
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-020-00656-9

TECHNICAL CONTRIBUTION

Learning Description Logic Ontologies: Five Approaches. Where Do
They Stand?

Ana Ozaki1,2 

Received: 6 March 2020 / Accepted: 25 March 2020
© The Author(s) 2020

Abstract
The quest for acquiring a formal representation of the knowledge of a domain of interest has attracted researchers with
various backgrounds into a diverse field called ontology learning. We highlight classical machine learning and data mining
approaches that have been proposed for (semi-)automating the creation of description logic (DL) ontologies. These are based
on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural
networks. We provide an overview of each approach and how it has been adapted for dealing with DL ontologies. Finally,
we discuss the benefits and limitations of each of them for learning DL ontologies.

Keywords  Ontology learning · Description logic · Logic and learning

1  Introduction

The quest for acquiring a formal representation of the
knowledge of a domain of interest has attracted research-
ers with various backgrounds and both practical and theo-
retical inquires into a diverse field called ontology learning
[30, 33]. In this work, we focus on approaches for building
description logic (DL) ontologies assuming that the vocab-
ulary and the language of the ontology to be created are
known. The main goal is to find how the symbols of the
vocabulary should be related, using the logical constructs
available in the ontology language. Desirable goals of an
ontology learning process include:

1.	 the creation of ontologies which are interpretable;
expressions should not be overly complex, redundan-
cies should be avoided;

2.	 the support for learnability of DL expressions formu-
lated in rich ontology languages;

3.	 efficient algorithms for creating ontologies, requiring a
small amount of time and training data;

4.	 limited or no human intervention requirement;
5.	 the support for learning in unsupervised settings;
6.	 handling of inconsistencies and noise.

Other properties such as explainability and trustability may
also be relevant for some approaches. Moreover, once the
ontology has been created, it needs to be checked, be main-
tained, and evolve. This means that other reasoning tasks
should also be feasible.

Nearly 20 years after the term “ontology learning” was
coined by Maedche and Staab [33], it is not a surprise that no
approach could accomplish such ambitious and conflicting
goals. However, different approaches have addressed some
of these goals. We highlight five approaches coming from
machine learning and data mining which have been proposed
for (semi-)automating the creation of DL ontologies. These
are based on association rule mining (ARM) [1], formal
concept analysis (FCA) [19], inductive logic programming
(ILP) [35], computational learning theory (CLT) [44], and
neural networks (NNs) [34].

The adaptations of the approaches to the problem of
learning DL ontologies often come with the same benefits
and limitations as the original approach. To show this effect,
for each of the five approaches, we start by presenting the
original proposal and then explain how it has been adapted
for dealing with DL ontologies. Before presenting them, we
introduce some basic notions.

 *	 Ana Ozaki
	 ana.ozaki@uib.no

1	 Free University of Bozen-Bolzano, Piazza Università, 1,
39100 Bolzano, BZ, Italy

2	 Department of Informatics, University of Bergen,
5020 Bergen, Norway

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bergen

https://core.ac.uk/display/479097599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3889-6207
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00656-9&domain=pdf

	 KI - Künstliche Intelligenz

1 3

2 � Definitions

Here we present the syntax and semantics of DLs and basic
definitions useful to formalise learning problems.

2.1 � Description Logic Ontologies

We introduce ALC [3], a prototypical DL which features
basic ingredients found in many DL languages. Let �� and
�� be countably infinite and disjoint sets of concept and role
names. An ALC ontology (or TBox) is a finite set of expres-
sions of the form C ⊑ D , called concept inclusions (CIs),
where C, D are ALC concept expressions built according to
the grammar rule

with A ∈ �� and r ∈ �� . An EL concept expression is an
ALC concept expression without any occurrence of the
negation symbol ( ¬ ). An EL TBox is a finite set of CIs
C ⊑ D , with C, D being EL concept expressions.

The semantics of ALC (and of the EL fragment) is based
on interpretations. An interpretation I is a pair (�I, ⋅I)
where �I is a non-empty set, called the domain of I  , and
⋅I is a function mapping each A ∈ �� to a subset AI of �I
and each r ∈ �� to a subset rI of �I × �I . The function ⋅I
extends to arbitrary ALC concept expressions as follows:

An interpretation I satisfies a CI C ⊑ D , in symbols
I ⊧ C ⊑ D , iff CI ⊆ DI  . It satisfies a TBox T  , in symbols
I ⊧ T  , iff I satisfies all CIs in T  . A TBox T entails a CI
� , in symbols T ⊧ 𝛼 , iff all interpretations satisfying T also
satisfy �.

2.2 � Learning Frameworks

By learning we mean the process of acquiring some desired
kind of knowledge represented in a well-defined and
machine-processable form. Examples are pieces of infor-
mation that characterise such knowledge, given as part of
the input of a learning process. We formalise these relation-
ships as follows.

A learning framework � is a triple (E,L,�) where E is
a set of examples, L is a set of concept representations,1

C,D ∶∶= A ∣ ¬C ∣ C ⊓ D ∣ ∃r.C

(¬C)I ∶= 𝛥I ⧵ CI

(C ⊓ D)I ∶= CI ∩ DI

(∃r.C)I ∶= {d ∈ 𝛥I ∣ ∃e ∈ CI such that (d, e) ∈ rI}

called hypothesis space, and � is a function that maps each
element of L to a set of (possibly classified) examples in E .
If the classification is into {1, 0} , representing positive and
negative labels, then � simply associates elements l of L to
all examples labelled with 1 by l. Each element of L is called
a hypothesis. The target representation (here simply called
target) is a fixed but arbitrary element of L , representing the
kind of knowledge that is aimed for in the learning process.

Example 1  To formalise the problem of learning DL ontolo-
gies from entailments, one can define the learning frame-
work for a given DL L as (E,L,�) where E is the set of all
CIs C ⊑ D with C, D being L concept expressions; L is the
set of all L TBoxes; and � is a function that maps every L
TBox T to the set {C ⊑ D ∈ E ∣ T ⊧ C ⊑ D} . In this case, we
consider that C ⊑ D is labelled with 1 by T iff T ⊧ C ⊑ D.

In the next five sections, we highlight machine learning
and data mining approaches which have been proposed for
(semi-)automating the creation of DL ontologies. As men-
tioned, for each approach, we first describe the original moti-
vation and application. Then we describe how it has been
adapted for dealing with DL ontologies.

3 � Association Rule Mining

3.1 � Original Approach

Association rule mining (ARM) is a data mining method
frequently used to discover patterns, correlations, or causal
structures in transaction databases, relational databases, and
other information repositories. We provide basic notions, as
it was initially proposed [1].

Definition 1  (Association rule) Given a set I = {i1, i2,… , in}
of items, and a set � = {t1, t2,… , tm} of transactions (called
transaction database) with each ti ⊆ I , an association rule
is an expression of the form A ⇒ B where A, B are sets of
items.

The task of mining rules is divided into two parts: (i) min-
ing sets of items which are frequent in the database, and, (ii)
generating association rules based on frequent sets of items.
To measure the frequency of a set X of items in a transaction
database � , one uses a measure called support, defined as:

If a set X of items has support larger than a given thresh-
old then it is used in the search of association rules, which
have the form A ⇒ B , with X = A ∪ B . To decide whether

����
�
(X) =

|{ti ∈ � ∶ X ⊆ ti}|
|�|

1  In the Machine Learning literature, a concept is often defined as a
set of examples and a concept representation is a way of representing
such set. This differs from the notion of a concept in the DL literature
and a formal concept in FCA.

KI - Künstliche Intelligenz	

1 3

an implication A ⇒ B should be in the output of a solution to
the problem, a confidence measure is used. The confidence
of an association rule A ⇒ B w.r.t. a transaction database �
is defined as:

Essentially, support measures statistical significance, while
confidence measures the ‘strength’ of a rule [1].

We parameterize the ARM learning framework ���� with
the confidence threshold 𝛿 ∈ [0, 1] ⊂ ℝ . ����(�) is (E,L,�)
where E is the set of all database transactions � ; L is the set of
all sets S of association rules; and

ARM Problem Given � and � , let ����(�) be (E,L,�) . Find
S ∈ L with � ∈ �(S).

Example 2  Consider the transaction database in Table 1.
It contains 5 transactions. For example, the first transac-
tion, t1 , has ��������, �������� and �������� (first row
of Table 1). Assume that the support and confidence
thresholds are resp. 60% and 70% . ARM gives the rules:
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} (conf . 75% ) and
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} (conf. 100% ), among others.

3.2 � Building DL Ontologies

An immediate way of adapting the ARM approach to deal with
DL ontologies is to make the correspondence between a finite
interpretation and a transaction database. Assume I is a finite
interpretation then the notions of support and confidence can
be adapted to:

The problem of giving logical meaning to association rules
is that it may happen that C ⊑ D and D ⊑ E have confi-
dence values above a certain threshold while C ⊑ E does

𝖼𝗈𝗇𝖿
�
(A ⇒ B) =

𝗌𝗎𝗉𝗉
�
(A ∪ B)

𝗌𝗎𝗉𝗉
�
(A)

�(S) = {� ∈ E ∣ ∀� ∈ S we have that ����
�
(�) ≥ �}.

����I(C) =
|CI|
|𝛥I|

����I(C ⊑ D) =
����I(C ⊓ D)

����I(C)

not have a confidence value that is above the threshold, even
though it is a logical consequence of the first two CIs [7].
This problem also occurs in the original ARM approach if
the association rules are interpreted as Horn rules in propo-
sitional logic. To see this effect, consider Example 2. We
have that both {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} and
{𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟣} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} have confidence 75% but the con-
fidence of {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟥, 𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟦} ⇒ {𝖯𝗋𝗈𝖽𝗎𝖼𝗍𝟤} is only 50% .
Another difficulty in this adaptation for dealing with DLs
is that the number of CIs with confidence value above a
given threshold may be infinite (consider e.g. EL CIs in an
interpretation with a directed cycle) and a finite set which
implies such CIs may not exist.

The learning framework here is parameterized with
a DL L and a confidence threshold 𝛿 ∈ [0, 1] ⊂ ℝ . Then,
���

���
(L, �) is (E,L,�) with E the set of all finite interpreta-

tions I  ; L the set of all L TBoxes T  ; and

ARM+DL Problem Given I  , L, and � , let ���
���

(L, �) be
(E,L,�) . Find T ∈ L with I ∈ �(T).

ARM is an effective approach for extracting CIs with con-
cept expressions of fixed length from RDF datasets. Using
this technique, e.g., �������������� ⊑ ���������������� and
��������������������� ⊑ ���������� were extracted from
data.gov.uk [13, 45, 46] (see also [41] for expressive DLs
with fixed length).

More recently, ARM has been applied to mine relational
rules in knowledge graphs [16]. This approach, born in the
field of data mining, is relevant for the task of building DL
ontologies, as it can effectively find interesting relationships
between concept and role names. However, it lacks support
for mining CIs with existential quantifiers on the right-hand
side [43].

4 � Formal Concept Analysis

4.1 � Original Approach

Formal Concept Analysis (FCA) is a mathematical method
of data analysis which describes the relationship between
objects and their attributes [19] (see also [18] for an intro-
duction to this field). In FCA, data is represented by for-
mal contexts describing the relationship between finite
sets of objects and attributes. The notion of a transaction
database (Definition 1) is similar to the notion of a formal
context (Definition 2).

Definition 2  (Formal context) A formal context is a triple
(G, M, I), where G is a set of objects, M is a set of attributes,

�(T) = {I ∈ E ∣ ∀� ∈ T we have that ����I(�) ≥ �}.

Table 1   Transaction database

ID Product 1 Product 2 Product 3 Product 4

1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓ ✓ ✓

http://data.gov.uk

	 KI - Künstliche Intelligenz

1 3

and I ⊆ G ×M is a binary relation between objects and
attributes.

A formal concept is a pair (A, B) consisting of a set
A ⊆ G of objects (the ‘extent’) and a set B ⊆ M of attrib-
utes (the ‘intent’) such that the extent consists of all objects
that share the given attributes, and the intent consists of all
attributes shared by the given objects. A formal concept
(A1,B1) is less or equal to a formal concept (A2,B2) , written
(A1,B1) ≤ (A2,B2) iff A1 ⊆ A2 . It is known that the set of all
formal concepts ordered by ≤ forms a complete lattice.

Example 3  ({♡,♢}, {Attribute 1, Attribute 2}) is a formal
concept in the formal context shown in Table 2.

In FCA, dependencies between attributes are expressed
by implications—a notion similar to the notion of an asso-
ciation rule (Definition 1). An implication is an expression
of the form B1 → B2 where B1,B2 are sets of attributes. An
implication B1 → B2 holds in a formal context (G, M, I) if
every object having all attributes in B1 also has all attributes
in B2 . A subset B ⊆ M respects an implication B1 → B2 if
B1 ⊈ B or B2 ⊆ B . An implication i follows from a set S of
implications if any subset of M that respects all implications
from S also respects i. In FCA, one is essentially interested
in computing the implications that hold in a formal context.
A set S of implications that hold in a formal context � is
called an implicational base for � if every implication that
holds in � follows from S . Moreover, there should be no
redundancies in S (i.e., if i ∈ S then i does not follow from
S ⧵ {i} ). Implicational bases are not unique. A well-studied
kind of implicational base (with additional properties) is
called stem (or Duquenne–Guigues) base [18, 20].

The learning framework for FCA is ���� = (E,L,�) with
E the set of all formal contexts � ; L the set of all implica-
tional bases S ; and

FCA Problem Given � , let ���� be (E,L,�) . Find S ∈ L
with � ∈ �(S).

�(S) = {� ∈ E ∣ S is an implicational base for �}.

4.2 � Building DL Ontologies

Approaches to combine FCA and DL have been addressed
by many authors [4, 5, 7, 40]. A common way of bridging
the gap between FCA and DL [10] is the one that maps a
finite interpretation I = (�I, ⋅I) and a finite set S of concept
expressions into formal context (G, M, I) in such a way that:

–	 each d ∈ �I corresponds to an object o in G;
–	 each concept expression C ∈ S corresponds to an attrib-

ute a in M; and
–	 d ∈ CI if, and only if, (o, a) ∈ I.

The notion of an implication is mapped to the notion of a
CI in a DL. Just to give an idea, if the formal context rep-
resented by Table 2 is induced by a DL interpretation then
the CI ���������� ⊑ ���������� would be a candidate to be
added to the ontology. The notion of an implicational base
is adapted as follows. Let I be a finite interpretation and
let L be a DL language with symbols taken from a finite
vocabulary. An implicational base for I and L [10] is a
non-redundant set T of CIs formulated in L (for short L-CIs)
such that for all L-CIs

–	 I ⊧ C ⊑ D if, and only if, T ⊧ C ⊑ D.

We parameterize the learning framework ���
���

 with a DL
L. Then, ���

���
(L) is (E,L,�) , where E is the set of all finite

interpretations I  , L is the set of all implicational bases T
for I ∈ E and L, and

FCA+DL Problem Given I and L, let ���
���

(L) be (E,L,�) .
Find T ∈ L with I ∈ �(T).

Similar to the difficulty described for the DL adaptation
of the ARM approach, there may be no finite implicational
base for a given interpretation and DL.

Example 4  Consider the interpretation in Fig. 1. An impli-
cational base for EL���—the EL fragment that allows only
conjunctions of concept names on the left-side of CIs—is
{A ⊑ ∃r.(A ⊓ B)} [23]. However, if we remove e3 from the
extension of A, B then, for all n ∈ ℕ , the CI A ⊑ ∃rn.⊤ holds
and there is no EL��� finite base that can entail all such CIs.
More expressive languages can be useful for the computa-
tion of finite bases. It is known that, for EL with greatest
fixpoints semantics, a finite implicational base always exists
[10].

Classical FCA and ARM assume that all the informa-
tion about the individuals is known and can be represented
in a finite way. A ‘✓’ in a table representing a formal

�(T)={I ∈ E ∣ T is an implicational base for I and L}.

Table 2   Formal context

Objects Attribute 1 Attribute 2 Attribute 3

	� ◻ ✓ ✓
♡ ✓ ✓
○ ✓
♢ ✓ ✓
△ ✓

KI - Künstliche Intelligenz	

1 3

context means that the attribute holds for the correspond-
ing object and the absence means that the attribute does
not hold. In contrast, DL makes the ‘open-world’ assump-
tion, and so, the absence of information indicates a lack
of knowledge, instead of negation. To deal with the lack
of knowledge, the authors of [5] introduce the notion of
a partial context, in which affirmative and negative infor-
mation about individuals is given as input and an expert
is required to decide whether a given concept inclusion
should hold or not.

The need for a finite representation of objects and
their attributes hinders the creation of concept inclusions
expressing, for instance, that ‘every human has a parent
that is a human’, in symbols

or ‘every natural number has a successor that is a natural
number’, where elements of a model capturing the meaning
of the relation are linked by an infinite chain. This limita-
tion is shared by all approaches which mine CIs from data,
including ARM, but in FCA this difficulty is more evident as
it requires 100% of confidence. This problem can be avoided
by allowing the system to interact with an expert who can
assert domain knowledge that cannot be conveyed from the
finite interpretation given as input [40].

5 � Inductive Logic Programming

5.1 � Original Approach

ILP is an area between logic programming and machine
learning [35]. In the general setting of ILP, we are given
a logical formulation of background knowledge and some
examples classified into positive and negative [35]. The

����� ⊑ ∃���������.�����

background knowledge is often formulated with a logic
program—a non-propositional version of Horn clauses
where all variables in a clause are universally quantified
within the scope of the entire clause. The goal is to extend
the background knowledge B with a hypothesis H in such
a way that all examples in the set of positive examples can
be deduced from the modified background knowledge and
none of the elements of the set of negative examples can
be deduced from it.

We introduce the syntax of function-free first-order
Horn clauses. A term t is either a variable or a constant.
An atom is an expression of the form P(�) with P a predi-
cate and � a list of terms t1,… , ta where a is the arity of
P. An atom is ground if all terms occurring in it are con-
stants. A literal is an atom � or its negation ¬� . A first-
order clause is a universally quantified disjunction of liter-
als. It is called Horn if it has at most one positive literal.
A Horn expression is a set of (first-order) Horn clauses. A
classified example in this setting is a pair (e,�(e)) where
e is a ground atom and �(e) (the label of e) is 1 if e is a
positive example or 0 if it is negative.

Definition 3  (Correct hypothesis) Let B be a Horn expres-
sion and S a set of pairs (e,�(e)) with e a ground atom and
�(e) ∈ {1, 0} . A Horn expression H is a correct hypothesis
for B and S if

Example 5  Suppose that we are given as input the back-
ground knowledge B2 and a set S of classified examples
presented in Table 3. In this example, one might conjecture
a hypothesis H which states that:

This form of inference is not sound in the logical sense
since H does not necessarily follow from B and S. Another
hypothesis considered as correct by this approach would be

even though one could easily think of an interpretation with
a person not being a domain expert. One could also create
a situation in which there are infinitely many hypotheses
suitable to explain the positive and negative examples. For
this reason, it is often required a non-logical constraint to
justify the choice of a particular hypothesis [35]. A com-
mon principle is the Occam’s razor principle which says
that the simplest hypothesis is the most likely to be correct

∀(e, 1) ∈ S, B ∪H ⊧ e and ∀(e, 0) ∈ S, B ∪H ̸⊧ e.

∀xy(𝗂𝗌𝖤𝗑𝗉𝖾𝗋𝗍(x, y) ∧ 𝖣𝗈𝗆𝖺𝗂𝗇(y) → 𝖣𝗈𝗆𝖺𝗂𝗇𝖤𝗑𝗉𝖾𝗋𝗍(x)).

∀x(𝖯𝖾𝗋𝗌𝗈𝗇(x) → 𝖣𝗈𝗆𝖺𝗂𝗇𝖤𝗑𝗉𝖾𝗋𝗍(x)),

Fig. 1   {A ⊑ ∃r.(A ⊓ B)} is a
base for EL��� [23]

Table 3   Background knowledge and classified examples

Background knowledge

∀x(𝖬𝖾𝖽𝗂𝖼𝖺𝗅𝖣𝗈𝗆𝖺𝗂𝗇(x) → 𝖣𝗈𝗆𝖺𝗂𝗇(x))

������(����) , �������������(�������)

��������(���� , �������)
Classified Examples
(������������(����), 1)

(������������(�������), 0)

2  We use the equivalent representation of Horn clauses as implica-
tions.

	 KI - Künstliche Intelligenz

1 3

(simplicity can be understood in various ways, a naive way
is to consider the length of the Horn expression as a string).

We parameterize the learning framework for ILP with the
background knowledge B , given as part of the input of the
problem. We then have that ����(B) is the learning frame-
work (E,L,�) with E the set of all ground atoms; L the set
of all Horn expressions H ; and

Classified examples help to distinguish a target unknown
logical theory formulated as a Horn expression from other
Horn expressions in the hypothesis space. In the learning
framework ����(B) , positive examples for a Horn expression
H are those entailed by the union of H and the background
theory B.

ILP Problem Given B and S (as in Definition 3), let
����(B) be (E,L,�) . Find H ∈ L such that H is a cor-
rect (and simple) hypothesis for B and S. That is, for all
(e,�(e)) ∈ S , e ∈ �(H) iff �(e) = 1.

5.2 � Building DL Ontologies

In the DL context, ILP has been applied for learning DL
concept expressions [12, 15, 22, 26, 27, 29] and for learn-
ing logical rules for ontologies [31]. We describe here the
problem setting for learning DL concept expressions, which
can help the designer to formulate the concept expressions
in an ontology. As in the classical ILP approach, the learner
receives as input some background knowledge, formulated
as a knowledge base K = (T,A) , where T is a TBox and A
is a set of assertions, that is, expressions of the form A(a),
r(a, b) where A ∈ �� , r ∈ �� , and a, b are taken from a set
�� of individual names. Assertions can be seen as ground
atoms and A , in DL terms, is called an ABox. A set S of pairs
(e,�(e)) with e an assertion and �(e) ∈ {1, 0} is also given
as part of the input. In the mentioned works, e is of the form
������(a) , with ������ a concept name in �� not occurring
in K and a ∈ ��.

As in the original ILP approach, given K = (T,A) and S,
a concept expression C (in the chosen DL) is correct for K
and S if, for all (������(a),�(������(a))) ∈ S , we have that
(T ∪ {������ ≡ C},A) ⊧ ������(a) iff �(������(a)) = 1.

Example 6  The background knowledge in Table 3 can be
translated into (T,A) , with

and A the set of ground atoms given as background knowl-
edge in Table 3. Assuming that the target concept name
is ������������ and the set S of classified examples is
the one in Table 3, correct concept expressions would be
∃��������.������ and ������.

𝜇(H) = {e ∈ E ∣ B ∪H ⊧ e}.

T = {������������� ⊑ ������}

The learning framework and problem statement presented
here is for learning ALC and EL concept expressions based
on the ILP approach [28, 29]. Here the learning framework
is parameterized by a knowledge base (T,A) and a DL L.
Then, ���

���
((T,A), L) is (E,L,�) where E is the set of all

ground atoms; L is the set of all L concept expressions C
such that ������ does not occur in it; and

ILP+DL Problem Given K , L, and S (the classified exam-
ples), let ���

���
(K, L) be (E,L,�) . Find C ∈ L such that C is

correct (and simple) for K and S. That is, for all (e,�(e)) ∈ S ,
e ∈ �(C) iff �(e) = 1.

6 � Learning Theory

6.1 � Original Approach

We describe two classical learning models in CLT which
have been applied for learning DL concept expressions and
ontologies. We start with the classical PAC learning model
and then describe the exact learning model.3

In the PAC learning model, a learner receives classified
examples drawn according to a probability distribution and
attempts to create a hypothesis that approximates the tar-
get. The aim is to bound the probability that a hypothesis
constructed by the learner misclassifies an example. This
approach can be applied to any learning framework. Within
this model, one can investigate the complexity of learning
an abstract target, such as a DL concept, an ontology, or the
weights of a NN.

We now formalise this model. Let � = (E,L,�) be a
learning framework. A probability distribution D over E is
a function mapping events in a �-algebra E of subsets of E
to [0, 1] ⊂ ℝ such that D(

⋃
i∈I Xi) =

∑
i∈I D(Xi) for mutually

exclusive Xi , where I is a countable set of indices, Xi ∈ E ,
and D(E) = 1 . Given a target t ∈ L , let ��D

�,t
 be the oracle

that takes no input, and outputs a classified example
(e,�t(e)) , where e ∈ E is sampled according to the probabil-
ity distribution D , �t(e) = 1 , if e ∈ �(t) , and �t(e) = 0 , oth-
erwise. An example query is a call to the oracle ��D

�,t
 . A

sample generated by ��D
�,t

 is a (multi-)set of indexed classi-
fied examples, independently and identically distributed
according to D , sampled by calling ��D

�,t
.

A learning framework � is PAC learnable if there is a
function f ∶ (0, 1)2 → ℕ and a deterministic algorithm such

𝜇(C) = {e ∈ E ∣ (T ∪ {������ ≡ C},A) ⊧ e}.

3  The expression “Probably Approximately Correct” was coined by
Angluin in the paper [2], where she shows the connection between
the two learning models.

KI - Künstliche Intelligenz	

1 3

that, for every 𝜖, 𝛿 ∈ (0, 1) ⊂ ℝ , every probability distribu-
tion D on E , and every target t ∈ L , given a sample of size
m ≥ f (�, �) generated by ��D

�,t
 , the algorithm always halts

and outputs h ∈ L such that with probability at least (1 − �)
over the choice of m examples in E  , we have that
D(𝜇(h)⊕ 𝜇(t)) ≤ 𝜖 . If the number of computation steps used
by the algorithm is bounded by a polynomial function
p(|t|, |e|, 1∕�, 1∕�) , where e is the largest example in the
sample generated by ��D

�,t
 , then � is PAC learnable in poly-

nomial time.

Example 7  Let E = {◻,♡,○,♢,△} and let D be a probabil-
ity distribution on E , defined, e.g., by the pairs

Assume h, t ∈ L and assume �(h) = {♡,○} and
�(t) = {♡,△} then the probability D(𝜇(h)⊕ 𝜇(t)) that h
misclassifies an example according to D is 0.5.

PAC Problem Given a learning framework decide
whether it is PAC learnable in polynomial time.

In the classical PAC approach, the probability distribution
D is unknown to the learner. The algorithm should provide
a probabilistic bound for any possible D . We now describe
the exact learning model. In this model, a learner tries to
identify an abstract target known by a teacher, also called
an oracle, by interacting with the teacher [2]. The most suc-
cessful protocol is based on membership and equivalence
queries. As it happens with the PAC learning model, this
model can be used to formulate learning problems within
the context of any kind of learning framework.

We formalise these notions as follows. Given a learning
framework � = (E,L,�) , we are interested in the exact iden-
tification of a target concept representation t ∈ L by posing
queries to oracles. Let ���,t be the oracle that takes as input
some e ∈ E and returns ‘yes’ if e ∈ �(t) and ‘no’ otherwise.
A membership query is a call to the oracle ���,t . For every
t ∈ L , we denote by ���,t the oracle that takes as input a
hypothesis concept representation h ∈ L and returns ‘yes’ if
�(h) = �(t) and a counterexample e ∈ 𝜇(h)⊕ 𝜇(t) otherwise,
where ⊕ denotes the symmetric set difference. There is no
assumption regarding which counterexample in 𝜇(h)⊕ 𝜇(t)
is chosen by the oracle. An equivalence query is a call to the
oracle ���,t . In this model, if examples are interpretations
or entailments, the notion of ‘equivalence’ coincides with
logical equivalence.

A learning framework � is exactly learnable if there is a
deterministic algorithm such that, for every t ∈ L , it even-
tually halts and outputs some h ∈ L with �(h) = �(t) . Such
algorithm is allowed to call the oracles ���,t and ���,t . If
the number of computation steps used by the algorithm is
bounded by a polynomial p(|t|, |e|) , where t ∈ L is the target

({◻}, 0.2), ({♡}, 0.1), ({○}, 0.3), ({♢}, 0.2), ({△}, 0.2).

and e ∈ E is the largest counterexample seen so far, then �
is exactly learnable in polynomial time.

Exact Problem Given a learning framework decide
whether it is exactly learnable in polynomial time.

In Theorem 1, we recall an interesting connection
between the exact learning model and the PAC model
extended with membership queries. If there is a polynomial
time algorithm for a learning framework � that is allowed
to make membership queries then � is PAC learnable with
membership queries in polynomial time.

Theorem 1  [2] If a learning framework is exactly learnable
in polynomial time then it is PAC learnable with membership
queries in polynomial time. If only equivalence queries are
used then it is PAC learnable (without membership queries)
in polynomial time.

The converse of Theorem 1 does not hold [6]. That is,
there is a learning framework that is PAC learnable in pol-
ynomial time (even without membership queries) but not
exactly learnable in polynomial time.

6.2 � Building DL Ontologies

The PAC learning model has been already applied to learn
DL concept expressions formulated in DL CLASSIC [9,
14] (see also [36]). The main difficulty in adapting the PAC
approach for learning DL ontologies is the complexity of this
task. In the PAC learning model, one is normally interested
in polynomial time complexity, however, many DLs, such as
ALC , have superpolynomial time complexity for the entail-
ment problem and entailment checks are often important to
combine the information present in the classified examples.

It has been shown that the EL fragments EL��� and EL���

—the EL fragments that allow only conjunctions of concept
names on the right-side and on the left-side of CIs, respec-
tively—are polynomial time exactly learnable from entail-
ments [24, 25, 37],4 however, this is not the case for EL . The
learning framework is the one in Example 1 and the prob-
lem statement is the same as in the original approach. By
Theorem 1, the results for EL��� and EL��� are transferable to
the PAC learning model extended with membership queries.
The results show how changes in the ontology language can
impact the complexity of searching for a suitable ontology
in the hypothesis space. The main difficulty of implementing
this model is that it is based on oracles, in particular, on an
equivalence query oracle. Fortunately, as already mentioned,
such equivalence queries can be simulated by the sampling

4  The result for EL��� (allowing conjunctions of concept names on the
left-side of CIs) appears in [24, Section 4]

	 KI - Künstliche Intelligenz

1 3

oracle of the PAC learning model to achieve PAC learnabil-
ity (Theorem 1) [2].

7 � Neural Networks

7.1 � Original Approach

NNs are widespread architectures inspired by the structure
of the brain [34]. They may differ from each other not only
regarding their weight and activation functions but also
structurally, e.g., it is known that feed-forward NNs are acy-
clic while recurrent NNs have cycles. One of the simplest
models is the one given by Definition 4.

Definition 4  (Neural network) An NN is a triple (G, �,w)
where G = (V ,E) is a graph, with V a set of nodes, called
neurons, and E ⊆ V × V a set of (directed) edges; � ∶ ℝ → ℝ
is the activation function; and w ∶ E → ℝ is the weight
function.

Other parameters that can be part of the definition of an
NN are the propagation function and biases. A widely used
propagation function is the weighted sum. The propagation
function specifies how the outputs of the neurons connected
to a neuron n are combined to form the input of n. Given an
input to a neuron, the activation function maps it to the out-
put of the neuron. In symbols, the input ��(n) of a neuron n is

The structure of an NN is organized in layers, basically, an
input, an output, and (possibly several) hidden layers. The
input of an NN is a vector of numbers in ℝ , given as input to
the neurons in the input layer. The output of the NN is also
a vector of numbers in ℝ , constructed using the outputs of
the neurons in the output layer. The dimensionality of the
input and output of an NN varies according to the learning
task. One can then see an NN as a function mapping an input
vector � to an output vector � . In symbols, (G, �,w)(�) = �.

The main task is to find a weight function that minimizes
the risk of the NN N  , modelled by a function LD(N) , with
D a probability distribution on a set of pairs (�, �) of input/
output vectors [42]. The risk of an NN represents how well
we expect the NN to perform while predicting the classifica-
tion of unseen examples.

The learning framework can be defined in various ways.
Here we parameterize it by a graph structure and an activa-
tion function � . We have that ���(G, �) , with G = (V ,E) ,
is (E,L,�) where E is a set of pairs (�, �) representing input
and output vectors of numbers in ℝ (respectively, and with

∑

m∶(m,n)∈E

�(��(m)) ⋅ w((m, n)).

appropriate dimensionality); L is the set of all weight func-
tions w ∶ E → ℝ ; and

One can formulate the NN problem as follows.
NN Problem Given G and � , let ���(G, �) be (E,L,�) .

Find w ∈ L that minimizes the risk LD(N) of N = (G, �,w) ,
where D is a fixed but arbitrary and unknown probability
distribution on E.

Classified examples for training and validation can be
obtained by calling the sampling oracle ��D

�,t
 (recall ��D

�,t

from Sect. 6), where t ∈ L is the (unknown) target weight
function. One of the main challenges of this approach is that
finding an optimal weight function is computationally hard.
Most works apply a heuristic search based on the gradient
descent algorithm [42].

7.2 � Building DL Ontologies

NNs have been applied to learn CIs from sentences
expressing definitions, called definitorial sentences [38]
(see also [32] for more work on definitorial sentences in a
DL context, and, e.g. [8, 48], for work on learning asser-
tions based on NNs). More specifically, the work on [38]
is based on recurrent NNs, which are useful to process
sequential data. The structure of the NN, in this case, takes
the form of a grid. The authors learn ALCQ CIs, where
ALCQ is the extension of ALC with qualified number
restrictions. For example, “A car is a motor vehicle that
has 4 tires and transport people.” corresponds to

The main benefits of this approach is that NNs can deal
with natural language variability. The authors provide an
end-to-end solution that does not even require natural lan-
guage processing techniques. However, the approach is
based on the syntax of the sentences, not on their seman-
tics, and they cannot capture portions of knowledge across
different sentences [38]. Another difficulty of adapting this
approach for learning DL ontologies is the lack of datasets
available for training. Such dataset should consist of a large
set of pairs of definitorial sentences and their corresponding
CI. The authors created a synthetic dataset to perform their
experiments.

The learning framework and problem statement for
learning DL CIs based on the NN approach [38] can be
formulated as follows. The learning framework for a DL L
can be defined as ���

��
(G, �, L) = (E,L,�) where E is a set

of pairs (�, �) with � a vector representation of a definito-
rial sentence and � a vector representation of an L CI; and
L and � are as in the original NN approach.

�(w) = {(�, �) ∈ E ∣ (G, �,w)(�) = �}.

��� ⊑ ������������ ⊓ = 4���.����� ⊓ ∃���������.������.

KI - Künstliche Intelligenz	

1 3

NN+DL Problem Given G, L and � , let ���
��
(G, �, L)

be (E,L,�) . Find w ∈ L that minimizes the risk LD(N)
of N = (G, �,w) , where D is a fixed but arbitrary and
unknown probability distribution on E.

8 � Where Do They Stand?

We now discuss the main benefits and limitations of ARM,
FCA, ILP, CLT, and NNs for building DL ontologies, con-
sidering the goals listed in the Introduction.

Interpretability refers to the easiness of understanding
the learned DL ontology/concept expressions and obtain-
ing insights about the domain. In ARM, the requirement
for computing CIs with high support often results in highly
interpretable CIs (at the cost of fixing the length of con-
cept expressions). The FCA approach classically deals
with redundancies, which is often not considered in ARM
approaches. However, the CIs generated with this approach
can be difficult to interpret [7]. The ILP approach follows the
Occam’s razor principle, which contributes to the generation
of interpretable DL expressions, although there is no guaran-
tee for the quality of the approximation. Such guarantees can
be found in CLT, where the goal is to approximate or exactly
identify the target. However, the focus of these approaches
is on accuracy rather than interpretability. Regarding NNs,
the complex models can deal with high variability in the data
but may lose on interpretability.

Expressivity refers to the expressivity of the DL lan-
guage supported by the learning process. As we have seen,
many previous approaches for learning DL ontologies focus
on Horn fragments such as EL [4, 7, 11, 24, 25, 28] (or
Horn-like fragments such as FLE [40]). Non-horn fragments
have been investigated for learning DL ontologies [41, 46]
and concept expressions [12, 22, 29] (fixing the length of
concept expressions). As mentioned, ALCQ CIs can be
learned with NNs [38] (see also [49]).

Efficiency refers to the amount of time and memory con-
sumed by algorithms in order to build a DL ontology (or
concept expressions) in the context of a particular approach
or a learning model. In CLT one can formally establish com-
plexity results for learning problems. In ARM the search
space is heavily constrained by the support function, which
means that usually large portions of the search space can
be eliminated in this approach. The Next-closure algorithm
used in FCA is polynomial in the output and has polynomial
delay, meaning that from the theoretical point of view it has
interesting properties regarding efficiency. However, in prac-
tice, there may be difficulties in processing large portions of
data provenient of knowledge graphs, such as DBpedia [7].

Human interactions may be required to complete the
information given as input or to validate the knowledge that
cannot be represented in a finite dataset or in a finite inter-
pretation (recall the case of an infinite chain of objects in
Sect. 4.2). Since the input is simply a database or an inter-
pretation, the ARM and FCA approaches require limited or
no human intervention. It is worth to point out that some
DL adaptations of the FCA approach depend on an expert
which resembles a membership oracle. The difference is that
in the exact learning model the membership oracle answers
with ‘yes’ or ‘no’, whereas in FCA the oracle also provides a
counterexample if the answer is ‘no’ [40]. In ILP, examples
need to be classified into positive and negative, which may
require human intervention to classify the examples before
learning takes place. The same happens with the CLT mod-
els presented. The exact learning model is purely based on
interactions with an oracle, which can be an expert (or even
a neural network [47]).

Unsupervised learning is supported by the ARM and
FCA approaches, as well as some NNs (but not by the DL
adaptation we have seen in the literature [38]). As already
mentioned, the approaches based on ILP and CLT fall in the
supervised setting. That is, examples receive some sort of
(usually binary) classification.

Inconsistencies and noise are often present in the data.
The ARM approach deals with them by only requiring that
the confidence of the CI is above a certain threshold (instead
of requiring that the CI is fully satisfied, as in FCA). ILP and
CLT classically do not support inconsistencies and noise,
though, the PAC model has an agnostic version in which it
may not be possible to construct a hypothesis consistent with
the positive and negative examples (due e.g. to noise in the
classification). NNs can deal very well with data variability,
including cases with inconsistencies and noise.

9 � Conclusion

We discussed benefits and limitations of, namely, ARM,
FCA, ILP, CLT, and NNs for DL settings. Not many authors
have applied NNs for learning DL ontologies (when the
focus is on building the logical expressions), even though
NNs are widespread in many areas. We believe that more
works exploring this approach are yet to come. One of the
challenges is how to capture the semantics of the domain.
Promising frameworks for capturing the semantics of logical
expressions [17, 39] and modelling logical rules [21] have
been recently proposed. Each approach addresses some of
the desired properties of an ontology learning process. An
interesting question is whether they can be combined so as
to obtain the best of each approach [36].

	 KI - Künstliche Intelligenz

1 3

Acknowledgements  Open Access funding provided by Univer-
sity of Bergen. This work is supported by the Free University of
Bozen-Bolzano.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Agrawal R, Imieliński T, Swami A (1993) Mining associa-
tion rules between sets of items in large databases. SIGMOD
22(2):207–216

	 2.	 Angluin D (1988) Queries and concept learning. Mach Learn
2(4):319–342

	 3.	 Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider
P (eds) (2007) The description logic handbook: theory, implemen-
tation, and applications, 2nd edn. Cambridge University Press,
Cambridge

	 4.	 Baader F, Distel F (2009) Exploring finite models in the descrip-
tion logic. In: ICFCA, pp 146–161

	 5.	 Baader F, Ganter B, Sertkaya B, Sattler U (2007) Completing
description logic knowledge bases using formal concept analysis.
In: IJCAI, pp 230–235

	 6.	 Blum AL (1994) Separating distribution-free and mistake-bound
learning models over the boolean domain. SIAM J Comput
23(5):990–1000

	 7.	 Borchmann D, Distel F (2011) Mining of ${\cal{E}}{\cal{L}}$-
GCIs. In: ICDM workshops

	 8.	 Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O
(2013) Translating embeddings for modeling multi-relational data.
In: Advances in neural information processing systems. NeurIPS, pp
2787–2795

	 9.	 Cohen WW, Hirsh H (1994) Learning the CLASSIC description
logic: theoretical and experimental results. In: KR, pp 121–133

	10.	 Distel F (2011) Learning description logic knowledge bases from
data using methods from formal concept analysis. Ph.D. thesis,
Dresden University of Technology

	11.	 Duarte MRC, Konev B, Ozaki A (2018) Exactlearner: a tool for
exact learning of EL ontologies. In: KR, pp 409–414

	12.	 Fanizzi N, d’Amato C, Esposito F (2008) DL-FOIL concept learn-
ing in description logics. In: ILP, pp 107–121

	13.	 Fleischhacker D, Völker J, Stuckenschmidt H (2012) Mining
RDF data for property axioms. In: OTM, pp 718–735

	14.	 Frazier M, Pitt L (1996) Classic learning. Mach Learn
25(2–3):151–193

	15.	 Funk M, Jung JC, Lutz C, Pulcini H, Wolter F (2019) Learn-
ing description logic concepts: when can positive and negative
examples be separated? In: IJCAI, pp 1682–1688

	16.	 Galárraga L, Teflioudi C, Hose K, Suchanek FM (2015) Fast
rule mining in ontological knowledge bases with AMIE+.
VLDB J 24(6):707–730

	17.	 Galliani P, Kutz O, Porello D, Righetti G, Troquard N (2019)
On knowledge dependence in weighted description logic. In:
GCAI, pp 68–80

	18.	 Ganter B, Rudolph S, Stumme G (2019) Explaining data with
formal concept analysis. In: RW, pp 153–195

	19.	 Ganter B, Wille R (1997) Formal concept analysis: mathemati-
cal foundations. Springer, Berlin

	20.	 Guigues JL, Duquenne V (1986) Familles minimales
d’implications informatives résultant d’un tableau de données
binaires. Math Sci Hum 95:5–18

	21.	 Gutiérrez-Basulto V, Schockaert S (2018) From knowledge
graph embedding to ontology embedding? An analysis of the
compatibility between vector space representations and rules.
In: KR, pp 379–388

	22.	 Iannone L, Palmisano I, Fanizzi N (2007) An algorithm based
on counterfactuals for concept learning in the semantic web.
Appl Intell 26:139–159

	23.	 Klarman S, Britz K (2015) Ontology learning from interpreta-
tions in lightweight description logics. In: ILP

	24.	 Konev B, Lutz C, Ozaki A, Wolter F (2018) Exact learning of
lightweight description logic ontologies. JMLR 18(201):1–63

	25.	 Konev B, Ozaki A, Wolter F (2016) A model for learning
description logic ontologies based on exact learning. In: AAAI,
pp 1008–1015

	26.	 Lehmann J (2009) DL-learner: learning concepts in description
logics. JMLR 10:2639–2642

	27.	 Lehmann J (2010) Learning OWL class expressions, vol 6. IOS
Press, Amsterdam

	28.	 Lehmann J, Haase C (2009) Ideal downward refinement in the
EL description logic. In: ILP, pp 73–87

	29.	 Lehmann J, Hitzler P (2010) Concept learning in description
logics using refinement operators. Mach Learn 78(1–2):203–250

	30.	 Lehmann J, Völker J (2014) Perspectives on ontology learning,
vol 18. IOS Press, Amsterdam

	31.	 Lisi FA (2011) Al-quin: an onto-relational learning system for
semantic web mining. Int J Semant Web Inf Syst 7:1–22

	32.	 Ma Y, Distel F (2013) Learning formal definitions for Snomed
CT from text. In: AIME, pp 73–77

	33.	 Maedche A, Staab S (2001) Ontology learning for the semantic
web. IEEE Intell Syst 16:72–79

	34.	 McCulloch WS, Pitts W (1988) A logical calculus of the ideas
immanent in nervous activity. In: Neurocomputing: foundations
of research. MIT Press, pp 15–27

	35.	 Muggleton S (1991) Inductive logic programming. New Gen
Comput 8(4):295–318

	36.	 Obiedkov S, Sertkaya B, Zolotukhin D (2019) Probably approxi-
mately correct completion of description logic knowledge bases.
In: DL

	37.	 Ozaki A, Persia C, Mazzullo A (2020) Learning query insepa-
rable ELH ontologies In: AAAI

	38.	 Petrucci G, Ghidini C, Rospocher M (2016) Ontology learning
in the deep. In: EKAW, pp 480–495

	39.	 Porello D, Kutz O, Righetti G, Troquard N, Galliani P, Masolo
C (2019) A toothful of concepts: towards a theory of weighted
concept combination. In: DL

	40.	 Rudolph S (2004) Exploring relational structures via FLE. In:
ICCS

	41.	 Sazonau V, Sattler U (2017) Mining hypotheses from data in
OWL: advanced evaluation and complete construction. In: ISWC,
pp 577–593

	42.	 Shalev-Shwartz S, Ben-David S (2014) Understanding machine
learning: from theory to algorithms. Cambridge University Press,
Cambridge

	43.	 Stepanova D, Gad-Elrab MH, Ho VT (2018) Rule induction and
reasoning over knowledge graphs. In: RW, pp 142–172

	44.	 Valiant LG (1984) A theory of the learnable. Commun ACM
27(11):1134–1142

	45.	 Völker J, Fleischhacker D, Stuckenschmidt H (2015) Automatic
acquisition of class disjointness. J Web Semant 35:124–139

http://creativecommons.org/licenses/by/4.0/

KI - Künstliche Intelligenz	

1 3

	46.	 Völker J, Niepert M (2011) Statistical schema induction. In: The
semantic web: research and applications. Springer, Berlin, pp
124–138

	47.	 Weiss G, Goldberg Y, Yahav E (2018) Extracting automata from
recurrent neural networks using queries and counterexamples. In:
ICML, pp 5244–5253

	48.	 Yang B, Yih W, He X, Gao J, Deng L (2015) Embedding entities
and relations for learning and inference in knowledge bases. In:
ICLR

	49.	 Zhu M, Gao Z, Pan JZ, Zhao Y, Xu Y, Quan Z (2015) Tbox learn-
ing from incomplete data by inference in belnet${}^{\text{+ }}$.
Knowl Based Syst 75:30–40

	Learning Description Logic Ontologies: Five Approaches. Where Do They Stand?
	Abstract
	1 Introduction
	2 Definitions
	2.1 Description Logic Ontologies
	2.2 Learning Frameworks

	3 Association Rule Mining
	3.1 Original Approach
	3.2 Building DL Ontologies

	4 Formal Concept Analysis
	4.1 Original Approach
	4.2 Building DL Ontologies

	5 Inductive Logic Programming
	5.1 Original Approach
	5.2 Building DL Ontologies

	6 Learning Theory
	6.1 Original Approach
	6.2 Building DL Ontologies

	7 Neural Networks
	7.1 Original Approach
	7.2 Building DL Ontologies

	8 Where Do They Stand?
	9 Conclusion
	Acknowledgements
	References

