
Specification and Prototyping for
Design of a Control System for
Proton Computer Tomography.

A thesis by

Aleksei Kuleshov
for degree of

Master of Science in Physics

Department of Physics and Technology
Faculty of Mathematics and Natural Sciences

November 2019

Abstract

Proton Computer Tomography (pCT) is a new imaging modality. It based on proton
with matter interaction. Treatment with protons is used already against cancer, as
it offers the possibility to give a high dose to the tumour, while at the same time
deposit a very low dose to the surrounding tissue. Imaging with protons improves
the accuracy of the dose planning. However, there are no commercial pCT scanners
available in the market today.

At the Department of Physics and Technology at the University of Bergen, a new
generation of a Digital Tracking Calorimeter (DTC) is designed. It is a significant
part of the pCT system. It is a highly complex device designed with 41 layers of
ALPIDEs, a Monotholitic Active Pixel Sensor. It is more than 4000 ALPIDEs in the
design, and they will be read out and controlled by 41 custom readout units. A
control system is required, both to configure the system and to monitor vital health
parameters such as temperatures, current and voltages during operation. During
this thesis, prototyping has been done to find the best solution. At the time of writ-
ing, the DTC is still under development, so the work covers tests of communication
protocols and prototyping of a monitoring system with randomly generated data.

Various options of communication protocols for the pCT control system has been
tested in this thesis.The work of this thesis has shown that the best option for the
pCT control system will be the use of OPC UA communication protocol as it is a
standard industrial protocol of communication. An OPC UA information model for
the pCT has been developed. The XML design file has been imported to a commer-
cial SDK.

iii

Acknowledgments

First of all, it was an excellent opportunity to come to the Department of Physics
and Technology at the University of Bergen. I have a physical background from
Saint-Petersburg’s State University and perfect memories about people and the at-
mosphere around science. I’m more than satisfied with the time spent on my stud-
ies. I wished to do valuable work for science and society. I’ve learned a lot as it was
my goal.

I want to thank associate professor Johan Alme and professor Kjetil Ullaland for
their supervision, Ola Grøttvik , Magnus Rentsch Ersdal, Simon Voigt Nesbø, and
Ganesh Jagannath Tambave and my fellow students.

I appreciate my family and sibling for support during my thesis. Without them, this
would not be possible.

v

Contents

Abstract iii

Acknowledgment v

Glossary xi

1 Introduction 1
1.1 Proton therapy and proton CT . 1
1.2 Proton CT at UiB . 4
1.3 The ALPIDE . 5

1.3.1 The ALICE experiment and ITS upgrade 5
1.4 The need of a control system . 6
1.5 Objective of this thesis . 7
1.6 Overview (Thesis structure) . 8

2 Control Systems 11
2.1 SCADA . 11

2.1.1 Industrial Control systems . 12
2.2 Distributed Control Systems . 13
2.3 OPC UA . 13
2.4 MQTT . 14
2.5 ALICE Detector Control System . 15

2.5.1 ALICE DCS Operation . 15
2.5.2 DIM protocol . 16
2.5.3 Summary . 17

3 Proton CT Readout Unit 19
3.1 VCU118 . 19

3.1.1 FreeRTOS . 19
3.1.2 Other subsystems in the pCT 22

3.2 The ALPIDE . 23
3.2.1 Pixel’s front-end . 23
3.2.2 Priority Encoder . 23
3.2.3 ALPIDE block diagram . 24

vii

3.2.4 ALPIDE ADC . 24

4 Requirements for a pCT Control System 29
4.1 General requirements . 29
4.2 Graphical interface requirement . 29
4.3 Technical requirements . 30

4.3.1 Loss of packet with monitoring information 30
4.3.2 Protection from erroneous data 30
4.3.3 Monitoring protocol . 31
4.3.4 On-board monitoring software 31
4.3.5 Schedule ADC scan . 31
4.3.6 Timestamp for monitored parameters 31
4.3.7 Cross-platform protocol . 32
4.3.8 Open-source technology implementation 32
4.3.9 Estimation of amount of monitored data 32
4.3.10 Requirements summary . 36

5 Prototyping 39
5.1 MQTT . 39

5.1.1 Topic structure for pCT . 40
5.1.2 Broadcasting of messages . 42
5.1.3 MQTT subscriptions in pCT . 43
5.1.4 MQTT message flows in pCT 44
5.1.5 Test framework for MQTT . 45
5.1.6 MQTT request-response time test. 48
5.1.7 Summary . 49

5.2 OPC UA . 49
5.2.1 Information modeling . 49
5.2.2 OPC UA Information model for pCT control system 50
5.2.3 Summary . 54

5.3 Top-level control system . 54

6 Proposal of Production Version Control System Architecture 57
6.1 MQTT only . 57
6.2 OPC only . 58
6.3 OPC and MQTT . 60

7 Conclusion and future work 61
7.1 Conclusion . 61
7.2 Future work . 62

Bibliography 63

A ALPIDE 67
A.1 ADC readings functions in TAlpide.cpp 67
A.2 ALPIDE’s Front-end . 70

viii

B OPC UA 71
B.1 Graphical notations . 71
B.2 XML file for pCT Information model 72
B.3 UaModeler view of the pCT instrument 77

ix

Glossary

ALPIDE Alice Pixel Detector
ALICE A Large Ion Collider Experiment
ADC Analog to Digital Converter
CT Computer Tomography
CMU Control Management Unit
DAC Digital to Analog Converter
DB Data Base
DCS Detector Control System
DMU Data Management Unit
DTC Digital tracking colorimeter
DTU Data Transmission Unit
FROMU Framing and Management Unit
FSM Finite State Machine
ICS Industrial Control Systems
IoT Internet of Things
IP Internet Protocol
ITS Inner Tracking System
FPGA Field-Programmable Gate Array
GUI Graphical User Interface
HMI Human-Machine Interface
HU Hounsfield Unit
LET Linear Energy Transfer
LHC Large Hadron Collider
LS2 Long Shutdown two(in LHC)
MEB Multi Event Buffer
OS Operating System
pCT proton Computer Tomography
PID Proportional-Integral-Derivative
PLC Programmable Logic Controller
pRU proton Readout Unit
RSP Relative Stopping Power
RTOS Real Time Operating System
RU Readout Unit
SCADA Supervisory Control and Data Acquisition

xi

SOBP Spread Out Bragg Peak
UiB University of Bergen

xii

Chapter 1

Introduction

1.1 Proton therapy and proton CT

Proton therapy is a way of irradiation treatment of diseased tissue for medical pur-
poses, most often in regards to cancer. This is a particular case of charged particle
irradiation when protons are used. The main advantage of proton and other ion
therapy over traditional radiotherapy using gamma radiation is that the most dose
of a charged particle is deposited in a narrow range in the tissue. This region is
known as the Bragg peak after William Henry Bragg who discovered it in 1903.

The Bragg Curve is a graph of the energy loss rate, or Linear Energy Transfer (LET)
as a function of the distance through a stopping medium. For protons, the peak
occurs immediately before the particles come to rest. This peak is about two-three
times higher than the LET at the entering of a stopping medium. Heavier ions have
a longer tail after the peak [1]. It makes protons superior due to sharp transition
from the peak of LET to zero LET at the depth which is proportional to the initial
energy of the proton beam.

In Figure 1.1 the difference between 10 MeV photon and a single proton beam can
be observed. A typical treatment planning for proton therapy is initiated by the
determination of a tumor area. In Figure 1.1 this is between dotted lines, depth
from approximately 55 to 145 mm. On the vertical axis dose in percentage, where
100% is the desired dose in the tumor area. In proton treatment the deposition of
dose has a maximum near the surface, with a slow dacey with depth. Proton beam
of a given energy, instead, has peak and sharp decay (pristine peak on Figure 1.1).
For achieving a 100 % dose in the desired area, several proton beams with different
energies are used (blue lines under the pristine peak in Figure 1.1, so combined dose
from these beams gives spread out Bragg Peak (SOBP) region which covers tumor
area. SOBP keeps sharp decay of the single proton beam, which makes it superior
in treatment near to vital organs.

1

2 Proton therapy and proton CT

Figure 1.1: A comparison of 10 MeV photon (black) with spread-out Bragg peak
(SOBP, red)[2]

Figure 1.2: A comparison of treatment plans for head cancer. Photon is on the left,
protons on the right. [5]

CHAPTER 1 INTRODUCTION 3

Studies shows that the mean and integral doses were lower for protons[3]. Thus
fewer side effects are expected for proton therapy. The biological effect on cancerous
cells is two to three times higher [4]. Treatment plans with protons have trade-offs
between keeping low unwanted damage in shallow tissues and reaching the desired
dose it tumor area. Often less than the desired dose is used in photon treatment to
avoid damage in healthy tissues and avoid the side effects of radiation treatment.

Figure 1.2 shows a cross-section of a head for photon and proton treatment plans.
The blue regions in the proton treatment plan are significantly smaller than for pho-
tons. This indicates that the rest of the body will get close to zero dose. It means
that transition in dose between healthy tissue and tumor can be made very steep
in proton treatment. Thus the ultimate goal of cancer treatment to keep margins as
small as possible can be achieved. Proton therapy today is performed by precalcu-
lated dose based on X-ray computer tomography (CT) images. The X-ray CT images
reflect the patient‘s anatomy in therm of photon interaction with matter, not protons.

The Relative Stopping Power (RSP) for protons in tissue is needed to calculate the
proton range during dose calculations. The RSP maps can be obtained by converting
attenuation of x-rays, represented by Hounsfield Unit (HU) maps in tissue, to RSP
maps in the same tissue. Figure 1.3 shows conversion curves which are non-linear
and obtained by end-to-end tests using an anthropomorphic phantom containing
tissue-equivalent materials and dosimeters. This conversion procedure introduces
range uncertainties in the order of 2–3%, corresponding to 4–6 mm at treatment
depth 20 cm into the patient [6].

Figure 1.3: Relative Stopping Power to Hounsfield Unit calibration curve for Light-
Speed and Discovery CT Scanners [7]. The zoomed area highlights non-
linear behavior of calibration points which introduce uncertainties in the
conversion from HU to RSP.

4 Proton CT at UiB

Proton CT addresses the problem of the conversion between HU and RSP. Currently
the patient has to move from photon scanner to proton treatment. It would be ben-
eficial to perform proton scan and irradiation at the same place. The difference be-
tween proton CT scans and proton therapy is only the energy of the protons in the
beam. Thus proton CT images would eliminate positioning uncertainties from con-
version between HU maps to RSP maps. To solve this task, a special detector is
needed to measure the energy and direction of each proton passed through tissue.

1.2 Proton CT at UiB

At the Department of Physics and Technology at the University of Bergen a new
generation of the Digital Tracking Calorimeter (DTC) is designed, which is a major
part of the proton CT system. A proof-of-concept of the DTC for proton CT has
already been made with the previous generation of sensor chips[8]. A complete
proton CT system will consist of the DTC, readout electronics, cooling, power, and
control systems. The design of the DTC will only be briefly described here. Me-
chanical drawing is shown in Figure 1.4.

The digital Tracking Calorimeter (DTC)

The proof-of-concept of the DTC was originally dedicated to the ALICE-FoCal project,
where the reconstruction of high-energy electromagnetic showers is needed. The
advantages of DTC for proton CT usage was recognized later. The DTC allows
not only to reconstruct individual proton tracks but also to measure the energy of
protons after passing through an object. It is also substantially faster than using tra-
ditional calorimeters.

Figure 1.4: 3D view of the DTC [14].

It has 41 layers. Each layer has divided horizontally into two parts and has nine hor-
izontal oriented ALPIDEs in a row is stacked in 12 columns. Sensor chips - ALPIDEs

CHAPTER 1 INTRODUCTION 5

(dark blue) arranged in staves with a cable (yellow). The staves altered on both sides
of the absorber and all staves on the front surface have cables on the right. Staves
of the rear surface have cables on the left. At the top of the DTC, there are cooling
inlets (light blue) and outlets (red). There is an air gap 2 mm between layers [14].

1.3 The ALPIDE

The ALPIDE chip is a state-of-art detector chip for particle detection. It makes the
ALPIDE an ideal candidate for use in proton CT. It is not so many special chips
for particle detection, so newest ALPIDE developed for CERN stand out it term of
specifications among them.

1.3.1 The ALICE experiment and ITS upgrade

The ALICE(A Large Ion Collider Experiment) is a general-purpose heavy-ion de-
tector at the CERN LHC. It is designed to study the physics of strongly interacting
matter and the quark-gluon plasma at the high temperature and density in nucleus-
nucleus collisions. The first ideas for the ALICE detector were formulated during a
workshop in 1990. The design was approved in 1997[15].

ALICE Inner Tracking System (ITS) is the subdetector closes to the Interaction Point.
Its next upgrade is planned on during 2019-2020 (second long shutdown of LHC). It
is currently being upgraded and the new ITS will consist of: Inner Barrel (IB) - three
layers and Outer Barrel (OB) - four layers. The new layout is shown in Figure 1.5.
The detector layers will be installed on distances from 22 mm to 400 mm around in-
teraction point. All layers are using ALPIDE as the sensor chip. The only difference
in readout connection. The further layer from collision point, the less occupancy or
particle detection is expected. After start of LHC in 2021 statistics will increase by
factor of 50-100 [17].

Figure 1.5: ALICE new ITS layout. [16].

6 The need of a control system

1.4 The need of a control system

Control systems are playing a key role in complex systems nowadays, where data
interaction is essential. Data exchange is what drives today’s progress of the Internet
of Things (IoT) and Industry 4.0. It will allow a system to make decisions (change
behavior) according to incoming data. Design of a control system covers the de-
velopment and planing of the data path for all sensors and subsystems. In many
cases it is also influences the hardware. A control system commands or regulates
the behavior of other devices or subsystems. Analysis of all parameters in real-time
is also a task of a control system.

Almost every chip or microcontroller needs configuration. This configuration can be
stored localy on an onboard flash or can be loaded at the power-on cycle. In systems
with many similar components, it is common to store configuration in a database.
It allows to easily update the configurable parameters. To get a device or just one
chip in a ready state, a special procedure should be followed to avoid damage to the
electronics inside a device.

READY

Beam Tuning

Standby
Configured

Standby

POWER OFF Everything OFF

Ready for Physics

Beam operations

Configuration loaded

Device’s powered ON

Figure 1.6: State diagram of ALICE DCS[9].

A general state diagram for ALICE detector shown on Figure 1.6. In the such com-
plex system, verification must be done before state transitions. Each arrow on Figure
1.6 represents some actions and verification that this state is safe. During power on
it can be: starting cooling system, power supply voltage check, etc. After the config-
uration is loaded and tests passed device is ready for operation. In radiation envi-
ronments is common to update/reload configuration at the background to protect
from accidental memory changes. For pCT has been chosen to write the whole con-
figuration before each measurement, because errors are expected to happen very
often. On the fault conditions (fatal error), action has to be done immediately to
come to the safe state. It can be Standby or Power off.

CHAPTER 1 INTRODUCTION 7

Complex systems, like the ALICE detector, are so big, so it not possible to have an
operator who has professional knowledge about all subsystems. Thus the ultimate
goal for the development of a such control system is to create it such that an non-
expert can run it after some training. ALICE Detector Control System (DCS) is made
in this way. To achieve this, ALICE DCS has an alert handling where actions on
different alert levels have specified and are part of the control system. In a situation
where expert knowledge is required, a part of the system can be delegated to an
expert to control under special conditions [9].

1.5 Objective of this thesis

The proton CT prototype developed at the Department of Physics and Technology at
the University of Bergen will require a dedicated control system. The prototype has
been described in detail in Section 1.2. The detector has 41 layers with 108 ALPI-
DEs on each. Every layer has own Readout Unit (RU). Now, in the development
phase, the RU is prototyped on a Xilinx VCU118 development board. In an earlier
master thesis [22], FreeRTOS system has been installed on a soft-core processor pro-
grammed inside the FPGA. The read, write operations and readout of a simulated
hit from a single ALPIDE have been tested.

The specification of a control system is the next logical step forward to complete the
pCT prototype. During this thesis, requirements for the complete system is formu-
lated, various technologies are examined, and one or more solutions are proposed
and validated. The final control system has to be able to perform configuration and
monitoring tasks primarily for the ALPIDE chips and front-end electronics. Ability
to connect future parts into pCT and easy scaling of the system has to be possible
without fundamentally changing og the software or hardware.

A sketch of the relation between the general components in the monitoring system
is shown in Figure 1.7. ALPIDEs are unique in the sense of bad pixels masks, ADC
calibration coefficients, etc, so a configuration Data Base (DB) is needed. Logging of
monitored parameters allows analyzing historical data. An example: to find typical
operational values and adjust alarm and warning thresholds in monitoring soft-
ware.

A state machine diagram for the pCT detector with ALPIDEs is very similar to Fig-
ure 1.6. Monitoring software has to control transition between states, read-write
monitoring information, and make sure that RU with all ALPIDES is in safe opera-
tional mode. Some protection can be done on the RU locally to satisfy the required
reaction speed. In addition to the main software, it would be beneficial to be able
to run other copies on remote computers for monitoring purposes with restricted or
closed access for the write operation to ALPIDEs and RU.

8 Overview (Thesis structure)

Figure 1.7: A sketch of the relations in the pCT monitoring system.

1.6 Overview (Thesis structure)

Chapter 1 Introduction is covering the background for this thesis and describe some
technical aspects in details needed for understanding this work. Objective of this
thesis is given at the end of the chapter.

Chapter 2 Control Systems highlight technologies which are possible candidates for
monitoring system and have been evaluated to make basis for choice of the solution.
Finally, the chapter will conclude with an example of an existing control system, the
ALICE Detector Control System.

Chapter 3 Proton CT Readout Unit describes the proton CT Readout Unit, the
ALPIDE chip and FreeRTOS. Proposal of the whole pCT electronics system is given
as block diagram.

Chapter 4 Requirements for a pCT Control System Here requirements are formu-
lated for finding proper candidates and making decision later.

Chapter 5 Prototyping Consist of description development of prototypes for a con-
trol system for pCT. The chapter covers implementations of MQTT and OPC UA
thechnologies.

CHAPTER 1 INTRODUCTION 9

Chapter 6 Proposal of Production Version Control System In this chapter possible
solutions for pCT have been described. MQTT and OPC UA have considered sep-
aretly for design of control system for pCT. An option have been discussed where
both MQTT and OPC UA is used.

Chapter 7 Conclusion and future work summarize all result and gives proposal for
what can be done next.

Chapter 2

Control Systems

In this section, control systems in different applications will be described. It will give
a good overview of modern technologies and make requirements for a proposal for
the control system of the pCT. Finally, the chapter will conclude with an example of
an existing control system, the ALICE Detector Control System.

2.1 SCADA

The SCADA concept was developed as a universal means of remote access to a vari-
ety of local control modules, which could be from different manufacturers, allowing
access through standard automation protocols. In practice, large SCADA systems
have grown to become very similar to distributed control systems in function. They
can operate large-scale processes that can include multiple sites and work over large
distances.

Supervisory control and data acquisition (SCADA) covers the need to monitor and
control remote gear since the 1960s. A SCADA control system architecture uses com-
puters, networked data communications, and graphical user interfaces (GUI) for
high-level process supervisory management and other peripheral devices such as
programmable logic controller (PLC) and discrete proportional– integral–derivative
(PID) controllers to interface with the process plant or machinery. The SCADA sys-
tem for ALICE experiment is shown in Figure 2.1.

SCADA, according to IEEE Standard for SCADA and Automation Systems, is a concept
for a control system. The standard covers most of the aspects which designer will
face during the development of a SCADA system. However, "The designer/speci-
fier shall specify the protocol(s) required...". The word "designer/specifier" is used
many times in SCADA specification to point attention to that it is the designer’s
responsibility to choose technology, protocols, physical connections, functional ele-
ments, and the logical operation of the whole system. The standard does not force

11

12 SCADA

to use specific technology or protocol. Choice of technology is the key to suc-
cess.Scalability and integrability play a crucial role, allow to connect hundreds or
thousands of devices and smoothly exchange data between them. Also, efforts are
used to make maintenance and future upgrades easy.

Typically SCADA systems are used in Industrial Automation for lighting, power, oil
and gas industry, traffic control and lights, pharmaceutic and food production, wa-
ter processes, etc. Prominent vendors like ABB and Siemens offer their own SCADA
products (MicroSCADA and WinCC, respectively). These give designers and users
an abstraction from communication protocols and simplify development and usage.
It can be an advantage in some cases, but in pCT with a lot of custom hardware and
software it will probably not provide such an advantage.

In the process industry, a production process typically automated. The control sys-
tem concept covers everything from the way humans interact with the system to
data formats in all internal communications. Control systems can be spread over
big areas. Then often, local nodes have some automation logic and measurement
data sent to the central control room. For example, the oil and gas industry has
many cites where no people are present. With technology progress, data communi-
cation over distances became more affordable, and the Internet of Things (IoT) lead
to growth in distributed systems and remote control. It allows to concentrate at one
place information (data from all sensors, process parameters, and variables) and one
or more operators.

2.1.1 Industrial Control systems

The key factor for industrial control systems (ICS) is the ability to use standardized
elements to build a complete custom system. Time to market and reliable operation
is essential for Industry. Due to the industry progress, all elements that are made
for control have become more flexible and programmable. Time to market is vital,
so the availability of the components "off the shelf" is one of the requirements. Nev-
ertheless, the complexity of the total system is growing, and it has to be solved by
programming and configuring.

The main benefits of an efficient process control system are energy savings - energy
wastage is reduced and improved safety - control systems automatically warn about
abnormalities. These benefits can be easily converted in money and evaluated for
each particular case.

Ability to collect and store a big amount of data gives now opportunity to statistical
analysis, so makes it a control system provide better performance, quality of the
product, easier to predict failures. Also, analysis of collected data is used to improve
the system by finding subsystems which limit performance or quality.

CHAPTER 2 CONTROL SYSTEMS 13

2.2 Distributed Control Systems

In addition to the SCADA concept, term Distributed Control Systems (DCS) is of-
ten used. Distributed Control Systems1 are similar to SCADA. The difference is that
DCS means more control function is laid on region units, when in SCADA system
control is more centralized. At the beginning of the SCADA, all control was central-
ized, but later with the progress of electronics control loops of process variable be-
came independent, and only set points are controlled remotely. In Industry SCADA
and DCS are synonymous, because a top-level control unit always exists for human
interaction.

DCS, however, is solely used when no central control is present. It means that every
unit control their own behavior based on logic inside and some communication or
sensing environment around. Examples from nature are birds, fish, and other ani-
mal’s behavior in the absence of a leader. In automation, some analogy can be found
in load balancing during computation.

2.3 OPC UA

OPC UA is a communication protocol for industrial automation. It has been built
to satisfy needs in machine to machine communications, robotics and sophisticated
automation. OPC UA is more than just standard of communication. It has its own
binary protocol but can use other transport protocols like MQTT and UDP. It has
object-oriented ideology and is OS agnostic. OPC UA protocol is often used for
communication in SCADA systems.

OPC UA is a major upgrade of OPC classic. OPC classic was developed for Mi-
crosoft Windows. It has specifications for Data Assess, Alarms & Events and His-
torical Data Access. The OPC UA protocol, however, is quite complex: the primary
documentation is in 15 parts, and over 1000 pages. The core idea is to have an OPC
UA server near to a source of information and client that can read, write to variables,
run methods on the OPC UA server and get results, subscribe on value changes and
get notifications about events and alarms. OPC UA gives much more semantic than
classic OPC and other transport protocols.

An OPC UA server has address space (AddressSpace) where all information is orga-
nized by hierarchical and non-hierarchical links. The idea to present information
with meta-information together with semantics that a client without prior knowl-
edge can utilize data by using a discovery service.

Table 2.1 gives an overview over node types in OPC UA. Nodes can be objects,
data types, methods, events or references. The references are used to describe rela-
tions and organize a system. Events can be different types. A hierarchical type is
used to make hierarchy between objects when they are defined separately or even

1DCS will be used here, please note that ALICE DCS is used for ALICE Detector Control System

14 MQTT

in different OPC UA servers. Objects, data types, methods and events represents
functionality of an physical object.

Node type Defines Examples
Object A physical entity or application Robot, Motor, Pump
Data Type A property of the Object Position, Speed, Setpoint
Methods Commands that are exposed to

Clients
Start, Run, Reset, Stop

Events Events that Clients can access Alarm, Error, Fault
References The relations between Nodes "HasComponent",

"HasEventSource"

Table 2.1: OPC UA Node Types

2.4 MQTT

MQTT is a Client-Server publish-subscribe messaging transport protocol. It is very
lightweight and binary protocol, and due to its minimal packet overhead, MQTT is
excellent when transferring data over the wire in comparison to protocols like HTTP.

The MQTT protocol was invented in 1999 by Andy Stanford-Clark (IBM) and Arlen
Nipper (Arcom, now Cirrus Link). They needed a protocol for minimal battery
loss and minimum bandwidth to connect with oil pipelines via satellite. The two
inventors specified several requirements for the future protocol2:

• Simple implementation

• Quality of Service data delivery

• Lightweight and bandwidth efficient

• Continuous session awareness

These goals are still at the core of MQTT. However, the primary focus of the protocol
has changed from proprietary embedded systems to open Internet of Things (IoT)
use cases.

These characteristics make it ideal for use in many situations, including constrained
environments such as for communication in Machine to Machine (M2M) and Inter-
net of Things (IoT) contexts where a small code footprint is required or network
bandwidth is at a premium3.

Another critical aspect of the protocol is that MQTT is extremely easy to implement
on the client-side. Ease of use was a key concern in the development of MQTT and

2https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
3the official MQTT 3.1.1 specification

CHAPTER 2 CONTROL SYSTEMS 15

Figure 2.1: ALICE SCADA Detector Control System[13].

makes it a perfect fit for constrained devices with limited resources today. In fact,
OPC UA can use MQTT as a transport protocol, which shows that MQTT can be
beneficial in some cases.

2.5 ALICE Detector Control System

The ALICE DCS is responsible for the stable operation of the experiment. It has been
built partially by experts of the detector teams. The core of the SCADA system is the
commercial WINCC OA, which is used in all major CERN experiments and several
technical infrastructure controls (electricity, gas, cooling, cryo). In the WINCC OA
communication goes over custom protocol on top of TCP/IP[26].

The ALICE detector is much more complex than the pCT detector. However, it has
similarities with the need to control and monitor detector electronics, cooling sys-
tem etc. This makes the analysis of a such system useful to gain knowledge about
how large systems are built and take advantage of it in planning a control system
for pCT. This section is based on presentations [9], [25] and [26] to highlight new
features after LS2.

OPC UA is used as a communication standard where it is possible. WINCC OA
has a native OPC UA client embedded. Each detector in ALICE has its own dis-
tributed system. ALICE control layer is built as a distributed system consisting of
autonomous distributed systems. ALICE DCS priorities use industrial components
and standards, standardized components, commercial products, and CERN-made
devices. To connect smaller devices into the system, CERN-made protocol DIM is
used. ALICE DCS Architecture is shown in Figure 2.1 [9].

16 ALICE Detector Control System

2.5.1 ALICE DCS Operation

ALICE DCS designed to be operated by a single operator. It has 24/7 shift coverage
and a high turnaround of operators. ALICE central team is responsible for shifters
training. ALICE hierarchy has one top DCS node, nineteen detector nodes, hun-
dred subsystems, five hundred logical devices. It is impossible for one person to re-
member all operational sequences and dependencies, which are often too complex.
Sub-detector developers make alerts and related instructions for their subsystems.
Reactions to DCS alerts is one of the main tasks of the DCS operator. [9]

Emergency handling and partitioning In case of alert or critical periods, there is
an option to delegate control over failing part to remote experts (they are available
during running periods). Then the failure part is removed from the DCS hierarchy.
To avoid potentially dangerous situations, there is the automatic check of all critical
parameters for excluded components. This option has been introduced in response
to needs to operate at the not normal, but safe conditions, which are typically known
only by experts. [9]

2.5.2 DIM protocol

The Distributed Information Management (DIM) system has been designed for the
DELPHI experiment at CERN. It is based on the publish-subscribe paradigm but
has an advantage over the Remote Procedure Call (RPC) system. In the RPC, clients
have to poll data and use one-to-one connections. DIM allows one-to-many commu-
nication and handles recovery from errors at the client and server level. The DIM
system has a name server where servers register services only once at startup, and
clients subscribe to them directly. It allows to save network bandwidth and reduce
communication time since clients will be notified about a data change. Figure 2.2
illustrate the concept [11].

Figure 2.2: Interactions in a DIM system[11].

In addition to the industrial protocol OPC UA, DIM is used as a lighter alternative
at ALICE and some other CERN experiments. DIM is used for devices without

CHAPTER 2 CONTROL SYSTEMS 17

OPC functionality[10].

DIM can be used under the GPL License, but the connection to WINCC OA is part of
the JCOP framework, which is developed and maintained for CERN use. A request
has been sent to use JCOP in the pCT project.

2.5.3 Summary

The ALICE DCS is a highly sophisticated control system and relies heavily on the
OPC UA industrial protocol. However, it also shows the need for a lighter alter-
native for communication when custom components are involved. Proton CT will
use industrial power supplies and other components where applicable. The custom
devices in pCT have to be connected by the OPC UA technology or by a lighter
alternative.

Chapter 3

Proton CT Readout Unit

The proton CT Readout Unit (pRU) is currently under development, and during
the work done in this thesis, all tests and design have been done on a test setup
mimicking the final system. This chapter describes the ALPIDE and its ADC in de-
tails as it main source of information for control and monitoring at the current stage.

3.1 VCU118

The current test setup is based on the Xilinx UltraScale+ VCU118 Evaluation Board.
The choice of this board was due to the big FPGA fabric, and the amount and speed
of LVDS lines [21]. The FPGA fabric allows connecting 108 ALPIDEs from one layer
of the DTC. Inside the FPGA fabric, a soft-core processor (MicroBlaze)1 is used to
control communication between peripherals on AXI bus. The MicroBlaze processor
is a 32-bit RISC microprocessor designed for Xilinx FPGAs. It was a natural choice
for the pRU. Performance of MicroBlaze can be chosen by using one of three proces-
sors presets: Microcontroller, Real-Time Processor and Application Processor [29].
For the development of the pRU the Real-Time Processor preset has been chosen to
running FreeRTOS.

3.1.1 FreeRTOS

FreeRTOS is one of the markets leading Real-Time Operating System (RTOS) 2. It
has more than 15 years of development time and the current major version is 10.2.1.
FreeRTOS was started by Richard Barry in 2003 and was later developed and main-
tained by Richard’s company, Real Time Engineers Ltd. In 2017 Real Time Engineers

1https://www.xilinx.com/products/design-tools/microblaze.html
2https://www.embedded.com/electronics-blogs/embedded-market-surveys/4458724/2017-

Embedded-Market-Survey

19

20 VCU118

Figure 3.1: Xilinx VCU118 board with two ALPIDE chips connected.

Ltd. passed stewardship of the FreeRTOS project to Amazon Web Services (AWS)3.

A RTOS gives the following advantages: predictable execution, multitasking (essen-
tial for low-cost microcontrollers), easy development of complex projects (by split-
ting into small tasks), and more4. FreeRTOS occupies a niche between low cost, low
bit microcontrollers, and desktop processors. It is where a user can get benefits from
RTOS.

FreeRTOS uses a "task" for each separate thread existing inside it. It is possible to
run many copies of the same task with different priorities and input parameters.
The key to master FreeRTOS is to understand the scheduler, which rules switching
between tasks.

Scheduler

The scheduler is the main part of the FreeRTOS kernel. It allows running multiple
tasks according to their priority on the single-core processor by switching between
tasks. Figure 3.2 shows how tasks with different priorities run and Figure 3.3 repre-
sent valid state transitions.

3http://www.freertos.org/RTOS.html
4http://www.freertos.org/FAQWhat.html#WhyUseRTOS

CHAPTER 3 PROTON CT READOUT UNIT 21

Figure 3.2: FreeRTOS scheduler work.

Figure 3.3: FreeRTOS valid state transitions a

a https://www.freertos.org/RTOS-task-states.html

Ready State Task can be executed, but waiting when another task with higher
priority will finish execution.

Running State Task is running and currently using CPU.

Blocked State Task is waiting for an event.

22 VCU118

Suspended State Task can enter or leave suspended state when they are explic-
itly commanded to do so.

It has to be at least one idle task with the lowest priority zero to be able to execute
low priority, background, and continuous processing tasks.

3.1.2 Other subsystems in the pCT

At the moment of writing this thesis, only DTC and readout electronics are specified
to some extent. In Figure 3.4 a design proposal of the whole pCT electronic system
have shown. It is advised to have an external micro-controller instead soft-core. Sys-
tems like cooling, power, control system are not clarified in detail yet.

A control system should be able to connect all subsystem in one, exchange data
between them, monitor all parameters, make alerts and warnings. It means that
communication has to be standardized and good documented in case custom soft-
ware or protocols.

Figure 3.4: Block diagram of the whole pCT electronics system [20].

CHAPTER 3 PROTON CT READOUT UNIT 23

Figure 3.5: Pixel cell block diagram of the ALPIDE chip[19].

3.2 The ALPIDE

The ALPIDE chip is a state-of-art detector chip for particle detection. It makes the
ALPIDE an ideal candidate for use in proton CT. It is not so many special chips
for particle detection, so newest ALPIDE developed for CERN stand out it term of
specifications among them. The ALPIDE chip has dimensions 15 mm by 30 mm
with sensitive matrix 512 × 1024 pixels. Each pixel is 29,24 µm × 26,88 µm.This sec-
tion is based on the ALPIDE Operational Manual and provides the details needed
for understanding this thesis [19].

3.2.1 Pixel’s front-end

Each pixel has a sensing diode, a front-end amplifying and shaping stage, a dis-
criminator and a digital section Figure 3.5. Hit Storage Latch in the digital sec-
tion is designed as a Multi Event Buffer (MEB), a pulsing logic and a pixel masking
register[19].

All pixels have a common threshold level. A hit will be latched in one of the cells
in MEB if OUT_A signal above threshold while STROBE is asserted. The STROBE
signal can be initiated by the internal sequencer or by an external command (TRIG-
GER). The STROBE pulses have a programmable duration. A pulse injection capac-
itor is placed in every pixel allow to inject test charge in analog front-end.

3.2.2 Priority Encoder

Pixel cells are organized in double columns for readout Figure 3.6. 1024 columns
divided into 32 regions having 16 double columns each. Each region is connected to
Region Readout unit (Figure 3.7).

24 The ALPIDE

Figure 3.6: General architecture of the ALPIDE chip[19].

3.2.3 ALPIDE block diagram

The ALPIDE has a Differential Control Port running at 40 Mbps for control interface
with a custom protocol. IB and OB Master chips using this port and OB Slaves con-
nected through Single Ended Control Port. OB Masters acts as a hub on the control
bus.

The data Readout from the ALPIDE chip in IB and OB Master mode is going through
the hi-speed serial port with rate 1200 or 400 Mbps, respectively. OB Slaves are using
Parallel Data Port shared with other slaves in half-stave.

3.2.4 ALPIDE ADC

The ALPIDE chip has built-in 11-bit ADC for measurement of quasi-static inter-
nal analog signals. It can measure power supplies, grounds, temperature, Bandgap
voltage, and outputs of internal DAC. Global schematics of the ADC is given on
Figure 3.8. The ALPIDE ADC is the primary source of the monitoring information.

Figure 3.8: ADC global schematics[19].

CHAPTER 3 PROTON CT READOUT UNIT 25

Figure 3.7: The block diagram of the ALPIDE chip[19].

Before the ADC can be used, a calibration procedure described in [19] has to be
done. The following formulas for conversion of the ADC readings are described in
[19] as given below:

Voltage measurements

Valueread =
VmV

2 · 1.068
+ offset (3.1)

Current measurements

Valueread =
5 · IµA

1.068
+ offset (3.2)

Temperature measurements

Valueread =
TempdegCelsius + 51.5

0.147
+ offset (3.3)

However, during test, the values converted by equation 3.1 and 3.3 was not real-
istic since temperature (at least in the first moment after startup) and voltage was
known. ALPIDE Operational manual available at that time was from July 25, 2016,
and it was still in draft state. After a research another formulas which give realistic
results have been found in pct/alpide-sw repository in file TAlpide.cpp with comment

26 The ALPIDE

first approximation5. The formulas from ALPIDE.cpp in the form similar to ALPIDE
Operations Manual are given below for comparison:

Voltage measurements

Valueread =
VmV

1.644
+ offset (3.4)

Current measurements

Valueread =
Iµ A

0.1644
+ offset (3.5)

Temperature measurements

Valueread =
TempdegCelsius − 6.8

0.1281
+ offset (3.6)

The temperature equation has the most significant difference. Temperature mea-
surements were the main reason why the formulas from [19] were not accepted.
The voltage tests have been done to verify that absolute value, sign, and scaling
factor are appropriate. During the test, supply voltages of the ALPIDE were de-
creased by 50 mV, and the ADC readings of the analog and digital power supplies
decreased accordingly. The absolute errors for temperature and voltage were under
10%, which is acceptable for monitoring. Another group has done current measure-
ments during DAC scan, where values were written to the DAC registers and then
read back by the ADC. The goal of the test was verification of the behavior of the
ADC and DAC of the ALPIDE6. Extensive ADC tests and tuning of formulas were
outside of the scope of this thesis as it requires detailed knowledge of the ALPIDE.
Information about the formulas has been sent to the authors of the ALPIDE Opera-
tional Manual.

In Table 3.1 overview over the ADC inputs is given. Most of the inputs are dedicated
to the monitoring of the analog Front-end. In Appendix A.2 Front-end schemes for
the ALPIDE pixel have given. For the monitoring purpose, only temperature and
analog and digital ground and supply are relevant. There are two temperature sen-
sors on the ALPIDE chip and both included in monitoring. However, in manual
mode only direct measurement is possible (see Table 3.2). It is parameter TEMPER-
ATURE in Table 3.1 and formula 3.6 is used for convertion. For VTEMP temperature
is not in degrees Celsius, but in mV and formula 3.4 is used.

The ADC has manual and automatic measurement modes. The duration of the au-
tomatic measurement of all channels of the ADC is 100 ms, but one channel can
be measured in manual mode for 5 ms. Channels available for the manual ADC
measurement is given in Table 3.2. Inputs which belongs to analog front-end are
typically used for debugging and not included in manual measuring mode of ADC.

5ADC reading functions can be found in Appendix A.1
6More information about ADC and DAC registers in section 4.3.9

CHAPTER 3 PROTON CT READOUT UNIT 27

Using manual mode and only five channels gives a shorter time and less power con-
sumption. A dedicated procedure has to be implemented on pRU to avoid delays
on transmission lines in this case.

Parameter Description Monitoring Debug
AVSS Analog ground 2�
DVSS Digital ground 2�
AVDD Analog power supply 2�
DVDD Digital power supply 2�
VCASN Analog Front-end, Figure A.1 2�
VCASP Analog Front-end, Figure A.1 2�
VPULSEH VPULSEH - VPULSEL = VPLULSE_* a 2�
VPULSEL 2�
VRESETP PMOS reset, Figure A.2 2�
VRESETD Reset voltage for pix-in, Figure A.1 2�
VCASN2 Analog Front-end, Figure A.1 2�
VCLIP Analog Front-end, Figure A.1 2�
VTEMP Temperature 2�
IRESET Bias current, Figure A.2 2�
IAUX2 Analog Front-end 2�
IBIAS Analog Front-end, Figure A.1 2�
IDB Analog Front-end, Figure A.1 2�
IREF The value is not correct for this input b 2�
ITHR Analog Front-end, Figure A.1 2�
BANDGAP Band gap 2�
TEMPERATURE Temperature 2�

Table 3.1: ADC inputs description
a See Figure A.1, b According to ALPIDE Operation Manual Section 3.10.5[19]

Value Selected Input
0 AVSS
1 DVSS
2 AVDD
3 DVDD
4 V band-gap through voltage scaling
5 DACMONV
6 DACMONI
7 Bandgap (direct measurement)
8 Temperature (direct measurement)

Table 3.2: ADC inputs selection in manual mode[19].

Monitoring the power supplies of each ALPIDE serves the purpose of making sure
that every chip has voltage within recommended limits. However, tracking a single
channel at the rate of 200Hz is possible in manual mode. It has to be done on board
of the proton Readout Unit (pRU) as a dedicated procedure to do not introduce extra
latency between ADC reading.

Chapter 4

Requirements for a pCT Control
System

In this chapter, requirements for the monitoring system of pCT will be outlined.
It will make the basis for decisions further when system configuration is discussed
together with technology choice for protocols. The system for pCT is given in Figure
1.7.

4.1 General requirements

The pCT monitoring system has to be able to:

• Run on soft-core processor or a standard micro-controller.

• Support RTOS and embedded Linux.

• Allow to update all monitoring parameters at least once per second

• Allow to read and write to ALPIDE registers during monitoring

• Provide monitoring and control when the system is powered on

• Technology used and has to be stable, well documented and supported

• Easy to master, maintain and change

4.2 Graphical interface requirement

A Graphical User Interface (GUI) is an essential part of a monitoring system. It
should give a good overview of the whole pCT detector in an easy and informative
way together with access to detailed information and parameters. Functions which
are used often in typical usage pattern have to be easy to access and intuitive to

29

30 Technical requirements

understand name or icons of buttons. GUIs for a control system usually go through
many stages of modification before they reach the final look and functionality. So
here only the main concepts will be proposed.

4.3 Technical requirements

It is already decided that the PRU will have an Ethernet interface for data upload
and configurations of ALPIDE chips and PRUs. So most important is what type of
protocol will be used on top of the TCP-IP stack to fulfill the monitoring task. As
described in [22], to control PRU The Serial Protocol for Arbitrary Data (SPAD) has
been used. In that work, emphasis has been made on making communication be-
tween two hosts reliable even if link does not error-free and in the implementation
of communication protocol a protection from garbage data is used.1 It means that
packets coming out of order lead to closing of connection. This feature is good to
secure that both sender and receiver are synchronized in terms of packet interaction
between them. For monitoring purposes, when data can be requested from many
hosts, it is hard to implement because it needs to keep track of all active sessions.
Monitored data is usually sent periodically and the loss of one packet should not
make a critical situation.This is an argument to find a lighter alternative to supply
external hosts with monitoring data.

4.3.1 Loss of packet with monitoring information

During a run, a control system can get monitoring information irregularly due to
packet loss, error on the hardware while receiving data. These losses are not fre-
quent in normal operating conditions and should not lead to the closing of con-
nection or generation of an alarm. To cope with it, an internal check has to track
incoming information and verifies that no data is outdated. It can be implemented
by setting timeout a couple of times higher than update time. However, a connec-
tion lost must generate an alarm immediately. A timestamp has to be attached to
every packet of monitoring information.

4.3.2 Protection from erroneous data

The write operation to the ALPIDE should have a protection from the misinterpre-
tation of incoming commands. Operational codes of the ALPIDE command register
have a long hamming distance, but register address and value have to be protected
separately. This protection will work in case of losing the end of the packet in addi-
tion to a cyclic redundancy check of a protocol.

1File software/embedded/app_vcu118/src/tcp_ctrl.c in wp3 repository line 158 se below:
if (packet[payload_len + TCP_CTRL_PKT_OVRHD - 1] != sender_seq_num_tcp) { //Sender
sending garbage data; close connection

CHAPTER 4 REQUIREMENTS FOR A PCT CONTROL SYSTEM 31

4.3.3 Monitoring protocol

The monitoring protocol should be a robust protocol and able to give access to in-
formation from many observers. Robustness meants that it should have tolerance
to erroneous data format on input and re-synchronization if losing the end of the
packet sequence.

Using additional protocol along with an already existing communication protocol
described in [22] are benificial for monitoring purposes. The data offload is not pol-
luted with monitoring data, several monitoring systems can be run at the same
time if the monitored data is published autonomously by pRU. In case some data
have been requested by a master monitoring software, another software can be run-
ning and receiving the same information by having appropriate configuration. This
gives an advantage at development, commissioning and running stage because sev-
eral operators can observe, analyze the data and follow the alarms and warnings.

4.3.4 On-board monitoring software

A task in FreeRTOS has already been implemented that checks specified registers if
they exceed a maximum threshold. This is sufficient when all ALPIDEs are error-
free and operational parameters are very similar between chips. Also, it would be
practical to use minimum and maximum thresholds as well as the ability to change
them "on the fly" without spending time on compilation and programming of FPGA
on PRU. However the monitoring information has to be sent to the control system
where a threshold check is done. So it is an optional feature. A task on the pRU side
should be able to read and send all predefined parameters without external request.
Registers involved in monitoring, as well as a suitable format for sending these data,
should be specified.

4.3.5 Schedule ADC scan

Using the ADC of the ALPIDE is power-consuming operation. To guarantee stable
power voltage and, as a result, better precision and repeatability ADC measure-
ments can be scheduled. Anyway in a stave control lines are shared and starting of
ADC measurments synchronously is not possible. It will, however, introduce time
difference between measurements, but a small delay is not critical for monitoring
purposes. At the moment of the writing this thesis there is no prototype available
with one whole layer of ALPIDEs to test this approach and verify if it has impli-
cations to the power stability. It is recommended to test this when the necessary
hardware is in place.

4.3.6 Timestamp for monitored parameters

During monitoring the control data will not change significantly in standby condi-
tion. It may even, can be the same over many monitoring cycles. To distinguish

32 Technical requirements

packets with monitored data, a sequence number or timestamp has to be used. This
will serve to verify the validity of the measurement. In case package loss the last suc-
cessfully received packet will be a reference point for alarm triggering. The alarm
has to be triggered after loss of several expected messages.

4.3.7 Cross-platform protocol

FreeRTOS is currently selected as the OS for pRU, but it has been considered to
move to a Linux OS where programming is more comfortable. Due to this reason,
a solution and especially protocol have to be platform-independent. A Linux distri-
bution requires much more operative memory that is available inside FPGA fabric,
so external memory has to be used.

4.3.8 Open-source technology implementation

The pCT project is still in an early stage, and some subsystems will be introduced
later. Besides, the major part, like the operating system, can change. All these are
reasons to test open-source technology implementations first. Further, this require-
ment can become optional when the system has been finalized, and the use of a
commercial version will be worth it.

4.3.9 Estimation of amount of monitored data

To estimate the amount of monitored data we will go through ALPIDE’s address
space and assign definition to each register one of the following: monitor, debug or
configure. This section is based on [19]. The results will be summarized in Tables
4.1-4.3.

Registers in range 0x0000-0x001B of the ALPIDE are periphery control registers. The
command register is a dedicated register for the execution of internal operations or
sequences. This register accept only predefined operational codes. Among them are
chip global reset, pixel matrix reset and start ADC measure. This is a configuration
register.

Mode control register is responsible for enabling readout and clustering, matrix
readout speed and serial link speed. Region disable registers 1 and 2 is used for
masking of individual regions. Framing and Management Unit (FROMU) Configu-
ration Register 1 controls pixel Multi Event Buffer, internal strobe generation, busy
monitoring, test pulse mode, enable test strobe, trigger delay. FROMU Configu-
ration Register 2-3 control duration of the strobe pulses and gap between them.
FROMU Pulsing Register 1-2 controls delay of the pulse signal to the strobe signal
and duration of the pulse signal. These are configuration registers.

FROMU Status Registers 1-5 are counters. They have values of the FROMU trig-
ger counter, the strobe counter, the matrix readout counter and the frame counter
respectively. These are typically used for debugging and will not be involved in

CHAPTER 4 REQUIREMENTS FOR A PCT CONTROL SYSTEM 33

Address Mode Register or memory Monitor Debug Configure
0x0000 R/W Command Register 2�
0x0001 R/W Mode Control register 2�
0x0002 R/W Disable of regions 0-15 2�
0x0003 R/W Disable of regions 16-31 2�
0x0004 R/W FROMU Configuration Register

1
2�

0x0005 R/W FROMU Configuration Register
2

2�

0x0006 R/W FROMU Configuration Register
3

2�

0x0007 R/W FROMU Pulsing Register1 2�
0x0008 R/W FROMU Pulsing Register 2 2�
0x0009 R FROMU Status Register 1 2�
0x000A R FROMU Status Register 2 2�
0x000B R FROMU Status Register 3 2�
0x000C R FROMU Status Register 4 2�
0x000D R FROMU Status Register 5 2�
0x000E R/W DAC settings for DCLK and

MCLK I/O
2�

0x000F R/W DAC settings for CMU I/O 2�
0x0010 R/W CMU and DMU Configuration

Register
2�

0x0011 R CMU and DMU Status Register 2�
0x0012 R DMU Data FIFO [15:0] 2�
0x0013 R DMU Data FIFO [23:16] 2�
0x0014 R/W DTU Configuration Register 2�
0x0015 R/W DTU DACs Register 2�
0x0016 R DTU PLL Lock Register 1 2�
0x0017 R/W DTU PLL Lock Register 2 2�
0x0018 R/W DTU Test Register 1 2�
0x0019 R/W DTU Test Register 2 2�
0x001A R/W DTU Test Register 3 2�
0x001B R/W BUSY min width 2�

Table 4.1: Periphery Control Registers

34 Technical requirements

regular monitoring due the fact that they expected to change only during the parti-
cle registration.

Two DAC settings registers set drivers and receivers currents for input and output
buffers, and Control Management Unit (CMU) and Data Management Unit (DMU)
configuration register are configuration registers.

CMU and DMU status register contains error counters which under normal con-
ditions should remain zero, these are debug register. DMU Data First In First Out
(FIFO) last significant bit and most significant bit registers are for reading DMU data
or busy FIFO. These are used in data readout so they are debug registers.

Data Transmission Unit (DTU) configuration register has Phase-Locked Loop (PLL)
settings. DTU DACs register contains different current setting of DTU. These are
configuration registers.

DTU PLL Lock Register 1 is a read only register of output flags and signals of PLL
related logic. This is used for debugging. DTU PLL Lock Register 2 controls the
behavior of the PLL monitoring state machine and it is configuration register. DTU
Test Register 1-3 provides access to built-in DTU tests therefore they are debug reg-
isters. The BUSY min width register controls minimum length of BUSY signal. This
is a configuration register.

Registers in range 0x600-0x0627 are DAC, ADC and monitoring control registers.
Analog monitor and override register is for DAC voltage and current selection, and
for DAC monitoring and overriding selection, and for reference current selection.
It is configuration register. Registers in range 0x0601-0x060E are DAC’s setting reg-
isters. They are dedicated for setting in analog front-end.2 They are configuration
registers. The buffer bypass register controls bypassing of buffer cell for particular
voltage or current and therefore is configuration register.

The ADC control register controls ADC setting and stores ADC calibration coeffi-
cients. The ADC DAC input value register used for reference value selection for the
DAC. They are configuration registers.

The ADC AVSS/manual value register is used in ADC manual mode and stores
read value. In auto mode it stores analog ground supply (AVSS) value. Registers in
range 0x0614-0x0627 provide data after an auto measurement procedure3. Registers
in ranges 0x0617-0x061E and 0x0620-0x0626 are dedicated to measurements of ana-
log front-end which is set by DAC registers4 These are debug registers. For mon-
itoring have chosen analog and digital power supplies and grounds(AVSS, DVSS,
AVDD and DVDD) as well as temperatures ADC VTEMP and ADC T2V.

2See Appendix A.2 for the ALPIDE front-end.
3Described in [19] in section 3.10.5
4See Appendix A.2.

CHAPTER 4 REQUIREMENTS FOR A PCT CONTROL SYSTEM 35

Address Mode Register or memory Monitor Debug Configure
0x0600 R/W Analog Monitor and Override

Register
2�

0x0601 R/W VRESETP 2�
0x0602 R/W VRESETD 2�
0x0603 R/W VCASP 2�
0x0604 R/W VCASN 2�
0x0605 R/W VPULSEH 2�
0x0606 R/W VPULSEL 2�
0x0607 R/W VCASN2 2�
0x0608 R/W VCLIP 2�
0x0609 R/W VTEMP 2�
0x060A R/W IAUX2 2�
0x060B R/W IRESET 2�
0x060C R/W IDB 2�
0x060D R/W IBIAS 2�
0x060E R/W ITHR 2�
0x060F R/W Buffer Bypass Register 2�
0x0610 R/W ADC Control Register 2�
0x0611 R/W ADC DAC input value 2�
0x0612 R ADC Calibration Value Register 2�
0x0613 R ADC AVSS/Manual Value Reg-

ister
2�

0x0614 R ADC DVSS Value Register 2�
0x0615 R ADC AVDD Value Register 2�
0x0616 R ADC DVDD Value Register 2�
0x0617 R ADC VCASN Value Register 2�
0x0618 R ADC VCASP Value Register 2�
0x0619 R ADC VPULSEH Value Register 2�
0x061A R ADC VPULSEL Value Register 2�
0x061B R ADC VRESETP Value Register 2�
0x061C R ADC VRESETD Value Register 2�
0x061D R ADC VCASN2 Value Register 2�
0x061E R ADC VCLIP Value Register 2�
0x061F R ADC VTEMP Value Register 2�
0x0620 R ADC ITHR Value Register 2�
0x0621 R ADC IREF Value Register 2�
0x0622 R ADC IDB Value Register 2�
0x0623 R ADC IBIAS Value Register 2�
0x0624 R ADC IAUX2 Value Register 2�
0x0625 R ADC IRESET Value Register 2�
0x0626 R ADC BG2V Value Register 2�
0x0627 R ADC T2V Value Register 2�

Table 4.2: DACs, ADCs and Monitoring Control Registers

36 Technical requirements

Address Mode Register or memory Monitor Debug Configure
0x0700 R SEU Error Counter 2�
0x0701 R/W Test Control Register 2�
0x0702 R BMU Debug Stream 2�
0x0703 R DMU Debug Stream 2�
0x0704 R TRU Debug Stream 2�
0x0705 R RRU Debug Stream 2�
0x0706 R FROMU Debug Stream 2�
0x0707 R ADC Debug Stream 2�

Table 4.3: Test and Debug Control Registers

The ALPIDE ADC channels are desirable to monitor on a rate about one per second
in normal conditions. This rate is acceptable because high-speed protection against
latch-up will be implemented at the FPGA level. Cooling system in the pCT consists
of water cooling to the edges of the absorber frames and then convection cooling
through the material of the absorder and air circulation in gap between neighbor
layers. This gives a high temperature constant of the system. In case water circula-
tion stops temperature is not expected to rise quickly.

The last group in addressing space of the ALPIDE is eight test and debug registers
and five status registers in peripheral control registers. These contains error coun-
ters, debug steams for shadows registers. Test control register forces local bus or
FROMU to a specific value. The whole group is debug registers.

To summarize it is needed to monitor analog and digital power supplies - ADC
AVSS, ADC DVSS, ADC AVDD, ADC AVSS and the temperatures - ADC VTEMP
and ADC T2V, on every chip. In addition we need to monitor on pRU - board tem-
perature and current; on FPGA VCCINT,VCCAUX, junction temperature. The min-
imum amount of registers that we would like to read is six for each ALPIDE. So
estimation will be:

(6monitoring) ∗ 108ALPIDE per layer + 2pRU + 3FPGA = 653 Registers

We can round up to 1000 parameters per second for one layer to give a room for
additional registers if needed.

4.3.10 Requirements summary

Requirements described above are given in Table 4.4, with a check whether it is a
must or an option for the pCT control system prototype. The table is giving an
overview of all formulated requirements. Every requirement has its reference that
will allow easy refer and discuss it later.

R.1 has an optional requirement due to the proposal for of electronic system shown

CHAPTER 4 REQUIREMENTS FOR A PCT CONTROL SYSTEM 37

Reference Requirement Must Optional
R.1 Run on soft-core processor 2�
R.2 Update 1000 parameters once per second 2�
R.3 Read and write to ALPIDE during monitoring 2�
R.4 Solution is stable, documented and supported 2�
R.5 Technology is easy to master, maintain and change 2�
R.6 Monitoring on board of pRU 2�
R.7 Schedule the ADC measurement 2�
R.8 Timestamp for monitored parameters 2�
R.9 Cross-platform 2�
R.10 Open-source technology implementation 2�
R.11 Monitor always when data is nor acquiring 2�

Table 4.4: Summary table for requirements

in Figure 3.4. R.3 means that monitoring does not have to be stopped to read and
write operations to an ALPIDE. R.4 requires mature and supported protocols and
solutions. R.5 takes into account that pCT is under development in the University
and people involved in the project might change. R.6 requires that monitoring in-
formation must be sent without request. R.7 is an optional requirement that ADC
measurements are schedulered to get better repeatability and precision. R.11 means
that monitoring is always running when pCT neither in the picture nor in the treat-
ment modes. The rest of requirements are self-explained.

Chapter 5

Prototyping

This section describes the prototyping that has been done to verify MQTT and OPC
UA technologies for use in a the pCT control system. Both technologies will be
explained in more detail than what was given in Chapter 2. Emphasis is made on
realization and revealing the strengths and weaknesses of each technology so that
it will be possible to compare them and come up with a recommendation for pCT
in the next chapter. During prototyping the solution must be based on open-source
tools (see requirement R.11).

5.1 MQTT

An open-source broker Eclipse Mosquitto has been chosen to test MQTT. In the
MQTT, a broker is piece of software that receives all messages and then forwards
them according to the subscriptions of clients. To give flexibility in terms of pro-
gramming language for client, the Eclipse Paho client implementation is selected.
The programming language for testing MQTT functionality is Python.

The MQTT protocol has a package forwarding method based on so called topics. A
topic is a text preamble or header of a message in MQTT. The text format for topics
is used in MQTT for easier setup and debugging. In MQTT, all communication goes
through the broker. All clients have equal status, and there is no master in com-
munication. Clients can publish messages. The broker delivers them according to
subscription. To receive a message a client has to subscribe to topics it is interested
in.

A topic is a mandatory part of every message. A client can publish on any topic even
if nobody have subscribed to it. So the function of a broker is to receive messages
from connected clients and then send it to clients according to their subscription.
The subscription of every client can be understood as a filter that is applied to all
messages inside a broker before they will be sent to a client. Figure 5.1 illustrates

39

40 MQTT

pRU 00 pRU 40 Monitoring
Software

Buffer

Subscription
pRU 40

Broker

Subscription
pRU 00

Subscription
Monitporing

software

pRU 00 pRU 40 Monitoring
Software

Sending

Accumulation

Filtration

Recieving

M
es
sa
g
e
f
lo
w

Figure 5.1: MQTT message flow.

the concept.

5.1.1 Topic structure for pCT

The MQTT messaging protocol provides abstraction from IP addresses. So it is es-
sensial to make structure of topics in a way that the monitoring communication is
easy to implement. It means that topics are a part of the monitoring system. MQTT
has built-in wild-cards that gives the opportunity to make high-level subscriptions
and get all publications on all underlying levels. It is similar to a folder structure:
having a folder means having all subfolders. The pCT has a hierarchy made up of
pRUs, staves and ALPIDEs, so it is natural to use these as MQTT topics.

The logical geometry, which is representing the hierarchy of the pCT detector, is
shown in Figure 5.2. The first layer with ID=00 is facing the beam. The ALPIDE
chips are grouped in horizontal staves of nine chips. The first stave with ID=00 is
on the top of the layer. Behind each layer is the absorber plate followed by an air
gap, except for the first two layers that are the tracking layers, which does not have
an absorber plate. Dimensions of the absorber plate and the air gap is not in scale.

To test the MQTT functionality, a topic structure shown in Table 5.1 have been de-
signed. The special character slash "/" is used to set the hierarchy in a topic. It is a
built-in feature of the MQTT protocol. It will also be used for managing subscrip-
tions in Section 5.1.3. Currently, one pRU will be connected to one layer, so it means
that LAYER_ID is pRU’s id number.

LAYER_ID / STAVE_ID / CHIP_ID / OPERATION_TYPE

Table 5.1: A general topic structure for a massage towards a pRU.

To avoid mixing layer, stave, and chip IDs, a letter is used in addition to the ID.

CHAPTER 5 PROTOTYPING 41

Figure 5.2: Logical geometry of pCT detector.
The first surface has LAYER_ID=L00. Stave’s ID is along the y axis pointing down, CHIP’s ID is

along the x axis pointing to the right. ID number of the pRU increases along beam direction.

LAYER_ID gets leading "L", to mark layer field. It is better to use "L" when we are
using layer terminology, than "R" for pRU, because it can be misinterpreted as the
reading operation. A stave gets "S" and chip "C". Example: message to layer "01",
stave "02" and chip "03", a write operation topic is shown in Table 5.2.

L01 / S02 / C03 / WR

Table 5.2: A topic for a write operation to layer "01", stave "02" and chip "03"

To separate the outgoing flow of commands dedicated to a pRU from the other infor-
mation received by the monitoring software, all topics on which a pRUs are publish-
ing on have to begin with the "R" letter except event messages. Explicit "R" allows
making subscription and filtration easier. In Table 5.3 shows topic structure of an
message from pRU.

R / LAYER_ID / STAVE_ID / CHIP_ID / OPERATION_TYPE

Table 5.3: A general topic structure for a message from pRU.

42 MQTT

5.1.2 Broadcasting of messages

The DTC contains 41 layers, 108 ALPIDE chips on each [14], so to address one chip
on each layer, a broadcast topic structure is beneficial to speed up configuration and
monitoring tasks. The broadcasting shortens message sequences also. There are
several scenarios for broadcasting:

• Message to all layers, all staves, and all chips

• Message to all staves and chips on one layer

• Message to all chips on one stave

• Message to certain chip on all layers and staves

• Message to certain chip and stave on all layers

Broadcasting to all layers, all staves and all chips In this case, LAYER_ID,
STAVE_ID and CHIP_ID numbers are replaced by "XX" and a write operation is
defined as:

LXX / SXX / CXX / WR

Table 5.4: A broadcast message to cover all layers, all staves and all chips

To utilized this functionality on the pRU, a double loop has to be implemented to
go through all staves and chips. It will give significant speed-up in writing configu-
ration as it will eliminate parsing messages to all staves and ALPIDEs on one pRU.
An additional subscription has to be made to receive the broadcasting message on
the topic "LXX/SXX/CXX/WR". It is a subscription to "LXX/#". A full overview of
subscriptions in pCT will be given in section 5.1.3.

Broadcasting to all staves and chips on one layer In this case STAVE_ID and
CHIP_ID numbers are replaced by "XX" and a write operation on layer "01" is de-
fined as:

L01 / SXX / CXX / WR

Table 5.5: A broadcast message for a specific layer. In this case layers "01".

On the pRU, we need the same as before except for the additional subscription.

Broadcasting to certain chip on all layers and staves In this case, LAYER_ID
and STAVE_ID numbers are replaced by "XX" and a write operation for chip "02" is
defined as:

LXX / SXX / C02 / WR

Table 5.6: A broadcast message to a specific chip on all layers and staves. In this case
chip id is "02".

CHAPTER 5 PROTOTYPING 43

This requires only one loop to go through all staves and the subscriptions to "LXX/#".

Broadcasting to certain chip and stave on all layers In this case, LAYER_ID
numbers are replaced by "XX" and a write operation on stave "01" and chip "02" is
defined as:

LXX / S01 / C02 / WR

Table 5.7: A broadcast message to certain chip and stave on all layers. Stave with id
"01" and chip with is "02" in this example.

A subscription on the topic "LXX/#" is needed, and there is no need for a loop on
pRU.

5.1.3 MQTT subscriptions in pCT

Subscriptions in the MQTT allow receiving only messages on topics of interest. The
MQTT topic structure described above, together with the broadcasting method, al-
lows subscription on separate message flows in the pCT. In the MQTT, a subscrip-
tion can be specified explicitly or with wildcards. There are two types of wildcards:
+ and #. The + wildcard is used for a single level of the hierarchy. For example, sub-
scription on "R/+/S01/C02" will give response messages from stave 01 and chip
02. The + wildcard can be used many times in one subscription. For example,
"R/+/+/C01" will give responses from chips with ID 01. The # wildcard is for all
remaining levels of hierarchy. E.g., subscription on "R/#" will give messages from
all pRUs.

Monitoring software subscription

The monitoring software has a subscription on "R/#" an on "EVENT/#‘". It allows
for having logging software and additional monitoring software to be run on other
locations.

pRU subscription

One pRU will handle all staves on one layer. In this case, the pRU with given
Layer_ID=N1 has to subscribe on the following topics: "LXX/#", "LN1/#". In case
more than one pRU would be needed to one layer, the subscription will be the same,
but on the pRUs, filtration has to be done according to the connected staves.

Receiving of broadcast messages To utilize a broadcast subscription, the pRU
layer "01" will have to subscribe both on topics "L01/#" and "LXX/#". A subscription
on broadcast topics uses only one extra line of code on pRU side but allows receiving
a broadcast message. Any publishing on topics starting either with "L01" or "LXX"
will be received by pRU with ID "01". In case of broadcasting to all chips on one
layer, a function has to be written on pRU side.

44 MQTT

Receiving broadcast messages for one chip on each layer Broadcasting to
certain CHIP_IDs on all layers does not need any changes in software on pRU side,
since pRU will perform only one operation per ALPIDE chip.

5.1.4 MQTT message flows in pCT

Making use of the topic structure described above, the monitoring and logging tasks
can be separated. It is an advantage to have a logging module run on a dedicated
machine due to the filtration and analysis that has to be done before saving to the
database. All communication in MQTT goes through the broker. Figure 5.3 is il-
lustrating the concept. An additional monitoring software can be introduced for
the investigation of problems. Other subsystems are omitted of the scope of this
concept. The complete solution for the pCT system will be described in chapter 6.

Figure 5.3: The pCT message flow with MQTT broker. Staves and ALPIDEs are not
shown for simplicity. Connection of the subsystems will be discussed
later in chapter 6.

A topic for event-based messages

To utilize the asynchronous communication, so called event messages can be sent.
It allows being not bounded to polling. The EVENT topic has subtopics: Alarm,
Warning, ADC, Info. The Alarm and the Warning topics are used to notify about
not normal status of the operation. The ADC topic is for publishing readings of
ALIDEs ADCs. Info is dedicated for logging and debug information when coordi-
nation between part of the system has to be verified.

CHAPTER 5 PROTOTYPING 45

5.1.5 Test framework for MQTT

A test framework is designed to visualize data coming from pRUs and to navigate
through the layers of pCT to analyze the running parameters of all ALPIDEs. The
data flow for the test is shown in Figure 5.4. It has a random data generator writ-
ten in Python, a bash script to run multiple instances of the random data genera-
tor, MQTT broker, and a graphical interface to visualize incoming data written in
Python. During the test, the MQTT broker and random data generation have been
running on one machine while the test monitoring software on the other.

Figure 5.4: Block diagram for mqtt test with random data generators.

Random data generation

MQTT_pRU_simulation.py is written for a generation of random data to test the
MQTT protocol with part of the proposed subscriptions. Only one direction of data
flow have been tested because the full system is not implemented yet. The request-
response time test have been done on the proton CT readout unit.

If no input parameters are specified for MQTT_pRU_simulation.py then it will be
run in monitoring mode. It will print all messages on all topics in the command line.
So it can be used for debugging. Filtration can be easily implemented in Python code
if needed.

At the moment, it generates three sets of data. These sets represent temperature
and voltage of ALPIDE chips on one layer and current measurements which will be
available from transition boards. The transition board is under development, and it
will manage the power for staves.

The ALPIDE’s ADC is 10 bit, but only 8-bit values are used for random data genera-
tion. All simulated data are 8 bit, but the variation zone is different for temperature,
voltage, and current, so that in the visualization program it will be possible to verify
that the data is displayed correctly.

46 MQTT

Temperature random data is in range from 0 to ration between a LAYER_ID and
total number of layers. It is described by the formula:

255 ∗ Layer_ID
number_of_simulated_layers

Voltage random data is in range:

63 ∗ Layer_ID
number_of_simulated_layers

+ 64

It is colored in shadows of gray from black to white on visualization.

Current random data is in range:

63 ∗ Layer_ID
number_of_simulated_layers

+ 128

The range will colored in shadows of gray from black to white on visualization.

Content of run_multiple.sh

A bash script is written to run multiple Python files for data generation (see Listing
5.1). It takes as input parameters the version of Python, the filename, and number
of instances to run. Then it runs separated processes and passes LAYER_ID to them.
The LAYER_ID is used to calculate a proportional delay to spread the publishing
through the monitoring period, which is one second for this test.

Listing 5.1: Content of run_multiple.sh
1 #Command line example below
2 #./run_multiple.sh python3 MQTT_RU_simulation.py 40
3 #bash script py_ver. One_layer_simulation ...

number_of_simulated_layers
4 echo "Simulating $3 layers"
5

6 # Allow to find and close processes when terminal window is closed
7 trap "pkill -P $$; kill -INT $$" INT
8

9 while read n
10 do
11 # $n is Layer_ID, $3 is number_of_simulated_layers
12 "$1" "$2" $n "$3" &
13 done < <(seq $3)
14 wait

Graphical interface for visualization of randomly generated data

To visualize randomly generated data in the MQTT test, a GUI has been developed
(see Figure 5.5). The GUI is made with overview rows at the upper part. The num-
ber of rows and parameters for a row can be chosen. Alarm status in the first row

CHAPTER 5 PROTOTYPING 47

Figure 5.5: User interface prototype for pCT.

in GUI should accumulate the status for each layer and represent alarm or warning
color code. The status row for temperatures, voltages, and currents have the option
of either showing the maximum value or the minimum value of a layer. It allows
so by choosing Temperature_max to get the maximum for the whole layer in the
corresponding cell. According to the pattern of data generation of temperature, the
minimum is zero, but the maximum is proportional to the LAYER_ID. In real oper-
ation, both maximum and minimum for each layer is essential as it will represent
cooling efficiency. The distribution of a layer can be seen in the center of GUI. But-
tons can do navigation through layers with signs "<" and ">" or by clicking on a cell
of the status row, then the corresponding layer will be displayed.

A special conversion procedure has been programmed (see Listing 5.2), to visualize
the temperatures, voltages, and currents. It converts a value in the range from 0 to
1023 to RGB color code for temperature or in shadows of grey for others. It is colored
from blue (cold) to red (hot) on visualization. The transitions for the temperature is
shown in Figure 5.6.

N
o

r
m

a l

Notused

Hot

C

o l d

Figure 5.6: Color range for the ALPIDE temperature.

The goal of this algorithm is to give a color representation of a value. It allows to

48 MQTT

spot anomalies easily. When working limits for a parameter will be known, the al-
gorithm can be changed to have variation starting at the minimum and continue to
the maximum threshold. It allows having a better color resolution in the interested
range. Voltage and current data use the shades of the grey output of the algorithm.
They also have different ranges to verify proper parsing in GUI (see Figure 5.5).

Listing 5.2: Value to color convertoin algorithm. Part of the file MQTT_GUI.py
1 def convert_value_to_rgb_hex(value, param=-1):
2 """ 1024 values to variation from Blue to Red through Green.
3 #1 Goes from Blue to Green by incresing Green.
4 #2 Decrease Blue to get pure Green
5 #3 Increase Red to get Orange
6 #4 Decrease Green to get pure Red
7 Suggest 255(8bit) max on value
8 """
9 if param == 0:

10 value=value*4 #Suggest 255 max on value. We have 1024 max
11 if value < 256: #1
12 color = '#%02x%02x%02x' % (0,value,255)
13 elif value ≥ 768: #4
14 color = '#%02x%02x%02x' % (255,1023-value,0)
15 elif value < 512: #2
16 color = '#%02x%02x%02x' % (0,255,511-value)
17 elif value ≥512: #3
18 color = '#%02x%02x%02x' % (value-512,255,0)
19 if param ≥ 1:
20 #Shadows of grey output
21 color = '#%02x%02x%02x' % (value,value,value)
22 return color

5.1.6 MQTT request-response time test.

Time used on request-response turnaround (loop) is essential for estimating delay
in monitoring in a control system. This also gives the reaction time in closed-loop
regulation. To find out the minimum response time with the MQTT broker showed
in Figure 5.7 was used. The test is using a single Gigabit link when the MQTT
broker and test software is running on the same PC. It is a simplified configuration,
but results will give a minimum possible delay.

Figure 5.7: Request-response time test configuration.

CHAPTER 5 PROTOTYPING 49

Based on the tests made request-response time is 5 ms. Given that we want to mon-
itor approximately 1000 values per second, a request response time of 5 ms is too
slow. It is better to send commands grouped in a packet to achieve maximum speed.

5.1.7 Summary

The test framework has verified that the MQTT broker can handle the needed amount
of data, and the data can easily be visualized. A color representation of data has
been developed. The topic structure described above has been tested on the way
to the control software prototype. The request-response time achieved implies that
it is beneficial to pack more configuration commands in one packet, if possible. It
requires a busy flag implementation on the pRU, which will let the control software
know if the limit for incoming commands is reached.

5.2 OPC UA

For testing OPC UA technology, Open62541 has1 was selected. Open62541 is an
open-source, cross-platform client and server implementation of OPC UA written
in C99. It is developed by three German universities and some commercial compa-
nies. Open62541 has commercial support offerings from two partners.

The latest release version of Open62541 is 1.0. Documentation is available online
for releases and development branches. The work with the repository has shown
that the Publish-Subscribe functionality for the client API is not finished. This fea-
ture is required for the asynchronous reception of data from the server. However,
Open62541 gives insights on how an OPC UA system is working. Further steps with
OPC UA will be discussed in section 7.2.

A server build from Open62541 repository has been tested with a free tool of a com-
mercial SDK, - UaExpert from Unified Automation. UaExpert is a cross-platform
OPC UA client.

5.2.1 Information modeling

Information modeling is the first step in the development of an OPC UA system. At
this step, low-level functionalities are planned to meet top-level requirements. The
information model expresses the semantic of the physical system in objects, data
types, methods, events, and references. It requires knowledge and hands-on experi-
ence of OPC UA standard. OPC UA standard allows creating an information model
in the way that it represents the semantics of the system very closely and will make
communication efficient. OPC UA has an object-oriented approach.

The file format for an information model is XML. It contains references to names-
paces, which are used. In our case a new namespace is created for the special pCT

1open62541.org

50 OPC UA

related objects, methods, classes etc (see Appendix B.2). At the end of the XML file,
objects are defined to verify the structure by the UaModeler tool from Unified Au-
tomation.

To verify the information model file, UA-ModelCompiler from OPC Foundation is
used. It checks consistency and integrity and generates a set of files: NodeSet2.xml,
Types.bsd, Nodes.csv, and some other files. The first three files are used for import to
the Open62541 OPC UA stack. NodeSet2.xml file is the official format for a custom
information model. Depending on the design, the NodeSet2 file can be substantially
larger than the XML source file.
Nodeset2.xml file is imported in UaModeler for visual verification. The set of files
generated by UA-ModelCompiler can be imported to any OPC UA SDK or server. It
means that objects described in the information model can be created inside an OPC
UA server. The information model XML file is a design file for an OPC UA system.
In Figure 5.8 OPC UA workflow is illustrated.

The design of an information model can be done by some GUI-based tools, but in
practice, a manually written XML file is more convenient. It is more readable, and
it is more comfortable to add new functionality. The manual approach requires an
understanding of OPC UA and OPC UA specific XML language.

5.2.2 OPC UA Information model for pCT control system

The information model for pCT has to include object classes for pRU, power, cool-
ing, and beam systems. Creation of a new object type require a reference to the
BaseType which is "OpcUa:BaseObjectType". "OpcUa" in front of "BaseObjectType" is
the namespace. A pCT objects and object types will have "pCT" as the namespace.
It allows to avoid mixing the same names in different namespaces if they exist. In
the next sections, OPC UA models developed for pCT will be described.

The power, cooling and beam subsystems

For managing power, cooling and beam system, a new base class is needed with two
methods: Turn_ON, Turn_OFF; and property Is_ON. In Figure 5.9 the beam system
represents an object of "SubsystemObjectType"2. This minimum functionality allows
to turn on and off, and read the status Is_ON. Methods can have input and output
parameters, but at the moment only output parameters are used to return the result
of calling a method.

The cooling system in Figure 5.10 inherits from "SubsystemObjectType" and have
in addition parameters: Temperature_In, Temperature_Out and Flow. These are
needed for the calculation of cooling performance. Power system with one output
will require methods "Set_Voltage" and "Set_Current_Limit" and parameters "Volt-
age" and "Current" for reading values back. See Figure 5.11

2Appendix B.2 line 20

CHAPTER 5 PROTOTYPING 51

A specification Figures 5.9-5.12

Written Informa-
tion Model, xml

Xml description of
object classes for pCT.
Appendix B.2

Model
Compiler
success?

OPC Foundation
Model Compiler

Update model

Nodeset2.xml
file for any
OPC SDK

File contains unique IDs for
each parameter, property
or method

Visual
check

success?

UaModeler from
Unified Automation

Use in an
OPC Server

Import to any OPC UA SDK

no

no

yes

yes

Figure 5.8: OPC UA workflow

52 OPC UA

Figure 5.9: OPC UA Information Model of the beam systemsa.
a See for OPC UA graphical notations in Appendix B.1

Figure 5.10: OPC UA Information Model of the cooling systems.

CHAPTER 5 PROTOTYPING 53

Figure 5.11: OPC UA Information Model of the power systems.

The pRU

The pRU is the most complex OPC UA object in the pCT instrument. It represents
the structure of the pRU with submodules like FPGA, staves and ALPIDEs by using
OPC UA terminology (see Figure 5.12). To design a complete object type, we need
all subtypes. It means that the design will go from the bottom upwards. To model
the ALPIDE chip, two methods are required: Register_Write and Register_Read.
Access to the ADC registers inside the ALPIDE is by reading and writing to regis-
ters. However, it is more convenient to have ADC as a subtype of ALPIDE. Then
the ADC can have methods for calibrations and parameters for the status of ADC.
Results of the ADC measurements have to be part of the topology to allow subscribe
on changes. In Figure 5.12 only temperature, digital (DVDD) and analog (AVDD)
power supplies, digital (DVSS) and analog (AVSS) grounds is shown for simplic-
ity. To provide results of the ADC measurements, an event can be generated to send
data. It is shown by reference "HasEventSource" from the ALPIDE object to the ADC
object.

During operation of the pCT when the beam is on and the system register parti-
cles, the Scan_Is_ON property is used. The reference "HasEffect" from Scan_Is_On
to ALPIDE, ADC and Register_Write and is meaning that the functionality of the
ALPIDE is limited. The ADC will not start a measurement Scan_Is_ON is true. Re-
sult of calling the Register_Write method will not return success. The reason for this
is that the ALPIDE control bus might be busy issuing triggers to initiate data read-
out.

All object types for sub objects of the pRU have to be defined once. Modeling rules
are used to mark the parameter, object, or method is required when an object is in-
stantiated. It allows to specify the amount of ALPIDEs in each stave and the number

54 Top-level control system

of staves in the pRU. Then a pRU object can be created in few lines of code with all
submodules (see Appendix B.2 line 159). For the UaModeller view of the pCT see
Appendix B.3.

5.2.3 Summary

During the OPC UA development and testing phase, a more structured approach
was considered. The pRU object was designed relatively fast by using OPC UA
terminology. The rich semantic of the OPC UA allows for developing an information
model in a way that it can be controlled by a high-level software.

5.3 Top-level control system

That all monitored data are stored at one place is not enough. To operate the pCT
instrument requires a Finite State Machines (FSM). This is the place where control
logic is concentrated. In Figure 5.13 an example of FSM is given that utilizes the OPC
UA functionality described in section 5.2. The complete set of finite state machines
for the pCT has not been designed as it was outside of the scope of this thesis.
The GUI development for MQTT tests had a top-level control system in mind (see
Figure 5.5). It structured hierarchically with overall status at the top. The color rep-
resentation of a values are dedicated to the detection of erroneous situations. Status
rows have been introduced to highlight the maximum and minimum values of each
layer. A mouse click on a cell of any status row will change the active layer in the
middle to appropriate layer and parameter. On the bottom-left is a logging window
for events, alarms, and warnings. At the right side from layers view, there are but-
tons for navigation between monitored parameters with text windows for showing
limits for alarm generations. A similar control system interface can be envisaged no
matter if the underlying protocol is MQTT or OPC UA.

CHAPTER 5 PROTOTYPING 55

Figure 5.12: OPC UA Information Model of the pCT.

56 Top-level control system

Start

Reset CounterGenerate
error

Calibrate ADC

Result
OK?

Subscribe
on ADC

reading event

Counter
< 3

Increment
Counter

YES

NO

YES

NO

Manual reset

Figure 5.13: An example of FSM for receiving of ADC measurements

Chapter 6

Proposal of Production Version
Control System Architecture

In this chapter, the pros and cons will be weighed against the requirements de-
scribed in chapter 4. The primary candidates for the control system communication
protocol are OPC UA and MQTT. The DIM protocol is not chosen as it is more com-
plicated than MQTT. The DIM is also not an industry-proven protocol and has no
commercial support. In this section, three scenarios will be described: MQTT only,
OPC UA only, and a combination of both.

This section is based on that the design proposal of pRu will be accepted (see Figure
3.4, [20]). It means that transition cards are custom made for the transfer of data,
control, and power to the ALPIDE layers. Power monitoring on transition cards
is expected per stave. The Ethernet interface on the transition cards has not been
specified. It means that it will probably be controlled via the FPGA on the pRU.
The pRU will then be responsible for the control of the transition cards. The power
control unit have not been specified in detail in [20].

6.1 MQTT only

The MQTT protocol has no graphical notations like OPC UA due to its simplicity,
but the object-oriented approach can be used here. It means that the OPC UA infor-
mation model developed for the pCT can be used as the specification, and the topic
structure has to be made to allow to call appropriate methods and receive replies.
The event-based messages can be published on the dedicated topic "EVENT".1 The
cooling and the beam systems can be managed by one micro-controller and use one
connection. The power system most likely will be an industrial component, and to
communicate with it an interface converter will be needed. A MQTT client located

1More detail about the MQTT subscriptions in section 5.1

57

58 OPC only

Figure 6.1: Control connetions in pCT with MQTT as communication protocol.

next to power supply to control it. In Figure 6.1 the concept is shown.

The framework that has been developed to visualize data and described in section
5.1 can be used in this case without modifications. The MQTT protocol was proven
to be easy to implement as well as transparent. The MQTT protocol has been imple-
mented on the PRU test setup described in section 3. At the current stage with many
unknowns in the pCT system, the MQTT will give an advantage in the integration
of custom devices into the pCT control system.

6.2 OPC only

When considering OPC as a solution for all components in the pCT, OPC UA servers
have to be placed near all sources of information or in need of control. An aggregat-
ing server can be introduced to concentrate information distributed over front-end
electronics at one place if communication with an external system is needed. It will
"unload" OPC UA servers on pRUs. It is possible with one-to-one and one-to-many
architectures due to the built-in subscription functionality in the OPC UA.

In Figure 6.2 the OPC UA topography for the pCT is shown. In the OPC UA, there
is no broker as in MQTT. During prototyping in section 5, OPC UA has not been
tested with FreeRTOS. To estimate possibility to monitor parameters chosen in sec-
tion 4 metric from Matrikon SDK is used. The CPU utilization with OPC server is
shown in Table 6.1. At the first line, hardware similar to a soft-core MicroBlaze pro-
cessor is shown. I.e. sampling and reporting at a rate about 1000 tags per second
can be expected in the current setup. This satisfies the R.2 requirement.

CHAPTER 6 PROPOSAL OF PRODUCTION VERSION CONTROL SYSTEM
ARCHITECTURE 59

Figure 6.2: OPC UA topography for the pCT.

Test Conditions Hardware CPU Utilization (%)a

100
continuously
changing tags

Sampling
and reporting
every 100 ms

ARM Cortex-M4F
(STM32F407)
@ 168MHz

12.5

1000
continuously
changing tags

Sampling
and reporting
every 100 ms

ARM Cortex-A8
(AM3359)
@ 1GHz

31.0

Table 6.1: OPC server performance for Matrikon SDK[28].
a Metrics obtained using GCC-03

In this case, the power system will require an OPC UA server. Industry compo-
nents are getting native OPC UA support now. An appropriate power supply with
OPC UA functionality will likely be found for the pCT needs. There is a software
framework for generating OPC UA servers developed at CERN. The results of this
development will be available commercially in the market2.

Publish/subscribe functionality has not been tested due to the fact that the API in
Open62541 is not finished. It is required for sending monitoring information asyn-
chronously from pRUs. So it is currently not possible to implement a full-scale OPC
UA control system with Open62541.

2https://kt.cern/success-stories/quasar-project

60 OPC and MQTT

6.3 OPC and MQTT

An option will be considered here for pCT where both MQTT and OPC UA is used
(see Figure 6.3). This is an attempt to use the best of both. There are several motiva-
tions to use MQTT technology. First is transparency - all communications between
all clients can be observed. It is essential for debugging. MQTT is also easy to im-
plement, has small memory footprint and CPU utilization.

Reasons to include OPC UA in this solution is that industrial power supplies are
expected to be with native OPC UA support and communication with an external
system will most probably use OPC UA as it become a standard transport protocol
for SCADA systems(WinCC Siemens is an example).

Figure 6.3: Both MQTT and OPC is used for the pCT. Layers and staves are not
shown.

Despite the use of two technologies the total efforts on implementation of the work-
ing system is expected to be less that option with OPC UA only. A power supply
for the pCT will be product "off the shelf" with OPC UA functionality and efforts on
communication with it is less that implementation the whole OPC UA system.

Chapter 7

Conclusion and future work

7.1 Conclusion

Hands-on experience with the two technologies suggested in a previous master
thesis[22] has been gained. It reveals the strengths and weaknesses of both. MQTT
is very light and protocol that is easy to implement. It allows to set-up one-to-many
communication by subscribing to interesting topics, however, the data formats and
package structure have to be developed. Taking in account the MQTT message flow
shown in Figure 5.1, all information has to go through the MQTT broker. It is a dis-
advantage for high load situation.

OPC UA is a sophisticated object-oriented protocol but in concept easy to port from
one server implementation to another by using XML format for information model.
However, the publish-subscribe feature in OPC UA was released in February 2018.
Due to this reason, it is still work in progress in Open62541 on publish-subscribe
client API, and the desired asynchronous patter of communication has not been
tested. A commercial SDK instead of Open62541 has to be considered for the pCT.
Some tools from Unified Automation SDK for OPC UA have been tested, and it ad-
vised to be used.

An OPC UA information model for the pCT has been developed. The XML design
file has been imported to a commercial SDK . The design of the OPC UA informa-
tion model helps to structure the specification towards the final system.

The option based on MQTT is suitable for the current state of the pCT project due to
that all communication in MQTT can be logged easily, in OPC UA not. However, the
integration of power supplies will require an MQTT driver to control it. The use of
OPC UA communication protocol is the best option for the final system considering
that more industrial power supplies and SCADA systems coming with native OPC
UA support. The development of the OPC UA servers require more knowledge and

61

62 Future work

efforts in comparison to MQTT, but the communication in OPC UA is highly stan-
dardized. It will lead to fewer issues during start-up of the control system.

7.2 Future work

If OPC UA is selected as a communication protocol for the pCT, the OPC UA SDK
has to be chosen. It will be beneficial to have training implementation of particular
SDK. The information model developed in this thesis has to be adapted to and tested
on a full-scale prototype when it will be available. In the next steps, the design of the
relevant FSM must be done. A framework for the development of the FSM has to be
chosen as well. A SCADA system is needed to incorporate FSM and functionalities
of the pCT system. Due to the lack of personal experience with SCADA systems, it is
difficult to suggest an option, but overview over open-source SCADA systems with
OPC UA functionality have not shown well supported candidates. A commercial
SCADA system have to be considered. It has to be a member of OPC Foundation to
offer compatibility with all features of the OPC UA protocol.

Bibliography

[1] Brookhaven National Laboratory "NSRL User Guide: Bragg Curves and Peaks"
https://www.bnl.gov/nsrl/userguide/bragg-curves-and-peaks.php

[2] W. P. Levin et al, 2005 "Proton beam therapy" British Journal of Cancer. 93 (8):
849–854.

[3] S. Chera et al, 2009 "Proton Therapy for Maxillary Sinus Carcinoma" American
Journal of Clinical Oncology, Vol.32(3), pp.296-303

[4] S. E. Combs, 2019 "The Benefits of Particle Therapy in Cancer Treatment" Lecture

[5] J.E. Leeman et al, 2017 "Proton therapy for head and neck cancer: expanding the
therapeutic window"

[6] H.E. Seime Pettersen et al, 2017 "Proton tracking in a high-granularity Digital Track-
ing Calorimeter for proton CT purposes" Nuclear Inst. and Methods in Physics Re-
search, A 860.C : 51-61. Web.

[7] E. Schnell et al, 2016 "Commissioning of a relative stopping power to Hounsfield unit
calibration curve for a Mevion proton radiation treatment unit" Article

[8] H.E. Seime Pettersen, 2018 "A Digital Tracking Calorimeter for Proton Computed
Tomography"

[9] P. Chochula et al, 2018 "ALICE Detector Control System Management and Organi-
zation" Presentation

[10] P. Chochula et al, 2010 "The ALICE Detector Control System" IEEE Transactions
on Nuclear Science, Vol.57(2), pp.472-478

[11] C. Gaspar et al, 2001 "DIM, a portable, light weight package for information publish-
ing,data transfer and inter-process communication" Computer Physics Communica-
tions, Vol.140(1), pp.102-109

[12] "DIM - Distributed Information Managment System" https://dim.web.cern.ch/

63

64 Bibliography

[13] P. Chochula, 2018 "The evolution of the ALICE Detector Control System" Presenta-
tion

[14] H. Shafiee, 2019 "Prototyping of a Tracking Calorimeter for Computed Tomography
in Proton Therapy" Presentation

[15] ALICE Collaboration, 2008 "The ALICE Experiment at the CERN LHC" Journal
of Instrumentation 3.08 : S08002. Web.

[16] A.D. Mauro, 2019 "The New Inner Tracking System for the ALICE Upgrade at the
LHC" Nuclear Inst. and Methods in Physics Research, A 936: 625-29. Web.

[17] P. Gasik, 2018 "Upgrade of the ALICE Central Barrel Tracking Detectors: ITS and
TPC" Web.

[18] B Abelev et al, 2014 "Upgrade of the ALICE Experiment: Letter Of Intent"

[19] ALICE ITS ALPIDE development team, 2016 "ALPIDE operational manual"

[20] O. Grottvik et al, 2019 "Design proposal for the pCT Readout Unit (pRU)"

[21] H.A. Schaug, 2017 "Proton computed tomography readout testing and detector de-
sign"

[22] K.E. Sandvik Bohne, 2018 "Ethernet-Based Control System and Data Readout for a
Proton Computed Tomography Prototype"

[23] EEE Standards, 2008 "IEEE Standard for SCADA and Automation Systems" Pis-
cataway, USA: IEEE. Web.

[24] Embedded Market Survey, 2017 https://www.embedded.com/electronics-
blogs/embedded-market-surveys/4458724/2017-Embedded-Market-Survey

[25] P. Chochula, 2018 "The evolution of the ALICE Detector Control System" presenta-
tion

[26] A. Augustinus et al, 2018 "ALICE DCS preparation for Run 3" presentation by
Alexander Kurepin

[27] R.A. Light, 2017 "Mosquitto: server and client implementation of the
MQTTprotocol" The Journal of Open Source Software, vol. 2, no. 13, DOI:
10.21105/joss.00265

[28] MatrokinOPC, 2015
https://opcfoundation.org/wp-content/uploads/2015/03/Keys-To-
Developing-an-Embedded-UA-Server_Whitepaper_EN.pdf

[29] https://www.xilinx.com/support/documentation/white_papers/wp501-
microblaze.pdf

[30] S. Chacon et al, 2018 "Pro Git" Version 2.1.84

65

[31] D. Kim et al, 2016 "Front end optimization for the monolithic activepixel sensor of the
ALICE Inner Tracking Systemupgrade"

[32] B. Chaudhary, 2013 "Tkinter GUI application development hotshot"

[33] B. Franek et al, 2005 "SMI++ Object Oriented Framework for Designing and Im-
plementing Distributed Control Systems" IEEE Transactions on Nuclear Science,
Vol.52(4), pp.891-895

Appendix A

ALPIDE

A.1 ADC readings functions in TAlpide.cpp

Here a part of pct/alpide-sw/TAlpide.cpp file is listed to show implemented procedures
for reading temperature, voltage and current for comparison with description in
ALPIDE Operation manual[19].

356 /* --
357 * Reads the temperature sensor by means of internal ADC
358 *
359 * Returns : the value in Celsius degree.
360 *
361 * Note : if this was the first measure after the chip
362 * configuration phase, a calibration will be
363 * automatically executed.
364 *
365 */
366 float TAlpide::ReadTemperature() {
367

368 uint16_t theResult = 0;
369 float theValue;
370 if(fADCBias == -1) { // needs calibration
371 CalibrateADC();
372 }
373

374 SetTheDacMonitor(Alpide::REG_ANALOGMON); // uses the ...
RE_ANALOGMON, in order to disable the monitoring !

375 usleep(5000);
376 SetTheADCCtrlRegister(Alpide::MODE_MANUAL, ...

Alpide::INP_Temperature, Alpide::COMP_296uA, Alpide::RAMP_1us);
377 fReadoutBoard->SendOpCode (Alpide::OPCODE_ADCMEASURE, ...

fConfig->GetChipId());
378 usleep(5000); // Wait for the measurement > of 5 milli sec
379 ReadRegister(Alpide::REG_ADC_AVSS, theResult);
380 theResult -= (uint16_t)fADCBias;
381 theValue = (((float)theResult) * 0.1281) + 6.8; // first ...

67

68 ADC readings functions in TAlpide.cpp

approximation
382 return(theValue);
383 }
384

385 /* --
386 * Reads the output voltage of one DAC by means of internal ADC
387 *
388 * Parameter : the Index that define the DAC register
389 *
390 * Returns : the value in Volts.
391 *
392 * Note : if this was the first measure after the chip
393 * configuration phase, a calibration will be
394 * automatically executed.
395 *
396 */
397 float TAlpide::ReadDACVoltage(Alpide::TRegister ADac) {
398

399 uint16_t theResult = 0;
400 float theValue;
401 if(fADCBias == -1) { // needs calibration
402 CalibrateADC();
403 }
404

405 SetTheDacMonitor(ADac);
406 usleep(5000);
407 SetTheADCCtrlRegister(Alpide::MODE_MANUAL, ...

Alpide::INP_DACMONV, Alpide::COMP_296uA, Alpide::RAMP_1us);
408 fReadoutBoard->SendOpCode (Alpide::OPCODE_ADCMEASURE, ...

fConfig->GetChipId());
409 usleep(5000); // Wait for the measurement > of 5 milli sec
410 ReadRegister(Alpide::REG_ADC_AVSS, theResult);
411 theResult -= (uint16_t)fADCBias;
412 theValue = (((float)theResult) * 0.001644); // V scale first ...

approximation
413 return(theValue);
414 }
415

416 /* --
417 * Reads the output current of one DAC by means of internal ADC
418 *
419 * Parameter : the Index that define the DAC register
420 *
421 * Returns : the value in Micro Ampere.
422 *
423 * Note : if this was the first measure after the chip
424 * configuration phase, a calibration will be
425 * automatically executed.
426 *
427 */
428 float TAlpide::ReadDACCurrent(Alpide::TRegister ADac) {
429

430 uint16_t theResult = 0;
431 float theValue;
432 if(fADCBias == -1) { // needs calibration
433 CalibrateADC();
434 }

APPENDIX A ALPIDE 69

435

436 SetTheDacMonitor(ADac);
437 usleep(5000);
438 SetTheADCCtrlRegister(Alpide::MODE_MANUAL, ...

Alpide::INP_DACMONI, Alpide::COMP_296uA, Alpide::RAMP_1us);
439

440 fReadoutBoard->SendOpCode (Alpide::OPCODE_ADCMEASURE, ...
fConfig->GetChipId());

441 usleep(5000); // Wait for the measurement > of 5 milli sec
442 ReadRegister(Alpide::REG_ADC_AVSS, theResult);
443 theResult -= (uint16_t)fADCBias;
444 theValue = (((float)theResult) * 0.164); // uA scale first ...

approximation
445 return(theValue);
446 }

70 ALPIDE’s Front-end

A.2 ALPIDE’s Front-end

Figure A.1: ALPIDE Front-end scheme[19].

Figure A.2: ALPIDE input stage[31].

Appendix B

OPC UA

B.1 Graphical notations

OPC UA has own graphical notation different from UML language to be able repre-
sent functionality and semantic of Information Model and Address Space.

Figure B.1: OPC UA Notations.

71

72 XML file for pCT Information model

B.2 XML file for pCT Information model

1 <?xml version="1.0" encoding="utf-8"?>
2 <ModelDesign xmlns:uax="http://opcfoundation.org/UA/2008/02/Types.xsd"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:OpcUa="http://opcfoundation.org/UA/"
5 xmlns:pCT="http://uib.no/UA/pCT/"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
7 TargetNamespace="http://uib.no/UA/pCT/"
8 TargetXmlNamespace="http://uib.no/UA/pCT/"
9 TargetVersion="0.01"

10 TargetPublicationDate="2019-10-01T00:00:00Z"
11 xmlns="http://opcfoundation.org/UA/ModelDesign.xsd">
12

13 <Namespaces>
14 <Namespace Name="Bergen_pCT" Prefix="Bergen.Ua.pCT" ...

XmlNamespace="http://uib.no/UA/pCT/Types.xsd" ...
XmlPrefix="pCT">http://uib.no/UA/pCT/</Namespace>

15 <Namespace Name="OpcUa" Prefix="Opc.Ua" ...
InternalPrefix="Opc.Ua.Server" ...
XmlNamespace="http://opcfoundation.org/UA/2008/02/Types.xsd" ...
XmlPrefix="OpcUa">http://opcfoundation.org/UA/</Namespace>

16 </Namespaces>
17

18 <!-- ### Object Types ###-->
19 <!--A generic Subsytem ObjectType-->
20 <ObjectType SymbolicName="pCT:SubsystemObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
21 <Description>A base type for subsystems</Description>
22 <Children>
23 <Property SymbolicName="pCT:IsON" DataType="OpcUa:Boolean" ...

ModellingRule="Mandatory" />
24 <Method SymbolicName="pCT:TurnOn" ...

TypeDefinition="pCT:TurnOnOffMethod" ...
ModellingRule="Mandatory"></Method>

25 <Method SymbolicName="pCT:TurnOff" ...
TypeDefinition="pCT:TurnOnOffMethod" ...
ModellingRule="Mandatory"></Method>

26 </Children>
27 </ObjectType>
28

29 <!-- An ADC ObjectType-->
30 <ObjectType SymbolicName="pCT:ADCObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
31 <Description>ADC object type</Description>
32 <Children>
33 <Method SymbolicName="pCT:CalibrateADC" ...

TypeDefinition="pCT:CalibrateADCMethod" ...
ModellingRule="Mandatory"></Method>

34 <Property SymbolicName="pCT:AdcCalibrated" ...
DataType="OpcUa:Boolean" ModellingRule="Mandatory" />

35 <Property SymbolicName="pCT:Temperature" DataType="OpcUa:Float" ...
ModellingRule="Mandatory"/>

36 <Property SymbolicName="pCT:VDD" DataType="OpcUa:Float" ...
ModellingRule="Mandatory"/>

APPENDIX B OPC UA 73

37 <Property SymbolicName="pCT:VCC" DataType="OpcUa:Float" ...
ModellingRule="Mandatory"/>

38 </Children>
39 </ObjectType>
40

41 <!-- An ALPIDE ObjectType-->
42 <ObjectType SymbolicName="pCT:ALPIDEObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
43 <Description>A base type for ALPIDE object</Description>
44 <Children>
45 <Property SymbolicName="pCT:ID" DataType="OpcUa:Int32" ...

ModellingRule="Mandatory" />
46 <Object SymbolicName="pCT:ADC" TypeDefinition="pCT:ADCObjectType" ...

ModellingRule="Mandatory" />
47 <Method SymbolicName="pCT:RegisterWrite" ...

TypeDefinition="pCT:ALPIDERegisterWriteMethod" ...
ModellingRule="Mandatory" />

48 <Method SymbolicName="pCT:RegisterRead" ...
TypeDefinition="pCT:ALPIDERegisterReadMethod" ...
ModellingRule="Mandatory" />

49 </Children>
50 </ObjectType>
51

52 <!-- A stave ObjectType-->
53 <ObjectType SymbolicName="pCT:StaveObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
54 <Description>A base type for stave object</Description>
55 <Children>
56 <Property SymbolicName="pCT:ID" DataType="OpcUa:Int32" ...

ModellingRule="Mandatory" />
57 <Object SymbolicName="pCT:ALPIDE_0" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
58 <Object SymbolicName="pCT:ALPIDE_1" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
59 <Object SymbolicName="pCT:ALPIDE_2" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
60 <Object SymbolicName="pCT:ALPIDE_3" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
61 <Object SymbolicName="pCT:ALPIDE_4" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
62 <Object SymbolicName="pCT:ALPIDE_5" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
63 <Object SymbolicName="pCT:ALPIDE_6" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
64 <Object SymbolicName="pCT:ALPIDE_7" ...

TypeDefinition="pCT:ALPIDEObjectType" ModellingRule="Mandatory" />
65 </Children>
66 </ObjectType>
67

68 <!-- A FPGA ObjectType-->
69 <ObjectType SymbolicName="pCT:FPGAObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
70 <Description>A base type for FPGA object</Description>
71 <Children>
72 <Property SymbolicName="pCT:VCCINT" DataType="OpcUa:Float" ...

ModellingRule="Mandatory" />
73 <Property SymbolicName="pCT:VCCAUX" DataType="OpcUa:Float" ...

74 XML file for pCT Information model

ModellingRule="Mandatory" />
74 <Property SymbolicName="pCT:JunctionTemperature" ...

DataType="OpcUa:Float" ModellingRule="Mandatory" />
75 </Children>
76 </ObjectType>
77

78 <!-- pRU ObjectType-->
79 <ObjectType SymbolicName="pCT:pRUObjectType" ...

BaseType="OpcUa:BaseObjectType" IsAbstract="false">
80 <Description>A base type for pRU object</Description>
81

82 <Children>
83 <Property SymbolicName="pCT:ID" DataType="OpcUa:Int32" ...

ModellingRule="Mandatory" />
84 <Property SymbolicName="pCT:ScanIsOn" DataType="OpcUa:Boolean" ...

ModellingRule="Mandatory" />
85 <Property SymbolicName="pCT:BoardTemperature" ...

DataType="OpcUa:Float" ModellingRule="Mandatory" />
86 <Property SymbolicName="pCT:BoardCurrent" DataType="OpcUa:Float" ...

ModellingRule="Mandatory" />
87 <Object SymbolicName="pCT:FPGA" ...

TypeDefinition="pCT:FPGAObjectType" ModellingRule="Mandatory" />
88 <Object SymbolicName="pCT:Stave_00" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
89 <Object SymbolicName="pCT:Stave_01" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
90 <Object SymbolicName="pCT:Stave_02" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
91 <Object SymbolicName="pCT:Stave_03" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
92 <Object SymbolicName="pCT:Stave_04" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
93 <Object SymbolicName="pCT:Stave_05" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
94 <Object SymbolicName="pCT:Stave_06" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
95 <Object SymbolicName="pCT:Stave_07" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
96 <Object SymbolicName="pCT:Stave_08" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
97 <Object SymbolicName="pCT:Stave_09" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
98 <Object SymbolicName="pCT:Stave_11" ...

TypeDefinition="pCT:StaveObjectType" ModellingRule="Mandatory" />
99

100 </Children>
101

102 </ObjectType>
103

104 <!-- ### Object Instances ###-->
105 <!--An Object to collect all pCT related instances at one place by ...

reference to it-->
106 <Object SymbolicName="pCT:pCT_Set" ...

TypeDefinition="OpcUa:BaseObjectType">
107 <Description>Contains all instances of Bergen pCT</Description>
108 <References>
109 <Reference IsInverse="true">

APPENDIX B OPC UA 75

110 <ReferenceType>OpcUa:Organizes</ReferenceType>
111 <TargetId>OpcUa:ObjectsFolder</TargetId>
112 </Reference>
113 </References>
114 </Object>
115

116 <Object SymbolicName="pCT:BeamSystem" ...
TypeDefinition="pCT:SubsystemObjectType">

117 <Description>Beam system control</Description>
118 <References>
119 <Reference IsInverse="true">
120 <ReferenceType>OpcUa:Organizes</ReferenceType>
121 <TargetId>pCT:pCT_Set</TargetId>
122 </Reference>
123 </References>
124 <Children>
125 </Children>
126 </Object>
127

128 <Object SymbolicName="pCT:CoolingSystem" ...
TypeDefinition="pCT:SubsystemObjectType">

129 <Description>Cooling system control</Description>
130 <References>
131 <Reference IsInverse="true">
132 <ReferenceType>OpcUa:Organizes</ReferenceType>
133 <TargetId>pCT:pCT_Set</TargetId>
134 </Reference>
135 </References>
136 <Children>
137 <Property SymbolicName="pCT:TemperatureIn" DataType="OpcUa:Float" />
138 <Property SymbolicName="pCT:TemperatureOut" DataType="OpcUa:Float" ...

/>
139 <Property SymbolicName="pCT:Flow" DataType="OpcUa:Float" />
140 </Children>
141 </Object>
142

143 <Object SymbolicName="pCT:PowerSystem" ...
TypeDefinition="pCT:SubsystemObjectType">

144 <Description>Power system control</Description>
145 <References>
146 <Reference IsInverse="true">
147 <ReferenceType>OpcUa:Organizes</ReferenceType>
148 <TargetId>pCT:pCT_Set</TargetId>
149 </Reference>
150 </References>
151 <Children>
152 <Property SymbolicName="pCT:Voltage" DataType="OpcUa:Float" />
153 <Property SymbolicName="pCT:CurrentLimit" DataType="OpcUa:Float" />
154 <Method SymbolicName="pCT:SetVoltage" ...

TypeDefinition="pCT:SetVoltageCurrentMethod" ...
ModellingRule="Mandatory" />

155 <Method SymbolicName="pCT:SetCurrent" ...
TypeDefinition="pCT:SetVoltageCurrentMethod" ...
ModellingRule="Mandatory" />

156 </Children>
157 </Object>
158

76 XML file for pCT Information model

159 <Object SymbolicName="pCT:pRU_00" TypeDefinition="pCT:pRUObjectType">
160 <Description>An instance of pRU </Description>
161 <References>
162 <Reference IsInverse="true">
163 <ReferenceType>OpcUa:Organizes</ReferenceType>
164 <TargetId>pCT:pCT_Set</TargetId>
165 </Reference>
166 </References>
167 <Children>
168

169 </Children>
170 </Object>
171

172 <!-- ### Methods ###-->
173 <Method SymbolicName="pCT:TurnOnOffMethod">
174 <OutputArguments>
175 <Argument Name="TurnOnOffStatus" DataType="OpcUa:Int32" />
176 </OutputArguments>
177 </Method>
178

179 <Method SymbolicName="pCT:CalibrateADCMethod">
180 <OutputArguments>
181 <Argument Name="CalibrateStatus" DataType="OpcUa:Int32" />
182 </OutputArguments>
183 </Method>
184

185 <Method SymbolicName="pCT:SetVoltageCurrentMethod">
186 <InputArguments>
187 <Argument Name="SetPoint" DataType="OpcUa:Float" />
188 </InputArguments>
189 <OutputArguments>
190 <Argument Name="ReturnStatus" DataType="OpcUa:Int32" />
191 </OutputArguments>
192 </Method>
193

194 <Method SymbolicName="pCT:ALPIDERegisterReadMethod">
195 <InputArguments>
196 <Argument Name="Address" DataType="OpcUa:Int32" />
197 </InputArguments>
198 <OutputArguments>
199 <Argument Name="Value" DataType="OpcUa:Int32" />
200 </OutputArguments>
201 </Method>
202 <Method SymbolicName="pCT:ALPIDERegisterWriteMethod">
203 <InputArguments>
204 <Argument Name="Address" DataType="OpcUa:Int32" />
205 <Argument Name="Value" DataType="OpcUa:Int32" />
206 </InputArguments>
207 </Method>
208 </ModelDesign>

APPENDIX B OPC UA 77

B.3 UaModeler view of the pCT instrument

