’ behaviour of
the electric field due to placing all the charge at the surface of a GAG.

A.5 Kronecker Delta

The Kronecker Delta is defined as [19]

δij =

{
1 if i = j

0 if i 6= j
. (A.23)
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A.6 Electrostatic potential for a cylindrical geometry

- potential difference

In Chapter 6 various solutions for the electric potential is obtained in a spherical geometry.
In this section a solution is obtained for a cylindrical geometry. The derivation is similar as
in previous attempts, however, the governing equation changes in cylindrical coordinates.
Since the derivation have been described thoroughly in Chapter 6, we will omit details in
the following derivation.

We consider a charged cylinder where the charge is uniformly distributed in a cylindrical
shell outside the cylinder. See Figure A.1. The charged cylinder is placed in the same fluid

Figure A.1: The charged cylindrical shell of thickness δ is surrounded by water and small ions. The free
charge of the system changes for r = a and r = a + δ and the potential must be found on
the three domains separately. Inside the cylinder, 0 ≤ r < a, there are no free charges. In
the cylindrical shell, a < r < a+ δ, free charge is uniformly distributed ρf,shell. Outside the
source shell, r > a+ δ, the free charge is given by the density of anions n− and cations n+

times the unit charge e.

as in previous attempts, water and ions. With the Laplace operator written in cylindrical
coordinates, the governing equation for the three different domains are given as

1

r

d

dr

(
r
d

dr
φ

)
= 0 for r < a

1

r

d

dr

(
r
d

dr
φ

)
= − 1

ε0κd
ρf,shell for a < r < a+ δ

1

r

d

dr

(
r
d

dr
φ

)
=

1

Λ2
d

φ for r � a+ δ

. (A.24)

It is a straight forward procedure to solve the equation on the two internal domains, r < a
and a ≤ r ≤ a+ δ. However, it is not straight forward to obtain a solution on the external
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domain, r > a+δ. Here the solution can be written as a linear combination of two modified
Bessel functions. Often cylindrical geometries generate this type of solutions, and they are
therefore also known as cylinder functions. To sum up we have

φ(r) =


C1 ln r + C2 for r < a

− 1

4ε0κd
ρf,shellr

2 + C3 ln r + C4 for a < r < a+ δ

C5BesselI0(
1

Λd

r) + C6BesselK0(
1

Λd

r) for r � a+ δ

. (A.25)

The nature of the Bessel functions can briefly be described as one having a singularity at
the origin (BesselK) and one having a singularity at infinity (BesselI). We use the same
boundary and matching conditions as for spherical coordinates. Therefore, to avoid the
potential to diverge for large r we must require that C5 is zero. To avoid the potential to
diverge at the origin we must in the same manner require that C1 is zero.

To be able to match the solution at the two boundaries r = a and r = a+ δ we approx-
imate the BesselK function by its first order asymptotic expansion, valid for arguments
less than 1, i.e. r � Λd:

BesselK0 ∼
1

2

√
2π

√
Λd

r
e−Λ−1

d r +O(
1

r
3
2

e−r) . (A.26)

After completion of the four matching conditions we are left with

φ(r) =

8>>>>>><>>>>>>:

1

4ε0κd
ρf,shell

»
2

Λd

a+ δ

„
(a+ δ)2 − a2

«
+ (a+ δ)2 − a2 − 2a2

„
ln(a+ δ)− ln a

«–
for r < a

1

4ε0κd
ρf,shell

»
2

Λd

a+ δ

„
(a+ δ)2 − a2

«
+ (a+ δ)2 − r2 − 2a2

„
ln(a+ δ)− ln r

«–
for a < r < a+ δ

1

4ε0κd
ρf,shell

»
2

Λdp
r(a+ δ)

„
(a+ δ)2 − a2

«–
e−Λ−1

d
(r−(a+δ)) for r > a+ δ

, (A.27)

which is valid if a+ δ � Λd.
It follows that the potential difference over a cylindrical shell of thickness δ is

∆φ = φ(a+ δ)−φ(a) = − 1

4ε0κd
ρf,shell

[
(a+ δ)2− a2− 2a2

(
ln(a+ δ)− ln a

)]
. (A.28)





Appendix B

Nomenclature

Symbol Description
ν Collision frequency
v Particle velocity
d Diameter
n number density
V Volume
χ Steric factor (microscopic level)
f Distribution function
fM Maxwell distribution
F Forces
m Particle mass
ρ Mass density
U Velocity field
P Pressure tensor
p Scalar pressure
T Temperature
κ Boltzmann’s constant
q Heat flux vector
µ Viscosity
S Surface
M Mass
J Flux
X Steric factor (macroscopic level)
P Hydrostatic pressure
Π Osmotic pressure
K Local filtration coefficient
σ Reflection coefficient
K ′ Filtration coefficient
l length

97



98 Nomenclature

D Displacement field
ρf Free charge density
E Electric field
Q, q Charge
ε0 Permittivity in vacuum
κd Dielectric constant
φ Electrostatic potential
e Elementary charge
a radius of a sphere
Λd Debye length
δ Shell thickness
σ Surface charge density
Vp Potential energy
Ek Kinetic energy
dca Distance of closest approach
NA Avogrado’s number
R Electrostatic reflection coefficient

Subscripts

Symbol Description
1 1-particles
2 2-particles
3 3-particles
s s-particles (solvent)
+, cat cation
−, an anion
vol volume
surf surface
shell spherical shell
1→ 2, 12 1- to 2-particle (collisions)
pw Pore wall
int Interstitium
cap Capillary
ly Lymph
AV Available
E Excluded
0 Reference value
eff Effective
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