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Abstract
The quest for acquiring a formal representation of the knowledge of a domain of interest has attracted researchers with 
various backgrounds into a diverse field called ontology learning. We highlight classical machine learning and data mining 
approaches that have been proposed for (semi-)automating the creation of description logic (DL) ontologies. These are based 
on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural 
networks. We provide an overview of each approach and how it has been adapted for dealing with DL ontologies. Finally, 
we discuss the benefits and limitations of each of them for learning DL ontologies.
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1  Introduction

The quest for acquiring a formal representation of the 
knowledge of a domain of interest has attracted research-
ers with various backgrounds and both practical and theo-
retical inquires into a diverse field called ontology learning 
[30, 33]. In this work, we focus on approaches for building 
description logic (DL) ontologies assuming that the vocab-
ulary and the language of the ontology to be created are 
known. The main goal is to find how the symbols of the 
vocabulary should be related, using the logical constructs 
available in the ontology language. Desirable goals of an 
ontology learning process include: 

1.	 the creation of ontologies which are interpretable; 
expressions should not be overly complex, redundan-
cies should be avoided;

2.	 the support for learnability of DL expressions formu-
lated in rich ontology languages;

3.	 efficient algorithms for creating ontologies, requiring a 
small amount of time and training data;

4.	 limited or no human intervention requirement;
5.	 the support for learning in unsupervised settings;
6.	 handling of inconsistencies and noise.

Other properties such as explainability and trustability may 
also be relevant for some approaches. Moreover, once the 
ontology has been created, it needs to be checked, be main-
tained, and evolve. This means that other reasoning tasks 
should also be feasible.

Nearly 20 years after the term “ontology learning” was 
coined by Maedche and Staab [33], it is not a surprise that no 
approach could accomplish such ambitious and conflicting 
goals. However, different approaches have addressed some 
of these goals. We highlight five approaches coming from 
machine learning and data mining which have been proposed 
for (semi-)automating the creation of DL ontologies. These 
are based on association rule mining (ARM) [1], formal 
concept analysis (FCA) [19], inductive logic programming 
(ILP) [35], computational learning theory (CLT) [44], and 
neural networks (NNs) [34].

The adaptations of the approaches to the problem of 
learning DL ontologies often come with the same benefits 
and limitations as the original approach. To show this effect, 
for each of the five approaches, we start by presenting the 
original proposal and then explain how it has been adapted 
for dealing with DL ontologies. Before presenting them, we 
introduce some basic notions.
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2 � Definitions

Here we present the syntax and semantics of DLs and basic 
definitions useful to formalise learning problems.

2.1 � Description Logic Ontologies

We introduce ALC [3], a prototypical DL which features 
basic ingredients found in many DL languages. Let �� and 
�� be countably infinite and disjoint sets of concept and role 
names. An ALC ontology (or TBox) is a finite set of expres-
sions of the form C ⊑ D , called concept inclusions (CIs), 
where C, D are ALC concept expressions built according to 
the grammar rule

with A ∈ �� and r ∈ �� . An EL concept expression is an 
ALC concept expression without any occurrence of the 
negation symbol ( ¬ ). An EL TBox is a finite set of CIs 
C ⊑ D , with C, D being EL concept expressions.

The semantics of ALC (and of the EL fragment) is based 
on interpretations. An interpretation I  is a pair (�I, ⋅I) 
where �I  is a non-empty set, called the domain of I  , and 
⋅I is a function mapping each A ∈ �� to a subset AI of �I 
and each r ∈ �� to a subset rI of �I × �I . The function ⋅I 
extends to arbitrary ALC concept expressions as follows:

An interpretation I  satisfies a CI C ⊑ D , in symbols 
I ⊧ C ⊑ D , iff CI ⊆ DI  . It satisfies a TBox T  , in symbols 
I ⊧ T  , iff I  satisfies all CIs in T  . A TBox T  entails a CI 
� , in symbols T ⊧ 𝛼 , iff all interpretations satisfying T  also 
satisfy �.

2.2 � Learning Frameworks

By learning we mean the process of acquiring some desired 
kind of knowledge represented in a well-defined and 
machine-processable form. Examples are pieces of infor-
mation that characterise such knowledge, given as part of 
the input of a learning process. We formalise these relation-
ships as follows.

A learning framework � is a triple (E,L,�) where E is 
a set of examples, L is a set of concept representations,1 

C,D ∶∶= A ∣ ¬C ∣ C ⊓ D ∣ ∃r.C

(¬C)I ∶= 𝛥I ⧵ CI

(C ⊓ D)I ∶= CI ∩ DI

(∃r.C)I ∶= {d ∈ 𝛥I ∣ ∃e ∈ CI such that (d, e) ∈ rI}

called hypothesis space, and � is a function that maps each 
element of L to a set of (possibly classified) examples in E . 
If the classification is into {1, 0} , representing positive and 
negative labels, then � simply associates elements l of L to 
all examples labelled with 1 by l. Each element of L is called 
a hypothesis. The target representation (here simply called 
target) is a fixed but arbitrary element of L , representing the 
kind of knowledge that is aimed for in the learning process.

Example 1  To formalise the problem of learning DL ontolo-
gies from entailments, one can define the learning frame-
work for a given DL L as (E,L,�) where E is the set of all 
CIs C ⊑ D with C, D being L concept expressions; L is the 
set of all L TBoxes; and � is a function that maps every L 
TBox T  to the set {C ⊑ D ∈ E ∣ T ⊧ C ⊑ D} . In this case, we 
consider that C ⊑ D is labelled with 1 by T  iff T ⊧ C ⊑ D.

In the next five sections, we highlight machine learning 
and data mining approaches which have been proposed for 
(semi-)automating the creation of DL ontologies. As men-
tioned, for each approach, we first describe the original moti-
vation and application. Then we describe how it has been 
adapted for dealing with DL ontologies.

3 � Association Rule Mining

3.1 � Original Approach

Association rule mining (ARM) is a data mining method 
frequently used to discover patterns, correlations, or causal 
structures in transaction databases, relational databases, and 
other information repositories. We provide basic notions, as 
it was initially proposed [1].

Definition 1  (Association rule) Given a set I = {i1, i2,… , in} 
of items, and a set � = {t1, t2,… , tm} of transactions (called 
transaction database) with each ti ⊆ I , an association rule 
is an expression of the form A ⇒ B where A, B are sets of 
items.

The task of mining rules is divided into two parts: (i) min-
ing sets of items which are frequent in the database, and, (ii) 
generating association rules based on frequent sets of items. 
To measure the frequency of a set X of items in a transaction 
database � , one uses a measure called support, defined as:

If a set X of items has support larger than a given thresh-
old then it is used in the search of association rules, which 
have the form A ⇒ B , with X = A ∪ B . To decide whether 

����
�
(X) =

|{ti ∈ � ∶ X ⊆ ti}|
|�|

1  In the Machine Learning literature, a concept is often defined as a 
set of examples and a concept representation is a way of representing 
such set. This differs from the notion of a concept in the DL literature 
and a formal concept in FCA.
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an implication A ⇒ B should be in the output of a solution to 
the problem, a confidence measure is used. The confidence 
of an association rule A ⇒ B w.r.t. a transaction database � 
is defined as:

Essentially, support measures statistical significance, while 
confidence measures the ‘strength’ of a rule [1].

We parameterize the ARM learning framework ���� with 
the confidence threshold 𝛿 ∈ [0, 1] ⊂ ℝ . ����(�) is (E,L,�) 
where E is the set of all database transactions � ; L is the set of 
all sets S of association rules; and

ARM Problem Given � and � , let ����(�) be (E,L,�) . Find 
S ∈ L with � ∈ �(S).

Example 2  Consider the transaction database in Table 1. 
It contains 5 transactions. For example, the first transac-
tion, t1 , has ��������, �������� and �������� (first row 
of Table  1). Assume that the support and confidence 
thresholds are resp. 60% and 70% . ARM gives the rules: 
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} (conf .  75% )  and 
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} (conf. 100% ), among others.

3.2 � Building DL Ontologies

An immediate way of adapting the ARM approach to deal with 
DL ontologies is to make the correspondence between a finite 
interpretation and a transaction database. Assume I  is a finite 
interpretation then the notions of support and confidence can 
be adapted to:

The problem of giving logical meaning to association rules 
is that it may happen that C ⊑ D and D ⊑ E have confi-
dence values above a certain threshold while C ⊑ E does 

𝖼𝗈𝗇𝖿
�
(A ⇒ B) =

𝗌𝗎𝗉𝗉
�
(A ∪ B)

𝗌𝗎𝗉𝗉
�
(A)

�(S) = {� ∈ E ∣ ∀� ∈ S we have that ����
�
(�) ≥ �}.

����I(C) =
|CI|
|𝛥I|

����I(C ⊑ D) =
����I(C ⊓ D)

����I(C)

not have a confidence value that is above the threshold, even 
though it is a logical consequence of the first two CIs [7]. 
This problem also occurs in the original ARM approach if 
the association rules are interpreted as Horn rules in propo-
sitional logic. To see this effect, consider Example 2. We 
have that both {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} and 
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} have confidence 75% but the con-
fidence of {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} is only 50% . 
Another difficulty in this adaptation for dealing with DLs 
is that the number of CIs with confidence value above a 
given threshold may be infinite (consider e.g. EL CIs in an 
interpretation with a directed cycle) and a finite set which 
implies such CIs may not exist.

The learning framework here is parameterized with 
a DL L and a confidence threshold 𝛿 ∈ [0, 1] ⊂ ℝ . Then, 
���

���
(L, �) is (E,L,�) with E the set of all finite interpreta-

tions I  ; L the set of all L TBoxes T  ; and

ARM+DL Problem Given I  , L, and � , let ���
���

(L, �) be 
(E,L,�) . Find T ∈ L with I ∈ �(T).

ARM is an effective approach for extracting CIs with con-
cept expressions of fixed length from RDF datasets. Using 
this technique, e.g., �������������� ⊑ ���������������� and 
��������������������� ⊑ ���������� were extracted from 
data.gov.uk [13, 45, 46] (see also [41] for expressive DLs 
with fixed length).

More recently, ARM has been applied to mine relational 
rules in knowledge graphs [16]. This approach, born in the 
field of data mining, is relevant for the task of building DL 
ontologies, as it can effectively find interesting relationships 
between concept and role names. However, it lacks support 
for mining CIs with existential quantifiers on the right-hand 
side [43].

4 � Formal Concept Analysis

4.1 � Original Approach

Formal Concept Analysis (FCA) is a mathematical method 
of data analysis which describes the relationship between 
objects and their attributes [19] (see also [18] for an intro-
duction to this field). In FCA, data is represented by for-
mal contexts describing the relationship between finite 
sets of objects and attributes. The notion of a transaction 
database (Definition 1) is similar to the notion of a formal 
context (Definition 2).

Definition 2  (Formal context) A formal context is a triple 
(G, M, I), where G is a set of objects, M is a set of attributes, 

�(T) = {I ∈ E ∣ ∀� ∈ T we have that ����I(�) ≥ �}.

Table 1   Transaction database

ID Product 1 Product 2 Product 3 Product 4

1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓ ✓ ✓

http://data.gov.uk
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and I ⊆ G ×M is a binary relation between objects and 
attributes.

A formal concept is a pair (A, B) consisting of a set 
A ⊆ G of objects (the ‘extent’) and a set B ⊆ M of attrib-
utes (the ‘intent’) such that the extent consists of all objects 
that share the given attributes, and the intent consists of all 
attributes shared by the given objects. A formal concept 
(A1,B1) is less or equal to a formal concept (A2,B2) , written 
(A1,B1) ≤ (A2,B2) iff A1 ⊆ A2 . It is known that the set of all 
formal concepts ordered by ≤ forms a complete lattice.

Example 3  ({♡,♢}, {Attribute 1, Attribute 2}) is a formal 
concept in the formal context shown in Table 2.

In FCA, dependencies between attributes are expressed 
by implications—a notion similar to the notion of an asso-
ciation rule (Definition 1). An implication is an expression 
of the form B1 → B2 where B1,B2 are sets of attributes. An 
implication B1 → B2 holds in a formal context (G, M, I) if 
every object having all attributes in B1 also has all attributes 
in B2 . A subset B ⊆ M respects an implication B1 → B2 if 
B1 ⊈ B or B2 ⊆ B . An implication i follows from a set S of 
implications if any subset of M that respects all implications 
from S also respects i. In FCA, one is essentially interested 
in computing the implications that hold in a formal context. 
A set S of implications that hold in a formal context � is 
called an implicational base for � if every implication that 
holds in � follows from S . Moreover, there should be no 
redundancies in S (i.e., if i ∈ S then i does not follow from 
S ⧵ {i} ). Implicational bases are not unique. A well-studied 
kind of implicational base (with additional properties) is 
called stem (or Duquenne–Guigues) base [18, 20].

The learning framework for FCA is ���� = (E,L,�) with 
E the set of all formal contexts � ; L the set of all implica-
tional bases S ; and

FCA Problem Given � , let ���� be (E,L,�) . Find S ∈ L 
with � ∈ �(S).

�(S) = {� ∈ E ∣ S is an implicational base for �}.

4.2 � Building DL Ontologies

Approaches to combine FCA and DL have been addressed 
by many authors [4, 5, 7, 40]. A common way of bridging 
the gap between FCA and DL [10] is the one that maps a 
finite interpretation I = (�I, ⋅I) and a finite set S of concept 
expressions into formal context (G, M, I) in such a way that:

–	 each d ∈ �I corresponds to an object o in G;
–	 each concept expression C ∈ S corresponds to an attrib-

ute a in M; and
–	 d ∈ CI if, and only if, (o, a) ∈ I.

The notion of an implication is mapped to the notion of a 
CI in a DL. Just to give an idea, if the formal context rep-
resented by Table 2 is induced by a DL interpretation then 
the CI ���������� ⊑ ���������� would be a candidate to be 
added to the ontology. The notion of an implicational base 
is adapted as follows. Let I  be a finite interpretation and 
let L be a DL language with symbols taken from a finite 
vocabulary. An implicational base for  I  and  L [10] is a 
non-redundant set T  of CIs formulated in L (for short L-CIs) 
such that for all L-CIs

–	 I ⊧ C ⊑ D if, and only if, T ⊧ C ⊑ D.

We parameterize the learning framework ���
���

 with a DL 
L. Then, ���

���
(L) is (E,L,�) , where E is the set of all finite 

interpretations I  , L is the set of all implicational bases T  
for I ∈ E and L, and

FCA+DL Problem Given I  and L, let ���
���

(L) be (E,L,�) . 
Find T ∈ L with I ∈ �(T).

Similar to the difficulty described for the DL adaptation 
of the ARM approach, there may be no finite implicational 
base for a given interpretation and DL.

Example 4  Consider the interpretation in Fig. 1. An impli-
cational base for EL���—the EL fragment that allows only 
conjunctions of concept names on the left-side of CIs—is 
{A ⊑ ∃r.(A ⊓ B)} [23]. However, if we remove e3 from the 
extension of A, B then, for all n ∈ ℕ , the CI A ⊑ ∃rn.⊤ holds 
and there is no EL��� finite base that can entail all such CIs. 
More expressive languages can be useful for the computa-
tion of finite bases. It is known that, for EL with greatest 
fixpoints semantics, a finite implicational base always exists 
[10].

Classical FCA and ARM assume that all the informa-
tion about the individuals is known and can be represented 
in a finite way. A ‘✓’ in a table representing a formal 

�(T)={I ∈ E ∣ T is an implicational base for I and L}.

Table 2   Formal context

Objects Attribute 1 Attribute 2 Attribute 3

	�  ◻ ✓ ✓
♡ ✓ ✓
○ ✓
♢ ✓ ✓
△ ✓
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context means that the attribute holds for the correspond-
ing object and the absence means that the attribute does 
not hold. In contrast, DL makes the ‘open-world’ assump-
tion, and so, the absence of information indicates a lack 
of knowledge, instead of negation. To deal with the lack 
of knowledge, the authors of [5] introduce the notion of 
a partial context, in which affirmative and negative infor-
mation about individuals is given as input and an expert 
is required to decide whether a given concept inclusion 
should hold or not.

The need for a finite representation of objects and 
their attributes hinders the creation of concept inclusions 
expressing, for instance, that ‘every human has a parent 
that is a human’, in symbols

or ‘every natural number has a successor that is a natural 
number’, where elements of a model capturing the meaning 
of the relation are linked by an infinite chain. This limita-
tion is shared by all approaches which mine CIs from data, 
including ARM, but in FCA this difficulty is more evident as 
it requires 100% of confidence. This problem can be avoided 
by allowing the system to interact with an expert who can 
assert domain knowledge that cannot be conveyed from the 
finite interpretation given as input [40].

5 � Inductive Logic Programming

5.1 � Original Approach

ILP is an area between logic programming and machine 
learning [35]. In the general setting of ILP, we are given 
a logical formulation of background knowledge and some 
examples classified into positive and negative [35]. The 

����� ⊑ ∃���������.�����

background knowledge is often formulated with a logic 
program—a non-propositional version of Horn clauses 
where all variables in a clause are universally quantified 
within the scope of the entire clause. The goal is to extend 
the background knowledge B with a hypothesis H in such 
a way that all examples in the set of positive examples can 
be deduced from the modified background knowledge and 
none of the elements of the set of negative examples can 
be deduced from it.

We introduce the syntax of function-free first-order 
Horn clauses. A term t is either a variable or a constant. 
An atom is an expression of the form P(�) with P a predi-
cate and � a list of terms t1,… , ta where a is the arity of 
P. An atom is ground if all terms occurring in it are con-
stants. A literal is an atom � or its negation ¬� . A first-
order clause is a universally quantified disjunction of liter-
als. It is called Horn if it has at most one positive literal. 
A Horn expression is a set of (first-order) Horn clauses. A 
classified example in this setting is a pair (e,�(e)) where 
e is a ground atom and �(e) (the label of e) is 1 if e is a 
positive example or 0 if it is negative.

Definition 3  (Correct hypothesis) Let B be a Horn expres-
sion and S a set of pairs (e,�(e)) with e a ground atom and 
�(e) ∈ {1, 0} . A Horn expression H is a correct hypothesis 
for B and S if

Example 5  Suppose that we are given as input the back-
ground knowledge B2 and a set S of classified examples 
presented in Table 3. In this example, one might conjecture 
a hypothesis H which states that:

This form of inference is not sound in the logical sense 
since H does not necessarily follow from B and S. Another 
hypothesis considered as correct by this approach would be

even though one could easily think of an interpretation with 
a person not being a domain expert. One could also create 
a situation in which there are infinitely many hypotheses 
suitable to explain the positive and negative examples. For 
this reason, it is often required a non-logical constraint to 
justify the choice of a particular hypothesis [35]. A com-
mon principle is the Occam’s razor principle which says 
that the simplest hypothesis is the most likely to be correct 

∀(e, 1) ∈ S, B ∪H ⊧ e and ∀(e, 0) ∈ S, B ∪H ̸⊧ e.

∀xy(𝗂𝗌𝖤𝗑𝗉𝖾𝗋𝗍(x, y) ∧ 𝖣𝗈𝗆𝖺𝗂𝗇(y) → 𝖣𝗈𝗆𝖺𝗂𝗇𝖤𝗑𝗉𝖾𝗋𝗍(x)).

∀x(𝖯𝖾𝗋𝗌𝗈𝗇(x) → 𝖣𝗈𝗆𝖺𝗂𝗇𝖤𝗑𝗉𝖾𝗋𝗍(x)),

Fig. 1   {A ⊑ ∃r.(A ⊓ B)} is a 
base for EL��� [23]

Table 3   Background knowledge and classified examples

Background knowledge

∀x(𝖬𝖾𝖽𝗂𝖼𝖺𝗅𝖣𝗈𝗆𝖺𝗂𝗇(x) → 𝖣𝗈𝗆𝖺𝗂𝗇(x))

������(����) , �������������(�������)

��������(���� , �������)
Classified Examples
(������������(����), 1)

(������������(�������), 0)

2  We use the equivalent representation of Horn clauses as implica-
tions.
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(simplicity can be understood in various ways, a naive way 
is to consider the length of the Horn expression as a string).

We parameterize the learning framework for ILP with the 
background knowledge B , given as part of the input of the 
problem. We then have that ����(B) is the learning frame-
work (E,L,�) with E the set of all ground atoms; L the set 
of all Horn expressions H ; and

Classified examples help to distinguish a target unknown 
logical theory formulated as a Horn expression from other 
Horn expressions in the hypothesis space. In the learning 
framework ����(B) , positive examples for a Horn expression 
H are those entailed by the union of H and the background 
theory B.

ILP Problem Given B and S (as in Definition 3), let 
����(B) be (E,L,�) . Find H ∈ L such that H is a cor-
rect (and simple) hypothesis for B and S. That is, for all 
(e,�(e)) ∈ S , e ∈ �(H) iff �(e) = 1.

5.2 � Building DL Ontologies

In the DL context, ILP has been applied for learning DL 
concept expressions [12, 15, 22, 26, 27, 29] and for learn-
ing logical rules for ontologies [31]. We describe here the 
problem setting for learning DL concept expressions, which 
can help the designer to formulate the concept expressions 
in an ontology. As in the classical ILP approach, the learner 
receives as input some background knowledge, formulated 
as a knowledge base K = (T,A) , where T  is a TBox and A 
is a set of assertions, that is, expressions of the form A(a), 
r(a, b) where A ∈ �� , r ∈ �� , and a, b are taken from a set 
�� of individual names. Assertions can be seen as ground 
atoms and A , in DL terms, is called an ABox. A set S of pairs 
(e,�(e)) with e an assertion and �(e) ∈ {1, 0} is also given 
as part of the input. In the mentioned works, e is of the form 
������(a) , with ������ a concept name in �� not occurring 
in K and a ∈ ��.

As in the original ILP approach, given K = (T,A) and S, 
a concept expression C (in the chosen DL) is correct for K 
and S if, for all (������(a),�(������(a))) ∈ S , we have that 
(T ∪ {������ ≡ C},A) ⊧ ������(a) iff �(������(a)) = 1.

Example 6  The background knowledge in Table 3 can be 
translated into (T,A) , with

and A the set of ground atoms given as background knowl-
edge in Table 3. Assuming that the target concept name 
is ������������ and the set S of classified examples is 
the one in Table 3, correct concept expressions would be 
∃��������.������ and ������.

𝜇(H) = {e ∈ E ∣ B ∪H ⊧ e}.

T = {������������� ⊑ ������}

The learning framework and problem statement presented 
here is for learning ALC and EL concept expressions based 
on the ILP approach [28, 29]. Here the learning framework 
is parameterized by a knowledge base (T,A) and a DL L. 
Then, ���

���
((T,A), L) is (E,L,�) where E is the set of all 

ground atoms; L is the set of all L concept expressions C 
such that ������ does not occur in it; and

ILP+DL Problem Given K , L, and S (the classified exam-
ples), let ���

���
(K, L) be (E,L,�) . Find C ∈ L such that C is 

correct (and simple) for K and S. That is, for all (e,�(e)) ∈ S , 
e ∈ �(C) iff �(e) = 1.

6 � Learning Theory

6.1 � Original Approach

We describe two classical learning models in CLT which 
have been applied for learning DL concept expressions and 
ontologies. We start with the classical PAC learning model 
and then describe the exact learning model.3

In the PAC learning model, a learner receives classified 
examples drawn according to a probability distribution and 
attempts to create a hypothesis that approximates the tar-
get. The aim is to bound the probability that a hypothesis 
constructed by the learner misclassifies an example. This 
approach can be applied to any learning framework. Within 
this model, one can investigate the complexity of learning 
an abstract target, such as a DL concept, an ontology, or the 
weights of a NN.

We now formalise this model. Let � = (E,L,�) be a 
learning framework. A probability distribution D over E is 
a function mapping events in a �-algebra E of subsets of E 
to [0, 1] ⊂ ℝ such that D(

⋃
i∈I Xi) =

∑
i∈I D(Xi) for mutually 

exclusive Xi , where I is a countable set of indices, Xi ∈ E , 
and D(E) = 1 . Given a target t ∈ L , let ��D

�,t
 be the oracle 

that takes no input, and outputs a classified example 
(e,�t(e)) , where e ∈ E is sampled according to the probabil-
ity distribution D , �t(e) = 1 , if e ∈ �(t) , and �t(e) = 0 , oth-
erwise. An example query is a call to the oracle ��D

�,t
 . A 

sample generated by ��D
�,t

 is a (multi-)set of indexed classi-
fied examples, independently and identically distributed 
according to D , sampled by calling ��D

�,t
.

A learning framework � is PAC learnable if there is a 
function f ∶ (0, 1)2 → ℕ and a deterministic algorithm such 

𝜇(C) = {e ∈ E ∣ (T ∪ {������ ≡ C},A) ⊧ e}.

3  The expression “Probably Approximately Correct” was coined by 
Angluin in the paper [2], where she shows the connection between 
the two learning models.



KI - Künstliche Intelligenz	

1 3

that, for every 𝜖, 𝛿 ∈ (0, 1) ⊂ ℝ , every probability distribu-
tion D on E , and every target t ∈ L , given a sample of size 
m ≥ f (�, �) generated by ��D

�,t
 , the algorithm always halts 

and outputs h ∈ L such that with probability at least (1 − �) 
over the choice of m examples in E  , we have that 
D(𝜇(h)⊕ 𝜇(t)) ≤ 𝜖 . If the number of computation steps used 
by the algorithm is bounded by a polynomial function 
p(|t|, |e|, 1∕�, 1∕�) , where e is the largest example in the 
sample generated by ��D

�,t
 , then � is PAC learnable in poly-

nomial time.

Example 7  Let E = {◻,♡,○,♢,△} and let D be a probabil-
ity distribution on E , defined, e.g., by the pairs

Assume h, t ∈ L and assume �(h) = {♡,○} and 
�(t) = {♡,△} then the probability D(𝜇(h)⊕ 𝜇(t)) that h 
misclassifies an example according to D is 0.5.

PAC Problem Given a learning framework decide 
whether it is PAC learnable in polynomial time.

In the classical PAC approach, the probability distribution 
D is unknown to the learner. The algorithm should provide 
a probabilistic bound for any possible D . We now describe 
the exact learning model. In this model, a learner tries to 
identify an abstract target known by a teacher, also called 
an oracle, by interacting with the teacher [2]. The most suc-
cessful protocol is based on membership and equivalence 
queries. As it happens with the PAC learning model, this 
model can be used to formulate learning problems within 
the context of any kind of learning framework.

We formalise these notions as follows. Given a learning 
framework � = (E,L,�) , we are interested in the exact iden-
tification of a target concept representation t ∈ L by posing 
queries to oracles. Let ���,t be the oracle that takes as input 
some e ∈ E and returns ‘yes’ if e ∈ �(t) and ‘no’ otherwise. 
A membership query is a call to the oracle ���,t . For every 
t ∈ L , we denote by ���,t the oracle that takes as input a 
hypothesis concept representation h ∈ L and returns ‘yes’ if 
�(h) = �(t) and a counterexample e ∈ 𝜇(h)⊕ 𝜇(t) otherwise, 
where ⊕ denotes the symmetric set difference. There is no 
assumption regarding which counterexample in 𝜇(h)⊕ 𝜇(t) 
is chosen by the oracle. An equivalence query is a call to the 
oracle ���,t . In this model, if examples are interpretations 
or entailments, the notion of ‘equivalence’ coincides with 
logical equivalence.

A learning framework � is exactly learnable if there is a 
deterministic algorithm such that, for every t ∈ L , it even-
tually halts and outputs some h ∈ L with �(h) = �(t) . Such 
algorithm is allowed to call the oracles ���,t and ���,t . If 
the number of computation steps used by the algorithm is 
bounded by a polynomial p(|t|, |e|) , where t ∈ L is the target 

({◻}, 0.2), ({♡}, 0.1), ({○}, 0.3), ({♢}, 0.2), ({△}, 0.2).

and e ∈ E is the largest counterexample seen so far, then � 
is exactly learnable in polynomial time.

Exact Problem Given a learning framework decide 
whether it is exactly learnable in polynomial time.

In Theorem  1, we recall an interesting connection 
between the exact learning model and the PAC model 
extended with membership queries. If there is a polynomial 
time algorithm for a learning framework � that is allowed 
to make membership queries then � is PAC learnable with 
membership queries in polynomial time.

Theorem 1  [2] If a learning framework is exactly learnable 
in polynomial time then it is PAC learnable with membership 
queries in polynomial time. If only equivalence queries are 
used then it is PAC learnable (without membership queries) 
in polynomial time.

The converse of Theorem 1 does not hold [6]. That is, 
there is a learning framework that is PAC learnable in pol-
ynomial time (even without membership queries) but not 
exactly learnable in polynomial time.

6.2 � Building DL Ontologies

The PAC learning model has been already applied to learn 
DL concept expressions formulated in DL CLASSIC [9, 
14] (see also [36]). The main difficulty in adapting the PAC 
approach for learning DL ontologies is the complexity of this 
task. In the PAC learning model, one is normally interested 
in polynomial time complexity, however, many DLs, such as 
ALC , have superpolynomial time complexity for the entail-
ment problem and entailment checks are often important to 
combine the information present in the classified examples.

It has been shown that the EL fragments EL��� and EL���

—the EL fragments that allow only conjunctions of concept 
names on the right-side and on the left-side of CIs, respec-
tively—are polynomial time exactly learnable from entail-
ments [24, 25, 37],4 however, this is not the case for EL . The 
learning framework is the one in Example 1 and the prob-
lem statement is the same as in the original approach. By 
Theorem 1, the results for EL��� and EL��� are transferable to 
the PAC learning model extended with membership queries. 
The results show how changes in the ontology language can 
impact the complexity of searching for a suitable ontology 
in the hypothesis space. The main difficulty of implementing 
this model is that it is based on oracles, in particular, on an 
equivalence query oracle. Fortunately, as already mentioned, 
such equivalence queries can be simulated by the sampling 

4  The result for EL��� (allowing conjunctions of concept names on the 
left-side of CIs) appears in [24, Section 4]
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oracle of the PAC learning model to achieve PAC learnabil-
ity (Theorem 1) [2].

7 � Neural Networks

7.1 � Original Approach

NNs are widespread architectures inspired by the structure 
of the brain [34]. They may differ from each other not only 
regarding their weight and activation functions but also 
structurally, e.g., it is known that feed-forward NNs are acy-
clic while recurrent NNs have cycles. One of the simplest 
models is the one given by Definition 4.

Definition 4  (Neural network) An NN is a triple (G, �,w) 
where G = (V ,E) is a graph, with V a set of nodes, called 
neurons, and E ⊆ V × V a set of (directed) edges; � ∶ ℝ → ℝ 
is the activation function; and w ∶ E → ℝ is the weight 
function.

Other parameters that can be part of the definition of an 
NN are the propagation function and biases. A widely used 
propagation function is the weighted sum. The propagation 
function specifies how the outputs of the neurons connected 
to a neuron n are combined to form the input of n. Given an 
input to a neuron, the activation function maps it to the out-
put of the neuron. In symbols, the input ��(n) of a neuron n is

The structure of an NN is organized in layers, basically, an 
input, an output, and (possibly several) hidden layers. The 
input of an NN is a vector of numbers in ℝ , given as input to 
the neurons in the input layer. The output of the NN is also 
a vector of numbers in ℝ , constructed using the outputs of 
the neurons in the output layer. The dimensionality of the 
input and output of an NN varies according to the learning 
task. One can then see an NN as a function mapping an input 
vector � to an output vector � . In symbols, (G, �,w)(�) = �.

The main task is to find a weight function that minimizes 
the risk of the NN N  , modelled by a function LD(N) , with 
D a probability distribution on a set of pairs (�, �) of input/
output vectors [42]. The risk of an NN represents how well 
we expect the NN to perform while predicting the classifica-
tion of unseen examples.

The learning framework can be defined in various ways. 
Here we parameterize it by a graph structure and an activa-
tion function � . We have that ���(G, �) , with G = (V ,E) , 
is (E,L,�) where E is a set of pairs (�, �) representing input 
and output vectors of numbers in ℝ (respectively, and with 

∑

m∶(m,n)∈E

�(��(m)) ⋅ w((m, n)).

appropriate dimensionality); L is the set of all weight func-
tions w ∶ E → ℝ ; and

One can formulate the NN problem as follows.
NN Problem Given G and � , let ���(G, �) be (E,L,�) . 

Find w ∈ L that minimizes the risk LD(N) of N = (G, �,w) , 
where D is a fixed but arbitrary and unknown probability 
distribution on E.

Classified examples for training and validation can be 
obtained by calling the sampling oracle ��D

�,t
 (recall ��D

�,t
 

from Sect. 6), where t ∈ L is the (unknown) target weight 
function. One of the main challenges of this approach is that 
finding an optimal weight function is computationally hard. 
Most works apply a heuristic search based on the gradient 
descent algorithm [42].

7.2 � Building DL Ontologies

NNs have been applied to learn CIs from sentences 
expressing definitions, called definitorial sentences [38] 
(see also [32] for more work on definitorial sentences in a 
DL context, and, e.g. [8, 48], for work on learning asser-
tions based on NNs). More specifically, the work on [38] 
is based on recurrent NNs, which are useful to process 
sequential data. The structure of the NN, in this case, takes 
the form of a grid. The authors learn ALCQ CIs, where 
ALCQ is the extension of ALC with qualified number 
restrictions. For example, “A car is a motor vehicle that 
has 4 tires and transport people.” corresponds to

The main benefits of this approach is that NNs can deal 
with natural language variability. The authors provide an 
end-to-end solution that does not even require natural lan-
guage processing techniques. However, the approach is 
based on the syntax of the sentences, not on their seman-
tics, and they cannot capture portions of knowledge across 
different sentences [38]. Another difficulty of adapting this 
approach for learning DL ontologies is the lack of datasets 
available for training. Such dataset should consist of a large 
set of pairs of definitorial sentences and their corresponding 
CI. The authors created a synthetic dataset to perform their 
experiments.

The learning framework and problem statement for 
learning DL CIs based on the NN approach [38] can be 
formulated as follows. The learning framework for a DL L 
can be defined as ���

��
(G, �, L) = (E,L,�) where E is a set 

of pairs (�, �) with � a vector representation of a definito-
rial sentence and � a vector representation of an L CI; and 
L and � are as in the original NN approach.

�(w) = {(�, �) ∈ E ∣ (G, �,w)(�) = �}.

��� ⊑ ������������ ⊓ = 4���.����� ⊓ ∃���������.������.
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NN+DL Problem Given G, L and � , let ���
��
(G, �, L) 

be (E,L,�) . Find w ∈ L that minimizes the risk LD(N) 
of N = (G, �,w) , where D is a fixed but arbitrary and 
unknown probability distribution on E.

8 � Where Do They Stand?

We now discuss the main benefits and limitations of ARM, 
FCA, ILP, CLT, and NNs for building DL ontologies, con-
sidering the goals listed in the Introduction.

Interpretability refers to the easiness of understanding 
the learned DL ontology/concept expressions and obtain-
ing insights about the domain. In ARM, the requirement 
for computing CIs with high support often results in highly 
interpretable CIs (at the cost of fixing the length of con-
cept expressions). The FCA approach classically deals 
with redundancies, which is often not considered in ARM 
approaches. However, the CIs generated with this approach 
can be difficult to interpret [7]. The ILP approach follows the 
Occam’s razor principle, which contributes to the generation 
of interpretable DL expressions, although there is no guaran-
tee for the quality of the approximation. Such guarantees can 
be found in CLT, where the goal is to approximate or exactly 
identify the target. However, the focus of these approaches 
is on accuracy rather than interpretability. Regarding NNs, 
the complex models can deal with high variability in the data 
but may lose on interpretability.

Expressivity refers to the expressivity of the DL lan-
guage supported by the learning process. As we have seen, 
many previous approaches for learning DL ontologies focus 
on Horn fragments such as EL [4, 7, 11, 24, 25, 28] (or 
Horn-like fragments such as FLE [40]). Non-horn fragments 
have been investigated for learning DL ontologies [41, 46] 
and concept expressions [12, 22, 29] (fixing the length of 
concept expressions). As mentioned, ALCQ CIs can be 
learned with NNs [38] (see also [49]).

Efficiency refers to the amount of time and memory con-
sumed by algorithms in order to build a DL ontology (or 
concept expressions) in the context of a particular approach 
or a learning model. In CLT one can formally establish com-
plexity results for learning problems. In ARM the search 
space is heavily constrained by the support function, which 
means that usually large portions of the search space can 
be eliminated in this approach. The Next-closure algorithm 
used in FCA is polynomial in the output and has polynomial 
delay, meaning that from the theoretical point of view it has 
interesting properties regarding efficiency. However, in prac-
tice, there may be difficulties in processing large portions of 
data provenient of knowledge graphs, such as DBpedia [7].

Human interactions may be required to complete the 
information given as input or to validate the knowledge that 
cannot be represented in a finite dataset or in a finite inter-
pretation (recall the case of an infinite chain of objects in 
Sect. 4.2). Since the input is simply a database or an inter-
pretation, the ARM and FCA approaches require limited or 
no human intervention. It is worth to point out that some 
DL adaptations of the FCA approach depend on an expert 
which resembles a membership oracle. The difference is that 
in the exact learning model the membership oracle answers 
with ‘yes’ or ‘no’, whereas in FCA the oracle also provides a 
counterexample if the answer is ‘no’ [40]. In ILP, examples 
need to be classified into positive and negative, which may 
require human intervention to classify the examples before 
learning takes place. The same happens with the CLT mod-
els presented. The exact learning model is purely based on 
interactions with an oracle, which can be an expert (or even 
a neural network [47]).

Unsupervised learning is supported by the ARM and 
FCA approaches, as well as some NNs (but not by the DL 
adaptation we have seen in the literature [38]). As already 
mentioned, the approaches based on ILP and CLT fall in the 
supervised setting. That is, examples receive some sort of 
(usually binary) classification.

Inconsistencies and noise are often present in the data. 
The ARM approach deals with them by only requiring that 
the confidence of the CI is above a certain threshold (instead 
of requiring that the CI is fully satisfied, as in FCA). ILP and 
CLT classically do not support inconsistencies and noise, 
though, the PAC model has an agnostic version in which it 
may not be possible to construct a hypothesis consistent with 
the positive and negative examples (due e.g. to noise in the 
classification). NNs can deal very well with data variability, 
including cases with inconsistencies and noise.

9 � Conclusion

We discussed benefits and limitations of, namely, ARM, 
FCA, ILP, CLT, and NNs for DL settings. Not many authors 
have applied NNs for learning DL ontologies (when the 
focus is on building the logical expressions), even though 
NNs are widespread in many areas. We believe that more 
works exploring this approach are yet to come. One of the 
challenges is how to capture the semantics of the domain. 
Promising frameworks for capturing the semantics of logical 
expressions [17, 39] and modelling logical rules [21] have 
been recently proposed. Each approach addresses some of 
the desired properties of an ontology learning process. An 
interesting question is whether they can be combined so as 
to obtain the best of each approach [36].
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