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S U M M A R Y
Traveltime approximation plays an important role in seismic data processing, for example,
anisotropic parameter estimation and seismic imaging. By exploiting seismic traveltimes, it
is possible to improve the accuracy of anisotropic parameter estimation and the resolution
of seismic imaging. Conventionally, the traveltime approximations in anisotropic media are
obtained by expanding the anisotropic eikonal equation in terms of the anisotropic parame-
ters and the elliptically anisotropic eikonal equation based on perturbation theory. Such an
expansion assumes a small perturbation and weak anisotropy. In a realistic medium, however,
the assumption of small perturbation likely breaks down. We present a retrieved zero-order
deformation equation that creates a map from the anisotropic eikonal equation to a linearized
partial differential equation system based on the homotopy analysis method. By choosing the
linear and nonlinear operators in the retrieved zero-order deformation equation, we develop
new traveltime approximations that allow us to compute the traveltimes for a medium of arbi-
trarily strength anisotropy. A comparison of the traveltimes and their errors from the homotopy
analysis method and from the perturbation method suggests that the traveltime approximations
provide a more reliable result in strongly anisotropic media.
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I N T RO D U C T I O N

Seismic anisotropy can arise due to various geological situations such as crystal orientation (Musgrave 1970), parallel cracked rocks (Crampin
1984), sedimentation near salt domes and thin layering in the subsurface (Schoenberg 1983; Tsvankin 1997, 2012). It is important for seismic
exploration and investigations of the Earth’s interior to recognize the anisotropy. One of the most common and effective approximations
to an anisotropic subsurface is the transversely isotropic medium. Modelling seismic traveltimes is clearly essential for understanding and
quantification of the kinematic properties of the propagating waves in such media. It finds many applications such as velocity analysis,
anisotropic parameter estimation (Alkhalifah 2011a), traveltime tomography (Chapman & Pratt 1992; Zelt & Barton 1998; Zhou et al. 2008;
Bai & Greenhalgh 2005), seismic migration (Huang et al. 2016a; Huang & Sun 2018) and full waveform inversion (Alkhalifah & Choi 2014;
Silva et al. 2016). The seismic traveltimes can be obtained by solving the nonlinear partial differential equation under the high-frequency
assumption; this is referred to as the eikonal equation.

There are several approaches to solve the eikonal equation, such as ray-tracing methods (see e.g. Červenỳ 1972, 2001; Červenỳ &
Pšenčı́k 1983; Moser 1991; Vinje et al. 1993; Bai et al. 2007; Červenỳ et al. 2007, 2012; Iversen & Tygel 2008) and the finite-difference
(FD) method (Vidale 1988; Cao & Greenhalgh 1994; Sethian 1996; Sethian & Popovici 1999; Rawlinson & Sambridge 2004a,b; Noble et al.
2014). The ray-tracing method computes the traveltimes by integration along rays in which the initial condition must be specified. The main
advantages include easy implementation and high efficiency. However, it gives a non-uniform distribution of traveltimes, and the presence
of shadow zones can lead to problems. Moreover, due to the different directions of the group velocity (ray direction) and the phase velocity
(wave front normal direction) vectors , solving the ray-tracing system becomes complicated in the anisotropic media. The FD method has
been recognized as an efficient and accurate computational scheme for calculating the traveltimes. In the framework of the FD method, two
approaches, the fast marching method (Sethian 1996; Sethian & Popovici 1999; Alkhalifah & Fomel 2001; Huang et al. 2016b; Huang & Sun
2018) and the fast sweeping method (Zhao 2005), have been widely used for calculating the traveltimes. In recent years, efforts have been
made to solve the anisotropic eikonal equations (Luo & Qian 2012; Waheed et al. 2015a,b; Bouteiller et al. 2017; Han et al. 2017; Waheed &
Alkhalifah 2017). In addition, some interesting results for moveout approximations have been obtained based on the weak-anisotropy (WA)
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parameters (Farra & Pšenčı́k 2017; Pšenčı́k & Farra 2017). However, it is challenging to use the FD method to solve the eikonal equation for
the anisotropic media because of the additional anisotropic parameters involved. This is especially true because solving the quartic equation
and finding the roots of a quartic equation at each computational step are difficult (Alkhalifah 2011a; Stovas & Alkhalifah 2012).

Perturbation theory has been widely used to develop traveltime approximations for calculating the traveltimes in anisotropic media. This
approach was proposed by Alkhalifah (2011a,b) for deriving traveltime approximations and scanning anisotropic parameters in transversely
isotropic media with a vertical symmetry axis (VTI) and transversely isotropic media with a tilted symmetry axis (TTI) media. Since then,
many researchers have applied the perturbation theory and have made significant progress in developing the traveltime approximations. For
instance, Stovas & Alkhalifah (2012) derive the traveltime approximations in TTI media by expanding the TTI eikonal equation in a power
series in terms of the anellipticity parameter. Subsequent generalizations of the perturbation theory to a transversely isotropic medium can be
found in Waheed et al. (2013), Alkhalifah (2013) and Masmoudi & Alkhalifah (2016). Xu et al. (2017) have applied perturbation theory to
moveout approximations in an anisotropic medium. Later, this approach has been extended to an orthorhombic medium (Stovas et al. 2016)
and attenuating VTI medium (Hao & Alkhalifah 2017).

Recently, we have extended the perturbation theory to the problem of complex traveltime computation. We have applied it to the complex
eikonal equations in orthorhombic and VTI media and derived a system of linear equations for the complex traveltime computation. Based on
the derived system, we have developed analytic solutions in an orthorhombic medium (Huang & Greenhalgh 2018) and numerical solutions
in a VTI medium (Huang et al. 2018). The perturbation approach to the complex eikonal equation differs from the real eikonal equation in
the following respects. First, we expand the real and imaginary parts of the complex traveltime in terms of the background traveltime and the
coefficients separately and transform the problem of the highly nonlinear eikonal equations into one of solving a relatively simple eikonal
equation for the background medium and a system of linear partial differential equations. Second, we use a perturbation scheme to solve the
background complex eikonal equation for the background traveltimes. In this case, we successfully employed the perturbation theory to solve
the complex eikonal equations in anisotropic media.

In reviewing all of the above perturbation theories, we find that most of the traveltime approximations make use of a power-series
expansion in terms of the anisotropic parameters and make the assumption of small anisotropic parameters. This means that the degree of
anisotropy does not exceed a small perturbation from the elliptically anisotropic background medium. A major limitation of the perturbation
analysis technique is that it breaks down in regions with strong anisotropy.

The purpose of this paper is to establish the fundamental theory of the linear partial differential equations for solving the VTI and TTI
eikonal equations and to develop traveltime approximations for strongly anisotropic media. To this end, we employ the homotopy analysis
method (HAM), an analytic approximation method for highly nonlinear problems, to the nonlinear eikonal equations. The HAM was proposed
by Liao (1992c, 1999, 2003a, 2012) for solving nonlinear problems encountered in mathematical physics. Different from the conventional
perturbation theory, the HAM does not depend on any physical parameters and can guarantee the convergence of the series solution. This
implies that the HAM can be used for arbitrarily high nonlinear problem. From the late 1990s to 2010s, due to the advantages of the HAM
over perturbation theory, it has been widely used in the mathematical and physical sciences. Much work has been done on the HAM for
nonlinear problems in developing analytic series solutions, for example, nonlinear oscillations (Liao 1992b, 2003b, 2004; Liao & Chwang
1998), boundary layer flows (Liao 1999, 2002), heat transfer (Liao 2003b; Wang et al. 2003), nonlinear water waves (Liao 1992a; Liao et al.
2016) and nonlinear gravity waves (Liao 2011). In this work, by applying the HAM to anisotropic eikonal equations, we extend the HAM to
geophysical problems for anisotropic media.

In the following, we first review the theory of the HAM. After deriving linear partial differential equations in VTI and TTI media, we
provide the theoretical background of the differences between the HAM and the perturbation theory and the nature of the derived linear
equations. Then, we develop the analytic solutions of the VTI and TTI eikonal equations for traveltime approximations. Finally, we present
numerical tests of the contours of the traveltimes and the relative errors which are aimed at quantifying the differences of the results from the
HAM and the perturbation theory method and comparing the performance in strongly anisotropic media.

H O M O T O P Y A NA LY S I S M E T H O D

The HAM (Liao 2004) is an analytic approximation technique for generating series solutions to highly nonlinear problems. In this method,
an embedding parameter q and a convergence control parameter h are chosen to transform the nonlinear equation into a sequence of linear
equations. In this section, we review the mathematical formulations of the HAM and discuss the applicability of this method to solving
nonlinear equations.

Consider a general nonlinear equation

N [τ (x, z)] = 0, (1)

where N is a nonlinear operator, x and z are the independent variable parameters, and τ (x, z) is the exact solution of the nonlinear equation.
For solving the above nonlinear equation, Liao (1992a,1992b) developed the zero-order deformation equation

(1 − q)L
[
tq (x, z) − τ0(x, z)

] = q hH(x, z) · N [
τq (x, z)

]
, (2)
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where L is an arbitrary linear operator, H (x, z) is an auxiliary function and τ 0(x, z) is the initial approximation. Eq. (2) shows that (1) the
nonlinear problem is transformed into a linear problem; (2) the linear operator L plays a crucial role in the transformation; (3) there is a
continuous mapping from τ (x, z, q) to t(x, z, q).

It can be seen that when q = 0, eq. (2) becomes

L
[
tq (x, z) − τ0(x, z)

] = 0, (3)

and when q = 1, eq. (2) becomes

hH(x, z) · N [
τq (x, z)

] = 0. (4)

From eqs (3) and (4), we have

t(x, z, 0) = τ0(x, z), (5)

and

t(x, z, 1) = τ (x, z). (6)

Eqs (5) and (6) show that while the embedding parameter q changes from 0 to 1, the solution of the nonlinear eq. (1) varies from the initial
approximation to the exact solution of the equation.

By means of Taylor’s theorem, the solution of eq. (2) can be expressed as a power series in q to yield the series expansion solution

tq (x, z) = τ0(x, z) +
∞∑

m=1

τm(x, z)qm . (7)

If now we assume that we can choose the embedding parameter, auxiliary parameter and the auxiliary linear operator to make the series
converge at q = 1, then we can determine the coefficients by substituting it into eq. (2). Then returning to the situation in which q = 1 and
from a combination of eqs (6) and (8), we have

τq (x, z) = τ0(x, z) +
∞∑

m=1

τm(x, z). (8)

The above solution refers to a situation in which only the coefficients τm(x, z) vary. The solution therefore depends on the initial approximation
τ 0(x, z) and the coefficients τm(x, z). This differs from the perturbation theory in which the solution is a function of the coefficients and small
parameters.

The HAM explains how the analytic solutions of the nonlinear equation can be obtained by transforming the nonlinear equation into a
linear equation system. From eq. (2), we can observe that with suitable embedding parameter, auxiliary parameter and the auxiliary linear
operator, the transformation relationship is always accepted. By analogy with the homotopy analysis process, the first guess approximation is
chosen initially for satisfying eq. (3), then the approximation changes until it satisfies eq. (4). This means that the assumed series expansion
solution (7) changes from the initial solution to the exact solution. With the embedding parameter q getting larger and larger, the series
expansion solution (7) approaches the exact solution smoothly, meaning that, at q = 1, the exact solution can be obtained. The homotopy
analysis process can be divided into the following steps: (1) choosing the linear operator L; (2) construction of the zero-order deformation
equation; (3) determination of the coefficients of the series expansion; (4) obtaining the exact solution by setting q = 1.

T H E O RY F O R T R AV E LT I M E C A L C U L AT I O N I N A N I S O T RO P I C M E D I A U S I N G H A M

In this section, we derive the linearized partial differential equation system for the traveltime solutions of the VTI and TTI eikonal equations by
using the HAM. For the VTI eikonal equation, we assume to have the known initial traveltime solution, but just for an elliptically anisotropic
medium, which we denote as the background traveltime solution. We start with Alkhalifah’s acoustic eikonal equation for a VTI medium
involving the anisotropic parameter η. Following recent work (Huang & Greenhalgh 2018; Huang et al. 2018), we choose the linear operator
form as an elliptical anisotropic eikonal equation. Then, we propose the solution as a series expansion containing the embedding parameter
q. For the TTI eikonal equation, the initial solution and linear operator are chosen in a similar way to the VTI eikonal equation. However, for
the series expansion, we only keep two terms because if we keep high-order terms, the solution of the TTI eikonal equation is complicated.

Retrieved VTI eikonal equation

Following Alkhalifah (2000), the eikonal equation for VTI media can be written as

v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2
v

(
∂τ

∂x

)2
)

= 1. (9)
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Here, τ (x, z) is the traveltime at the position in the coordinates (x, z) , v is the P-wave normal-moveout (NMO) velocity (v = vv

√
1 + 2δ), vv

is the vertical P-wave velocity and η is the anellipticity parameter. According to eqs (2) and () and by choosing the linear operator as

L = v2 ∂τ0

∂x

∂τ

∂x
+ v2

v

∂τ0

∂z

∂τ

∂z
, (10)

and the nonlinear operator as

N = v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2

(
∂τ

∂x

)2
)

− 1, (11)

we obtain the following zero-order deformation equation for the eikonal equation in VTI media

(1 − q)

(
v2 ∂τ0

∂x

∂τ

∂x
+ v2

v

∂τ0

∂z

∂τ

∂z
−

(
v2

(
∂τ0

∂x

)2

+ v2
v

(
∂τ0

∂z

)2
))

+ q

(
v2 (1 + 2η)

(
∂τ

∂x

)2

+ v2
v

(
∂τ

∂z

)2
(

1 − 2ηv2
(

∂τ

∂x

)2
)

− 1

)
= 0, (12)

where τ 0 is the traveltime solution (initial approximation) for the elliptical anisotropic eikonal equation. To obtain the linear equation system,
we assume

τ = τ0 + τ1q + τ2q2 + τ3q3, (13)

where τ 1, τ 2 and τ 3 are the first-order, second-order and third-order coefficients, respectively. Then substituting eq. (13) into eq. (12), we
obtain the linear partial differential equation for the first-order coefficient τ 1:(

∂τ0

∂x

) (
∂τ1

∂x

)
v2 +

(
∂τ0

∂z

)(
∂τ1

∂z

)
v2

v = 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2
vv

2 − (2η + 1)

(
∂τ0

∂x

)2

v2 −
(

∂τ0

∂z

)2

v2
v + 1, (14)

the linear partial differential equation for the second-order coefficient τ 2:(
∂τ0

∂x

) (
∂τ2

∂x

)
v2 +

(
∂τ0

∂z

)(
∂τ2

∂z

)
v2

v = 4η

(
∂τ0

∂x

)2 (
∂τ0

∂z

) (
∂τ1

∂z

)
v2

vv
2 + 4η

(
∂τ0

∂x

) (
∂τ0

∂z

)2 (
∂τ1

∂x

)
v2

vv
2

− 2(2η + 1)

(
∂τ0

∂x

) (
∂τ1

∂x

)
v2 −

(
∂τ0

∂x

) (
∂τ1

∂x

)
v2 −

(
∂τ0

∂z

)(
∂τ1

∂z

)
v2

v (15)

and the linear partial differential equation for the third-order coefficient τ 3:(
∂τ0

∂x

) (
∂τ3

∂x

)
v2 +

(
∂τ0

∂x

)(
∂τ3

∂x

)
v2

v = 4η

(
∂τ0

∂x

)2 (
∂τ0

∂z

) (
∂τ2

∂z

)
v2

vv
2 + 2η

(
∂τ0

∂x

)2 (
∂τ1

∂z

)2

v2
vv

2 + 4η

(
∂τ0

∂x

) (
∂τ0

∂z

)2 (
∂τ2

∂x

)
v2

vv
2

+8η

(
∂τ0

∂x

)(
∂τ0

∂z

) (
∂τ1

∂x

) (
∂τ1

∂z

)
v2

vv
2 − 2(2η + 1)

(
∂τ0

∂x

) (
∂τ2

∂x

)
v2 +

(
∂τ0

∂x

) (
∂τ2

∂x

)
v2

+2η

(
∂τ0

∂z

)2 (
∂τ1

∂x

)2

v2
vv

2 −
(

∂τ0

∂z

) (
∂τ2

∂z

)
v2

v − (2η + 1)

(
∂τ1

∂x

)2

v2 −
(

∂τ1

∂z

)2

v2
v . (16)

The linearized partial differential equations, derived in this section, may be used directly for obtaining the coefficients τ 1, τ 2 and τ 3, once
the initial traveltime solution τ 0 has been calculated. For each linear equation, we can solve the equation for the corresponding coefficient
in terms of the anisotropic parameter. Thus, instead of solving the eikonal equation in VTI media directly, we can obtain the solutions by
solving the above linearized partial differential equations.

Retrieved TTI eikonal equation

The eikonal equation for TTI media is given by (Alkhalifah 2000)

v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

= 1, (17)

where θ is the angle of the symmetry axis measured from the vertical direction and vt is the tilted velocity. According to eqs (2) and (7) and
by choosing the linear operator as

L = v2 ∂τ0

∂x

∂τ

∂x
+ v2

t

∂τ0

∂z

∂τ

∂z
(18)

and the nonlinear operator as

N = v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

− 1, (19)
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we obtain the following zero-order deformation equation for the eikonal equation in TTI media:

(1 − q)

(
v2 ∂τ0

∂x

∂τ

∂x
+ v2

t

∂τ0

∂z

∂τ

∂z
−

(
v2

(
∂τ0

∂x

)2

+ v2
t

(
∂τ0

∂z

)2
))

+ q

(
v2 (1 + 2η)

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2

+ v2
t

(
∂τ

∂z
cos θ − ∂τ

∂x
sin θ

)2
(

1 − 2ηv2

(
∂τ

∂x
cos θ + ∂τ

∂z
sin θ

)2
)

− 1

)
= 0, (20)

where τ 0 is the traveltime solution (initial approximation) for the elliptical anisotropic eikonal equation.
In a similar manner, by assuming

τ = τ0 + τ1q + τ2q2, (21)

we obtain the following linear partial differential equations for the first-order and second-order coefficients τ 1 and τ 2, respectively:

− ∂τ0

∂x

∂τ1

∂x
v2 − ∂τ0

∂z

∂τ1

∂z
v2

t = −2η

(
∂τ0

∂x

)4

v2v2
v sin2 θ cos2 θ + 4η

(
∂τ0

∂x

)3
∂τ0

∂z
v2v2

t sin θ cos3 θ − 4η

(
∂τ0

∂x

)
∂τ0

∂z
v2v2

t sin3 θ cos θ

− 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t sin4 θ − 2η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t cos4 θ

+ 8η

(
∂τ0

∂x

)2 (
∂τ0

∂z

)2

v2v2
t sin2 θ cos2 θ

+(2η + 1)

(
∂τ0

∂x

)2

v2 cos2 θ +
(

∂τ0

∂x

)2

v2
t sin2 θ − 4η

∂τ0

∂x

(
∂τ0

∂z

)3

v2v2
t sin θ cos3 θ

+ 4η
∂τ0

∂x

(
∂τ0

∂z

)3

v2v2
t sin3 θ cos θ

+ 2(2η + 1)

(
∂τ0

∂x

)2

v2 sin θ cos θ − 2
∂τ0

∂x

∂τ0

∂z
v2

t sin θ cos θ − 2η

(
∂τ0

∂z

)4

v2v2
t sin2 θ cos2 θ

+(2η + 1)

(
∂τ0

∂z

)2

v2 sin2 θ +
(

∂τ0

∂z

)2

v2
t cos2 θ − 1 (22)

and

− ∂τ0

∂x

∂τ2

∂x
v2 − ∂τ0

∂z

∂τ2

∂z
v2

t = −8η

(
∂τ0

∂x

)3
∂τ1

∂x
v2v2

t sin2 θ cos2 θ + 4η

(
∂τ0

∂x

)3
∂τ1

∂z
v2v2

t sin θ cos3 −4η

(
∂τ0

∂x

)3
∂τ1

∂z
v2v2

t sin3 θ cos θ

+ 12η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂x
v2v2

t sin θ cos3 θ − 12η

(
∂τ0

∂x

)2
∂τ0

∂z

(
∂τ1

∂x

)
v2v2

t sin3 θ cos θ

− 4η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t sin4 θ

− 4η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t cos4 θ + 16η

(
∂τ0

∂x

)2
∂τ0

∂z

∂τ1

∂z
v2v2

t sin2 θ cos2 θ

− 4η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t sin4 θ

− 4η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t cos4 θ + 16η

(
∂τ0

∂x

)(
∂τ0

∂z

)2
∂τ1

∂x
v2v2

t sin2 θ cos2 θ

− 12η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂z
v2v2

t sin θ cos3 θ

+ 12η
∂τ0

∂x

(
∂τ0

∂z

)2
∂τ1

∂z
v2v2

t sin3 θ cos θ + 2
∂τ0

∂x

∂τ1

∂x
v2

t sin2 θ + 2(2η + 1)
∂τ0

∂x

∂τ1

∂z
v2 sin θ cos θ

− 2
∂τ0

∂x

∂τ1

∂z
v2

t sin θ cos θ

− 4η

(
∂τ0

∂z

)3
∂τ1

∂x
v2v2

t sin θ cos3 θ + 4η

(
∂τ0

∂z

)3
∂τ1

∂x
v2v2

t sin3 θ cos θ − 8η

(
∂τ0

∂z

)3
∂τ1

∂z
v2v2

t sin2 θ cos2 θ

− 2
∂τ0

∂z

∂τ1

∂x
v2

t sin θ cos θ + 2(2η + 1)
∂τ0

∂z

∂τ0

∂z
v2 sin2 θ − ∂τ0

∂z

∂τ1

∂z
v2

t + 2
∂τ0

∂z

∂τ1

∂z
v2

t cos2 θ. (23)
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Differences between HAM and perturbation theory

There is another approach to solving the eikonal equation in an anisotropic medium without having to find the root of a quartic equation as
in the FD method. The perturbation method using a Taylor series expansion is by far the most widespread approach developed by Alkhalifah
(2011a,b) and Stovas & Alkhalifah (2012). Such an approach has been adopted by many researchers (Stovas & Alkhalifah 2012; Alkhalifah
2013; Waheed et al. 2013; Masmoudi & Alkhalifah 2016; Stovas et al. 2016) for solving anisotropic eikonal equations. Recently, we applied
this method to the complex eikonal equation for the seismic complex traveltime (Huang & Greenhalgh 2018; Huang et al. 2018). The
perturbation method enables transforming the nonlinear problem into linear problems that can be used to derive analytic solutions of the
anisotropic eikonal equation or solved by the FD method for numerical solutions. This reduces to a simple iteration scheme for the linearized
partial difference equation system. Now we discuss the differences between the HAM and perturbation method and show why the HAM can
account for a strongly anisotropic medium.

For VTI media, the perturbation expansion based on the Taylor series expansion is given by (Alkhalifah 2011a)

τ = τ0 + τ1η + τ2η
2, (24)

where τ 1 and τ 2 are the first-order and second-order coefficients of the Taylor series expansion, respectively.
For TTI media, the perturbation expansion based on the Taylor series expansion is given by (Alkhalifah 2011b)

τ = τ0 + τηη + τθ sin θ + τη2η
2 + τηθη sin θ + τθ2 sin2 θ, (25)

where τ η, τ θ , τη2 , τ ηθ and τθ2 are the coefficients. Another approach for the TTI eikonal equation given by Stovas & Alkhalifah (2012) is

τ = τ0 + τη1η + τη2η
2, (26)

where τ η1 and τ η2 are the first-order and second-order coefficients of the Taylor series expansion, respectively.
The most obvious difference between the HAM and the perturbation method is their different expansion parameters in the expansion

series. In the case of the perturbation method shown as eqs (24)–(26), the traveltime is expressed as a Taylor series expansion with respect
to the small anisotropic parameters η and θ . In the perturbation expansion, there is an assumption of small perturbation, meaning that
the anisotropic parameter is small. In the case of the HAM, the series expansion depends on the embedding parameter q. Contrary to the
perturbation method, which is characterized by a Taylor series expansion that becomes the solution after obtaining the coefficients, the series
expansion using the HAM approaches the exact solution with an increasing embedding parameter q, arriving at the exact analytic solution
where q = 1.

Comparison of eqs (13) and (21) with eqs (24)–(26) implies two options for solving the anisotropic eikonal equations. One is to take
the traveltime with respect to the anisotropic parameters; the other is to use the series expansion with respect to the embedding parameter q.
A major feature of the former approach is the handling of lateral variation in η and θ . The perturbation method is only good for estimating
constant η in a velocity analysis framework. However, the two methods have different capabilities for computing the traveltime in anisotropic
media with lateral variation because of the different forms of the series expansions. In this case, since there is not the assumption of small
perturbation in the HAM, this method can be used for a strongly anisotropic medium.

T R AV E LT I M E A P P ROX I M AT I O N

One primary aim of this paper is to develop an analytic solution of the eikonal equation in homogeneous VTI and TTI media. To this end, we
start with the initial traveltime solution satisfying the elliptical anisotropic eikonal equation and apply this solution to the linearized partial
differential equations derived in the last section to obtain the coefficients of the series expansions (13) and (21). Then, we obtain the analytic
solution of the eikonal equations in the anisotropic medium.

Analytical formulae for traveltime in VTI media

The analytic formula for the elliptical anisotropic eikonal equation is given by (Alkhalifah 2011a)

τ0 =
√

x2

v2
+ z2

v2
v

. (27)

Substituting eq. (27) into eq. (14), we obtain

τ1 = −
2ηv4

v x4

√
x2

v2
+ z2

v2
v(

v2z2 + v2
v x2

)
2

. (28)
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1654 X. Huang and S. Greenhalgh

Figure 1. Comparison of the percentage traveltime error as a function of offset at the depth of 2 km using the perturbation method (dash red line) and the
homotopy analysis method (solid green line) in VTI media with C11 = 6.3, C13 = 2.25, C33 = 4.51, C44 = 1.0, C66 = 1.5 (η = 0.28, ε = 0.19 and δ = −0.05)
for panel (a) and C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.16, ε = 0.33 and δ = 0.72) for panel (b).

Also, applying eqs (27) and (28) to eq. (15), we have

τ2 =
2ηv4

v x4

√
x2

v2
+ z2

v2
v

(
v4z4 + 2(14η + 1)v2v2

v x2z2 + (4η + 1)v4
v x4

)
(
v2z2 + v2

v x2
)

4
. (29)

Furthermore, inserting eqs (27)–(29) into eq. (16) gives

τ3 = −
4ηv4

v x4

√
x2

v2
+ z2

v2
v

(
v8z8 + 2(29η + 2)v6v2

v x2z6 + 3(η(248η + 41) + 2)v4v4
v x4z4 + 2(η(36 − 13η) + 2)v2v6

v x6z2 + (2η + 1)(5η + 1)v8
v x8

)
(
v2z2 + v2

v x2
)

6
. (30)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/3/1648/5245179 by U

niversity of C
alifornia, Santa C

ruz user on 04 January 2019



Traveltime approximation using the HAM 1655

Figure 2. Colour plot of contours of the traveltime in VTI media. (a and c) The homotopy analysis method; (b and d) the perturbation method. The elastic
parameters are C11 = 35.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.03, ε = 0.66 and δ = 0.58) for panels (a) and (b), and C11 = 40.7, C13 =
17.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.04, ε = 0.82 and δ = 0.81) for panels (c) and (d).

Analytical formulae for traveltime in TTI media

For the analytic solution of the TTI eikonal equation, we employ the same initial traveltime solution to obtain the corresponding coefficients.
The analytic formula for the elliptical anisotropic eikonal equation can be written as

τ0 =
√

x2

v2
+ z2

v2
t

. (31)

A derivation for the analytic solutions for the traveltime in homogeneous TTI media based on the initial solution for an elliptical
anisotropic background medium is provided in the Appendix.

R E S U LT S

Comparison of HAM with perturbation method

To validate and test the accuracy of the analytic formulae using the HAM, we first compute the traveltimes in homogeneous VTI media. Here
we use the group velocity formulae given by Zhou & Greenhalgh (2004) to construct the wave fronts. The phase velocity is given by

c1 =
√

P ±
√

P2 − Q (32)
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1656 X. Huang and S. Greenhalgh

Figure 3. The percentage relative errors of the traveltime at a depth of 2 km for homogeneous VTI media using the homotopy analysis method (panels a and
c) and perturbation method (panels b and d).The size of the model is 4 km × 4 km. The source is located at (2 km, 10 m). The elastic parameters are C11 =
35.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.03, ε = 0.66 and δ = 0.72) for panels (a) and (b), and C11 = 40.7, C13 = 17.2, C33 = 15.4, C44

= 4.2, C66 = 9.0 (η = −0.04, ε = 0.82 and δ = 0.81) for panels (c) and (d).

where

P = Q1 + Q2

2
, Q = Q1 Q2 − Q3 (33)

with⎧⎪⎪⎨
⎪⎪⎩

Q1 = C44 + (C11 − C44) sin2 ϑ

Q2 = C33 + (C44 − C33) sin2 ϑ

Q3 = 0.25(C13 + C44)2 sin2 2ϑ

. (34)

Then, the group velocity can be written as

U1 =
√

c2
1 +

(
∂c1

∂ϑ

)2

(35)

where

∂c1

∂ϑ
= 1

2c1

[
∂ P

∂ϑ
± 1√

P2 − Q

(
P

∂ P

∂ϑ
− 0.5

∂ Q

∂ϑ

)]
(36)
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Figure 4. Colour plot of coefficients of the traveltime expansion. Panels (a) and (b) show the first-order expansion coefficient; panels (c) and (d) show the
second-order expansion coefficient. The elastic parameters are C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.16, ε = 0.33 and δ = 0.81)
for panels (a) and (c), and C11 = 35.7, C13 = 17.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.1, ε = 0.66 and δ = 0.92) for panels (b) and (d).

with

∂ P

∂ϑ
= 0.5 (C11 − C33) sin 2ϑ (37)

and

∂ Q

∂ϑ
= [Q1 (C44 − C33) + Q2 (C11 − C44)] sin 2ϑ − 0.5 (C13 + C44)2 sin 4ϑ . (38)

We will use the traveltimes constructed using the above formulae as the reference traveltimes and compare the relative error of traveltimes
using the HAM and the perturbation method.

Fig. 1 shows the comparison of the traveltime error as a function of offset at the depth of 2 km using the perturbation method (red dash
line) and the HAM (green solid line) in VTI media with C11 = 6.3, C13 = 2.25, C33 = 4.51, C44 = 1.0, C66 = 1.5 (η = 0.28, ε = 0.19 and δ

= −0.05) for (a) and C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = −0.16, ε = 0.33 and δ = 0.72) for (b). The size of the
model is 4 km × 4 km and the source is located at (10 m, 10 m). In this computation, we use the traveltimes from the exact solution (Zhou
& Greenhalgh 2004) in the actual medium as the reference traveltimes. From Fig. 1, we can observe that the relative errors of both methods
increase gradually with increasing distance in the x-direction. At around 4 km in the x-direction, the relative error arrives at the maximum
value of 1. This can be easily explained. The larger the distance from the source, the larger errors will be. However, when the distance in the
x-direction is less than 2 km, the values of the relative error using the HAM are bigger than those from the perturbation method. For a large
offset, the results using the formulae from the HAM have a higher accuracy.

Traveltimes in strongly anisotropic media

To examine the capabilities of the analytic formulae developed in this paper and compare the results with the results from the perturbation
method, we compute the traveltimes and their relative errors in more strongly anisotropic media. The size of the model is 4 km × 4 km and
the source is located at (2 km, 10m). Fig. 2 shows a colour plot of the contours of the traveltimes. Figs 2(a) and (c) show the results using
the HAM and Figs 2(b) and (d) show the results using the perturbation method. The elastic parameters are C11 = 35.7, C13 = 15.2, C33 =
15.4, C44 = 4.2, C66 = 9.0 (η = 0.03, ε = 0.66 and δ = 0.58) for (a) and (b), and C11 = 40.7, C13 = 17.2, C33 = 15.4, C44 = 4.2, C66 =
9.0 (η = 0.04, ε = 0.82 and δ = 0.81) for (c) and (d). From Fig. 2, it can be seen that although all the formulae yield smooth, continuous
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1658 X. Huang and S. Greenhalgh

Figure 5. Effects of the anisotropic parameters on the traveltimes. The size of the model is 4 km × 4 km and the source is located at (2 km, 10 m). Panels
(a) and (b) show results using the homotopy analysis method at the locations of (1 km, 1 km) and (2.5 km, 4 km); panels (c) and (d) show the results using the
perturbation method at the locations of (1 km, 1 km) and (2.5 km, 4 km).

contours of the traveltime, there is some difference in the region far from the source. Comparing Figs 2(a) and (c) with Figs 2(b) and (d), one
can recognize the difference between the results from the two methods. Specifically, by applying the chosen embedding parameter q and the
HAM, the traveltime formulae can include the anisotropic parameters. By contrast, the analytic formulae with the perturbation method cannot
give an accurate result in a strongly anisotropic medium but only give the results with a small perturbation of the anisotropic parameter. The
difference in the results is caused mainly by the anisotropic parameters in which the traveltimes have different sensitivity behaviours to the
various anisotropic parameters.

Fig. 3 shows the comparison of the relative errors of the traveltimes at a depth of 2 km using the perturbation method (b and d) and HAM
(a and c). The experiments show that traveltime formulae with different methods can yield differing accuracy in the traveltime computation.
From Fig. 3, one can observe that the formulae using the HAM give more satisfactory results because the relative errors are relatively small.
For the results from the formulae from the HAM, when the distance in the direction of the x-axis changes from 0 to 2 m, the errors become
larger; however, when the distance changes from 2 to 4 m, the errors decrease with increasing distance. For the results at a large offset, the
errors using the formulae from the perturbation analysis are larger than those from the HAM.

Exact series expansion coefficients

In this section, we have computed the coefficients of the series expansion. We use the same model size 4 km × 4 km as the last section but the
source is located at (2 km, 10 m). Fig. 4 shows a colour plot of the coefficients of the traveltimes expansion in VTI media. Figs 4(a) and (b)
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Traveltime approximation using the HAM 1659

Figure 6. Colour plot of the traveltime using a modified Hess model with variable η. The size of the model is (18 km, 7.5 km). The source is located at the
centre of the model (9 km, 3.75 km). Plot (a) shows velocity model, plot (b) shows δ model, plot (c) shows η model and plot (d) shows the traveltime.

show the results of the first-order coefficients and Figs 4(c) and (d) show the results of the second-order coefficients. The elastic parameters
are C11 = 25.7, C13 = 15.2, C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.16, ε = 0.33 and δ = 0.81) for (a) and (c), and C11 = 35.7, C13 = 17.2,
C33 = 15.4, C44 = 4.2, C66 = 9.0 (η = 0.1, ε = 0.66 and δ = 0.92) for (b) and (d). From Fig. 4, differences between the first-order coefficients
and the second-order coefficients are notable. Whereas for the first-order coefficients, the large values are concentrated in the region along
the vertical direction from the source, the values of the second-order coefficients are relatively large near the boundaries on both sides of the
model. However, there is some similarity in shape between the first-order coefficients and the second-order coefficients, which shows similar
effects of the coefficients on the traveltimes in VTI media.

Effects of anisotropic parameters

Finally, we perform numerical tests to analyse the effects of the anisotropic parameters on the traveltimes. The size of the model is 4 km × 4 km
and the source is located at (2 km, 10 m). The NMO velocity is 2 km s−1 and the anisotropic parameters are η = 0.2 and δ = 0.2, respectively.
Figs 5(a) and (c) show colour plots of the traveltimes at a fixed location of (1 km, 1 km). Figs 5(b) and (d) show the colour plots of the
traveltimes at a fixed location of (2.5 km, 4.0 km). From Fig. 5, one can observe that there are some common features: (1) whether using
the HAM or the perturbation theory, there are more substantial effects on the traveltimes with an increasing anisotropic parameter η; (2)
the maximum values for both methods occur in the region where the values of the anisotropic parameters η and δ are maximal. As for the
locations of (1 km, 1 km) and (2.5 km, 4.0 km), the images are similar. As expected, the effects increase as the anisotropic parameters increase.

All the numerical tests so far have been based on the constant η. In real cases, however, η will be variable. One of the advantages of
the approach is to deal with the variable η. We computed the traveltime in the Hess VTI model with variable η. Fig. 6 shows a colour plot of
the traveltime using a modified Hess model with variable η. The size of the model is (18 km, 7.5 km). The source is located at the centre of
the model (9 km, 3.75 km). Plot (a) shows the velocity model, plot (b) shows the δ model, plot (c) shows the η model and plot (d) shows the
traveltime.

D I S C U S S I O N A N D C O N C LU S I O N

We have presented a methodology and formulations for retrieving the eikonal equations for VTI and TTI media. The main advantage of the
new HAM formulation in this paper is that it can be used for strongly anisotropic media. The formulation involves the initial approximation
for the traveltimes, which is given by an analytical formulation or estimated by a numerical method. The derived linear equations involve
the anisotropic parameters. We have derived the traveltime approximations for computing the traveltimes in VTI and TTI media using the
HAM. We have demonstrated that the traveltime approximations based on the HAM can be used for computing the traveltimes in strongly
anisotropic media. A comparison between traveltime approximations from the HAM and the perturbation theory has been carried out which
shows that in strongly anisotropic media, the former has a higher accuracy. Finally, we have shown the effects of the coefficients of the series
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1660 X. Huang and S. Greenhalgh

solutions and the anisotropic parameters on the traveltimes. Because the HAM does not rely on the small perturbation assumption, we think
that it is promising for applications to geophysical problems, for example, renormalization of scattering series.
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A P P E N D I X : T R AV E LT I M E A P P ROX I M AT I O N I N T T I M E D I A

In this appendix, we derive the traveltime approximations based on the HAM. Substituting eqs (31) into (22), we obtain

τ1 = 1

v2v2
t

(
x2v2

t + v2z2
)

2

(√
x2v2

t + v2z2

v2v2
t

(−2ηv8z4 sin2 θ + 2ηv8z4 sin2 θ cos2 θ + v8z4
(− sin2 θ

)
(A1)

v6x2z2
(− sin2 θ

)
v2

t − 2v6xz3 sin θ cos θv2
t + v6z4v2

t − v6z4 cos2 θv2
t − 2ηv6x2z2 sin2 θv2

t − 4ηv6

xz3 sin θ cos θv2
t + 4ηv6xz3 sin θ cos3 θv2

t − 4ηv6xz3 sin3 θ cos θv2
t − 2v4x3z sin θ cos θv4

t + 2v4x2z2v4
t

−2v4x2z2 cos2 θv4
t + 2v4xz3 sin θ cos θv4

t − 4ηv4x3z sin θ cos θv4
t − 2ηv4x2z2 cos2 θv4

t + 2ηv4x2z2

cos4 θv4
t − 8ηv4x2z2 sin2 θ cos2 θv4

t + 2ηv4x2z2 sin4 θv4
t + v2x4v6

t − v2x4 cos2 θv6
t + 2v2x3z sin θ

cos θv6
t v

2x2z2 sin2 θv6
t − 2ηv2x4 cos2 θv6

t − 4ηv2x3z sin θ cos3 θv6
t + 4ηv2x3z sin3 θ cos θv6

t −
2ηx4 sin2 θ cos2 θv8

t + x4 sin2 θv8
t

) + v6z4v2
t + 2v4x2z2v4

t + v2x4v6
t

)

and

τ2 = τ21 + τ22 + τ23 + τ24 + τ25, (A2)
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t + 8η2v6x6z2 cos6 θv10
t + 16η2v6x6z2 cos8 θv10

t

−32η2v6x6z2 sin2 θ cos4 θv10
t − 224η2v6x6z2 sin2 θ cos6 θv10

t + 48η2v6x6z2 sin4 θ cos2 θv10
t + 480

η2v6x6z2 sin4 θ cos4 θv10
t − 224η2v6x6z2 sin6 θ cos2 θv10

t + 16η2v6x6z2 sin8 θv10
t + 112η2v6

x5z3 sin θ cos5 θv10
t + 64η2v6x5z3 sin θ cos7 θv10

t − 160η2v6x5z3 sin3 θ cos3 θv10
t − 448η2v6x5

z3 sin3 θ

and
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τ25 =
(

cos5 θv10
t + 448η2v6x5z3 sin5 θ cos3 θv10

t − 64η2v6x5z3 sin7 θ cos θv10
t − 64η2v6x4z4 sin2 θ cos4 θv10

t (A7)

+208η2v6x4z4 sin2 θ cos6 θv10
t − 544η2v6x4z4 sin4 θ cos4 θv10

t + 208η2v6x4z4 sin6 θ cos2 θv10
t + v4x8

v12
t − 3v4x8 cos2 θv12

t + 2v4x8 cos4 θv12
t − 8v4x8 sin2 θ cos2 θv12

t + 6v4x7z sin θ cos θv12
t − 8v4x7z

sin θ cos3 θv12
t − 9v4x6z2 sin2 θv12

t + 20v4x6z2 sin2 θ cos2 θv12
t − 8v4x5z3 sin3 θ cos θv12

t + 10v4x4z4

sin4 θv12
t − 6ηv4x8 cos2 θv12

t + 8ηv4x8 cos4 θv12
t − 16ηv4x8 sin2 θ cos2 θv12

t + 16ηv4x8 sin2 θ cos4 θ

v12
t − 16ηv4x8 sin4 θ cos2 θv12

t − 20ηv4x7z sin θ cos3 θv12
t + 40ηv4x7z sin θ cos5 θv12

t + 20ηv4x7z

sin3 θ cos θv12
t − 80ηv4x7z sin3 θ cos3 θv12

t + 16ηv4x7z sin5 θ cos θv12
t + 52ηv4x6z2 sin2 θ cos2 θv12

t

−20ηv4x6z2 sin2 θ cos4 θv12
t − 16ηv4x6z2 sin4 θ cos2 θv12

t + 4ηv4x6z2 sin6 θv12
t + 80ηv4x5z3 sin3 θ

cos3 θv12
t − 56ηv4x5z3 sin5 θ cos θv12

t − 32ηv4x4z4 sin4 θ cos2 θv12
t + 8η2v4x8 cos4 θv12

t + 32η2

v4x8 sin2 θ cos4 θv12
t − 32η2v4x8 sin4 θ cos2 θv12

t + 16η2v4x7z sin θ cos5 θv12
t − 32η2v4x7z sin θ

cos7 θv12
t + 160η2v4x7z sin3 θ cos5 θv12

t − 160η2v4x7z sin5 θ cos3 θv12
t + 32η2v4x7z sin7 θ cos θv12

t

−88η2v4x6z2 sin2 θ cos4 θv12
t − 64η2v4x6z2 sin2 θ cos6 θv12

t + 192η2v4x6z2 sin4 θ cos4 θv12
t − 64

η2v4x6z2 sin6 θ cos2 θv12
t − 192η2v4x5z3 sin3 θ cos5 θv12

t + 192η2v4x5z3 sin5 θ cos3 θv12
t − 3v2

x8 sin2 θv14
t + 8v2x8 sin2 θ cos2 θv14

t + 8v2x6z2 sin4 θv14
t + 18ηv2x8 sin2 θ cos2 θv14

t − 28ηv2x8

sin2 θ cos4 θv14
t + 16ηv2x8 sin4 θ cos2 θv14

t − 8ηv2x7z sin5 θ cos θv14
t − 44ηv2x6z2 sin4 θ cos2 θv14

t

−24η2v2x8 sin2 θ cos4 θv14
t + 16η2v2x8 sin2 θ cos6 θv14

t − 32η2v2x8 sin4 θ cos4 θv14
t + 16η2v2x8

sin6 θ cos2 θv14
t + 64η2v2x6z2 sin4 θ cos4 θv14

t + 2x8 sin4 θv16
t − 12ηx8 sin4 θ cos2 θv16

t + 16η2

x8 sin4 θ cos4 θv16
t + (

v12z6v6
t + 3v10x2z4v8

t + 3v8x4z2v10
t + v6x6v12

t

) √
x2v2

t + v2z2

v2v2
t

)

/ (
v6v6

t

(
x2v2

t + v2z2
)

3

√
x2v2

t + v2z2

v2v2
t

)
.
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