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Abstract

Round functions used as building blocks for iterated block ciphers, both
in the case of Substitution-Permutation Networks (SPN) and Feistel
Networks (FN), are often obtained as the composition of different layers
which provide confusion and diffusion, and key additions. The bijectiv-
ity of any encryption function, crucial in order to make the decryption
possible, is guaranteed by the use of invertible layers or by the Feistel
structure. In this work a new family of ciphers, called wave ciphers, is
introduced. In wave ciphers, round functions feature wave functions,
which are vectorial Boolean functions obtained as the composition of
non-invertible layers, where the confusion layer enlarges the message
which returns to its original size after the diffusion layer is applied.
This is motivated by the fact that relaxing the requirement that all
the layers are invertible allows to consider more functions which are
optimal with regard to non-linearity. In particular it allows to consider
injective APN S-boxes. In order to guarantee efficient decryption we
propose to use wave functions in Feistel Networks. With regard to
security, the immunity from some group-theoretical attacks is investi-
gated. In particular, it is shown how to avoid that the group generated
by the round functions acts imprimitively, which represents a serious
flaw for the cipher. The primitivity of this group is derived as a con-
sequence of a more general result, which allows to reduce the problem

Email adresses: ric.aragona@gmail.com (R. Aragona), marco.calderini@uib.no (M.
Calderini), roberto.civino@univaq.it (R. Civino), maxsalacodes@gmail.com (M. Sala),
ilaria.zappatore@lirmm.fr (I. Zappatore)

1

ar
X

iv
:1

70
8.

08
81

4v
3 

 [
m

at
h.

G
R

] 
 2

1 
Se

p 
20

18
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bergen

https://core.ac.uk/display/479096459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of proving that a given FN generates a primitive group to the one of
proving that an SPN, directly related to the given FN, generates a
primitive group. Finally, a concrete instance of real-world size wave
cipher is proposed as an example, and its resistance against differential
and linear cryptanalysis is also established.

Keywords: Cryptosystems; Feistel Networks; Substitution-Permutation Networks;
non-invertible S-boxes; Almost Perfect Non-linearity; groups generated by round
functions; primitive groups.
MSC 2010: 20B15, 20B35, 94A60.

1 Introduction

Most modern block ciphers belong to two families of symmetric cryptosystems,
i.e. Substitution-Permutation Networks (SPN) and Feistel Networks (FN), and are
obtained as composition of round functions. Each round function is a key-dependent
permutation of the plaintext space, designed in such a way to provide both confusion
and diffusion (see [32]). Confusion is provided most of the times by means of a non-
linear layer which applies Boolean functions, called S-boxes, whereas a linear map,
called diffusion layer, provides diffusion. In order to perform decryption, invertible
layers and the Feistel structure are used in SPN and FN, respectively. In the
framework of SPNs, which have been widely studied in last years, especially after
the selection process for the NIST standard AES [20], decryption is performed by
applying in reverse order the inverse of each layer of the cipher. In the case of FNs,
it is the Feistel structure itself that guarantees a fast decryption.

Motivation and design principles It is well-known that the non-linearity
of the confusion layer is a crucial parameter for the security of the cipher. In par-
ticular, in order to prevent statistical attacks (e.g. differential [8] and linear [26]
cryptanalysis), block ciphers’ designers are interested in invertible S-boxes reaching
the best possible differential uniformity, which is two. Functions satisfying such
property are called almost-perfect non-linear (APN) [27] and are extensively stud-
ied. Unfortunately, APN permutations are known only when the dimension s of
the input space for the S-box is an odd number, except for the case of the Dillon’s
function (s = 6) [9], which nowadays represents the only isolated case [15]. It has
been shown that no permutation with s = 4 is APN [13, 24] and the problem is still
without answers for s ≥ 8. On the other hand, the cases when s ∈ {4,8} are the
most used for implementation reasons.
In this paper we show how to define ciphers whose S-boxes are injective APN func-
tions with s inputs, s even. We do this by considering non-invertible S-boxes,
focusing on injective confusion layers which enlarge the message. Notice that a
similar approach is considered in the block cipher CAST-128, where 8×32 are used
[1]. After the confusion layer is applied, a surjective diffusion layer reduces the
message to its original size. By appending a key addition to the previous layers, we
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obtain a vectorial Boolean function which we call a wave function. Consequently
a wave cipher is a block cipher featuring wave functions in its structure. In order
to guarantee an efficient decryption, we propose to use wave functions inside an
FN-like framework. The opposite scenario has been considered in DES [22] and
Picaro [30], where an expanding linear layer is followed by a compressing confusion
layer.

Algebraic security Algebraic attacks might also represent serious threats, as
we elaborate further below. It is possible to link some algebraic properties of
confusion / diffusion layers and some algebraic weaknesses of the corresponding ci-
pher. Firstly, in 1975 Coppersmith and Grossman [19] considered a set of functions
which can be used to define a block cipher and, by studying the permutation group
generated by those, they opened the way to a new branch of research focused on
group-theoretical properties which can reveal weaknesses of the cipher itself. As it
has been proved in [25], if such a group is too small, then the cipher is vulnerable to
birthday-paradox attacks. Recently, in [12] the authors proved that if such group is
contained in an isomorphic image of the affine group of the message space induced
by a hidden sum, then it is possible to embed a dangerous trapdoor on it. More
relevant in [28], Paterson built a DES-like cipher, resistant to both linear and differ-
ential cryptanalysis, whose encryption functions generate an imprimitive group and
showed how the knowledge of this trapdoor can be turned into an efficient attack
to the cipher. For this reason, a branch of research in Symmetric Cryptography is
focused on showing that the group generated by the encryption functions of a given
cipher is primitive and not of affine type (see [4, 5, 6, 11, 17, 18, 31, 33, 34, 35]).
In this sense, our purpose is to give sufficient conditions for the primitivity of the
group generated by the round functions of a wave cipher. These conditions result
naturally from our general investigation of the link between the primitivity of the
group generated by the rounds of an SPN and that of an FN. In particular, we
prove a general result which links the primitivity of the group generated by the
round functions of an FN and the primitivity of the group generated by the rounds
of an SPN-like cipher, whose round functions are the ones performed within each
round of the FN.
In this paper we aim at proving that it is possible to define a new family of block ci-
phers, which may feature injective APN S-Boxes of even size, whose round functions
generate a primitive group. We propose a general framework for block ciphers which
produces provably secure ciphers, under some cryptographic assumptions, with re-
spect to the imprimitivity attack. In order to prove the security of the given wave
cipher with respect to other classical statistical attacks (e.g. linear and differential
cryptanalysis), it is needed to analyse the single instance under consideration.

Description of the paper The paper is organised as follows:

• In Section 2 our notation is presented, as well as some basic definitions and
results concerning the non-linearity of Boolean functions and primitive per-
mutations group. In particular, after having presented the main differences
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between SPNs and FNs, we introduce a notion of classical round function,
which allows to describe formally both cipher families in a unified way, pro-
vided the round key is used as a translation (i.e., the key addition is the usual
XOR).

• Section 3 includes our definitions of wave functions and wave ciphers. We
also show an example of an APN 4 × 5 S-box, which is suitable for building
a strong wave function.

• In Section 4 a group-theoretical result is shown, which, as a consequence,
links the primitivity of the action of an SPN with that of an FN (Theorem
4.5). Thanks to Theorem 4.5, we prove that the group generated by the round
functions of a wave cipher is primitive under some standard cryptographic
assumptions on the underlying wave functions (Theorem 4.9).

• In Section 5 it is designed a concrete example of 64-bit wave cipher by se-
lecting an APN 4 × 5 S-box and a 40 × 32 diffusion layer, and its resistance
against differential and linear cryptanalysis is proved.

• Section 6 concludes the paper and discusses some open problems.

2 Notation and preliminaries

Throughout this paper we use the postfix notation for every function evaluation,
i.e. if f is a function and x an element in the domain of f , we denote by xf the
evaluation of f in x. We denote by Im f the range of f and by Y f−1 the pre-image
of a set Y .

A block cipher Φ is a family of key-dependent permutations

{EK ∣ EK ∶M→M, K ∈ K},

where M is the message space, K the key space, and ∣M∣ ≤ ∣K∣. The permutation
EK is called the encryption function induced by the master key K. The block ci-
pher Φ is called an iterated block cipher if there exists r ∈ N such that for each
K ∈ K the encryption function EK is the composition of r round functions, i.e.
EK = ε1,K ε2,K . . . εr,K . To provide efficiency, each round function is the compo-
sition of a public component provided by the designers, and a private component
derived from the user-provided key by means of a public procedure known as key-
schedule.

In the theory of modern iterated block cipher, two frameworks are mainly con-
sidered: Substitution-Permutation Networks (see e.g. AES [20], SERPENT [2],
PRESENT [10]) and Feistel Networks (see e.g. Camelia [3], GOST [21]). Figure 1
depicts the more general framework of SPNs, FNs and their round functions; one
can note that inside the round function of an FN, a function called F-function is
applied to a half of the state. In both cases, the principles of confusion and diffusion
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Figure 1: Round function of an SPN and of an FN

suggested by Shannon [32] are implemented by considering each round function /
F-function as the composition of key-induced permutation as well as non-linear
confusion layers and linear diffusion layers, which are invertible in the case of SPNs
and preferably (but not necessarily) invertible in the case of FNs. We now define a
class of round functions for iterated block ciphers which is large enough to include
the round functions of well-established SPNs e.g. AES, PRESENT, SERPENT,
and the F-function of FNs like Camelia. Notice that, for sake of simplicity, atypical
rounds are not considered in this description.

Let n ∈ N and let us denote V = (F2)n. Let us suppose dim(V ) = n = bs and let
us write V = V1⊕V2⊕ . . .⊕Vb where for 1 ≤ j ≤ b, dim(Vj) = s and ⊕ represents the
direct sum of vector subspaces. The subspaces Vj ’s are called bricks. We denote by
Sym(V ) the symmetric group acting on V , i.e. the group of all permutations on
V . Let us also denote by AGL(V ) the group of all affine permutations of V , which
is a primitive maximal subgroup of Sym(V ).

Definition 2.1. For each k ∈ V , a classical round function induced by k is a map
εk ∈ Sym(V ) where εk = γλσk and

• γ ∶ V → V is a non-linear permutation (parallel S-box) which acts in parallel
way on each Vj, i.e.

(x1, x2, . . . , xn)γ = ((x1, . . . , xs)γ1, . . . , (xs(b−1)+1, . . . , xn)γb) .

The maps γj ∶ Vj → Vj are traditionally called S-boxes,

• λ ∈ Sym(V ) is a linear map,

• σk ∶ V → V,x ↦ x + k represents the addition with the round key k, where +
is the usual bitwise XOR.
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When used inside block ciphers, the round keys in V are derived by the designer-
provided key-scheduling function from the master key K ∈ K. Since, as we will
discuss later in detail, studying the role of the key-schedule is out of the scopes of
this paper, one can simply suppose that round keys are stochastically independent
randomly-generated vectors in V .

In modern literature, terms “SPN” and “FN” may refer to a very diverse vari-
ety of ciphers. For the purposes of this paper we choose to focus only on ciphers
with a XOR-based key addition. For this reason, saying SPN we refer to any cipher
{EK ∣ K ∈ K} ⊆ Sym(M) having an SPN-like structure with M = V and having
classical round functions on V as round functions, and saying FN to any cipher
{EK ∣K ∈ K} ⊆ Sym(M) having an FN-like structure with M = V × V and having
classical round functions on V as F-functions. Notice that SPNs featuring a XOR-
based key addition have been also called translation-based ciphers in [18].

It is well-established that the security from standard statistical attacks comes
from the interaction between the high non-linearity of the confusion layer and the
avalanche effect guaranteed by the diffusion layer. The following section is a quick
overview on one of the most used notions of non-linearity for Boolean functions,
which is mainly used to prevent differential cryptanalysis [8] and other statistical
attacks.

2.1 Notions of non-linearity for Boolean functions

Let f ∶ (F2)s → (F2)t be a vectorial Boolean function and u ∈ (F2)s. The derivative

of f in the direction u, denoted by f̂u, is the function

f̂u ∶ (F2)s → (F2)t
x ↦ xf + (x + u)f.

The following definitions can give an estimate of the non-linearity of f (see [27]).

Definition 2.2. Let f ∶ (F2)s → (F2)t, u ∈ (F2)s and v ∈ (F2)t. Let us define

δf(u, v)def= ∣{x ∈ (F2)s ∣ xf̂u = v}∣ = ∣ vf̂ −1u ∣.

The difference distribution table (DDT) of f is the integer table

DDT[u, v]def= δf(u, v).

The differential uniformity of f is

δ(f)def= max
u≠0

DDT[u, v],

and f is said δ-differentially uniform if δ = δ(f).
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It is well-known that δ(f) ≥ 2, and functions reaching the bound δ(f) = 2 are
called almost perfect non-linear (APN). Furthermore, it is easy to show that, if f
is δ-differentially uniform, then for each u ∈ (F2)s ∖ {0}

∣ Im(f̂u)∣ ≥
2s

δ
.

The requirement of Definition 2.2 is essentially a condition on the pre-images of the
derivatives of f . Alternative definitions focused on the images of the derivatives of
f has been given e.g. in [16, 18]. In particular, a function f satisfying

∣ Im(f̂u)∣ >
2 s−1

δ

for each u ∈ (F2)s ∖ {0} is called weakly δ-differentially uniform [18]. It is straight-
forward to verify that if f is δ-differentially uniform, then it is also weakly δ-
differentially uniform.

2.2 Group generated by the round functions

As already explained in Section 1, statistical attacks are just some of the issues
that can threaten block ciphers. Several researchers have shown in recent years
that also algebraic attacks can be effective. In this paper we focus on a particular
group-theoretical attack, described in [28], based on a undesirable property of the
permutation group generated by the round functions of a cipher, the imprimitivity .

Let Φ = {EK ∣K ∈ K} ⊆ Sym(M) be an r-round iterated block cipher. We have
stressed that the group generated by all encryption functions

Γ(Φ)def= ⟨EK ∣K ∈ K⟩ ≤ Sym(M)

can reveal weaknesses of the cipher. However, the study of Γ(Φ) is not an easy
task in general, since it strongly depends on the key-scheduling function (for an
example of a key-schedule related study, see [7]). Hence one focuses on a group
which is strictly related to Γ(Φ), which allows to ignore the effect of the key-
schedule. For this reason, we do not discuss any key-schedule from now on. Since
each permutation EK is the composition of r round functions ε1,K , ε2,K . . . , εr,K ,
for each 1 ≤ h ≤ r, it is possible to define the group

Γh(Φ)def= ⟨εh,K ∣K ∈ K⟩,

where all the possible round keys for round h are considered, and so the group

Γ∞(Φ)def= ⟨Γh(Φ) ∣ 1 ≤ h ≤ r⟩.
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Imprimitive groups

We recall some basic notions from permutation group theory. Let G be a finite
group acting on the set M. For each g ∈ G and v ∈ M we denote the action
of g on v as vg. We denote by vG = {vg ∣ g ∈ G} the orbit of v ∈ M and by
Gv = {g ∈ G ∣ vg = v} its stabiliser. The group G is said to be transitive onM if for
each v,w ∈M there exists g ∈ G such that vg = w. A partition B of M is trivial if
B = {M} or B = {{v} ∣ v ∈M}, and G-invariant if for any B ∈ B and g ∈ G it holds
Bg ∈ B. Any non-trivial and G-invariant partition B of M is called a block system.
In particular any B ∈ B is called an imprimitivity block. The group G is primitive
in its action on M (or G acts primitively on M) if G is transitive and there exists
no block system. Otherwise, the group G is imprimitive in its action on M (or G
acts imprimitively onM). We recall the following well-known results which will be
useful in the remainder of the paper, and whose proofs may be found e.g. in [14].

Lemma 2.3. A block of imprimitivity is the orbit vH of a proper subgroup H < G
that properly contains the stabiliser Gv, for some v ∈M.

Lemma 2.4. If T is a transitive subgroup of G, then a block system for G is also
a block system for T .

Lemma 2.5. Let us assume that M is a finite vector space over F2 and T its
translation group, i.e. T = {σv ∣ σv ∶ M → M, x ↦ x + v, v ∈ M}. The group
T is transitive and imprimitive on M. Moreover, for any proper and non-trivial
subgroup U of (M,+), {U + v ∣ v ∈M} is a block system.

Imprimivity attack

The cryptanalysts’ interest into the imprimitivity of the group generated by the
round functions of a block cipher arise from the study performed in [28], where it is
showed how the imprimitivity of the group can be exploited to construct a trapdoor
that may be hard to detect. In particular, the author gave an example of a DES-like
cipher, which can be easily broken since its round functions generate an imprimitive
group, but which is resistant to both linear and differential cryptanalysis.

3 Wave ciphers

The aim of this section is to define ciphers whose inner layers are not necessarily
invertible, in order to use APN vectorial Boolean functions as S-boxes (even when
the S-box input size is four or eight). We focus on the case of wave-shaped round
functions, which feature a first layer which enlarges the state, a second which re-
duces its size, and a key addition. These round functions are employed in the place
of classical round functions for both SPNs and FNs. To do so, let us recall that
n = bs ∈ N and V = (F2)n, where V = V1⊕V2⊕ . . .⊕Vb, for 1 ≤ j ≤ b, and dim(Vj) = s.
Let us define an auxiliary space W = (F2)m, with n ≤m such that dim(W ) =m = bt
and W =W1⊕W2⊕ . . .⊕Wb. The subspaces Wj ’s, as the subspaces Vj ’s, are called
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Figure 2: Wave functions

bricks.

What follows is a generalisation of the concept of classical round function.

Definition 3.1. For each k ∈ V , the wave function induced by k is a map εk ∶ V →
V , where εk = γλσk and

• γ ∶ V → W is an injective non-linear transformation (parallel S-box) which
acts in parallel way on each Vj, i.e.

(x1, x2, . . . , xn)γ = ((x1, . . . , xs)γ1, . . . , (xs(b−1)+1, . . . , xn)γb) .

The maps γj ∶ Vj →Wj are called S-boxes;

• λ ∶W → V is a surjective linear map;

• σk ∶ V → V,x↦ x + k is the round key addition.

Figure 2 depicts the composition of two consecutive wave functions.

Notice that, although the hypothesis of each layer being singularly invertible
may be relaxed, decryption is granted only if each wave function is overall invertible.
The following result gives a condition on the confusion and diffusion layers which
ensures that a wave function is a permutation.

Lemma 3.2. Let εk = γλσk be a wave function. The following are equivalent:

1. {a + b ∣ a, b ∈ Imγ} ∩Kerλ = {0};

2. εk ∈ Sym(V ).

Proof. Let us assume 1. Let x1, x2 ∈ V such that x1εk = x2εk. Then (x1γ +x2γ)λ =
0, so x1γ + x2γ ∈ {a + b ∣ a, b ∈ Imγ} ∩Kerλ = {0}, and hence x1γ = x2γ. Since γ is
injective, it follows x1 = x2. Conversely, let x ∈ {a + b ∣ a, b ∈ Imγ} ∩ Kerλ. Then
there exist x1, x2 ∈ V such that x = x1γ + x2γ and xλ = 0, that is x1γλ = x2γλ.
Therefore x1εk = x2εk and hence x1 = x2, which implies x = 0.
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Figure 3: A 4x5 APN S-box

Remark 3.3. Notice that it always holds 0 ∈ {a+b ∣ a, b ∈ Imγ}∩Kerλ. Moreover,
notice that if we assume that 0γ = 0, then the first condition of the previous lemma
implies that Imγ ∩Kerλ = {0}.

3.1 Using a 4x5 APN function

The function γ1 ∶ (F2)4 → (F2)5 displayed in Figure 3 represents an example of
a 4x5 injective function, which is APN, as it can be noted looking at its DDT
displayed in Table 1 in the last page of this paper. Each vector is interpreted as
a binary number, most significant bit first, and then represented using the hex-
adecimal notation (e.g. (0,0,0,1) = 1x). With an eye on using this function as
an S-box for a wave function, one has to verify that there exists a diffusion layer
satisfying the hypothesis of Lemma 3.2. It holds Im(γ1) ⊂ (F2)5; moreover it is
easy to check that ∣{a + b ∣ a, b ∈ Im(γ1)}∣ = 31, and the missing vector in (F2)5 is

ξ
def= 11x. A possible way to design a cipher whose confusion layer applies in parallel
b copies of the S-box γ1 is to determine a diffusion layer λ whose null space is
SpanF2

{(ξ,0, . . . ,0), (0, ξ,0, . . . ,0), . . . , (0,0, . . . , ξ)}, where 0 denotes the zero vec-
tor in (F2)5. The hypothesis 1 of Lemma 3.2 is satisfied, hence all the produced
wave functions are bijective. Such a diffusion layer features a parallel kernel, i.e.

Kerλ =
b

⊕
j=1

Kerλ ∩Wj .

This important feature will be also exploited in the following sections.
Notice that it is not hard to find examples of such APN functions. Indeed, it
is possible to construct an APN map γ ∶ (F2)n → (F2)n+1 by considering first a
function defined over (F2)n and then extending its image to (F2)n+1 by adding an
extra bit. Otherwise it is possible to embed (F2)n into (F2)n+1 and then consider
an APN map defined over (F2)n+1. The map γ1 has been obtained using the first
approach on the power function x↦ x−1.

3.2 Feistel Networks with wave functions

Since our goal is to use the previously defined wave functions inside a cipher, we
now define a wave cipher as an FN whose F-function is a wave function. Feistel
Network’s straightforward decryption encourages this choice.
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Before defining wave ciphers, we generalise a standard security requirement for
diffusion layers [18] to the case of surjective maps.

Definition 3.4. A wall of V (resp. W) is any non-trivial and proper sum of bricks
of V (resp. W ). A surjective linear transformation λ ∶ W Ð→ V is a proper
diffusion layer if for any wall W ′ = ⊕j∈IWj of W and V ′ = ⊕j∈I Vj of V , where
I ⊂ {1, . . . , b}, then

V ′λ−1 /⊂W ′ +Kerλ.

In other terms, if π ∶ W Ð→ W /Kerλ is the canonical projection of W onto
W /Ker(λ), λ is proper if there exists no wall W ′ =⊕j∈IWj of W and V ′ =⊕j∈I Vj
of V such that W ′πλ = V ′.

We are now ready to define our new class of block ciphers, having
M = V × V as message space. In what follows, 0n and 1n denote the zero matrix
of size n×n and the identity matrix of size n respectively. Moreover, for any given
function f ∶ (F2)n → (F2)n, we denote by f the formal operator f ∶ (F2)2n → (F2)2n

f
def= (0n 1n

1n f
) ,

such that for any (x1, x2) ∈ (F2)n × (F2)n acts as (x1, x2)f = (x2, x1 + x2f). The
latter is called the Feistel operator induced by f and, as we will discuss further,
allows to give an algebraic description of FNs.

Definition 3.5. An r-round wave cipher Φ is a family of encryption functions
{EK ∣K ∈ K} ⊆ Sym(V ×V ) such that for each K ∈ K the map EK is the composition
of r functions. More precisely EK = ε1,K ε2,K . . . εr,K , where εi,K = γλσki is an n-bit
wave function such that

• λ is a proper diffusion layer,

• the key-schedule K → V r, K ↦ (k1, k2, . . . , kr), is surjective w.r.t. any round.

The function ρ
def= γλ is called the generating function of the cipher.

Let us notice that the ciphers previously introduced are FNs featuring a wave
function as F-function. Indeed, given (x1, x2) ∈ V × V one has

(x1, x2)εi,K = (x1, x2)(
0n 1n
1n εi,K

) = (x2, x1 + x2εi,K),

where the operator εi,K induces the Feistel structure, as shown in Figure 4. More-
over εi,K is invertible with the following inverse

εi,K
−1 = (εi,K 1n

1n 0n
) .

11



Figure 4: Feistel structure of wave ciphers

It is indeed an easy check that

(x2, x1 + x2εi,K)(εi,K 1n
1n 0n

) = (x1, x2).

Note that, as for any FN, the inverse εi,K
−1 of the round function εi,K does not

involve the inverse of the wave function εi,K .

Remark 3.6. Let T(0,n)
def= {σ(0,k) ∣ (x1, x2) ↦ (x1, x2 + k)} < Sym(V × V ). Let

ρ be the generating function of a wave cipher Φ, and ρ the corresponding Feistel
operator

ρ = (0n 1n
1n ρ

) .

Then εi,K = ρσ(0,ki), and so ⟨T(0,n), ρ ⟩ is the group generated by the round func-
tions of the wave cipher Φ.

4 Group-theoretical study of Wave ciphers

In this section, first we show a group-theoretical result which, as consequence, links
the primitivity for a Substitution-Permutation Network and the primitivity for a
Feistel Network having respectively round functions and F-functions with the same
structure. By exploiting this result we prove that the group generated by the
round functions of a wave cipher is primitive under some reasonable cryptographic
assumptions on the underlying wave functions.
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Figure 5: Feistel to SPN reduction

4.1 Security reduction

Let us consider the group generated by the rounds of an FN which uses as F-
functions the round functions of a primitive SPN. Here we prove a group-theoretical
result which implies the primitivity of this group under the assumption that the
wave functions are invertible. In particular this result is used to show that the
group generated by the round functions of a wave cipher is primitive if the group1

generated by the round functions of an SPN-like cipher having as round functions
the same wave functions is primitive, as depicted in Fig. 5.

Let us recall that T(0,n) = {σ(0,k) ∣ (x1, x2) ↦ (x1, x2 + k)} < Sym(V × V ) and
define

• Tn
def= {σk ∣ x↦ x + k} < Sym(V ),

• T(n,0)
def= {σ(k,0) ∣ (x1, x2)↦ (x1 + k, x2)} < Sym(V × V ),

• T(n,n)
def= {σ(k1,k2) ∣ (x1, x2)↦ (x1 + k1, x2 + k2)} < Sym(V × V ).

Notice that Tn ≅ T(0,n) ≅ T(n,0) < T(n,n).

Let ρ be any element in Sym(V ), ρ be the corresponding Feistel operator, and

let Γ
def= ⟨T(0,n), ρ ⟩. Since we aim at characterising imprimitivity blocks for Γ using

1Note that the hypothesis that the wave functions are invertible allows to consider this
group.
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Lemma 2.4 and Lemma 2.5, we need to individuate a transitive subgroup of Γ. For
this reason, the following alternative presentation of Γ is useful.

Lemma 4.1. Γ = ⟨T(n,n), ρ ⟩.

Proof. Obviously Γ = ⟨T(0,n), ρ ⟩ < ⟨T(n,n), ρ ⟩. On the other hand, given x1, x2, k ∈
V one has

(x1, x2)ρσ(0,k) =(x1, x2)(
0n 1n
1n ρ

)σ(0,k)

=(x2, x1 + x2ρ + k)

=(x1 + k, x2)(
0n 1n
1n ρ

)

=(x1, x2)σ(k,0)ρ.

Hence for each k ∈ V it holds ρσ(0,k) = σ(k,0)ρ, and consequently σ(k,0) ∈ Γ. There-
fore for each k1, k2 ∈ V , σ(k1,k2) = σ(k1,0)σ(0,k2) ∈ Γ.

Being T(n,n) a transitive subgroup of Γ and noticing that the subgroups of T(n,n) are
of the form {σu ∶ u ∈ U}, where U is a subgroup of V × V , we obtain the following.

Lemma 4.2. If Γ is imprimivitive in its action on V × V , then a block system is
made of the cosets of a subgroup of V × V , i.e. it is

{U + v ∣ v ∈ V × V },

where U is a non-trivial and proper subgroup of V × V .

Proof. See Lemma 2.4 and Lemma 2.5.

According to Lemma 4.2, in order to prove that Γ is primitive it is sufficient
to prove that no subgroup of V × V is a block. The following theorem, due to
Goursat [23, Sections 11–12], characterises the subgroups of the direct product of
two groups in terms of suitable sections of the direct factors (see also [29]). We
apply this result to the additive group V × V .

Theorem 4.3 (Goursat’s Lemma [23]). Let G1 and G2 be two groups. There exists
a bijection between

1. the set of all subgroups of the direct product G1 ×G2, and

2. the set of all triples (A/B,C/D,ψ), where

• A is a subgroup of G1,

• C is a subgroup of G2,

• B is a normal subgroup of A,

• D is a normal subgroup of C, and
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• ψ ∶ A/B → C/D is a group isomorphism.

In this bijection, each subgroup of G1 ×G2 can be uniquely written as

Uψ = {(a, c) ∈ A ×C ∶ (a +B)ψ = c +D}.

Note that the isomorphism ψ ∶ A/B → C/D is induced by a homomorphism ϕ ∶ A→
C such that (a+B)ψ = aϕ+D for any a ∈ A, and Bϕ ≤D. Such homomorphism is
not unique.

Lemma 4.4. In the above notation, given any homomorphism ϕ inducing ψ, we
have

Uψ = {(a, aϕ + d) ∶ a ∈ A,d ∈D}. (1)

Proof. Note first that the right-hand side of (1) is contained in Uψ, since for a ∈ A
and d ∈ D we have (a + B)ψ = aϕ + D = aϕ + d + D, that is, (a, aϕ + d) ∈ Uψ.
Moreover Uψ is contained in the right-hand side of (1). Indeed, if (a, c) ∈ Uψ we
have aϕ +D = (a +B)ψ = c +D, so that c = aϕ + d for some d ∈D.

This is our main result of this section.

Theorem 4.5. Let ρ ∈ Sym(V )∖AGL(V ), ρ be the corresponding Feistel operator,
and denote by Γ = ⟨Tn, ρ ⟩ and by Γ = ⟨T(0,n), ρ ⟩. If Γ is primitive on V , then Γ is
primitive on V × V .

Before proving Theorem 4.5, we show how this group-theoretical result can be
helpful to us. Let Φ = {EK ∣ K ∈ K} ⊆ Sym(V × V ) be an r-round wave block
cipher with a bijective generating function ρ = γλ. By Remark 3.6 one has that
Γ∞(Φ) = ⟨T(0,n), ρ ⟩ is the group generated by the round functions of the wave cipher
Φ. Moreover, ⟨Tn, ρ ⟩ is the group generated by the wave-shaped round functions
of an SPN-like cipher whose round functions are εi,K = ρσ(0,ki). Therefore, from
Theorem 4.5, next result directly follows.

Corollary 4.6. Let Φ be a wave cipher, ρ ∈ Sym(V ) its generating function and
ρ the Feistel operator induced by ρ. If ⟨Tn, ρ ⟩ is primitive on V , then Γ∞(Φ) =
⟨T(0,n), ρ ⟩ is primitive on V × V .

Proof of Theorem 4.5. Let us suppose that Γ = ⟨T(0,n), ρ ⟩ = ⟨T(n,n), ρ ⟩ is imprimi-
tive, so there exists a non-trivial and proper subgroup U of V × V = (F2)n × (F2)n
such that {U + (v1, v2) ∣ (v1, v2) ∈ V × V } is a block system. In particular,

Uρ = U + (v1, v2) (2)

for some (v1, v2) ∈ V ×V . Since (0,0)ρ = (0,0ρ), we can assume v1 = 0 and v2 = 0ρ.
With reference to Lemma 4.4 and its notation, we have U = {(a, aϕ + d) ∣ a ∈ A,d ∈
D}, and by (2), for any a ∈ A and d ∈D there exist x ∈ A and y ∈D such that

(a, aϕ + d)(0n 1n
1n ρ

) = (x,xϕ + y + 0ρ),
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that is
(aϕ + d, a + (aϕ + d)ρ) = (x,xϕ + y + 0ρ).

Hence, it holds x = aϕ + d, and considering a = 0, we obtain D ≤ A. Otherwise,
considering d = 0, we obtain Aϕ ≤ A. Similarly, we have

Uρ−1 = U + (v′1, v′2) (3)

for some (v′1, v′2) ∈ V × V . Since ρ−1 = ( ρ 1n
1n 0n

), we can consider v′1 = 0ρ and v′2 = 0.

In this case, for any a ∈ A and d ∈D there exist x ∈ A and y ∈D such that

(aρ + aϕ + d, a) = (x + 0ρ, xϕ + y).

Hence we have x = aρ+ aϕ+ d+ 0ρ. Substituting x = aϕ+ d in xϕ+ y and being ϕ a
homomorphism, it holds y = a + aρϕ + aϕ2 + dϕ + 0ρϕ. Then, considering a = 0, we
obtain y = dϕ, and thus Dϕ ≤ D. Now, in the general case, letting (v1, v2) ∈ V × V
it holds

(U + (v1, v2))ρ = U + (v′1, v′2) (4)

for some (v′1, v′2) ∈ V × V . By definition of ρ, we can take v′1 = v2 and v′2 = v1 + v2ρ.
By Lemma 4.4 and by (4), for any a ∈ A and d ∈D there exist x ∈ A and y ∈D such
that

(a + v1, aϕ + d + v2)(
0n 1n
1n ρ

) = (x + v2, xϕ + y + v1 + v2ρ),

that is,

(aϕ + d + v2, a + v1 + (aϕ + d + v2)ρ) = (x + v2, xϕ + y + v1 + v2ρ),

hence we have x = aϕ + d. Substituting x = aϕ + d in xϕ + y + v1 + v2ρ,

a + v1 + (aϕ + d + v2)ρ + aϕ2 + v1 + v2ρ = y + dϕ.

Then, considering a = 0, we obtain (d + v2)ρ = y + dϕ + v2ρ. Since Dϕ ≤ D, then
y + dϕ ∈D and so

(D + v2)ρ =D + v2ρ.
Note that we obtain the equality since ρ is a permutation. If D ≠ {0}, (F2)n, then
we proved that the imprimitivity of Γ implies the imprimitivity of Γ. To complete
the proof, it remains to consider the cases D = (F2)n and D = {0}.
[D = (F2)n] We proved that D ≤ A, and from the hypotheses holds that D ≤ C
and ψ is an isomorphism between A/B and C/D. Since D = (F2)n, we have
D = C = A = B = (F2)n, which contradicts that U is a proper subgroup of V × V .
[D = {0}] First, note that in this case Bϕ = {0}. Moreover, by Lemma 4.4,

U = {(a, aϕ) ∣ a ∈ A},

and by (4) for any a ∈ A there exists x ∈ A such that

(aϕ + v2, a + v1 + (aϕ + v2)ρ) = (x + v2, xϕ + v1 + v2ρ).
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Proceedings as before, it holds

a + aϕ2 = (aϕ + v2)ρ + v2ρ. (5)

Note that for any a ∈ B ≤ A, aϕ = 0 and so we obtain a + v2ρ = v2ρ for any a ∈ B,
that is, B = {0}. Therefore, if D = {0}, also B = {0} and so ϕ = ψ is an isomorphism
between A and C. Moreover, since Aϕ is contained in both A and C, then A = C
and ϕ is an automorphism of A. If A = {0}, then A = C = D = B = {0}, which
contradicts that U is non-trivial. If A is a proper subgroup of (F2)n, then by (5)
and since both a + aϕ2 and aϕ belong to A we have

(A + v2)ρ = A + v2ρ,

and so Γ is imprimitive. If A = (F2)n, in equation (5) we can consider v2 = 0 since
aϕ + v2 is an element of A = (F2)n, so we have

(aϕ)ρ = a + aϕ2 + 0ρ.

Since the function x+xϕ2 is linear, we proved that ρ ∈ AGL(V ), which is a contra-
diction.

4.2 Conditions on SPN-like wave ciphers

In the light of Theorem 4.5, given a wave cipher Φ whose generating function ρ
is invertible, we obtain that the group Γ∞(Φ) is primitive if we manage to prove
that the group ⟨Tn, ρ ⟩ is primitive. The latter represents the group generated by
the rounds of an SPN-like cipher featuring wave functions in the place of classical
round functions. Although for such a cipher it may be difficult to compute the com-
putational inverse of the encryption functions, since it has an SPN structure with
non-invertible layers, we can still study its theoretical properties. In this section
we underline which properties of the generating function ρ guarantee that ⟨Tn, ρ ⟩
is primitive. From now on let us assume that ρ ∈ Sym(V ).

Let ρ = γλ be the generating function of a wave cipher. We can always assume
that γ maps 0 into 0, since it is possible to add 0γ to the round key of the previous
round. Then, since λ is linear, it holds 0ρ = 0.

In the following, we define a generalisation of the notion of strong anti-invariance
given in [18], which is a condition in our second main theorem. Let us recall that,
as in Section 3, V = V1 ⊕V2 ⊕ . . .⊕Vb and W =W1 ⊕W2 ⊕ . . .⊕Wb, with Vj = (F2)s
and Wj = (F2)t for each j ∈ {1,2, . . . , b}.

Definition 4.7. Let j ∈ {1,2, . . . , b}, γj ∶ Vj → Wj be an S-box such that 0γj = 0,
and λ ∶ W → V be a surjective linear map. Given 0 ≤ δ < s, γj is δ-non-invariant
with respect to λ if for any proper subspaces V ′ < Vj and W ′ < Wj such that
V ′γj +Kerλ ∩Wj =W ′, then dim(W ′) < s − δ.
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Notice that if 0 ≤ δ < δ′ < s and γj is δ′-non-invariant w.r.t. λ, then it is also
δ-non-invariant w.r.t. λ.

Lemma 4.8. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave cipher.
Then ⟨Tn, ρ ⟩ is imprimitive if and only if there exists a proper and non-trivial
subgroup U of V such that (u + v)γ + vγ ∈ Uλ−1, for any u ∈ U and v ∈ V . In this
case, {U + v ∣ v ∈ V } is a block system for ⟨Tn, ρ ⟩.

Proof. Since Tn ≤ ⟨Tn, ρ ⟩, if ⟨Tn, ρ ⟩ is imprimitive, then {U + v ∣ v ∈ V } is a block
system, for some proper and non-trivial subgroup U of V . Let v ∈ V , then (U+v)ρ =
U + vρ = U + vγλ. Therefore for any u ∈ U and v ∈ V it holds (u + v)γλ + vγλ ∈ U
and, since λ is linear, (u + v)γ + vγ ∈ Uλ−1.

The following is the main result of this section.

Theorem 4.9. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave cipher
Φ. If there exists 1 ≤ δ < s such that for each j ∈ {1,2, . . . , b} the S-box γj is

• 2δ-differentially uniform,

• δ-non-invariant with respect to λ,

and if Kerλ =⊕bj=1 Kerλ ∩Wj, then ⟨Tn, ρ⟩ is primitive (and so it is Γ∞(Φ)).

Proof. Suppose that ⟨Tn, ρ⟩ is imprimitive. For the Lemma 4.8, a block system is
of the form {U + v ∣ v ∈ V }, for any proper non-trivial subgroup U of V . Since U is
an imprimitivity block and ρ ∈ ⟨Tn, ρ⟩, Uρ = U + v for some v ∈ V . Moreover, since
0ρ = 0, we obtain U + v = U , and consequently Uρ = Uγλ = U. Moreover

Uγ +Kerλ = Uλ−1 ⊆W, (6)

and so Uγ + Kerλ is a subspace of W . For 1 ≤ j ≤ b, let πj ∶ V Ð→ Vj be
the j-th projection with respect to the decomposition V = V1 ⊕ . . . ⊕ Vb, and

I
def= { j ∣ j ∈ {1, . . . , b}, Uπj ≠ {0}}. Then two cases are possible: either U ∩ Vj = Vj

for each j ∈ I, or there exists j ∈ I such that U ∩ Vj ≠ Vj .

In the first case U =⊕j∈I Vj is a wall. From (6) it holds

(⊕
j∈I

Vj)γ +Kerλ = (⊕
j∈I

Vj)λ−1. (7)

Since γ is a parallel transformation, we have

(⊕
j∈I

Vj)γ ⊂⊕
j∈I

Wj . (8)

Thus, from (7) and (8) it follows that

(⊕
j∈I

Vj)λ−1 ⊂⊕
j∈I

Wj +Kerλ,
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which is a contradiction since λ is proper.

In the second case, let us assume there exists j ∈ I such that U ∩Vj ≠ Vj . From
(6) we have

(Uγ +Kerλ) ∩Wj = Uλ−1 ∩Wj , (9)

where, since both γ and the kernel of λ are parallel,

(Uγ +Kerλ) ∩Wj = Uγ ∩Wj +Kerλ ∩Wj = (U ∩ Vj)γj +Kerλ ∩Wj . (10)

Indeed, let u = (u1γ1, u2γ2, . . . , ubγb) ∈ Uγ, v = (v1, v2, . . . , vb) ∈ Kerλ, and let us

assume that w
def= uγ + v ∈ (Uγ +Kerλ) ∩Wj , hence w = (0, . . . ,0,wj ,0, . . . ,0). For

l ≠ j we obtain ulγl = vl, hence vl ∈ Imγl∩(Kerλ∩Wl). From Remark 3.3 and since
Kerλ is parallel, we have Imγl ∩ (Kerλ∩Wl) = {0}, therefore vl = ul = 0. Thus, (9)
and (10) imply that

(U ∩ Vj)γj +Kerλ ∩Wj = Uλ−1 ∩Wj ,

and, since γj is δ-non-invariant with respect to λ, then

dim (Uλ−1 ∩Wj) < s − δ. (11)

Furthermore, let u ∈ U such that uj
def= uπj ≠ 0 and vj ∈ Vj . Since ⟨Tn, ρ ⟩ is

imprimitive, by Lemma 4.8 it follows that (u + vj)γ + vjγ ∈ Uλ−1. Moreover uγ ∈
Uγ ⊂ Uλ−1, and so uγ + (u + vj)γ + vjγ ∈ Uλ−1, whose components are null, except
possibly for those of the j-th brick, i.e.

ujγj + (uj + vj)γj + vjγj ∈ Uλ−1 ∩Wj , (12)

which implies that Im(γ̂juj
)+ujγj ⊂ Uλ−1 ∩Wj . Being γj 2δ-differentially uniform,

it is also 2δ-weakly differentially uniform, and since uj ≠ 0 we obtain

2s−δ−1 < ∣ Im(γ̂juj
)∣ ≤ ∣Uλ−1 ∩Wj ∣,

therefore dim(Uλ−1 ∩Wj) ≥ s − d, which contradicts (11).

Notice that in the proof of Theorem 4.9 we actually exploited that every S-box is
2δ-weakly differentially uniform. Hence, we also proved the more general following
result.

Theorem 4.10. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave cipher
Φ. If there exists 1 ≤ δ < s such that for each j ∈ {1,2, . . . , b} the S-box γj is

• 2δ-weakly differentially uniform,

• δ-non-invariant with respect to λ,

and if Kerλ =⊕bj=1 Kerλ ∩Wj, then ⟨Tn, ρ⟩ is primitive (and so it is Γ∞(Φ)).
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The hypothesis of each S-box being δ-non-invariant w.r.t. λ in Theorem 4.9 can be
weakened by adding a reasonable requirement on the diffusion layer. However, for
this result does not exist an alternative version using the weak differential unifor-
mity.

Theorem 4.11. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave cipher
Φ. If there exists 1 ≤ δ < s such that for each j ∈ {1,2, . . . , b} the S-box γj is

• 2δ-differentially uniform,

• (δ − 1)-non-invariant with respect to λ,

and if the diffusion layer is such that

• Kerλ =⊕bj=1 Kerλ ∩Wj,

• dim(Kerλ ∩Wj) < s − δ for each j ∈ {1,2, . . . , b},

then ⟨Tn, ρ⟩ is primitive (and so it is Γ∞(Φ)).

Proof. The proof proceeds exactly as that of Theorem 4.9. In this slightly different
setting induced from a further requirement on λ, we can conclude that U ∩Vj ≠ {0}.
Indeed, being

(U ∩ Vj)γj +Kerλ ∩Wj = Uλ−1 ∩Wj ,

and having dim(Uλ−1 ∩Wj) ≥ s − δ and dim(Kerλ ∩Wj) < s − δ, there must be a
non-zero element in (U ∩ Vj)γj , and consequently a non-zero element z ∈ U ∩ Vj .
Then, reasoning as before, using Lemma 4.8 one can prove that Im(γ̂jz) ⊂ Uλ−1∩Wj

and ∣ Im(γ̂jz)∣ ≥ 2s−δ. Moreover, 0 ∉ Im(γ̂jz), since z ≠ 0 and γj is injective. Hence

∣Uλ−1 ∩Wj ∣ ≥ 2s−δ + 1,

and therefore dim(Uλ−1 ∩Wj) ≥ s− δ + 1. The hypothesis of (δ − 1)-non-invariance
of γj leads to a contradiction, hence the desired holds.

5 The security analysis of a concrete instance of
wave-cipher

In the previous sections we have introduced a new framework for block ciphers,
called wave ciphers, and studied its security with respect to the imprimitivity at-
tack. In particular we primarily aimed at determining sufficient conditions on the
choice of the layers which guarantee the resistance of each wave cipher satisfying
such conditions against a dangerous algebraic attack. Nevertheless also statistical
attacks may represent a threat for the security of these ciphers. However, as al-
ready mentioned in Sec. 1, security against statistical attack has to be established
considering a specific instance of wave cipher. For this reason, we design a concrete
example of a real-world dimension wave cipher by selecting an APN S-box and a
proper diffusion layer, and we analyse its resistance against differential and linear
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cryptanalysis.

The proposed instance is a 64-bit Feistel Network featuring eight 4 × 5 APN
S-boxes and a 40×32 matrix as diffusion layer. Let us assume n = 32, m = 40, s = 4,
t = 5 and b = 8, and let us consider again the 4 × 5 S-box γ1 displayed in Figure 3.
Recall that

∣{a + b ∣ a, b ∈ Im(γ1)}∣ = 31

and ξ
def= 11x ∉ {a + b ∣ a, b ∈ Im(γ1)}. Since we want to design a 32-bit invertible

generating function for a wave cipher whose confusion layer γ applies 8 copies of
the S-box γ1 and whose diffusion layer features a parallel kernel, we determine a
proper diffusion layer λ such that

Kerλ = SpanF2
{(ξ,0,0,0,0,0,0,0), (0, ξ,0,0,0,0,0,0), . . . , (0,0,0,0,0,0,0, ξ)} ,

where 0 denotes the zero vector in (F2)5. The matrix displayed in Figure 6 is the
chosen example of such a layer. Hence we build the instance of a wave cipher con-
sidering ρ = γλ as a bijective generating function (see Definition 3.5).

Before analysing statistical attacks, notice that the previously defined layers
satisfy the hypotheses of Theorem 4.11 with δ = 1, since γ1 is 0-non-invariant with
respect to Kerλ, and consequently ρ is such that the group ⟨Tn, ρ⟩ is primitive.
Then Theorem 4.5 implies that the group Γ∞(Φ) generated by the rounds of a
wave cipher having γλ as generating function is primitive.

In order to discuss resistance against differential and linear cryptanalysis, let
us highlight some properties of the chosen diffusion layer, which is inspired by the
one of the cipher PRESENT, even though providing slower diffusion. For such
cryptanalytic purposes, proceeding as in [10], we can group the eight S-boxes into
two groups, as shown in Fig 7. The following properties holds:

1. the input bits to an S-box come from two different S-boxes of the same group;

2. the five output bits for a particular S-box enter two different S-boxes, each
of which belongs to a different group in the following round;

3. the output bits of S-boxes of different groups go to different S-boxes;

4. the branch number of λ is minx∉ker(λ) (wb(x) +wb(xλ)) = 2, where wb(x)
denotes the number of non-null bricks in the message x.

The study of differential and linear trails, discussed in the following sections, is
usually carried out assuming that the key values are random vectors of the same
size as the block. For this reason, we decided not to design a concrete instance of
key-scheduling algorithm for our cipher.
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λ
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Figure 6: An example of 40 × 32 proper diffusion layer with parallel kernel,
where each “⋅” represents 0.

Figure 7: Diffusion properties of the matrix λ of Fig. 6.
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5.1 Differential cryptanalysis

The S-box of Fig. 3 is APN, hence all its non-trivial differential probabilities are
equal to 2−3 and any 3-round differential trail has at least 2 active S-boxes, the
worst case being the one forming the pattern 1-0-1, occurring when the XOR with
the left part of the difference cancels out the output difference of the F-function for
the first round. Consequently, the probability of each 3-round differential trail is
upper bounded by

(2−3)2 = 2−6.

Therefore, if r = 48, the probability of a single 48-round differential trail is upper

bounded by (2−6)16 = 2−96.

5.2 Linear cryptanalysis

In the case of linear cryptanalysis, the bias of all linear approximations is less or
equal than 2−2. Recalling Matsui’s Piling-up Lemma [26], the maximal bias of a
linear approximation of three rounds involving two active S-boxes is

e3 = 2 × (2−2)2 = 2−3.

Consequently we can bound the maximal bias of a 48-round linear approximation
by

e48 = 215 × e163 = 215 × (2−3)16 = 2−33.

Matsui shows in [26] that the number of known plaintexts required in the attack is
approximatively e−2, where e denotes the maximal bias of a linear approximation.
Therefore an attacker needs approximately 266 known plaintexts to mount a key-
recovery linear attack against a 48-round encryption of our instance of wave cipher.

5.3 Other comments

It is worth noting that, although the proposed cipher features S-boxes with an odd
number of output bits, the size of the block is a power of two, which represents the
optimal case for implementation needs. For example, the disadvantage of consider-
ing an FN featuring 5×5 APN S-boxes in place of 4×5 S-boxes would be twofold in
terms of keeping the cipher lightweight: from one hand, the size of the block would
not be a power of two; from the other hand, a 5×5 APN S-box requires the storage
of 32 values, twice the ones needed for a 4 × 5 S-box.

6 Conclusions and open problems

In this work we proposed a new family of ciphers, called wave ciphers, whose round
functions are the composition of layers not all invertible. The round functions of a
wave cipher are wave functions, vectorial Boolean functions obtained as the com-
position of injective non-linear confusion layers enlarging the message, surjective
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linear diffusion layers reducing the message size, and a key addition. Relaxing the
requirement that the S-boxes are permutations allowed to consider APN functions
to build confusion layers. In particular we gave an example of a 4 × 5 APN S-
box. We proposed to use wave functions as F-functions of Feistel Networks, where
computing inverse functions is not required in order to perform decryption. With
regard to their security we showed that, under the assumption that the generating
function is invertible, and under suitable non-linearity properties of the Boolean
functions involved, the group generated by the round functions of a wave ciphers
acts primitively. Finally, we presented a concrete example of 64-bit wave cipher
and we proved its resistance against differential and linear cryptanalysis, as well as
the imprimitivity attack.

Our new construction leaves several problems open, such as determining conditions
on the wave functions to ensure that the group generated by the round functions
of a wave cipher is the alternating group, or studying the resistance of instances
of wave ciphers with respect to other more sophisticated statistical attacks on the
wave-shaped structure. Moreover, to the best of our knowledge, s×t APN functions
with s < t are not very much investigated in literature. Finally note that, in order to
prove that Γ∞(Φ) = ⟨T(0,n), ρ ⟩ is primitive, we adopted the strategy of considering
an SPN having as round functions the same wave functions of Φ, and we used
Theorem 4.5 to deduce the primitivity of Γ∞(Φ) from the primitivity of ⟨Tn, ρ⟩.
This forced us to suppose ρ ∈ Sym(V ). However, the bijectivity of ρ is not required
to define a wave cipher. For this reason, one of our interests is to prove the same
result in more general hypotheses on ρ.
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