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SUMMARY 

Current research focuses on developing a novel bone-inducing scaffold that could 

deliver controlled osteogenic growth factors. Several aspects, in particular those 

influencing the efficacy of such bioactive scaffolds, such as release kinetics of the 

growth factor, biocompatibility and biodegradability, need further study.  

The aim of this thesis was to determine a mode of bone morphogenetic protein-2 

(BMP-2) delivery from copolymer scaffolds that reduce the dose to improve clinical 

safety while retaining efficacy. A low dose of 1 μg BMP-2 was immobilised via four 

different functionalising techniques on recently developed poly(LLA-co-CL) 

scaffolds. Sustained release of low levels was seen from BMP-2 physisorbed on 

nanodiamond modified scaffolds (nDP-PHY) for up to 70 days in vitro compared to 

that from scaffolds modified with microspheres containing BMP-2 (MICS) and 

unmodified scaffolds with physisorbed BMP-2 (PHY). No release was detected from 

BMP-2 covalently bound to nanodiamond modified scaffolds. nDP-PHY, MICS and 

PHY scaffolds promoted bone regeneration in a rat mandible critical-sized defect after 

4 weeks, however, nDP-PHY and MICS scaffolds demonstrated osteogenic potential 

in vivo as well as in mesenchymal stem/stromal cell (MSC) cultures.  

Poly(LLA-co-CL) scaffolds modified with nanodiamond (nDP) and nDP with 

physisorbed BMP-2 were then evaluated through in vivo degradation, host tissue 

response and tumorigenic potential. Modified scaffolds degraded faster than 

unmodified scaffolds. Gene expression of proinflammatory, osteogenic and angiogenic 

markers were upregulated in the nDP and nDP-PHY scaffolds with ectopic bone seen 

at week 8 only from the latter. Inflammatory cells, foreign body giant cells and fibrous 

capsule tissue were significantly reduced around the modified scaffolds. Tissue 

regeneration markers were most highly expressed in the modified groups. 

Interestingly, nanodiamond particles were found in the implantation site after 27 

weeks when 90% of the scaffolds had degraded.  
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To evaluate the tumorigenic potential of the functionalised scaffolds in vivo, a 

sensitive and non-invasive model using xenotransplantation of early neoplastic oral 

keratinocytes transfected to express luciferase (DOKLuc) together with carcinoma 

associated fibroblasts (CAF) for monitoring microenvironmentally-induced 

carcinogenesis was developed. nDP scaffolds without BMP-2 reduced the 

bioluminescence intensity of positive control tumours formed by DOKLuc+CAF in 

vivo. When cultured in vitro as 3D organotypic models of neoplastic oral mucosa, 

DOKLuc previously cultured on nDP scaffolds demonstrated reduced tumorigenic 

potential compared to DOKLuc from nDP-PHY and unmodified scaffolds. nDP-PHY 

scaffolds showed enhanced tumorigenic potential in vivo and in vitro.  

These results suggest a role played by nanodiamonds in reducing tumorigenic 

potential of DOKLuc and also raises concerns for the therapeutic use of BMP-2 for the 

reconstruction of bone defects in oral cancer patients. This thesis also highlights that 

the mode of binding BMP-2 to a scaffold has a significant effect on its osteogenic 

potential. Furthermore, the efficacy of delivering low, sustained amounts of BMP-2 is 

emphasised and the modality of nDP-PHY is shown to provide a promising bioactive 

scaffold for bone tissue engineering.   
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1. INTRODUCTION 

1.1 BONE TISSUE ENGINEERING 
Bone serves as a mechanical support, a site for muscle attachment, a barrier protecting 

vital organs and a storage for ions (1). It is the second most commonly transplanted 

tissue after blood (2). Despite the bone’s capacity for self-repair, grafts are used to heal 

defects such as non-union fractures, critical-size defects caused by injury or tumour 

resection, chronic conditions such as congenital malformations or sometimes to create 

a base for dental implants (2). Autogenous bone grafts (autografts) are considered the 

‘gold standard’ since they hold strong biological properties of osteogenesis, 

osteoconduction and osteoinduction relevant to bone healing and homeostasis. 

Nevertheless, their limitations include inadequate availability, donor site morbidity 

and supporting tissue injuries (3). As an alternative, allogeneic bone (allografts) and 

xenogenic bone (xenografts) from humans and animals respectively are used, but they 

carry the risk of disease transmission, rejection and impaired osteoinductivity due to 

the pre-transplantation processing (3). 

The increasing emphasis on quality of life in healthcare led biologists, engineers, 

chemists and biomaterial scientists to assemble and propose the field of tissue 

engineering or regenerative medicine in an attempt to surpass conventional treatments 

and discover methods for providing custom-made body parts. It was proposed that the 

means could be found to allow the body to harness restoration of configuration and 

function of the injured tissue to a state that is biologically and functionally like the 

native tissue prior to injury (4). Bone tissue engineering (BTE) typically involves 

presenting physical and/or bioactive signalling molecules to transplanted cells in a 3 

dimensional (3D) scaffold or to the host cells which are capable of responding to these 

signals and forming new, functional bone tissue that can integrate with surrounding 

host tissue (Fig. 1.1). Bioactive signalling molecules can be in the form of soluble 

biochemical factors, such as growth factors, genetic material, drugs and small 

molecules, and they can be delivered from a 3D scaffold with control of both time and 

space (5, 6). 
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Figure 1.1 Basic triad of bone tissue engineering construct. Inspired by the basic compositional 

elements of bone and recapitulating autografts, which provide osteogenic cells, osteoinductive growth 

factors, and an osteoconductive scaffold/carrier, which are all essential for bone regeneration. 

Bioactive signalling molecules and 3D scaffolds are the focus of this thesis. Figure inspired from (4, 

5). 

 

1.2 SCAFFOLDS IN BONE TISSUE ENGINEERING 

1.2.1 Inspired by nature 
The scaffolds used in BTE are generally meant to provide provisional substitutes for 

the skeletal extracellular matrix (ECM) (7). They provide a 3D physical/mechanical 

temporary support combined with specific signalling molecules to assist cells 

implanted with it or cells from the vicinity to produce their own ECM 

microenvironment (8). The ECM is organised in a structural manner that controls 

processes of morphogenesis such as adhesion, migration, proliferation, differentiation, 

and signal transmission to cell membrane receptors that eventually affect genetic 

expressions (9). ECM in human skeletal tissue is composed mainly of water, collagen 



   
Bioactive copolymer scaffolds  

3 
 

and proteoglycans containing glycosaminoglycan, attached to a main protein via a 

tetra-saccharide linkage (8). Another vital role of ECM is as a reservoir for growth 

factors or their precursors in addition to presenting many adhesion molecules with a 

signalling function (10). These growth factors are stored locally in an insoluble/non-

active form via low affinity binding with ECM molecules that protects them from 

degradation. They can be liberated in response to physiological need, for example 

bone repair after injury (10). ECM proteins such as fibrin, collagen, fibronectin and 

vitronectin can also bind to a number of growth factors either indirectly via their 

heparin-binding domains or more directly via their growth factor-binding domains 

(11). Therefore, it is important that these interactions between cell surface receptors 

and the ECM characteristics are mimicked to guide the design of a bioactive scaffold-

cell interaction. 

 

1.2.2 Designing and fabricating scaffolds 
When designing a scaffold for bone tissue, several complex parameters need to be 

considered. These include material composition, porous architecture, mechanics, 

surface properties, degradation properties and by-products, together with the 

composition of any added biological components that affect its bioactivity (7, 12). To 

mimic ECM and modulate osteogenesis, the geometrics of porosity and pore size are 

important (13). Although the pore size for BTE scaffolds is controversial, it has 

generally been found that there is a minimum requirement of around 100 μm for 

adhesion and migration of cells and more than 300 μm are recommended for bone 

matrix ingrowth and neovascularization to promote osteogenesis (14). Porosity of 

around 90% and interconnectivity of almost 100% is necessary to facilitate nutrient 

and waste passage and to provide interlocking with the surrounding tissue (13). Also 

important are the mechanical, degradation and biocompatibility properties, which are 

inter-related. A scaffold should express adequate mechanical properties, as close as 

possible to the replaced tissue, and prevent stress shielding (7). The scaffold 

degradation rates should be tailored to correspond to the bone regeneration timeframe 

in vivo allowing load transfer gradually; and as it degrades, the selected materials 

should not elicit any by-products causing adverse responses (7). In general these 
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parameters promote the osteoconductivity of the scaffold, allowing the bone cells to 

adhere, proliferate, and form extracellular matrix on its surface and pores (15). 

To tune the architecture of a scaffold, the choice of fabrication technique is 

essential. Several technologies have been and are being developed to provide state-of-

the art fabrication of 3D porous degradable scaffolds. One commonly used 

conventional method is particulate leaching, where a polymer solution is added over 

granular porogens which are leached out once the polymer has solidified (16). 

Drawbacks of this method include lack of reproducibility and preciseness in 

architecture; however, it is inexpensive and easy production makes it a popular 

method. Foaming techniques are an alternative, in which gas bubbles are produced by 

expansion of carbon dioxide (17). Nonwoven constructs may be produced by 

electrospinning giving fibrous polymer scaffolds (18). Emulsion freeze drying and 

thermally induced phase separation has also been studied to provide scaffolds with 

high porosity and interconnectivity (19). During the last decade, rapid prototyping or 

solid free form fabrication methods have emerged with the introduction of 

computerised technologies facilitating layer by layer plotting design of scaffolds (20). 

Bone defects can be captured by magnetic resonance imaging (MRI) or micro-

computed tomography (micro-CT), reconstructed using computer-aided design 

manufacturing and then based on the printing strategy: solid free form fabrication 

scaffolds can be produced either via laser-bed stereolithography, selective laser 

sintering, extrusion based fused deposition modelling (21) or 3D printing (22). Some 

of these advanced options require more specific material than the simpler techniques, 

but they bring us forward towards personalised treatment. 

 

1.2.3 Materials used in fabricating BTE scaffolds 
A variety of materials have been investigated to fabricate BTE scaffolds with the aim 

of identifying the most appropriate physical, chemical and biological properties to 

encourage bone production (12). These materials can be generally considered either 

degradable or non-degradable, either organic or inorganic, either natural or synthetic. 

They include metals, ceramics, polymers and their composites/combinations are now 
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emerging (12). Titanium and tantalum are the most commonly used metals to produce 

porous scaffolds exhibiting biocompatibility together with a mechanical stiffness close 

to bone, promoting enhanced osteoconduction, calcium deposition and bone formation 

in vivo (23). However, lack of degradation, corrosion, ionic leaching and costly 

processing limits their applications (23, 24).  

Bone is composed of an inorganic portion of hydroxyapatite (HA) and calcium 

phosphates (CaP), thus ceramic scaffolds are characterised with comparable 

crystallinity to bone mineral components making them biocompatible and bioactive 

(25). Co-culturing MSC and endothelial cells for pre-vascularisation attempts in 

porous beta-tricalcium phosphate (β-TCP) have also shown success in large segmental 

defects in rabbits (26). Furthermore, in a recent prospective clinical study bone defects 

caused by bone tumours were treated with biphasic CaP granules consisting of 60% 

HA and 40% β-TCP, in combination with a fibrin matrix (27). Of the patients with a 

mean defect size of 11.8 cm3, 98% showed complete bone healing after approximately 

2 years (27). In general, CaP granules have been restricted to small bone defects, 

however changing physicochemical compositions and structural features displayed 

osteoinductivity equivalent to autologous bone grafts in a sheep critical sized defect 

(28). Clinical applications of ceramic scaffolds are limited due to their inherent 

brittleness and difficulty of shaping as well as a slow degradation rate (25). 

Polymers are categorised into either natural or synthetic and they can be shaped 

into different scaffold types in addition to 3D porous solids, ranging from gels to 

fibres. The common natural materials used in bone regeneration are polysaccharide 

derivatives such as alginate, chitosan, hyaluronic acid and protein derivatives such as 

collagen, fibrin and silk (12). They can be biologically recognised, which supports 

cellular response. Collagen type I is the main organic component of bone ECM, which 

made it the most studied natural polymer in BTE scaffolds playing a role in cell 

adhesion, growth and differentiation (29). Drawbacks such as the possibility of 

pathogenic contamination, lack of control over mechanical properties, degradability 

and production stability are presented in this group (30). 
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1.2.3.1 Synthetic polymers 

Drawbacks from natural polymers encouraged the development of synthetic polymers 

that have shown capacity as scaffold materials for BTE. This is due to their 

reproducibility in large scale in addition to the ease of tuning their chemical, physical, 

mechanical and degradation properties (31). Commonly studied synthetic polymers for 

potential scaffolding applications include aliphatic polymers, poly(carbonates), 

poly(propylene fumarates), and poly(anhydrides) (32-35). 

The research presented in this thesis utilised degradable aliphatic 

polyesters/polymers, a group of synthetic polymers that contain the ester functional 

group in the main chain. Aliphatic polyesters synthesised from monomers such as L-

lactide (LLA), ɛ-caprolactone (ɛ-CL) and glycolide forming homopolymers or 

copolymers are the most commonly used aliphatic polyesters for BTE applications (18, 

35, 36). These degrade by non-enzymatic hydrolysis (37) and their degradation 

products can be removed by natural metabolic pathways. Certain devices for other 

applications based on these polymers, regulated by the US Food and Drug 

Administration (FDA), have been approved after clinical trials and patented (35, 38, 

39). Nonetheless, they have important shortcomings such as lack of biological cues 

and hydrophobicity that causing poor wetting and affects cellular adherence (40).  

Amalgamating different polyesters and tuning the molar ratios or polymer 

molecular weights have been used to produces a copolymer with customised properties 

(41, 42). Mixing poly(LLA) and poly(caprolactone triol) for example was used to 

produce membranes and in vitro results with osteoblasts showed that this modifies its 

mechanical, thermal, and biological properties, i.e. improved cellular migration, 

attachment, proliferation and matrix production (43). A recently developed copolymer 

matrix yielded porous scaffolds composed of 75% poly(LLA) and 25% ɛ-CL or 1,5-

dioxepan-2-one (DXO). The poly(LLA-co-CL) and poly(LLA-co-DXO) scaffolds 

were produced by random ring opening polymerisation (16) and the former is the 

copolymer scaffold used in this thesis. These copolymer scaffolds were evaluated and 

compared in vitro to the poly(LLA) scaffolds using MSC (16, 44) and human 

osteoblast (HOB) (45). Cellular responses demonstrated the MSC to spread and 
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proliferate better on copolymers compared to poly(LLA) after 1 and 7 days and also 

exhibited differentiation potential towards an osteogenic lineage (44). Furthermore, the 

same trend was also seen with HOB, where surface analysis disclosed improved 

attachment, spreading and growth of the cells into the pores of the copolymer scaffolds 

compared to the PLLA, which induced higher collagen type I and osteocalcin 

production (45). Poly(LLA-co-DXO) scaffolds also showed enhanced bone 

regeneration and suitability for BTE when cultured with a mix of MSC and endothelial 

cells and then implanted in a rat calvaria defect model (46).  

Thus, while these synthetic copolymers have exhibited excellent osteoconductive 

qualities, they lack biological recognition on the material surface that renders them 

less bioactive than natural polymers or ceramics. In an effort to overcome this 

drawback, hybrid or composite scaffolds were produced that were modified with 

ceramics or natural polymers or both (47). These showed variable advantages from 

good biocompatibility and improved mechanical properties (48) as well as 

obsteoblastic lineage cell responses due to increased wettability accompanied with 

improved bone formation in a mouse calvarial model (49). 

In addition to mixing different materials, other modification strategies have also 

employed to functionalise scaffolds, specifically synthetic polymers that render more 

representative of native ECM. These modifications may be categorised as 

morphological, chemical or biological (40, 50). Surface topography modifications 

providing micro- to nano-meter scale architecture resembles the physical arrangement 

of components in the ECM. For example, silica nanoparticles have been applied onto 

the fibre surface of 3D polycaprolactone (PCL) fibrous scaffold and were found to 

improve the fibre wettability and surface roughness thus enhancing osteoblastic 

attachment and differentiation (51). Carbon-derived nanodiamond particles (nDP) 

have been employed on poly(LLA-co-CL) scaffolds improving mechanical properties 

(52, 53) and biological influences due to enhanced hydrophilicity that promoted 

cellular attachment and differentiation leading to bone formation in a critical defect 

(54). Furthermore, the addition of functional chemical groups by grafting, radiation, 

plasma treatments, or alkali treatments to the polymer has been shown to increase the 
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hydrophilicity of the scaffold, promoting cellular attachment and diffusion of nutrients 

(50). These functionalisation modalities also offer opportunities to tether bioactive 

signals (50). Alternatively, incorporation of biomolecules meant to mimic ECM, such 

as growth factors, adhesion proteins or bioactive peptide motifs into the scaffold’s 

surface promotes integrin-mediated cellular responses (55). Therefore, in an attempt to 

make synthetic scaffolds osteoinductive, researchers have developed bioactive 

scaffolds delivering signalling cues which stimulate cells and initiate repair by actively 

participating in bone tissue regeneration (15).  

The research in this thesis is focused on functionalising synthetic copolymer 

scaffolds to deliver growth factors for BTE. 

 

1.3 BIOACTIVE SIGNALLING MOLECULES IN BONE HEALING 

The mechanism of bone regeneration after injury is complex and it follows the natural 

embryonic skeletogenesis in addition to normal responses to tissue injury. Bone 

healing may occur through intramembranous or endochondral ossification or a 

combination of both (56). It involves several phases: such as inflammation, reparative 

and finally remodelling. This complex regenerative process involves multiple cell 

types in the microenvironment, including inflammatory cells, osteoprogenitor and 

differentiated osteogenic cells, endothelial cells, and fibroblasts. The cells produce and 

release bioactive signalling molecules that facilitate coordinated biological actions 

(Fig. 1.2). The secreted bioactive molecules are usually characterised under the 

following groups; (a) proinflammatory cytokines, (b) growth factors (c) 

metalloproteinases (d) vascular promoting factors (57).  
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Figure 1.2 Bioactive molecules involved in bone healing. The relative levels of some of the 

significant bioactive molecules involved in bone regeneration process and the ability to recapitulate 

and manipulate those signalling processes on a similar spatiotemporal scale could provide control over 

the regenerative process. SDF-1 is stromal cell-derived factor 1. Figure adapted and modified from 

(58). 

 

When a bone is injured, the haematoma formed stimulates inflammatory cytokines to 

initiate the regenerative cascade. Inflammatory cells secrete mainly interleukins (IL) 

(IL-1 and IL-6) and tumour necrosis factor alpha (TNF-α) during the first 24 hours, 

which recruit other inflammatory cells as well as MSC before declining after the acute 

inflammatory phase (59). Simultaneously, the release of growth factors initiates the 

reparative phase, several growth factors are expressed during the different phases. 

Among them, the most significant are the superfamily of transforming growth factor 

beta (TGF-β), which also includes the bone morphogenetic proteins (BMP), followed 

by the fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), vascular 

endothelial growth factor (VEGF) and insulin-like growth factor (IGF) (60). Platelets 

at the site of the defect release PDGF and TGF-β starting the repair cascade. They 

stimulate bone repair by recruiting and expanding the osteoprogenitor cells (61). 

Consequently, BMP expressed in bone matrix and from recruited MSC promote their 

differentiation into chondrocytes and osteoblasts. These MSC secrete growth factors, 
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such as IGF and FGF which play important roles in enhancing vascularity (62). 

Secreted angiogenic growth factors such as VEGF and angiopoietins 1/2 (ANGPT 1/2) 

regulate the vascular supply which plays a critical role in maintaining bone 

homeostasis (63). VEGF was found to work synergistically with BMP enhancing the 

recruitment and differentiation of MSC (64). Matrix metalloproteinases (MMP) 

degrade cartilage and shape bone to allow infiltration of blood vessels in the final 

phases of ossification and the remodelling (57). 

 

1.3.1 Bone Morphogenetic Protein 2 
Over the past several decades, the growth factors most studied as therapeutic agents to 

enhance bone repair are the BMPs. In 1965 Marshall R. Urist made a pioneering 

discovery through the implantation of de-mineralised bone matrix, which was found to 

induce bone formation in heterotopic sites (65). This phenomenon shed light on bone 

BMP, a group of proteins with osteoinductive potential (66). Scientists today suggest 

describing them as ‘body morphogenetic proteins’ due to their versatile involvement in 

several developmental processes (67). Currently there are around 20 identified human 

BMPs and they are involved in skeletal development and the physiological process 

during embryogenesis of tissues as teeth, brain, heart, lung, kidney, spleen and liver, in 

addition to glucose homeostasis and modulation of iron homeostasis (68). BMPs are 

synthesised by osteoprogenitor cells as well as differentiated osteoblasts and 

chondrocytes and were also localised in megakaryocytes and platelets (69). Except for 

BMP-1, the BMPs belong to the multifunctional TGF- β family. The structure of the 

primary amino acid sequence homology stratifies BMPs into four groups: BMP-2/4, 

BMP-5/6/7/8a/8b, BMP-9/10 and BMP-12/13/14 (70). During early studies, 

recombinant adenoviruses expressing fourteen human BMPs were constructed to 

infect pluripotent mesenchymal progenitor cells, preosteoblastic cells, and osteoblastic 

cells. Results of these studies suggested differences among their osteogenic potentials, 

but BMP-2, -4, -6, -7 and -9 were most able to induce osteogenic factors as well as 

matrix mineralisation (71). BMP-2 and BMP-7 are the ones used in clinical 

applications (72). 
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BMP-2 is initially synthesised as a pro-protein with 453 amino acids before it is 

glycosylated and broken down by enzymes to produce the mature, biologically active 

BMP-2 which is a homodimer of two subunits, each consisting of 114 C-terminal 

amino acids (73). Each monomer has a molecular weight of approximately 16 kilo 

Dalton and contains six additional cysteine residues, which are involved in three intra-

chain disulphide linkages (73). BMP-2 contains a heparin binding domain in an N-

terminal region that enables interactions with ECM elements (73). Murine studies 

inhibiting the expression of BMP-2 demonstrated the role played by this protein in 

morphogenetic regulation of post-natal osteoprogenitor differentiation. In the same 

study, the addition of BMP-2 to osteoprogenitor cells liberated runt-related 

transcription factor 2 (RUNX2) and osterix expression with observed mineral deposits 

(74). In vitro studies showed the exogenous addition of recombinant (rh)BMP-2 to 

human adipose-derived stromal cells (75) or MSC (76) augments their osteogenic 

potential. 

It has been reported that mice lacking the ability to produce BMP-2 in their limb 

bones have experienced spontaneous fractures with impaired healing capabilities and 

lack of callus formation (77). In vivo gene modified mouse investigations revealed the 

initiation of the osteogenic and chondrogenic differentiation of periosteal progenitors 

during repair in cortical periosteum-mediated repair to be controlled by endogenous 

BMP-2 (78). A study examining the fate of injected labelled MSC in nude mice, 

demonstrated their chemotactic homing towards the carrier of BMP-2 and their 

differentiation into osteogenic cells (64). The multifaceted roles of BMP-2 were also 

demonstrated in dentin formation and pulp vascularisation (79). Following the 

secretion of the active form of BMP-2 from cells, osteogenesis is initiated by the 

binding of BMP-2 to serine/threonine kinase BMP type I and type II receptors. It 

follows an osteodifferentiation canonical (Smad) signalling pathway (see Fig. 1.3) and 

a non-canonical (p38 MAPK) signalling pathway (72).  
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Figure 1.3 Bone morphogenetic protein 2 canonical signalling cascade. BMP-2 can bind to either 

preformed complexes of type I or type II receptors or to solitary receptors. The type II receptor kinase 

phosphorylates the type I receptor in the membrane proximal part initiating the cascade by recruiting 

(R)-Smad proteins 1, 5 and 8 (80). These Smad proteins bind to (C)-Smad 4 to translocate to the cell’s 

nucleus inducing the expression of osteogenic transcription factors. Figure modified from (68) and 

made using Servier Medical Art. 

 

1.4 CLINICAL IMPLICATIONS OF BMP-2 DELIVERY - Status Quo 

Several clinical orthopaedic trials have been carried out using the FDA approved 

rhBMP-2 product, Infuse® (Medtronic, Minneapolis, MN)/InductOs® (UK) (81). This 

BMP-2 is carried in an absorbable collagen sponge at a concentration of 1.5 mg/ml. Its 

approval was grounded on the results of a prospective clinical trial. The trial compared 

patients with degenerative disc disease randomised to receive either BMP-2/collagen 

sponge construct or autogenous bone from the iliac crest to treat anterior lumbar 

interbody fusion (to induce new bone formation in the disc space to fuse the vertebrae 

and alleviate pain). Radiographic evidence of osteogenic induction and maintained 
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fusion for 2 years were reported in BMP-2/collagen sponge group with improved 

neurological symptoms (81). More recent uses in posterolateral fusion to substitute for 

the gold standard procedures were also reported with positive results, however they 

were off-label uses, utilising much higher doses and different carrier and location than 

already approved (82). BMP-2 delivery and subsequent spinal fusion has also been 

facilitated by ceramics and synthetic polymers clinically in addition to the 

aforementioned collagen carriers (83).  

A large randomised clinical trial including 450 patients to evaluate BMP-2 

(Infuse®) reported accelerated bone regeneration from the test group of open tibial 

fracture repair surgeries with intramedullary nail fixation. The authors also described a 

dose dependant reduction of second surgical intervention and reduced infection for the 

group treated with BMP-2 in addition to standard care when compared to the group 

that received standard care alone (84). Despite the high costs of recombinant proteins, 

these results demonstrated that medical costs could be reduced due to reduced post-

surgical interventions (85). 

Oral and maxillofacial defects include causes such as congenital malformations, 

trauma, tumour removal and deficient bone in ridges for dental implants. The very first 

clinical study was a pilot evaluating the BMP-2/collagen sponge construct in maxillary 

sinus floor augmentation using a concentration varying from 1.77 to 3.40 mg per 

patient (86).  Significant bone growth was seen in 91% of the patients but side effects 

of swelling in the face, redness and pain in the mouth were observed. A further 

randomised controlled trial reported 8 years later by the same group increased the dose 

to 0.75 mg/ml and 1.50 mg/ml and assessed bone induction after 4 and 6 months (87). 

It showed considerably increased alveolar ridge and bone density after 4 months in the 

treatment group, concluding that BMP-2/collagen sponge accelerated bone formation 

for the placement and functional loading of dental implants (87). Off-label use in 

mandibular continuity reconstructions in defects due to tumours or bone infections 

were evaluated in a few patients followed up to 18 months (88). This study 

demonstrated the ability of BMP-2 delivered in a collagen carrier without bone graft 

material to regenerate critical sized mandibular defects with a potential of enabling 
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prosthetic fitting (88). However, further studies will be required to assess the quality of 

the regenerated bone.  

Due to the potential advantages of rhBMP-2 in a construct as a substitute for auto, 

allo- or xenografts deduced from pre-clinical studies, enthusiasm for rhBMP-2 led to 

its off-label usage for unapproved amounts indications, age groups or carrier. As a 

result, many complications were reported from its use in lumbar spine and cervical 

spine surgery, i.e. post-operative radiculitis and nerve injury, vertebral osteolysis and 

oedema, excessive bone formation heterotopically and hematomas obstructing 

respiration (89). A case of non-healing ulnar defect in a child’s forearm was treated 

with BMP-2 and led to an unwanted inflammatory reaction with bone resorption (90), 

while a case in a child cleft palate treatment resulted in excessive gingival swelling 

(91).  

The association of cancer with BMP-2 usage is controversial. A review trying to 

quantify cancer incidence and rate with spinal fusion using BMP-2 concluded that 

there might be an increased tumour risk but it was not statistically significant (92). 

Moreover, products with very high BMP-2 concentration (40 mg) used to treat spinal 

diseases have been connected with higher cancer risk when compared to controls (93). 

An in vivo pre-clinical analysis of oral squamous cell carcinoma (OSCC) cell line pre-

treated with BMP-2 before xenografting reported that human oral cell carcinoma, 

when treated with BMP-2, became more locally aggressive and the host had decreased 

survival, suggesting the need for caution when using BMP-2 in reconstructing bone 

defects caused by oral cancers (94).  

When loaded in collagen sponges, BMP-2 shows a pharmacokinetic profile of 

burst release (95). This required researchers to employ supra-physiological loading 

quantities to maintain BMP-2 biological activity in the vicinity in suitable amounts for 

longer times. Therefore efforts to design controlled release strategies for scaffold-

based delivery of BMP-2 for dose reduction and localisation is an ongoing challenge. 
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1.5 STRATEGIES FOR A CONTROLLED BMP-2 DELIVERY- Quo Vadis 

Localised, sustained release of BMP-2 can be potentially beneficial by lowering 

required doses and thus costs, and avoiding local or systemic side effects (58, 96). The 

concept of spatiotemporal dosage based on native ECM is challenging and significant 

research has focused on it.  

In general, there are several approaches being developed to deliver BMP-2 from 

scaffolds: direct delivery of the protein itself, indirect delivery of genes encoding for 

BMP-2 or its peptides, or antibodies delivered to harness endogenous BMP-2. The use 

of scaffolds to deliver cells transduced ex vivo with virus encoding BMP-2 (97) or 

delivering the viral vector alone with no cells has the potential of rapidly achieving a 

high concentration of BMP-2 endogenously (98). Furthermore, gene therapy based on 

non-viral plasmid is being pursued to reduce immunogenicity (99). Synthetic peptides 

that mimic BMP-2 activity and activate receptors are smaller molecules that can easily 

be modified with chemical groups and have been shown to significantly stimulate 

heterotopic ossification in vivo (100). Entrapment of endogenous BMP-2 by using 

biomaterials to deliver murine monoclonal antibody demonstrated antibody-mediated 

de novo osseous regeneration (101). Safety concerns and production costs with gene 

therapy limit its clinical translation and due to advances in recombinant protein 

technology, delivery of the actual protein has become widely used. Researchers in the 

field have used a large variety of natural, synthetic and inorganic materials and their 

composites as carriers for BMP-2. The carrier or material is crucial for an optimal 

release profile (102), but a significant point also is the strategy of incorporating the 

protein in these materials, which exerts control on its release profile (58).  

Discussion in the following sections considers the strategies envisioned for the 

incorporation of BMP-2 for a controlled release regardless of the specific material 

used.  
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Figure 1.4 Strategies for a controlled scaffold-based release of BMP-2. Schematic illustrations of 

examples from the different strategies. (A) Physical entrapment using layer by layer polyelectrolyte 

multilayer. (B) Chemical immobilisation by heparin conjugation. (C) On demand release. Figure made 

using Servier Medical Art. 

 

1.5.1  Physical mixtures/entrapment  
The prevailing strategy of incorporating BMP-2 protein into polymer scaffolds is by 

directly mixing them into the matrix, either during the solidification of the polymer or 

after the fabrication of the scaffold (102). Adsorbing in prefabricated scaffolds is most 

easily achieved by dipping the scaffolds in a protein solution. However, during this 

process only minute amounts of protein are adsorbed to the scaffold, and in an 

uncontrolled fashion, resulting in similarly uncontrolled/unpredictable release profiles 

(103). Adsorbing BMP-2 onto a prefabricated scaffold leads to a variety of non-

specific, non-covalent or electrostatic interactions (104). This has been associated with 
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a burst release and incomplete association of the BMP-2 to the carrier because most of 

it remains in the solution. Before scaffold fabrication, the entrapment of BMP-2 in 

porous scaffolds is most commonly carried out by the conventional method of solvent 

casting/particulate leaching, but the harmful solvents used may denature the BMP-2. 

In supercritical fluid, carbon dioxide under high pressure is used as an alternative 

solvent to produce porosity and entrapment of BMP-2. This method has shown 

suitability for sensitive growth factors (17).  

A technology developed for the controlled release of growth factors adsorbed in 

scaffolds is layer by layer polyelectrolyte multilayer film (Fig. 1.4 A). Three-

dimensional printed β-TCP/PCL scaffolds were repeatedly dipped in positively and 

negatively charged polymer baths, producing a film and trapping the charged BMP-2 

while preserving its activity. This modality showed BMP-2 release in micrograms; 

80% of the incorporated amount was released over a 2 day period with less than 1% in 

the first 3 hours and the remaining 20% over 2 weeks. Released BMP-2 induced 

differentiation of pre-osteoblasts and formed ectopic bone by 4 weeks (105). In 

another approach designed to produce a more sustained release that could last over 

several weeks, BMP-2 emulsified in acetic acid was incorporated in the polymer 

solution prior to electrospinning or by using co-axial electrospinning to produce a core 

containing BMP-2 surrounded by fibres. It was reported to accelerate bone 

regeneration and ossification foci in a 5 mm critical size rat calvarial defect (18). The 

pattern of release with these methods is usually a burst release followed by a continued 

slower release by diffusion through the polymer (104). Physical 3D printing 

technology has also been employed recently in order to achieve spatial control over 

BMP-2 by printing a pattern of BMP-2-containing bio-ink on the surface of circular 

acelluar dermal matrix implants (106).  

The major challenge associated with physical adsorption is the loss of bioactivity 

of the incorporated growth factors due to their undergoing conformational changes in 

the organic solvents at temperatures used or other harsh fabrication methods. Addition 

of a separate release system to the scaffold was introduced as a solution. Encapsulation 

within a biomaterial vehicle can provide protection from enzymes and increased 
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protein retention at the target site. Microspheres or nanospheres are particles with 

diameters from 10-1000 μm and 10-1000 nm respectively (36). They were loaded with 

BMP-2 and incorporated into different types of scaffold matrices, either solid, 

hydrogel made of polymers or ceramics or fused together by sintering to make a 

scaffold (107). Microspheres typically exhibit burst release in the first few days 

followed by a more linear sustained release (108). When incorporating BMP-2 

encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres into polyurethane 

scaffolds, they reduced the burst release compared to scaffolds without microspheres 

(109).  

A study comparing the release of BMP-2 from microspheres with or without being 

incorporated in a 3D scaffold showed that after 3 days, BMP-2 was released from 

PLGA microspheres and increased sharply with time for only 14 days. However, the 

3D scaffolds with BMP-2-loaded microspheres released BMP-2 after 7 days but 

sustained linear release up to 4 weeks. This was attributed to the entrapped 

microspheres in the scaffold that have less surface exposed to the medium, reducing 

diffusion and hence sustaining BMP-2 for longer, forming more bone in a rat cranial 

defect (110). The particles can be made of different materials or different compositions 

or molecular weights compared to the matrix scaffold, which gives them the benefit of 

faster degradation while the scaffold still provides structural support. To bypass the 

drawback of exposure to organic solvents, techniques such as electro-spraying, with 

more control over the size of the sphere, have developed (111).  

Besides adding separate release systems to enhance physical entrapment of BMP-

2, attempts to increase electrostatic and non-covalent interactions by increasing the 

charged components in the surface, changing the pH of the media to increase the 

BMP-2 charge, or increasing the immersion time have been reported (104). 

Researchers have also expanded by developed nano-scale structures that provide 

increased surface area and non-covalent interactions that intensify binding between the 

protein and the scaffold or carrier (112). The surfaces of nanodiamond particles (nDP) 

show distinctive features depending on the production method (113). Detonation 

synthesis is a production method that has gained wide interest owing to the unique 
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mechanical, chemical and biological properties nDP acquire; making them useful in a 

variety of applications (114). In the case of detonation diamond, particle size of about 

4-5 nm is yielded and a variety of functional oxygen-containing groups are usually 

present on the particle surface (Fig. 1.5).  

 
Figure 1.5 Nanodiamond particles. The structure and functional groups present in pristine 

nanodiamonds after purification with acidic treatment and deagglomeration with attrition milling. 

Adapted from (115). 

 

These groups include carboxyl, lactone, ketone, hydroxyl as determined by infrared 

spectroscopy and mass spectrometry rendering it hydrophilic (116). These groups 

originate from the reaction in the detonation reactor and/or from the acid etching 

purification process (115). Also, more hydroxyl groups were found to be added from 

the milling process developed to deagglomerate/disperse them (117). 

These nDP have many potential uses in a variety of biological applications (118). 

In BTE, BMP-2 was found to bind to nanocrystalline diamond (NCD) films produced 

by substrate-free chemical vapour deposition of acetylene in a microwave-enhanced 

plasma oven and then oxidised at high temperature (119). The oxygen-terminated 

nanocrystalline diamond (O-NCD) coating titanium implants showed highly stable, 

non-covalent physisorption of BMP-2 occurring in a reduced energy that would not 

alter the protein’s conformation (119, 120). To confirm bioactivity of this bound BMP-

2, MSC expressed high levels of osteogenic markers after being cultured on O-NCD 

implants and this same group also yielded enhanced osseointegration in sheep calvaria 
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defects (120). The nDP with hydrophilic oxygen-containing surface groups is very 

prone to adsorb molecules by hydrogen bonding and other polar interaction. In this 

study (120), theoretical calculations displayed BMP-2 binding with a combination of 

individual hydrogen bonds and van-der-Waals interactions up to 500 kJ/mol to the O-

NCD. Therefore, comparable strengths to covalent binding were attained without 

chemical cross-linking providing sustained short distance BMP-2 delivery, which was 

confirmed histologically (120). In another study BMP-2 was delivered from NCD 

coated titanium screws in pig’s mandible after 4 weeks of exposure to radiation; 

results showed osteoinductivity in irradiated bone (121). Drug delivery via nDP is an 

innovative matter in nanotechnology, and a few research groups have begun to 

investigate their uses for outstanding adsorption of biomolecules and bone 

regeneration.  

In another recent study BMP-2 delivery from nDPs in suspension induced C2C12 

myoblasts into alkaline-phosphatase (ALP) producing osteoblasts (122). There was a 

delayed cellular response observed in this study that was explained to be due to the 

strong binding and sustained delivery of BMP-2. This study showed how delivering 

BMP-2 in an nDP suspension can be a great advantage to bone defect surgeries where 

space is limited (122). nDP can also be incorporated into scaffolds for BTE to mediate 

the release of controlled therapeutics and at the same time provide structural support 

when the defect is large. 

 

1.5.2  Chemical immobilisation 
The chemical immobilisation of BMP-2 inhibits nonspecific adsorption and may also 

reduce the amount of BMP-2 needed, preventing uncontrolled release (123). BMP-2 

will be available to cells in contact with the scaffold, providing a highly localised 

signal and enhanced phosphorylation of receptor cascade (124). Techniques to 

chemically bind BMP-2 to scaffolds have been employed to control its release, either 

covalently or biochemically. This can be done after scaffold functionalisation by either 

using temporary or permanent and direct or indirect linkers (96). Non-covalent indirect 

interaction via proteins or other biological molecules such as oligopeptides can by 
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controlled by chemical conjugation onto scaffolds to provide binding sites and 

demonstrate a strong affinity to BMP-2 (96). A widely used example of this is heparin-

conjugated systems that mimic the physiological role of heparin in regulating growth 

factors by binding proteins in the extracellular matrix (Fig. 1.4 B) (73). Studies 

verified that heparin-conjugated fibrin systems, after activating its carboxylic acid 

groups, enabled a slower and more controlled release of BMP-2 compared to BMP-2 

absorbed in collagen sponge, leading to reduction in unwanted adipose tissue 

formation in ectopic sites and enhanced mineralisation (103, 125). The chemical 

functionalising of scaffolds with biomimetic peptides like arginine glycine-aspartic 

acid (RGD) has enhanced cell attachment and differentiation, while showing promise 

to reduce the doses of BMP-2 needed when combined with collagen sponges (126).  

Covalent bonding on the other hand provides more prolonged attachment 

compared to physical and non-covalent chemical immobilisation, preventing its actual 

release in the vicinity until the scaffold degrades or the covalent bond is broken (123). 

One of its advantages is that the BMP-2 remains competent to activate receptors. A 

recently developed method to covalently tether BMP-2 by self-assembly using a bi-

functional linker showed C2C12 myoblasts to express BMP-2 signalling pathway 

without BMP-2 being released in the medium (127). However, selection of the binding 

site of the protein without damaging the functional group activity is a challenge of 

covalently linking BMP-2, and the chemistries used to functionalise carriers and 

covalently immobilise BMP-2 can lead to protein denaturation or inactivation (123). 

 

1.5.3  On-demand delivery and hybrids 
‘Smart’ biomaterials release BMP-2 in response to surrounding environmental 

stimuluses. These factors commonly include changes in pH or temperature, presence 

of enzymes that cleave linkers used for immobilising or external factors such as drugs, 

light, electrical, magnetic or ultrasound applications (Fig. 1.4 C). In one study 

polyethylene glycol (PEG)-based scaffolds containing disulphide bonds were 

fabricated and implanted in a rabbit radius critical defect. This modification was made 

reactive to the cell-secreted redox microenvironment, thus the degradation rate and 
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subsequent BMP-2 release was dependent on the proteases secreted by the cells during 

remodelling (128). A pH/thermo-sensitive copolymer hydrogel showed high adsorbing 

efficacy of BMP-2 up to 85 % jellified in physiological pH and temperature. Release 

kinetics of the BMP-2 was not quantified but the scaffold formed mineralised tissue in 

an ectopic mouse model after 7 weeks (129). 

Composite or hybrid materials are also used to improve the release profile of 

BMP-2. For example, this was seen in a study aimed to develop a system to release 

low amounts of BMP-2 from a collagen-HA scaffold. Preserved bioactivity of BMP-2 

was seen up to 21 days, with enhanced mineralisation from cultured pre-osteoblasts 

and enhanced bone regeneration in rat calvaria after 8 weeks (130). In another study, a 

composite hybrid system using RGD- functionalised alginate hydrogel containing low 

amounts of BMP-2 was injected inside a PCL nanofiber mesh tube and compared it to 

the standard clinical method of absorbable collagen sponge delivery or alginate 

hydrogel alone to evaluate the regenerative process with respect to space and time 

(131). In a rat femoral segmental critical defect, the hybrid scaffolds slowed the 

release of BMP-2 and promoted significant increase in bone volume compared to the 

other groups while also preventing heterotopic mineralisation (131). Thermo-sensitive 

polymeric nanoparticles with hydrophobic and ionic complex interactions with BMP-2 

in a hydrogel showed sustained release of BMP-2 for 3 weeks. These dual interactions 

led to increased bone regeneration in an ectopic and orthotopic model after a single 

injection (132).  
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1.6 CONSIDERATIONS FOR A SCAFFOLD DELIVERING BMP-2  

The field of BTE is continuously developing; thus the definitions of an ideal scaffold 

construct delivering bioactive molecules continue to evolve. However, the optimal 

scaffold to deliver BMP-2 for bone regeneration should fulfil fundamental 

considerations in the clinic, in addition to the general scaffold requirements mentioned 

earlier (summarised in Table 1.1). These include the inter-related characteristics of; 

efficacy in osteoinduction in addition to osteoconduction, degradability and, most 

importantly, to be biologically harmless for its host (133). 

 
Table 1.1. Scaffolds designed to deliver growth factors. Necessary and desirable characteristics. 

Adapted and modified from (133, 134). 

Characteristic Description 
Osteoinductivity 

 

Release of a therapeutic dosage of bioactive growth factor over a 

period of time relevant to rate of bone formation 

Biocompatibility Low immunogenic response and no carcinogenicity 

Degradability Controllable degradation simultaneously with bone formation 

maintaining desirable mechanical properties 

Readily sterilisable Without loss of mechanical function or denaturation of growth 

factor 

Ease of manufacture Cost-effectiveness 

Long shelf-life Ease of access to the user 

 

1.6.1  Osteoinductivity 
Osteoinduction is the process by which osteoprogenitor cells are actively recruited and 

differentiate into osteoblasts under the influence of an osteogenic signal (65, 66). For 

effective osteoinduction, a scaffold must present bioactive signalling molecules to the 

tissues at a concentration that is optimal. It should be neither too low to be ineffective, 

nor so high as to cause toxic side effects. This optimum concentration range is called 

the therapeutic window (58). The mode of BMP-2 delivery to its potential site of 

action is an essential determinant of its osteoinductive efficacy. Preserved bioactivity 

at the site of interest is the primary goal, but effective concentration within the 
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therapeutic window is equally important. For BMP-2 as most growth factors, this 

index is rather small due to low solubility and short biological half-life (68). 

 

1.6.2  Host response and degradability of implanted scaffolds  
Once a scaffold is implanted in vivo, the host responds by activating its defence 

mechanisms and an inflammatory/immune reaction, known as the foreign body 

response (FBR), is elicited (135). The interactions taking place between the implanted 

scaffold and its surrounding tissues significantly influence the ability of the scaffold to 

perform. This is described as biocompatibility (136). An appropriate host response 

must not only be local but also systemic, with an absence of cytotoxicity and 

carcinogenesis in addition to the ability of the scaffold to efficiently produce an 

osteoinductive response (136, 137). The innate defence system is a non-specific 

response that plays a crucial role in the early recognition and subsequent triggering of 

an inflammatory response to implanted scaffolds. The adaptive defence develops 

rapidly and efficiently to identify and respond to foreign materials that come in contact 

with the tissues, and is therefore referred to as specific or acquired (138). Scaffolds are 

associated with the innate immune response, and the adaptive response is only 

involved when they contain antigens (foreign proteins) that are recognised by the 

immune cells (139). The resultant tissue responses by the FBR are therefore quite 

complex, difficult to predict and involve both innate and adaptive immune cells with 

both short-term and long-term consequences (135, 137, 140). 

The acute inflammatory host response towards the implanted scaffold is the 

beginning of the FBR, mediated by the injury of tissue vasculature during implantation 

and the adsorbed layer of blood plasma proteins on its surface (141). Fibrinogen with 

leukocyte integrin activation recruits macrophages and polymorphonuclear leukocytes 

that control severity of the response (141). These activated phagocytic cells then 

release cytokines and chemokines, including IL-1, TNF-α, and monocyte 

chemoattractant protein-1, which causes leukocytes extravasation and attract 

fibroblasts (142). Macrophages play important roles in the host response by secreting 

an array of products, including proteolytic enzymes, free radicals, and reactive oxygen 
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species (ROS) that degrade the scaffold and thus affect the release of BMP-2 (142, 

143). They can also be differentiated towards pro- or anti-inflammatory phenotypes: 

M1 or M2 respectively (144). Macrophages have been shown to be capable of 

physiological osteoinduction by producing BMP-2, which promotes osteogenic 

differentiation of MSC in vitro (145). As the FBR progresses, the proinflammatory 

cells and cytokines decrease and macrophages express higher levels of anti-

inflammatory IL-10, IL-4 and IL-13, which have been shown to have a role in 

macrophage fusion to form foreign body giant cells (FBGC) and in the inflammatory 

suppression (146). Recruited fibroblasts contribute to the formation of a fibrous 

capsule surrounding the implanted scaffold, isolating it from the surrounding 

vascularisation which may impair osteogenesis (135). Improved fibrous capsule 

vascularity has been stimulated through the local sustained release of BMP-2 from 

scaffolds (147). 

 

1.6.2.1 The importance of the rate of degradation 

The long term host response to an implanted scaffold is affected by many factors, one 

of which is scaffold degradation (140) (Fig. 1.6). The optimal scaffold-based BMP-2 

delivery should degrade at a rate corresponding to the rate of tissue restoration while 

maintaining release of the appropriate concentration of the protein. Resolution of the 

FBR is essentially dictated by the degradation profile and the products of scaffold 

degradation. The degradation process of degradable aliphatic polyesters generally 

occurs in two phases in vivo. First, hydrolysis causes cleavage of ester bonds and 

decrease in molecular weight of the material. When the oligomers are removed, there 

is a loss of mass and mechanical strength (37). The second phase is characterised by 

FBGC releasing degradation enzymes and ROS that begin to engulf the breakdown 

(148).  
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Figure 1.6 Foreign body reaction to a degradable scaffold. Schematic illustration of the inter-

related stages of early and late host response and bone regeneration after implanting a degradable BTE 

scaffold. Inspired and modified from (140) and made using Servier Medical Art. 

 

As the scaffold degrades, the acidic by-products, if not washed away, create an acidic 

environment shown to affect the inflammatory cytokines and neovascularisation and 

also to cause demineralisation of the bone formed (149). However, this acidity may be 

buffered by incorporating or coating polymer scaffolds with biomimetic agents (150). 

BMP-2 incorporated into a surface in polymer scaffolds coated with CaP compared to 

adsorbed directly onto the surface provided a slower, cell-mediated release as the 

scaffold degrades which was associated with a significant reduction of the 

inflammatory response, suppressing FBR and enhancing osteogenic potential (147, 

151). In a rat mandible defect model, acidity from degrading polymer scaffolds 

affected bone formation and accordingly a continuous supply of BMP-2 was required 
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to overcome the drawbacks (152). The delivery of immunosuppressive agents with 

BMP-2 has been shown to modulate host response and enhance osteogenesis (153).  

 

1.6.2.2 Host response and its long-term consequences 

There may be many long-term consequences of a FBR or when an inflammation gets 

out of control, but the most alarming is tumour formation. Based on increasing 

evidence, it appears that the cause of foreign-body sarcomas is not the chemical 

content of the biodegradable polymer alone, but also promoting events that lead to 

tumours due to prolonged presence of the irritant in tissues (154). The implantation of 

several materials in rodents can produce tumours. These effects have been described as 

solid-state carcinogenicity and it has been assumed that the mechanism is related to the 

development of the FBR (154). There has been an increasing emphasis on the role of 

inflammation on cancer (155). Irreversible genetic damage leads to a neoplastic state 

which, when exposed to chronic inflammatory chemokines, progresses through cell 

proliferation and reduced genetic repair (156). Chronic inflammation such as that seen 

with the prolonged presence of an implanted scaffold plays a promoting role. A study 

using p53 tumour suppressor gene deficient mice, where plastic discs were implanted 

subcutaneously, found that sarcomas developed in 79% of the mice with implants 

compared to those without. This was found to be associated with increased oxidative 

stress from chronic inflammation (157). Rats also developed a peri-implantation 

chronic inflammatory FBR reaction and a high incidence of malignant mesenchymal 

tumours in response to different implanted biomaterials (158).  

A thick fibrous capsule associated with a chronic inflammatory foreign body 

presence was frequently related to carcinogenicity, due to the acellularity and 

avascularity which render the environment susceptible for mutations with no repair 

(154). Foreign body carcinogenesis has a rare incidence in humans (159). In rodents, it 

contains stages that involve at least half its life-span, making it species-dependant 

(159-161). Although rarely encountered, it cannot be ignored and all new biomaterials 

require rigorous testing. Scaffolds are associated with many factors that influence host 

response, including the chemistry, ability to degrade, surface and bulk architecture 

(160, 161). In the case of the presence of a bioactive ligand such as in BMP-2 carriers, 
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the side effects can be attributed to uncontrolled release of high amounts of BMP-2. 

The observed increase in the cancer incidence remains a real concern for the 

carcinogenic potentials of BMP-2 (89, 92). Concern also arises for the safe delivery of 

BMP-2 from scaffolds when reconstructing bone defects caused by carcinomas, since 

both chronic inflammation as well as the effects of BMP-2 can have effects on areas 

prone to recurrence (94, 162, 163). Therefore, this necessitates long-term safety 

biocompatibility evaluations of a scaffold delivering BMP-2. 

 

1.6.2.3 Evaluating host response and its unwanted consequences 

Extensive assessments relevant to Standardisation and Regulatory Body Guidelines are 

commonly followed for biomaterial safety and registration purposes (164, 165). 

Assessments are primarily based on the evaluation of cytotoxicity, immune response, 

genotoxicity, mutagenesis and/or carcinogenesis, in addition to the primary function, 

which is, in the current case, bone formation (166). In vitro cytotoxicity testing using 

direct contact with cell lines or elution of biomaterials into cell lines cultures has been 

used to make testing of BTE scaffolds reproducible (45). Although many complex in 

vitro cell culture models have been employed, animal testing is still considered to be 

the most reliable system. In vivo evaluation of immune response typically uses rodents, 

where the scaffolds or biomaterials are implanted subcutaneously, intramuscularly or 

in the bone itself, and evaluated after various time points. Depending on the 

degradation rate of the scaffold tested, sample harvesting between 6-12 months may be 

used to allow time for degradation, regeneration and remodelling to take place (167). 

Organ and body weights and blood biochemistry all serve as evaluation tools (168). 

Histopathology has been the gold standard, however, traditional histological 

evaluation is unable to identify the dynamics between different cell types.  

Therefore, real-time non-invasive models to monitor inflammatory host response 

have been developed recently. A model to measure the release of ROS which were 

found to be involved in early and late FBR to evaluate biocompatibility using 

bioluminescence has been reported (148). Another model using a fluorescence 

imaging probe system that allows the assessment of the recruitment and interactions 

between polarised M1 and M2 macrophages has recently been developed (169). 
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Biomaterials used in fabricating tissue engineering scaffolds and drug delivery were 

used to develop the model and find approaches that optimised macrophage response 

(169, 170).  

In vitro genotoxicity and mutagenicity utilising proto-oncogenes and tumour 

suppressor genes from mammalian or bacterial cells exposed to biomaterials of interest 

have been used as methods for evaluating chromosomal damage (166, 171). 

Carcinogenicity or tumorigenic potential of biomaterials in general is typically tested 

in rodent 2-year cancer bioassays (160, 161, 172). However, these assays are no longer 

the only efficient or feasible way to detect possible human carcinogenicity; alternative 

mouse models are now available for increased sensitivity (172-174).  

Few reports of scaffold constructs tested in vivo for carcinogenicity currently 

exist, as this is more commonly done for physical materials or chemicals. Bioglass-

polylactic acid composite scaffolds populated with progenitor cells were evaluated in a 

rat calvarial critical size defect and tumorigenicity potential was evaluated based on 

the activity in serum of the free radicals involved in tumorigenicity (168). Carbon 

nanotubes, another type of scaffold, have been tested in rasH2 mouse models 

expressing human-derived c-H-ras proto-oncogene (175). Non-invasive real time 

methods have not been developed to monitor carcinogenesis in response to 

biomaterials such as those recently developed for inflammatory responses.  
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1.7  RATIONALE 

Previous efforts from our research group examined degradable aliphatic polyester 

porous scaffolds, poly(LLA-co-CL) as candidates for BTE. These scaffolds showed 

cytocompatibility (45) and encouraging potential for osteoconductivity (16, 44). Also, 

attempts to enhance their mechanical properties (52) and wettability by modifying the 

surface with nDP improved cellular responses and bone formation (54). 

Functionalising these copolymer scaffolds and immobilising BMP-2 could augment 

their osteoinductive properties. The development of more effective, sustained and 

controlled scaffold-based BMP-2 delivery systems in the near future is crucial. 

Enormous efforts have been made in recent years in this field in order to overcome 

side effects, however, optimal controlled release and a sustained therapeutic 

concentration has yet to be attained.  

Several aspects will need to be considered concerning the efficacy of the bioactive 

scaffold. The scaffold and mode of growth factor delivery determines the efficacy of 

the bioactive scaffold; i.e. bioactivity, release kinetics, biocompatibility and 

degradability. Evaluation of these requires an understanding of inflammatory and 

regenerative tissue responses as the scaffold degrade. The host response to a bioactive 

scaffold may lead to the development of responses that adversely affect the host 

tissues, thus early and late host responses to degradation of these functionalised 

scaffolds will direct their success or failure. Validated animal models need to be 

developed together with in vitro models, to facilitate investigations of long-term 

responses.
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2. AIMS 

The aim of the work described in the following chapters was generally to determine 

efficient modes of delivering bioactive signalling molecules from copolymer scaffolds 

for bone regeneration with minimal adverse host reactions.  

 

Specific Aims: 

 

1 To determine the release profile and efficacy of recently developed and 

established functionalising techniques for delivering BMP-2 from poly(LLA-co-

CL) scaffolds (Paper I). 

 

2 To evaluate the in vivo host response and degradation of functionalised bioactive 

poly(LLA-co-CL) scaffolds (Paper II). 

 

3 To develop a non-invasive in vivo model to evaluate the tumorigenic potential of 

scaffolds used in tissue engineering (Paper III). 

 

4 To assess the tumorigenic potential of functionalised bioactive poly(LLA-co-CL) 

scaffolds (Paper IV).  
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3. METHODOLOGICAL CONSIDERATIONS 

3.1 THE CHOICE OF METHODS 

To evaluate a bone regenerating scaffold while observing active bone formation and 

preventing adverse effects, clinically-relevant in vivo environments are strongly 

required. Despite the criticism of in vivo research due to ethical and economic reasons, 

this helps to evaluate complex interactions between different cells, growth factors and 

scaffold biomaterials. The methods used in the four papers are summarised in Fig. 3.1. 

In Paper I, in vitro and in vivo methods were used to evaluate the bioactivity of 

BMP-2 incorporated on copolymer scaffolds using four different modalities. The 

relative release of the incorporated BMP-2 was quantified using SRM. Assays were 

performed in order to confirm that the scaffolds supported MSC attachment, 

cytoskeletal re-organisation and proliferation. Furthermore, differentiation of MSC 

cultured on the different scaffolds in vitro was evaluated at the mRNA level. The 

effects of the different modes of delivery on the scaffolds’ osteoinductivity were 

compared in a rat mandible critical-size defect. Based on data obtained from Paper I, 

the most distinctive BMP-2 functionalising modality was chosen to conduct the 

following investigations where effects of nDP modification and BMP-2 physisorption 

on copolymer scaffolds on their degradation and host response were determined using 

Balb/c mice (Paper II). Molecular weights of the degrading scaffolds were analysed 

after 1, 8 and 27 weeks. Correspondingly, host response was evaluated using a 

customised RT2 Profiler PCR Array and infiltration of inflammatory cells was 

quantified in H&E sections. To investigate potential harmful properties of the 

functionalised bioactive scaffolds, the tumorigenic potential was evaluated. For this 

purpose, a non-invasive BLI microenvironmentally-induced oral carcinogenesis model 

was first established using NSG mice in Paper III. Early neoplastic oral keratinocytes 

(DOK) were first transduced with luciferase (DOKLuc) and cultured with or without 

CAF to develop the model. To confirm that the DOK phenotype was preserved after 

transduction, the development of tumours from orthotopic and ectopic xenografts of 

DOKLuc or DOKLuc+CAF inoculations was monitored manually and by BLI.  
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Figure 3.1. Schematic summary of the study designs used in the four studies. Figure made using 

Servier Medical Art. 
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Development of tumours from DOKLuc grown on poly(LLA-co-CL) scaffolds under 

different microenvironmental cues was monitored non-invasively by BLI. In Paper 

IV, the in vivo model established as part of this thesis was applied to study the 

tumorigenic potential of copolymer scaffolds modified with nDP and nDP plus 

physisorbed BMP-2, and tumour formation was followed with BLI for 14 weeks. 

Harvested tumours were evaluated immunohistologically. Also, after being cultured on 

modified and non-modified scaffolds, DOKLuc were evaluated by functional in vitro 

tumorigenicity assays including a 3D organotypic model. 

 

3.2 SCAFFOLD FABRICATION  

The poly(LLA-co-CL) was synthesised from 75 mol % LLA (Boehringer Ingelheim, 

Germany) and 25 mol % ε-CL (Sigma-Aldrich, , St Louis, MO, USA), by ring opening 

polymerisation at 110oC for 72h using stannous 2-ethylhexanoate as catalyst and 

ethylene glycol as the initiator. The composition was determined by proton nuclear 

magnetic resonance spectrometry (Bruker AC 400, Bruker, Switzerland). Poly(LLA-

co-CL) with about 25 mol% ε-CL provides amorphous, elastic physical properties 

which makes it suitable for cell applications (42). The polymer number average 

molecular weight (Mn) was measured on a Verotech PL-GPC 50 size-exclusion 

chromatography system (SEC) (Polymer Laboratories, Varian Inc., USA) described in 

Section 3.6. 3D porous scaffolds were prepared by the solvent-casting particulate-

leaching method described earlier (16). Briefly, the copolymer was dissolved in 

chloroform (1g/ml) and mixed with sodium chloride particles by a weight ratio of 10:1 

before being poured into moulds. Scaffolds were punched out in different dimensions. 

Salt particles were removed by soaking in deionised water and then scaffolds were 

vacuum dried and electron beam sterilised. Scaffold porosities were characterised 

using a micro-CT (SkyScan 1172, Kontich, Belgium) using 40 kV and 2.4 micron 

voxel.  
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3.2.1 Scaffold functionalisation and BMP-2 immobilisation 
rhBMP-2 expressed in Escherichia coli (E. coli) was produced and obtained from our 

collaborator at The University of Wuerzburg, Germany as described previously (176). 

In (Paper I, II and IV), poly(LLA-co-CL) scaffolds were modified to deliver BMP-2 

using different modalities as follows: 

 

3.2.1.1 Physisorbed BMP-2 on unmodified scaffolds (PHY scaffold)  

A total of 1 μg of BMP-2 in 50 μl phosphate buffered saline (PBS) (Gibco, Thermo 

Scientific, MA, USA) was added in two increments onto the unmodified poly(LLA-

co-CL) scaffolds. 

 

3.2.1.2 Physisorbed BMP-2 on scaffolds modified with nDP (nDP-PHY scaffold)  

Detonation nDP were purchased from Gansu Lingyun Corp. (Lanzhou, China), acid-

purified and dispersed according to previously described protocols (117). The particles 

were attrition milled with micro-sized zirconia beads producing particles of ~5 nm 

diameters. Mechano-chemical reactions during the milling produced particles with 

hydrophilic surface, containing oxygen-containing terminal groups detected by 

infrared spectroscopy. Scaffolds were then modified with the nDP solution (2% (w/v) 

by a vacuum technique described in Paper I. Later, physisorption of BMP-2 on the 

nDP modified scaffolds was carried as Section 3.2.1.1. 

 

3.2.1.3 Scaffolds modified with nDP covalently functionalised with BMP-2 (nDP-

COV scaffold)  

First nDP were functionalised with benzoquinone by adding 189 mg of de-

agglomerated nDP in 20 ml of PBS (pH 8) and 150 mg of benzoquinone (1.38 mmol) 

(VWR International, Radnor, PA, US) for 24h at room temperature. This was followed 

by the immobilisation of BMP-2 to the functionalised nDP in PBS (pH 6) for 24h. The 

scaffolds were then finally modified with the functionalised nDP by the vacuum 

technique.  
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After the reaction of functionalising the nDP with BMP-2, which corresponds to a 

loading of 0.5 mg BMP-2 per 1 g of nDP (approx. 19 nanomoles/g), the supernatant 

solution was found not to contain any organic material (checked by thin layer 

chromatography and infrared). It can thus be assumed that all of the BMP-2 was bound 

to the diamond surface, likely due to the large excess of reactive diamond surface 

moieties. This amount is too small to be analysed by quantitative methods, as the 

expected changes are within the error range of the instruments.  

 

3.2.1.4 Microsphere preparation and scaffold modification (MICS scaffold)  

It has been shown that the properties of the microspheres have a major effect on their 

efficacy (36). PLGA was chosen owing to its biocompatibility and FDA approval. The 

molecular weight of PLGA5050 purchased was very close to that used in a previous 

report (108). BMP-2-loaded PLGA5050 (Purac Biochem, Gorinchem, Netherlands) 

microspheres were fabricated using a previously described water-in-oil-in-water 

double emulsion solvent extraction technique, detailed in Paper I. The microspheres 

were incorporated into the porous scaffold using a seeding technique (177). The 

loading efficiency of the microspheres was determined using a solvent-extraction 

technique (178) and the concentration of BMP-2 was analysed by a commercially 

available human BMP-2 enzyme-linked immunosorbent assay (ELISA) (RnD 

Systems, Minneapolis, Minnesota, USA). With an evaluated loading efficiency of 

0.04%, the amount of microspheres needed to contain exactly 1 μg of BMP-2 was 

calculated. The morphology and distribution of microspheres in the scaffolds were 

examined using scanning electron microscope. 

 

3.3 CELL SOURCE AND MAINTAINENCE  

3.3.1 Cell culture 

3.3.1.1 Primary human MSC  

Primary human MSC (StemCell™ Technologies, Vancouver, BC, Canada) were 

expanded in MSCGM™ complete medium (Lonza, Basel, Switzerland). Passages 3 to 

6 were seeded (2×105 cells per scaffold). Once they reached confluence, the medium 
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was replaced with osteogenic medium (Paper I). MSC cultures were performed in a 

minimum of triplicates and the experiments were repeated three times. 

 

3.3.1.2 Human osteoblast-like cells (HOB)  

HOBs were used as a positive control for the in vitro mineralisation staining in Paper 

I. They were isolated using a protocol that has been previously described (179). They 

were maintained in the alpha modification of Minimum Essential Medium 

supplemented with 1% antibiotic and 10% Foetal Calf Serum (FCS) (all from Gibco). 

 

3.3.1.3 Early neoplastic, dysplastic oral keratinocytes (DOK)  

Transformed, non-tumorigenic DOK were purchased from The European Collection of 

Cell Cultures (Salisbury, Wiltshire, UK) (180) and were routinely maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM), 10% FCS, 20μg⁄ml L-glutamine and 

5μg⁄ml hydrocortisone (all from Sigma-Aldrich). 

3.3.1.3.1 DOK cells as a screening tool for developing the tumorigenicity model 

Over 90% of head and neck cancers are, as are the majority of human malignancies, of 

epithelial origin and their consequences for patients are dramatic. In addition, most of 

the bone defects are due to resection of OSCC (181). Since scaffolds used for bone 

regeneration in the oral and maxillofacial area might come in contact with the oral 

epithelium and be influenced by their components, there is a need to study the 

potential carcinogenic effect of degradable bioengineered scaffolds on oral epithelial 

cells. In Paper III, we chose to develop an animal model with DOK cell line derived 

from premalignant oral mucosa (180). The use of normal cells in tumour models is 

time consuming and it is difficult to reproduce the several mutagenic events required 

for carcinogenesis in an experimental setting (155). DOK was established from a 

tongue dysplasia that progressed after 11 years into a well-differentiated OSCC. They 

were found to be partly transformed but non-tumorigenic in NUDE mice and our 

previous research on non-obese diabetic/severe combined immundeficient 

(NOD/SCID) mice (182) showed that DOK at a low density were tumorigenic only 

when co-inoculated with carcinoma associated fibroblasts (CAF). Spontaneously 
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immortalised cells possess a more stable phenotype than virally immortalised cells. 

Thus they are preferred in models of tumorigenesis (183). 

3.3.1.3.2 Luciferase transduction of DOK  

The process of transducing DOK wild type (DOKWT) cells is explicitly described in 

the methodological paper (Paper III). Briefly, infectious retroviral vector particles 

were produced in Phoenix A cells (LGC Standards AB, Boras, Sweden) and  DOKWT 

cells transduced with a luciferase expressing construct, L192, coding for the luciferase 

enzyme and co-transduced with the tetracycline-regulated transactivator (tTA) (184) and 

gene transfer enhanced with protamine sulfate (5μg/mL) as previously described 

(Paper III). L192 has a puromycin resistance gene, so cells were selected with 1μg/ml 

puromycin (Sigma).  

Proliferation of transduced DOKWT and DOKLuc was compared using Methyliazol 

Tetrazolium Assay (Sigma). Both cell types, DOKWT and DOKLuc were seeded (1000 

cells/well) in 96-well plates (n=6). Cells were fixed every 24h for 7 days and the 

absorbance expressed as optical density using a microplate reader. 

 

3.3.1.4 Carcinoma associated fibroblasts (CAF) 

CAF were obtained from patients with oral cancer after informed consent and 

histologically confirmed OSCC lesions. They were isolated using the previously 

described explant technique (185). They were maintained in FAD medium 

(DMEM/Ham's F12 1:3 mixture, 1% L-glutamine, 0,4μg/ml hydrocortisone, 50μg/ml 

ascorbic acid, 10 ng/ml EGF, 5μg/ml insulin and 20μg/ml transferrin and linoleic acid 

(all from Sigma), with 10% FCS. 

CAF were characterised by fluorescence-activate cell sorting for expression of 

lineage-specific markers such as: epithelial specific antigen 0.00%, leukocyte marker 

CD45 0.02%, endothelial cell marker CD31 0.09%, pericyte marker/MSC marker 

CD146 1.48% and mesenchymal markers: CD140b 95.67%. Immunohistochemistry 

carried on culture dishes showed expression of vimentin 99.5% and α smooth muscle 

actin 50.2% of cells. 
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To collect the conditioned medium, medium from CAF at 70-80% confluence was 

replaced for 18-24h by serum-free DMEM (Sigma). That was then replaced with half 

the volume of their routine medium for another 24h before the conditioned medium 

was collected, centrifuged and filtered through 0.40 μm filters. 

 

3.3.1.5 Primary gingival fibroblasts (GF) 

GF were isolated from samples of normal human oral mucosa of individuals with no 

clinical signs of inflammation at time of undergoing third molar extraction after 

informed consent. They were isolated using the explant technique protocols previously 

described (185). They were maintained in DMEM high glucose + 10% FCS (Sigma). 

 

3.4 QUANTIFYING THE RELEASE OF BMP-2 FROM SCAFFOLDS  

Selected reaction monitoring (SRM) was used to relatively quantify the release 

kinetics of BMP-2 in Paper I. The scaffolds were immersed in PBS at dynamic 

conditions and the supernatant was collected and replaced at determined time points up 

to 70 days. Briefly, the SRM strategy involved quantitative comparison of endogenous 

peptides and a spiked-in peptide standard, referred to as light and heavy peptides 

respectively, to determine the relative abundance of the protein. The method consists 

of a triple quadrupole (QQQ) mass spectrometer, as illustrated in Fig. 3.2. The mixture 

was subjected to digestion and the proteolytic peptides exposed to liquid 

chromatography (LC) and electrospray ionisation (ESI). The heavy and the light 

peptides were eluted with the same retention time from the LC column. In the QQQ, a 

predefined precursor peptide (the light and heavy forms of the signature peptide 

respectively characterised by different masses) is selected and isolated in Q1. In Q2, 

the collision energy produces charged fragments of a target peptide and in Q3 

predefined fragment ions selected by mass are transmitted for detection. A 

chromatogram shows retention time and signal intensity for each transition. 

rhBMP-2 (residues 283-396) expressed in E. coli was purchased (RELIATech 

GmbH, Wolfenbüttel, Germany). A preliminary step in SRM strategy consists of 

choosing a peptide that is ideal for SRM method based on specific criteria. An ideal 
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SRM peptide has to be present in a unique form for the targeted protein and post-

translational and chemical modifications must be considered (186). To choose the 

peptide, the protein was digested and run in a mass spectrometer (MS), after which 

each peptide with a specific mass was fragmented in MS-MS (Orbitrap, 

ThermoScientific). The four representative peptides of BMP-2 that showed high 

intensities in the MS spectrum were tested in SRM mode.  

rhBMP-2 expressed in E.coli is a small protein of no more than 13 kilo Dalton 

molecular mass as monomer, so due to a short protein sequence (total 114 amino acid 

residues) the number of tryptic peptides was limited, with only 4 peptides providing 

strong specific signals. After testing all 4 peptides with direct infusion on 5500QTRAP 

for transitions status, it was found that only 1 peptide, NYQDMVVEGCGCR, 

revealed good transitions and was therefore selected for relative quantification of 

BMP-2. This peptide, is however, not optimal for absolute quantification as it contains 

2 cysteines (C) able to form inter- and intra-chain disulfide bridges. De-folding of 

protein by urea followed by carbamidomethylation of cysteine was performed in the in 

vitro SRM assay. The peptide contains glutamine (Q) and asparagine (N) residues but 

their conversion to aspartate and glutamate, depending on the surrounding sequence, 

would probably not occur (187). Therefore, it was selected as stable isotope-labelled 

internal standard (SIS) candidate as there was no better alternative. A SIS (heavy 

peptide) corresponding to that signature peptide was purchased in AQUA QuantPro 

quality (ThermoScientific). The C-terminal arginine for the SIS was labelled with 13C 

and 15N resulting in a peptide with 10 Dalton additional mass compared to the non-

labelled peptide. In addition cysteines were carbamidomethylated. In order to obtain 

the chosen peptide in a unique form, methionine residue had to be oxidised. 

The assay for detection of peptide was optimised by direct infusion on a Q-Trap 

5500 (AB SCIEX, MA, USA). SIS peptide NYQDMoxVVEGCcmGCcmR13C15N [25 

femtomoles (fmole)] were spiked into samples containing unknown amounts of BMP-

2. The mixture was lyophilised (Centrivap® Centrifugal, USA) prior to in-solution 

protein digestion according to a previously established protocol 

(http://www.uib.no/file-archive/in-solution-proteindigestion.pdf). Prior to liquid 
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chromatography SRM-MS (LC SRM-MS) analysis, the mixtures of reduced and 

alkylated tryptic peptides were desalted as described previously (188). LC SRM-MS 

analysis was performed on a Q-Trap 5500 coupled to a Dionex Ultimate system 

(Thermo Scientific) as previously described (188). For quantification of the signature 

peptide from BMP-2, all y transitions with significant intensity were used to obtain 

ratio Light/Heavy (L/H).  

 

Figure 3.2 Schematic workflow of SRM-based proteomic experiment. A triple quadrupole (QQQ) 

mass spectrometer (Q-Trap). Figure modified from (186).  

 

3.4.1 Optimising the use of MS as a method for assessing release of BMP-2 
ELISA is the most commonly used method for detecting protein release from scaffolds 

(189), provided the amount is within the detection range. The BMP-2 Quantikine 

ELISA kit (RnD) was used initially when designing the study, but no BMP-2 could be 

detected. Kits commonly used, detect mammalian BMP-2 which is glycosylated, and 

the rhBMP-2 used in this study is bacterial BMP-2 and thus non-glycosylated. Protein 

labelling techniques to quantify fluorescence have been employed previously but 

unreliable release profiles have been encountered because they depend on the 

fluorophore tagging which in return depends on its dissociation factor (95). Using 

radiolabelled proteins commonly radioactive 125Iodine requires adjusting for 

radioactive decay and accompanying risks and drawbacks of radioactivity are not 

sustainable for longer periods (190). Hence, to quantify low abundant amounts 

released for a long period a highly sensitive, selective and reproducible method was 

required. SRM was thus chosen as a new strategy for quantification of BMP-2. We 

tested 3 assays (series) with slightly different SRM methods and progressively 

improved the ability to measure the release of BMP-2. 
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In all triplicate samples (series), the heavy signature peptide with the following 

sequence NYQMVVEGCGCR was spiked in samples with endogenous BMP-2. 

However, in the first run, the heavy signature peptide was NYQMVVEGCGCR with 

labelled R and spiked-in in the amount of 5 fmoles. In the second run, due to the fact 

that the signature peptide contains a methionine (M), making the side chain of the 

amino acid prone to oxidation, the heavy signature peptide used was not only labelled 

on R, but in addition synthesised with M oxidised (Mox) NYQMVVEGCGCR and 

spiked-in in the amount of 5 fmoles. In this assay, M residues from the endogenous 

samples were oxidised in vitro. In third run, an assay similar to that described in the 

2nd was performed, with the exception that 25 fmoles (instead of 5 fmoles) of heavy 

peptide were spiked-in, in order to obtain more robust results and because the SIS 

peptide should be added to the sample in amounts corresponding to the endogenous 

peptide levels. All 3 series analysed with slightly different SRM conditions revealed 

comparable profile of BMP-2 release from the different scaffolds (data not shown). 

Finally, in an attempt to obtain not only a relative quantification of BMP-2 

expressed as ratio (L/H), but an absolute quantification of BMP-2, standard curves 

were generated alongside our analyses of series samples. Values of peak area for 

various samples (heavy peptide with Mox spiked in various amount of synthetic light 

peptide with Mox) prepared for the standard curve were highly reproducible under our 

assay conditions.  
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Figure 3.3 SRM standard curves generated. Standard curve performed with spiked-in 25 fmoles 

heavy peptide in various amount of synthetic L peptide NYQDMVVEGCGCR. Data (blue, red) from 

2 experiments performed on different occasions. 

 

Data from various analyses (different colours in Fig. 3.3 correspond to experiments 

performed on different days) show good correlation and a relatively good linearity, 

arguing for reproducibility using our developed method and parameters for SRM assay 

and encourage efforts for future absolute quantification. The slight discrepancy may be 

attributed to the fact that the SIS could not be synthesised by the manufacturer in the 

quality required for absolute quantification.  

The SRM work was carried out in collaboration with the Proteomics Unit (PROBE) 

with the help of Dr. Anne P. Døskeland. 

 

3.5 INVESTIGATING OSTEOINDUCTIVITY AND HOST REPSPONSE  

3.5.1 In vitro experiments 

3.5.1.1 Cell attachment and mineralisation  

Attachment and spreading of MSC on the scaffolds at days 1 and 3 post-seeding in 

Paper I were analysed by scanning electron microscopy (Jeol JSM 7400F, Tokyo, 

Japan). To evaluate the mineralisation in the scaffolds as evidence of MSC developing 

an osteogenic phenotype and depositing calcium, the MSC /scaffold constructs were 

harvested after 1 week culture and stained with Alizarin red (2%). 
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3.5.1.2 Real-time reverse transcribed polymerase chain reaction (PCR) and PCR 

Array  

Total RNA was isolated from in vitro cultures (Paper I) and in vivo samples (Paper 

II) using a Tissue RNA isolation kit (Maxwell®, Promega, Madison, WI, USA). 

Quantity and purity were checked using a Nanodrop spectrophotometer 

(ThermoScientific, Wilmington, Delaware, USA). Total RNA was reverse transcribed 

according to the manufacturer's instructions using the High-capacity complementary 

DNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA) in Paper I 

and reverse transcribed according to the manufacturer’s instructions using the Rt2 PCR 

Array First Strand Kit (SABiosciences, Hilden Germany) in Paper II. Quantitative 

real time PCR was conducted on a StepOne Plus system, using TaqMan gene 

expression assays (Applied Biosystems) (Paper I) and a customised Rt2 Profiler PCR 

Array (Superarray Bioscience) was used and PCR was performed on a StepOne Plus 

system with Rt2 Real-time SyBR Green/Rox PCR mix (SABiosciences) in Paper II. 

Reference genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in Paper 

I and GAPDH, beta-actin, and beta-2 microglobulin in Paper II. 

 

3.5.1.3 ELISA  

MSC and scaffold culture constructs were incubated with RIPA buffer, 1×Halt™ 

protease and phosphatase inhibitor cocktail (all from ThermoScientific) to extract total 

intracellular protein and quantitate intracellular BMP-2. To measure the endogenous 

BMP-2 released extracellularly, culture medium was collected at week 1 and 3. 

Human BMP-2 ELISA Development Kit (Peprotech, Rocky Hill, NJ, USA) was used 

to measure extracellular and intracellular endogenous BMP-2 from MSC in Paper I. 

 

3.5.2 In vivo experiments 

3.5.2.1 Rat mandible defect model and subcutaneous ectopic mouse model  

Several critical-sized defect models have been described in the literature including 

calvarial defects (46) and long bone segmental defects (48), but none of them simulate 

the specific microenvironment and masticatory stresses seen in the oral and 
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maxillofacial area. An incision was made along the lower border of the mandible of 

male Sprague–Dawley rats (300–350 g) and after muscle retracting a round-shaped 

bone defect was created using a trephine burr (Komet Medical, Lemgo, Germany) (5 

mm diameter) in the mandibular angle region (Fig. 3.4 A, B). The defect was filled 

with a scaffold (n = 8 per scaffold type). Rats were sacrificed after 2 weeks.  

In Paper II, two (1 cm length) incisions were made on the back of 8-10 weeks old 

Balb/c mice (Fig. 3.4 C, D) (n = 4 scaffolds implanted per animal). Mice were 

sacrificed after 1, 8 and 27 weeks (n = 8 per scaffold type). 

 

Figure 3.4 Animal procedures to evaluate osteoinductivity and host response. (A) Anaesthetised 

rat through a custom-made mask and an incision along the lower border of the mandible showing a 

defect made in the mandibular angle region. (B) X-ray of a rat mandible showing the defect’s location. 

(C) Two incisions made in the back of a mouse and scaffolds being carefully placed. (D) Dissection of 

a mouse after 1 week showing distribution of 4 scaffolds distributed in the subcutaneous scaffold 

implantation model.  
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3.5.2.2 Histologic and histomorphometric analysis  

All harvested samples were fixed in 4% paraformaldehyde (PFA) before they were 

decalcified. Paraffin embedded sections (3-4 μm) were stained with Masson's 

Trichome to confirm the osteoid-like tissue (Paper I) and stained with hematoxylin-

eosin (H&E) in Paper II. The amount of bone formation within the mandible defects 

(Paper I) was examined using micro-CT after 4 weeks (micro-CT 40, Scanco Medical 

AG, Bruettisellen, Switzerland). In Paper II, mineralised ectopic areas were evaluated 

within the scaffolds using micro-CT (Skyscan 1172) after 8 weeks.  

Qualitative and semi-quantitative histological evaluation was carried out to assess 

the host response to implanted scaffolds based on the morphology of infiltrating 

inflammatory cells and connective tissue surrounding the scaffold area in Paper II. 

H&E sections were evaluated in six fields of vision (magnification 40×) using a 

modified scoring system (150) by two blinded examiners. The H&E sections were also 

visualised with an ultra-resolution imaging system (CytovivaTM 130, Auburn USA) to 

identify nanodiamond particles still present in the implantation site. 

 

3.6 CHEMICAL ANALYSIS OF DEGRADING SCAFFOLDS  

In Paper II the Mn of the scaffolds degrading in vivo, after 1, 8 and 27 weeks, was 

analysed after dissolving the harvested scaffolds in chloroform. Mn were recorded by 

SEC on a Verotech PL-GPC 50 (Polymer Laboratories, Varian Inc., MA, USA), with a 

refractive index detector and two Polar-Gel-M organic SEC columns (300×7.5 mm) 

from Varian Inc. Samples were injected using chloroform and the system was 

calibrated against a narrow polystyrene standards. The decrease in Mn was calculated.  
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3.7 NON-INVASIVE MICROENVIRONMENTALLY-INDUCED ORAL 

CARCINOGENESIS: AN IN VIVO BLI MODEL 

3.7.1 In vivo experiments 

3.7.1.1  Orthotropic and ectopic cell inoculation and tumour measurements  

The tumorigenic potential of human cells in an animal can be tested only in an 

environment which favours tumour development, hence the need for immunodeficient 

animals. In this context, non-obese diabetic severe combined immunodeficient 

IL2rgnull (NSG) mice with multiple immunological dysfunctions provide a high 

engraftment level for xenografts and more rapid tumour formation and progression 

than less immunodeficient mice (191). The cell inoculation method in orthotopic and 

heterotopic sites was used in Paper III to assess the tumorigenic potential of DOK 

before and after cell transduction with luciferase and the effect of co-inoculation with 

CAF. This method was also used to assess the sensitivity of bioluminescence imaging 

(BLI) to differentiate between tumours formed by different strains of CAF.  

Both DOKWT and DOKLuc were cultured and allowed to reach their log phase 

before they were suspended in 50 μl of growth factor reduced matrigel (BD 

Biosciences, San Jose, CA, USA). The cells were inoculated at two different densities, 

low (1×103) and high (1×105), in the tongue (Fig. 3.5 A) and subcutaneously in the 

back of 8-10 weeks old male NSG mice (University of Bergen, Norway) (n = 6 per 

group).  

To create a positive tumour formation control as a reference, 1×103 DOKWT were 

suspended with 1×105 CAF in 50 μl matrigel and co-inoculated in the tongue (n=6 per 

group). To assess the sensitivity of BLI to differentiate between tumours formed by 

different strains of CAF, DOKLuc (1×103) were co-inoculated with 1×105 of one of two 

different strains of CAF (CAF15_13 and CAF15_23) in the tongue (n=6 per CAF 

strain). The development of the tumours formed was followed manually by digital 

calliper (Fig. 3.5 B) and by BLI weekly for approx. 45 days. The tumour volumes 

from inoculations were calculated using the formula: Volume = [length × (width2)/2] 
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(192). In addition, the tumour areas were calculated from areas of interest in H&E 

sections using Olympus DP Soft 5.0 software (Munster, Germany). 

  

3.7.1.2 Scaffold xenotransplantation subcutaneously and optical in vivo imaging  

The scaffolds were first pre-wet with DOK medium before being seeded with DOKLuc 

alone or DOKLuc+CAF and then allowed to attach overnight. Three different densities 

of DOK were used (1×103), (1×105) and (1×106) in Paper III and in Paper IV the 

density was only (1x104). The density of CAF was fixed to 1x105 in all experiments. 

The different densities were distributed among all mice (n = 6) in Paper III and in 

Paper IV n = 6 per each scaffold type. The same subcutaneous operating procedure as 

in Section 3.5.2.1 was followed but only 2 scaffolds were implanted into each NSG 

mouse, one scaffold with DOKLuc alone and the other with DOKLuc+CAF. At 12 weeks 

(Paper III) or 14 weeks (Paper IV) animals were euthanized and scaffolds harvested.  

To monitor tumour formation in vivo non-invasively, mice were depilated and 

scanned 10 min after intraperitoneal injection with 150 mg/kg of D-luciferin (Biosynth 

AG, Staad Switzerland) (Fig. 3.5 C). Images were captured using In Vivo MS FX PRO 

(Carestream Health Inc. Rochester, NY) and analysed using Carestream MI SE version 

5.0.6.20. For the bioluminescent reaction to happen: the catalyst enzyme (luciferase) 

and the luciferase substrate (D-Luciferin) are needed. The general mechanism is the 

decarboxylation of the luciferin in the presence of oxygen to produce light. 

 

Figure 3.5 In vivo cell inoculation and optical imaging. (A) Inoculation of DOK into the tongue of 

an NSG mouse under gas anaesthesia. (B) Manually measuring a subcutaneous tumour 8 weeks post-

inoculation using a calliper. (C) Intraperitoneal injection of a depilated mouse with D-luciferin. 
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3.7.1.3 Immunohistochemistry of tumour xenotransplants 

In Paper III and IV, 3-4 μm paraffin sections of tumour xenotransplants were stained 

with H&E (Sigma). Immunostaining of xenotransplants was also performed on 

paraffin sections as follows (Table 3.1). All bound reactions were visualised using 3, 

3’-diaminobenzidine tetra hydrochloride. 

 

Table 3.1 Immunostaining of tumour xenotransplants. 

Primary antibody Dilution Manufacturer Paper 

Monoclonal Mouse Anti-human p53 1:50 Dako III 

Monoclonal Mouse Anti-human Vimentin 1:1000 Dako III 

Monoclonal Mouse Anti-human Involucrin 1:500 Novocastra IV 

 

3.8 FUNCTIONAL IN VITRO TUMORIGENICTIY ASSAYS  

3.8.1 In vitro assays 
In paper IV, DOKLuc (2.5×104 per scaffold) were cultured on 3 different scaffolds: 

unmodified poly(LLA-co-CL) scaffolds (CL scaffold), poly(LLA-co-CL) scaffolds 

modified with nanodiamond particles (nDP scaffold) and nDP scaffold plus 

physisorbed BMP-2 (nDP-PHY scaffold) for 1 week. After seeding adherent cells like 

DOK in copolymer scaffolds, extracting viable cells required a careful optimising 

procedure. Several concentrations of Trypsin/EDTA (Sigma) were used along with 

several initial seeding densities and culture days as well as methods of manipulating 

and cutting the scaffolds. The final protocol involved adding warm (0.25%) 

Trypsin/EDTA followed by plate vortexing for 30s followed by incubation for 5min. 

The plate was removed for mechanical trypsinisation before further incubation for 

3min. Supernatant was removed and the trypsin was then deactivated with FCS in a 

separate tube to prevent clumping of cells in the scaffold. The DOKLuc trypsinised 

from the different scaffolds were allowed to propagate before they were subjected to 

the following in vitro functional tumorigenicity assays: 



  
Bioactive copolymer scaffolds  

 

50 
 

3.8.1.1 Transwell migration assay 

A cell’s migratory and invasive behaviour is a surrogate measure, used to evaluate its 

tumorigenic and metastatic potential (155). Inserts (8 μm, Corning Incorporated, NY, 

USA) were used in 24-well plates (Nunc, Roskilde, Denmark). The DOKLuc were 

allowed to migrate against one of 2 gradients; (1) high serum or (2) conditioned 

medium from CAF (in a 1:1 mix with fresh routine culture medium). The DOKLuc 

extracted from the scaffolds were re-suspended in DOK medium and seeded on top of 

the insert. The lower chamber contained either DOK medium with 20% FCS or 

conditioned medium from CAF (Fig. 3.6 C). After 18-20h, the cells were fixed and 

stained with DAPI (1:1000). Inserts were imaged to count migrated cells using a 

fluorescence microscope (Nikon TE 2000, Nikon, Japan). 

 

3.8.1.2 Sphere formation assay  

This assay tests the ability of a cell to grow independent of anchorage, giving an 

understanding to its renewal potential and resistance to anoikis and hence its 

tumorigenic potential. Plates (48-well) were coated overnight to obtain the non-

adherent surface with 1% solution of poly 2-hydroxyethyl methacrylate (Sigma) in 

95% methanol. DOKLuc were seeded (500 cells per well) in 500 μl of FAD medium + 

10% matrigel (BD Biosciences). The cells were allowed to grow for 21 days and the 

spheres with diameter > 40 μm were counted. 

 

3.8.1.3 3D Organotypic cultures (3D-OT) 

Organotypic culture help overcome the limitations of 2D culture which lack complex 

microenvironment, intercellular and dynamic interactions. These models have been 

considered as high throughput preclinical models in tumorigenesis (193), although 

they are limited by a short culture span (they can only last for approx. 12 days) and the 

lack of vascular and immune compartments. These limitations have been compensated 

for here by the parallel use of in vivo experiments.  

We attempted the reconstruction of an oral mucosa that mimics the primary tissue 

by co-culturing epithelial and mesenchymal (stromal) cells in a 3-D model. To assess 

the invasive potential of the DOKLuc extracted from the scaffolds, they were seeded on 
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a matrix incorporating different types of fibroblasts (GF or CAF). CAF were used as a 

positive control for invasion, since a previous report from our group (182) showed that 

an oral cancer cell line underwent deeper invasion in organotypic cultures populated 

with CAF compared to normal oral fibroblasts. Using a well-established protocol in 

our laboratory (194), the fibroblasts were seeded on prepared collagen bio-matrices 

(constituents described in Paper IV) at a final concentration of 2.5×105 cells per 

matrix. They were incubated until the matrix solidified before adding the routine 

culture medium for the respective fibroblasts.  

One day later, DOKLuc extracted from the scaffolds were re-suspended in DOK 

medium and seeded on top of the collagen bio-matrices populated with fibroblasts at a 

concentration of 5×105 per matrix to re-construct the epithelial compartment of the 

3D-OT. After 2 days of co-culture, the OT were detached and lifted on a stainless steel 

metal grid to keep them at an air-liquid interface and cultured in serum-free OT 

medium (constituents described in Paper IV) (Fig. 3.6 A). Two thirds of the medium 

was changed every 2nd day and the 3D-OT were harvested after 10 days of co-culture 

and fixed.  
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Figure 3.6 In vitro functional tumorigenicity assays. (A) Schematic diagram of reconstructing 

oral mucosa in a 3-D organotypic culture. (B) Measuring invasion of DOKLuc in the sectioned 3D-OT 

(red line). (C) Illustration of the transwell migration assay. Figure made using Servier Medical Art. 

 

Preliminary tests using different seeding densities were performed to optimise the 3D-

OT. In higher fibroblast densities the matrices were found to contract earlier than 

expected preventing the fibroblasts from multiplying and at higher DOK seeding 

densities, it caused rolling of the 3D-OT from the sides. The best architecture was 

found from 3D-OT made of GF in densities mentioned above. 

 

3.8.1.4 Histomorphometry and immunohistochemical quantification of 3D-OT 

Paraffin sections of 3D-OT (3-4 μm) were stained with H&E (Sigma) for measuring 

invasion using the software Olympus DP.Soft 5.0. The sections were imaged and 

analysed for invasive capacity. Briefly, in the section, the central and the two outer 

parts of the 3D-OT were excluded because these areas were usually found to show 
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variable invasion since they are the focal points of the matrix handling and seeding of 

DOKLuc. The depth of invasion was determined every 100 μm from a line drawn 

through the upper remnants of the collagen bio-matrix towards the epithelium (Fig. 3.6 

B). This line was considered to represent the original, upper level of the collagen bio-

matrix and thus the basement membrane. The depth of invasion was measured from 

this line to the deepest point of invading DOKLuc. Two areas per section were 

evaluated, with 3 readings per area.  

Immunostaining of 3D-OT was also performed on paraffin sections (Table 3.2). 

All bound reactions were visualised using 3, 3’-diaminobenzidine tetra hydrochloride. 

The open resource digital image analysis software ImageJ (v.1.46r) (National Institute 

of Health, USA) was used to count positively stained Ki67 cells. To quantify cells 

positively stained for involucrin, epithelial growth factor receptor (EGFR) and E-

cadherin cells, a plug-in IHC Profiler compatible with ImageJ was used for scoring 

(195). 

Table 3.2 Immunostaining of 3D-OT. 

Primary antibody     Dilution Manufacturer 

Monoclonal Mouse Anti-human Ki67 1:25 Dako 

Monoclonal Mouse Anti-human Involucrin 1:500 Novocastra 

Monoclonal Mouse Anti-human E-cadherin 1:3000 Dako 

Monoclonal Mouse Anti-human EGFR 1:1000 Dako 

EGFR, epidermal growth factor receptor 

 
3.9  STATISTICAL ANALYSIS  

All data are presented as the mean values together with either the standard deviation or 

the standard error of the mean or 95% confidence interval. For Real time RT-PCR 

analysis (Paper I), the comparative Ct method (2-∆∆Ct) was used to analyse data and 

One-way ANOVA was used followed by a multiple comparison Tukey test. The in 

vivo data (Paper I) were analysed with the Kruskal–Wallis test. PCR Array data in 

Paper II were analysed using the web-based analysis software RT2 Profiler PCR 

Array Data Analysis (v 3.5, Superarray Bioscience).  
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In Papers III and IV, paired t-test or the independent Mann Whitney U tests were 

used to compare differences between the tumours. Spearman’s correlation was used to 

correlate the manual tumour measurements and histological measurements with 

corresponding BLI signals (Paper III). In Paper IV, significant difference in the 

sphere formation, depth of invasion between groups in 3D-OT, and significant 

difference in immunostaining quantification was tested using One-way ANOVA 

followed by a multiple comparison Tukey test. SPSS ver. 21/22 (IBM, NY, USA) was 

used for the evaluation and the level of significance was set to p < 0.05. 

 

3.10 ETHICAL STATEMENT  

All animal experiments were approved by the Norwegian Animal Research Authority 

and conducted in strict accordance with the European Convention for the Protection of 

Vertebrates used for Scientific Purposes (FOTS nos. 2012/4178, 2013/5042, 

2013/4643, 2012/3961 and 2013/5297). All animals were anaesthetised with isoflurane 

(IsobaVet®; Schering-Plough, Kenilworth, NJ, USA) combined with O2 and were 

euthanized with an overdose of CO2. The ethical approvals for OSCC patient samples 

and individuals undergoing third molar extraction samples were obtained from the 

Regional Committee for Medical and Health Research Ethics (REK # 2010/48 and 

REK Vest# 177.04). The samples were collected following an informed consent of the 

patients.  
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4. MAIN RESULTS AND GENERAL DISCUSSION 

4.1 OSTEOINDUCTIVITY  

4.1.1 Osteogenic potential of a controlled, sustained release of BMP-2  
In Paper I, we investigated how the release and bioactivity of BMP-2 from copolymer 

scaffolds are affected by binding techniques. Four different functionalising techniques 

were used to immobilise a low dose of 1 μg rhBMP-2 on recently developed poly 

(LLA-co-CL) scaffolds. BMP-2 was either (i) physisorbed onto unmodified scaffolds 

(PHY), (ii) physisorbed onto scaffolds modified with nDP (nDP-PHY), (iii) covalently 

linked onto nDPs that were used to modify the scaffolds (nDP-COV) or (iv) entrapped 

in microspheres distributed on the scaffolds (MICS).  

BMP-2 administered in excess amounts in order to efficiently repair bone creates 

undesirable side effects which limits its therapeutic use (92, 94). In a clinical trial of 

alveolar cleft palates in children the high concentrations of BMP-2 delivered resulted 

in a significant amount of severe unwanted postoperative swelling (91). Furthermore, 

studies emphasised the necessity of using a controlled, sustained release of BMP-2 

within physiological and therapeutic limits for clinical success (196, 197). Hence it 

was fundamental to understand the release kinetics of the loaded BMP-2, before 

further bioactivity evaluations were initiated. The SRM method used was able to 

detect released quantities from the different scaffolds producing a release curve (Fig. 

4.1).  
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Figure 4.1 Release profile of BMP-2 from different scaffolds. Axis-(A) Relative amount released 

where 100% value corresponds to the highest value observed for the total amount of BMP-2 measured 

at a specific time point. Axis-(B) Release over time of BMP-2 from the different scaffolds expressed 

by the ratio (L/H) between endogenous light (L) and heavy synthetic (H) peptide spiked-in our sample. 

Figure reprinted with permission from Elsevier Ltd. (Paper I). 

 

The early time points gave a vivid depiction of the variation between the different 

modes of binding; the PHY scaffolds showed an initial burst of release followed by a 

drop and MICS showed a higher level of release starting at 24 h (compared to nDP-

COV and nDP-PHY scaffolds) and remained steady up to 7 days only. Passively 

adsorbed BMP-2, such as on the PHY scaffold, is the easiest way to load growth 

factors onto a carrier since it simply requires immersion in protein solution but has the 

disadvantages of uncontrolled release and short release duration caused by the burst 

release. This mode of delivery can be used when delivering multiple growth factors 

and wanting to tailor release onsets; i.e. wanting to initiate vascularisation first by a 

spurt of VEGF before commencing prolonged osteogenesis (198). This can be needed 

in cases where vascularisation is impaired, for example due to radiation therapy. 

However, for our purpose (Paper I) a prolonged controlled delivery of growth factors 

might be the best option since it promotes healing coordinated with the normal 

physiological expressions of these factors. It has also been proposed that the ideal 

pharmacokinetics for BMP-2 should include an initial burst first to recruit 
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osteoprogenitor cells followed by sustained release to induce osteogenesis (199). 

Studies have shown burst followed by a sustained release of BMP-2 regenerated 50% 

more new bone than a collagen sponge loaded with BMP-2, whereas a sustained 

release without the burst did not enhance bone more than a scaffold without BMP-2 

(199). It seems reasonable that the delivery of BMP-2 ought to be based on the normal 

physiological microenvironment of bone, where it is an extended dynamic process. 

This would necessitate maintaining protein bioactivity in the carrier for a sustained 

release. The ideal time point of BMP-2 delivery has not been elucidated yet, but the 

increased expressions at 1 and 21 days after injury is remarkably useful (58, 96, 200). 

Several studies explored the spatiotemporal effect of BMP-2 delivery; some suggested 

that BMP-2 plays an important role in osteoinduction, especially at the early stages 

(201). However, there is evidence suggesting that sustained delivery of BMP-2 

enhances bone formation, attributed to its effect on a larger population of 

osteoprogenitor cells at the fracture site at later stages following injury (197).  

In comparison to the MICS scaffolds, the PHY scaffolds showed a smaller 

increase in release between days 21 and 40 than that seen from MICS, probably 

attributed to degradation of the scaffold and/or microspheres and liberating the low 

amounts entrapped (37). The difference seen between MIC and PHY scaffolds in 

amounts released suggests that perhaps not all the BMP-2 added to PHY scaffolds was 

able to be adsorbed. The nDP-PHY was seen to have a controlled release sustained in 

comparable low amounts compared to the other groups until the termination of the in 

vitro release experiment. In a rat tibia osteotomy model, sustained BMP-2 delivery 

resulted in enhanced mineralised bone healing and biomechanical properties at 84 days 

compared to BMP-2 delivered at much higher amounts released in a burst fashion 

(202). Also in line, a larger animal model showed efficient bone healing when using a 

slow sustained release of BMP-2 (203). In nDP-PHY, BMP-2 was strongly bound to 

the nDP, since protein interactions with nDP are known to be relatively strong  (204) 

(discussed further in Section 4.1.2).  
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ALP expression is an early differentiation marker of the osteoblast phenotype and 

studies often test bioactivity of BTE scaffolds using ALP expression from cells in the 

osteoblastic lineage, considering it a robust cytochemical marker for mineralisation 

(205). Our findings of increased ALP mRNA in vitro at 3 weeks from cells on nDP-

PHY scaffolds in Paper I are in line with the significant increase in ALP mRNA 

expression (p = 0.014) from the first week for nDP-PHY implanted subcutaneously 

compared to nDP and CL scaffolds in Paper II. Osteosarcoma cells cultured on BMP-

2 treated O-NCD implant surfaces were reported to significantly increase ALP activity 

in less than 2 weeks of culture (119). Another study showed polyester carriers with 

hydroxyl terminals similar to those terminating nanodiamond particles used here 

promoted increased ALP activity in differentiating osteogenic cells (206). However, in 

Paper I, in vivo significance for ALP mRNA at 2 weeks was only demonstrated from 

MICS scaffolds compared to other osteogenic markers, but micro-CT and histology 

supported the interpretations and conclusions related to the comparable osteogenic 

potential of MIC, nDP-PHY and PHY scaffolds. The bioactive BMP-2 might have 

caused the recruitment of osteogenic progenitor cells from the local circulation, 

leading to the pronounced ectopic mineralisation in nDP-PHY scaffolds (Paper II) 

and de novo bone formation in the critical-sized mandible defect (Paper I). Previous 

reports have shown that a controlled local concentration of BMP-2 modifies the 

recruitment of osteogenic progenitor cells and regulates the formation of bone (207).  

mRNA of the potent osteogenic markers osteocalcin and BMP-2, was highly 

expressed from MSC grown on nDP-PHY and MICS scaffolds at week 1 and week 3 

in vitro and at week 2 in vivo, implying increased osteogenic potential in comparison 

to that seen from PHY scaffolds (Paper I). Confirmed by the in vitro mineralisation 

assay, nDP-PHY and MICS scaffolds demonstrated vast extracellular dark spots 

evident of calcium deposits in the matrix produced by seeded MSC while on PHY 

scaffolds which showed less extracellular matrix staining indicating lack of sustained 

mineralisation. Corroborating to this pattern in PHY scaffolds are the high levels of 

mRNA collagen type I, an early marker of bone formation, produced by cells in the 

PHY group in vitro as well as in vivo in Paper I. Release as a burst from PHY was 
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perhaps above therapeutic threshold, and then rapidly declined to levels that were too 

low for effective mineralisation.  

The data from Paper I confirmed that nDP-PHY and MICS scaffolds showed 

both in vitro and in vivo evidence that a more controlled release is needed to induce a 

commitment to bone phenotype. Furthermore, the amounts released from nDP-PHY 

scaffolds were far less than from MIC, and release continued until 70 days with 

bioactivity also displayed in an ectopic model (Paper II). 

 

4.1.2 Effects of nanodiamond particles on the scaffold’s osteogenic potential 
Nanodiamonds are known to amplify surface areas due to their size, providing chances 

of surface functionality in addition to their biocompatibility, rigidity and chemical 

stability (115). The nanodiamond particles used to modify the poly(LLA-co-CL) 

scaffolds in this work increased hydrophilicity of the scaffold material via the 

previously described increased oxygen-containing groups which also facilitate strong 

binding of organic groups (114). Unpublished data from optimising experiments 

demonstrated a reduction from 119o contact angle on pure Teflon to almost <10o when 

modified with nDP. Poly(LLA-co-CL) scaffolds modified with nDP terminated with 

oxygen-containing groups produced composites that are not only mechanically 

reinforced (52) but also enhanced hydrophilicity and thus cellular responses and de 

novo bone formation in a sheep defect (54). Another study using titanium implant 

surfaces coated with O-NCD and physisorbed BMP-2 demonstrated enhanced bone to 

implant contact ratio which was not entirely due to the activity of BMP-2 since O-

NCD implants on their own, still improved healing when comparing the results (120). 

The nDP scaffolds without BMP-2 (Paper II) also showed enhanced osteogenic 

potential and this was in line with recent reports that showed cultivated osteoblast-like 

cells in O-NCD films exhibited a higher growth rate compared to hydrogen-terminated 

NCD, and supported more deposition of ECM proteins and ECM mineralisation (208). 

A study exploiting functionalised monolayers containing various surface chemistries 

demonstrated that the hydrophilic monolayers selectively permit osteoblastic 

differentiation, inhibiting adipocytic differentiation, while the positively charged 
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monolayers supported both adipocytic and osteoblastic differentiation (209). The 

osteoconductivity demonstrated by our data can also be attributed to the difference in 

surface charge in the modified scaffolds that caused wettability, that in return 

modulates the absorption of cell adhesion molecules and proteins from the surrounding 

fluids in vivo (210, 211). O-NCD coating titanium implants bound BMP-2 physically 

by electrostatic interactions, van der Waals forces and hydrogen bonds (119), 

supporting the contention that nanodiamonds in nDP-PHY scaffolds express similar 

properties and bind  BMP-2 by increasing the magnitude of the electrostatic 

interactions between BMP-2 and the scaffold, which in turn decrease the initial burst 

release.  

Several drug delivery systems have been reported that take advantage of the 

unique nDP electrostatic surfaces, daunorubicin (anti-cancer drug), for instance, has 

been reversibly bound to nDP, providing a sustained and steady release profile in vitro 

and in vivo (212). The nDP conjugate (212) improved drug maintenance in target cells 

along with treatment safety. Acidic pH was found to be a trigger for the anti-cancer 

drug’s release from nDP and also shown to affect the release in another study where 

BMP-2 was delivered from nDP in suspension (122). In our release profile we 

demonstrated a slight increase in release kinetics from nDP-PHY scaffolds at day 40 

and this correlates with increase in the scaffold degradation (37) and the subsequent 

acidic environment may be caused by polymer hydrolysis.  

In addition to the results of Paper I discussed above, osteoconductivity from nDP 

modified scaffolds was further shown in a mouse ectopic model (Paper II) by virtue 

of mRNA levels of selected osteogenic markers. At week 1 nDP and nDP-PHY 

scaffolds expressed upregulated trends of osteogenic markers (such as RUNX2, 

Collagen type Iα2, Collagen type Iα1, BMP-2) compared to the unmodified scaffolds, 

CL. The effect of nDP modification was also underlined after physisorbing BMP-2 in 

this study. These osteogenic markers were more upregulated in nDP-PHY compared to 

the other two groups. In Paper II, BMP-2 receptors and transcripts’ activation in the 

host showed that the mRNA levels of BMPRIA and RUNX2 were upregulated in the 

nDP-PHY scaffold group at week 1, demonstrating conserved bioactivity of the 
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physisorbed BMP-2 and indicating activation of the BMP signalling pathway and a 

consequent increase of osteogenicity (213).  

With regards to the nDP functionalising in nDP-COV (Paper I), this modification 

was not as successful as the nDP-PHY scaffolds. No BMP-2 release was detected 

during the course of the in vitro release experiment. Furthermore, reduced osteogenic 

potential both in vitro and in vivo was observed. This can be attributed to increased 

strength of the covalent immobilisation of the protein on the diamond surface, as was 

previously reported with enzymes (214). The loss of the BMP-2 functionality might 

also indicate that the protein was deformed during binding onto the nanodiamond 

surface by the covalent linker or the BMP-2 denatured during scaffold sterilisation, 

which had to take place after functionalising. BMP-2 engineered to irreversibly bind to 

titanium did not induce osteogenic gene expression in C2C12 cells compared to BMP-

2 that were reversibly bound to titanium surfaces (215). Nonetheless, nDP-COV can 

be improved to be a good modality for immobilising molecules that do not require 

release, for example adhesion molecules (216). In such circumstances, controlled 

release of adhesion molecules can be considered as the controlled provision of a 

bioactive molecule in its most appropriate state, not necessarily in a diffusible state. 

 

4.1.3 Importance of a controlled release of BMP-2 in low amounts 
Our release profiles from MICS and PHY scaffolds in Paper I showed a starting 

higher release followed by a sustained release but this soon increased again to very 

high levels compared to other scaffolds. The FDA approved BMP-2 carrier Infuse® 

delivers BMP-2 from an absorbable collagen sponge and shows a burst release profile, 

and complications have been reported due to uncontrolled release of high amounts 

(89). Reports underscored the importance of decreasing the dose of BMP-2 to the 

lowest level that is compatible with the desired degree of bone formation (217). Cells 

with osteogenic potential can be recruited and differentiated at low doses. In addition, 

the rapid release of BMP-2 may result in transient osteoclast-mediated resorption of 

newly formed bone whereas osteoclasts are transiently activated at high doses of 

BMP-2 (218). This was seen with the significantly increased in vivo expression of 
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tartrate-resistant acid phosphatase (TRAP) and Cathepsin K (CTSK) in the MICS 

scaffolds followed by a high trend in PHY scaffolds for TRAP, which could cause 

resorption of bone before its maturation (Paper I). Another in vivo study using the rat 

femoral segmental defect model indicated that an increased concentration of BMP-2 

above a certain threshold did not improve bone healing and could actually promote 

lower bone quality with an abnormal structure and potentially inferior mechanical 

properties (219). It has been reported that high concentrations significantly inhibited 

Wnt signalling pathway activity by a dramatic increase in released inhibitory proteins 

that lead to potential toxicity and side effects such as decreased human periosteal cell 

proliferation and induced apoptosis (220).  

There is a large disparity in BMP-2 concentration between clinical and 

experimental use, with clinical trials using high doses of at least 1 mg BMP-2 per ml, 

and higher doses of BMP-2 mask differences in bone regeneration, as we have 

observed for different release profiles. The dose used in the present thesis, 1 μg, falls 

in the lower range used for osteogenic threshold in rodents with similar defects (221). 

However, it is important to be careful when extrapolating results across different 

animal models and sites. The protein on nDP-PHY was bioactive with comparable 

efficacy to MICS in vitro and in vivo despite being strongly bound to the carrier, 

holding greater promise compared to growth factors adsorbed onto a polymer in the 

PHY scaffolds. The osteogenicity observed in vivo with PHY scaffolds compared to 

other groups in Paper I is intriguing despite its burst release, but the current inability 

to control burst release within the therapeutic window makes us favour a more 

controlled sustained release of low amounts.  

Taken together from the data in Papers I and II of osteogenic importance, nDP 

modification of the poly(LLA-co-CL) scaffolds was found to enhance 

osteoconductivity. nDP modification also provided a platform for binding BMP-2 

strongly, allowing its sustained release in low amounts and rendering the scaffold 

osteoinductive. These attributes suggest they may provide ideal growth factor carrier 

characteristics and lead to further investigations into the characteristics of this scaffold 
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and mode of BMP-2 delivery, including evaluating the host response during 

degradation as described below. 

 

4.2 DEGRADABILITY  

4.2.1 Degradation of functionalised poly(LLA-co-CL) scaffolds  
The degradation profile of unmodified poly(LLA-co-CL) porous scaffolds with similar 

compositions to those used in this work has been evaluated previously (37). In Paper 

II the effect on degradation of modifying these scaffolds with nDP or nDP and BMP-2 

was evaluated up to 6 months. Greater molecular weight loss was observed from the 

nDP and nDP-PHY scaffolds than from the CL scaffolds at time points 1, 8 and 27 

weeks. The data showed that after 27 weeks, all three scaffolds lost almost 90% of 

molecular weight. Hydrolysis is the main mechanism for the degradation of these 

synthetic polymers, where the speed and amount of water capable of diffusing 

throughout the polymer determines the degradation rate. The nDP used to modify our 

scaffolds has been shown previously to increase hydrophilicity due to the hydroxylated 

surfaces, thus absorbing water (115). A more hydrophobic scaffold, such as CL 

scaffold, will make it difficult for water to be absorbed. This promotion of hydrolysis 

may have increased polymer degradation seen in nDP and nDP-PHY scaffolds relative 

to unmodified counterparts at weeks 1 and 8. It has been reported that incorporating 

hydrophilic bioactive fillers such as TCP into hydrophobic polymers caused the 

composite PCL/TCP scaffolds to degrade faster than PCL homopolymer scaffolds in a 

6 months rabbit model. This acceleration in degradation is owed to the increase in 

water diffusion into the composite bulk (222).  

Increased water diffusion into the nDP modified scaffolds may have promoted a 

bulk pattern of erosion. In bulk erosion, the polymer chain scission occurs throughout 

the scaffold in the amorphous part of the polymer, thus although it does not change 

much in external dimensions, the molecular weight decreases early. This was seen in 

the macroscopic pictures (Paper II) of the harvested scaffolds after 8 and 27 weeks 

where the nDP and nDP-PHY scaffolds were physically present but showed 

considerably thinner and translucent areas in the centre. The decrease in Mn from the 
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first week in these scaffold groups compared to CL also reflects their bulk degradation. 

Our data demonstrated that after 2 months almost 60% of Mn of unmodified scaffolds 

decreased and previously reported data (37) demonstrated that these same scaffolds 

implanted into rat calvaria decreased around 70% of the molecular weight after 91 

days. Hence a comparable rate of degradation is appreciated although the implantation 

site and size of the animal were different. Mechanical properties were outside the 

scope of this paper but they would have added complementary information to the 

degradation characteristics of the modified scaffolds. 

Tissue response also plays a role in in vivo degradation. The nDP modified 

scaffolds exerted an upregulated inflammatory response at the mRNA level (Section 

4.3.1) relative to the CL scaffolds, suggesting the presence of the early stage ROS, 

which has been reported to degrade polymers. The ROS induce migration of 

inflammatory cells that can oxidise polymer chains (199). Previous studies reported 

that relatively delayed degradation of a biomaterial enhances enhances 

biocompatibility, reducing the inflammatory cells infiltration (150). However, this was 

not the case in Paper II, where it is more likely the result of nDP and BMP-2 

additions.  

 

4.3 HOST RESPONSE  

4.3.1 Inflammatory response  
Bone regeneration after scaffold implantation starts with an inflammatory reaction that 

initiates the healing process, but chronic persisting inflammation or lack of 

initial/acute inflammation affects the process of regeneration (223). Thus, when 

evaluating host response it is important to discriminate between the short-lived 

inflammation that is a normal component of the healing response and a long-term, 

persistent chronic inflammation that may indicate an adverse response such as 

tumorigenesis. A shortcoming of Paper II design was the absence of a sham surgical 

control. Another study comparing the immune response towards different scaffold 

carriers concluded that the implantation of scaffolds itself caused tissue injury that 

intensified immune response (224). Thus it might be either important to deliver the 
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tissue-engineered construct as non-invasively as possible or to include a sham control 

in order to avoid overlooking any immunological responses to implantation itself. 

However, in Paper II the initial inflammatory response between the scaffolds groups 

differed, which is more likely to be related to the modifications than to the surgical 

injury.  

In Paper II, proinflammatory markers at the mRNA level displayed a gradual 

decrease with time from week 1 to week 8 in all groups, with the highest week 1 

expressions being from the nDP scaffolds followed by nDP-PHY scaffolds. The 

mRNA level of tissue healing markers showed almost the reverse pattern, with the up-

regulation at week 8. Here too, the greatest expression was from nDP and nDP-PHY 

scaffolds. The early upregulated proinflammatory expressions from nDP scaffolds can 

be attributed to nano-scale particles that have been shown to induce a low to 

intermediate amount of oxidative stress from the generation of ROS (225). This might 

induce proinflammatory responses, which here were initiation of a regeneration or 

healing phase. Previous reports showed similar patterns in vitro where adherent 

monocytes on hydrophilic polymers expressed higher amounts of proinflammatory 

cytokines such as IL-1β and IL-6 than cells from corresponding hydrophobic polymers 

detected at protein level up to 10 days (226, 227). It has been shown that there were 

fewer cells and minimal FBGC formation on the hydrophilic/neutral surface but these 

adherent cells demonstrated greater levels of activation and produced significantly 

greater amounts of cytokines/chemokines tested than the other surfaces (226). This is 

in agreement with the upregulated proinflammatory mRNA expressions, such as 

TNFα, IL-1β, Chemokine C-C motif ligand 5 (CCL5), CCL12 and IL6 seen here at 

week 1 from the implanted nDP scaffolds followed by nDP-PHY scaffolds, which 

have been previously shown to be hydrophilic, again supporting the idea that material 

surface chemistry is a factor in modulating the phenotypic expression of FBR cells. 

Histologically, the presence of inflammatory cells and FBGC was more prominent 

in the CL scaffold group than in the nDP and nDP-PHY scaffolds, except that at 8 

weeks more lymphocytes were present in nDP-PHY scaffolds (Paper II). Hydrophilic 

surfaces have also been reported to show reduced adhesion of monocytes and 
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macrophages and a reduced amount of macrophage fusion into FBGC (226, 228), 

which may explain the reduced number of inflammatory cells or FBGC on nDP 

modified scaffolds. It was reported that hydrophilic surfaces promote the apoptosis of 

biomaterial adherent FBGC and the authors proposed that inducing apoptosis in the 

adherent FBGC would reduce the negative effects and improve tissue remodelling 

(229).  

The reason for the persistent presence of FBGC around a scaffold or a degradable 

implant in general has been an area of controversy. It has been considered as an 

indication of foreign bodies with lack of biocompatibility and inflammation or a sign 

of degradation leading to regeneration. Another postulation is the faster degradation of 

the modified scaffolds and hence less number of FBGC required or observed at the 

certain time point (140, 147). Also, hydrophilic titanium surfaces decreased 

macrophage immune response and reduced FBGC formation by promoting the 

polarisation of macrophages towards a pro-healing phenotype via (Nuclear factor) NF-

kappaB signalling (230). A recent study showed that it is not only chemistry by itself, 

but selective adsorption of proteins by different surfaces and ligand orientation could 

account for observed differences in FBR and have a potential to modulate immune 

response and macrophage polarisation from pro to anti-inflammatory (227, 231).  

Moreover, fibrous capsule formation as a result of extended inflammation may 

impair the capacity of the scaffolds to degrade in the intended manner or to promote 

tissue regeneration. The reduction in the fibrous capsule thickness and the chronic 

inflammatory cells’ infiltrate after 8 weeks in nDP and nDP-PHY scaffolds suggests 

the good compatibility of these scaffolds. Previous reports demonstrated the 

attenuation of inflammation by the slow release of BMP-2 from polymeric scaffolds 

(151). The efficacy of the BMP-2-functionalised scaffolds in reducing the fibrous 

capsule and the FBR has also been attributed to the initiation of the formation of 

ectopic bone in this group (147); therefore, homing of endogenous MSC (64) may also 

be a involved, since MSC have been shown to demonstrate immunomodulatory and 

immunosuppressive effects (232). The nDP and nDP-PHY scaffolds showed superior 

osteogenic potential as described earlier and higher proinflammatory markers (TNF-α 
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and IL-6) at week 1, although the inflammatory cellular infiltrate was less in these 

groups than in CL. The cytokines TNF-α, IL-6 and stromal cell-derived factor 1 have 

been associated with migration of MSC in vivo (233) and mice deficient in IL6 have 

shown compromised bone regeneration (234). While TNFα is generally considered to 

be a proinflammatory cytokine, it also has confirmed important roles in bone by 

promoting vascularisation and recruitment of osteogenic cells; however, persistent 

upregulation of TNFα negatively affects the bone (235, 236). Exaggerated 

inflammatory environments decreased induced bone mass in vivo after implanting a 

scaffold carrying BMP-2, by suppressing BMP-2-induced osteoblastic differentiation 

and by increasing the number or activity of osteoclasts (237). This highlights the 

concept that immune cells and inflammatory cytokines play an important role in the 

bone healing process and are required from its initiation, but over a prolonged period 

can have adverse effects.  

The relatively avascular fibrous capsule that encapsulates foreign bodies limits its 

interaction with the host tissue and the subcutaneous area is relatively lacking in 

circulation (238), which is a challenge for tissue regeneration after scaffold 

implantation. Angiogenesis is perceived as being able to reduce fibrous capsule 

formation (239). Levels of angiogenic markers’ mRNA (ANGPT1 and FGF2) were 

significantly upregulated in nDP and nDP -PHY scaffolds at week 1 compared to CL. 

Previous reports have shown the hydrophilic surface in O-NCD titanium implants to 

enhance vascularisation when implanted subcutaneously in rats, in addition to 

decreasing the inflammatory response (211). This may explain the reduction in the 

fibrous capsule thickness in these groups at 27 weeks.  

As time progressed, the level of proinflammatory cytokines reduced, and higher 

levels of healing/regenerating marker (IL-4) showed higher trends in nDP scaffolds at 

1 week and were significantly higher in nDP-PHY scaffolds at 8 weeks. These levels 

may play a role in macrophage fusion, suppression of inflammatory responses during 

the FBR and leading to a healing phase (240). In a study of ectopic bone induction by 

demineralised xenogenic bone matrix, the expression of angiogenic markers were 

affected by deficiency of IL-4 and IL-13 (241). The observed increase in expression of 
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IL-4 in nDP and nDP-PHY scaffolds is in agreement with the enhanced angiogenic 

markers and resolved FBR. It has also been reported that IL-4 and IL-13 positively 

influence the migration of osteoblastic cells (242). The role of BMP-2 as a 

chemoattractant and angiogenic factor, recruiting endothelial cells has also been 

displayed in studies in vitro (243). This highlights the interdependence of 

inflammation, angiogenesis, and tissue regeneration, and the necessity of 

immunomodulation to prevent impaired regeneration. 

To conclude, this demonstrates the osteoconductivity and osteoinductivity of nDP 

and nDP -PHY scaffolds respectively in Paper II. nDP and nDP-PHY modification of 

scaffolds offer the prospect of modulating cellular activation and cytokine profiles that 

may provide a means to control or manipulate inflammation, the foreign body reaction, 

and ultimately biocompatibility and regeneration.  

 

4.3.2  Persistence of nanodiamond particles at the implantation site  
The presence of nanodiamond particles in the implantation site of the scaffolds at 

week 27 indicated that the particles stayed in the tissue even after almost 90% of the 

scaffold has degraded without eliciting side effects (Paper II). It can be postulated that 

the acidic environment created from the by-products of the polymer scaffold 

degradation led to the agglomeration of the particles, which immobilised them and 

thus were not able to distribute in cells or elicit nano-scale side effects (244). One must 

therefore be careful when considering this copolymer/nDP scaffold construct 

degradable. Thus, this motivated our following evaluations of long-term 

tumorigenicity (Paper IV). nDP is a factor determining the host tissue response 

towards the functionalised scaffold. The host response to nDP as a construct with a 

polymer scaffold/carrier in vivo has limited reports in the literature. Investigations on 

the cytotoxicity and genotoxicity of nDP in suspension have been commonly carried 

out by exposing cells to the particles in suspensions or by growing the cells on 

nanodiamond coated substrates/scaffolds (53). Results were controversial, most studies 

concluded that they do not alter cellular proliferation and that they have no obvious 
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cytotoxic effects (245), but others revealed size and concentration dependence on 

macrophages (246).  

In vivo assessments, more relevant to our current study, injected nDP into the 

peritoneum, and into the tail vein to study their biocompatibility, distribution and fate. 

Most of them reported absence to minimal inflammatory responses with slightly 

elevated blood indices in rabbits after intravenous administration (247). Previous 

reports reported them to accumulate mostly in the liver, followed to a lesser extent by 

the lungs and some traces detected around other organs such as the brain, bone, 

muscle, stomach and intestines after intravenous administration in mice (248). The 

observation of nDP remaining in the implantation site after 27 weeks was 

accompanied with no macroscopic adverse effects in Paper II. However, harvesting 

organs to monitor distribution, if any, may have added information. Preliminary 

unpublished data from our laboratory have shown the highest tolerated dose of nDP (3 

times higher than what is added in a scaffold) suspended in glucose and injected 

intravenously in rats did not affect the haematological profile. 

 

4.3.3  Tumorigenicity  
The scaffold construct and its degradation products should not have any potential 

adverse systemic effects including carcinogenicity. Since the nDP and nDP-PHY 

scaffolds elicited inflammatory responses that initiated bone formation or foreign body 

reactions and the nanodiamond particles do not degrade, it was necessary to carry out 

long-term biocompatibility evaluations, such as the tumorigenic potential. 

4.3.3.1 Developing an non-invasive carcinogenicity testing model in vivo 

The selection and relevance of DOK as a ‘screening sensor’ in this developed model 

has been discussed in Section 3.3.1.3.1. To achieve real-time BLI and facilitate non-

invasive visualisation after xenotransplantation, DOK cells were transduced with the 

luciferase gene, successfully generating a new cell line, DOKLuc (Paper III).  DOKLuc 

retained comparable morphology, growth in vitro, and in vivo behaviour after 

inoculation in mice compared to DOKWT. Introducing viral vectors into primary cells 

or cell lines carries many risks, including the risk of causing phenotypic variations 
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(249). After transduction, DOK demonstrated bioluminescent stability together with 

preservation of the phenotype, proving thus to be a valuable tool for screening 

tumorigenesis and ruled out the possibility that transduction can be the cause of 

tumour formation in Papers III and IV.  

Manual measurement of the size of tumours formed by both DOKLuc and DOKWT 

showed that when injected in the tongue of NSG mice at high density, bigger tumours 

resulted than when low density was used at all time points (6 weeks). The tumour area 

measured from the histological sections after 6 weeks was also bigger when high 

density inoculation was used. The growth of DOK in vitro depends on seeding density; 

in an orthotopic site (tongue) this phenomenon would be expected due to the 

favourable surrounding environment (250). Similar in vivo growth curves were 

observed in the tongue between DOKLuc and DOKWT with low density inoculations.  

However, in the skin, an ectopic site for the DOK, tumours were only formed by the 

high density inoculation, possibly due to the injection technique or the site.  

In addition to the manual measurement by digital calliper for 6 weeks, tumour 

volumes formed by skin and tongue inoculations were also measured weekly by BLI 

for the DOKLuc group only. The BLI signals were always significantly higher (p < 

0.01) for the inoculations of DOKLuc at higher density at both tongue and skin, in line 

with the tumour growth curve as assessed by manual measurements. BLI proved 

sensitivity and validity during detection of tumours formed by DOKLuc inoculations, 

where 50% of the total number of tumours formed in the tongue by DOKLuc was 

detected by BLI much earlier than manual detection, even by the first week. Therefore, 

the detection of tumours was consistent between manual and BLI measurements, but 

BLI detection of tumours was more sensitive than manual measurement. In the skin 

more than 85% of the tumours were visible by BLI from the first week.  

BLI is performed in darkness with no interference from background light or 

autofluorescence, which makes it possible to detect small tumours. A study comparing 

the sensitivity of BLI with another non-invasive optical imaging modality, 

fluorescence, suggested that BLI was more sensitive due to the lower background 
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(251). One of the tumours detected by BLI in Paper III, which was from a low density 

inoculation, was not detected by manual detection but was confirmed histologically. A 

stronger significant correlation (r = 0.846, p < 0.001) was found between the tumour 

area from histological sections and BLI signals at the last time point than between the 

tumour area from histological sections and the manual measurement (r = 0.739, p < 

0.001). Previous reports developing a model for a brain tumour also showed 

correlation and validation of BLI with MRI, a more established method for that 

tumour, and their results also corresponded with histology (252).  

Important for this screening model using DOK, was the inclusion of a positive 

control as a reference or guideline. The duration of the screening and the end point 

were set based on this positive control. Previous work has shown the significant role of 

microenvironmental cues, specifically CAF, in tumour progression (182, 253). In line 

with these findings, our data showed that co-inoculating DOKWT with 1×105 CAF in 

the tongues of NSG mice significantly increased tumour incidence by 40.48% and the 

tumours showed typical OSCC histology with invasive epithelial islands growing in 

the host stroma and keratin pearl formation. The only considered tumour formed here 

by the DOKWT, detected only manually, was found histologically to be surviving 

DOKWT cells within remnants of undissolved matrigel underscoring the drawbacks of 

manual measurements that include subjective evaluations. The sensitivity of the BLI 

was again confirmed when DOKLuc was co-inoculated with two different types of CAF 

and their effect on tumour formation compared. BLI seemed to be more sensitive than 

manual measurement in detecting differences in the tumour growth of xenografts, 

although not statistically significant.  

4.3.3.2 Using the newly established model to test tumorigenicity of scaffolds  

DOKLuc were cultured on unmodified poly(LLA-co-CL) scaffolds at three different 

densities with or without CAF and implanted subcutaneously in NSG mice. BLI 

showed significantly higher intensity from scaffolds xenotransplanted with DOKLuc + 

CAF compared to DOKLuc alone at all densities throughout the 12 weeks of in vivo 

imaging (1×106: p < 0.001, 1×105: p < 0.001, 1×103: p = 0.017). A challenge for using 

BLI method would be monitoring of bigger tumours. We monitored a drop in intensity 
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for a tumour developed from the highest seeding density of DOKLuc + CAF xenografts. 

This tumour was found to be cystic, thus we considered this drop to be an 

underestimation of the real BLI signal from the DOKLuc cells. The formation of 

bioluminescence requires the coenzyme adenosine triphosphate and therefore only 

metabolically active cells can produce it. Cystic content can occur in large tumours, 

reducing the overall signal due to decreased proliferation or hypoxia (252). 

Oxyhemoglobin and deoxyhemoglobin in the bloody content of the tumour might also 

absorb light output in the visible spectrum, reducing the signal output.  

In a study of orthotopic bladder xenografts correlating BLI with MRI results of tumour 

volume to determine the role of hypoxia and necrosis, they found the correlation to be 

variable and reduced in xenografts that got too large for their vascularisation (254). 

Another study found that changes in hypoxic conditions affected the reported BLI by 

affecting tumour cell growth (255). Thus it may be challenging to use the BLI method 

for monitoring bigger tumours. To circumvent these limitations and monitor tumour 

formation for longer period of times, a relatively smaller number of DOKLuc (1×104) 

cells were used to test functionalised scaffolds (Paper IV). Several studies 

investigated the sensitivity of BLI in different tumour models using different 

inoculation sites, i.e. subcutaneously, intravenously, intraperitoneally, intramuscularly, 

intracranially, or via bone marrow (256, 257) and concluded that sensitivity is highest 

when the tumours are solid masses closer to the surface of the animal. These studies 

support our choice of implanting the scaffolds subcutaneously for testing.  

The histology of the xenografts of DOKLuc+CAF scaffolds (Paper III) showed 

squamous epithelial tumour nests (confirmed by p53 positive staining) with many of 

the islands retaining differentiation and containing keratin pearls, growing within and 

outside the scaffold area, invading the surrounding connective tissue and musculature 

as small groups or cords of infiltrating cells of greater than 15 cells in number. 

Staining for human specific vimentin showed few human CAF were still found in the 

tumours formed by the xenotransplants after 12 weeks of growth in mice. When this in 

vivo model was applied to study the tumorigenic potential of nDP scaffolds and nDP-

PHY scaffolds (Paper IV), the positive control of DOKLuc+CAF showed the same 

histological features, displaying the characteristic hallmarks of OSCC. However, the 
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number of invading tumours in positive control xenografts formed by nDP-PHY 

scaffolds was higher (100%) when compared to the CL (50%) and nDP scaffolds (only 

30%). The increased invasion in nDP-PHY scaffolds is in line with the increasing 

evidence for the role played by BMPs in the promotion of tumours derived from 

epithelium. A study evaluating the expression of BMP-2/4 and their receptor and their 

implications for the prognosis of OSCC from patient specimens found strong 

expression of these proteins in both metastatic and non-metastatic cases, suggesting 

disturbances in the BMP-mediated signalling pathway during malignant developments 

(258).  

The pro-tumour activity of BMPs occurs in more advanced stages of neoplastic 

development and exhibits metastasis by inducing VEGF, thus inducing 

neovascularisation. Elevated expression of this cytokine in tumours may be associated 

with a poor prognosis (259). This is in agreement with results from Paper II, where 

mRNA expression of VEGFA from the nDP-PHY scaffolds was upregulated at both 1 

and 8 weeks compared to CL and nDP scaffolds. Although it is a different animal 

model, these results support the enhanced invasive potential observed in Paper IV.  

When considering the nDP scaffolds in Paper IV, BLI from the positive 

xenografts carrying DOKLuc+CAF in this scaffold group showed a decreasing trend 

from 8 weeks until it reached values comparable to the negative control, indicating a 

reduction in the size of the tumour in this scaffold group. This conclusion was 

supported by the histological examination of these tumours that showed least number 

of invasive tumours formed with nDP scaffolds compared to the higher number of 

invasive tumours from nDP-PHY and CL scaffolds. Hence tumours formed by 

xenografts carrying DOKLuc+CAF in nDP scaffolds had the least aggressive potential.  

A similar pattern of invasion was displayed when in vitro functional assays were 

used to assess the tumorigenic potential of the functionalised scaffolds were carried. 

Significant decrease in DOKLuc invasion was also observed in vitro in the 3D-OTs that 

were seeded with DOKLuc from nDP scaffolds compared to DOKLuc previously seeded 

on nDP-PHY scaffolds and to the positive control in 3D-OT (Paper IV). The role of 
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BMP-2 was further demonstrated in a migration assay where preliminary results 

showed that when DOKLuc were grown on nDP-PHY scaffolds they displayed an 

enhanced potential to migrate towards a high serum gradient and with an even higher 

migration capacity towards conditioned medium from CAF (Fig. 4.2). Invasive and 

migratory phenotypes are caused by a complex process where the cell loses epithelial 

morphology and gains a motile fibroblast-like mesenchymal phenotype. Of the 

epithelial markers that are lost during this process, the E-cadherin molecules are some 

of the most thoroughly investigated (260). Recent studies have reported that 

stimulation of human pancreatic cancer cells with BMP-2 induces epithelial-

mesenchymal transition (EMT) by reducing E-cadherin expression and MMP-2 

secretion, which contributes to increased invasiveness (261). These results are in line 

with E-cadherin staining results from 3D-OT, where DOKLuc previously grown in 

nDP-PHY scaffolds showed weaker expression accompanied with negative areas 

superficially in the epithelium. DOKLuc previously grown in nDP scaffolds had the 

strongest expression of E-cadherin in the epithelial compartment of the 3D-OT. There 

are reports that suggest stem-like properties generated by EMT are accompanied by an 

increase in expression of stemness markers, which would then increase in sphere-

forming ability in vitro (262). This was in agreement with our results where the 

extracted DOKLuc, after being cultured on nDP-PHY scaffolds, formed more spheres 

than cells from CL and nDP scaffolds. A recent study also showed that BMP-2-treated 

colon cancer cells formed spheres that displayed significantly elevated expression of 

stemness markers via STAT3 activation (263). Cells from nDP scaffolds formed 

significantly reduced number of spheres compared to cells cultured on the other type 

of scaffold. 
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Figure 4.2 Results of migration assays. DOKLuc cells after culture on different scaffolds for 1 week 

migrating against CAF conditioned medium and against a high serum gradient. 

 

4.3.3.3 nDP promoted DOKLuc differentiation and decreased their tumorigenic 

potential 

Although controversial, there are studies that show a clinical correlation between the 

degree of differentiation of a tumour and its clinical behaviour; generally, a poorly 

differentiated tumour is more aggressive than the more (well-) differentiated tumours 

(264).  In Paper IV, the epithelial differentiation marker involucrin was assessed in 

vitro in the 3D-OTs formed by DOKLuc previously grown on the different scaffolds. 

Cells from nDP-PHY scaffolds showed a significantly reduced expression of 

involucrin with low expression in the supra-basal layers and abnormal expression in 

the para-basal layers of the epithelium in the 3D-OT. This suggests an abnormal 

pattern of differentiation, similar to the positive controls for tumorigenesis of DOKLuc 

populated on CAF biomatrices. In the 3D-OT formed by DOKLuc extracted from nDP 

scaffolds, involucrin was significantly more strongly expressed in the supra-basal 

epithelial layers, as evidenced by higher staining score compared to the 3D-OT made 

by DOKLuc from nDP-PHY scaffolds and the positive control. This pattern of 

expression was the closest to that in normal human oral mucosa. Recent research 

efforts have attempted to exploit the reprogramming of cancer cells in order to drive 

them towards terminal differentiation with consequent loss of tumorigenicity (265). 
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The nDP scaffolds exhibited a favourable topography and charge for the cells as 

described previously, and may have played a role in enhancing the differentiation of 

DOKLuc, suppressing their tumorigenic ability as a result.  

Dedifferentiation is a process by which cells develop from a more differentiated to 

a less differentiated state. BMP-2 has been recently shown to engage in signalling to 

Smad2/3, causing progression from benign to metastatic disease, and showing that 

BMP-2 is a critical component of dedifferentiation and cancer progression (266). This 

may explain why some parts of the epithelium in 3D-OT made by DOKLuc from nDP-

PHY scaffolds were completely negative for involucrin. In vivo, all the different 

scaffolds carrying the negative control (DOKLuc alone) showed constant low photon 

intensities in BLI and histologically presented with proliferating DOKLuc accompanied 

with fibrous tissue and few differentiated keratin pearls confined to only the scaffold’s 

area (Papers III and IV). Although not statistically significant, the nDP modification 

also enhanced the differentiation pattern in vivo, with stronger involucrin staining in 

nDP and nDP-PHY scaffolds carrying DOKLuc alone than in CL scaffolds. 

Proliferation is a fundamental biological process because of the role it plays in 

tissue homeostasis, and it is highly perturbed in cancer, with cancer cells being able to 

survive beyond the life span of a normal cell and to proliferate abnormally (155). 

Dysregulations of homeostasis and the inverse association of differentiation with cell 

proliferation capacity appear to be associated with many different human tumours 

(155). Ki-67 expression in our re-constructed 3D-OTs showed the DOKLuc cells from 

the nDP and CL scaffolds had proliferation more confined to the basal layer, like the 

normal pattern of proliferating cells in oral epithelium. DOKLuc previously grown on 

nDP scaffolds had significantly reduced proliferation in the supra-basal layers, 

compared with cells from nDP-PHY scaffolds (p = 0.11) and the positive control (p = 

0.007). It is generally accepted that presence of cell proliferation in the supra-basal 

layers marks the switch from normal oral epithelium to dysplasia and malignancy. 

Previous authors have showed Ki-67 to be over expressed in the supra-basal 

epithelium in dysplastic lesions and correlated with the severity of dysplasia (267). 

Studies have revealed that the invasive tumour front of an OSCC is composed of 
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highly proliferative cells expressing Ki-67 and positively correlated with histological 

grading in malignancy (268). The increased expression of Ki-67 in the basal and 

supra-basal epithelial layers of 3D-OTs formed by DOKLuc from nDP-PHY scaffolds 

parallels the increased invasion seen in vitro and in vivo (Paper IV). These findings 

argue for the role played by BMP-2 in enhancing proliferative capacity and thus 

motility of DOKLuc, in line with studies which showed the effect of BMP-2 in 

enhancing aggressiveness of OSCC (94) and evidence from lung cancer after 

supressing BMP-2 activity significantly inhibited proliferation and migration of lung 

cancer cell lines (269).  

These results again highlight the role nanodiamonds might play in supressing an 

abnormal epithelial phenotype, thus pinpointing their potential for reducing the 

tumorigenic risk of scaffold materials. 

 

4.3.3.4 BMP-2 plays dual roles in modulating tumorigenesis and inflammation  

The action of BMPs during carcinogenesis is complex and involves both pro- 

(oncogenes) and anti-tumour (tumour suppressor) characteristics. This has been 

reported to be dependent on the stage of the disease and cell type. The physiological 

concentration of the BMP-2 has been also considered a factor affecting tumorigenesis 

(270). Several studies have investigated the biologic effects of BMPs on cancer cells 

(271). BMP-2 has been shown to stimulate cancer cells such as lung, breast and 

prostate (272, 273). Other reports suggest that BMP-2 may have inhibitory effects on 

tumours of gastrointestinal origin, for example, inhibits gastric and colorectal cancer 

cell growth (274, 275). However, the effects of BMPs on oral cancer cells in vitro or in 

vivo are poorly understood. It has been reported that OSCC frequently expresses BMP- 

2/4, BMP-5, and BMPR-IA protein (276) and others reported lack of biological 

adverse effects on OSCC as far as proliferation and angiogenesis are concerned (277). 

The use of BMP-2 for bone regeneration in the oral cavity is contraindicated for oral 

cancer patients because the effects of stimulating the BMP signalling pathway on these 

cancer cells are contradictory.  
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Prolonged inflammatory response has been reported to be associated with several 

chronic inflammatory diseases, such as gingivitis and lichen planus as well as playing 

roles in modulating cancer (278). Studies of the role played by BMP-2 in inflammation 

have produced conflicting results, which appear to be related to the dose administered 

(218, 237). Our results showed an attenuated inflammatory reaction at cellular level 

from nDP-PHY scaffolds compared to CL and nDP scaffolds, and this was attributed 

to the controlled delivery of low amounts of BMP-2. Nevertheless, cells from nDP-

PHY scaffolds showed the most aggressive tumorigenic activities in vitro, and the in 

vivo invasiveness was also most pronounced in nDP-PHY scaffolds. As the difference 

in invasiveness was seen in the positive control only, the contribution of CAF and its 

secretome and the synergy between their secreting molecules and BMP-2 also have to 

be taken into consideration when evaluating these results.  

Nevertheless, this points out the suppressive effect of nDP scaffolds on malignant 

progression of early neoplastic cells. While this malignant progression may have been 

due to the presence of early neoplastic cells, the model used is representative of the 

postsurgical situation in oral cancer patients where the tumour has been removed but 

the oral mucosa may contain spots of transformed, premalignant oral cells due to the 

field cancerisation phenomenon, well described for OSCC (279). This again points out 

the necessity of delivering BMP-2 in a controlled manner to avoid adverse effects. It 

also suggests that detection of premalignant signs is important prior to BMP-2 

treatment and that clinicians should recognise the possible patient-dependant dangers 

of BMP-2, as smokers and patients with previous OSCC have patches of cells 

molecularly altered (p53 mutations) that are not detectable clinically or even by 

routine histology (280). 
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4.3.3.5 The carcinogenicity BLI model: an alternative to the 2-year rodent model?  

Regulatory experts advise that a biomaterial that will be implanted for more than 30 

days to be screened for carcinogenicity using the two-year ‘life time’ carcinogenicity 

assays in rodents (172, 174). This has been considered difficult for several reasons, 

and questions have been raised regarding the extrapolation of results to humans. This 

long period of testing has been justified with the likelihood of a latent period before 

tumour formation, which may be measured in years (159). Furthermore, the rasH2 

transgenic mouse has often been used to shorten the duration of screening to 6 months 

(175). The nDP used to modify our scaffolds renders them topographically and 

physically altered and warrant screening in a relevant model. It was reported that 

contact by pre-neoplastic cells with an implanted biomaterial surface may promote 

carcinogenesis in animals (281), rather than the biomaterial initiating tumorigenesis. 

Several studies support the concept that carcinogenesis, including head and neck 

cancer, is a multistep involving a premalignant phase of long-term accumulated 

chromosomal alterations (181). We therefore chose to use early neoplastic cells such 

as DOK as a tool to evaluate the tumour promoting potential of scaffolds, providing a 

faster alternative to the long ‘life-time’ models.  

The functionalised bioactive scaffolds showed success in a critical defect in the 

mandible area (Paper I); hence they can be developed for use in the oral maxillofacial 

area. Experimental data and clinical experience suggest that BMP-2 can be used to 

regenerate bone in segmental defects of the mandible (88). However, the most 

common reason for bone regeneration in the maxillofacial region is resection due to 

OSCC, and the biological effects of BMP-2 on these carcinoma cells are unknown. 

The use of human cells also brings to our model a substantial benefit with respect to 

clinical safety in humans.  

Non-invasive in vivo monitoring for only 12-14 weeks using BLI gives robust 

evaluation in a shorter period than the aforementioned established carcinogenicity 

testing systems. While ISO 10993-3 standards require the inclusion of a positive 

control of comparable form and shape when screening an implantable biomaterial 

(166), the use of these controls is not necessary since the inclusion of a positive 
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environment with the use of CAF has been developed. In addition, this model is also 

highly practical because it provides quantitative analysis and is the only approach that 

can image cancer burden from the moment the cancer cells are administered to the 

animals. The processing time is reduced due to the ability of screening several animals 

simultaneously. BLI is also starting to expand in regenerative medicine and might 

become a powerful tool to gain more insights into the development of cell-engineered 

constructs (282). 
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5. CONCLUDING REMARKS 

The main conclusions based on the findings of the studies in this thesis are: 

 

1. The amounts of BMP-2 released from nDP-PHY scaffolds were found to be far 

less than MIC and PHY scaffolds and its release continued up to 70 days in 

vitro. Therefore, compared to BMP-2 adsorbed onto a polymer, nanodiamond 

particles provided a platform for strongly physisorbing BMP-2 with sustained 

release in low amounts, holding great potential promise for bone tissue 

engineering. 

 

2. A low dose of 1 μg of BMP- 2 was found to be bioactive for bone regeneration 

in a rodent model. 

 

3. PHY, MICS and nDP-PHY scaffolds showed accelerated bone regeneration in a 

rat mandible critical-sized defect after 4 weeks; both nDP-PHY and MICS 

scaffolds showed osteogenic potential both in vitro in MSC culture and in vivo. 

nDP-COV showed reduced osteogenic potential in vitro and in vivo. The mode 

of binding BMP-2 to poly(LLA-co-CL) scaffolds was thus shown to have a 

significant effect on their osteogenic potential in vitro and in vivo. 

 

4. nDP and nDP-PHY scaffolds showed enhanced osteoconductive and 

osteoinductive potential respectively, in a mouse ectopic model.   

 

5. nDP functionalisation of poly(LLA-co-CL) not only promoted osteogenicity but 

also reduced foreign-body reactions, confirming that this new modality of nDP-

PHY attenuates inflammation while lowering the pharmacological dose of 

BMP-2, promoting its clinical application.  
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6. nDP and nDP-PHY scaffolds exhibited faster degradation than unmodified CL 

scaffolds. Nanodiamond particles were found in the implantation site after 27 

weeks when 90% of the scaffolds degraded.   

 

7. A sensitive and reliable in vivo model was established using DOKLuc and CAF 

for monitoring microenvironmentally-induced carcinogenesis providing early, 

non-invasive surveillance of tumour development associated with implantation 

of scaffolds. The model was successfully applied to evaluating functionalised 

copolymer scaffolds. 

 

8. In an in vitro 3D-OT, DOKLuc cells demonstrated a reduced tumorigenic 

potential after being cultured on nDP modified scaffolds, as shown by 

proliferation, invasiveness and differentiation compared to DOKLuc from nDP-

PHY and CL scaffolds.  

 

9. The nDP modified scaffolds reduced the bioluminescence intensity from 

positive control xenograft scaffolds of DOKLuc+CAF, suggesting tumour 

suppressing effects. 

 

10. The nDP-PHY scaffolds showed enhanced tumorigenic potential in vitro in the 

3D-OT and in vivo in the positive control xenografts, but not the negative 

control xenografts with DOKLuc alone. This raises concerns for the delivery of 

BMP-2 in reconstruction of bone defects in oral cancer patients. 
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6. FUTURE PERSPECTIVES 

The future of growth factors’ use in bone tissue engineering applications seems 

promising. Most studies and clinical trials to date have focused on single growth factor 

delivery (rhBMP-2 or rhBMP-7). However, an ideal growth factor-delivery system 

should mimic the natural healing process, which involves the complex participation of 

multiple growth factors that perform their functions in a specific sequence and at 

specific concentrations. The findings from nDP-PHY and MICS mode of delivery here 

may serve as a basis for future investigations. They can be combined together in one 

scaffold system and assessed for sequential release of the growth factors to imitate the 

natural healing process. Studies with longer time points will allow evaluation of the 

sustainability of bioactivity of the delivered growth factors in vivo, and to evaluate the 

quality of the bone formed. Further improvement of fabrication technologies and 

introduction of computer aided 3D scaffold fabrication techniques may allow 

production of patient-specific, custom-made treatment options. In this way, it may be 

possible to regenerate more complex bone defects and osteochondral tissues in larger 

animals. 

With regard to the tumorigenicity results in Paper IV, study of the MAPK/ERK 

pathway and the EGFR pathways may help elucidate the underlying molecular 

mechanisms behind reduction of tumorigenic potential by the nanodiamond particles. 

In addition, it would be of interest to apply our established model to different cell lines 

of different origins to see if the nanodiamond modification has the same effect on 

other tumour types.  

Application of the nDP-PHY scaffolds offers intriguing possibilities as a drug 

delivery system. This would be of relevance for example, in the case of oral cancer 

after resection of a cancerous lesion, where there is a need for a system that can 

support the generation of new bone as well as delivering localised chemotherapy. In 

vivo established rodent OSCC cancer models can be used to test this, with additional 

bone defects created. 
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Another interesting area of investigation would be evaluating the phenotypic 

dichotomy of macrophages. Macrophages are known to play switching roles in 

inflammation and cancer. Further investigations of the switching phenomenon between 

M1 and M2 in our harvested samples will be of great value to elucidate the role played 

by scaffolds modified with nanoparticles with or without BMP-2 in inflammation and 

carcinogenesis. 
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A low dose of 1 μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed
poly(L-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified
scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently
linked onto nDPs that were used tomodify the scaffolds [nDP-COV] or (iv) encapsulated inmicrospheres distrib-
uted on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted
mass spectrometry for up to 70 days. PHY scaffolds had an initial burst of release while MICS showed a gradual
and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release,
although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro
showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-
PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed
by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed
collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization.
After 4 weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson
trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results
demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not
seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous
low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used
here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed
onto a polymer alone and the short distance effect prevents adverse systemic side effects.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Reconstruction of critical-sized bone defects continues to be a chal-
lenge. The limitations of current treatment methods [1] highlight

the importance of introducing a potent bone substitute or a scaffold
that can induce bone healing by unlocking the body's own powers of
self-repair; not only should the substrate be osteo-inductive, it must
also act as a delivery system for the regenerative cues necessary [2].
The osteo-inductive capacity of the FDA approved recombinant
human bone morphogenetic protein (rhBMP-2) in bone and car-
tilage formation has been confirmed in preclinical models [3]
and evaluated in clinical trials [4]. It has usually been delivered in
bolus injections with supra-physiological doses to attain a therapeu-
tic effect, leading to severe side effects ranging from heterotopic
bone to oedema or high morbidity in cases of spinal fusion [5]. The
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high doses of rhBMP-2 chosen were used to compensate for short
half-life in vivo (1–4 h) [6,7].

Many studies have pursued thedesign of different carriers delivering
BMP-2 including implant coatings or organic and inorganic matrices
[8–10]. Control over its bioactivity and spatial–temporal presence is es-
sential for a beneficial effect but has been difficult to achieve [1]. To im-
prove the unsatisfactory outcomes resulting from bolus delivery of
BMP-2, attempts have been made to develop biomaterial carriers that
maintain a sufficient concentration at the application site to stimulate
the normal physiological mechanism required for bone regeneration
[11]. Adsorption to collagen sponges and soaking of collagen sponges
and hydrogels in BMP-2 are the most commonly used potential carrier
approaches due to their high binding capacities and successful induc-
tion of trabecular bone volume in critical defects of the canine has
been reported [12]. Recent reports using FDA approved polymers,
such as poly(lactide-co-glycolide) (PLGA) and polycaprolactone (PCL)
have looked at functionalising with BMP-2 [13] due to the affinity of
rhBMP-2 for molecules such as heparin or RGD peptides [14]. Covalent
immobilisation of BMP-2 to biomaterialsmodifiedwith heparin, plasma
treatment, UV light or disulphide bonds [15,16] has also been examined
in attempts to improve the stability and increase retention in regenera-
tion sites by reducing the release of BMP-2 and sustaining its activity.

The introduction of micro- and nano-structured materials has been
shown to increase the surface area of scaffolds, allowing for numerous
non-covalent interactions between the scaffold surface and protein
[17]. Protein encapsulation within microspheres is a potent tool to
protect its biological activity and enable sustained release over longer
periods [18]. PLGA has generated great interest as a copolymer for mi-
crosphere fabrication due to its biocompatibility as well as the ability
to tailor its in vivo lifetime [11]. This can be achieved by varying the
polymermolecular weight, composition,microsphere size and distribu-
tion. Several studies have shown that the rate of release depends on the
microsphere size, therefore by mixing particles with different sizes one
can obtain a degree of control over release [19]. This control of the re-
lease profile of growth factors results in optimised concentrations for
growth, making it suitable for experimental designs lasting for a long
term.

Surface coatings with diamonds at the nano-level gained signifi-
cance in the medical field after it was shown to demonstrate chemical
stability, and to enhance mechanical properties and biocompatibility
[20]. In recent years, research has focused on nano-topographic surface
modifications aiming to allow for numerous non-covalent interactions
between the surface and protein, resulting in adsorbed protein layers
which in turn increase cellular adhesion and durability of biomedical
implants [21,22], improving various biological applications including
delivery of growth factors [23,24]. Previouswork showed enhanced cel-
lular response through coating with nanocrystalline diamond (NCD)
films [25]. NCDmodified titaniumdental implant surfaceswith terminal
oxygen groups that interacted strongly with rhBMP-2 allowing the
physisorption of BMP-2. This was demonstrated by greatly enhanced
osseointegration [26]. Nanodiamond particles (nDPs) provided en-
hanced surface properties enhancing bone formation [27,28], encourag-
ing further studies of binding growth factors onto nDP to evaluate their
bioactivity.

Long-term delivery of BMP-2 in mini pig models proved enhance-
ment of in vivo osteogenic efficacy of the protein compared to short-
term delivery [29], while burst release has shown significance in an ec-
topic bone-forming model using transplanted hydrogels [30] rather
than in long-term osteogenic activity. It is, however, difficult to compare
these approaches due to the variety in animal models, doses and deliv-
ery vehicles used, although collectively, they have resulted in under-
standing how to design an optimum delivery system. Therefore, since
the release of BMP-2 and its effect on the tissues depend on the carrier,
method of immobilisation and subsequentmode of delivery, the release
kinetics and osteoinductive capacity of different loading approaches
need further evaluation.

Degradable poly(L-lactide-co-ε-caprolactone) [Poly(LLA-co-CL)], an
aliphatic polyester, copolymer of L-lactide and ε-caprolactone has
been extensively studied as a scaffold for bone regeneration [31,32]
proving its biocompatibility and osteoconductivity. Mechanical and sur-
face properties can bemodified [33] to enhance the regenerative poten-
tial, and functionalisation of these scaffoldswith nDP to improve cellular
response and subsequent bone formation has been reported [28].

In an effort to further improve these scaffolds, the aim of the current
study was to study the effect of rhBMP-2 in low amount (1 μg) im-
mobilised on poly (LLA-co-CL) scaffolds utilising four differentmethods.
The release kinetics of rhBMP-2 from the different methods was first
quantified in vitro and bioactivity evaluated on human mesenchymal
stem cells (hMSCs) and then the osteogenic effect of these different
methods was further compared in vivo.

2. Materials and methods

2.1. Poly(LLA-co-CL) scaffold fabrication (CL scaffold)

Scaffolds were fabricated as previously described [31]. Scaffolds
were punched out in twodifferent dimensions for in vitro and in vivo ex-
periments (in vitro: 12 mm diameter and 1.3 mm thickness) and
(in vivo: 6 mm diameter and 2.5 mm thickness).

2.2. Scaffold functionalisation and BMP-2 immobilisation techniques

2.2.1. BMP-2 production
BMP-2 cDNA was prepared corresponding to residues 283–396 of

the mature protein plus an N-terminal MA extension. The BMP-2 pro-
tein was expressed in Escherichia coli (E. coli), isolated from inclusion
bodies, renatured and purified as previously described [34]. One micro-
gram of BMP-2 was used per scaffold for each type of functionalisation
for in vitro with hMSC and in vivo experiments.

2.2.2. Physisorbed BMP-2 (PHY scaffold)
BMP-2 was physisorbed onto unmodified poly(LLA-co-CL) scaffolds

as follows: scaffolds were placed on a sterilised hydrophobic surface
(MBarrier Film, Parafilm®) and 1 μg of BMP-2/50 μl phosphate buffered
saline (PBS) was dropped in two increments of 25 μl each onto the sur-
face of the scaffold. The first aliquot was allowed to adsorb under humid
shaking conditions for 30 min, after which the second aliquot was
added and left for 30 min before the scaffold was used for in vitro or
in vivo experiments.

2.2.3. Colloidal nDP production
Acid purified detonation diamond (Gansu Lingyun Corp. Lanzhou,

China) was subjected to attrition milling using a method previously
described [35] achieving a narrow size distribution at ~5 nm particle
diameter (measured by dynamic light scattering in water) and low
agglomeration of the diamond particles.

2.2.4. Scaffolds modified with nDP and physisorbed with BMP-2 (nDP-PHY
scaffold)

Scaffolds were modified with the nDP solution (2% (w/v), i.e.
20 mg/ml) by a vacuum technique: 0.5ml nDP solution and one scaffold
were put in a glass beaker and perfused in vacuum. The vacuum chamber
was evacuated down to the pressure where the nDP-water-solution
changes into the vapour phase and the nDP burst into the scaffold surface.
This cycle was repeated 10 times. After the modification, the nDP modi-
fied scaffolds were rinsed with distilled water and dried in vacuum for
8 h. Brunauer–Emmett–Teller (BET) method using Argon at 87 K accord-
ing to DIN ISO 9277was performed to quantify the amount of nDP on the
porous scaffold and the concentration of nDPwasdetermined to be14mg
in 1 g scaffold material. To physisorb the BMP-2, the modified scaffolds
were treated with aforementioned protocol for PHY.
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2.2.5. nDP functionalisation with BMP-2 (nDP-COV scaffold)
To functionalise nDP with benzoquinone, 189 mg of mechanically

de-agglomerated nDP was suspended in 20 ml of PBS (pH 8) and
150 mg of benzoquinone (1.38 mmol) was added (all from VWR Inter-
national, Radnor, PA, US). After stirring for 24 h at room temperature
(RT) the reaction mixture was centrifuged and the nDP was washed
with PBS (pH 7.4) and deionized water. Then nDP scaffolds were
functionalised with BMP-2 by suspending 20 mg of benzoquinone-
functionalised nDP in 15 ml of PBS buffer (pH 6). After adding
10 μg BMP-2 the reaction mixture was stirred for 24 h at RT. The
nDP was centrifuged and then the supernatant was checked for re-
sidual BMP-2 and then discarded. The precipitate was washed with
PBS (pH 7.4) and deionized water. The scaffolds were then modified
with the functionalised nDP according to the procedure described in
Section 2.2.4.

2.2.6. Microsphere preparation and scaffold modification (MICS scaffold)
BMP-2-loaded PLGA5050 (Purac Biochem, Gorinchem,Netherlands)

microspheres were fabricated using a previously described water-in-
oil-in-water double emulsion solvent extraction technique [11,36].
Briefly, 1 ml of a 50 μg/ml BMP-2 solution was emulsified in a solution
of 15% (w/v) PLGA5050 in 5 ml of dichloromethane using a probe
ultrasonicator (Branson sonifier cell disruptor 200, USA). The mixture
was then immediately re-emulsified for 60 s in 10 ml of a 1% w/v aque-
ous poly(vinyl alcohol) (PVA, 87–89 mol% hydrolysed, Mw = 13,000–
23,000) solution to create the double emulsion. The product was then
added to 100 ml of a 0.5% w/v aqueous PVA solution and 100 ml of a
2% w/v aqueous isopropanol solution and stirred for 2 h. The micro-
spheres were centrifuged, washed 5 times and vacuum dried into a
free flowing powder (Braun Biotech International SpeedVac Concentra-
tor SVC 10H Savant, USA). BMP-2 loadedmicrosphereswere incorporat-
ed into the porous poly(LLA-co-CL) scaffold using a seeding technique
described previously [37] with slight modifications. Depending on
the amount of BMP-2 for loading, dry microspheres were dispersed in
100 μl ethanol using an ultrasonic bath (VWR International). Fifty
microlitres of the microsphere suspension was placed onto both sides
of the scaffold and dried overnight under vacuum.

The loading efficiency of the microspheres was determined using a
solvent-extraction technique [38]. Approximately 20 mg of microparti-
cles was dissolved in 1 ml of dichloromethane for 6 h at 37 °C. The
entrapped rhBMP-2 was extracted from the organic phase to the aque-
ous phase by incubationwith 5ml of PBS for an additional 24h. The con-
centration of rhBMP-2was analysed by a commercially available human
BMP-2 enzyme-linked immunosorbent assay (ELISA) (RnD Systems,
Minneapolis, Minnesota, USA). The average loading efficiency was
0.04%. This optimizationmethodwasperformed three times. Accordingly
the amount of microspheres needed to contain exactly 1 μg of BMP-2
from loading efficiency is calculated, i.e 2.5 mg microparticles contains
1 μg, each optimisation added 2.5 mg to the scaffold.

2.3. In vitro BMP-2 release kinetics

Scaffolds were immersed in 1 ml of PBS in glass test tubes
(Duran®, Wertheim, Germany) and incubated in a shaking water
bath (Julabo®, SW22, Germany) at 37 °C. Half of the supernatant
was collected and replaced with fresh PBS at predetermined time
points up to 70 days.

2.4. Sample preparation for selected reaction monitoring (SRM) analysis

rhBMP-2 (residues 283–396) expressed in E. coli was purchased
(RELIATech GmbH, Wolfenbüttel, Germany). Four peptides derived
from the 26 kDa protein by trypsinisation were tested for SRM analysis.
Only one peptide NYQDMVVEGCGCR representative of BMP-2 revealed
good transitions and was therefore selected for relative quantification
of the protein. A stable isotope-labelled internal standard (SIS)

corresponding to that signature peptide was purchased in AQUA
QuantPro quality (Thermo Fisher Scientific, Waltham, MA, USA). The
C-terminal arginine for the SIS was labelled with 13C and 15N resulting
in amass difference of 10Da to the corresponding non-labelled peptide.
In addition, cysteine was carbamidomethylated and methionine was
oxidized. The chemically synthesised modified peptides were reported
to be stable by the manufacturer. The peptide was optimised by direct
infusion on a Q-Trap 5500 (AB SCIEX, MA, USA). Twenty five femtomole
of SIS peptide NYQDMVVEGCGCR was spiked into samples containing
unknown amounts of BMP-2 in low-binding tubes (LoBind, Eppendorf).
The mixture was lyophilised (Centrivap® Centrifugal, USA) prior to in-
solution protein digestion according to the protocol described previ-
ously (http://www.uib.no/file-archive/in-solution-proteindigestion.
pdf). Prior to liquid chromatography SRM-mass spectrometry (LC
SRM-MS) analysis, the mixtures of reduced and alkylated tryptic pep-
tides were desalted using reverse phase Oasis® HLBμElution Plate
30 μm (Waters, Milford, MA, USA) as described previously [39]. The
eluted peptides were dried in a speed vacuum drier and finally
suspended in 8 μl of 1% FA and 2% ACN. In order to oxidize all methio-
nine residues, H2O2 was added in a final concentration of 0.5%, and
the samples were incubated for 30 min at 30 °C. The experiment was
performed in triplicate. For each measurement, slightly different
SRM methods were used and improved progressively to measure the
release with addition of heavy peptide. The data shown in Fig. 1 were ob-
tainedwith themost optimised SRMmethod, considered themost robust
and representative of the conclusion derived from all measurements
performed.

2.5. SRM analysis

LC SRM-MS analysis was performed on a Q-Trap 5500 coupled to a
Dionex Ultimate system (Thermo Scientific, MA, USA) as previously de-
scribed [39]. The protein digest was dissolved in 2% ACN, 0.1% FA and
loaded into the instrument. For quantification of the signature peptide
from BMP-2, all y transitions with significant intensity were used and
a mean of the ratio values calculated to obtain ratio Light/Heavy (L/H).
The Q1 values for the light peptide were 802.319, that for the SIS
heavy labelled peptide 807.32. The collision energy used for SRM analy-
sis was 45.5 eV. The raw data files generated were processed using
Skyline (MacCoss Lab Software version 2.5).

Fig. 1. Release kinetics of BMP-2 measured by SRM. (Axis-A) Relative amount released
where 100% value corresponds to the highest value observed for the total amount of
BMP-2 measured at a specific time point. (Axis-B) Release over time of rhBMP-2 from
the different scaffolds expressed by the ratio (L/H) between endogenous light (L) and
heavy synthetic (H) peptide spiked-in our sample measured by SRM. The figure is a
representative of the data from themost optimised SRMmethod obtained from triplicate
measurements.
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2.6. Cell maintenance and seeding

Primary hMSCs (StemCell™ Technologies, Vancouver, BC,
Canada) were expanded in MSCGM™ complete medium (Lonza,
Basel, Switzerland) following the manufacturer's instructions. Flow
cytometry used to assess the cells' purity showed that N90% of
cells expressed CD29, CD44, CD105, and CD166 and that they lacked
expression of CD14, CD34, and CD45. Morphology of the hMSCs was
assessed by a light microscope (Nikon TS100, Tokyo, Japan). Cells
used in the experiments were from passages 3 to 6. The cells were
seeded onto the scaffolds at a density of 2 × 105 per scaffold
and allowed to distribute better by a plate shaker (MixMate®
Eppendorf, Hamburg, Germany) for 5 min before incubation at 37
°C and 5% CO2 [40]. Once the cells reached 80–90% confluence the
medium was replaced with osteogenic medium (MSCGM™ com-
plete medium plus 50 μg/ml ascorbic acid, 10−8 M dexamethasone,
and 3.5 mM β-glycerophosphate) and changed every fourth day. All
cultures were performed in triplicate and the experiments were re-
peated three times.

Human osteoblast-like cells (HOB) were used as a positive control
for the in vitro mineralization staining (Alizarin red S) (Section 2.10).
They were isolated from routine surgical samples from patients being
treated at the Section for Oral and Maxillofacial Surgery, Department
of Clinical Dentistry, University of Bergen and Haukeland University
Hospital. The procedure was approved by the Ethics Committee at the
University of Bergen. The protocol for isolation and expansion has
been previously described [41].

2.7. Scanning electron microscope (SEM) analysis

Attachment and spreading of hMSC on scaffolds at 1 and 3 days after
seeding were analysed by SEM (Jeol JSM 7400F, Tokyo, Japan), voltage
of 10 kV as previously described [40].

2.8. Genes expressed by cultured hMSC in vitro

Total RNA was isolated from in vitro cultures at week 1 and week
3 using a Tissue RNA isolation kit (Maxwell®, Promega, Madison,
WI, USA), and reverse transcribed according to the manufacturer's
instructions using the High capacity cDNA Reverse Transcription
Kit (Applied Biosystems®, Carlsbad, CA, USA). Real-time reverse
transcription-polymerase chain reaction (RT-PCR) was performed as
previously described [40]. Taqman® gene expression assays (Applied
Biosystems®) were used to detect mRNA levels of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), Antigen KI-67 (Ki-67), Runt-
related transcription factor 2 (Runx2), BMP-2 receptor 1A (BMPRIA),
BMP-2 receptor 2 (BMPRII), Alkaline phosphatase (ALP), Collagen type
1 alpha 2 (Col1α2), Bone morphogenetic protein-2 (BMP-2) and
Osteocalcin (OC). The data were analysed with a comparative CT

method and GAPDH served as endogenous control. Unmodified scaf-
fold (CL) at week 1 was the reference.

2.9. Enzyme-linked immunosorbent assay

The culture medium was collected at week 1 and week 3. Human
BMP-2 ELISA Development Kit (900-M255, Peprotech, Rocky Hill, NJ,
US) was used to measure extracellular and intracellular BMP-2 fol-
lowing the manufacturers' instructions. To measure the intracellular
production of BMP-2, the scaffolds with cells from both time points
were washed with PBS before incubation at 4 °C on a shaker for
20 min with 175 μl RIPA buffer (Thermo Scientific), 1× Halt™ Prote-
ase Inhibitor Cocktail and 1× Halt™ Phosphatase Inhibitor Cocktail
(Thermo Scientific). This was followed by sonication for 5 min and
then centrifugation for 20 min at 16,000 g at 4 °C. The extracted pro-
tein was collected and measured using a bicinchoninic acid assay

(BCA) (Pierce BCA Protein Assay Kit, Thermo Scientific) following
the manufacturer's instructions.

2.10. In vitro mineralization

The cell/scaffold constructs were harvested at week 1 of culture,
washed thrice in PBS and fixed for 10 min in 4% paraformaldehyde
(PFA) (Merck & Co, White House Station, NJ, USA). Alizarin red S stain-
ing was performed to determine matrix mineralization. Two percent of
alizarin red S powder (Sigma Aldrich) was dissolved in distilled water
and pHwas adjusted to 4.2with 0.5% ammoniumhydroxide. Constructs
were stained for 20 min and imaged with a Nikon TS100 microscope.
HOB cells cultured on CL scaffolds for 1 week were used as a positive
control.

2.11. Animal model of mandibular defects

Male Sprague–Dawley rats (300–350 g) were anaesthetised with
isoflurane (IsobaVet®; Schering-Plough, Kenilworth, NJ, USA) com-
bined with O2 using a custom-made platform and mask. A 1 cm in-
cision was made along the lower border of the mandible and after
retracting the muscles a round-shaped bone defect (5 mm diame-
ter) was created in the mandibular angle region. A trephine bur
(Komet Medical, Lemgo, Germany) was used. The defect was filled
with a scaffold (n = 8 for each experimental group). The muscles
were repositioned and the skin closed with resorbable sutures (Vicryl
Rapide 4-0; Ethicon, Somerville, NJ, USA). Animals were euthanised
with an overdose of CO2 after 2 and 4 weeks. Mandibles were dissected
and the samples were stored in RNAlater (Invitrogen, Carlsbad, CA,
USA) for RT-PCR, micro computed tomography (micro-CT) and histolog-
ical analyses.

2.12. Gene expressions in vivo

Total RNA was isolated from in vivo scaffolds at 2 weeks. Taqman®
gene expression assays (Applied Biosystems™, USA) were used to
detect mRNA levels of GAPDH, ALP, OC, Runx2, Col1α2, BMP-2, Bone
morphogenetic protein-4 (BMP-4), Tartrate-resistant acid phosphatase
(TRAP) and Cathepsin K (CTSK). The data were analysed with a com-
parative CT method and GAPDH served as endogenous control. CL
served as reference.

2.13. Micro-CT analysis

The amount of bone formationwithin the defectswas examined using
micro-CT (micro-CT 40, Scanco Medical AG, Bruettisellen, Switzerland)
with 19 μm isotropic voxel size and 70 kV, 43 μA tube current, 380ms ex-
posure time, and 1000 projections [42]. Three-dimensional isosurface
rendering and images were constructed with the software provided by
Scanco Medical and measurements included the ratio of new bone vol-
ume relative to the tissue volume (BV/TV).

2.14. Histological evaluation

Specimens for histological examinationwere processed as previous-
ly described [43]. Sectionswere then stainedwithMasson's trichome to
confirm the osteoid-like tissue and images were made with an inverted
microscope (Nikon Ti, Tokyo, Japan) using the software NIS-Elements
AR 4.10.

2.15. Statistical analysis

The average values were analysed using SPSS Statistics 21.0 (IBM,
Armonk, NY, US). The data were expressed as mean +/− standard
deviation (SD). Data were tested for variance homogeneity and normal
distribution and One-way ANOVA were followed by a multiple-
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comparison Tukey test. Analysis of the in vivo experiment data was
performed with the Kruskal–Wallis test. Differences between the
means were considered statistically significant when p b 0.05.

3. Results

3.1. In vitro kinetics of BMP-2 release

The release of BMP-2 was monitored through identification of
signature peptide NYQDMoxVVEGCcamGCcamR as analysed by SRM.
The amount of a signature peptide (L, endogenous peptide) for BMP-2
is related to a known amount of internal standard (H, heavy synthetic
peptide) spiked-in our sample, and the ratio (L/H) is used as an index
for the amount of BMP-2 released (Fig. 1). The figure is a representative
of the data from themost optimised SRMmethod obtained from triplicate
measurements.

In the first 24 h, the PHY scaffolds had an initial burst of release.
There was a steady release from the MICS scaffolds starting from 24 h
while the nDP-COV scaffold group showed no release. MICS scaffolds
showed a gradual increase in release from day 7 on, with the greatest
release being found between days 21 and 40. In comparison to the
MICS scaffolds, the PHY scaffolds showed a smaller increase in release
between days 21 and 40, while the nDP-PHY scaffolds showed a main-
tained level.

3.2. hMSC attachment and proliferation

SEM images at day 1 and day 3 of culture show the spreading and
attachment of hMSC on the different scaffolds. Significantly more cells
on the MICS modified group were proliferating on day 7 compared to
the other scaffold groups (Fig. 2 G).

3.3. BMP-2 signalling and hMSC differentiation

Similar results were seen between the groups (Fig. 3) for expression
of the two main receptors of BMP-2 signalling (BMPRIA and BMPRII).
Results showed the highest expression of receptor significantly from
the MICS at 3 weeks (p = 0.033, p = 0.029). At week 1 the nDP-PHY
group showed higher but not statistically significant expression com-
pared with the PHY group, while at week 3 the PHY group showed a
higher trend, coinciding with the release profile during that period,
which was again not statistically significant. A tendency was seen for
an increase in the master transcription factor Runx2 in all groups at
week 3 compared to week 1 (Fig. 3). Col1α2 was upregulated in all
groups at week 3 compared to week 1 except in the nDP-COV group,
where itwas downregulated. In all the other groups, ALPwas upregulat-
ed atweek 3with nDP-PHY showing the highest tendency (Fig. 3). MICS
and nDP-PHY showed the highest BMP-2 expression at both early and
late time points (Fig. 3), although this was only significant in the MICS
group at week 3. OC was significantly upregulated at week 3 in the
MICS group followed by the nDP-PHY group, compared with the other
groups.

3.4. In vitro endogenous BMP-2 protein expression

The medium was collected at week 1 and week 3 to determine
the extracellular release of endogenous BMP-2 from hMSC. The BMP-2
ELISA kit used is sensitive to natural and mammalian-expressed BMP-

Fig. 2 Attachment and proliferation of hMSC cultured on the different scaffolds. SEM im-
ages at days 1 and 3 showing attachment of hMSCs (red arrows) (A) CL, (B) PHY,
(C) nDP-PHY, (D) nDP-COV and (E) MICS. Scale bar = 200 μm. (F) Higher magnification
of MICS scaffold without cells showing the increased surface area resulting from the mi-
crospheres. Scale bar = 2 μm. (G) The proliferative activity of the hMSC seeded onto the
different scaffolds evaluated in terms of mRNA expression of the proliferative marker
(Ki67) (*p b 0.05, **p b 0.001).
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2 and does not recognize E. coli-expressed rhBMP-2. The levels detected
here were therefore protein originating solely from hMSC. Extracellular
endogenous BMP-2 showed the lowest expressions in the CL and nDP-
COV groups, with minor differences between time points. The highest
expression was seen from the MICS group at early and late time points
and nDP-PHY at week 1 (Fig. 4A). Intracellular BMP-2 showed the
highest levels in the MICS group at both time points and lowest in the
nDP-PHY group (Fig. 4B). None were significant.

3.5. Alizarin red staining for in vitro mineralization

Staining revealed surface mineralization. Most groups showed vari-
able reddish extracellular matrices while vast extracellular darker spots
could be observed in theMICS and nDP-PHY group scaffolds as evidence
of calcium deposits in the matrix (Fig. 5).

3.6. Gene expressions from in vivo experiments

In vivo RT-PCR results showed coherence in several genes with the
expressions in vitro. The transcription marker Runx2 showed the
highest expression on the MICS scaffolds, although not significant. Sig-
nificant upregulation of the early osteogenic marker ALPwas expressed
on MICS while COL1 was higher from the PHY scaffolds. OC was upreg-
ulatedmost onMICS scaffolds, followed by expression on nDP-PHY scaf-
folds, consistent with the in vitro results indicating deposition of bone
matrix andmineralization.MICS scaffolds also demonstrated significant
upregulation of the osteoclast markers TRAP and CTSK at 2 weeks.

3.7. De novo bone formation

Morphometric results with micro-CT show that most of the treated
groups had increased bone volume inside the defined defect area com-
pared to the empty group. Bone volume recoverwas greatest in the PHY
and MICS groups at 4 weeks, and that both were significant in compar-
ison to the nDP-COV scaffold group (Fig. 7A). They were followed by
nDP-PHY.

Masson's trichrome staining was carried out to identify the osteoid-
like tissue and collagen enriched areas in the defects. In the empty
group (Fig. 7 B) it was predominantly soft tissues growing around and
into the defect. The scaffold architecture was highly preserved in
the CL and nDP-COV groups compared with other 3 functionalised
scaffold groups. Most of the pores of the CL scaffolds were filled
with loose fibrous connective tissue without much evidence of oste-
oid tissue formation. Histological results were in line with themicro-
CT analysis showing mostly osteoid formation among the pores of
the scaffolds in PHY, nDP-PHY and MICS at an early time point of 4
weeks (Fig. 7D, E and G).

4. Discussion

We evaluated the in vitro and in vivo efficacy of four different modes
of rh-BMP-2 delivery utilising a low dose of 1 μg.

Fig. 3. Relative MRNA expression from hMSC cultured in vitro after week 1 and week 3.
Relative mRNA levels of BMP-2 signalling receptors, transcription factor and osteogenic
markers (*p b 0.05, **p b 0.001).

Fig. 4. In vitro endogenous BMP-2 protein expression by ELISA at week 1 and week 3.
(A) for extracellular concentration of BMP-2 secreted in medium and (B) intracellular
BMP-2.
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In vitro rhBMP-2 release from scaffolds was evaluated with targeted
quantification using SRM and an absolute quantification method
(AQUA). The SIS peptide was chemically identical to the native peptide
with respect to retention time, ionization efficiency, and fragmentation
characteristics. Its mass unit was higher and could therefore be distin-
guished from the native counterpart during MS analysis permitting
the detection of very low concentrations [44]. In the PHY scaffold most
of the BMP-2 was located superficially with weak bonds causing the
initial burst release. A second increase in release from PHY was seen at
a time point when the scaffold is beginning to degrade. This hypothesis
is supported by the degradation profile from the same scaffold analysed
by in vitro hydrolysis where forty days showed to be a sufficient time for
significant reduction of its molecular weight contributing to increased
degradation [45].

In contrast, the release of BMP-2 from MICS scaffolds was different.
Several factors explain this difference, such as the microsphere size
and its rate of degradation, which controlled the BMP-2 diffusion in a
steadily increased fashion retaining the BMP-2 for an extended time.
OC was highly expressed in cells grown on MICS at week 1 (p b 0.05)
and week 3 in vitro and at 2 weeks in vivo, implying increased mineral-
ization in comparison to that seen on PHY scaffolds. This demonstrates
how long-term sustained delivery of BMP-2 enhances its osteogenic ef-
ficacy at the same dose compared to short-term delivery [46]. Differ-
ences in the initial burst release of BMP-2 from PHY and nDP-PHY
scaffolds could be attributed to the lower amount of protein being
only weakly bound to the scaffold in the case of nDP-PHY. No burst re-
lease was encountered as in PHY because the interaction of proteins
with nDPs is known to be rather strong [47]. Also previous reports
where spectroscopic and theoretical investigations were carried out,
showed a strong binding of BMP-2 with NCD surfaces [25], supporting
the contention that nDP could express similar properties [27]. The nDP
modification of copolymer scaffolds has been shown to increase its hy-
drophilicity [28], facilitating stronger physisorption of rhBMP-2. An
overview of different O-termination techniques facilitating surface at-
tachment of organic groups has been reported [21]. The overall binding
strength of the noncovalent interaction is governed by a multitude of
individual interactions. Several forces were reported to contribute to
the overall binding on NCD, such as van der Waals forces, H-bonds
and electrostatic interactions. Although the release kineticswere not re-
markably different between nDP-PHY and nDP-COV scaffolds, it is clear
from our results that the bioactivity of rhBMP-2was conserved on nDP-
PHY scaffolds. Studies suggest that slightly acidic environments stimu-
late the release of proteins loaded noncovalently on nDP modified sur-
faces [24], a condition that was absent in our PBS buffer set-up. Body
fluids aid degradation of carriers and release of BMP-2 in a variable
manner, which is why comparison to the present in vivo results is
important.

The burst release and degradation of the scaffoldsmight be accentu-
ated in vivo [45], explainingwhy PHYmight show higher trends of early
markers such as Runx2 and COL1 in vivo, although the difference was
not significant. Several factors play a role in bone regeneration in vivo
[48], which could have assisted the PHY to form mineralized tissue
in vivo but not in vitro. The in vivo experiments had different time points
from the in vitro, bringing another variable to the effect of the release ki-
netics of the various scaffolds. At 2 weeks in vivo, the release profile
showed a relatively higher release from MICS, which continued to in-
crease, compared to PHY, and thus had a significant effect on the

Fig. 5 3Dmineralization in vitro visualisedwith Alizarin red S staining.Macroscopic images
(round) and increased magnifications (×4) images of (A) unseeded CL scaffold,
(B) cultured hMSC for 1 week on CL scaffold (C) on PHY, (D) on nDP-PHY, (E) on nDP-
COV, (F) on MICS, and (G) HOB cells on CL scaffold (positive control). Scale
bar = 500 μm.3D mineralization in vitro visualised with Alizarin red S staining. Macro-
scopic images (round) and increasedmagnifications (×4) images of (A) unseeded CL scaf-
fold, (B) culturedhMSC for 1 week onCL scaffold (C) on PHY, (D) onnDP-PHY, (E) onnDP-
COV, (F) onMICS, and (G) HOB cells on CL scaffold (positive control). Scale bar = 500 μm.

154 S. Suliman et al. / Journal of Controlled Release 197 (2015) 148–157



osteogenic marker, ALP. The second cross-sectional analysis in vivowas
at four weeks which corresponds to bet'ween 21 days and 40 days of
in vitro release kinetics. PHY and MICS showed the significantly higher
bone regeneration and nDP-PHY came later, perhaps suggesting the ef-
fects of sustained release in low doses from the latter group as seen in
the release curve (Fig. 1). Longer-term evaluation in vivo is required to
fully assess the quality and architecture of new bone.

The in vitro results in the present study demonstrated lower ALP ex-
pression by cells grown ontoMICS scaffolds than on nDP-PHY,with cells
from the MICS group still significantly highly proliferative as seen by
Ki67 expression at week 1, possibly related to the increased surface
area from the microspheres. It has been reported that osteosarcoma
cells cultured on NCD implant surfaces showed increased ALP activity
in less than 2 weeks of culture [25]. In vivo, a significantly higher
expression of mRNA ALP was demonstrated from MICS scaffolds indi-
cating bone induction. ALP expression tended to be higher in cells
on nDP-PHY scaffolds than on PHY scaffolds both in vitro and in vivo,
although not significantly so, highlighting the effect of nanoparticles

on enhancing the osteoinduction of copolymer scaffolds. A slight up-
surge in the BMP-2 kinetic release after almost 40 days in nDP-PHY is be-
lieved to be due to the degrading polymer, but in this case the rhBMP-2 is
still bound to nDP and bioactive in levels to increase osteogenic differen-
tiationwhen comparedwith PHY scaffold. Thiswas confirmed by Alizarin
red staining in the nDP-PHY and MICS scaffold groups.

The nDP-COV group showed no release of BMP-2 during the 70 days
of incubation and also showed lesser osteogenic potential both in vitro
and in vivo. This demonstrates the high stability of the covalent immo-
bilization of the protein on the diamond surface. The loss of the BMP-2
functionality indicates that the protein is most likely deformed during
the binding onto the diamond surface by both the covalent linker and
additional, non-covalent interactions. Similar results have been report-
ed previously for the covalent immobilization of other proteins such
as enzymes [49]. This brings to our notice the necessity of improving
the method for covalently bonding the rhBMP-2 to the nDP without af-
fecting the bioactivity of rhBMP-2. Furthermore, we take into consider-
ation that the in vitro design of 3 weeks was not suitable for the nDP-
COV group; additional degradation of the scaffold is required to release
rhBMP-2. This was evidenced by the observation of limited osteoid
tissue around the nDP areas at 4 weeks in vivo (Fig. 7F).

BMP-2 exerts a bipolar effect depending on its concentration:
osteoprogenitor cells are recruited and differentiated at low doses,
whereas osteoclasts are transiently activated at high doses [50]. This
was reflected by the in vivo expression of TRAP and CTSK, (Fig. 6),
both highly expressed by osteoclasts. They were significantly highly
expressed in the MICS scaffold group after 2 weeks; in vivo this release
could be amplified due to environments favourable to erosion of themi-
crospheres. Recent reports [51] have underlined the importance of de-
creasing the dose of BMP-2 to the lowest level that is compatible with
the desired effect of bone formation. BMP-2 is expressed from days 1 to
21 during bone healing [48], hence for delivering BMP-2 for bone regen-
eration, the ideal carrier would provide sustained release over a period of
at least three weeks. Following injury, BMP-2 is released locally into the
defect site from the surrounding matrix [48], consistent with the in-
creasedBMP-2 levels in vivo seenhere in all groups, although this increase
was not statistically significant. Also consistent with trends seen here,
BMP-2 expression is upregulated in differentiating osteoprogenitor cells
andmaintained for about 21 days [52]. At week 3 in vitro, the highest ex-
pression was seen in the MICS (p b 0.05) and followed by nDP-PHY at
both time points. A similar trend in the extracellular protein levels of
BMP-2was shown by ELISA. Comparing the gene and protein expressions
of BMP-2between PHYandnDP-PHYhighlights the valuable effect of nDP
functionalisation. BMP-2 is an extracellular signalling molecule which is
washed out rapidly, thus the protein level of extra- and intra-cellular
BMP-2 was reduced at week 3 in all groups [53]. Small amounts induce
cellular responses in vitro; however exogenously delivered BMP-2
requires ultra-physiological doses for humans compared to animals to
overcome the rapid wash out.

It is important to note that in vitro statistical relevance was seen in
mRNA expressions of the potent osteogenic markers BMP-2 and OC
in vitro, hence our discussion and subsequent conclusions are based
on this finding. Significance in vivo was only demonstrated for ALP
mRNA from MICS scaffold compared to other osteogenic markers.
However, microCT and histological evaluations disclosed a confirmative
dimension supporting the interpretations and conclusions related to the
osteogenic potential of these scaffolds. The nDP-PHY andMICS scaffolds
have strong potential for future applications due to their controlled
release of growth factors. Furthermore, the data demonstrated that
the protein on nDP-PHYwas bioactivewith comparable efficacy despite
being strongly bound to the carrier (scaffolds), indicating a short dis-
tance effect on the local surrounding tissues.

In the clinical trials, high doses of not less than 1 mg BMPs per ml
have been used and the complications of this dose have been discussed
[54]. However, it is difficult to establish a correlation from animals to
humans due to different bone healing mechanisms [55]. Interestingly,

Fig. 6. Relative mRNA expression in vivo after week 2. Expression of BMP-2 transcription,
osteogenic genes and remodellingmarkers by RT-PCR from animals samples after 2weeks
in place (*p b 0.05).
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in our study a low dose of only 1 μg was sufficient to induce de novo
bone. Very few experiments using comparably low doses in vivo have
been reported. Researchers used carrier minerals, which might have a
confounding osteoinductive effect [56] or including osteoprogenitor
cells in the construct [57]. A recent study using collagen sponges in crit-
ical sized defects in rat calvaria [58] concluded that rhBMP-2 accelerates
local bone formation once reaching an osteoinductive dose threshold at
1.25-2.5 μg in their model, which is not load bearing. Previous reports
also proved that non-glycosylated BMP-2 which is produced via bacte-
rial expression systems is less soluble. Despite it having lower biological
activity and release in vitro compared to glycolysated BMP-2, it signifi-
cantly increased bone formation at low dosages [59].

Taken together, we conclude fromour results that lowdoses of BMP-
2 are found to be bioactive for bone regeneration. Obtaining bone after
just 4 weeks in vivo suggests accelerated bone regeneration in the
PHY, nDP-PHY and MICS groups. Physisorption onto nDP modified co-
polymer scaffolds is a material reported for the first time in critical
sized bone defects and appears to hold great promise compared to
growth factors adsorbed solely onto a polymer.
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ABSTRACT: Background. Microenvironmental cues play a major role in
head and neck cancer. Biodegradable scaffolds used for bone regenera-
tion might also act as stimulative cues for head and neck cancer. The
purpose of this study was to establish an experimental model for precise
and noninvasive evaluation of tumorigenic potential of microenvironmen-
tal cues in head and neck cancer.
Methods. Bioluminescence was chosen to image tumor formation. Early
neoplastic oral keratinocyte (DOK) cells were luciferase-transduced
(DOKLuc), then tested in nonobese diabetic severe combined immunode-
ficient IL2rgnull mice either orthotopically (tongue) or subcutaneously for
their potential as “screening sensors” for diverse microenvironmental
cues.

Results. Tumors formed after inoculation of DOKLuc were monitored eas-
ier by bioluminescence, and bioluminescence was more sensitive in
detecting differences between various microenvironmental cues when
compared to manual measurements. Development of tumors from
DOKLuc grown on scaffolds was also successfully monitored noninva-
sively by bioluminescence.
Conclusion. The model presented here is a noninvasive and sensitive
model for monitoring the impact of various microenvironmental cues on
head and neck cancer in vivo. VC 2015 The Authors Head & Neck Pub-
lished by Wiley Periodicals, Inc. Head Neck 00: 000–000, 2015

KEY WORDS: cancer, microenvironment, bioluminescence, tissue
engineering, scaffold

INTRODUCTION
Recent evidence implicates environmental cues as key factors
in cancer progression.1 Among the important determinants is
the surrounding stroma, including fibroblasts, endothelial
cells, infiltrating immune cells, and extracellular matrix com-
ponents.2,3 The scaffolds used in tissue engineering as provi-
sional matrices for cell proliferation and extracellular matrix
deposition can also act as microenvironmental cues. The sur-
rounding tissues might react toward these by foreign body
reactions or even tumor formation,4 and long-term subcutane-
ous implants of nonabsorbable or slowly degrading materials
were shown to be tumorigenic.5,6 Thus, there is a great con-
cern that certain biomaterials may be potential initiators of

malignancies, and the size and surface roughness of certain
biomaterials were already suggested to influence tumor for-
mation.7 To date, at the regulatory level, the basic approach
for biomaterials’ safety is defined in the International Organi-
zation for Standardization 10993.8,9 These tests start with an
initial safety evaluation targeting leachable for cytotoxicity.
Genotoxicity and evaluation of mRNA levels of proto-
oncogenes and tumor suppressor genes10 from mammalian or
bacterial cells exposed to the biomaterials has also been used
as methods for safety check.11 Current carcinogenicity tests
determine the tumorigenic potential of materials and/or their
extracts from either single or multiple exposures or contacts
over a period of the major portion of the life span of the test
animal or transgenic mice.12 Long-term, conventional 2-year
rodent bioassays are often not feasible, with questionable
relevance also because of limitations associated with species
extrapolation.13,14 Finding a relevant animal model for every
kind of human cancer is impractical, but preclinical animal
xenograft tumor models, particularly heterotopic (subcutane-
ous), have proven useful especially in identifying cytotoxic
agents.15–18 On the other hand, although more technically
demanding, the orthotopic xenograft models simulate the
same local microenvironment and thus offer the advantage of
less complicated translation to the clinical setting.19

Scaffolds used for bone regeneration in the oral and
maxillofacial area might come in contact with the oral
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epithelium. Because over 90% of head and neck cancers
are, as most of the human malignancies, of epithelial ori-
gin,20,21 there is a need to study the potentially carcino-
genic effect of degradable bioengineered scaffolds on oral
epithelial cells. To study oral and head and neck carcino-
genesis, both orthotopic and heterotopic (subcutaneous)
models were previously developed by use of malignant
cells derived from established oral or head and neck can-
cer.22 In this study, we chose to develop a xenotransplan-
tation model by use of an early neoplastic oral
keratinocyte (DOK) cell line derived from early neoplas-
tic oral mucosa.23 These cells were found to be partly
transformed but nontumorigenic in nude mice, and were
described as having potential as “screening recipients” for
carcinogens in vitro.23

Different in vivo optical imaging modalities have been
tested in various tumor models.24–26 However, there is a
need for a noninvasive head and neck cancer model with
the ability to detect possible tumorigenic effects of vari-
ous microenvironmental cues, including implanted scaf-
folds. Bioluminescent imaging is a well-established
method in preclinical investigation of the complexity of
cancers27–29 including head and neck cancer,30,31 but for
a screening of the potential to fully transform and gener-
ate malignant tumors from the early neoplastic cells, the
application of bioluminescence would offer a novel non-
invasive approach. In carcinogenicity testing of biomateri-
als, controls of a comparable form and shape should be
included. However, in the presented system, the use of
appropriate controls is not necessary because the inclusion
of a positive environment with the use of carcinoma-
associated fibroblasts (CAFs) has been developed. The
noninvasive in vivo visualization for several weeks also
provides additional unique advantages over the aforemen-
tioned established carcinogenicity testing systems.
To achieve real-time bioluminescence in this study,

DOK cells were first transduced to contain the firefly
luciferase. They were then tested in vivo in NSG mice
for their potential as “screening sensors” for diverse
microenvironmental cues, such as various types of head
and neck CAFs and copolymer scaffolds intended for tis-
sue engineering. The biodegradable poly L-lactide-co-E-
caprolactone (poly[LLA-co-CL]), an aliphatic polyester
copolymer of L-lactic acid and E-caprolactone, has been
extensively studied at our laboratory as a scaffold for
bone regeneration proving its biocompatibility and osteo-
conductivity,8,32 and, hence, was chosen for developing
this model.

MATERIALS AND METHODS

Cell choice and maintenance

The DOK cell line was purchased from The European
Collection of Cell Cultures (Salisbury, Wiltshire, UK).23

They were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal calf
serum (FCS; Invitrogen, Waltham, MA), 20 lg/mL
L-glutamine, 5 lg/mL hydrocortisone (all from Sigma, St.
Louis, MO).
CAFs (n 5 3; CAF1, CAF15_13, and CAF15_23) were

isolated from histologically confirmed head and neck squa-
mous cell carcinoma, after receiving informed consent.

They were maintained in FAD medium: DMEM/Ham’s
F12 1:3 mixture, 1% L-glutamine, 0.4 lg/mL hydrocorti-
sone, 50 lg/mL ascorbic acid, 10 ng/mL epidermal growth
factor, 5 lg/mL insulin, and 20 lg/mL transferrin and lino-
leic acid (all from Sigma) with 10% FCS.

Luciferase transduction of early neoplastic oral
keratinocytes

Virus production. DOK wild type (DOKWT) cells were
transduced with a tTA, L192 construct (expressing lucif-
erase).33 Infectious retroviral vector particles were pro-
duced in Phoenix A cells (LGC Standards AB, Boras,
Sweden) cultured in DMEM, supplemented with 10%
FCS, 1% penicillin-streptomycin, and 1% glutamine.
When 70% to 80% was confluent, 8 lL of 50 mM chloro-
quine (Sigma) was added. Four micrograms of DNA con-
struct (tTA, L192) was mixed with 128 lL of 2M
calcium chloride (CaCl2) and sterile ddH2O to a total vol-
ume of 1 mL plus 1 mL of 23HEPES-buffered (Sigma)
and transferred onto each plate. After 12-hour incubation,
the medium was replaced by a fresh medium and by
DOK’s medium after 24 hours.

Infection and selection of luciferase-transduced early neoplastic
oral keratinocyte. The virus supernatant was collected, fil-
tered, and gene transfer enhanced with protamine sulfate
(5 lg/mL). DOKWT were seeded at 3 different seeding
densities (25 3 103; 50 3 103; and 100 3 103 cells/well)
in a 6-well plate and centrifuged at 1200 g for 90
minutes. The virus supernatant was replaced with the
DOK medium 24 hours postinfection. Successfully
infected DOK cells were selected by puromycin (1 lg/
mL; Sigma). To obtain a cell-clone with a stable, high
expression of luciferase, transduced DOK cells were
sorted using fluorescence-activated cell sorter (FACS
Aria SORP, BD Biosciences, San Jose, CA).

Selection of highly bioluminescent early neoplastic oral
keratinocyte luciferase-transduced cells

Approximately 1 3 106 cells of each group in 100 lL
DOK medium were transferred to 96-well plate with 1 well
containing 100 lL of DOK medium only for background
autofluorescence. Luciferin, (1.6 g/L of D-luciferin; Bio-
synth AG, Staad, Switzerland) was added 10 minutes
before imaging in the Time-Domain Small Molecular
Imager Optix MX3 (ART; GE Healthcare, Little Chalfont,
UK). Using the OptiView acquisition software (ART
Advanced Research Technologies, Quebec, Canada), the
region of interest was chosen and plates were scanned with
the scan step 1.0 mm and integration time 0.1 seconds.

Assessment of cell morphology and proliferation

Both cell types, DOKWT and early neoplastic oral kera-
tinocyte luciferase-transduced (DOKLuc), were cultured at
passages (45–48) and their morphology was compared
under a light microscope (Nikon TS100; Nikon, Tokyo,
Japan). The growth rate was analyzed using a colorimet-
ric assay based on methylthiazol tetrazolium (Sigma) and
measured at 570 nm using a microplate reader (BMG
LABTECH, GmbH, Ortenberg, Germany).
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Assessment of tumorigenicity in vivo

Both DOKWT and DOKLuc cells were cultured and
allowed to reach their log phase before they were trypsi-
nized and suspended in 50 lL of growth factor-reduced
matrigel (BD Biosciences). The cells were inoculated at 2
different densities, low (1 3 103) and high (1 3 105), at
2 different locations, the tongue and subcutaneously in
the back of 8 to 10 weeks old male nonobese diabetic
severe combined immunodeficient IL2rgnull mice (NSG)

(University of Bergen - originally a generous gift from
Prof. Leonard D. Shultz, Jackson Laboratories, Bar Har-
bor, ME; n 5 24, 6 mice for each group). Weekly for 6
weeks, tumor volumes for both cell types were manually
assessed by digital caliper, using the formula [length 3
(width2)/2]. In the group inoculated with DOKLuc, tumor
development was also measured weekly by biolumines-
cence. We euthanized the mice after 45 days and har-
vested tissues for histology.

Orthotopic tongue xenograft mouse model for early
neoplastic oral keratinocyte 1 carcinoma-associated
fibroblast co-inoculations

To create a positive tumor formation control, 1 3 103

DOKWT were suspended with 1 3 105 CAFs (CAF1) in
50 lL matrigel and inoculated in the tongue of NSG mice
(n 5 12; 6 mice for each group). Tumors were measured
manually up to 45 days.
To assess the sensitivity of bioluminescence to differen-

tiate between tumors formed by different strains of CAFs,
DOKLuc in a density of 1 3 103 were co-inoculated in
combination with 1 3 105 of 2 different strains of CAFs
(CAF15_13 and CAF15_23) in the tongue. The total
number of animals was 24 with at least 6 for each group.
The development of the tumors in this group was fol-
lowed up manually and evaluated weekly by
bioluminescence.

Preparation of cell-seeded poly L-lactide-co-E-
caprolactone scaffolds for ectopic subcutaneous
scaffold xenograft

The copolymer poly(LLA-co-CL) was polymerized
from E-caprolactone (Sigma–Aldrich, Germany) and LLA
(Boehringer, Ingelheim, Germany) by ring-open-
polymerization, as previously described.32 The average
molecular weight of the purified copolymer was 100,000
and polydispersity index 1.3 determined by Size Exclu-
sion Chromatography (Polymer Laboratories, Shropshire,
UK). The copolymer was composed of 75 mol % LLA
and 25 mol % caprolactone, confirmed by 1H-NMR
(Bruker Avance 400, Billerica, MA). The porous scaffolds
were prepared by solvent casting particulate leaching32

and a disc-shaped scaffold (diameter approximately 6
mm, thickness approximately 1.3 mm) was formed with
>83% porosities. Porosities were calculated by a Micro-
CT (Sky Scan 1172 scanner, Kontich, Belgium) using 40
kV and 2.4 micron voxel and 3D analysis was carried
using the software CT-Analyzer version 1.13 (Bruker).
The scaffolds were pre-wet with DOK medium and left

for 2 to 3 hours before being then seeded with cells,
DOKLuc alone or DOKLuc 1 CAFs (CAF1). Three differ-
ent densities of DOK were used (1 3 103, 1 3 105, and
1 3 106); the density of CAFs was fixed to 1 3 105.
Plates were vortexed (Eppendorf, Hamburg, Germany)
and the cells were allowed to attach overnight before
scaffolds were xenotransplanted in 8 to 10-week-old NSG
mice.
The mice were anesthetized with Isoflurane (Isoba

VetTM; Schering Plough, Kenilworth, NJ) before 2 inci-
sions (1 cm) were made on their back. One incision was

FIGURE 1. (A) Bioluminescence of early neoplastic oral keratino-
cyte luciferase-transduced (DOKLuc) cells at a density of 50 3
103 early neoplastic oral keratinocyte wild type (DOKWT) trans-
duced 4 times, displaying the highest photons/mm2/sec, white
arrow. (B) Light microscopy showing that DOKWT and DOKLuc

exhibit the same typical morphology and pattern of growth in the
form of coherent islands. (C) Growth curves for both cell types,
showing no significant difference (p 5 .262) between the in vitro
growth potential of DOKWT and DOKLuc. [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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made between the upper limbs and another between the
lower limbs, providing sufficient space for implantation
of scaffolds and to avoid bioluminescence bleeding. Two
scaffolds were implanted into each mouse, 1 scaffold
with DOKLuc alone and the other with DOKLuc 1 CAFs.
The different densities were distributed among all mice (n
5 6). Wounds were closed with Histoacryl tissue adhe-
sive (B. Braun Surgical AS, Melsungen, Germany). At 12
weeks, the animals were euthanized with CO2 overdose
and scaffolds processed for histology.

Optical bioluminescence imaging

Mice were depilated and scanned after intraperitoneal
delivery of 150 mg/kg of D-luciferin. Animals were main-
tained under 1% gas anesthesia during scanning. Images
were captured using In Vivo MS FX PRO (Carestream
Health, Rochester, NY) and analyzed using Carestream
MI SE version 5.0.6.20, 1 exposure of 90-second
duration.

Histology and immunohistochemistry

Samples were fixed in 4% paraformaldehyde before
embedding in paraffin. Sections of 3 to 4 lm were
stained with hematoxylin-eosin (Sigma). For p53 immu-
nostaining, paraffin sections were deparaffinized and
rehydrated. Epitope retrieval was performed by heating
the sections in citrate buffer pH 6.0 in a microwave.
Endogenous enzyme activity and unspecific binding were
blocked using peroxidase block (DAKO, Golstrup, Den-
mark) and 10% normal goat serum (DAKO) for 5 minutes
and 30 minutes, respectively, at room temperature. As
primary antibody, p53 with a monoclonal specific anti-
body (DO-7 clone, DAKO) 1:50 was incubated for 1 hour
at room temperature. For negative controls, samples were
treated with antibody diluents alone. The bound reaction
was visualized using 3, 30-diaminobenzidine tetra hydro-
chloride (DAB, DAKO). Double staining with vimentin
(DAKO) 1:1000 was carried out using a double stain kit
(Envision Gj2 double stain system; DAKO), in accord
with the manufacturer’s instructions. Tumor areas were

FIGURE 2. Graphs comparing the
growth rate (tumor volume) and
the total area of tumors formed
by either early neoplastic oral
keratinocyte wild type (DOKWT)or
early neoplastic oral keratinocyte
luciferase-transduced (DOKLuc)
inoculated at cell densities of 103

or 105 in the tongues (A and C),
and subcutaneously (B and D) of
NSG mice (*p < .05). Histological
sections with hematoxylin-eosin
stain showing 6 weeks after inoc-
ulation of the tongue (E, F, H, and
I) and skin (G and J). The tumors
retain the characteristics of squa-
mous cell carcinoma (original
magnification 325 and 3200).
Scale bar 1 mm5 325 and 200
lm 5 3200. [Color figure can
be viewed in the online issue,
which is available at wileyonline-
library.com.]

SULIMAN ET AL.

4 HEAD & NECK—DOI 10.1002/HED MONTH 2015



calculated from areas of interest in hematoxylin-eosin
sections using Olympus DP Soft 5.0 software (Munster,
Germany).

Ethics statement

The ethical approval for patients with head and neck squa-
mous cell carcinoma samples was obtained from the Regional
Committees for Medical and Health Research Ethics (REK
NO. 2010/48) and lesions were collected following ethical
approval and written informed consent of the patients. All ani-
mal experiments were approved by the Norwegian Animal
Research Authority and conducted in strict accordance with
the European Convention for the Protection of Vertebrates
used for Scientific Purposes (FOTS no. 20134643/20123961).
All procedures were performed under isoflurane gas anesthe-
sia, and all efforts were made to minimize suffering.

Statistical analysis

Average values were analyzed by IBM SPSS Statistics
21.0 (SPSS, Chicago, IL) and the data expressed as mean
6 SEM. Paired t test or the independent Mann–Whitney
U tests were used to compare differences between the
tumors formed. Spearman’s correlation was used to corre-
late the manual tumor measurements and histological
measurements with corresponding bioluminescence sig-
nals. Differences were considered statistically significant
when p < .05.

RESULTS

Successful transduction of early neoplastic oral
keratinocyte with luciferase containing vector generated
a new cell line

The bioluminescence signal recorded for DOKLuc cells
cultured in vitro for 2 to 3 weeks posttransduction showed
that the seeding density of 50 3 103 displayed the highest
photons/mm2/sec (Figure 1A, white arrow). Cells derived
following this protocol were expanded and used for fur-
ther in vivo experiments. Light microscopy showed that
DOKWT and DOKLuc had typical epithelial morphology
and similar patterns of growth in the form of coherent
islands. No signs of epithelial-to-mesenchymal transition
could be observed in either (Figure 1B). The growth
curve was comparable for the 2 cell types (p 5 .262),
indicating that transduction with luciferase did not alter
the in vitro growth potential of these cells (Figure 1C).
The in vivo tumorigenic potential of DOK cells before

and after transduction with luciferase expressing gene was
evaluated after DOKWT and DOKLuc were inoculated in the
tongue and also subcutaneously in NSG mice at low (1 3
103) and high (1 3 105) density. At the high inoculation
density, visible tumors were detected with the same inci-
dence after 2 weeks, at both sites, for both DOKWT and
DOKLuc. At the low density, tumors formed only in the
tongue, and after 4 weeks, with the same incidence for

FIGURE 3. Bioluminescence (BLI) of mice for 5 weeks after inoculation with early neoplastic oral keratinocyte luciferase-transduced (DOKLuc) cells
(105 and 103 densities) in the tongue (A) and in the skin (B). Graphs depicting increasing total photon intensities from tongue inoculations (C) with
a lower overall photon count produced from 103 densities (**p < .01). (D) Total photon intensities of cells for 5 weeks after subcutaneous inocula-
tion (**p < .01). Data shown as means 6 SEM. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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DOKWT and DOKLuc. There was no statistical significance
between the volume of the tumors formed in both tongue
and subcutaneously by DOKWT and DOKLuc at all time-
points (Figures 2A and 2B). The histological area of the
tumors derived from DOKWT and DOKLuc at low density in
the tongue (Figure 2C) and at high density subcutaneously
(Figure 2D) did not show any statistical significant differ-
ence. The only statistical significant difference was found for
the tongue tumors formed at higher inoculation density by
DOKLuc than tumors formed by DOKWT (p < .05; Figure
2C). Tumor xenografts generated from DOKWT (Figures 2E–
2G) showed the same histological picture as DOKLuc xeno-
grafts (Figures 2H–2J), with epithelial islands of atypical epi-
thelial cells in the host stroma and keratin pearls.

Development of tumors formed after inoculation of early
neoplastic oral keratinocyte luciferase transduced cells
was easily monitored by bioluminescence

Luciferase activity increased with time after both
tongue and subcutaneous inoculations for both inoculation
densities (Figures 3A and 3B). The bioluminescence sig-
nal was significantly higher for the inoculations of
DOKLuc at higher inoculation density at both tongue and
subcutaneous locations (Figures 3C and 3D), at all time-

points, correlating well with the tumor growth curve as
assessed by the manual measurements.

Both early neoplastic oral keratinocyte wild type and
early neoplastic oral keratinocyte luciferase-transduced
were responsive to carcinoma-associated fibroblast-
derived microenvironmental cues and bioluminescence
was more sensitive than manual measurement in
detecting differences between various types of
microenvironmental cues

Co-inoculating DOKWT with 105 CAFs in the tongues of
NSG mice increased tumor incidence from 16.66% to
57.14% (Figure 4A). Histological sections of the tumors
formed by DOKWT 1 CAF showed typical squamous cell
carcinoma histology with invasive epithelial islands growing
in the host stroma and keratin pearl formation (Figures 4D
and 4E). The only 1 tumor formed by the DOKWT alone,
which was detected manually, was found histologically to be
surviving DOKWT cells within remnants of undissolved
matrigel (Figures 4B and 4C). When 2 different types of
fibroblasts (CAF15_13 and CAF15_23) were tested for their
stimulative support for the in vivo growth of DOKLuc, biolu-
minescence seemed to be more sensitive than the manual

FIGURE 4. (A) Carcinoma-associated fibroblasts (CAFs) increased tumor incidence of early neoplastic oral keratinocytes wild type (DOK)WT when
co-inoculated in the tongues of NSG mice. (B and C) Hematoxylin-eosin section of the tumor detected in DOKWT group presenting surviving DOK
cells (black arrows) within remnants of matrigel (yellow arrows). (D and E) Hematoxylin-eosin section of tumor formed by DOKWT 1 CAF; depicting
typical squamous cell carcinoma morphology with keratin pearls (black arrows). (F) Graphs comparing the volumes by manual measurements from
the last timepoint (week 7) of the tumors formed by 2 different strains of CAFs. (G) Comparison of total photon intensities at week 7 measured by
bioluminescence. (H) Comparing tumor area from histology after 7 weeks (*p 5 .028). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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measurement in detecting differences in the tumor growth of
xenografts (Figures 4F and 4G), although the difference was
not statistically significant. This difference was also observed
by histological area calculations after 7 weeks, this time with
statistical significance (p 5 .028; Figure 4H).

Both bioluminescence and manual measurement
showed high correlation with histological area of the
tumors, but tumor formation was detected earlier by
bioluminescence

Bioluminescence consistently disclosed a higher number of
tumors throughout all 5 weeks of monitoring compared to
visible tumors measured manually by calipers (Figures 5A–
5D). Both the tumor volume as quantified by caliper (man-
ual) measurements and the bioluminescence signal from the
corresponding tumor at the last timepoint showed a positive

correlation with the tumor area quantified from histological
sections (considered to be the “golden standard”). A stronger
significant correlation (r 5 0.846; p < .001) was found
between the histological tumor area and bioluminescence sig-
nals than between the histological tumor area and the manual
measurement (r 5 0.739; p < .001; Figures 5E and 5F).

Development of tumors from early neoplastic oral
keratinocyte luciferase-transduced grown on poly L-
lactide-co-E-caprolactone scaffolds under different
microenvironmental cues was successfully monitored
noninvasively by bioluminescence

DOKLuc were cultured on poly(LLA-co-CL) scaffolds
at 3 different densities with or without CAFs. Total pho-
ton count from bioluminescence showed significantly
higher bioluminescence intensity of scaffolds

FIGURE 5. (A and B) Compari-
son of number of tumors
detected by bioluminescence
(BLI) and manually in the
tongue inoculations at both
densities. (C and D) Comparison
in the skin inoculations (p 5
.043; n 5 24). (E) Histological
areas correlate with biolumi-
nescence signals with a stron-
ger correlation (Spearman’s
correlation, r 5 0.847; p <
.001); than with (F) manual
measurements.
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xenotransplanted with DOKLuc 1 CAFs than of DOKLuc

alone at all densities, just above the threshold 1 week
after xenotransplantation and throughout the 12 weeks of
in vivo imaging (106: p < .001; 105: p < .001; 103: p 5
.017; Figure 6C). In the scaffolds xenotransplanted with
DOKLuc alone, no tumors were formed outside the scaf-
folds and the bioluminescence signal stayed within the
same range throughout the 12 weeks of imaging (Figure
6A). In contrast, the bioluminescence intensity of scaffolds
cocultured with CAFs increased with time (Figure 6B),
indicating an increase in tumor growth over time, and this
was confirmed by histology. After 12 weeks, histological
analysis of xenotransplants of scaffolds with DOKLuc cells
alone showed the presence of few atypical epithelial cells,
limited to the scaffold area (Figures 7A, 7B, 7F, and 7G).
Around the remnants of the scaffolds, scattered giant cells
of mouse origin were observed (Figure 7K, blue arrow).
The origin of the epithelial cells was confirmed by immu-
nostaining using an antibody against human p53, recogniz-
ing only p53 mutated human cells, DOK. In contrast, the
histology of xenografts of DOKLuc 1 CAFs scaffolds
showed squamous epithelial tumor nests (confirmed by
p53 positive staining; Figures 7C, 7D, 7I, and 7J), with
many of the islands retaining differentiation and containing
keratin pearls, growing within and outside the scaffold
area, invading the surrounding connective tissue and mus-
culature, thus displaying the characteristic hallmarks of
head and neck carcinoma. Few fibroblasts were observed
in the xenotransplants even after 12 weeks of growth in
vivo in mice (Figure 7K, black arrow). Figure 7E shows

the pronounced macroscopic differences observed during
harvesting of the scaffolds.

DISCUSSION
This study describes the development of a noninvasive,

in vivo model for testing the tumorigenic potential of var-
ious microenvironmental cues, including scaffolds
intended for use in tissue engineering. Numerous studies34

support the concept that carcinogenesis, including head
and neck cancer, is a multistep process involving a pre-
malignant phase of long-term accumulated chromosomal
alterations.35 The use of normal cells in tumor models is
time-consuming, if not irrelevant, because it is well-
known that the transformation of human cells is a long
process, involving at least 5 to 7 mutagenic events, which
are difficult to achieve in an experimental setting.20,36 For
the present model, the DOK cell line, exhibiting early
neoplastic epithelial dysplastic features was selected as a
“screening sensor.”23 To facilitate the noninvasive visual-
ization of these cells after xenotransplantation, they were
transduced with luciferase gene, successfully generating a
new cell line, DOKLuc. The in vitro growth and behav-
ioral characteristics of the transfected cells were compara-
ble to those of the parent cells. To evaluate their behavior
in vivo, both cell lines (DOKWT and DOKLuc) were xeno-
transplanted alone at low and high densities, both ortho-
topically, in the tongue, and ectopically, on the back of
NSG mice. With a single exception for the tumor size
when injected in the tongue at high density, DOKWT and
DOKLuc showed a comparable in vivo behavior as well.

FIGURE 6. (A) Bioluminescence images of a representative mouse carrying a scaffold with a low density (1 3 103) in the upper right back and high
density (1 3 106) of early neoplastic oral keratinocyte luciferase-transduced (DOKLuc) alone in the upper left back. (B) Developing tumors with bio-
luminescence imaging of mice carrying low density (upper right) and high density (lower left) of DOKLuc cocultured with (1 3 105) carcinoma-
associated fibroblasts (CAFs). (C) Total photon count from in vivo imaging using DOKLuc at different densities showed significantly higher biolumi-
nescent intensity of scaffolds xenotransplanted with DOKLuc 1 CAFs than of DOKLuc alone throughout 12 weeks of imaging (106: p < .001; 105: p <
.001; and 103: p5 .017; n5 6). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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This indicates that the DOK cell line retained a high
degree of stability after transfection, although it carried a
complex karyotype and multiple mutations, including p53
mutations. In accordance with previous oral carcinogene-
sis animal studies, the incidence and size of subcutaneous
tumors in the present study was lower than those of
tongue tumors.16 This could be related to a greater stimu-
lation of lymphangiogenesis in the tongue area16 or sim-
ply because of the fact that orthotopic models allow cells
to grow better in their original environment.
When DOKWT cells were co-inoculated with CAFs in

the tongue, the incidence of tumor formation increased by
more than 40% compared with tumors formed by DOKWT

alone. This further highlights the important role of the

microenvironmental cues in tumor initiation and early
growth, supporting previous studies.37,38 The tumor
detected by manual measurements formed by DOKWT

was proven later on, histologically, to contain mainly
remnants of matrigel, which might have given the mass
that could be measurable by the caliper, and only few
islands of nonproliferative DOK cells. This illustrates one
of the drawbacks of the manual measurements that can be
avoided by the use of other methods, such as
bioluminescence.
In this study, bioluminescence detected more than 50%

of the total number of tumors formed in the tongue by
DOKLuc from the first week; much earlier than tumor
detection with caliper measurements. In the skin tumors,

FIGURE 7. (A–D) Hematoxylin-eosin staining showing histology of early neoplastic oral keratinocyte luciferase-transduced (DOKLuc) and DOKLuc 1
carcinoma-associated fibroblasts (CAFs) xenografts respectively. (E) Dissection of a mouse after 12 weeks showing implanted scaffolds with: (1)
105 DOKLuc cells alone; (2) 105 DOKLuc cocultured with 105 CAF; and (3) empty scaffold. (F and G) Human p53 immunohistochemistry (IHC) showing
the presence of few surviving human p53 mutated transformed epithelial cells in a scaffold xenotransplanted with DOKLuc alone. (I and J) Human
p53 immunohistochemistry showing islands of atypical epithelial cells within and outside the scaffold in DOKLuc 1 CAFs xenografts (original mag-
nification 325 and 3200). Scale bar 5 1 mm and 200 lm, respectively. (H and K) Double staining for human vimentin (red cytoplasmic stain) and
human p53 (brown nuclear stain). (K) Positive vimentin stained human fibroblasts present after 12 weeks in DOKLuc 1 CAFs xenografts (black
arrow). The giant cells are negative for both human markers (blue arrow). Scale bar 100 lm (original magnification 3400). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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6 of 7 were visible by bioluminescence from the first
week. One of the tumors was from low density inocula-
tions, which were too small for detection by manual
measurements, but it was later confirmed histologically.
The total number of tumors detected by bioluminescence
was significantly greater than manual detection (p 5
.043), and in concordance with the histological findings,
indicating higher sensitivity for early detection using the
bioluminescence method.
The measurements from the last timepoint of tumor

growth assessment period showed higher bioluminescence
signals from tumors with CAF15_23 than those with
CAF15_13; this difference was not detected by the man-
ual measurements. Histological evaluation confirmed stat-
istically bigger tumors formed by DOKLuc co-injected
with the CAF15_23, a difference that was not indicated
by the manual measurements. This brings further indica-
tions for the greater sensitivity of the bioluminescence
method compared to the manual method that might carry
subjective evaluations (eg, inflammation, tongue pull,
position of the mouse, and lesion margins).
Degradable copolymer scaffolds were used to further

optimize and validate the model for use in screening tests
for tumorigenesis of various microenvironmental cues
from biomaterials. The manual monitoring of tumors at
early stages was impossible because the tumors initially
developed within the scaffold. However, this was not an
impediment for bioluminescence. The correlation between
bioluminescence signals and the golden standard method
of histological examination was higher, confirming the
method is more sensitive than manual measurements.
Therefore, bioluminescence was further used solely to
monitor the scaffolds when developing the model.
A challenge for using the bioluminescence method

would be monitoring of bigger tumors. We monitored a
drop in intensity for a tumor developed from very high
seeding density of DOKLuc 1 CAFs xenografts (1 3
106). We interpreted that to be an underestimation of the
real bioluminescence signal from the cells because that
tumor was later found to be cystic. Cystic content or
necrosis that can occur in large or late stage tumors might
reduce the production of light because of decreased pro-
liferation or hypoxia.27,39 Therefore, we recommend inoc-
ulating fewer cells per area of scaffold in order to
circumvent these limitations and monitor tumor formation
for longer period of times, as required in carcinogenesis
studies. Although the use of such immunodeficient mod-
els greatly aids the development of “humanized” models
of cancer using biomaterials,25 it does come with the
caveat of no innate host immunity. Whereas this limita-
tion prevents the current study of role of the immune sys-
tem in tumor prevention in such models or the use of
immunotherapeutic interventions, steps have been made
to circumvent such constraints. Recent efforts have dem-
onstrated that introduction of distinct human immune
components are possible in mice xenografted with cancer
cell lines,40 suggesting that further evolution of the NSG
mice system may yet render models to study human
immune reactions in cancer.
Our model provides an abridged alternative to the years

spent in rodent models to get tumors from biomaterials
implanted solely in animals and foreign body tumorigene-

sis has several stages, with specific sequences of preneo-
plastic characteristics.12,41 The processing time is reduced
because of the ability of screening several animals simul-
taneously, which makes it cheaper compared to other
high throughput imaging methods used in the field, such
as MRI.

CONCLUSIONS
The model generated and validated in this study is a

sensitive and reliable model for monitoring microenviron-
mentally induced carcinogenesis providing early, consist-
ent surveillance of tumor development associated with
implantation of scaffolds for tissue engineering.
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32. Dånmark S, Finne–Wistrand A, Wendel M, Arvidson K, Albertsson A-C,
Mustafa K. Osteogenic differentiation by rat bone marrow stromal cells on
customized biodegradable polymer scaffolds. Bioact Compat Polym 2010;
25:207–223.
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