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Abstract

This work is dedicated to the study of water wave models with applications in mind. Us-
ing fundamental equations as a basis we will analyze different systems and put forward
applications that are useful in the field of oceanography. The main goal is to understand the
development of waves from deep to shallow-water and its underlying theory.

First we will model unidirectional long gravity waves propagating up a gently sloping
beach. This is based on formulating conservation laws in the context of the Korteweg-de Vries
(KdV) equation. Within this framework, two models will be derived using an asymptotic
expansion of the general water wave problem arising from the Euler equations for irrotational
flow. Having derived the model we propose a scheme and run several numerical experiments
for validation with existing theories. This work has been submitted to the Journal of Fluid
Mechanics.

Secondly, as one gets closer to the shore one needs to change regimes due to nonlinear
effects. In order to better understand some of the intricacies, consideration is given to the
shallow-water equations. This is a hyperbolic system modeling the propagation of long
waves at the surface of an incompressible inviscible fluid of constant depth. Here we will
study admissibility conditions for the Riemann problem and discuss various scenarios in
which the problem arises in a physically reasonable sense. This work has been excepted for
publication in: Zeitschrift für Naturforschung A [50].





Introduction and general outline

The dynamics of water waves are typically understood through the concept of conservation
laws. In particular conservation of mass, energy and momentum are often used within a
certain framework. For instance, consider a continuum with a fixed volume V and density ρ .
A basic principle of classical mechanics states that the change of mass within the volume
must be equal the rate of inflow through the boundaries. Translated into mathematical terms,

d
dt

∫
V

ρdV =−
∫

∂V
ρudA.

Applying the transport theorem on the left and divergence theorem on the right and collecting
the terms, it can be argued that the volume V was arbitrary and therefore the following must
hold

∂ρ

∂ t
+∇ · (ρu) = 0. (1)

Since we are concerned with incompressible water flow and negligible changes in density
one may simplify equation (1):

∇ ·u = 0, (2)

which is the well-known continuity equation with the fluid velocity u = (u(x,z, t),v(x,z, t)).
By similar means, the momentum equation can be expressed by the Euler equations

when imposing the standard assumption of an ideal fluid being incompressible, inviscid in a
domain with a flat bottom. It is given by

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇P−gj. (3)

Together with the continuity equation, the Euler equations will form the basis of this thesis.
Keeping in mind that no theory can exceed its underlying assumptions, we must only consider
scenarios within the specified framework. In this spirit, since we want to understand how
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periodic waves vary when traveling up a gently sloping beach, we must first understand the
framework we are working in and whether additional restrictions make sense.

In Chapter 1 we discuss basic theory of simplified models based on equation (2) and (3).
These simplifications are needed since solving the Euler equations for large scale simulations
is very computationally expensive. With this in mind, we try to justify the simplifications
such that it achieves a satisfying level of precision at a lower cost. Adding assumptions to the
problem can be useful when we are interested in particular phenomena and the simplest case
is linear wave theory. This will be discussed in Section 1.2 when considering ’deep water
waves’. Once we get closer to the shore we need to improve our model compared to our base
(2) and (3). Building on the ideas from linear theory, higher-order theory will be discussed
in the context of the KdV equation.

In light of the theory developed in Chapter 1, we present a new numerical model in
Chapter 2. The goal is to model the variation of the waveheight up a gently sloping beach
using conservation principles. This phenomena is known as shoaling, and will be based
on conservation laws formulated in the context of the KdV equation. Applying the model
correctly will allow for accurate and fast computations of a complex phenomenon. We first
present the well-known linear shoaling equation in Section 2.1, before extending it in Section
2.2 using the KdV equation. Lastly, we discuss the validity of the new model in a rigorous
framework in Chapter 3.

To conclude our studies, we consider some of the challenges that occur in the shallow-
water region. In particular we would like to study admissibility conditions for the shallow-
water equations. These equations have a hyperbolic structure, so we start the chapter by
deriving the conditions a general system must satisfy. Then we apply these conditions to the
shallow-water system in Section 4.2 for the Riemann problem. This is standard theory and
we put forward the classical solution in Section 4.2.3. Though, having the desired framework
we will argue in the proceeding sections that some of those solutions are nonphysical in this
context, and we suggest a solution on how to overcome this issue.



Chapter 1

Modeling of surface water waves

We start this chapter with a brief description of the water wave problem. Consider a
homogeneous liquid and gas at rest separated by a horizontal surface. We say that disturbances
to the original state of equilibrium will take the form of surface gravity waves. The liquid
domain is specified by {(x,z)∈R2|−h < z < η(x, t)} where h is the undisturbed water depth
and η is the surface excursion. Imposing the standard assumptions of an ideal fluid being
incompressible, inviscid and with a flat bottom leads to the Euler equations as previously
discussed. Though, there are still several reasonable restrictions that can be made to further
simplify the system for certain applications. We will mainly follow the standard derivation
of ’potential theory’ given in [37] with some additional notes.

Fig. 1.1 Cnoidal wave propagating over a flat bottom.

First, we are interested in describing long waves allowing us to neglect small scale effects as
surface tension. Moreover we assume that the fluid is irrotational (at least up to breaking),
meaning the instantaneous rotation of the fluid or vorticity ω = ∇×u is zero. An important
consequence is the existence of a potential function φ such that u = ∇φ . Applying the
continuity equation (2) we obtain the Laplace equation:
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∆φ = 0,

describing the propagating part of the velocity field [45]. Another implication for an irrota-
tional fluid can be found when looking at the advective term in the momentum equation (3).
Observe,

u ·∇u = u j
∂ui

∂x j

= u j(
∂ui

∂x j
−

∂u j

∂xi
)+u j

∂u j

∂xi

=−u jεi jkωk +
∂

∂xi
(
1
2

u ju j).

Writing (3) in terms of the velocity potential now gives

∇{ρ
∂φ

∂ t
+

ρ

2
|∇φ |2 + p+ρgz}= 0,

or simply

ρ
∂φ

∂ t
+

ρ

2
|∇φ |2 + p+ρgz = 0, (1.1)

where the constant of integration is absorbed by redefining the velocity potential. Equation
(1.1) is known as the Bernoulli equation and gives us information about the pressure acting
below the surface. Though, we are interested in the development of the free surface where
the pressure is atmospheric and therefore assumed constant. For simplicity, set p = patm = 0
at the interface z = η , which effectively neglects capillary effects.

Additional boundary conditions are needed for a well-defined system and next up is the
kinematic boundary condition. This condition reflects that any fluid particle at the surface
will always remain on the surface [37]. Let z∗ = η(x∗, t) denote the position of such a particle.
A consequence of the previous statement is that its normal velocity must coincide with the
normal velocity of the surface. Consider a small motion in space δ z∗ and time t +δ t then
the equality must hold,

z∗+δ z∗ = η(x∗+δx∗, t +δ t),

for it to remain on the surface. Now, Taylor expanding η around (x∗, t) gives

η(x∗+δx∗, t +δ t) = η(x∗, t)+
∂η

∂x∗
δx∗+

∂η

∂ t
δ t +O(δ 2),
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and in turn implies,

z∗+δ z∗ = η(x∗, t)+
∂η

∂x∗
δx∗+

∂η

∂ t
δ t.

On the surface we have that z∗ = η , and therefore these terms cancel. Taking the limit we
observe

lim
δ t→0

δ z∗

δ t
= lim

δ t→0

∂η

∂x
δx∗

δ t
+

∂η

∂ t
.

Recognizing the vertical component v of the fluid velocity at the surface and the material
derivative on the right, or in terms of the velocity potential yields

∂φ

∂ z
=

∂φ

∂x
∂η

∂x
+

∂η

∂ t
, (1.2)

for z = η . This intuitive approach shows that a particle in the boundary surface will remain
there and follow the normal velocity of the surface whenever equation (1.2) holds. Of course
this holds in general, there is no flow through an impervious boundary or body and this brings
us to the last condition, namely that there is no flow through the bottom surface. Meaning
the velocity normal of the fluid normal to the ground must be zero and given by

∂φ

∂ z
= 0, (1.3)

for z =−h. The nonlinear problem is then fully described by the following equations

φxx +φzz = 0 for −h < z < η(x, t). (1.4)

Subject to the conditions

φz = 0 on z =−h, (1.5)

ηt +φxηx −φz = 0 on z = η(x, t), (1.6)

φt +
1
2
(φ 2

x +φ
2
z )+gη = 0 on z = η(x, t). (1.7)

This system is still a very complicated and highly nonlinear model describing water waves in
a fairly general setting. The plan for the remainder of the chapter will be devoted to making
additional simplifications of the system defined above.
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1.1 Linear wave theory

The simplest system is given by the linearized equations for ’deep water waves’. These
waves are characterized by the assumption that the amplitude a, of oscillation of the free
surface is small in the sense that both a/λ and a/h are much smaller than unity. Imposing
these conditions one can show that the nonlinear terms may be excluded using a dimensional
argument [37] where λ is the wavelength. Consider the non-dimensional quantities denoted
with (·̃),

x = λ x̃, z = h0z̃, t =
λ

c0
t̃, φ =

gaλ

c0
φ̃ , η = aη̃ . (1.8)

Here c0 denotes the limiting long-wave speed c0 =
√

gh0. Substituting the non-dimensional
variables into kinematic boundary equation (1.6) yields,

η̃t +
a
λ

φ̃x̃η̃x̃ − φ̃z̃ = 0,

allowing us to neglect the nonlinear term. Similarly for equation (1.7) we get

φ̃t̃ +
1
2
(

a
λ

φ̃
2
x̃ +

a
h0

φ̃
2
z̃ )+ g̃η̃ = 0.

We may therefore neglect the nonlinear term given the assumption a/λ << 1 and a/h0 << 1.
Also, it is given that the wave elevation η is proportional with the amplitude a, which means
we can evaluate the boundary condition at z = 0 rather than η . This is observed using a
Taylor expansion around zero

φ(x,z = η , t) = φ(x,z = 0, t)+
∂φ

∂ z
η + ...

In non-dimensional terms gives

aωλφ̃(x,z = η , t) = aωλφ̃(x,z = 0, t)+
aωλ

h0

∂ φ̃

∂ z
aη̃ + ...

and may be simplified to recognize terms of higher-order

φ̃(x,z = η , t) = φ̃(x,z = 0, t)+
a
h0

∂ φ̃

∂ z̃
η̃ +O(

a2

h2
0
).

Neglecting the terms containing a/h0 allows us to evaluate the free surface conditions at
z = 0 in this regime. Summing up the results we have the following theorem (see also [37]).
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1.1.1 Periodic wave solution in linear theory

Theorem 1. The linearized problem describing long gravity waves is fully described by the
Laplace equation within the fluid domain,

φxx +φzz = 0 for −h < z < 0, (1.9)

and is subject to the boundary conditions:

∂φ

∂ z
= 0 on z =−h, (1.10)

∂φ

∂ z
=

∂η

∂ t
on z = 0, (1.11)

∂φ

∂ t
=−gη on z = 0, (1.12)

with traveling-wave solution

φ(x,z, t) =
aω

k
cosh(k(z+h))

sinh(kh)
eik(x−ct). (1.13)

Additionally it follows that

ω
2 = gk tanh(kh), (1.14)

and is known as the dispersion relationship, describing the relation between the angular
frequency ω and the wavenumber k.

Proof. We will use the method ’separation of variables’ assuming the solution takes the form

φ(x,z, t) = f (z)Λ(x, t). (1.15)

Continuing, we may use the Laplace equation (1.9) to retrieve additional information. Ob-
serve,

− f ′′(z)
f (z)

=
1

Λ(x, t)
∂ 2Λ(x, t)

∂x2 . (1.16)

Since the two expressions are equal and independent of their respective variables they must
be equal to a constant −k2. Moreover we seek a traveling-wave solution. Therefore, take
Λ(x, t) = g(ξ ) with ξ = x− ct, describing a right moving wave with speed c and of constant
form g. By (1.16) we have:
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∂ 2Λ

∂x2 + k2
Λ = 0,

and implies

dg(ξ )
dξ

+ k2g(ξ ) = 0,

and is a well-known ODE with solution

Λ(x, t) = g(x− ct) = aeik(x−ct).

It is clear that the wave is moving sinusoidally with amplitude a. Returning to equation (1.16)
we must also solve the differential equation

d2 f (z)
dz2 − k2 f (z) = 0.

Using the characteristic equation we find the solution

f (z) = Aekz +Be−kz.

Now, impose the condition of no flow through the bottom given by equation (1.10):

B = Ae−2kh0.

Next, use the condition for the motion of the surface (1.11), resulting in

k(A−B) = aω.

with c = ω/k. Combining the results yield

A =
aω

k(1− e−2kH)
and B =

aωe−2kH

k(1− e−2kH)
,

and from our original assumption, (1.15) we get the following velocity potential

φ(x,z, t) =
aω

k

{ 1
1− e−2kH (ekz + e−kz−2kH)

}
sin(kx−ωt),

or simply

φ(x,z, t) =
aω

k
cosh(k(z+h0))

sinh(kh0)
eik(x−ct).



1.2 The KdV equation 7

Finally, we may use the linearized Bernoulli equation (1.12) to find the relationship between
the wavenumber and frequency. We have that

∂φ

∂ t
|z=0 =−gη ,

and implies

−aω2

k
cosh(k(z+h))

sinh(kh)

∣∣∣
z=0

ei(kx−ωt) =−gaei(kx−ωt).

We may therefore write,

ω
2 = gk tanh(kh).

The relation between frequency ω , and wavenumber k is known as the dispersion relationship
which is what we wanted to find and completes the proof.

Remark 1. The linear regime only holds for fairly long waves at a sufficient depth. A better
model is typically found by the use of some kind of asymptotic approximation to the Euler
equations. For instance, we turn to the Korteweg-de Vries (KdV) equation if there is a need
to include nonlinear and dispersive effects. This is the subject of the next section.

1.2 The KdV equation

The Korteweg-de Vries equation (KdV) models unidirectional waves that are weakly nonlin-
ear and weakly dispersive. In addition, it is useful to define the relative amplitude α = a/h0

and the relative wavenumber as β = h2
0/λ 2, where a denotes a representative amplitude and

λ a representative wavelength. Using an asymptotic expansion and a dimensional argument
we may neglect terms of order O(α2,αβ ,β 2), covering a wide range of long waves that are
interesting from the viewpoint of applications. Following the outline in [69], we first assume
the velocity potential takes the form:

φ(x,z, t) =
∞

∑
n=0

fn(x, t)zn.

We also assume for a moment that z = 0 at the horizontal bottom. To find the form of φ we
apply the Laplace operator. Computing the derivatives gives
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∞

∑
n=0

∂ 2 fn

∂x2 zn +
∞

∑
n=2

n(n−1) fnzn−2 = 0.

Translate and factor the zn term

∞

∑
n=0

{zn[
∂ 2 fn

∂x2 +(n+2)(n+1) fn+2]}= 0,

and should hold for all z ∈ R, which in turn implies

fn+2 =
−1

(n+2)(n+1)
∂ 2 fn

∂x2 .

Note that we imposed that f1 = 0 due to the condition φz|z=0 = 0. Solving the recursive
relation will reveal the form of φ . Noting that only even terms appear we may put n = 2n:

f2n =
−1

2n(2n−1)
∂ 2 f2n−2

∂x2 =
1

2n(2n−1)(2n−2)(2n−3)
∂ 4 f2n−4

∂x4 = ...=
(−1)n

(2n)!
∂ 2n f0

∂x2n .

Therefore, the general form of the problem must be given by

φ(x,z, t) =
∞

∑
n=0

(−1)n z2n

(2n)!
∂ 2n f
∂x2n , (1.17)

where f = f0. Now, before we deliberate on the boundary conditions, it is useful to write the
equations in non-dimensional terms using the previously defined scaling (1.8). For simplicity
we drop the (·̃) notation, then the Laplace equation becomes:

∇
2
φ =

gλa
c0λ 2

∂ 2φ

∂x2 +
gλa
c0h2

0

∂ 2φ

∂ z2 = 0.

Next, factor the relative amplitude and wavenumber

β
∂ 2φ

∂x2 +
∂ 2φ

∂ z2 = 0. (1.18)

Having handled the Laplace operator we now turn to the the boundary conditions. With
the current scaling we must evaluate z∗ at h0 +η∗ or in non-dimensional terms z = 1+αη .
Repeating the process as above for the kinematic boundary condition (1.6), one can show
after some simplifications that

ηt +αφxηx −
1
β

φz = 0, (1.19)
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on z = 1+αη . The same can also be done for the Bernoulli equation on the boundary, and
gives

gaφt +(
ga
c0

)2 φ 2
x
2

+(
gλa
c0h0

)2 φ 2
z

2
+gaη = 0.

Resulting in

φt +
1
2

αφ
2
x +

1
2

α

β
φ

2
z +η = 0.

Now that we have every equation written in non-dimensional terms we would like to apply
the expansion for φ . Its non-dimensional form reads

φ =
∞

∑
n=0

(−1)n z2n

(2n)!
∂ 2n f
∂x2n β

n.

Plug it into the kinematic boundary condition (1.6):

ηt +α[
∞

∑
n=0

(−1)n z2n

(2n)!
∂ 2n+1 f
∂x2n+1 β

n]ηx −
1
β
[

∞

∑
n=1

(−1)n z2n−1

(2n−1)!
∂ 2n f
∂x2n β

n] = 0.

After some rearrangement and neglecting terms containing powers of β , the equation yields

ηt +α fxηx + z fxx −{z3

6
fxxxxβ +

z2

2
fxxxηxβ}+O(β 2) = 0.

This is a boundary condition on the free surface, so we have that z = 1+αη . Thus,

ηt +{(1+αη) fx}x −{1
6
(1+αη)3 fxxxx +

1
2
(1+αη)2

ηx fxxx}β +O(β 2) = 0, (1.20)

noting that we also factored one term due to the product rule. Finally, repeating the same
procedure we obtain an equation for the equation of motion

η + ft +
1
2

α f 2
x − 1

2
(1+αη)2{ fxxt +α fx fxx −α f 2

xx}β +O(β 2) = 0. (1.21)

Simplification can be made to both equations when considering the expansion of φx

φx = fx −
z2

2
fxxxβ +O(β 2). (1.22)

Neglecting terms containing β we see that φx = fx, being the velocity in the x−component
of u. Another observation, taking our two equations (1.20) and differentiate (1.21) with
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respect to x and neglecting all terms containing β , one can easily verify that it simplifies to
the shallow-water equations. Though, attaining the correct order leads to the Boussinesq
equations:

ηt +{(1+αη)u}x −
1
6

βuxxx +O(αβ ,β 2) = 0, (1.23)

ut +αuux +ηx −
1
2

βuxxt +O(αβ ,β 2) = 0. (1.24)

We are interested in a simpler model, considering only unidirectional waves. Combining
this assumption with the observation that the Boussinesq equations at lowest order is reduced
to a system of transport equations

ηt +ηx = 0,

ut +ηx = 0,

and must have the solution η = u. We deduce the solution at the correct order on the form

u = η +αA+βB+O(α2 +β
2).

Additionally, from the transport equation we must have ηt =−ηx+O(α,β ). Using equation
(1.23) and (1.24) one can choose the functions A and B in terms of η and ηx such that both
equations are consistent. Indeed,

ηt +ηx +α(Ax +2ηηx)+β (Bx −
1
6

ηxxx)+O(α2 +β
2) = 0,

ηt +ηx +α(At + ηηx)+β (Bt − 1
2

ηxxt)+O(α2 +β
2) = 0,

arguing by consistency and the fact that the solution satisfies the transport equation to
first-order gives

2Ax +ηηx = 0,

2Bx −
2
3

ηxxx = 0.

Clearly, A =−1
4η2 and B = 1

3ηxx, gives rise to the horizontal velocity

u = η − 1
4

αη
2 +

1
3

βηxx +O(α2 +β
2), (1.25)
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and the famous Korteweg-de Vries equation

ηt +ηx +
3
2

αηηx +
1
6

βηxxx +O(α2 +β
2) = 0, (1.26)

or in dimensional form

ηt + c0(1+
3
2

η

h0
)ηx +

h2
0

6
ηxxx = 0. (1.27)

1.2.1 Some useful quantities in the KdV equation

Before proceeding with the solution of constant form in the KdV approximation, we find it
useful to summarize some of the results. First, we simplify the notation by setting ε = α = β

since O(ε2) =O(α2,αβ ,β 2) are neglected terms. The non-dimensional form of the KdV
equation is then given by

ηt +ηx +
3
2

εηηx +
1
6

εηxxx = 0.

It will later turn out that some useful quantities in this context are: φx and the dynamic
pressure P, when deriving balance equations in the KdV equation in Section 2.2.1 and
convergence proofs to the full Euler system in Chapter 3. The first quantity is given by

φx = fx −
z2

2
ε fxxx +O(ε2).

where fx is the horizontal velocity u, given by equation (1.25):

u = η − 1
4

εη
2 +

1
3

εηxx +O(ε2).

Substituting this expression and neglecting higher-order terms leads to

φx = η − 1
4

εη
2 + ε(

1
3
− z2

2
)ηxx +O(ε2).

By a similar procedure we have that

φz =−ε fxx +O(ε2),

form the asymptotic expansion. From the relation fx = u = η +O(ε), it follows that
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φz =−εηx +O(ε2).

Next, we would like to express the pressure in terms of the surface elevation η satisfying
the KdV equation. This can be done by considering the dynamic pressure P′ = P−Patm +gz
and use the Bernoulli equation within the fluid domain [61] to find:

P′ =−φt −
1
2
|∇φ |2.

Applying the same dimensional arguments as before together with the expansion (1.17) leads
to

P′ = η − 1
2

ε(z2 −1)ηxx +O(ε2).

The same expression can also be found in [5, 6]. We will later use these expressions to form
a system of the shoaling process, but we first need the traveling-wave solution of η satisfying
the KdV equation.

1.2.2 Cnoidal wave solution

We will later present an explicit model describing the shoaling of long waves up a gently
sloping beach. The idea is to use the well-known cnoidal wave solution for periodic waves in
the KdV equation to approximate the deformation of η . The solution of the KdV equation
for waves of constant form was first discovered by Korteweg and deVries in 1895 [36] and
we will first offer some brief remarks. This will in turn help us better understand the system
in the end. With that said, we proceed by assuming the traveling-wave solution of constant
shape

η(x, t) = h0 f (ξ (x, t)) = h0 f (x− ct).

Consequently, one can be verify that the KdV equation (1.27) reduces to an ODE on the
form

(1− c
c0
) f ′+

3
2

f f ′+
h2

0
6

f ′′′ = 0.

First integrate the above equation,

(1− c
c0
) f +

3
4

f 2 +
h2

0
6

f ′′+A = 0,

then multiply with f ′ and integrate once more to obtain
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−
h2

0
3
(

d f
dξ

)2 = F( f ) = f 3 +2
(

1− c
c0

)
f 2 +A f +B, (1.28)

with A,B ∈ R being constants of integration. There are several solutions to this differential
equation, but for practical application we only seek real bounded solutions of the wave-profile
f [17].

Fig. 1.2 The red lines denotes the values of f such that −F ≥ 0 and f1, f2, f3 are its roots.

First, we want the solution to be real, i.e. from (1.28) we see that −F( f ) must be positive.
Also, assuming there are three distinct roots such that f3 < f2 < f1 allows us to write

F( f ) = ( f − f1)( f − f2)( f − f3). (1.29)

In order to understand the behavior of the polynomial F( f ) for particular values of c,A and
B one can simply plot the function. From Figure 1.2, there is a region between f2 and f1

such that f only omits real values. Furthermore, having solutions such that f2 ≤ f ≤ f1 will
describe the free surface in between the trough and crest at f2 and f1, respectively. As a
result, we denote the waveheight at any point by the difference H = f1 − f2. Returning to the
ODE, we have

d f
dξ

=±
√

3
h2

0

√
( f − f1)( f − f2)( f − f3), (1.30)

from which we deduce the implicit solution

∫
ξ

ξ1

dξ
′ =±

h2
0√
3

∫ f (ξ )

f1

dz

{(z− f1)(z− f2)(z− f3)}
1
2
. (1.31)
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Now substitute z = f1 +( f2 − f1)sin2
θ with the Jacobian dz

dθ
= 2( f2 − f1)sinθ cosθ . It

follows after some simplification

ξ = ξ1 ±
2h2

0
√

f2 − f1√
3

∫
ϕ(ξ )

0

cosθdθ

{( f1 +( f2 − f1)sin2
θ − f2)( f1 +( f2 − f1)sin2

θ − f3)}
1
2
.

Factoring common terms in the denominator and defining m = f1− f2
f1− f3

will simplify the
expression, resulting in an elliptic integral with known solution:

ξ = ξ1 ∓
2h2

0√
3( f1 − f3)

∫
ϕ(ξ )

0

dθ

{1−msin2
θ} 1

2
,

satisfying the relation (see [39])

cosϕ = cn
(

ξ −ξ1

σ
| m
)
,

where σ2 = 4
3( f1− f3)

. Considering the transformation z = f1+( f2− f1)sin2
θ , it is clear that

the solution of f is given implicitly in terms of ϕ by

f = f1 +( f2 − f1)sin2
ϕ

= f1 +( f2 − f1)(1− cos2
ϕ)

= f2 +( f1 − f2)cn2
(

ξ −ξ1

σ
| m
)
.

Furthermore, half a wavelength corresponds to integrating (1.31) from trough to crest, or
setting the angle ϕ = π

2 :

λ = 2σ

∫ π

2

0

dθ√
1−msin2

θ

= 2σK(m). (1.32)

The integral formulation is known as the complete elliptic integral of the first kind [17, 39].
Also, comparing (1.28) and (1.29), we may express the wavespeed as

c = c0

(
1+

f1 + f2 + f3

2h0

)
.

Returning the solution to its original variables and dropping the face shift and substituting
λ = cT in conjunction with (1.32), we get the following expression

η(x, t) = f2 −Hcn2
(

2K(m)(
t
T
− x

λ
),m
)
, (1.33)
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for traveling wave solutions of constant form in the KdV equation. The shape of the
cnoidal wave solution is therefore uniquely determined by the three roots f1, f2 and f3. For
convenience, we would like to express these roots in terms of m,H and the mean surface
level η . We observe,

η =
1
T

∫ T

0
ηdt

= f2 −H
1
T

∫ T

0
cn2
(

2K
t
T

)
dt

= f2 −
H
2K

∫ 2K

0
cn2(u)du,

where

∫ 2K

0
cn2(u)du =

2
m

E(m)− 1−m
m

2K(m),

as given in Abramowitz and Stenguns book on special functions [3]. Hence, the mean surface
level is expressed by

η = f2 +
H

mK(m)

(
E(m)− (1−m)K(m)

)
. (1.34)

Using the definition of m = f1− f2
f1− f3

we may manipulate the expression (1.34) and solve for f3.
This result in the following implicit relation

f3 = η − ( f1 − f3)
E(m)

K(m)
.

Now, recalling the expression for waveheight given by H = f1 − f2 allows us to write
f3 = η − HE(m)

mK(m) ,

f1 = f3 +
H
m ,

f2 = f1 −H.

(1.35)

Clearly, having the waveheight H, the modulus m, and the mean surface level η is enough to
determine the surface profile at a specific depth. This will be the subject of Chapter 2, where
we use conservation principles to determine these three parameters.





Chapter 2

Applications to cnoidal shoaling

This Chapter is devoted to modeling the development of surface waves across a sloping
bottom profile. Our main goal is the prediction of the waveheight of a periodic wave as it
enters an area of shallow depth using conservation laws. The numerical modeling of the
nearshore zone has all but replaced the traditional methods of finding the development of
a shoaling wave. The traditional method is based on the observation that the energy flux
of a wave is conserved as it shoals on a gentle beach, since the flow velocity at the bottom
is tangent to the bottom. While the conservation of energy flux has been replaced with the
conservation of wave action in spectral models, it can be used to obtain a quick estimate of
the expected waveheight using linear wave theory. This classical approach can be found in
textbooks on coastal engineering, such as [16, 65], and will be presented in Section 2.1. The
proceeding sections contain new work based on these classical ideas, and is submitted for
publication [51].

The linear relation works well for a wave of moderate amplitude. For large-amplitude
waves, it can be replaced by the Dean-Dixon method, but this is more computationally
demanding. A good compromise can be reached by using periodic waves described by the
KdV equation. This works for waves of moderate amplitude. Of course large-amplitude
waves are breaking, and it can also be presumed that large amplitude waves are changing so
rapidly that the steady theory ceases to be applicable. Thus, it can be gathered that the KdV
approach appears to be the best compromise. The approach was used by Svendsen Buhr
Hansen (SBH), and found to be good compared to experimental data [66]. However, there
was one problem. SBH used KdV in connection with the linear formulation of the energy flux.
Unfortunately, this led to a discontinuity at the matching point between the linear shoaling
equation given by (2.2) and the nonlinear theory based on the KdV. To remedy this issue,
a fully nonlinear expression will be derived in Section 2.2. Here we will derive the energy
balance and momentum balance in the context of the KdV as outlined in [6]. Building on that
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work, we derive a new expression for radiation stress in Section 2.3, which will include the
effects of set-down of mean surface level. Where set-down is a well-established phenomenon
due to the breaking of waves and plays an important role to understand potential run-up on a
beach [46, 47].

2.1 Conservation laws in linear theory and linear shoaling

In order to get a better understanding of the model we give a brief presentation of shoaling
in linear theory. In a nutshell, the waveheight of a shoaling wave is obtained by imposing
conservation of the energy flux Ecg, where E is the energy density,

E =
1
λ

∫
λ

0

∫ 0

−h

{
ρ

2
|∇φ |2 +ρgz

}
dzdx,

and cg is the group velocity defined by

cg =
dω

dk
, (2.1)

known as the velocity of for the overall envelope of a wave train. Now, using the solution of
the velocity potential from Section 1.1.1 we can show that the total energy is given by

E =
1
8

ρgH2,

and
cg =

c
2

[
1+

2kh
sinh(2kh)

]
,

when computing the integrals and taking the derivative (see for example [37, 16]). As a
result, assuming no reflection, energy conservation implies

H = H0

√
cg0

cg
. (2.2)

Meaning, the waveheight H at current local depth is determined by the waveheight at previous
depth (subscript ’0’), the group velocity which is a function of the wavenumber and is given
by the dispersion relation (1.14). Namely, imposing conservation of period T , we may insert
it into the dispersion relation

2π

T
−gk tanh(kh) = 0,

solving the nonlinear equation for k, which in turn allows us to determine H by (2.2).
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This simple procedure is presented in the code below using MATLAB syntax [48].

1 function [H, h] = LinearShoaling(L0, H0, h0)

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This function computes the waveheight using the theory of linear

4 % wave shoaling.

5

6 % Input: L0 − original wavelength at deep water

7 % H0 − original waveheight at deep water

8 % h0 − initial local depth

9

10 % Output: H − waveheight

11 % h − depth

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 % Parameters

14 g = 9.81; %% gravity

15 K0 = 2*pi/L0; %% wavenumber

16 w = sqrt(g*K0*tanh(K0*h0)); %% circ. frequency

17 cg0 =(1+2*K0*h0/sinh(2*K0*h0))*w/(2*K0); %% Initial group velocity

18

19 % Run linear shoaling from current depth while H/L>0.1

20 LocalDepth = linspace(h0,0,k)

21 i=0;

22 while h/L>0.1

23 i = i+1;

24 h = LocalDepth(i);

25

26 % Use nonlinear solver to find the wavenumber K

27 K = fsolve(@(K) w^2−g*K*tanh(K*h), K0, options);

28

29 % New group velocity

30 cg =(1+(2*K*h)/sinh(2*K*h))*w/(2*K);

31

32 % Store waveheight

33 H(i) = H0*sqrt(cg0/cg);

34

35 % Update values for next step

36 H0 = H(i); h0 = h; L0 = 2*pi/K;

37 K0 = 2*pi/L0;

38 w = sqrt(g*K0*tanh(K0*h0));

39 cg0 =(1+2*K0*h0/sinh(2*K0*h0))*w/(2*K0);

40 end

41 end
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2.1.1 Numerical experiment

We will now consider a numerical experiment using the linear shoaling equation (2.2).
The comparison is based on experimental data observed in a wave tank by Svendsen and
Brink-Kjær [67]. These waves were produced by a wavemaker, where the waves propagated
initially at a constant depth of 36 cm until it reached a gently slope with steepness 1 : 35.
In turn, this leads to a deformation of the initial wave-profile. The idea is now to use the
initial wave-profile as deep water data and apply the shoaling equation to approximate the
deformation. A schematic of the process is shown below.

Fig. 2.1 Deep water waves propagating up a gently sloping beach with same frequency and carrying
an equal amount of energy. The red crosses denotes the waveheight measured from the stippled line,
representing the still water level.

In Figure 2.1, a deep water wave is propagating up a gently sloping beach with initial deep
water parameters H0, h0 and at a certain period T , from which we find the deep water
wavelength (see [37] for the deep water approximation of the wavelength):

λ0 =
g

2π
T 2.

Now, imposing conservation of period and energy flux will allow us to use the scheme
presented in the previous section and solve for the development of the wave-profile near the
shore. We will run the code for a deep water wave characterized by the non-dimensional
numbers

H0

λ0
= 0.0099 and T

√
g
h
= 8.70.
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The result of this scenario is depicted in Figure 2.2, with depth on the x−axis decreasing
from right to left and waveheight plotted on the y−axis in centimeters. The solid blue line
is a result of the linear shoaling theory, while the stippled line is the result of higher-order
theory discussed in the next section. Further, the red crosses are experimental data collected
in [67].

Fig. 2.2 Deep water wave characterized by H0
λ0

= 0.0099 and T
√

g
h = 8.70. Solid blue line denotes

waveheight in linear theory, stippled blue line is higher order theory in the context of the KdV equation
and red crosses denotes measurements found in [67].

We observe that the result in Figure 2.2 that there is fairly good agreement in the deep water
region. Though, as the wave reaches the shore the linear theory fails to predict the waveheight
compared to the experimental data. This is natural if we recall the basic assumption of linear
theory from Section 1.1 was imposing the criterion; amplitude over wavelength is small
compared to unity. A measure of the validity of the linear theory in terms of wavenumber
and amplitude is given by

k
H
2
<< 1, (2.3)

as k = 2π

λ
. Returning now to the case considered in Figure 2.2, the number specified by (2.3)

ranges from a value of 0.04 in the start to 0.10 at h = 5.0 cm. A clear quantification for when
the theory is valid is hard to give, but at least the example gives an indication on when it fails
to work. In that regard, in order to get further into the shoaling region we need a higher-order
approximation of the shoaling process. Analogous theory will now be developed in the KdV
regime, using the cnoidal wave solution to approximate the deformation of the waveheight
using conservation principles. Note also that the MATLAB code runs the linear shoaling
algorithm while local depth and the wavelength in deep water satisfy h/λ0 > 0.1. At this
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point the cnoidal theory is found to be valid [60] and is the subject of the proceeding sections
of this chapter.

2.2 Conservation laws in the KdV equation

Conservation laws in the context of the KdV equation will now be put forward to describe
the shoaling process. The idea is the same as for the linear theory, namely use the traveling
solution of constant form (1.33) to approximate the dynamic problem with varying depth.
We also recall that fixing H,m and η is enough to determine any cnoidal wave. The relation
between these parameters is given by the three roots (1.35), and we must therefore have
three fundamental equations. We will consider two different systems.

First we will consider a system with zero set-down of mean surface level inside the
shoaling region i.e. η = 0. Further, we impose conservation of energy flux and conservation
of period. This will be based on previous work where energy flux was derived in the context
of the full KdV equation in [6]. Additionally, such a system has been implemented as a
system of three equations in [35]. Our hope is to improve this system and write it as a single
equation making more stable and allowing for computations further into the shoaling region.

Secondly, we improve on the system by dropping the assumption η = 0. Including
this additional phenomena will of course require another balance equation, and will here
be written in terms of the radiation stress. Though, in order to do so we must find its
representation in terms of the KdV equation. The derivation of radiation stress is given in
Section 2.3 and related to momentum balance. Then again imposing conservation of energy
flux and period will result in a system of three equations with three unknowns describing the
shoaling process.

The structure of this chapter will first be on the derivations of conserved quantities
and radiation stress in the KdV equation. Then a numerical solution strategy is given
and comparisons are made with previous theory and real data retrieved from wave tank
experiments.

2.2.1 Momentum and energy balance

In order to express the shoaling process in the context of the KdV equation we will need an
expression of momentum and energy balance. Starting with the momentum balance law we
will use the quantities derived in Section 1.2 to give an expression for momentum flux in the
KdV equation. In the context of the full Euler equations with surface boundary conditions,
the momentum balance is expressed by [16]:
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∂

∂ t

∫
η

−h0

φxdz+
∂

∂x

∫
η

−h0

{φ
2
x +P}dz = 0. (2.4)

Written in its non-dimensional form gives

c0

l
∂

∂ t̃

∫ 1+αη̃

0

ga
c0

φ̃x̃h0dz̃+
1
l

∂

∂ x̃

∫ 1+αη̃

0
{g2a2

c2
0

φ̃
2
x +agP̃′+gh0(1− z̃)}h0dz̃ = 0, (2.5)

or simply

α
∂

∂ t̃

∫ 1+αη̃

0
φ̃x̃hodz̃+

∂

∂ x̃

∫ 1+αη̃

0
{α

2
φ̃

2
x +αP̃′+(1− z̃)}h0dz̃ = 0, (2.6)

using the limiting long-wave speed c0 =
√

gh0. Substituting the two expressions φ̃x, P̃′ from
Section 1.2.1 and evaluate the integral,

(αη̃ +
3
4

α
2
η̃

2 +
1
6

αβη̃x̃x̃)t̃ +(
1
2
+αη̃ +

3
2

αη̃
2 +

1
3

βη̃x̃x̃)x̃ =O(α2,αβ ,β 2).

From this relation, we identify the non-dimensional momentum density

Ĩ = αη̃ +
3
4

α
2
η̃

2 +
1
6

αβη̃x̃x̃,

and the non-dimensional momentum flux

q̃I =
1
2
+αη̃ +

3
2

αη̃
2 +

1
3

βη̃x̃x̃.

Returning the expression to its dimensional forms through the scaling I = c0h0Ĩ and qI =

c2
0h0q̃I yields

I = c0

(
η +

3
4h0

η
2 +

h2
0

6
ηxx

)
,

and

qI = c2
0

(h0

2
+η +

3
2h0

η
2 +

h2
0

3
ηxx

)
. (2.7)

Similarly, we can give the energy balance in the full Euler equations as

∂

∂ t

∫
η

−h0

{1
2
|∇φ |2 +g(z+h0)

}
dz+

∂

∂x

∫
η

−h0

{1
2
|∇φ |2 +g(z+h0)+P

}
φxdz = 0,
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and following the same procedure as above will lead to the expressions

E = c2
0

( 1
h0

η
2 +

1
4h2

o
η

3 +
h0

6
ηηxx +

h0

6
η

2
x

)
,

and

qE = c3
0

( 1
h0

η
2 +

5
4h2

0
η

3 +
h0

2
ηηxx

)
, (2.8)

denoting the energy density and energy flux respectively. Note that qE is of second order,
while the energy presented in [67] is given by

qE = c0gη
2.

and is of first order. We will also use momentum flux qI , to expand on the idea of radiation
stress and write it in the context of the KdV equation. Adding to this, the conservation of
energy flux will be included to form a well-defined system of the shoaling problem.

2.3 Radiation stress

Radiation stress plays an important role when trying to understand changes in the mean
water level. With this in mind we try to expand our understanding of the concept in the
context of the KdV equation using the momentum balance equation and then investigate
some consequences of shoaling with respect to mean surface levels. A physical interpretation
of the word radiation stress is given by Longuet-Higgins and Stewart [47] to mean "the excess
of momentum due to the presence of the waves". Analyzing this definition in terms of gravity
waves with a flat bottom one can simply think of radiation stress as the total momentum
flux of a progressive wave averaged over one period minus the momentum flux for when the
fluid is at rest. As previously discussed we consider a wave propagating in the x−direction
neglecting all transverse effects, thus giving the principal component of the radiation stress
in its classical presentation

Sxx =
∫

η

−h0

(ρu2 +P)dz−
∫ 0

−h0

ρgzdz.

The first term is expressing the total flux of momentum across a plane integrated from the
bottom to the free surface and with unit width. This is given by equation (2.7) in the KdV
equation when rescaled for a fluid with density ρ . Consequently, the x−component of the
radiation stress is obtained in the context of the full KdV equation as
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Sxx = qI −
∫ 0

−h0

ρgzdz

= ρgh0

(h0

2
+η +

3
2h0

η2 +
h2

0
3

ηxx

)
− 1

2
ρgh2

0

= ρg
(

h0η +
3
2

η2 +
h3

0
3

ηxx

)
. (2.9)

There are several applications for the improved formulation (compared to [65]) of radiation
stress. One area of particular interest is the study of shoaling. In this regard let us consider
a deep-water wave encountering a sloping beach. Then the momentum flux is reduced in
the onshore direction due to the horizontal force, which is generated by the bottom pressure
acting in the direction opposing the wave.

Fig. 2.3 Schematic of the forces acting on a fluid column.

As shown in [16, 46, 47] and indicated by Figure 2.3, the flux of momentum through a fluid
column is given in terms of radiation stress by

qI = Sxx +
∫

η

−h
ρg(η − z)dz = Sxx +

1
2

ρg(η +h)2,

when accounting for the set-down of mean surface level. Further, the flux of momentum
is reduced due to the weight of the fluid ρg(h+η)ds, with ds denoting the length element
joining the planes in Figure 2.3. In other terms, one may write the pressure force exerted on
the bottom as

ρg(h+η)ds = ρg(h+η)hxdx. (2.10)

Also, the flux of momentum across the other end of the fluid element will increase by
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d
dx

[Sxx +
1
2

ρg(h+η)2]dx. (2.11)

Therefore, it can be seen that momentum balance requires (2.10) and (2.11) to be equal.
Imposing the gently sloping criterion allows for a simplified equation and as a result the
balance of momentum demands

dSxx

dx
+ρg(η +h)

dη

dx
= 0. (2.12)

A thorough approach is given in [47], discussing the validity of the approximation. In order
to develop the shoaling equation, we integrate over the control interval [x,x+dx] to get

∫ x+dx

x

dSxx

dτ
dτ +

∫ x+dx

x
ρgη

dη

dτ
dτ +

∫ x+dx

x
ρgh

dη

dτ
dτ = 0.

The first integrals are straight forward to compute, while the last integral is evaluated first
by integration by parts and the trapezoidal rule. Evaluating the integrals and defining the
difference of any quantity F as ∆F = F |x+dx −F |x we get,

∆Sxx =−ρg
2

∆η
2 − ρg

2
(h0 +h)∆η . (2.13)

Recall that we are interested in the averaged behavior of the waveheight for a wave-train
approaching the beach. We find it useful to define the changes in radiation stress averaged
over a period

∆Sxx =− 1
T

∫ T

0

{
ρg
2

∆η
2 +

ρg
2
(h0 +h)∆η

}
dt, (2.14)

where Sxx is defined by (2.9). Having this formulation, the idea is to use the solution for
periodic waves of constant form in the KdV to approximate the shoaling problem. That is
the subject of the next section.

2.4 Nonlinear shoaling in the KdV equation

In this section we give an explicit formulation of the shoaling phenomena to second order
with respect to the Euler equations. The idea is to use the cnoidal wave solution that appears
naturally as a traveling-wave solution to the KdV equation. We recall that the solution is
given by the explicit form:

η(x, t) = f2 − ( f2 − f1)cn2
(

2K(m)(
t
T
− x

λ
),m
)
. (2.15)
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Here m is a parameter and gives periodic waves for 0 ≤ m < 1. For the special case m = 0,
the solution coincides with linear theory [65]. On the other side of the spectrum, where the
nonlinear terms are more dominant, the parameter m will increase and cause a deformation
of the surface with sharper crests and flatter troughs [17] where the solution converges to
the solitary wave solution for m → 1− [17]. We also note that it is given in terms of the
parameters,

m =
f1 − f2

f1 − f3
, c = c0

(
1+

f1 + f2 + f3

2h0

)
, λ = K(m)

√
16h3

0
3( f1 − f3)

. (2.16)

Observe that both the cnoidal wave solution and the wavelength depends on the function
K(m) which is the complete elliptic integral of first kind [39]. With roots explicitly given by

f3 = η − HE(m)
mK(m) ,

f1 = f3 +
H
m ,

f2 = f1 −H.

(2.17)

As previously stated η denotes the mean surface level, while E(m) is the elliptic function of
second kind [39]. At this point, it is clear that having three equations would be enough to
determine the free surface η .

Consider the following system:


ν( f1, f2, f3) =

c
λ
, (2.18)

qE( f1, f2, f3) =
1
T
∫ T

0 ( 1
h0

η2 + 5
4h2

0
η3 + h0

2 ηηxx) dt, (2.19)

∆Sxx( f1, f2, f3) =− 1
T
∫ T

0

{
ρg
2 ∆η

2 + ρg
2 (h0 +h)∆η

}
dt. (2.20)

The first equation is conservation of frequency ν , while the second equation expresses
conservation of energy flux integrated over a period T [6]. Finally, the third equation
is (2.14) and is a formulation of momentum flux expressed in terms of radiation stress.
Expressed in more explicit form, we redefine the system in terms of the parameters (2.16),
(2.17). The frequency equation will then turn into a cubic equation for H:

−3g( 3E(m)
mK(m) −

2
m +1)2

64K(m)2h4m
H3 +

3g(3η

2h +1)( 3E(m)
mK(m) −

2
m +1)

16K(m)2h3m
H2 +−

3g(3η

2h +1)2

16K(m)2h2m
H +

1
T 2 = 0.

(2.21)
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Similarly we can manipulate the equation describing the changes in radiation stress to
find an expression for the set-down. Indeed, (2.20) reduces to the quadratic equation

−η
2 +Aη +B = 0, (2.22)

with
A=

(
3H − 3h

2
+

h0

2
−3cn2(m)− 3H

m
+

3HE(m)

mK(m)

)
,

and

B = Sxx,0(m)− η2
0(m)

2
−−3

2
H2cn4(m)− (h)3ηxx(m)

3
− 1

2
(h+h0)η0(m)

−3
(
(H − H

m
+

HE(m)

mK(m)
)2 +Hcn2(m)(H − H

m
+

HE(m
mK(m)

)
)
.

Note that we had to integrate various powers and derivatives of cn2(ξ ;m). These formulas
are based on calculations made by Lawden and Abramowitz et al. [39, 3] and are given in
explicit form in the appendix. Having this representation we can in principle write (2.21) as
H = F(m,η) and take (2.22) to be η = G(m,H) in explicit terms as two coupled equations.
To uncouple the two equations we may iterate between the two equations at current local
depth h as follows; first initialize the procedure with η0(m) and then find H by

H(m)i+1 = F(m,η i(m)),

solving the cubic equation. This can in turn be used to update the set-down by

η(m)i+1 = G(m,H i+1(m)).

Repeating this process, we continue to approximate the H and η until a stopping criteria
has been reached. This means for each m we iterate between (2.21) and (2.22) such that
H = H(m) and η = η(m). Using this reduction allows to use a nonlinear solver to determine
m by conservation of energy flux. Let qE denote the conserved energy at one point. Then
energy conservation implies

F(m) =
1
h

η2(m)+
5

4h2 η3(m)+
h
2

ηηxx(m)−qE = 0, (2.23)

with functions depending on m. We let the system defined by the equations (2.21),(2.22),(2.23)
be known as the shoaling equations.
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2.4.1 Implementation of the shoaling equation

This section will deal with the implementation of the nonlinear model and produce shoaling
curves for various deep water data. The method developed here follows three steps, similar
to what was proposed by [67, 66]. First, the linear shoaling equation is used up to the point
h/λ0 > 0.1. At this point the cnoidal theory is valid [60] and we use a matching technique to
obtain the fundamental parameters of the nonlinear wave. Lastly, we use the nonlinear KdV
theory to follow the shoaling curve until the highly nonlinear region.

Step 1. Linear theory in deep water: Following the derivation in Section 1.1 we find the
dispersion relation

ω
2 −gk tanh(kh) = 0, (2.24)

which in turn can be solved for the wavenumber k by a nonlinear solver to find the waveheight

H = H0

√
Cg0

Cg
. (2.25)

Here Cg is the group velocity depending on the wavenumber and depth (the subscript ’0’
denotes known values) as previously stated in Section 2.1 in details.

Step 2. Matching linear and non-linear theory: Before initializing the nonlinear solver
we need to match the parameters H,λ ,c,ν ,qE from linear theory at last iteration step. We
would like to choose one of these parameters and then vary m ∈ (0,1) such that the nonlinear
parameters match. In principle we can only match one parameter and hopefully the rest will
follow, but which one is not clear. To investigate this further, define the root problems

λ
lin −λ

nonlin(m) = 0, clin − cnonlin(m) = 0,

ν
lin −ν

nonlin(m) = 0, qlin
E −qnonlin

E (m) = 0.

By inspection we can see which one would be best suited. Here the linear parameter is a fixed
constant while the nonlinear quantity is a function of m and given in the previous section.
Plotting the root problems we observe that matching wavelength would be the best choice.
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Fig. 2.4 Root problems defined by the parameters λ ,c,ν ,qE as a function of m.

Indeed, from Figure 3.2 we see for a particular example that most parameters have common
root around m = 0.15, but the one defined by the wavelength (colored red) is the most distinct.
Also note that Hnonlin = H lin due to using the roots defined by (2.17). A pseudo code of the
matching technique is given below to offer some clarity.

Briefly put, the code will take as input values: the current wavelength, waveheight and
local depth and try a range of values of m. Using a special function ’ellipke’ [49] to compute
the Jacobi functions, we may use the system 2.17 to define the roots and by extension the
quantities in (2.16). Specifically, the wavelength in the context of the KdV equation and then
compare it with the initial value.
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1 function [f] = GetNonLinearWave(L, H, h)

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This program will compute a range of values for m in (0,1) such that

4 % it satisfies the system defined below and matching wavelength from

5 % linear theory.

6

7 % Input: L − wavelength

8 % H − waveheight

9 % h − local depth

10

11 % Output: f − vector with f_1, f_2, f_3

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 % Number of iterations

14 N = 1000000;

15

16 for i = 2:N

17 % Range of different values of m

18 m = (i−1)/N;
19

20 % Jacobi functions

21 [K,E] = ellipke(m);

22

23 % System described by the roots f_1, f_2 and f_3

24 f3 = etabar − (H0*E)/(m*K);

25 f1 = f3 + H0./m;

26 f2 = f1 − H0;

27

28 % Wavelength in non−linear theory

29 l = K .* sqrt (16 *h0^3 ./ (3.* (f1 − f3)));

30

31 % Match wavelength

32 if abs(l − l0) < tol

33 break

34 end

35 end

36 end

Step 3. Cnoidal shoaling The final step is solving for waveheight using the scheme defined
in Section 6. First, define H and η as a function of m as given by formula (2.21) and (2.22).
Then use a nonlinear solver to find m from equation (2.23). Having m one can determine the
waveheight H(m) at the current local depth. Repeating this procedure will then determine
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changes of waveheight at each point by approximating the solution with a cnoidal wave. A
pseudo-code of the entire procedure is given below.

1 function [H, h] = CnoidalShoaling(L0, H0, h0)

2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This function computes the waveheight using the theory of linear

4 % shoaling and then coupled by non−linear model from cnoidal wave

5 % theory based on the KdV equation and conservation laws. In particular,

6 % conservation of frequency, energy flux. Additionally, set−down is

7 % incorporated using the radiation stress approach.

8

9 % Input: L0 − original wavelength at deep water

10 % H0 − original waveheight at deep water

11 % h0 − initial local depth

12

13 % Output: H − waveheight

14 % h − depth

15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % Run the linear model up to the point H/L = 0.1

17 [L, H, h] = LinearShoaling(L0, H0, h0);

18

19 % Matching point between linear and non−linear model

20 [f] = GetNonlinearWave(H, h, L);

21

22 % Retrieve conserved quantities

23 [Freq] = Frequency(f, h);

24 [intqE] = EnergyFlux(f, h);

25

26 % Run nonlinear shoaling from current depth to the shore

27 LocalDepth = linspace(h,0,k)

28 for i = 1:k−1
29 h = LocalDepth(i+1);

30

31 % Use nonlinearsolver to solve the root problem for f_1,f_2 and f_3

32 fn = fsolve(@(fNew) SystemOfEquations(fNew, f0, h, h0, Freq, qE), f);

33 f = fn;

34

35 % Store waveheight

36 H(i + 1) = f(1) − f(2);

37 end

38 end
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2.4.2 The radiation stress approach

Having defined the scheme we may plot the development of the waveheight and set-down
for given deep water values. We will compare the numerical results with the wave tank data
collected by Saville [59] and the linear theory in Figure 2.5 below. The stippled blue lines are
the result of linear theory as presented in Section 2.1, while the continuous line represents
the shoaling model presented in Section 2.4. The wave under consideration has a deep water
wavelength of λ0 = 202 cm, waveheight H0 = 6.45 cm at 400 cm distance from the still
water line (S.W.L) on a beach with slope 1 : 12.

Fig. 2.5 Profile of the mean water level η and the waveheight H compared to data points presented
in [11]. Wave period, 1.14 sec; H0 = 6.45cm; breaking Hb = 8.55; slope 0.082. The bottom figure
depicts the same scenario with zoom in around the still water line.

The linear model agrees well with the experimental data until it starts reaching the shore (for
more details see [11]). On the other hand we see the benefit of the nonlinear formulation,
seeming to better fit the data around the braking point of the wave.

This simulation will serve as a benchmark for future research and possible applications.
For instance the radiation stress has been used to model currents [65] where our formulation
can offer increased performance. Another possibility would be to use our model as a way to
transport initial data in deep water through the shoaling region and then as initial data for
the surf zone where breaking occurs. Though, on the other hand we may in many situations



34 Applications to cnoidal shoaling

neglect the level of set-down inside the surf zone which simplifies the system. We present
this simplification in the next sections, having η = 0 and run comparisons with wave tank
experiments.

2.4.3 Zero mean surface level

In many cases, set-down of the mean surface level is assumed to be negligible [65]. We
will in this section impose this assumption and update equation (2.22) to be η = 0. Then
use the same three steps in Section 2.4.1 to determine the development of the waveheight
in the shoaling region. Svendsen did this with a first-order approximation of energy flux
in the KdV equation with a discontinuity in waveheight between linear and their nonlinear
theory [66]. Then Khorsand and Kalisch extended the theory in light of work done by [6]
to hold for a second-order approximation, exploiting the full range of the KdV equation
[35]. Though, they presented the scheme as a system of three equations giving rise to some
numerical instabilities. Instead, we purpose the following:

First formulate H = H(m) according to formula (2.21) given in Section 2.4. Then use
the assumption of no set down of mean surface level to find the roots given by (2.17). Having
the roots as a function of m we may use energy conservation to define a nonlinear equation as
done in equation (2.23). Solving for m we are free to determine the waveheight at a specified
depth h and reproduce the shoaling profiles for a range of deep water waves.

Fig. 2.6 Shoaling curves based on present theory in blue compared to the theory presented by Svendsen
and Brink-Kjaer [67] in red. Deep water values H0/λ0 = {0.001,0.002,0.004,0.006,0.01}.

We note that the present implementation is able to determine the waveheight further into
the shoaling region compared to the curves presented by [35]. This is due to the simplicity
of the implementation, solving one nonlinear equation rather than three. Also we see in
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Figure 2.6 that our theory is in fairly good agreement with the shoaling curves presented
by Svendsen and Brink-Skjaer in [67]. Though, our model is of second-order and has a
continuous transition between the linear and nonlinear theory. In order to further validate the
model we will compare it to wave tank experiments.

2.4.4 Wave tank experiments

In this section, comparisons of shoaling curves based on wave tank experiments are presented.
The data is collected from [66] where there was taken considerable precautions to stay within
the framework we are considering. The waves was generated by a piston type wave generator
traveling first over a flat bottom with constant form. Then a data analyzer retrieves the initial
data at the bottom of the slope. At this point the waves will start to deform due to the presence
of the bottom. We are considering six experiments with a still water depth of 36 cm with
plane slope of 1 : 35.
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Fig. 2.7 Shoaling curves produced by the theory of this chapter compared with experimental data
(red crosses) from [66].

We initialize the code by collecting the initial data at depth h = 36 cm. Then it computes
H by the linear model up to h/λ0 > 0.1 for which the cnoidal theory is valid [60]. Once
in this region we keep running the linear model up to the point where the parameters are
best matched providing a continuous transition to the non-linear model. We observe in
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Figure 2.7 that there is quite good agreement between the numerical model (in blue) and the
experimental data (red crosses). The only exception is the first one with deep water steepness
H0/λ0 = 0.064. This is a rather steep wave and we observed that the parameters did not
line up to well due to linear theory failed to transport the data in a reasonable manner. On
the other hand, as the deep water steepness goes down we observe fairly good agreement
with the plots and the matching of parameters aligned very well. Therefore, if the linear
theory holds until the matching point starts we may expect better results when compared to
experimental data.

We will also note that a higher order-theory by Cokelet was presented for the same
data set in [58] and observed a tendency of waves shoaling to early. They remarked that
exactness of a theory is not a guarantee for better performance when applied outside the
given framework of assumptions from which it is derived. Further, the theory presented here
takes care of the discontinuity that is appearing in [66].

2.5 Conclusions

The models derived in this section nicely joins the work presented in Chapter 1 together
with conservation principles. We have presented how we implement linear shoaling and
how to extend it to the nonlinear framework provided by the KdV equation. Implementing
the shoaling equations gave good agreement with existing theory and took care of the
discontinuity observed in [66].

For future work, it would be interesting to compare the actual wave-profile with a
Boussinesq type model like [57]. As an example take case number five in Figure 2.7, we may
plot η predicted by linear and nonlinear theory to predict the evolution up a sloping beach.

Fig. 2.8 The red stippled line denotes the initial wave η0, while η is the change as the wave feels the
presence of the sloping bottom and H is the difference between crest and trough.

Leaving this issue for the future we now turn to the validity of the new mechanical
quantity: (2.9) derived in the KdV equation.





Chapter 3

A mathematical justification of radiation
stress in the KdV equation

In this chapter, we turn to the question of whether the derivation of radiation stress makes
sense with respect to the general system. Taking a rigorous approach, we will prove the
convergence of radiation stress in the full Euler equations. Similar justifications are given for
several mechanical balance laws formulated in the KdV approximation (see [26, 24, 25]),
but we include some of their work with more details for the purpose of verification and sake
of completeness. The main theorem to be proved:

Theorem 2. Let (ηEuler,φ Euler) be a solution of the water wave problem defined by (1.4)−
(1.7) with given initial data (η0,φ0) ∈ Hs(R)×Hs(Ω), for s large enough. Let ηKdV be
a solution of the KdV equation (1.27) with corresponding initial data. Then there exist a
constant C > 0 independent from ε , such that

sup
t∈[0, T

ε
]

||(SEuler
xx −SKdV

xx )(·, t)||L∞ ≤Cε
2, (3.1)

where the non-dimensional radiations stress in the full Euler equations is given by

SEuler
xx =

∫ 1+εηEuler

0
{ε

2(φ Euler
x )2 + ε(P′)Euler − (z−1)}dz−

∫ 1

0
(z−1)dz,

and the radiation stress in the context of the KdV:

SKdV
xx = εη + ε

2 3
2

η
2 +

ε2

3
ηxx.

Notation 1. Here we consider solutions in spaces of the form H s
T =C([0,T ];Hs(R)), which

consists of functions u : R× [0,T ]→ R with norm
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||u||H s
T
= sup

t∈[0,T ]
||u(·, t)||Hs.

This space enjoys many of the same properties as Hs(R), and some notes are given in the
next section. In particular, analogues of Theorem 4 and 5 are valid and will be used later in
this chapter. A nice summary of useful properties is given in [10]. We will also ease notation
by setting

sup
t∈[0, T

ε
]

||u(·, t)||L∞ = ||u||L∞
x,t ,

and taking the L∞−norm over both spacial coordinates when it is natural.

The proof of this theorem will rely on several classical results and we will now give a brief
outline of what will be needed. First, we join the Euler equations with the KdV through the
approximated velocity potential:

φ
app =

N

∑
j=0

ε
j
φ j,

which will in turn allow us to estimate central quantities. In particular, we will provide
estimates on the form (possibly of higher order in ε)

||φ app −φ
Euler||L∞

x,t ≤Cε,

following the proof outlined in [25]. Note that we have not specified in what sense we take
φ , this will be made formal in the next sections. Though, building on this idea we may use a
consistency result between the KdV and the Boussinesq equations to prove estimates of the
type

||φ app −φ
KdV||L∞

x,t ≤Cε.

By extension we can estimate φ KdV,φ KdV
x ,(φ KdV

x )2,φ KdV
z ,(φ KdV

z )2 and (P′)KdV in the full
Euler equations to second order and the main theorem will follow.

As stated above we need to specify the space where we seek a solution to make sense of
the estimates. This will be based on Zakharov-Craig-Sulem equations from which we can
obtain a local well-posedness result of the water wave system. We therefore find it natural to
start the analysis with the functional setting and then derive this system. The derivation is
mainly based on the book "The Water Wave Problem" by David Lannes [38], where we seek
to present the global idea and some results needed to prove the main theorem.
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3.1 Function spaces

Before starting the derivation of the Zakharov-Craig-Sulem equations a word must be spent
on the functional setting. We will mainly consider standard results on the L2−based Sobolev
spaces and then relate some special results needed to handle water wave problems. Assuming
knowledge of the basic properties of the Fourier transform and Lp theory (see [42, 15, 20]
for relevant properties), we start with the definition.

Definition 1. Let s ∈ R, we define Hs as the space of functions:

Hs(Rn) := { f ∈ S ′(Rn) : (1+ |ξ |2)
s
2 f̂ ∈ L2(Rn)}, (3.2)

with norm

|| f ||Hs := ||(1+ |ξ |2)
s
2 f̂ ||L2 =

{∫
Rn
(1+ |ξ |2)s| f̂ (ξ )|2dξ

} 1
2
, (3.3)

induced by the standard scalar product.

Here S ′(R) denotes the space of tempered distributions and the main importance for this
thesis relies on the fact that the Fourier transform is well-defined and turns derivatives into
multiplication [20]. Indeed, if f ∈ S ′(Rn), we have by the properties of the Fourier transform
that (−∆ f )ˆ(ξ ) = |ξ |2 f̂ (ξ ) in the distributional sense. Consequently, {(1+ |ξ |2) f̂}ˇ =
f +(|ξ |2 f̂ )ˇ = (1−∆) f motivating the following definition.

Definition 2. We define the Bessel potential of order −s ∈ R by Λs := (1−∆)
s
2 : S ′(Rn)→

S ′(Rn) with the mapping
f 7→

{
(1+ |ξ |2)

s
2 f̂
}

ˇ.

Typically, one introduces the Fourier transform on the Schwartz space S(Rn), which is the
space of functions whose derivative are rapidly decreasing. It can be shown that if f ∈ S(Rn)

we have that F f (ξ ) = f̂ (ξ ) :=
∫
Rn f (x)e2πix·ξ dx is also an element of S(Rn). The same goes

for the inverse, and it can be shown that both F and F−1 are one-to-one mappings of S(Rn)

onto itself (in other words an isomorphism [20]). Similarly, we obtain the same properties on

L2(Rn) through an extension process using density, i.e. S(Rn)
L2

= L2(Rn), combined with
the preservation of the norm (isometry) under the Fourier transform by Plancherel [15].

Theorem 3. (Plancherel’s identity) Let f ,g ∈ S(Rn), then

⟨ f ,g⟩L2 = ⟨ f̂ , ĝ⟩L2 .
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Fig. 3.1 The Fourier transform and its inverse is well-defined on the denoted spaces with an isometry
(norm preserving) on L2(Rn).

Building on these ideas we can define the Fourier transform in the distributional sense on
S ′(Rn) and we summarize the connections in Figure 3.1.

Remark 2. For any f ∈ Hs(Rn), we have by Plancherel’s theorem [15]

|| f ||Hs = ||{Λ
s f}ˆ||L2 = ||(1−∆)

s
2 f ||L2.

We now give two important properties of the Sobolev spaces.

Theorem 4. (Sobolev embedding) Let s > n
2 + k, then Hs(Rn) ↪−→Ck

∞(Rn), i.e. Hs is continu-
ously embedded in the space of continuous functions of order k, vanishing at infinity and for
|α| ≤ k we have

||∂ α f ||L∞ ≤Cs|| f ||Hs.

for some positive constant depending on s.

Proof. For simplicity we give the proof for k = 0. By observation we note:

| f̂ ˇ(x)|= |
∫
Rn

f̂ (ξ )e2πix·ξ dx| ≤ || f̂ ||L1,

combined with Cauchy-Schwartz implies
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|| f ||L∞ ≤ || f̂ ||L1 ≤
{∫

Rn

dξ

(1+ |ξ |2)s

}∫
Rn
(1+ |ξ |2)

s
2 | f̂ (ξ )|dξ =Cs|| f ||Hs,

with Cs finite for s > n
2 by the "n−dimensional p−test". Thus, having f ∈ Hs(Rn) implies

f̂ ∈ L1(Rn) and by extension f = ( f̂ )ˇ∈C0
∞(Rn) using the Riemann-Lebesgue lemma (see

[20]).

Another important result on Hs to be used later is the algebra property.

Theorem 5. Let f ,g ∈ Hs(Rn), if s > n
2 , then f ·g ∈ Hs(Rn).

The proof of Theorem 5 is a nice application of Young’s inequality for convolution,
Plancherel and the embedding and can be found in [42, 20] for details. Furthermore, the
results also hold for semi-bounded domains and the theory can therefore be used for the
water wave problem, where we apply the Fourier transform in the x−coordinate. Though,
some special care needs to be given to the velocity potential, as it cannot be assumed to be
zero at infinity. In particular, if we define the trace of the velocity potential at the surface to
be φ = ψ|η , then it does not necessarily belong to a Sobolev space. To remedy this issue, we
need to introduce the Beppo-Levi spaces:

Definition 3. Let s ∈ R, then we define Ḣs(Rn) as the space of functions:

Ḣs(Rn) := { f ∈ L2
loc(Rn) : ∇ f ∈ L2(Rn)}, (3.4)

equipped with the semi-norm

| f |Ḣs+1 = ||∇ f ||Hs.

There are several technical difficulties to be tackled here, and is of importance if one
wants to fully understand the existence and uniqueness results on the general water wave
system. The main properties are summed up in Proposition 2.3 in [38], but we make one
important remark.

Remark 3. Consider the fluid domain without the free surface: Ωbott = Ω∪{z = 0}. Let
u ∈C1

c (Ωbott). We observe:

|u(x,z)|2 =
∣∣∣∫ 1+εη

z
∂zu(x,z′)dz′

∣∣∣2
≤
(∫ 1+εη

0
|∂zu(x,z′)|dz′

)2

≤ sup
x∈R

(1+ εη(x))
∫ 1+εη

0
|∂zu(x,z′)|2dz′,
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by the fundamental theorem of calculus and Cauchy-Schwartz inequality. As a result from
integrating over x and z we obtain the Poincaré inequality:

||u||L2 ≤C||∇u||L2. (3.5)

Then in general if u ∈ H1(Ωbott) and for a sufficiently regular boundary one can use a density
argument to obtain the same result (see trace theorem [18] and density of differentiable
functions with compact support in Lp [20]).

The Poincaré inequality is fundamental for obtaining well-posedness results in elliptic
theory. For instance, one typically obtain existence and uniqueness results using the Lax-
Milgram’s theorem [18] and relies heavily on Poincaré inequality to obtain coercivity of an
operator. It is therefore natural to seek a solution in the space:

Definition 4. In accordance with the notation in [38] we define H1
0,surf(Ω) to be the comple-

tion of C∞
c (Ωbott) in H1(Ω).

We also note that we are able to handle functions like ψ ∈ Ḣ1(Ω) by equivalence of
norms using (3.5). This is also fundamental for the coming results to make sense and will be
used without further mention.

3.2 The Zakharov-Craig-Sulem equations

To start, we will need the non-dimensional form of the general water wave problem, the
asymptotic expansion, and results for the KdV equation. For simplicity let ε = α = β since
we neglect the square and the product of α and β in the KdV approximation. Imposing the
natural scaling (1.8), the general water wave problem or Euler system for irrotational flow is
given by

εφxx +φzz = 0 for 0 < z < 1+ εη , (3.6)

with boundary conditions

φz = 0 on z = 0, (3.7)

ηt + εφxηx −
1
ε

φz = 0 on z = 1+ εη , (3.8)

φt +
1
2
(εφ

2
x +φ

2
z )+η = 0 on z = 1+ εη . (3.9)

The main observation is that (3.6) and (3.7) defines a Laplace problem with Neumann
boundary condition on the bottom, and with a domain depending on the unknown η . While
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Fig. 3.2 Transforming the Laplace problem on Ω satisfied by φ into a boundary value problem on
S = R× (0,1) satisfied by ϕ = φ ◦Σ [38].

(3.8) and (3.9) are highly nonlinear equations that is the cause of the great difficulty with this
system. The idea is to decouple the part of the equation that is well-known and see whether
we can handle the nonlinear equations that follow. The trick (first posed in [71]), is to define
the trace of the velocity potential at the surface by:

ψ = φ |z=1+εη . (3.10)

Subsequently, we have Laplace problem with Neumann and Dirichlet boundary conditions
given by (3.6), (3.7) and (3.10), but with a domain depending on η . Moreover, we would like
to have estimates in some Sobolev space relying on tools from harmonic analysis. The main
tool is the Fourier transform, and for it to make sense we need to consider the transformed
Laplace problem defined on a strip S = R× (0,1). Taking (x,z) ∈ S on a fixed domain, and
map it onto the fluid domain Ω = {(x,z) : 0 < z < 1+ εη} with

Σ(x,z) =

(
x

(1+ εη)z

)
.

We consider the function ϕ = φ ◦Σ, in order to obtain estimates on φ .
The main goal of the section is to prove Theorem 2, so we will simply reference the

results from Lannes book [38] and explain how they apply to our situation. In particular,
the gradient transforms according to the rule: ∇φ = |detJ|J−1(J−1)T ∇ϕ =: P∇ϕ , with J
denoting the Jacobian. For the simple transformation Σ we have
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J =

(
1 0

εzηx 1+ εη

)
.

With the determinant given by

detJ = 1+ εη =: h.

Thus, the change of coordinates is admissible if we bound the waveheight from below by
imposing that h > hmin > 0 for all x ∈ R. Moreover, the matrix P given with the correct
scaling is

P =

(
h −ε

3
2 zηx

−ε
3
2 zηx

1+ε3(zηx)
2

h

)
.

Having the transformation will in turn reveal the transformed Laplace operator:

∇
ε ·P∇

ε
ϕ =

(√
x∂x ∂z

)( h −ε
3
2 zηx

−ε
3
2 zηx

1+ε3(zηx)
2

h

)(√
ε∂xϕ

∂zϕ

)

= ε∂x

(
h∂xϕ

)
− ε

√
εz∂x

(
ηx∂xϕ

)
− ε

√
ε∂z

(
zηx∂xϕ

)
+

1
h

∂
2
z ϕ + ε

3
∂z

((zηx)
2

h
∂zϕ
)

=:
1
h

∂
2
z ϕ + εA(∂x,∂z)ϕ. (3.11)

Similarly, one can verify that ∂zφ ◦Σ = 1
h∂zϕ . Then ϕ satisfies the system:

∇ε ·P∇εϕ = 0 in S,
1
h∂zϕ = 0 on z = 0,

ϕ = ψ on z = 1.

(3.12)

Additionally, it can be shown that this system admits a unique solution for ϕ ∈ H1
0,surf(S)

in the variational sense if (η ,ψ) ∈ Hs(R)× Ḣ1(R) with s > 3
2 by Proposition 2.25 in [38].

The result is a direct consequence of Lax-Milgram’s theorem, where the functional setting of
H1

0,surf(S) allows us to use the Poincaré inequality (see Remark 3).
We now turn to the boundary conditions of the water wave system and again try to

define the problem on a fixed domain. This will be achieved through the Dirichlet-Neumann
operator:

Definition 5. We relate the trace ψ and the normal derivative of the velocity potential by
defining the Dirichlet-Neumann operator:
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G(η) : ψ 7→
√

1+(ηx)2 φn, (3.13)

where φn = ∇φ ·ns with the normal vector on the surface given by

ns =
(

1+(ηx)
2
)− 1

2

(
−ηx

1

)
.

One quick remark, we may write (3.13) as

G(η)ψ =−φxηx +φz

and can be directly related to the kinematic boundary condition (3.8) through

ηt +G(η)ψ = 0.

Moreover, the operator can be related to the Bernoulli equation (3.9) using the relations

ψt = φt +φzηt

and

ψx = φx +φzηx

found by the chain rule. In turn, these relations implies

G(η)ψ +ψxηx = φxηx +φz(ηx)
2 +G(η)ψ

= φz

(
(ηx)

2 +1
)
,

allowing us to express

φz =
G(η)ψ +φxηx

1+(ηx)2 .

Combining the relations above leads to the Zakharov-Craig-Sulem equations:


ηt +G(η)ψ = 0,

ψt +η + 1
2(ψx)

2 −

(
G(η)ψ+ηxψx

)2

2
(

1+(ηx)2

) = 0,
(3.14)
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effectively reducing the dimension of the problem by one and is given on a fixed domain:
(x, t) ∈ R×R+. The main question to be answered is on the solution of this system and
of course in which sense. This question was first answered by Shinbrot [63] and Kano
and Nishida [27] for analytic initial data. These results have been a source of constant
improvements and we give the result stated in [38], adopted to our case in the following
theorem:

Theorem 6. Let the initial data be given (η0,ψ0) ∈ H3(R)× Ḣ2(R). Then there exists a
unique solution (η ,ψ) ∈C([0, T

ε
];H3(R)× Ḣ2(R)) with T > 0 satisfying the system (3.14).

Remark 4. For simplicity, we will consider the initial data sufficiently smooth such that
(η ,ψ) returns a velocity potential with sufficient regularity. For us the main importance of
the theorem is that it provides a candidate for the solution of ϕ , allowing us to compare it
with quantities in the KdV equation. In that regard, we do not seek the optimal regularity on
the solution, but rather sufficient/reasonable regularity such that a consistency argument can
be made.

The more general statement is found in [38] on page 102 with a detailed proof. We will
omit the proof, but having this very consequential result will allow us to claim the existence
and uniqueness of the velocity potential ϕ given in (3.12) by the Lax-Milgram lemma [38].
Consequently, we are able to reconstruct u by taking the gradient, and determine the pressure
by the momentum equation (3), solving the water wave problem on a finite time scale.

3.2.1 Approximated quantities

We will now use the transformed Laplace problem to retrieve approximated solutions of the
velocity potential on the form

ϕ
app =

N

∑
j=0

ε
j
ϕ j. (3.15)

First, we note that applying ∇ε ·P∇ε gives the relation

1
h

∂
2
z ϕ j =−εA(∂x,∂z)ϕ j

=−A(∂x,∂z)ϕ j−1.

with the convention φ−1 = 0. Combining this with the general problem (3.12), we have for
j = 0:
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
1
h∂ 2

z ϕ0 = 0 in S,
1
h∂zϕ0 = 0 on z = 0,

ϕ0 = ψ on z = 1,

and is a simple ODE with solution φ0 = ψ in the fluid domain. Continuing for j = 1 we
obtain the system: 

1
h∂ 2

z ϕ1 =−A(∂x,∂z)ψ in S,
1
h∂zφ1 = 0 on z = 0,

φ1 = 0 on z = 1.

Integrating the first equation with respect to z gives

1
h

φ1 =−z2

2
(hψx)x +

√
ε

z3

6
(ηxψx)x +

√
ε(ηxψx)+ zB+C,

with B = B(x, t) and C = C(x, t) being constants of integration. Next, imposing no flow
through the bottom implies B = 0, and the Dirichlet condition implies C = 1

2(hψx)x −√
ε

6 (ηxψx)x −
√

ε

2 (ηxψx). It yields

1
h

ϕ1 =
1
2
(1− z2)(hψx)x +

√
ε

1
6
(z3 −1)(ηxψx)x +

√
ε

1
2
(2−1)(ηxψx). (3.16)

Similarly, we can obtain an expression for ϕ2 in terms of some combination of ε,h,ψ,η

and its derivatives to some power. Having the three first terms of the approximated velocity
potential will be sufficient to estimate ϕ in the Euler equations to second-order. This will
be made evident in the next proposition, and turn out to be crucial when approximating the
quantities in the KdV formulation. With this mind, we simplify the notation by redefining
ϕapp to mean

ϕ
app := ϕ0 + εϕ1 + εϕ2. (3.17)

By construction we have that

∇
ε ·P∇(ϕ0 + εϕ1 +

2
ϕ2) =

1
h

∂
2
z (ϕ0 + εϕ1 + ε

2
ϕ2)+ εA(∂x,∂z)(ϕ0 + εϕ1 + ε

2
ϕ2)

= ε
3A(∂x,∂z)ϕ2

=: ε
3Rε .
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Remark 5. We note that having f ∈ Hs(R) then f , f ′, ..., f (s−1) are bounded and uniformly
continuous functions converging to 0 at ±∞ [10]. This is a result of Theorem 4, so having
s > 7 would ensure the boundedness of terms like ∂ 6

x ψ . Also, by Theorem 5 we have that
f ,g ∈ Hs(R) implies f ·g ∈ Hs(R) and takes care of terms like ηxψxx. Similarly, these results
can be generalized to hold in H s

T [10]. Consequently, there exist C > 0 such that

sup
t∈[0, T

ε
]

||Rε(·, t)||L∞ ≤C,

when working in a similar framework as the one provided by Theorem 6 for sufficiently
smooth initial data.

In fact, this result is just a special case of Lemma 3.42 in [38] and moreover it follows:

Proposition 1. Let (η ,ψ) ∈ Hs(R)× Ḣs(R) for s > 7, then u := ϕ − ϕapp satisfies the
boundary value problem 

∇ε ·Pεu = ε3Rε in S,

∂zu = 0 on z = 0,

u = 0 on z = 1,

with the estimate
||Λs

∇
εu||L2 ≤Cε

3. (3.18)

The proof of this result is found on page 83 in [38] and relies on several results from
harmonic analysis. We will omit the proof and use the adaptation to make the following
remark.

Remark 6. Observe,

ε

∫
S
(∂xu)2 ≤

∫
S

ε(∂xu)2 +(∂zu)2.

By (3.18) we have ||∂xu||Hs ≤Cε
5
2 for all t ∈ [0, T

ε
]. Additionally, it follows that ||∂zu||Hs ≤

Cε3. Since we only need the bound to hold up to second order to prove the main theorem, we
simplify the notation by setting ||∂xiu||Hs ≤Cε2 (consistent with the notation in [25]).

A similar result can be found for the t−derivative on page 124 in [38]. Thus, using the
Sobolev embedding in Theorem 4 and returning to the original function φ , we summarize
the results needed for later:
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Corollary 1. Making the same assumptions as in Proposition 1, we have the following
estimates

||φ app
x −φ

Euler
x ||L∞

x,t ≤Cε
2, (3.19)

||φ app
z −φ

Euler
z ||L∞

x,t ≤Cε
2, (3.20)

||φ app
t −φ

Euler
t ||L∞

x,t ≤Cε
2. (3.21)

Remark 7. Working with φ on Ω, we have that

φ
app = ψ − ε

{1
2
(z2 −1)ψxx + εηψxx

}
+ ε

2
{ 1

24
z4

ψxxxx −
1
4

z2
ψxxxx +

5
24

ψxxxx

}
+O(ε3),

(3.22)

and can be derived the same way as we did for ϕapp by letting P equal to the identity mapping
(for details see [33]).

The natural next step is to extend the estimates from the approximated velocity field to
the KdV equation (as shown in [25]). To that end, we define

f := ψ +
1
2

εψxx, (3.23)

and is of second order since f = φ app|z=0. Also note that the kinematic boundary condition
can be used to relate f and ηEuler by substituting the approximated velocity potential given
above (3.22) into (3.8):

η
Euler
t + fxx + εη

Euler fxx + εη
Euler
x fx −

1
6

ε fxxxx =O(ε2).

Similarly, by the bottom condition (3.7) gives

η
Euler + ft −

ε

2
fxxt +

ε

2
=O(ε2). (3.24)

Further, we denote u = fx, representing the horizontal velocity at the boundary. We differ-
entiate (3.24) and identify ηx =−ut +O(ε). These relations will be useful when proving
the convergence of important quantities formulated in the KdV to the Euler system. In fact,
we note that uKdV = uEuler +O(ε) due to Corollary 1, and recall from Section 1.2.1 that we
have horizontal velocity

φ
KdV
x = η

KdV − 1
4

ε(η2)KdV + ε(
1
3
− z2

2
)ηKdV

xx +O(ε2), (3.25)



52 A mathematical justification of radiation stress in the KdV equation

the vertical velocity

φ
KdV
z =−εzη

KdV
x , (3.26)

and the pressure

(P′)KdV = η
KdV − 1

2
ε(z2 −1)ηKdV

xx +O(ε2), (3.27)

in the KdV. It have been proved in [25] that quantities of interest satisfy the estimates

||ηKdV −η
Euler||L∞

x,t ≤Cε, (3.28)

||φ KdV
x −φ

Euler
x ||L∞

x,t ≤Cε, (3.29)

||φ KdV
z −φ

Euler
z ||L∞

x,t ≤Cε. (3.30)

In order to prove the first two estimates we must go through the Boussinesq system and use
a consistency result found in [38]. Then use φ app to approximate φ KdV, where the results
follow by the Minkowski inequality. We will leave this out for the sake of brevity. Though,
using the same type of ideas we can prove the convergence of (P′)KdV in the Euler system,
going through the calculations in [25].

To make sense of the solution of the KdV equation we need a classical result [10]:

Theorem 7. Let ηKdV
0 ∈ Hs(R) be the initial data of the KdV equation (1.27) with s ≥ 2.

Then there exists a unique solution ηKdV ∈ H s
∞ .

We may now combine the previous results to obtain:

Proposition 2. Under the same provisions as in Proposition 1 and Theorem 7, we have the
following estimate:

||(P′)KdV − (P′)Euler||L∞
x,t ≤Cε, (3.31)

for C > 0 independent of ε .

Proof. The pressure formulated in the full Euler equations is given by (1.2.1)

(P′)Euler :=−φ
Euler
t − 1

2

(
ε(φ Euler

x )2 +(φ Euler
z )2

)
.

We may rewrite this equation by adding and subtracting convenient terms,



3.2 The Zakharov-Craig-Sulem equations 53

(P′)Euler =−(φ Euler
t −φ

app
t )−φ

app
t − 1

2
ε

(
(φ Euler

x )2 − (φ KdV
x )2

)
− 1

2
ε(φ KdV

x )

−1
2

(
(φ Euler

z )2 − (φ KdV
z )2

)
− 1

2
(φ KdV

z )2.

We then find that each term within the brackets are bounded as a result of Corollary 1
and the inequalities given by (3.29) and (3.30). Indeed, for each time t ∈ [0, T

ε
] we have

(φ Euler,φ KdV) ∈ (Hs(Ω))2 leading to

||(φ Euler
x )2 − (φ KdV

x )2||Hs ≤ ||(φ Euler
x −φ

KdV
x )||Hs ||(φ Euler

x +φ
KdV
x )||Hs ≤Cε,

by the properties of Hs. Now, ||φ(·, t)||Hs is bounded for t ∈ [0, T
ε
] in both systems, and thus

have combined with the embedding that,

||(φ Euler
x )2 − (φ KdV

x )2||L∞
x,t ≤Cε.

Further, the square of φz is of order O(ε2) by definition (3.26). We must therefore understand
the relation:

−φ
app
t − 1

2
ε(φ KdV

x )2. (3.32)

Using (3.22) and (3.23), we obtain

φ
app
t = ψt −

1
2

ε(z2 −1)ψxxt +O(ε2)

= ft −
1
2

εz2 fxxt +O(ε2).

Recognising the formulation of ηEuler by (3.24) and using the usual trick ηx =−( fx)t +O(ε)

(3.24), gives

φ
app
t =−η

Euler +
ε

2
(z2 −1) fxxt −

1
2

ε f 2
x +O(ε2)

=−η
Euler +

ε

2
(z2 −1)ηEuler

xx − 1
2

ε f 2
x +O(ε2).

Again, adding and subtracting convenient terms and noting that fx = u implies
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φ
app
t =−(ηEuler −η

KdV)−η
KdV +

ε

2
(z2 −1)(ηEuler

xx −η
KdV
xx )+

ε

2
(z2 −1)ηKdV

xx

−1
2

ε((uEuler)2 − (uKdV)2)− 1
2

ε(uKdV)2 +O(ε2).

Noting that mist terms can be neglected we return to the relation (3.32) and write

−φ
app
t − 1

2
ε(φ KdV

x )2 = η
KdV − 1

2
ε(z2 −1)ηKdV

xx +O(ε),

due to (3.28) and Corollary 1. By definition of the dynamic pressure in the KdV (3.27) we
have

(P′)Euler = (P′)KdV +O(ε),

and completes the proof of the proposition.

3.2.2 Proof of the main theorem

Proof of Theorem 2. We have that

SEuler
xx =

∫ 1+εηEuler

0

{
ε

2(φ Euler
x )2 + ε(P′)Euler − (z−1)

}
dz−

∫ 1

0
(z−1)dz,

and

SKdV
xx = εη + ε

2 3
2

η
2 +

ε2

3
ηxx.

From the derivation in Section 2.3, we know it is equivalent to the integral formulation

SKdV
xx =

∫ 1+εηKdV

0

{
ε

2(φ KdV
x )2 + ε(P′)KdV − (z−1)

}
dz−

∫ 1

0
(z−1)dz,

in non-dimensional form. For simplicity let E and K denote the integrand of SEuler
xx and SKdV

xx ,
respectively. Then,

SEuler
xx −SKdV

xx =
∫ 1+ηEuler

0
Edz−

∫ 1+ηKdV

0
Kdz

=
∫ 1+ηKdV

0
(E −K)dz−

∫ 1+εηKdV

1+εηEuler
Edz

=: I + II.
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We may bound the first term using (3.29) and Proposition 2:

||I||L∞
x,t ≤C||E −K||L∞

x,t ≤C
(

ε
2||(φ Euler

x )2 − (φ KdV
x )2||L∞

x,t + ε||(P′)Euler − (P′)KdV||L∞
x,t

)
,

and is of order O(ε2). Similarly for the second term, using that E is bounded for t ∈ [0, T
ε
],

with s sufficiently large (see Remark 4) and by (3.28) we deduce that

||II||L∞
x,t ≤ εC||ηEuler −η

KdV||L∞
x,t ,

and is of order O(ε2). Combining these results proves the theorem.

3.3 Conclusions

Summarizing the results; we proved in Theorem 2 the consistency of radiations stress
formulated in the KdV with the general water wave system. This was not an easy exercise
that relied heavily on the article by Israwi and Kalisch [25] together with the techniques and
results provided in [38]. Moreover, in order to make sense of the statement in the Theorem
2 we needed the existence and uniqueness result of both systems, which was provided in
Theorem 6 and 7. These are both classical results, but it is interesting to see how they could
be joined with intermediate steps using the approximated velocity potential and consistency
results on the Boussinesq equations. We also included some basic results on Sobolev spaces
in Section 3.1, but as a goal for future academic research it would be interesting to better
understand the tools of harmonic analysis and how it is linked to water wave theory. For
instance, in the proof of Proposition 1, one needs to understand commutator estimates for
functions on a strip [38]. In general, learning similar tools can then be used to tackle other
interesting problems in this field.





Chapter 4

The Riemann problem for the
shallow-water equations

The goal of this chapter is to better understand some of the technicalities that occurs in the
shallow-water region. To exemplify potential issues, consideration is given to the theory
of ‘system of conservation laws’, where we derive necessary conditions on the solution
and apply the theory for piecewise constant initial data known as the Riemann problem.
Having an understanding of the general theory we will use it to describe the propagation
of long waves at the surface of an incompressible inviscible fluid of constant depth by the
shallow-water equations. In particular, we will investigate shock interactions featured in
the shallow-water theory with Riemann initial data. This is a new result and is excepted
for publication in Zeitschrift für Naturforschung A, entitled "Admissibility conditions for
Riemann data in shallow-water theory" [50].

In general, we have that any conservation laws are first-order quasilinear partial dif-
ferential equations, and for one-dimensional problems they can be written in the general
form

 ut +F(u)x = 0 in R×R+,

u(x,0) = g(x) on R×{t = 0}
(4.1)

where u is a bounded vector of unknowns, x is the one-dimensional spatial coordinate, and t
is the time. The flux function F is a nonlinear vector function often satisfying certain mild
assumptions, such as that the function is twice continuously differentiable, the flux Jacobian
∇F have a full set of distinct eigenvalues and the wave families be either genuinely nonlinear
or linearly degenerate [21, 40, 55]. Due to the special nonlinear structure of such systems,
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solutions naturally develop discontinuities in time, even if the original state of the system is
given by a smooth function of x. Once a discontinuity has developed, the solutions of the
system need to be interpreted in a weak sense. Namely,∫

∞

0

∫
∞

−∞

u ·vt +F(u) ·vxdxdt +
∫

∞

−∞

g ·v|t=0dx = 0. (4.2)

This is a standard formulation derived by integrating over the domain, applying Fubini’s
theorem and integration by parts with v ∈C∞

c (R×R+) and assuming sufficient regularity on
u [18]. Having this notion of weak solutions we may define a class of bounded solutions in
this sense.

Definition 6. We say that u ∈ L∞(R×R+) is a weak solution of (4.1) if (4.2) holds for all
smooth test functions v with compact support.

Seeking such solutions one can derive conditions that are necessary in the hope to obtain
a unique solution. This will be the subject of Section 4.1 where we derive two conditions;
Rankine-Hugoniot and the entropy conditions. With these conditions at hand, we will
continue our discussion of water waves using the shallow-water system. The idea will be to
discuss solution of this system with initial data

u(x,0) =

{
uL for x < 0,
uR for x > 0,

(4.3)

for some constant vector functions uL and uR. This is a well-known system where the initial
value problem (4.1) with initial data (4.3) is known as the Riemann problem. We will later
use this problem to retrieve admissibility conditions for the shallow-water equations, which
appears in the general form (4.1) when defining the principal unknown vector u and the flux
function F, respectively by

u =

[
h

hu

]
, F(u) =

[
hu

hu2 + 1
2gh2

]
.

In physical terms, the unknown h(x, t) represents the local flow depth at a point x in space and
at a time t. The unknown u(x, t) represents the horizontal fluid velocity at x and t, averaged
over the fluid column.

The solution of the Riemann problem for the shallow-water equations is classical, and
can be found in many texts on conservation laws (cf. [2, 21]). One way to normalize the
problem is to consider the left state uL given, and look at all possible right states. Since h
represents the total flow depth of the fluid, an additional admissibility condition is usually
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Fig. 4.1 Phase space for a particular left state (hL,uL). The red curves denoted by S1 and S2 indicate
possible right states which can be reached through a single discontinuity. The blue curves denoted by
R1 and R2 show right states which can be reached through a continuous solution.

imposed, requiring both uL and uR to feature non-negative flow depth. Indeed, if imposing
the requirement that hL ≥ 0 and hR ≥ 0, then it can be shown that the Riemann problem can
be solved for all right states, and given uL, satisfying this admissibility condition.

As can be gleaned from Figure 4.1, the condition that h be non-negative restricts the
analysis to the right half-plane in the (h,u) phase space. However, if we looks closely at the
solution of the Riemann problem, it appears that the solution features dry states for many
possible right states (see Figure 4.1). In particular, in order to resolve the Riemann problem
with a right state in the shaded region in Figure 4.1, one needs to incorporate a dry region
(h = 0) into the solution. Even though the solution is well-defined mathematically, from a
physical point of view, it does not seem reasonable for a dry region to develop from initial
conditions which otherwise seem perfectly normal (just as it does not seem reasonable to
include states with h < 0).

A clear goal will be stated in Section 4.2 but in short; we wish to show that the appearance
of such dry states can be avoided when imposing mild assumptions on the initial data. Though,
we must first we must develop the necessary tools in order to handle discontinuities in the
solution of a nonlinear problem on the form (4.1).

4.1 Selection of admissible shock solutions

In order to consider the initial value problem (4.1) with discontinuous initial conditions like
(4.3) then shocks may be a dominant feature in the solution. To handle this issue, we must
go through the weak formulation and find conditions that are necessary in order to hope for
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a unique solution for a given initial data. In general, under the conditions on F mentioned
in the introduction, the Riemann problem can always be solved as long as the left and right
states are close enough (see [21, 40, 43, 44]). However, if the left and right state are not
close, then there is no general theory guaranteeing the existence of a solution to the Riemann
problem (see [12]). Indeed, it can be shown explicitly, that there is no solution using the
standard theory in some cases because the solution becomes unbounded [68]. On the other
hand, for a large number of systems, solutions of the Riemann problem can be shown to exist
by elementary methods.

In this section we will derive the necessary tools in order to find weak solutions of (4.1)
following the outline in [18] and adding some details to the proofs. Having the conditions,
we can apply them to the shallow-water system where we give the derivation of the properties
of basic admissible waves for the shallow-water system. Moreover the standard solution of
the Riemann problem is explained later using the techniques developed in this section. Even
though this is standard fare, we find it useful as various formulas are needed in order to set
up the problem to be attacked in Section 4.2.

4.1.1 Rankine-Hugoniot condition

We will now consider the occurrence of discontinuities forming from smooth initial data or
initial data of the form (4.3). For a moment consider the situation of having a smooth integral
solution u, on either side of a curve ξ , for which the solution has simple jump discontinuities.

Fig. 4.2 Simple jump discontinuities across a smooth shock curve ξ .

First define the limit on either side of the discontinuity by

uL = u(ξ (t)−, t), uR = u(ξ (t)+, t), (4.4)

and from [18] we give the first condition:
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Theorem 8 (Rankine-Hugoniot condition). Let Ω ⊂ R× (0,∞) be a region separated by a
smooth curve ξ (t) and u be a smooth solution on either side of the curve. If u omits simple
jump discontinuities along ξ (t), then the weak solution in the sense 4.2 must satisfy the
relation

F(uL)−F(uR) = σ(uL −uR), (4.5)

with σ being the speed of the curve.

Proof. Consider Ω = Ω− ∪Ω+ ⊂ R× (0,∞) denoting the domain on either side of the
discontinuity and let v ∈C∞

c (Ω). Then split (4.2) into two separate integrals representing the
solution on each side of the shock as shown below.

0 =
∫

Ω−
u ·vt +F(u) ·vxdA+

∫
Ω+

u ·vt +F(u) ·vxdA. (4.6)

Now consider the weak solution on the left-hand side of the discontinuity and apply the
Gauss-Green theorem:

∫
Ω−

u ·vt +F(u) ·vxdA =−
∫

Ω−
{ut +F(u)x} ·vdA+

∫
∂Ω

{un2 +F(u)n1} ·vds.

The first term is away from the discontinuity and therefore satisfies the solution (4.1) in
a classical sense. Further, since v has compact support in Ω−, we are only left with the
boundary term along the curve ξ (t). Together with definition (4.4) and (4.6) we have

∫
Ω−

u ·vt +F(u) ·vxdA =
∫

∂Ω

{un2 +F(u)n1} ·vds.

Similar computations can be made for the weak solution on Ω+. Thus, combing the two with
(4.6) gives the following relation

0 =
∫

∂Ω

[
(F(uL)−F(uR))n1 +(uL −uR)n2

]
·vdA, (4.7)

for all test functions v. We may therefore conclude (as done in [18] omitting the measure
result) that whenever there is a shock, the solution must satisfy

F(uL)−F(uR) = σ(uL −uR) (4.8)
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along the curve ξ with

σ =−n1

n2
=

dt
dx

=
1

ξ ′(t)
,

denoting the speed of the discontinuity.

This is a necessary condition for the solution whenever there is a discontinuity and is known
as the Rankine-Hugoniot condition, but it is not sufficient. We also need the criteria for
admissible shock waves, namely the entropy conditions.

4.1.2 Entropy conditions

We will now derive another condition, using the method of vanishing viscosity [18]. The
idea is to consider the parabolic system uε

t +F(uε)x = εuε
xx, in R×R+

uε = g in R×{t = 0}
(4.9)

exploiting its diffusive character trying to find a condition for which the solution u must
satisfy as ε tends to zero. We will assume uε is a smooth solution of (4.9), rapidly decreasing
and {u}0<ε≤1 uniformly bounded in L∞(R×R+). We make the definition [18]:

Definition 7. Two smooth functions Φ,Ψ : Rn → R is said to be an entropy- flux pair for the
conservation law (4.1) if Φ is convex and satisfies the relation

∇Φ(w)∇F(w) = ∇Ψ(w), (4.10)

for some w ∈ Rn.

In particular we will impose the condition

Φ(u)t +Ψ(u)x ≤ 0, (4.11)

for weak solutions u satisfying the system (4.1). These are called entropy solutions and are
needed to resolve the issue of shocks forming. Since we are dealing with discontinuities in
our solution we find it convenient to multiply with a test function v ∈C∞

c (R×R+), apply
Gauss-Green’s theorem and the compactness∫

∞

0

∫
∞

−∞

Ψ(u)vt +Φ(u)vxdxdt ≥ 0, (4.12)
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as an alternative to (4.11). We will later give a more physical interpretation of this relation
when we deal with the shallow-water equations and see how it relates to the energy. Though,
for now we are ready to prove the following statement (see Evans [18] p. 649).

Theorem 9 (Entropy condition). If the function u is an integral solution in the sense (4.2)
and satisfies (4.12) for any entropy-flux pair, then u is a solution of (4.1).

Proof. As said previously, we will add a viscosity term to the system as described in (4.9)
and exploit the diffusive character. Then evaluate the limit

uε → u,

almost everywhere as ε → 0 for {uε}0<ε<1 uniformly bounded. First, observe by the chain
rule

Φ(uε)t +Ψ(uε)x = ∇Φ(uε) ·uε
t +∇Ψ(uε) ·uε

x , (4.13)

Further, by definition (4.10) one can write

∇Ψ(uε) ·uε
x = ∇Φ(uε)∇F(uε) ·uε

x = ∇Φ(uε)F(uε)x,

and in combination with (4.9) and (4.13) implies

Φ(uε)t +Ψ(uε)x = ∇Φ(uε){uε
t +F(uε)x}

= ε∇Φ(uε)uε
xx

= εΦ(uε)xx − ε(∇2
Φ(uε)uε

x) ·uε
x . (4.14)

In this context, ∇2 is the Hessian matrix of Φ. By the convexity, we have that

∇
2
Φ(uε)uε

x ·uε
x ≥ 0 (4.15)

Now multiplying (4.14) with a positive test function with compact support and integrate by
parts to get

∫
∞

0

∫
∞

−∞

Φ(uε)vt +Ψ(uε)vxdxdt =
∫

∞

0

∫
∞

−∞

ε(∇2
Φ(uε)uε

x) ·uε
x − εΦ(uε)vxxdxdt

≥−
∫

∞

0

∫
∞

−∞

εΦ(uε)vxxdxdt, (4.16)
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using (4.15) and v ≥ 0 to obtain the inequality. In order to establish (4.12) we need to
evaluate the limit and show that the left hand-side is bounded by below by zero.

By definition 7 we have that both Φ and Ψ are smooth. We will use this to first prove
the convergence of the right-hand side of (4.16) by the dominated convergence theorem,
allowing us to pass the limit inside the integral [20]. To verify the assumptions of the theorem
we must show that the limit of the integrand is converging and moreover is bounded by an
integrable function. Starting with the first point, we note that uε is uniformly bounded with
respect to time and space and it follows that Φ is given on a compact set K independent
from ε and therefore by being smooth we get the bound |Φ(uε)| ≤ sup

x∈K
|Φ(x)| ≤C, for all

0 < ε < 1. Being bounded allows us to take the limit of the integrand

lim
ε→0

εΦ(uε)vxx = 0.

Furthermore, the integrand is bounded by a integrable function independent of ε:

|εΦ(uε)vxx| ≤C|vxx|

due to vxx ∈ C∞
c (R×R+). By a similar argument we deduce that the left-hand side will

converge and is bounded by an integrable function independent of ε . Therefore, we may
conclude by the dominated convergence theorem that∫

∞

0

∫
∞

−∞

Φ(u)vt +Ψ(u)vxdxdt ≥ 0.

Lastly, we must show that u is an integral solution. Simply take a test function v and
integrate (4.9) by parts to obtain∫

∞

0

∫
∞

−∞

uε ·vt +F(uε) ·vx + εuε ·vxxdxdt +
∫

∞

−∞

g ·v|t=0dx = 0. (4.17)

The convergence is obtained with the same argument as above for a sufficiently regular flux
function F. Thus, u is an integral solution in the sense (4.2) and completes the proof.

These types of solutions are called entropy solutions and we must impose this criterion for
any weak solution of the system of conservation laws. Additionally, a useful consequence is
considering solutions separated by shock like we did for the Rankine-Hugoniot condition.
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Corollary 2. Let u be a en entropy solution of (4.1), then it must satisfy the relation

Ψ(uL)−Ψ(uR)≤ σ(Φ(uL)−Φ(uR)). (4.18)

The proof follows by the same procedure as for the Rankin-Huiginuot condition, namely
splitting the expression (4.12) into two terms and integrate by parts.

4.2 Admissibility conditions for Riemann data in shallow-
water theory

In the remainder of the chapter, we aim to identify conditions on the right state uR which will
guarantee that the solution of the Riemann problem does not include a dry state. Recall that
the shallow-water assumption applies to surface waves that are slowly varying, and a shock
represents a bore, i.e. a traveling hydraulic jump, where the shock structure may feature
oscillations or turbulent structures) has been neglected [69]. If this physical interpretation
is taken as a point of departure, then it appears that a Riemann problem may develop from
the collision of two bores, and a natural admissibility condition would be to consider only
such Riemann problems. Thus, we will study the history of the Riemann problem, or more
succinctly the backwards problem for t < 0. Examining possible solutions to the backwards
problem will lead to clear conditions on whether or not a Riemann problem can develop. As
it turns out, these conditions will exclude Riemann problems whose solution involves a dry
state.

Note that a Riemann problem could also develop from certain initial data which are
arranged in such a way that the solution lines up at some time so as to give a perfect Riemann
problem. While this is possible, it would clearly be unstable to even the smallest perturbations.
On the other hand, one might also consider the collision of three or more traveling hydraulic
jumps, or the collision between rarefaction waves and shocks, but these situations are so
unlikely to happen that they would constitute a set of measure zero in the configuration space.
In the current work, we focus on the origin of the Riemann problem which can be represented
by a set of non-zero measure in the configuration space given by the phase plane.

The outline of this section is as follows: In Section 4.2.1 and 4.2.2, a short discussion
of the properties of basic admissible waves for the shallow-water system is given, using
the conditions derived for a general system of conservation laws developed in Section 4.1.
As a result, the standard solution of the Riemann problem is explained in Section 4.2.3. In
Section 4.2.4, 4.2.5 and 4.2.6, Riemann problems originating from various configurations are
investigated. Some ramifications of our results are discussed in the conclusion at the end.
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4.2.1 Shock waves and bore properties

As already mentioned above, the shallow-water system can be written in terms of mass and
momentum conservation in the form

ht +(hu)x = 0, (4.19)

(hu)t +
(

hu2 +
1
2

gh2
)

x
= 0. (4.20)

A derivation of this system from first principles can be found in [61], where it is also shown
that the conservation of energy is formulated as(1

2
hu2 +

1
2

gh2
)

t
+
(1

2
hu3 +gh2u

)
x
= 0. (4.21)

Discontinuous solutions develop naturally in this system even in the case of flat bathymetry
which is under study here. In the case when the solution features jumps, the imposition of
mass and momentum conservation leads to an energy loss (see [54]) which has been the
subject of a number of studies [4, 8, 28, 62]. In the context of the conservation laws, the
energy loss means that (4.21) becomes an inequality, which is then taken as the mathematical
entropy in order to pick out physically reasonable discontinuous solutions.

In the context of the shallow-water equations (4.19) and (4.20) the Rankine-Hugoniot
condition (4.5) yields the following relations:

(hR −hL)σ = hRuR −hLuL,

(hRuR −hLuL)σ =
(

hRu2
R +

1
2

gh2
R

)
−
(

hLu2
L +

1
2

gh2
L

)
.

Combining these two equations enables us to find an expression for uR in terms of h,hL and
uL as shown in [2, 21]. Indeed, one may define the Hugoniot locus of all possible right states
(h,u) for a given left state (hL,uL) in terms of the shock curves S1 and S2 as follows.

S1(L) : u(h) = uL − (h−hL)

√
g
2
(
1
h
+

1
hL

), (4.22)

S2(L) : u(h) = uL +(h−hL)

√
g
2
(
1
h
+

1
hL

). (4.23)

A useful observation to be used later is that the fluid velocity of u on S1 is strictly
decreasing, while the velocity on S2 is strictly decreasing. In fact, taking the derivative yields



4.2 Admissibility conditions for Riemann data in shallow-water theory 67

the expression

u′(h) =∓

√
g
2(2h2 +hhL +h2

L)

2h2hL

√
1
h +

1
hL

,

where the minus sign refers to the S1 curve and the plus sign to the S2 curve. Inspecting the
term on the right in the above relation confirms that the sign of the derivative u′(h) depends
only on whether the derivative is taken on S1 or on S2.

The Hugoniot loci may also be described in terms of the momentum q = hu. Indeed, for
a given left (hL,qL), the possible right states must satisfy one of the following relations

S1(L) : q(h) =
qL

hL
h−h(h−hL)

√
g
2
(
1
h
+

1
hL

), (4.24)

S2(L) : q(h) =
qL

hL
h+h(h−hL)

√
g
2
(
1
h
+

1
hL

). (4.25)

Taking the second derivative of these expressions shows that these curves are strictly concave
and convex, respectively:

q′′(h) =∓

√
g
2(8h3 +12h3hL +3hh2

L +h3
L)

4h3h2
L(

1
h +

1
hL
)

3
2

.

Finally, the speed of the discontinuity may be found from the Rankine-Hugoniot condition
as

σ = uL ∓hR

√
g
2
(

1
hR

+
1
hL

) = uR ±hL

√
g
2
(

1
hR

+
1
hL

). (4.26)

Next, let us discuss the entropy condition for shock waves. It is well-known [21, 55] that
it is necessary to impose both the Rankine-Hugoniot and the entropy condition to ensure the
uniqueness of a solution. In the context of the shallow-water theory, the mechanical energy
serves as a mathematical entropy. In fact, it is well-known that energy is lost in a shock
either due to turbulence or the continuous creation of surface oscillations [4, 8, 61]. Similar

hL
hL

hR

hR

Fig. 4.3 Left panel: bore with flow depth hL < hR which corresponds to the right state being on the
shock curve S1. Right panel: bore with flow depth hR < hL corresponding to the right state being on
the shock curve S2. In both cases the bore front may feature positive (right-moving), zero, or negative
(left-moving) propagation velocity.
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Hugoniot locus Fluid velocity u(h) Momentum q(h)

S1 u′(h)< 0 u′′(h)> 0 q′′(h)< 0

S2 u′(h)> 0 u′′(h)< 0 q′′(h)> 0

Table 4.1 Properties of shock curves S1 and S2.

Hugoniot locus S1 S2

Increase/decrease in flow depth hL < hR hL > hR
Front speed σ < 0 or σ > 0 σ < 0 or σ > 0
Relative mass flux m > 0 m < 0
Velocity relation uR < uL uR < uL
Velocity relation uR > σ uR < σ

Velocity relation uL > σ uL < σ

Table 4.2 Jump properties on S1 and S2.

considerations can be used in various other applications, such as for example in the context
of porous media [1].

In the present case, the expected loss of mechanical energy is enforced by imposing the
inequality

∆E = (
1
2

hu2 +
1
2

gh2)t︸ ︷︷ ︸
Φ(u)t

+(
1
2

hu3 +gh2u)x︸ ︷︷ ︸
ψ(u)x

< 0, (4.27)

for discontinuous solutions. It is also convenient to introduce the relative mass flux m by

m = hR(uR −σ) = hL(uL −σ) =±hRhL

√
g
2
(

1
hR

+
1
hL

). (4.28)

Using m, we can express the rate at which energy is lost at the shock by the entropy condition
(4.18):

∆E = ψ(uR)−ψ(uL)−σ(Φ(uR)−Φ(uL)),

=−mg
4

(hR −hL)
3

hRhL
.

Note that since we always require ∆E < 0 for discontinuous solutions, if hL < hR, then
we must have m > 0 from the previous relation. Invoking (4.28) then shows that uR > σ and
uL > σ . On the other hand, similar considerations show that if hL > hR, then (4.27) requires
that uR < σ and uL < σ . These relations show that fluid particles always move across the
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shock from the region of lower depth to the region of higher depth, a fact already noted
in [61]. Moreover, combining equation (4.22), (4.23) and (4.28) and using the condition
(4.27) shows that we must have uR < uL for all discontinuous solutions. The most important
properties of the shock curves are summarized in Table 4.1 and 4.2.

One should also remark that both S1 and S2 shocks satisfy the Lax entropy condition (cf.
[21]). This condition states that the speed σi of an Si shock must satisfy the relation

λi(R)≤ σi ≤ λi(L), i = 1,2, (4.29)

where λi are the eigenvalues of the flux Jacobian matrix ∇F. For the shallow-water equations,
these eigenvalues are given by

λ1 = u−
√

gh, λ2 = u+
√

gh. (4.30)

A geometrical representation of the Lax entropy condition in the (x, t)−plane is shown in
Figure 4.4 and 4.5.

σ

t

x

σ1 λ2(R)

λ2(L) λ1(L) λ1(R)

Fig. 4.4 Left moving bore with speed σ1,
λi(L) and λi(R) for a S1 shock.

σ

x

t

λ2(L) λ1(R)λ2(R)

λ1(L) σ2

Fig. 4.5 Right moving bore with speed σ2,
λi(L) and λi(R) for a S2 shock.

4.2.2 Rarefaction waves

Following the classical theory (presented for example in [18, 69, 21]) we seek traveling
wave solutions of the form u(x, t) = v(ξ ) with ξ = x

t . Substituting this term the into the
conservation law one can easily verify that the system reduces to a system of ODEs of the
form

v̇ = r(v). (4.31)

The solution is then given by the integral of (4.31). We may now exploit this insight using
the theory of Riemann invariants w : R2 → R, which is a smooth function that is constant
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along the integral curves [18]. For the shallow-water equations, the Riemann invariants are
given by

w1 = u−2
√

gh, w2 = u+2
√

gh. (4.32)

Going along a Riemann invariant, we find that the solution must satisfy

uL ±2
√

ghL = uR ±2
√

ghR. (4.33)

Hence, for a given left state we may write the rarefaction wave solution as follows

R1(L) : u(h) = uL −2
√

gh+2
√

ghL, (4.34)

R2(L) : u(h) = uL +2
√

gh−2
√

ghL. (4.35)

By comparison, one can also show that v̇ is the right eigenvector r(v), and ξ is the cor-
responding eigenvalue λ (v) belonging to the Jacobi matrix of the flux function. Having
λ = ξ would mean that the eigenvalues must be increasing from left to right. This implies
λi(L) < λi(R) and by equation (4.30) that uL < uR whenever there is a rarefaction wave.
Figure 4.6 and 4.7 depicts two rarefaction waves propagating left and right in the (x, t)−plane.
Following the characteristics one can see how the waves moves forward in time.

In fluid mechanics, some refer to these waves as negative surges resulting from a decrease
in flow depth [13]. Interestingly, Peregrine was able to show that a negative surge together
with a bore advancing in positive direction originates from the collision of two fast shocks
[53]. Therefore, we will discuss the development of the Riemann problem from a collision
of two S2 shocks in Section 4.2.5.

Fig. 4.6 Left moving rarefaction wave
smoothly varying between λ1(L) and
λ1(R).

Fig. 4.7 Right moving rarefaction wave
providing a smooth transition between
λ2(L) and λ2(R).
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4.2.3 General solution of the Riemann problem

Using the results from sections previous two sections, the general solution of the Riemann
problem can be found using the rarefaction curves defined by (4.34) and (4.35)

• R1(L) : u(h) = uL −2
√

gh+2
√

ghL, u > uL,

• R2(L) : u(h) = uL +2
√

gh−2
√

ghL, u > uL,

and the shock curves (4.22) and (4.23)

• S1(L) : u(h) = uL − (h−hL)
√

g
2(

1
h +

1
hL
), u < uL,

• S2(L) : u(h) = uL +(h−hL)
√

g
2(

1
h +

1
hL
), u < uL.

In the following, it will be convenient to plot the integral curves and shock curves for a
particular left state (hL,uL) plotted in two different coordinate systems. Figure 4.8 shows
the integral curves in (h,q)−coordinates, where q = hu is the momentum, while Figure 4.9
shows the integral curves in (h,u)−coordinates, The benefit of the former representation lies
in the fact that the shock speed between q1 and q2 is given by

σ =
q1 −q2

h1 −h2
,

which is simply the secant line joining the two states. For example, any right state given
on the S2(L) curve in Figure 4.9 would give rise to a right- moving bore since the slope of
the secant line joining left and right states would be positive, i.e. σR > 0. Of course, if the
right state is not given on any of the integral or shock curves, S1,S2,R1 and R2 need to be
combined to give a solution of the Riemann problem. Indeed as explained in [21, 41], given
a left state we may consider all possible right states and then find the solution depending on
whether the right state is in region I, II, III or IV . For instance, let us say we have a right
state somewhere in region four. Then in order to find an entropy solution we must define
a middle state at some point (hM,uM) on the shock curve S1(L) such that it is connected
to a rarefaction curve R2(M). Similarly, the entropy solution for each region is found by
two elementary waves going through some middle state. For region I, we follow R1(L)
connecting the right state with R2(M) for a middle state. In region II, we first go along
R1(L) then S2(M). Finally, in region III we connect S1(L) with S2(M) for some middle
state (see example in Figure 4.10 and 4.11). Concluding this section we remark that the
solution is in fact unique since all of these solutions satisfy the admissibility conditions, and
it has been shown that there is only one middle state M for each region.
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Fig. 4.8 Phase-space in (h,q)−coordinates. Fig. 4.9 Phase-space in (h,u)−coordinates.

Fig. 4.10 Solution in region III using
(h,q)−coordinates.

Fig. 4.11 Solution in region III using
(h,u)−coordinates.

4.2.4 Development of the Riemann problem from a collision of S2 and
S1 shocks

In this section, we will discuss the origin of the Riemann problem from a collision of two
bores. It is most convenient to focus the discussion by assuming that a left state is given.
With this proviso, we will prove that the Riemann problem associated to certain right states
in region III arises from the head-on collision of two counter-propagating bores, while other
right states are connected to an overtaking collision of co-propagating bores. Indeed, we will
show that these two scenarios cover all possible right states in region III. Finally, we show
that Riemann problems with right states in regions I, II and IV cannot develop from either
head-on or overtaking collisions of an S1 and an S2 shock.

In order to understand how a given Riemann problem develops, we consider the back-
wards problem for t < 0. In order to solve the backwards problem, the usual disposition of
a slow shock on the left and a fast shock on the right has to be reversed. Indeed, to solve
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Fig. 4.12 Backwards problem in
(h,u)−coordinates.

Fig. 4.13 Forward problem in
(h,u)−coordinates.

the backwards problem, the left state is connected to a center state lying on the locus S2(L).
The center state is then connected to the right state by ensuring that the right state lies on the
locus S1(C). This configuration then leads to the collision of the two shocks at time t = 0.
Note that we have chosen to use the term center state for the backwards problem versus
middle state for the forward problem.

As indicated in Figure 4.13, the solution of the Riemann problem for a right state in
region III consists of a 1−shock and a 2−shock connected by a middle state on S1(L). Note
that the flow depth of the middle state will always be higher than for both the left and the
right state. Specifically we always have hM > hL and hM > hR in region III. In fact, it can
be observed that fluid particles from both sides will move back towards the middle, thus
contributing to the raised flow depth of the middle state. In that respect, it seems natural
that the Riemann problem should result from two colliding bores. Figure 4.14 depicts the
case of a head-on collision of a left-moving shock and a right-moving shock. Note that the
backwards solution has the two shocks connected by a center state (hC,uC), then moving
towards each other resulting in a Riemann problem at time t = 0.

Theorem 10. Suppose that a left state L = (hL,uL) for the Riemann problem is given. For
any right state R = (hR,uR) in region III, there exists a center state C = (hC,uC) such that
for t < 0, there is an S2 −S1 connection between L and R via C. The two shocks collide at
t = 0, giving rise to a Riemann problem. On the other hand, it is not possible for a Riemann
problem to develop from a S2 −S1 connection if the right state is in region I, II or IV .

Proof. Step 1. Existence of a center state: We need to prove there is a center state con-
necting two colliding shock waves satisfying the bore conditions. Guided by the discussion
above, and using an argument similar to one used in [32], we seek a point (hC,uC) on S2(L)
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hR hR hR
hL hL hL

hC

hM

t < 0 t = 0 t > 0

σL

σR

σL σR

Fig. 4.14 The Riemann problem at t = 0 originates from two counter-propagating shocks (t < 0).
The solution is given for t > 0.

giving rise to a 1−shock, S1(C) through (hR,uR). The equation defining the locus S2(L) is
given by

S2(L) : u = uL +(h−hL)

√
g
2
(
1
h
+

1
hL

). (4.36)

As already indicated in Table 4.1, taking the derivative u′(h) shows that u is strictly increasing
on S2(L) for h∈ (0,hL] and with range (−∞,uL). On the other hand, any right state (hR,uR)∈
III in the locus S1(C) will satisfy the relation

S1(C) : uR = uC − (hR −hC)

√
g
2
(

1
hR

+
1

hC
). (4.37)

Keeping the right state fixed, and varying hC shows that uC is is strictly decreasing as a
function of hC with hC ∈ (0,hL], and uC ∈ [uR,∞). Since uR < uL, the two loci defined above
must necessarily intersect, thus defining the center state (hC,uC).

Step 2. Head-on collision and overtaking bores: We now analyze whether the center state
found in Step 1 actually leads to a collision of shocks. As will be shown presently, the center
state will always give rise to a Riemann problem originating from either a head-on collision
or an overtaking collision of two shocks. In order to prove this statement, we first note
that having (hC,uC) ∈ S2(L) implies that hC < hL and uC < uL. From the bore properties in
Section 4.2.1 we see that the left shock is described by

σL =
hLuL −hCuC

hL −hC
= uC +hL

√
g
2
(

1
hC

+
1
hL

), (4.38)

when substituting uL from equation (4.36). Keeping this in mind, we now consider σR.
Since the right state (hR,uR) is in the locus S1(C), we must have hC < hR and we may now
use an argument reminiscent of the derivation of the Lax entropy condition (see [21], for
example). The idea is to show that σL > σR by considering the difference of these two
quantities, and then using the mean-value theorem. Since q is continuous on [hC,hR] and
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differentiable on the open interval (hC,hR), it follows from the mean-value theorem that there
exists h∗ ∈ (hC,hR) such that

σR =
qR −qC

hR −hC
=

dq
dh

∣∣∣
h∗
.

In addition, differentiating q(h) twice shows that the momentum q is a strictly concave
function of h on the locus S1(C) (see Table 4.1). Therefore, an upper bound on the derivative
may be obtained by evaluating it at the leftmost point, hC. Combining this observation with
equation (4.38) yields the estimate

σL −σR > σL −
dq
dh

|hC

= hL

√
g
2
(

1
hC

+
1
hL

)+
√

ghC

> 0.

Hence we conclude that σL > σR whenever the right state is in region III. This relation
ensures that the center state chosen above gives rise to a Riemann problem. If σL and σR

have the same sign, then the Riemann problem develops from an overtaking shock collision.
If σL and σR have opposite signs, the Riemann problem develops from a head-on collision.

Step 3. Inadmissible connections: Regarding the last statement of the theorem, we will
now argue that for a right state in region I, II or IV there is no admissible connection. If we
first consider region I, we must choose uC such that uC < uL in order to satisfy the entropy
condition in Section 4.2.1. Furthermore, in region I we have uR > uL, which means that
uC < uR. This violates the entropy condition as a result of the center state being to the left,
relative to the right state. In fact, the entropy condition ensures that the only admissible
connection using one 1−shock and one 2−shock is a center state satisfying uL > uC > uR,
and this can obviously only be true for a right state in region III.

Before proceeding, we will offer some clarifying remarks. For the shallow-water equation,
given a left state we can always connect any right state with a middle state as mentioned
earlier. Once you know the right state it is then possible to go back through a center state.
We find it instructive to describe the solution for two particular states in both phase-space
and in (x, t)−coordinates. Figure 4.16 depicts the special case from earlier in (x, t)−plane
with two counter-propagating bores colliding at t = 0. Also observe that for t < 0, we need
to consider the admissible connection from the perspective of the right state. Then of course,
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a S1(C)−S2(L) connection is entropy-satisfying, and is shown in Figure 4.15. On the other
hand, for the forward problem, we connect S1(L)−S2(M) as discussed in Section 4.2.3.

Fig. 4.15 Development of the Riemann
problem in phase space.

hL

hC

hR

hL

hM

hR

σL σR

σL

σR

x

t

Fig. 4.16 Development of the Riemann prob-
lem in (x, t)−coordinates.

4.2.5 Development of the Riemann problem from a collision of two S2

shocks

Consideration will now be given to the Riemann problem arising from a S2 −S2 connection.
As it will turn out, the resulting Riemann problem will have a right state in region II. As
before, we consider the left state given. It is then straightforward to see that the center state
in the backwards problem must lie in the Rankine-Hugoniot locus S2(L). Thus the center
state is given by the formula

uC = uL +(hC −hL)

√
g
2

( 1
hC

+
1
hL

)
. (4.39)

On the other hand, if the center state is to be connected to the right state by an S2 -shock,
then the right state must lie on the S2(C) shock curve and therefore satisfy the relation

uR = uC +(hR −hC)

√
g
2

( 1
hR

+
1

hC

)
. (4.40)

Putting these two formulas together defines the region of all possible right states as

Ω2 =
⋃

hC∈(0,hL)

{
(hR,uR)

∣∣uR = uL+(hC−hL)
√

g
2(

1
hC

+ 1
hL
)+(hR−hC)

√
g
2(

1
hR

+ 1
hC
),0< hR < hC

}
.

We have the following theorem.
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Theorem 11. Suppose that a left state L = (hL,uL) for the Riemann problem is given. The
set of all possible right states R = (hR,uR) such that the Riemann problem originates from
the collision of two S2 shocks is given by Ω2. This set lies in region II, and the shock speeds
of the backwards problem line up such that the two shocks meet at t = 0.

On the other hand, it is not possible for a Riemann problem to develop from a S2 −S2

connection if the right state is in the complement of the set Ω2.

Proof. First of all, the definition of the set Ω2 is straightforward from the relations for the
Hugoniot loci S2(L) and S2(C). Any state which does not lie in Ω2 can therefore not be
reached via a S2 −S2 connection.

To see that the state R = (hR,uR) lies in region II, consider the difference between uR

given by (4.40) and (4.39) and u in the locus S2(L) as defined by (4.23). Denoting this
difference by F(h) = u−uR, we obtain the formula

F(h) = uL+(h−hL)

√
g
2
(
1
h
+

1
hL

)−uL−(hC −hL)

√
g
2
(

1
hC

+
1
hL

)−(h−hC)

√
g
2
(
1
h
+

1
hC

).

It needs to be shown that F(h)< 0 for h < hC. Note first the F(hC) = 0. If it can be shown
that F ′(h) > 0 for h < hC then we can conclude that F(h) is strictly monotone increasing,
and can therefore only cross the abscissa one time, so that F(h) will have to be negative in
the interval in question.

Evaluating the first and second derivative of F(h) yields

F ′(h) =

√
g
2
(
1
h
+

1
hL

)−

√
g
2(h−hL)

2h2
√

1
h +

1
hL

−
√

g
2
(
1
h
+

1
hC

)+

√
g
2(h−hC)

2h2
√

1
h +

1
hC

,

and

F ′′(h) =−

√
g
2(5hL +3h)

4h4(1
h +

1
hL
)

3/2 +

√
g
2(5hC +3h)

4h4(1
h +

1
hC
)

3/2 .

By inspection, we see that F ′′(h)< 0 so that the derivative is strictly monotone decreasing.
Therefore, we have F ′(h) > F ′(hC) for all h < hC, and if it can be shown that F ′(hC) > 0,
then we are done.

Lemma 1. Given F(h) = u−uR, we have F ′(hC)> 0.
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Proof. Evaluating the derivative F ′(h) given above at h = hC and multiplying with
√

2
g for

the sake of clarity yields√
2
g

F ′(hC) =

√
1

hC
+

1
hL

− (hC −hL)

2h2
C

√
1

hC
+ 1

hL

−
√

1
hC

+
1

hC

=

√
1

hC
+

1
hL

−
√

2
hC

− hC

2h2
C

√
1

hC
+ 1

hL

+
hL

2h2
C

√
1

hC
+ 1

hL

.

Next multiply with the positive number
√

1
hC

+ 1
hL

to obtain

√
2
g

√
1

hC
+

1
hL

F ′(hC) =
1

hC
+

1
hL

−
√

2
hC

√
1
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+
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2h2
C
+
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2h2
C

=
1

2hC
+

1
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−
√

2
hC

√
1
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+

1
hL

+
hL

2h2
C
.

Letting hC = εhL for ε ∈ (0,1), we find√
2
g

√
1

hC
+

1
hL

F ′(hC) =
1

2εhL
+

1
hL

−
√

2
εhL

√
1

εhL
+

1
hL

+
hL

2ε2h2
L
.

Evidently, the proof will be achieved if it can be shown that the function

f (ε) = ε +1+2ε
2 −2

√
2ε

√
ε +1,

is positive for all ε ∈ (0,1). To this end, we take the first and second derivatives:

f ′(ε) = 4ε −2
√

2
√

ε +1−
√

2ε√
ε +1

+1,

f ′′(ε) =

√
2ε

2(ε +1)3/2 −
2
√

2√
ε +1

+4.

Note that f ′′(ε) > 0 by inspection, and f is therefore strictly convex on (0,1). Thus by
convexity we know that f ′(ε) is strictly increasing, so that f ′(ε)< f ′(1) for all ε ∈ (0,1).
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But evaluating f ′(ε) at 1 yields f ′(1) = 0. Hence, f ′(ε)< f ′(1) = 0. So the function f is
strictly decreasing on (0,1) meaning f (ε)> f (1) = 0.

Finally, denote the shock speeds of the backwards problem by

σR =
qR −qC

hR −hC
,

and
σL =

qL −qC

hL −hC
.

Now recall that it was proved in Section 4.2.1 that the function q(h) is convex, and note
that the convexity on the Hugoniot locus S2(C), including the admissible and the entropy-
violating part guarantees that σR > σL, as is required for the two shocks to meet at t = 0.

A particular example of the backwards problem is represented in phase space for (h,u) and
(h,q) coordinates.

Fig. 4.17 Backwards problem in
(h,q)−coordinates.

Fig. 4.18 Backwards problem in
(h,u)−coordinates.

In Figure 4.18, we observe that hR < hC < hL and uR < uC < uL. Also note that in Figure
4.17 the line joining each state has a positive slope, which implies that both states moves in
the positive direction. From this we may hope to create a Riemann problem if the left sate is
moving faster than the right state, causing an overtaking. Though, this is clear due to the fact
that S2 is convex, i.e. the rate of change given by the shock speed σ is increasing from left to
right. We state the general formulation in the next theorem.
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hL

hC

hR

σL

σR

Fig. 4.19 Two colliding bores forming the Riemann Problem.

4.2.6 Development of the Riemann problem from a collision of two S1

shocks

The final case to be considered is when a Riemann problem develops from the collision
between two S1 shocks. The situation is similar, and the arguments in the proofs are virtually
the same as in the previous section. Finding a center state turns out to only be possible for
some right states in region IV .

As before, we consider the left state given. It is then straightforward to see that the center
state in the backwards problem must lie in the Rankine-Hugoniot locus S2(L). Thus the
center state is given by the formula

uC = uL − (hC −hL)

√
g
2

( 1
hC

+
1
hL

)
. (4.41)

On the other hand, if the center state is to be connected to the right state by an S1 -shock,
then the right state must lie on the S1(C) shock curve and therefore satisfy the relation

uR = uC − (hR −hC)

√
g
2

( 1
hR

+
1

hC

)
. (4.42)

Putting these two formulas together defines the region of all possible right states as

Ω4 =
⋃

hC∈(0,hL)

{
(hR,uR)

∣∣uR = uL−(hC−hL)
√

g
2(

1
hC

+ 1
hL
)−(hR−hC)

√
g
2(

1
hR

+ 1
hC
),0< hR < hC

}
.

We have the following theorem.

Theorem 12. Suppose that a left state L = (hL,uL) for the Riemann problem is given. The
set of all possible right states R = (hR,uR) such that the Riemann problem originates from
the collision of two S1 shocks is given by Ω4. This set lies in region IV, and the shock speeds
of the backwards problem line up such that the two shocks meet at t = 0.

On the other hand, it is not possible for a Riemann problem to develop from a S1 −S1

connection if the right state is in the complement of the set Ω4.
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Fig. 4.20 Backwards problem in
(h,q)−coordinates.

Fig. 4.21 Backwards problem in
(h,u)−coordinates.

The proof of Theorem 12 is virtually the same as that of Theorem 11, except for changing
signs in the right places. From Figure 4.20, we observe that both bores are moving to the left
due to a negative slope. However, the right state moves faster than the left. This is also true in
general since S1 is strictly concave in momentum coordinates. Again, we must also choose
an admissible connection. Similar to the case in Section 4.2.5, we follow S1(L) from left
state to center state, continuing along the S1(C) curve from the center state to the right state.

4.3 Conclusions

In this chapter, we have considered the Riemann problem associated to the shallow-water
equations. The study of the Riemann problem is important when trying to understand the
behavior of solutions of a system of conservation laws. For example the Riemann problem
can be used as a tool in the front-tracking method where general initial data are decomposed
into piecewise constant functions which gives rise to a series of Riemann problems [21]. This
approach is used in existence proofs and numerical schemes, but one may face difficulties
interpreting solutions of the Riemann problem for the shallow-water equations in the case
when the solution includes a dry region (h = 0). In gas dynamics, this situation is known
as cavitation and is a well-defined concept, but the creation of a dry zone between two
propagating waves does not seem reasonable from a physical point of view in the case of
shallow-water theory.

In the present work, we have imposed the condition that the Riemann problem should
arise from the collision of two bores. With this condition in place, we were able to show that
solutions of the Riemann problem do not feature cavitation. In summary, for a given left state,
the collision of an S1(L) and an S2(L) shock gives rise to a Riemann problem in Region III
(Theorem 10). The collision of two S2(L) shocks gives rise to a Riemann problem in Region
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II (Theorem 11), and the collision of two S1(L) shocks gives rise to a Riemann problem in
Region IV (Theorem 12). It is clear that a right state in region I is not permitted if these
admissibility conditions are used. In particular, we avoid a right state in the shaded region of
Figure 4.1 which is the region where the resolution of the Riemann problem features a dry
state.
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Appendix A

Integration of cnoidal functions

In order to define the two shoaling models we need to handle integrals including different
variations of η . In particular we need to determine η ,η2,η3,ηxx,ηηxx to evaluate (2.22)
and (2.23) in terms of m and current depth. First note that we can write the time averaged η

given by (1.33) on the more convenient form

η =
1
T

∫ T

0
η

(
2K(m)(

t
T
− x

λ
)
)

dt = f2 +H
∫ 1

0
cn2(2K(m)ξ ;m)dξ ,

(for more details see [65]). Similarly we can find the average of the powers of η . We note
that they will involve integrals of the form

∫ 1

0
cn2(2Kξ ;m)dξ =

1
4mK

(
E − (1−m)K

)
,

∫ 1

0
cn4(2Kξ ;m)dξ =

1
3m2

(
3m2 −5m+2(4m−2)

E
K

)
,

∫ 1

0
cn6(2Kξ ;m)dξ =

1
5m2

(
4(2m2 −1)

∫ 1

0
cn4(2Kξ ;m)dξ +3(1−m2)

∫ 1

0
cn2(2Kξ ;m)dξ

)
.

These expressions can be found in [39]. Also note that ηxx,ηηxx will also include such terms.
This is due to

ηxx(2Kξ ;m) = 4K2H(2−2m+(8m−4)cn2(2Kξ ;m)−6mcn4(2Kξ ;m)),

and can be calculated from relations found in [3]. Combining the results above we deduce,
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η = f2 +H
∫ 1

0
cn2(2Kξ ;m)dξ ,

η2 = f 2
2 +2H f2

∫ 1

0
cn2(2Kξ ;m)dξ +H2

∫ 1

0
cn4(2Kξ ;m)dξ ,

η3 = H3
∫ 1

0
cn6(2Kξ ;m)dξ +3H2 f2

∫ 1

0
cn4(2Kξ ;m)dξ +3H f 2

2

∫ 1

0
cn2(2Kξ ;m)dξ + f 3

2 ,

ηxx =
3H2

2m
(−3m2

∫ 1

0
cn4(2Kξ ;m)dξ +4m2

∫ 1

0
cn2(2Kξ ;m)dξ −2

∫ 1

0
cn2(2Kξ ;m)dξ −m2 +1),

ηηxx = 3H2 f3

∫ 1

0
cn4(2Kξ ;m)dξ −3H2 f1

∫ 1

0
cn4(2Kξ ;m)dξ +

3
2

H f1 f2 −
3
2

H f2 f3

+
3
2

H2 f1

∫ 1

0
cn2(2Kξ ;m)dξ − 3

2
H2 f3

∫ 1

0
cn2(2Kξ ;m)dξ +6H2 f1m2

∫ 1

0
cn4(2Kξ ;m)dξ

−6H2 f3m2
∫ 1

0
cn4(2Kξ ;m)dξ − 3

2
H f1 f2m2 +

3
2

3H f2 f3m2 − 3
2

H2 f1m2
∫ 1

0
cn2(2Kξ ;m)dξ

+
3
2

H2 f3m2
∫ 1

0
cn2(2Kξ ;m)dξ −3H f1 f2

∫ 1

0
cn2(2Kξ ;m)dξ +3H f2 f3

∫ 1

0
cn2(2Kξ ;m)dξ

− 9
2

H2 f1m2
∫ 1

0
cn6(2Kξ ;m)dξ +

9
2

H2 f3m2
∫ 1

0
cn6(2Kξ ;m)dξ

+6H f1 f2m2
∫ 1

0
cn2(2Kξ ;m)dξ −6H f2 f3m2

∫ 1

0
cn2(2Kξ ;m)dξ

− 9
2

H f1 f2m2
∫ 1

0
cn4(2Kξ ;m)dξ +

9
2

H f2 f3m2
∫ 1

0
cn4(2Kξ ;m)dξ .
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